
Reasoning over Financial Scenarios
with the Vadalog System

Teodoro Baldazzi

Università Roma Tre

Luigi Bellomarini

Bank of Italy

Emanuel Sallinger

TU Wien and University of Oxford

ABSTRACT

The last decade has witnessed a surge of interest from the fi-

nancial sector towards intelligent systems that model complex

business domains via powerful languages and employ them to

reason over enterprise data and infer new knowledge. Since many

languages and systems for Knowledge Representation and Rea-

soning have recently appeared on the scene, selecting the most

suitable ones to tackle specific economic and financial scenar-

ios is by no means trivial and calls for a deep awareness of the

different language features, their mutual interactions, and how

they are implemented by the available systems. Working with the

Central Bank of Italy, we have been embarking on this adventure

since five years ago and, together with the University of Oxford

and TU Wien, have driven the development of Vadalog, one of

the state-of-the-art reasoners. In this contribution, we summa-

rize the characteristics of existing reasoners offering a summary

table which, to the best of our knowledge, provides an in-depth

comparison of all of them for the first time. Leveraging five refer-

ence use cases of interest, we discuss the most relevant language

features and choices that have driven the design of Vadalog. As a

by-product, we offer a guide for other entities in the private and

public sectors (e.g., central banks, statistical offices, supervision

authorities, financial intelligence units, etc.) willing to enhance

their business processes with automated reasoning.

1 INTRODUCTION

A core pillar of our Information Age is the idea of knowledge as

an essential driving force that can be relied upon to generate eco-

nomic value in various fields of society [4]. In the last decade, the

willingness to capitalize on and exploit such knowledge reached

the economic and financial realm as well, sparking growing in-

terest of the financial communities in modern intelligent systems
with reasoning capabilities, able to capture complex real-world

scenarios with powerful Knowledge Representation and Reasoning
(KRR) languages and enhance the respective business processes.

Consequently, KRR systems and languages started to be adopted

by central banks, supervision and monetary authorities, national

statistical offices, financial intelligence units, to solve a plethora

of relevant problems: addressing banking supervision inquiries,

fighting hostile company takeovers, performing credit-worthiness
evaluation, countering anti-money laundering, sustaining insur-
ance fraud detection, backing statistical research, and many more,

as witnessed by the success of dedicated venues and events [3, 54].

In parallel, in the database and the AI communities, we are

observing the surge of increasingly mature, efficient, and expres-

sive logic-based KRR languages, which have proved to be a key

ingredient in the rise of a flurry of reasoning solutions. While

featuring distinct properties and users—e.g., from Knowledge
Graph management to Big Data analytics—all such systems share

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

a common challenge: striking a balance between the expressive

power needed to address real-world scenarios, and the scalability

requirements needed to address massive volumes and user bases.

In this work, we will be focusing on Datalog-based reasoners.

In the last five years of work with the Central Bank of Italy,

we have been contributing to this newly-formed bridge between

the financial sector and the database and AI communities. In

fact, in the context of a joint effort with the University of Oxford

and TU Wien, we developed Vadalog [21], a state-of-the-art

reasoner that supports multiple evaluation methodologies and

features, to effectively address relevant and challenging tasks

from the economic and financial realm. We had the chance to

report about many successful cases and industrial applications

of our system [7, 8, 18, 19, 25, 28].

Yet, such a diversified and very technical offer of KRR lan-

guages and systems unavoidably represents a barrier to entry

for new business players who are beginning to interact with this

possibly unfamiliar field of research. Being able to determine the

most suitable solutions to effectively address a specific economic

or financial task is by no means trivial. Indeed, it involves be-

ing aware of which language features may best work to model

the scenario at hand, such as recursion, aggregation, existential
quantification, negation etc. Moreover, it requires a thorough

understanding of the interplay among such features, as well as

their implementation in reasoning systems. For instance, what

capabilities are needed to support graph navigation, like in the

case of supervision analyses or anti-money laundering inquiries?

And, similarly, what features should I be looking for to address

clustering settings? Recursion and existential quantification are

the answers in these cases, respectively. Still, what if the two

settings need to be satisfied at the same time? We know that

query answering in Datalog becomes undecidable in the joint

presence of these characteristics [43]. Thus, what systems are

able to convey the right trade-off?

Contribution. Motivated by questions of the like, in this short

paper we retrace the main milestones in the development of

Vadalog, illustrating the properties and features we integrated

into the system by presenting relevant financial use cases and

scenarios for the Central Bank of Italy which drove our design

choices.We complete this analysis by investigating howVadalog

emerges when compared with the other state-of-the-art reason-

ers existing in the literature. Such investigation is carried out by

comparing the systems with respect to their main KRR capabil-

ities, to the best of our knowledge, with the goal of offering a

guideline for the new players in this field. Performance-based

comparisons have already been discussed in related works and

benchmark papers [6, 20, 29, 30]. More in detail, in this paper we

provide the following contributions.

• We present five representative use cases from the financial

and economic domain, namely Company Control, Financial
Shock Propagation, Close Link, Collateral Eligibility under Uncer-
tainty and Company Supervision through Time.

Industrial & Applications Paper

 

 

Series ISSN: 2367-2005 782 10.48786/edbt.2023.66

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.66


• We describe themain language features, extensions, and

reasoning capabilities of the Vadalog system, required to

solve the above use cases.

• We investigate the related work of our system, providing

a summary table that compares the top-performing reasoners

in the current literature, to the best of our knowledge, with

respect to the main features and properties required to address

such financial scenarios.

• We offer a guidance for private and public entities willing

to begin to enhance their business processes with the powerful

arsenal of techniques for logic-based automated reasoning.

Overview. The remainder of this paper is organized as follows.

In Section 2 we provide some relevant notions regarding Datalog-

based reasoning. In Section 3 we present the features of the

Vadalog system to address the financial use cases. In Section 4

we discuss the related work and we illustrate the summary table

of the reasoners. We draw our conclusions in Section 5.

2 REASONINGWITH DATALOG

To enable the full potential of ontological reasoning, existen-

tial quantification is an essential requirement. This drove the

development of the Datalog∃ family of logic languages [1], a nat-

ural extension of Datalog [5, 17, 37, 64] that allows existentially-

quantified variables in rule heads.

Relational Foundations. Let C, N, and V be disjoint countably

infinite sets of constants, nulls and variables, respectively. A (rela-
tional) schema S is a finite set of relation symbols (or predicates)
with associated arity. A term is either a constant or a variable.

An atom over S is an expression of the form 𝑅(𝑣), where 𝑅 ∈ S is
of arity 𝑛 > 0 and 𝑣 is an 𝑛-tuple of terms. A database (instance)
over S associates to each symbol in S a relation of the respective

arity over the domain of constants and nulls. The members of

the relations are called tuples or facts. Given two conjunctions

of atoms ς1 and ς2, we define a homomorphism from ς1 to ς2 as

a mapping ℎ : C ∪ N ∪ V → C ∪ N ∪ V s.t. ℎ(𝑡) = 𝑡 if 𝑡 ∈ C,
ℎ(𝑡) ∈ C ∪ N if 𝑡 ∈ N and for each atom 𝑎(𝑡1, . . . , 𝑡𝑛) ∈ ς1, then

ℎ(𝑎(𝑡1, . . . , 𝑡𝑛)) = 𝑎(ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) ∈ ς2.

Dependencies. A Datalog
∃
program consists of a set of facts

and existential rules, or tuple-generating dependencies (TGDs),
function-freeHorn clauses of the form∀𝑥∀𝑦 (𝜑 (𝑥,𝑦)→∃𝑧𝜓 (𝑥, 𝑧)),
where 𝜑 (𝑥,𝑦) (the body) and𝜓 (𝑥, 𝑧) (the head) are conjunctions
of atoms over the respective predicates and the arguments are vec-

tors of variables and constants. Moreover, it may feature equality-
generating dependencies (EGDs), first-order implications of the

form ∀𝑥 (𝜑 (𝑥)→𝑥𝑖 = 𝑥 𝑗 ), where 𝜑 (𝑥) is a conjunction of atoms

and 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑥 . Quantifiers can be omitted.

Language Extensions. Real-world applications require reason-

ing systems to support multiple features that extend the declar-

ative language. Among them, aggregate functions, namely sum,

prod,min,max and count, as well as SQL-like grouping constructs,
are particularly relevant. Important extensions also include nega-
tions and negative constraints, of the form ∀𝑥 (𝜑 (𝑥)→⊥), where
𝜑 (𝑥) is a conjunction of atoms and ⊥ denotes the truth constant

false to model disjointness or non-membership. Other features

of practical utility are expressions in rule bodies, modelled with

comparison (>, <, ≥, ≤,≠) and algebraic (+,−, ∗, /, etc.) operators.
Ontological Reasoning and Query Answering. Intuitively

speaking, an ontological reasoning task consists in answering a

conjunctive query (CQ) 𝑄 over a database 𝐷 , augmented with a

set Σ of logical rules. A conjunctive query 𝑄 is an implication

𝑞(𝑥) ← 𝜓 (𝑥, 𝑧), where𝜓 (𝑥, 𝑧) is a conjunction of atoms over S,
𝑞(𝑥) is an 𝑛-ary predicate ∉ S, and 𝑥, 𝑧 are vectors of variables

and constants. A Boolean CQ (BCQ) 𝑄 ← 𝜓 (𝑥, 𝑧) over 𝐷 under

Σ is a particular kind of CQ whose answer is positive iff there

exists a homomorphism h: 𝐶 ∪𝑉 → 𝐶 ∪ 𝑁 s.t. h(𝜓 (𝑥, 𝑧)) ⊆ 𝐷 .

Other Forms of Reasoning. Traditional KRR languages and

approaches are often insufficient to properly address complex

real-world scenarios. For instance, how should we model events

that are not always definitive, but rather may only occur with a

given probability or in specific time frames? For these reasons,

ontological reasoning has been complemented with other forms

of automated reasoning, such as probabilistic, temporal, etc.

Chase Procedure. The semantics of a Datalog
∃
program is

usually defined in an operational way with an algorithmic tool

known as the chase procedure [52]. Intuitively, it enforces the
satisfaction of a set of dependencies Σ over a database 𝐷 , incre-

mentally expanding 𝐷 with facts entailed via the application of

the rules over 𝐷 , until all of them are satisfied. Such facts possi-

bly contain fresh new symbols 𝜈 (technically, labelled nulls) to
satisfy existential quantification. A TGD 𝜎 : 𝜑 (𝑥,𝑦)→𝜓 (𝑥, 𝑧))
is satisfied by 𝐷 if, whenever a homomorphism 𝜃 occurs such

that 𝜃 (𝜑 (𝑥,𝑦)) ⊆ 𝐷 , there exists an extension 𝜃 ′ of 𝜃 (i.e., 𝜃 ⊆
𝜃 ′) such that 𝜃 ′ (𝜓 (𝑥, 𝑧)) ⊆ 𝐷 . In other words, in the standard

(namely, oblivious) chase, 𝜎 is applicable to 𝐷 if there exists a

𝜃 such that 𝜃 (𝜑 (𝑥,𝑦)) ⊆ 𝐷 . When applied, 𝜎 generates a new

fact 𝜃 ′ (𝜓 (𝑥, 𝑧)) that enriches 𝐷 , if not already present, where 𝜃 ′

extends 𝜃 by mapping the variables of 𝑧 (if not empty) to new

labelled nulls named in a lexicographical order. Similarly, an EGD

𝜂 : 𝜑 (𝑥)→𝑥𝑖 = 𝑥 𝑗 is satisfied if, for each 𝜃 (𝜑 (𝑥)), 𝜃 (𝑥𝑖 ) = 𝜃 (𝑥 𝑗 ).
Thus, 𝜂 is applicable to 𝐷 if there exists a 𝜃 such that 𝜃 (𝜑 (𝑥))
⊆ 𝐷 and 𝜃 (𝑥𝑖 ) ≠ 𝜃 (𝑥 𝑗 ). When applied, 𝜂 checks if 𝑥𝑖 and 𝑥 𝑗 are

constants, in which case it fails; otherwise, it performs a uni-
fication, replacing each occurrence of 𝜃 (𝑥 𝑗 ) with 𝜃 (𝑥𝑖 ) if 𝜃 (𝑥𝑖 )
precedes 𝜃 (𝑥 𝑗 ) in the lexicographical order, vice versa otherwise.

The chase graph G(𝐷, Σ) is the directed graph with the facts in

𝐷 and the ones generated during the chase as nodes and an edge

from a node 𝑛 to a node𝑚 if𝑚 is obtained from 𝑛 (and possibly

other facts) via applicable homomorphisms [34].

Evaluation Methodologies.Modern reasoners encode chase

procedures via two main approaches: (i) a materialization tech-

nique that consists of producing and storing all the facts for each

predicate by adopting the so-called semi-naive evaluation [1]. In

this case, rules are typically evaluated according to push-based

strategies, starting from the initial database and repeatedly apply-

ing the rules until a fixpoint is reached; (ii) a streaming technique
that adopts reasoning query graphs [44], where nodes corre-

spond to relational algebra operators (select, project and join)

and edges are dependency connections between the rules. Such

a graph forms an active pipeline and the data flows through its

nodes, each receiving input data from the previous nodes and

performing the required transformations in a pull-based fashion.

3 VADALOG VIA FINANCIAL SCENARIOS

In the previous section we provided an overview of the main the-

oretical concepts at the foundation of Datalog-based reasoning.

However, translating them into features of practical utility and

employing them to reason over complex real-world settings is

by no means trivial. In this section we outline our journey in the

development of the state-of-the-art Vadalog system, present-

ing financial scenarios of interest and adapting such features to

effectively perform reasoning over them.

783



Scenario 1. (Company Control) This set of rules models

the existence of a link between companies with common share-

holders. It is a smaller and not entirely realistic version of the

financial scenario, here simplified for explanation purposes.

Company(𝑥) → ∃𝑠 SH(𝑥, 𝑠) (1)

Controls(𝑥,𝑦), SH(𝑥, 𝑠) → SH(𝑦, 𝑠) (2)

SH(𝑥, 𝑠), SH(𝑦, 𝑠) → StrongLink(𝑥,𝑦) (3)

StrongLink(𝑥,𝑦) → ∃𝑠 SH(𝑥, 𝑠), SH(𝑦, 𝑠) (4)

For each company 𝑥 there exists a shareholder (SH) 𝑠 (rule 1). If 𝑥
controls a company 𝑦, then 𝑠 is also a shareholder of 𝑦 (rule 2). If 𝑥
and 𝑦 have a common shareholder, then they are in a strong link
(rule 3). Vice versa, if there is a strong link between 𝑥 and 𝑦, then
they have a common shareholder (rule 4).

To address this first scenario, our reasoner required full support

for existential quantification in TGDs and recursion. However,

ontological reasoning under Datalog
∃
proved to be undecidable,

due to the interplay between existentials and recursion, which

may cause infinite labelled nulls to be generated in the chase

and non-termination as a consequence [33, 34]. This led to the

proposal in the literature of many languages of the so-called

Datalog± family [9, 12, 34, 35, 49]. They apply to Datalog
∃
specific

restrictions to achieve a good trade-off between expressive power

and computational complexity of the reasoning. Figure 1 provides

an overview of the main Datalog
±
languages, their syntactic

containment, and reasoning data complexity.

Datalog with ∃
UNDECIDABLE

Weakly Frontier Guarded
EXPTIME

Warded
PTIME

Datalog
PTIME

Shy
PTIME

Guarded
PTIME

Weakly
Sticky
PTIME

Sticky
AC

0

Figure 1: Datalog
±
languages and data complexity.

Specifically, we employedWarded Datalog
±
[43], a powerful

fragment whichwemade usable in practice and implemented into

Vadalog [24]. It encompasses both a high expressive power, cap-

turing all SPARQL queries under OWL 2 QL entailment regime

and set semantics, as well as a very good trade-off with data com-

plexity, featuring PTIME for the reasoning and thus fulfilling the

scalability requirements of our domain. This is achieved via the

wardedness syntactic condition, which restricts the propagation

of labelled nulls 𝜈 in the chase only to cases that are not dangerous
for the decidability of the task. Wardedness also preserves termi-

nation of the chase procedure, enabling an isomorphism-based

variant of the oblivious chase we developed that employs a firing
condition to limit the applicability of the TGDs. Indeed, given

an applicable TGD 𝜎 : 𝜑 (𝑥,𝑦)→𝜓 (𝑥, 𝑧) and a homomorphism 𝜃 ,

𝜎 is applied if, additionally, there is no isomorphism (i.e., same

predicate name, same constants in the same positions and bijec-

tion between labelled nulls) between the newly-generated fact

𝜃 ′ (𝜓 (𝑥, 𝑧)) and a tuple already in the database.

Algorithm 1 provides the pseudocode of our isomorphic chase-
based evaluation. The algorithm takes as input a database𝐷 , a set

Σ of Warded TGDs and a query 𝑄 . The output of the algorithm

is the answer to 𝑄 . First of all, the chase instance 𝑐ℎ𝑎𝑠𝑒 that

stores the facts generated during the procedure is initialized

to 𝐷 and corresponds to the initial chase state (line 2). A data

structure 𝐻 is employed to store, at each step of the procedure,

all the applicable homomorphisms (line 3). While 𝐻 is not empty,

the next applicable homomorphism ℎ to activate is extracted

from 𝐻 (line 5), and a new fact 𝑝 is generated (line 6). Now the

isomorphism check occurs. If 𝑝 is not isomorphic with a fact

already present in 𝑐ℎ𝑎𝑠𝑒 , then it is added to the chase instance

(lines 7-8). Finally, the new applicable homomorphisms, derived

from 𝑝 and Σ, are added to𝐻 (line 9). If𝐻 is empty, that is, all the

applicable homomorphisms have already been triggered, then the

answer to 𝑄 is evaluated and the procedure terminates (line 10).

Algorithm 1 Isomorphic Chase Evaluation Algorithm.

1: function isomorphic_chase_eval(𝐷 , Σ, 𝑄)
2: chase = 𝐷 ⊲ chase instance is initialized

3: 𝐻 = init_structure(𝐷, Σ) ⊲ applicable homomorphisms

4: while not 𝐻 .is_empty() do

5: ℎ = 𝐻.poll_first()
6: 𝑝 = apply(Σ, ℎ) ⊲ apply current homomorphism

7: if check_isomorphism(𝑝 ,chase) then
8: chase = chase ∪ {𝑝}
9: 𝐻 = update_structure(Σ, 𝑝)
10: return answer(𝑄 , chase)

With reference to Scenario 1, let us consider the database in-

stance 𝐷 = {Company(Hsb), Company(Iba), Controls(Hsb, Iba)}
and the query 𝑄 : “what are all the entailed StrongLinks?” as on-
tological reasoning task. Employing the isomorphic chase, we

first generate SH (Hsb,𝜈0) by activating rule 1 from the fact Com-
pany(Hsb). Next, we obtain SH (Iba,𝜈0) from rule 2, and conse-

quently StrongLink(Hsb,Hsb), StrongLink(Hsb, Iba), StrongLink(Iba,
Hsb) and StrongLink(Iba, Iba) via the join in rule 3: these facts

are the result for 𝑄 . Note that, by activating now rule 1 on

Company(Iba), we would generate SH (Iba,𝜈1). Similarly, from

StrongLink(Iba, Iba) and rule 4 we would obtain SH (Hsb,𝜈2) and

SH (Iba,𝜈2): this would in turn lead to new activations of rule 3 and

the generation of an infinite set
⋃

𝑖=3,...{SH(Hsb, 𝜈𝑖 ), SH(Iba, 𝜈𝑖 )}.
Indeed, our chase variant prevents non-termination by pruning

such facts, as they are isomorphic with SH (Hsb,𝜈0) and SH (Iba,𝜈0)

already generated. The chase graph corresponding to the evalua-

tion of 𝑄 via isomorphic chase is provided in Figure 2. Note that

blue edges correspond to applied homomorphisms, red edges rep-

resent prunings of applicable homomorphisms, and green ones

identify a positive isomorphism check between a pruned fact and

one already generated. Edges are labelled by the triggered rules.

The correctness of such methodology is corroborated by the

reasoning boundedness property of the Warded fragment, which

states that facts derived from isomorphic origins are isomorphic,

thus uninformative for the reasoning task. Additional techniques

integrated into Vadalog enforce that the result of the isomorphic

chase over a generic 𝐷 and a given set of warded TGDs is always

correct and unique for each possible CQ 𝑄 [13, 21, 29].

784



Company(Hsb)

CEO(Hsb,ν
0
)

Merges(Hsb,Iba)(1)

CEO(Iba,ν
0
)

Corp(Hsb,Iba)
Corp(Iba,Hsb)

Company(Iba)

CEO(Iba,ν
1
)

Corp(Hsb,Hsb) Corp(Iba,Iba)

(1)

(2) (2)

(3) (3) (3) (3)

CEO(Hsb,ν
2
) CEO(Iba,ν

2
)

(4) (4) (4) (4)

Figure 2: Chase graph for Scenario 1 over 𝐷 .

Scenario 2. (Financial Shock Propagation) This set of

rules models how the default of a financial intermediary affects

other intermediaries that are financially exposed with it.

FinInt(𝑥),Own(𝑝, 𝑥,𝑤),𝑤 > 0.3→ KP(𝑝, 𝑥) (1)

FinInt(𝑥),NPL(𝑥) → ∃𝑓 Default(𝑥, 𝑓 , 𝑓 ) (2)

Default(𝑥1, 𝑓𝑥 , 𝑓1), Exp(𝑥1, 𝑥2) → ∃𝑓2 Default(𝑥2, 𝑓1, 𝑓2) (3)

Default(𝑥, 𝑓1, 𝑓2),KP(𝑝, 𝑥) → ∃𝑖 Inv(𝑝, 𝑥, 𝑖) (4)

KP(𝑝1, 𝑥),KP(𝑝2, 𝑥), 𝐼𝑛𝑣 (𝑝1, 𝑥, 𝑖1),
𝐼𝑛𝑣 (𝑝2, 𝑥, 𝑖2) → 𝑖1 = 𝑖2 (5)

Inv(𝑝1, 𝑥1, 𝑖1), Inv(𝑝2, 𝑥2, 𝑖2), Exp(𝑥1, 𝑥2) → 𝑖1 = 𝑖2 (6)

An individual 𝑝 is a key person (KP) of a financial intermediary
(FinInt) 𝑥 if 𝑝 owns more than 30% of the shares (𝑤 ) of 𝑥 (rule 1).
If a FinInt 𝑥 is involved in non-performing loans (NPL), then it
will default on its debts, initiating a failure event 𝑓 (rule 2). If a
FinInt 𝑥2 is financially exposed (Exp) with another FinInt 𝑥1 which
undergoes a failure event 𝑓1, caused by another failure 𝑓𝑥 , then
𝑥2 will be in turn involved in a failure 𝑓2 caused by 𝑓1 (rule 3).
A financial investigation 𝑖 is launched for each KP of a defaulted
FinInt 𝑥 (rule 4). If 𝑝1 and 𝑝2 are KPs of the same defaulted FinInt
𝑥 , then they are involved in the same investigation (rule 5). Finally,
two KPs 𝑝1 and 𝑝2 of distinct defaulted FinInt 𝑥1 and 𝑥2 are under
the same investigation if 𝑥2 is exposed with 𝑥1 (rule 6).

It often occurs that TGDs are not sufficient to exploit the full

expressive power of existential quantification. To address settings

such as the one above inVadalog, we integrated EGDs inWarded

Datalog
±
. Yet, the presence of EGDs causes the undecidability of

ontological reasoning even in our restricted settings. Among the

solutions to enable their interplay with TGDs, the most adopted

one in the literature is the fragment of separable EGDs [36],

which however does not make use of the expressive capabilities

of EGDs. Indeed, they are able to only enforce constraints on

ground values from the domain and thus do not contribute to

the answer of the reasoning task in practice.

To tackle this limitation in our settings, we developed and im-

plemented in Vadalog the novel fragment of harmless EGDs [20],
which enables more expressive interactions with warded TGDs,

while preserving the reasoning tractability offered by Warded

Datalog
±
. Intuitively, for every database and for every query, any

assignment of labelled nulls obtained through the application of

a harmless EGD does not trigger the activation of other rules that

would not be activated otherwise. As a consequence, no EGD can

determine the derivation of a fact and, in this sense, “harms” the

chase procedure. Indeed, unlike separable ones, harmless EGDs

contribute facts to the ontological reasoning task. With reference

to Scenario 2, the EGDs in rules 5 and 6 are harmless and can be

employed to group together all the key persons and to subject

them to the same investigation. This use case also required us to

integrate expressions and operators into our reasoner.

Scenario 3. (Close Link) This set of rules models the exis-

tence of a direct or indirect link between companies, based on a

high overlap of shares, to assess whether a company can act as a

guarantor for loans to another one.

Own(𝑐1, 𝑐2, 𝑠) → MCl(𝑐1, 𝑐2, 𝑠) (1)

MCl(𝑐1, 𝑐2, 𝑠1),Own(𝑐2, 𝑐3, 𝑠2) → MCl(𝑐1, 𝑐3, 𝑠1 ∗ 𝑠2) (2)

MCl(𝑐1, 𝑐2, 𝑠), 𝑡𝑠 = msum(𝑠), 𝑡𝑠 ≥ 0.2→ 𝐶𝑙1 (𝑐1, 𝑐2) (3)

𝐶𝑙1 (𝑐3, 𝑐1),𝐶𝑙1 (𝑐3, 𝑐2),¬𝐶𝑙1 (𝑐1, 𝑐2),
𝑐1 ≠ 𝑐2 → 𝐶𝑙2 (𝑐1, 𝑐2) (4)

𝐶𝑙1 (𝑐1, 𝑐2) → Cl(𝑐1, 𝑐2) (5)

𝐶𝑙2 (𝑐1, 𝑐2) → Cl(𝑐1, 𝑐2) (6)

Two companies 𝑐1 and 𝑐2 s.t. 𝑐1 owns a fraction 𝑠 of the shares of
𝑐2 are possible close links (MCl) (rule 1). If 𝑐1 and 𝑐2 are MCl with
a share 𝑠1 and 𝑐2 owns in return a share 𝑠2 of a company 𝑐3, then
also 𝑐1 and 𝑐3 are MCl with a share of 𝑠1 ∗ 𝑠2 (rule 2). If the sum
of all the partial shares 𝑠 of 𝑐2 owned directly or indirectly by 𝑐1 is
greater than or equal to 0.2, then 𝑐1 and 𝑐2 are close links (rule 3).
If a third-party 𝑐3 owns directly or indirectly, through one or more
other companies, 0.2 or more of the share of 𝑐1 and 𝑐2 (close links
with 𝑐3), then 𝑐1 and 𝑐2 are also close links (rule 4).

This scenario introduces two other essential features a reasoner

must include to address real-world settings: negations and ag-

gregations. We say that a predicate is extensional if it is a ground
relation in the database, thus it does not appear in a rule-head

of the program, otherwise it is intensional. Regarding negations,

Vadalog supports both grounded (i.e., in front of atoms whose

predicates are extensional) and stratified negation (i.e., in front of

atoms whose predicates are intensional and not recursive) [48].

Regarding aggregations, standard aggregate functions proved

to be affected by multiple limitations and are disallowed in recur-

sive settings. This issue has been solved by the recently proposed

class of monotonic aggregations [60]. A rule with an aggregation

is a first-order sentence ∀𝑥 (𝜑 (𝑥), 𝑧 = maggr(𝑥, ⟨𝑐⟩)→𝜓 (𝑔, 𝑧)),
where maggr is the name of an aggregation function, 𝑥 ∈ 𝑥 , and
𝑔 ⊆ 𝑥 is a 𝑛-uple of group-by arguments, 𝑐 ⊆ 𝑥 (with 𝑐 ∩ 𝑔 = ∅)
is a𝑚-uple of variables contributing to the aggregation and 𝑧 a

monotonic aggregate, that is, an existentially quantified variable

whose value is computed by the aggregation. Intuitively, for a

monotonically decreasing (increasing) aggregation function, 𝑧

memorizes at each step of the execution the most recently com-

puted aggregate and returns an updated value at each invocation

such that, for each value of 𝑐 , the minimum (maximum) value

of 𝑥𝑖 is considered in the current aggregate. In Vadalog, we ex-

tended such a powerful class of aggregations to be employed in

the context of existential quantification [29].

Scenario 4. (Collateral Eligibility under Uncertainty)

This set of rules models how lenders of distinct types are subject

to restrictions enforced by financial supervision authorities that

require loans to be covered by a collateral.

0.9 :: LenderT(𝑥,𝑦), RR(𝑦, 𝑧) → ∃𝑣 Guarantee(𝑥, 𝑧, 𝑣) (1)

0.8 :: LenderT(𝑥,𝑦), LenderC(𝑦, 𝑧) → LenderT(𝑥, 𝑧) (2)

0.7 :: Contract(𝑥,𝑦, 𝑧), Exp(𝑦,𝑤) → Contract(𝑧,𝑤, 𝑥) (3)

Contract(𝑥,𝑦, 𝑧), RR(𝑤,𝑦) → LenderT(𝑥,𝑤) (4)

785



Ignoring what precedes the :: symbols, if a lender 𝑥 is of type 𝑦 (e.g.,
a bank, a small company, etc.) and lenders of type 𝑦 are subject
to regulatory restrictions (RR) of type 𝑧 (e.g., securities, real estate
properties, cash, etc), then there exists a collateral of type 𝑧 for
𝑥 issued by a guarantor 𝑣 (an individual, a bank, or a financial
intermediary) (rule 1). If the type 𝑦 is a subclass of the lender class
𝑧 (e.g., credit unions is a subclass of retail lender), then the lender 𝑥
is of type 𝑧 (rule 2). If the loan from a lender 𝑥 to a borrower 𝑧 has
been formalized by a contract, then there exists another contract
for the financial exposure (Exp, i.e., the repayment obligation) of
type𝑤 (corresponding to the type 𝑦 of the loan) from 𝑧 to 𝑥 (rule 3).
If a contract from 𝑥 to 𝑧 is in place to satisfy a RR that requires a
guarantee with contract type 𝑦, based on a lender type𝑤 , then 𝑥 is
also of type𝑤 (rule 4).

This scenario features some notion of uncertainty related to our

domain. Indeed, depending on how each financial intermediary

implements the regulations, rules 1-3 may apply or not. Intu-

itively, probabilistic reasoning requires computing the probabilis-

tic answer to a query as a set {⟨𝑡, 𝑃 (𝑡)⟩}, where 𝑡 is a fact and
𝑃 (𝑡) is its marginal probability, i.e., the probability for 𝑡 to be

entailed. To address this task we developed soft Vadalog, the

extension of Vadalog for probabilistic reasoning. Since comput-

ing exact marginal probabilities is intractable, we introduced the

MCMC-chase, a chase variant that approximates them, perform-

ing logical and probabilistic inference at the same time while

achieving PTIME [22, 26, 27].

Scenario 5. (Company Supervision through Time) This

set of rules models how a governmental institution supervises the

changes in the corporate structure of companies with strategic

relevance, as well as the actions of those shareholders who are

buying into the companies later in the game.

|[0,1]SignificantShare(𝑥,𝑦),
¬x[0,1] SignificantShare(𝑥,𝑦) → SignificantOwner(𝑥,𝑦) (1)

WatchCompany(𝑦), SignificantOwner(𝑥,𝑦),
Connected(𝑥, 𝑧) → WatchCompany(𝑧) (2)

If in an interval in the past (denoted byx[0,1] ) a shareholder 𝑥 does
not own a significant amount of shares of a company 𝑦, while that
is the case at some point in a future interval (denoted by|[0,1] ),
then 𝑥 is a significant owner of 𝑦 (rule 1). If 𝑥 is a significant owner
of a company 𝑦 in a watchlist, then all the other companies 𝑧 that
are connected to 𝑥 are also added to the watchlist (rule 2).

This last scenario consists in a temporal reasoning task. To sup-

port this form of reasoning in Datalog, the AI community intro-

duced DatalogMTL, which extends the language with forms of

time awareness and encodes operators that link standard atem-

poral assertions to references and streams of data valid within

specific time windows [32]. Yet, the development of temporal

reasoners based on DatalogMTL was still in its infancy. We ex-

tended Vadalog with temporal reasoning capabilities, providing

for the first time, to the best of our knowledge, a production-

ready temporal reasoner that fully supports recursion and allows

addressing real-world temporal tasks with good results in per-

formance and scalability [23].

As future directions, we are working on extending Vadalogwith

novel forms of reasoning that make use of powerful Machine

Learning and AI techniques to enrich, support, and guide the

evaluation of complex tasks in the financial domain. Some of our

results regarding these novel topics are already present in the

most recent literature [15, 16, 56, 65].

We close this section by briefly describing the specialized

architecture and execution model that we devised for Vadalog.

Pipeline Architecture. Our system employs the pipes and filters
architectural style. The set of logic rules Σ and the queries are

compiled together into an active pipeline that reads the data from

the input sources, performs the needed transformations, and pro-

duces the desired output as a result. This process is implemented

by four dedicated architectural components [29]: (i). a query pro-
cessor rewrites the CQ 𝑄 : 𝑞(𝑥) ← 𝜓 (𝑥, 𝑧) into an atomic query

by first updating Σ = Σ ∪ {𝜌𝑄 }, where 𝜌𝑄 : 𝜒 (𝑥) ← 𝜓 (𝑥, 𝑧) and
𝜒 is an invented predicate, and then creating the atomic query

�̂� : 𝑞(𝑥) ← 𝜒 (𝑥); (ii). a logic optimizer performs logic trans-

formations and rewritings to the original set of rules, such as

multiple head elimination, removal of redundancies and harmful

join elimination [11, 13, 14], as well as general logic optimiza-

tions inherited or adapted from typical RDBMS heuristics; (iii). a

logic compiler takes as input the set of optimized rules and trans-

forms it into a logic pipeline in the form of a reasoning access
plan, which can be thought as a predicate graph where each node

(filter) represents an atom and there is an edge (pipe) from a node

𝑚 to a node 𝑛 if there is a rule with𝑚 in the body and 𝑛 in the

head; (iv). a query compiler transforms the reasoning access plan

into a reasoning query plan, a processing pipeline (an example

of which is provided in Figure 3, as discussed in the following

paragraph) where the nodes are translated into active data scans
(linear scans for linear TGDs, join scans for join TGDs, EGD scans

for harmless EGDs, and an output scan for the query), connected

by intermediate buffers.

1 2

Input Sources

3

4

5 6

8Output Sources

7
Query

Processor

ne
xt
()

Termination 
Wrapper

ch
ec
kI
so
()

next()

ne
xt
()

ne
xt
()

ne
xt
()

Figure 3: Processing pipeline of Vadalog for Scenario 2.

Execution Model. The reasoning process in Vadalog is per-

formed as a data stream along the pipeline, implemented with a

pull-based (query-driven) approach where each filter (i.e., scan)

reads tuples from the respective parent, from the output scan

down to the external data stores that inject ground facts into the

pipeline. It is a generalization of the volcano iterator model [44]
and allows to activate only the chase steps required to answer a

query without generating the whole output of the chase proce-

dure. Interactions between scans occur by means of primitives

786



open(), next(), get(), close(), which open the parent stream,

ask for the presence of a fact to fetch, obtain it, and close the

communication, respectively [20]. Since, for each filter, multiple

parent filters may be available, Vadalog selects which one to

invoke (via next() call) by employing specific routing strategies
(round-robin, shortest path, etc.) that manage a priority queue of

the sources [21]. Whenever a TGD scan is triggered, a wrapper

performs the isomorphism check to ensure termination, via the

checkIso() primitive. Figure 3 shows the processing pipeline

for Scenario 2 given, as ontological reasoning task, the query

SameInv(𝑝1, 𝑝2) ← Inv(𝑝1, _, 𝑖), Inv(𝑝2, _, 𝑖) (𝑄)

of finding the pairs of key persons involved in the same investiga-

tion. Here the output filter 8 sends a next() message to 7, which

propagates it to the TGDs (green) and EGDs (tan) scans. Note

that each filter in the figure is labelled with the corresponding

rule number from the above scenario.

4 FEATURE-BASED COMPARISON OF

RELATED REASONING SYSTEMS

A reasoning system requires supporting a wide range of lan-

guage features and techniques to address complex real-world

tasks, such as the ones in the financial domain. As discussed in

the previous section, these requirements drove the design and

the development of Vadalog itself, as well as of other modern

reasoners. In fact, a related question that we asked ourselves is

how Vadalog ranks when compared with the other state-of-the-

art systems with reasoning capabilities, especially with respect

to the features required to tackle the scenarios presented in the

previous section. Motivated by this, we investigated the related

work of our reasoner, summarizing our findings in the table in

Figure 4, which provides, to the best of our knowledge, the first

feature-based comparison of the top-performing reasoners that

are present in the current literature. Here our goal is not com-

paring systems on performance, which we consider out of the

scope of the paper, and has however been carried out in related

works and benchmark papers [6, 20, 29, 30].

Overview of the Comparisons. Specifically, comparisons are

performed with respect to the following categories of features:

• declarative language: it consists of the main properties of the

formalism employed by a system, such as whether it allows

expressing TGDs and EGDs, as well as if it supports relevant

features such as recursion and existential quantification;

• language extensions: it includes advanced features that extend

the declarative language, such as (standard or monotonic) ag-

gregations, negations and arithmetic operators;

• reasoning tasks: it lists themain forms of reasoning that a system

can support, such as ontological, temporal and probabilistic;

• evaluation: it shows the specifics of the evaluation employed

by a system, such as the adopted chase variant and if it is based

on a streaming or a materialization approach;

• parallelism: it encapsulates if a system supports parallel evalu-
ation, as well as which form of parallelism it features (shared-
memory, shared-nothing, etc.);
• optimization techniques: it consists of relevant optimizations

available in a system, such as query rewriting andmagic sets [1];
• additional information: it reports a system’s initial release and

whether it is currently supported.

The selection of such criteria for comparison derives from their

relevance to properly address real-world tasks. Indeed, they range

from the syntactic features, required tomodel industrial scenarios

such as our financial ones discussed in the previous paragraph, to

the overall reasoning capabilities and methodologies that enable

the evaluation of such settings with each system in practice.

We complete the comparison with additional parameters that

impact, directly or indirectly, the reasoner, such as whether it

features optimization techniques that support the evaluation and

whether it is currently supported and aligned with the most

recent advancements in the field.

Apart from Vadalog, we now list the other investigated systems,

in order of appearance in the table in Figure 4.

• Vaticle TypeDB [63]: strongly-typed database that enables type

and rule inference, as well as entity-relationship data modelling

via its proprietary language TypeQL.
• BigDatalog [59]: full Datalog implementation, extended with

monotonic aggregations and other features of practical utility,

on Apache Spark for large-scale analytics.

• Cog [47]: evaluation system of positive Datalog programs that

do not contain aggregates on the Apache Flink distributed

dataflow system for Big Data analytics.

• DCDatalog [66]: parallel engine designed for shared-memory

multicore machines to scale up and optimize Datalog evaluation

in the presence of recursion.

• DeALS [61]: Datalog system extended with negation and mono-

tonic aggregates for both traditional DBMS queries and graph

analytics applications.

• Myria [53]: stack for Big Data data management and analytics

with a shared-nothing and scalable query execution engine.

• RaDlog [46]: system implemented on top of Apache Spark that

extends the SQL standard to support aggregates in-recursion

(RaSQL) for Big Data analytics tasks.

• Llunatic [41]: initially developed for data cleaning, has since

been redesigned as an open-source data exchange system run-

ning on top of PostgreSQL and supporting TGDs and EGDs.

• DLV [51]: disjunctive Datalog system for knowledge represen-

tation and reasoning supporting a range of features such non-

monotonic negation, aggregates, and user-defined functions.

• DLV∃ [50]: system for query answering over programs in the

Shy fragment of the Datalog
±
family, extending DLV with a

bottom-up evaluation strategy and a chase variant that prevents

the generation of facts homomorphic to previously created ones.

• E [57]: first-order theorem prover that can perform query an-

swering tasks and that captures TGDs and EGDs.

• Graal [10]: open-source Java toolkit developed for ontological

query answering in the framework of existential rules.

• RDFox [55]: high-performance RAM-based Datalog engine that

supports TGDs and EGDs, as well as multiple features such as

aggregations and stratified negation, tomanage graph-structured

data represented according to the RDF data model and to per-

form ontological reasoning via materialization.

• OWL2DLV [2]: Datalog system that extends DLV for large-scale

ontological reasoning, evaluating SPARQL conjunctive queries

over very large OWL 2 knowledge bases.

• RecStep [40]: general-purpose Datalog engine extended with

stratified negation and aggregations, built on top of QuickStep,

an in-memory parallel single-node relational system.

• PDQ [31]: developed to generate query plans over semantically-

interconnected data sources, it reduces query reformulation to

checking containment under TGDs and EGDs via the chase.

• MASTRO [38]: tool developed for ontology-based data access in

which ontologies are specified in a family of tractable Descrip-

tion Logics, extended with features for intensional reasoning.

787



11/02/2023, 00:06 Feature-based Comparison of Top-Performing Reasoners and Solvers

file:///Users/teodorobaldazzi/Library/CloudStorage/OneDrive-Personal/Documenti/%23TED/%23TED LAVORO/PhDRomaTre/Progetti/TabellaReasoners/arXiv/index.html 1/1

Original Research Area Knowledge Graphs Big Data Data Exchange Query Answering

Vadalog System Vaticle TypeDB BigDatalog Cog DCDatalog DeALS Myria RaDlog Llunatic DLV DLV^E

Supported Languages
Datalog,

Linear Datalog+/-,
Warded Datalog+/-

TypeQL Datalog Datalog Datalog
Datalog,

DeAL MyriaL RaSQL
s-t TGDs,
t TGDs

Datalog,
Disjunctive Datalog

Datalog,
Shy Datalog^E

Full Recursion ✔ ✔
linear,

non-mutual ✔ ✔ ✔
linear,

non-mutual ✔ ✔ ✔ ✔

Arbitrary Join ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Existential Quantification ✔ − − − − − − − ✔ − ✔

EGDs ✔ − − − − − − − ✔ − ✘

Negation as Failure ✔ ✔ − ✘ ✘ ✔ − − ✔ ✔ −

Aggregations
standard,
monotonic standard

standard,
monotonic ✘ standard

standard,
monotonic standard

standard,
monotonic − standard −

Negation
grounded,
stratified

grounded,
stratified − ✘ grounded

grounded,
stratified

grounded,
stratified

grounded,
stratified − grounded,

stratified −

Arithmetic Operators ✔ ✔ ✔ − ✔ ✔ ✔ ✔ ✔ ✔ ✔

Inequalities ✔ ✔ ✔ − ✔ ✔ ✔ ✔ ✔ ✔ ✔

Full Ontological Reasoning ✔ − − − − − − − ✔ ✔ ✔

Temporal Reasoning ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Probabilistic Reasoning ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Fuzzy Reasoning ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Query Answering ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Methodology isomorphic
chase − semi-naive

evaluation
semi-naive
evaluation

semi-naive
evaluation

semi-naive
evaluation − semi-naive

evaluation

restricted,
unrestricted,

1-parallel skolem,
fresh-null chase

unrestricted
skolem chase

parsimonious
chase

Execution Model streaming,
pull-based − materialization,

push-based
materialization,

push-based
materialization,

push-based
materialization,

push-based
materialization,

push-based − materialization
materialization,

push-based,
semi-naive

materialization,
push-based,
semi-naive

Parallel Evaluation ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘

Type of Parallelism − −
shared-nothing,
multi-thread,
intra-query

shared-nothing,
multi-thread,
intra-query

shared-memory,
multi-thread,
inter-query

−
shared-nothing,
multi-thread,
intra-query

− − − −

System Integration − − Apache Spark Apache Flink − − Apache Spark,
MyriaX

Apache Spark − − −

Query Reformulation ✔ − ✔ − ✔ ✔ ✔ − ✔ ✔ ✔

Magic Sets ✘ ✘ ✘ ✘ ✘ ✔ ✘ − ✘ ✔ ✔

Other Optimizations harmful join elimination,
routing strategies − input partitioning,

decomposable programs
operators lifespan extended,

loop-invariant datasets
partial aggregates,

cache existence checking ✔
locality-aware algebra
redundancy removal

decomposable plan − weak constraints chase resumption

Initial Release 2018 2016 2016 2020 2022 2013 2012 2017 2013 2003 2012

Current Status Supported Supported Abandoned Supported Supported Abandoned Abandoned Supported Supported Supported Supported

D
e
cl

a
ra

ti
ve

 L
a
n

g
u

a
g

e
La

n
g

u
a
g

e
 E

x
te

n
si

o
n

s
R

e
a
so

n
in

g
 T

a
sk

s
E
va

lu
a
ti

o
n

P
a
ra

ll
e
li

sm
O

p
ti

m
iz

a
ti

o
n

 T
e
ch

n
iq

u
e
s

A
d

d
it

io
n

a
l 

In
fo

rm
a
ti

o
n

• ASTRO [39]: Datalog-based declarative query engine for ad-

vanced stream reasoning that supports aggregates in the pres-

ence of recursive queries.

• Circuitree [42]: Datalog reasoner developed to generate zero-
knowledge proofs to prove that a certain conclusion follows from
a Datalog ruleset and encrypted input data.

• LogicBlox [5]: system built on LogiQL, a declarative language
based on Datalog, that aims to reduce the complexity of soft-

ware development for modern applications which enhance and

automate decision-making.

• Ontotext GraphDB [45]: highly efficient and robust graph data-

base with RDF and SPARQL support that can perform scalable

reasoning and query evaluation.

• SociaLite [58]: system that employs a high-level graph query

language based on Datalog for large-scale and efficient graph

and social network analysis.

• Stardog [62]: enterprise knowledge graph platform with RDF

and SPARQL support and an inference engine to efficiently

perform ontological reasoning and query answering tasks.

The above systems were selected by taking into account the

overall reasoning and query answering capabilities offered, as

well as their relevance in the current literature (i.e., the existence

of dedicated papers, their presence in third-party benchmarks

and comparisons, etc.). Each system is categorized with respect

to the research area it originally belonged to.

Finally, regarding the table itself, note that a cell with: (i) a green

check mark indicates that a system supports that feature, (ii) a red

X mark symbolizes that a feature that could be integrated is not

supported, and (iii) a red hyphen represents the fact that a feature

cannot be supported by a system due to external causes, such as

another unsupported feature that is mandatory for the current

one (e.g., ontological reasoning cannot be achieved without ex-

istential quantification), or that we were not able to determine

whether such a feature is fully integrated into the system. For

readability purposes, the table is split in two images.

Results of the Comparisons. Among the other compared rea-

soners, we were able to confirm only for seven of them that

the interplay between recursion and existential quantification in

TGDs is effectively managed. These systems, namely Llunatic,

DLV, DLV
∃
, Graal, RDFox, GraphDB and Stardog, are thus able

to perform full ontological reasoning and to address settings

such as Scenario 1. Of the above ones, only Llunatic and RD-

Fox also support EGDs to tackle use cases such as Scenario 2.

Similarly, features like aggregations, negations and arithmetic

operators, required to address settings like Scenario 3, are only

supported by BigDatalog, DeALS, RaDlog, RDFox, RecStep and

788



11/02/2023, 00:18 Feature-based Comparison of Top-Performing Reasoners and Solvers

file:///Users/teodorobaldazzi/Library/CloudStorage/OneDrive-Personal/Documenti/%23TED/%23TED LAVORO/PhDRomaTre/Progetti/TabellaReasoners/arXiv/index.html 1/1

Original Research Area Query Answering Query Reformulation Program Analysis Data Access Stream Reasoning Business and Industry

E Graal RDFox OWL2DLV RecStep PDQ MASTRO ASTRO Circuitree LogicBlox Ontotext GraphDB SociaLite Stardog

Supported Languages
s-t TGDs,
t TGDs

Datalog,
Datalog+/- Datalog Datalog Datalog

s-t TGDs,
t TGDs

SPARQL
under OWL2,
DL-Lite_A,id

Datalog Datalog
Datalog,
LogiQL SPARQL Datalog

SPARQL
under OWL2

Full Recursion − ✔ ✔ ✔ ✔ ✔ ✔ ✔ bounded ✔ ✔
linear,

non-mutual ✔

Arbitrary Join − ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Existential Quantification ✔ ✔ ✔ − − ✔ ✔ − − second-order ✔ − ✔

EGDs ✔ ✘ ✔ − − ✔ − − − − − − −

Negation as Failure − ✔ ✔ ✔ ✔ − ✔ ✔ ✘ ✔ ✔ ✔ ✔

Aggregations − − standard standard
standard,
monotonic − − standard,

monotonic − standard standard
standard,
monotonic standard

Negation − − grounded,
stratified

grounded,
stratified

grounded,
stratified − grounded

grounded,
stratified ✘

grounded,
stratified grounded

grounded,
stratified grounded

Arithmetic Operators − − ✔ ✔ ✔ − ✔ ✔ ✔ ✔ ✔ ✔ ✔

Inequalities − − ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Full Ontological Reasoning − − ✔ − − − ✔ − − − ✔ − ✔

Temporal Reasoning ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Probabilistic Reasoning ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Fuzzy Reasoning ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Query Answering ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Methodology paramodulation restricted
chase

restricted,
unrestricted

skolem chase

semi-naive
evaluation

semi-naive
evaluation

restricted
chase

unfolding semi-naive
evaluation

naive
evaluation

restricted
chase − − −

Execution Model − forward-chaining
materialization,

push-based,
semi-naive

materialization,
push-based

materialization,
push-based

materialization,
push-based − materialization,

push-based
materialization,

push-based −
materialization,

forward-chaining,
backward-chaining,

hybrid-chaining

−
lazy,

late-binding,
at query time

Parallel Evaluation ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘

Type of Parallelism − −
shared-memory,

multi-thread,
intra-query

− − − − − −
shared-memory,

multi-thread,
intra-query

−
shared-memory,

multi-thread,
intra-query

−

System Integration − − − − QuickStep − − − − − − − −

Query Reformulation − ✔ ✔ ✔ ✔ ✔ ✔ ✔ − ✔ − − ✔

Magic Sets ✘ ✘ − ✔ ✘ − − ✔ − ✘ ✘ ✘ ✘

Other Optimizations − rule selection − pruning strategy unified IDB eval,
fast deduplication

parallel chasing partial evaluation dynamic query
optimizer − − language tags

caching and filtering − −

Initial Release 2013 2012 2014 2019 2018 2015 2010 2018 2022 2012 2015 2013 2012

Current Status Abandoned Supported Supported Supported Supported Abandoned Supported Supported Supported Supported Supported Abandoned Supported

D
e
cl

a
ra

ti
ve

 L
a
n

g
u

a
g

e
La

n
g

u
a
g

e
 E

x
te

n
si

o
n

s
R

e
a
so

n
in

g
 T

a
sk

s
E
va

lu
a
ti

o
n

P
a
ra

ll
e
li

sm
O

p
ti

m
iz

a
ti

o
n

 T
e
ch

n
iq

u
e
s

A
d

d
it

io
n

a
l 

In
fo

rm
a
ti

o
n

Figure 4: Table comparing systems with reasoning capabilities according to their features.

ASTRO. In fact, from our analysis RDFox appears to be the most

versatile reasoner, being able to effectively perform real-world

ontological reasoning and graph navigation tasks while support-

ing multiple features and extensions of practical utility required

to tackle scenarios such as Scenario 1- 3. However, to the best

of our knowledge, such a system does not exhibit probabilistic

and temporal reasoning capabilities, and consequently it cannot

address settings such as Scenario 4 and Scenario 5, respectively.

From this investigation, Vadalog emerges among the state-of-

the-art reasoners in the current literature, as it is the only one

covering all the requirements, both in terms of feature support

and overall reasoning capabilities, to tackle complex use cases in

the economic and financial realm. At the same time, our system

still requires further development to address some remaining

limitations, such as the absence of a parallel evaluation for the

reasoning task, as well as additional Datalog optimizations tech-

niques like magic sets that are yet to be incorporated.

5 CONCLUSION

The newly-sparked interest of the economic and financial sector

towards automated reasoning methodologies to address real-

world scenarios is undermined by its unfamiliarity for the very

diversified and technical offer of languages and systems in the

database and AI field. Driven by this, we offered a guidance for

new business players, describing the main features of the Vada-

log reasoner we integrated to solve relevant financial problems.

We also investigated how our system ranks when compared with

the other top-performing reasoners in the literature, showing its

high feature support and state-of-the-art reasoning capabilities.

ACKNOWLEDGMENTS

This work was supported by the Vienna Science and Technology

Fund (WWTF) grant VRG18-013.

789



REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of
Databases. Addison-Wesley.

[2] Carlo Allocca, Francesco Calimeri, Cristina Civili, Roberta Costabile, Bernardo

Cuteri, Alessio Fiorentino, Davide Fuscà, Stefano Germano, Giovanni Laboc-

cetta, Marco Manna, Simona Perri, Kristian Reale, Francesco Ricca, Pier-

francesco Veltri, and Jessica Zangari. 2019. Large-Scale Reasoning on Ex-

pressive Horn Ontologies. In Datalog (CEUR Workshop Proceedings), Vol. 2368.
CEUR-WS.org, 10–21.

[3] Mario Alviano and Andreas Pieris (Eds.). 2022. Proceedings of the 4th Inter-
national Workshop on the Resurgence of Datalog in Academia and Industry
(Datalog-2.0 2022) co-located with the 16th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2022), Genova-Nervi, Italy,
September 5, 2022. CEUR Workshop Proceedings, Vol. 3203. CEUR-WS.org.

[4] Debra Amidon, Piero Formica, and Eunka Mercier-Laurent. 2005. Knowledge
economics: emerging principles, practices and policies. Tartu University Press.

[5] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design

and Implementation of the LogicBlox System. In SIGMOD Conference. ACM,

1371–1382.

[6] Paolo Atzeni, Teodoro Baldazzi, Luigi Bellomarini, and Emanuel Sallinger.

2022. iWarded: A Versatile Generator to Benchmark Warded Datalog+/–

Reasoning. In Rules and Reasoning: 6th International Joint Conference on Rules
and Reasoning, RuleML+ RR 2022, Berlin, Germany, September 26–28, 2022,
Proceedings. Springer, 113–129.

[7] Paolo Atzeni, Luigi Bellomarini, Michela Iezzi, Emanuel Sallinger, and Adri-

ano Vlad. 2020. Augmenting Logic-based Knowledge Graphs: The Case of

Company Graphs. In KR4L@ECAI (CEUR Workshop Proceedings), Vol. 3020.
CEUR-WS.org, 22–27.

[8] Paolo Atzeni, Luigi Bellomarini, Michela Iezzi, Emanuel Sallinger, and Adriano

Vlad. 2020. Weaving Enterprise Knowledge Graphs: The Case of Company

Ownership Graphs. In EDBT. OpenProceedings.org, 555–566.
[9] Jean-François Baget, Michel Leclère, and Marie-Laure Mugnier. 2010. Walking

the Decidability Line for Rules with Existential Variables. In KR. AAAI Press.
[10] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In RuleML (Lecture Notes in Computer Science), Vol. 9202. Springer,
328–344.

[11] Teodoro Baldazzi and Paolo Atzeni. 2022. Warded Datalog+/- Reasoning

in Financial Settings with Harmful Joins. In EDBT/ICDT Workshops (CEUR
Workshop Proceedings), Vol. 3135. CEUR-WS.org.

[12] Teodoro Baldazzi, Luigi Bellomarini, Marco Favorito, and Emanuel Sallinger.

2022. On the Relationship between Shy and Warded Datalog+/-. CoRR
abs/2202.06285 (2022).

[13] Teodoro Baldazzi, Luigi Bellomarini, Emanuel Sallinger, and Paolo Atzeni. 2021.

Eliminating Harmful Joins inWarded Datalog+/-. In RuleML+RR (Lecture Notes
in Computer Science), Vol. 12851. Springer, 267–275.

[14] Teodoro Baldazzi, Luigi Bellomarini, Emanuel Sallinger, and Paolo Atzeni.

2022. Reasoning in Warded Datalog+/- with Harmful Joins. In SEBD (CEUR
Workshop Proceedings), Vol. 3194. CEUR-WS.org, 292–299.

[15] Teodoro Baldazzi, Davide Benedetto, Matteo Brandetti, Adriano Vlad, and

Luigi Bellomarini. 2022. Heuristic-based Reasoning on Financial Knowledge

Graphs. In EDBT/ICDT Workshops (CEUR Workshop Proceedings), Vol. 3135.
CEUR-WS.org.

[16] Teodoro Baldazzi, Davide Benedetto, Matteo Brandetti, Adriano Vlad, Luigi

Bellomarini, and Emanuel Sallinger. 2022. Datalog-based Reasoning with

Heuristics over Knowledge Graphs. In Datalog (CEUR Workshop Proceedings),
Vol. 3203. CEUR-WS.org, 114–126.

[17] Pablo Barceló and Reinhard Pichler (Eds.). 2012. Datalog in Academia and
Industry - Second International Workshop, Datalog 2.0, Vienna, Austria, Sep-
tember 11-13, 2012. Proceedings. Lecture Notes in Computer Science, Vol. 7494.

Springer.

[18] Luigi Bellomarini, Lorenzo Bencivelli, Claudia Biancotti, Livia Blasi,

Francesco Paolo Conteduca, Andrea Gentili, Rosario Laurendi, Davide Magna-

nimi, Michele Savini Zangrandi, Flavia Tonelli, Stefano Ceri, Davide Benedetto,

Markus Nissl, and Emanuel Sallinger. 2022. Reasoning on company takeovers:

From tactic to strategy. Data Knowl. Eng. 141 (2022), 102073.
[19] Luigi Bellomarini, Marco Benedetti, Andrea Gentili, Rosario Laurendi, Davide

Magnanimi, Antonio Muci, and Emanuel Sallinger. 2020. COVID-19 and

Company Knowledge Graphs: Assessing Golden Powers and Economic Impact

of Selective Lockdown via AI Reasoning. CoRR abs/2004.10119 (2020).

[20] Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, and Emanuel Sallinger.

2022. Exploiting the Power of Equality-generating Dependencies in Ontologi-

cal Reasoning. Proc. VLDB Endow. 15, 13 (2022), 3976 – 3988.

[21] Luigi Bellomarini, Davide Benedetto, Georg Gottlob, and Emanuel Sallinger.

2022. Vadalog: A modern architecture for automated reasoning with large

knowledge graphs. Inf. Syst. 105 (2022), 101528.
[22] Luigi Bellomarini, Davide Benedetto, Eleonora Laurenza, and Emanuel

Sallinger. 2023. A Framework for Probabilistic Reasoning on Knowledge

Graphs. In International Conference on Soft Methods in Probability and Statis-
tics. Springer, 48–56.

[23] Luigi Bellomarini, Livia Blasi, Markus Nissl, and Emanuel Sallinger. 2022. The

Temporal Vadalog System. In Rules and Reasoning: 6th International Joint Con-
ference on Rules and Reasoning, RuleML+ RR 2022, Berlin, Germany, September

26–28, 2022, Proceedings. Springer, 130–145.
[24] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger.

2018. Swift Logic for Big Data and Knowledge Graphs - Overview of Require-

ments, Language, and System. In SOFSEM (Lecture Notes in Computer Science),
Vol. 10706. Springer, 3–16.

[25] Luigi Bellomarini, Eleonora Laurenza, and Emanuel Sallinger. 2020. Rule-

based Anti-Money Laundering in Financial Intelligence Units: Experience and

Vision. In RuleML+RR (Supplement) (CEUR Workshop Proceedings), Vol. 2644.
CEUR-WS.org, 133–144.

[26] Luigi Bellomarini, Eleonora Laurenza, Emanuel Sallinger, and Evgeny

Sherkhonov. 2020. Reasoning Under Uncertainty in Knowledge Graphs. In

RuleML+RR (Lecture Notes in Computer Science), Vol. 12173. Springer, 131–139.
[27] Luigi Bellomarini, Eleonora Laurenza, Emanuel Sallinger, and Evgeny

Sherkhonov. 2022. Swift Markov Logic for Probabilistic Reasoning on Knowl-

edge Graphs. CoRR abs/2210.00283 (2022).

[28] Luigi Bellomarini, Davide Magnanimi, Markus Nissl, and Emanuel Sallinger.

2020. Neither in the Programs Nor in the Data: Mining the Hidden Financial

Knowledge with Knowledge Graphs and Reasoning. In MIDAS@PKDD/ECML
(Lecture Notes in Computer Science), Vol. 12591. Springer, 119–134.

[29] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog

System: Datalog-based Reasoning for Knowledge Graphs. Proc. VLDB Endow.
11, 9 (2018), 975–987.

[30] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik,

Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017. Benchmark-

ing the Chase. In PODS. ACM, 37–52.

[31] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. 2015. Querying

with Access Patterns and Integrity Constraints. Proc. VLDB Endow. 8, 6 (2015),
690–701.

[32] Sebastian Brandt, Elem Güzel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and

Michael Zakharyaschev. 2018. Querying Log Data with Metric Temporal Logic.

J. Artif. Intell. Res. 62 (2018), 829–877.
[33] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite

Chase: Query Answering under Expressive Relational Constraints. J. Artif.
Intell. Res. 48 (2013), 115–174.

[34] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2012. A general Datalog-

based framework for tractable query answering over ontologies. J.Web Semant.
14 (2012), 57–83.

[35] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and An-

dreas Pieris. 2010. Datalog+/-: A Family of Logical Knowledge Representation

and Query Languages for New Applications. In LICS. IEEE Computer Society,

228–242.

[36] Andrea Calì, Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2012. On

the Interaction of Existential Rules and Equality Constraints in Ontology

Querying. In Correct Reasoning (Lecture Notes in Computer Science), Vol. 7265.
Springer, 117–133.

[37] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Towards more ex-

pressive ontology languages: The query answering problem. Artif. Intell. 193
(2012), 87–128.

[38] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-

erini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi,

and Domenico Fabio Savo. 2011. The MASTRO system for ontology-based

data access. Semantic Web 2, 1 (2011), 43–53.
[39] Ariyam Das, Sahil M. Gandhi, and Carlo Zaniolo. 2018. ASTRO: A Datalog

System for Advanced Stream Reasoning. In CIKM. ACM, 1863–1866.

[40] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris,

and Jignesh M. Patel. 2019. Scaling-Up In-Memory Datalog Processing: Ob-

servations and Techniques. Proc. VLDB Endow. 12, 6 (2019), 695–708.
[41] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro.

2014. That’s All Folks! LLUNATIC Goes Open Source. Proc. VLDB Endow. 7,
13 (2014), 1565–1568.

[42] Tom Godden, Ruben de Smet, Christophe Debruyne, Thibaut Vandervelden,

Kris Steenhaut, and An Braeken. 2022. Circuitree: A Datalog Reasoner in

Zero-Knowledge. IEEE Access 10 (2022), 21384–21396.
[43] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL

Entailment Regime: Rules to the Rescue. In IJCAI. AAAI Press, 2999–3007.
[44] Goetz Graefe andWilliam J. McKenna. 1993. The Volcano Optimizer Generator:

Extensibility and Efficient Search. In ICDE. IEEE Computer Society, 209–218.

[45] Ontotext GraphDB. 2015. GraphDB Documentation. https://graphdb.ontotext.

com/documentation/10.0/index.html. [Online; accessed 02-Dec-2022].

[46] Jiaqi Gu, Yugo H. Watanabe, William A. Mazza, Alexander Shkapsky, Mohan

Yang, Ling Ding, and Carlo Zaniolo. 2019. RaSQL: Greater Power and Per-

formance for Big Data Analytics with Recursive-aggregate-SQL on Spark. In

SIGMOD Conference. ACM, 467–484.

[47] Muhammad Imran, Gábor E. Gévay, and Volker Markl. 2020. Distributed

Graph Analytics with Datalog Queries in Flink. In SFDI/LSGDA@VLDB (Com-
munications in Computer and Information Science), Vol. 1281. Springer, 70–83.

[48] Bas Ketsman and Christoph Koch. 2020. Datalog with Negation and Mono-

tonicity. In ICDT (LIPIcs), Vol. 155. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 19:1–19:18.

[49] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2012.

Efficiently Computable Datalog∃ Programs. In KR. AAAI Press.
[50] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2019.

Fast Query Answering over Existential Rules. ACM Trans. Comput. Log. 20, 2
(2019), 12:1–12:48.

790



[51] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,

Simona Perri, and Francesco Scarcello. 2006. The DLV system for knowledge

representation and reasoning. ACM Trans. Comput. Log. 7, 3 (2006), 499–562.
[52] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing Impli-

cations of Data Dependencies. ACM Trans. Database Syst. 4, 4 (1979), 455–469.
[53] Myria. 2012. Myria Documentation. http://myria.cs.washington.edu/docs/

myrial.html. [Online; accessed 02-Dec-2022].

[54] Maya Ramanath and Themis Palpanas (Eds.). 2022. Proceedings of the Work-
shops of the EDBT/ICDT 2022 Joint Conference, Edinburgh, UK, March 29, 2022.
CEUR Workshop Proceedings, Vol. 3135. CEUR-WS.org.

[55] RDFox. 2014. RDFox Documentation. https://docs.oxfordsemantic.tech/index.

html. [Online; accessed 02-Dec-2022].

[56] Mattia Scaccia, Ilaria Stocchi, and Luigi Bellomarini. 2022. Neurosymbolic

Reasoning: BuildingNeural Networks UsingDatalog. In EDBT/ICDTWorkshops
(CEUR Workshop Proceedings), Vol. 3135. CEUR-WS.org.

[57] Stephan Schulz. 2013. System Description: E 1.8. In LPAR (Lecture Notes in
Computer Science), Vol. 8312. Springer, 735–743.

[58] Jiwon Seo, Stephen Guo, and Monica S. Lam. 2013. SociaLite: Datalog exten-

sions for efficient social network analysis. In ICDE. IEEE Computer Society,

278–289.

[59] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson

Condie, and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on

Spark. In SIGMOD Conference. ACM, 1135–1149.

[60] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. 2015. Optimizing recur-

sive queries with monotonic aggregates in DeALS. In ICDE. IEEE Computer

Society, 867–878.

[61] Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. 2013. Graph Queries in a

Next-Generation Datalog System. Proc. VLDB Endow. 6, 12 (2013), 1258–1261.
[62] Stardog. 2012. Stardog Documentation. https://docs.stardog.com/. [Online;

accessed 02-Dec-2022].

[63] Vaticle TypeDB. 2016. Vaticle TypeDB Documentation. https://docs.vaticle.

com/docs/general/introduction. [Online; accessed 02-Dec-2022].

[64] Victor Vianu. 2021. Datalog Unchained. In PODS. ACM, 57–69.

[65] Adriano Vlad, Sahar Vahdati, MojtabaNayyeri, Luigi Bellomarini, and Emanuel

Sallinger. 2022. Towards Hybrid Logic-based and Embedding-based Reasoning

on Financial Knowledge Graphs. In EDBT/ICDT Workshops (CEUR Workshop
Proceedings), Vol. 3135. CEUR-WS.org.

[66] JiachengWu, JinWang, and Carlo Zaniolo. 2022. Optimizing Parallel Recursive

Datalog Evaluation on Multicore Machines. In SIGMOD Conference. ACM,

1433–1446.

791


