
Leveraging Negative Signals with Self-Attention for Sequential
Music Recommendation

Pavan Seshadri
pseshadri9@gatech.edu

Georgia Institute of Technology, Music Informatics Group
Atlanta, Georgia, USA

Peter Knees
peter.knees@tuwien.ac.at

TU Wien, Faculty of Informatics
Vienna, Austria

ABSTRACT
Music streaming services heavily rely on their recommendation en-
gines to continuously provide content to their consumers. Sequen-
tial recommendation consequently has seen considerable attention
in current literature, where state of the art approaches focus on
self-attentive models leveraging contextual information such as
long and short-term user history and item features; however, most
of these studies focus on long-form content domains (retail, movie,
etc.) rather than short-form, such as music. Additionally, many do
not explore incorporating negative session-level feedback during
training. In this study, we investigate the use of transformer-based
self-attentive architectures to learn implicit session-level informa-
tion for sequential music recommendation.We additionally propose
a contrastive-learning task to incorporate negative feedback (e.g
skipped tracks) to promote positive hits and penalize negative hits.
This task is formulated as a simple loss term that can be incorpo-
rated into a variety of deep-learning architectures for sequential
recommendation. Our experiments show that this results in con-
sistent performance gains over the baseline architectures ignoring
negative user feedback.

CCS CONCEPTS
• Information systems→ Recommender systems;Music re-
trieval.

KEYWORDS
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1 INTRODUCTION
Recommendation systems have become integral to streaming ser-
vices such as Spotify, Apple Music, Deezer, etc., and by proxy, the
music industry as a whole. As the music streaming business model
relies on continual user engagement and activity, consistent music
discovery is an essential service. Sequential music recommendation
is one such task in this domain, where given a current user session
(i.e a current sequence of tracks listened to by a user), a system ex-
tends the session by recommending the user the next track. Within
the music domain, sequential recommendation is generally split
into two categories, next song recommendation (NSR), and automatic
playlist continuation (APC). These two tasks can be learned in a
similar manner from playlist and listening history information, but
they differ in output length: APC aims to extend the session or
playlist by an arbitrary length, while NSR only aims to provide
the next relevant song in sequence [16]. For this study we focus
specifically on NSR.

Music recommendation differs from other well-studied domains
of recommendation (retail, movies, games, etc.) in a number of
important ways. Singular music tracks generally are short and eas-
ily consumed, necessitating a thorough understanding of a user’s
preferences in order to provide both breadth and depth over a large
quantity of relevant recommendations [17]. Robust music recom-
mendation systems often leverage previous consumer history to
learn user preferences through methods such as collaborative fil-
tering [11]; however these approaches fall victim to the cold start
problem [17]: for new users or new tracks, the recommendation
model does not have any usable information and must guess pref-
erences until the user and/or track has interacted with the system
enough to learn a profile [6].

Sequential recommendation in general can alleviate this issue by
learning session-level relationships instead of, or in tandem with
user-level relationships. By learning session item relationships from
sequential interaction, item profiles can be rapidly built as they
interact with the system as the recommendation engine can com-
pare user sessions directly rather than using aggregate statistics via
collaborative filtering, which takes much more data to build robust
representations [6].

This study aims to leverage implicit and explicit signals present
within listening sessions to learn robust profiles for sequential rec-
ommendations. Prior work has considered direct incorporation of
user feedback for ad-hoc adjustments based on content and con-
text similarity, e.g. [8, 13]. In this work, we investigate learning
session-level information via transformer-based architectures, in-
fluenced by SoTA methods for sequential retail recommendation, as
well as incorporating user feedback through a learned contrastive
task. To our best knowledge, learning from negative signals/user
feedback has not been explored thoroughly for sequential music
recommendation due to a lack of public data containing thorough
user feedback. Many public music recommendation datasets, such
as Lastfm-1K [3], were collected before the streaming boom, where
logged listening history would primarily be sourced from user cre-
ation, leading to a low source of negative signals. For this study,
we employ the Music Streaming Sessions Dataset from Spotify [1].
Since many of the interactions present are from programmatic or
expert curation, rather than user curation, they can be considered as
exploration events where the user reacts positively (listens to track
in entirety) or negatively (skips track). This provides a rich amount
of negative samples to learn effective session-level representations
from.

2 RELATEDWORK
Sequential recommendation systems can generally be divided into
two types: session-aware systems leverage session-level history
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from identifiable users, while session-based systems ignore user-
labels and aim to build user-agnostic representations using solely
discrete sessions. [15]. In this study, we investigate a session-based
system that implicitly learns a user profile through anonymous
listening sessions.

Several session-based approaches have been proposed for retail
recommendation tasks. CASER [20] and NextItNet [23] leverage
convolutional filters to learn sequential representations. BERT4Rec
[18] leverages the bidirectional attention mechanism from BERT
[4] to learn a robust vocabulary of items for sequential recommen-
dation.

Several sequential based approaches have been proposed for mu-
sic recommendation tasks incorporating a variety of information
to drive recommendation [16]. Most of such approaches leverage
contextual and/or content features, largely by extensive user pro-
files and music tags. Relevant work for these respective approaches
include CoSERNN [5], and Online Learning to Rank for Sequential
Music Recommendation [14]. The former leverages contextual in-
formation such as device used, time of day during recommendation,
etc. to drive contextual user-sequential embeddings for sequential
recommendation, while the latter leverages content features via mu-
sic tags for an online learning to rank scheme. For a study closest
to our task, Wen et. al investigate leveraging implicit user feed-
back immediately after click for video and music recommendation,
and find performance gains incorporating this information into
a variety of recommendation approaches [22]. Most state-of-the-
art sequential music recommendation approaches leverage several
types of information that often are not present in public datasets
(e.g lyrics, user contextual/demographic information, music tags,
etc.). It would be increasingly difficult to re-implement and test
these systems in a cold-start or academic setting due to the amount
and variety of data required. Our approach aims to alleviate this
data issue by taking advantage of implicit relationships from data
present solely in listening sessions of songs, namely item labels
and timestamps of user events. We additionally do not take into
account long-term user history due to a lack of user labels; Thus,
we focus on creating a session-based system.

3 METHOD
3.1 Problem Statement
In our scenario, we define a session 𝑆 of length𝐾 and set of possible
tracks 𝑡 ∈ 𝑇 for user 𝑢. Track 𝑡𝑖 , where 𝑡1,2,...𝐾 ∈ 𝑆 represents the
track at each time step 𝑖 in session 𝑆 , where 𝑖 ∈ [1 . . . 𝐾]. Generally,
the task of a sequential recommendation system is to predict the
desired next item ℎ𝑖 at time step 𝑖 + 1 for each 𝑡𝑖 ∈ 𝑆 , given an
interaction history 𝑆𝑖 , where 𝑆𝑖 = {𝑡𝑎 ∈ 𝑆 | 𝑎 ≤ 𝑖}.

For negative feedback-agnostic sequential recommendation sys-
tems (i.e where the user has not explicitly responded negatively to
any item), we define ℎ𝑖 for track 𝑡𝑖 as the next track in the sequence,
𝑡𝑖+1.

For our feedback-aware system, we define the set of positive
examples (no-skip) as 𝑃 and negative examples (skipped tracks) as
𝑁 per sequence 𝑆 , such that:

𝑝 𝑗 ∈ 𝑃 , 𝑛𝑘 ∈ 𝑁 , and all 𝑝 𝑗 , 𝑛𝑘 ∈ 𝑆
where 𝑗, 𝑘 correspond to the time step of each example in session

𝑆 . Additionally for clarity, we define 𝐼𝑃 and 𝐼𝑁 as the set of time

steps for all positive and negative examples, respectively, where
𝑗 ∈ 𝐼𝑃 and 𝑘 ∈ 𝐼𝑁 . For any track 𝑡𝑖 , we define the desired next track
ℎ𝑖 as the next positive example in the session, 𝑝𝑚 , such that:

𝑚 = min𝑗 { 𝑗 ∈ 𝐼𝑃 | 𝑗 > 𝑖}

Where the difference𝑚 − 𝑖 represents the number of skipped tracks
between track 𝑡𝑖 and its next positive sample.

To predict the desired next track at time step 𝑖 , we model a
probability distribution 𝑝 (ℎ𝑖 = 𝑡 | 𝑆𝑖 ) over all possible tracks.
Sorting this distribution provides a ranking of the most-relevant
items. By learning from negative feedback, we aim to both raise
the ranking of 𝑝𝑚 , as well as lower the rankings of items in 𝑁 in
predicting each ℎ𝑖 .

3.2 Model Architecture
We investigate unidirectional and bidirectional transformer-based
architectures in this study, inspired by the SASRec [9] and BERT4Rec
[19] architectures, respectively. For both approaches we use the
same base architecture described below, with the sole differences
being the training procedure, learning objective, and the use of a
causal attention mask in the case of the unidirectional model. We
keep the implementation analagous to that of the aformentioned
authors for better comparison.

3.2.1 Track Embeddings. We store learned track embeddings in a
lookup-table 𝑒𝑡 ∈ 𝐸 of size𝑇 ×R |𝑑 | , where𝑇 is the number of tracks
and d is the embedding dimensionality. 𝐸 (·) denotes the function
retrieving the embeddings of a track or set of tracks from table 𝐸.

3.2.2 Positional Embeddings. To inject information about the posi-
tion of each track in the sequence, we add a learnable positional
embedding 𝑃𝐸 of size 𝐾 × R |𝑑 | to each track embedding in the
sequence, where K corresponds to the size of the sequence.

3.2.3 Encoder. We employ a standard transformer encoder to learn
contextual session-level information. This is a fully attention based
model employing multiple multi-head self-attention layers and
position-wise feedforward layers to learn contextual information
from sequential inputs.

3.2.4 Prediction Layer. After obtaining hidden vectors from the
encoder with contextual information, we project them through a
fully connected layer with GELU activation [7] to obtain predicted
embeddings 𝑦𝑖 for each 𝑡𝑖 ∈ 𝑆 . We then compute an inner product
with the embedding table and apply a sampled softmax to get a
probability distribution over each track.

3.2.5 Sampled Softmax. Additionally for training stability with
such a large amount of classes (∼ 1M tracks in this study), we
employ a sampled softmax function during training. For each mini-
batch for each session, we uniformly sample 1000 unseen tracks
and rank the target tracks alongside these. These 1000 tracks are
re-sampled each epoch, such that as training continues, the model
continually learns to "rank" the target items with an increasing
subset of the total tracks, as the number of unique tracks sampled
for comparison increase.
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3.3 Sequential Recommendation Task
For both approaches, we employ the same learning objective, the
negative log likelihood (NLL), for training; however they differ in
how this learning objective is used.

3.3.1 Unidirectional. We employ the next-item prediction task for
this approach. For each 𝑡𝑖 ∈ 𝑆 , we task themodel with predicting the
next item in the sequence, 𝑡𝑖+1. We then compute log-probabilities
and pass this to the NLL Loss. Additionally, attention maps are com-
puted using a causal mask, preserving the auto-regressive nature
of unidirectional transformers.

3.3.2 Bidirectional. We employ the cloze, ormasked language mod-
elling (MLM) task for this approach. We randomly mask a propor-
tion 𝑝 of each sequence with a special token [MSK] and task the
model with predicting what the correct track is at these indices with
a bidirectional attention map. For the sequential recommendation
task, we also append the [MSK] token to the end of the sequence
and set the target of this to the last track in the session targets, to
ensure that this target does not appear in the bidirectional attention
map.

3.4 Skip-informed Contrastive Task
To learn negative sequential track relationships, we employ a con-
trastive learning task using the skipped tracks in each listening
session. We employ noise contrastive estimation with InfoNCE [21]
shown below:

L𝑁𝐶𝐸 = −E𝑋
[
log 𝑓𝑘 (p,c)∑

𝑥𝑗 ∈𝑋 𝑓𝑘 (𝑥 𝑗 ,c)

]
Given a context vector 𝑐 , positive anchor 𝑝 and set of noise

samples 𝑥 ∈ 𝑋 , this loss term uses a categorical cross entropy to
classify the positive anchor from the set of noise samples, given
scoring function 𝑓𝑘 (x, c).

For each track 𝑡𝑖 ∈ 𝑆 , we adapt this to our task of promoting the
next true positive sample 𝑝𝑚 and penalizing all negative samples
𝑛 𝑗 ∈ 𝑁 by defining the following:

(1) 𝑐 = 𝑒𝑡 𝑖 or 𝑦𝑖
(2) 𝑋 = 𝐸 (𝑁 )
(3) 𝑝 = 𝐸 (𝑝𝑚)
(4) 𝑓𝑘 (x, c) =

x · c
∥x∥2 ∥c∥2

This maximizes the cosine similarity between the embedding
𝑒 of track 𝑡𝑖 and next-positive-sample 𝑝𝑚 while minimizing the
similarity between 𝑒𝑡𝑖 and all 𝑒𝑛 ∈ 𝐸 (𝑁 ). Since during prediction,
logits are computed by the inner product of 𝑦𝑖 and 𝐸, this directly
affects the rankings of 𝑝𝑚 and all 𝑛 ∈ 𝑁 , by drawing 𝑡𝑖 and 𝑝𝑚
closer together in the learned embedding space, and consequently
pushing 𝑡𝑖 and all 𝑛 ∈ 𝑁 farther away in the embedding space.
We experiment with setting the context vector 𝑐 as both 𝑦𝑖 and 𝑒𝑡𝑖 .
Setting 𝑐 = 𝑦𝑖 includes the current session context, while setting
𝑐 = 𝑒𝑡𝑖 ignores current session context and instead relies solely on
the overall learned representation of the track. We explore both to
examine the the extent to which immediate context and contextual
history affect the learning of negative preference, respectively.

3.5 Dataset
For this study we use the Music Streaming Sessions Dataset (MSSD)
[1] for training and evaluation, which contains 160 Million user ses-
sions of 10 to 20 consecutively listened songs (<60 seconds between
listens). These listening sessions are uniformly sampled from a va-
riety of contexts, such as the user’s personally curated collections,
expertly curated playlists, contextual non-personalized recommen-
dations, and personalized recommendations.

Notably, this dataset is pseudonymized, meaning all included
sessions lack a user label. Consequently, we treat each session as a
new user, ignoring long term history.

Skip labels are provided for each track in each session with
strength 1-3, defined per the authors as the track "played very
briefly", "played briefly", and "played mostly (but not completely)",
respectively. For this study, we are primarily interested in strong
negative interactions and therefore only consider tracks with skip
strength 1 and 2 as negative examples in each session.

Due to time and computational restraints, we uniformly sample
∼450K discrete sessions containing ∼2 million item interactions
with ∼1 million total unique tracks to train and evaluate our models.
We note that our subset of sessions contains roughly 15% skipped
tracks.

3.6 Training Procedure
As with other contrastive recommendation systems [2, 24], we
simply aggregate the sequential task loss and the contrastive shown
below within one single training pass

L = 𝛼L𝑁𝐶𝐸 + 𝛽L𝑁𝐿𝐿
where 𝛼 and 𝛽 are scalar terms. We empirically tune these parame-
ters through the validation set.

3.7 Hyperparameters and Implementation
As our data contains variable length sessions between 10 and 20
interactions, we pad all sessions to length 20. We stack 2 encoder
blocks with 8 attention heads. The embedding and hidden dimen-
sions are both set to 128. Masking for the bidirectional model is
applied per batch with proportion 𝑝 = 0.2. We initialize all param-
eters via truncated normal sampling with ` = 0, 𝜎 = 1 in range
[−0.02, 0.02]. We tune the optimal 𝛼, 𝛽 ∈ [.25, .5, .75, 1] using the
validation set and select 𝛼 = 0.5, 𝛽 = 0.5. We use the ADAM op-
timizer [10] with a learning rate of 0.005, selected after tuning
through the validation set with 𝑙𝑟 ∈ [0.0001, 0.0005, 0.001, 0.005].
All models were implemented in python using pytorch-lightning
and trained using an NVIDIA RTX 2070 GPU.

4 RESULTS AND DISCUSSION
4.1 Evaluation
We employ the next-item recommendation task used by [9, 19]
for our evaluation. For each sequence, we leave out the final and
penultimate items as the testing and validation targets, respectively
and reserve the rest of the sequence for training. For each target, we
uniformly sample 1000 unobserved tracks, where the task becomes
to rank the target among these tracks. We employ the Hit Rate@K
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Unidir S- Unidir S+ (𝑐 = 𝑦𝑖 ) Unidir S+ (𝑐 = 𝑒𝑡𝑖 ) Bidir S- Bidir S+ (𝑐 = 𝑦𝑖 ) Bidir S+ (𝑐 = 𝑒𝑡𝑖 )
HR@ 1 (% increase) .2821 .3049 (8.08%) .3073 (8.93%) .1945 .2101 (8.02%) .2339 (20.26%)
HR@ 5 (% increase) .4803 .5042 (4.98%) .5088 (5.93%) .4203 .4370 (3.97%) .4358 (3.69%)
HR@ 10 (% increase) .5593 .5836 (4.34%) .5867 (4.90%) .5135 .5270 (2.63%) .5165 (0.58%)
HR@ 20 (% increase) .6316 .6550 (3.70%) .6554 (3.77%) .5989 .6101 (1.87%) .5911 (-1.30%)

Table 1: Hit Ratio @ [1, 5, 10, 20] for the unidirectional and bidirectional approaches. Baselines without skip-informed
contrastive learning (S-) are compared to the proposed contrastive learning settings (S+, using either session context 𝑦𝑖 or
track representation vector 𝑒𝑡𝑖 as context vector 𝑐). Numbers in parentheses show the relative increase in percentage of the
approach over the respective baseline; bold entries mark the best performing approach within unidirectional and bidirectional
architectures.

(equivalent to recall) as our evaluation metric, with 𝑘 ∈ [1, 5, 10, 20].
The results are shown in Table 1.

4.2 Discussion
We note a number of observations from our experiments. Namely:

(1) The skip-informed contrastive task consistently outper-
forms the feedback-agnostic models, indicating that learn-
ing fromnegative feedback is beneficial for sequential music
recommendation

(2) The unidirectional models consistently outperform the bidi-
rectional models, with a waning performance gap as the
top-K for the hit rate increases.

(3) Using the final hidden state 𝑦𝑖 with immediate contextual
information as the context vector for the contrastive task
performs similarly but consistently slightly worse than
using the item embeddings.

Overall, we observe that our contrastive task reliably increases the
hit rate in a next-item recommendation scenario, with the exception
of the HR@20 for the bidirectional model using only track embed-
dings. Interestingly, even though we create a mismatch between
the targets for the sequential recommendation task and contrastive
task, the hit rate for the sequential recommendation task increases,
inferring that optimizing for the next positive example (𝑝𝑚) and
next track (𝑡𝑖+1) in tandem raises the performance in selecting the
next track during inference.

We also observe waning performance gains as the number of
tracks in the ranking window increases, likely due to the fact that
the contrastive task only relates observed tracks with each other.
As the amount of unobserved tracks in the comparison increases
(i.e HR@1 to HR@20), the weaker the effect of the contrastive task.
Our experiments imply that the effect of learning from negative
feedback in this fashion mostly affect the top ranked recommenda-
tions.

The relatively weak performance of the BERT-like architecture
may be due to the relative high density of our dataset and our
relatively short sequence lengths, so training in an autoregressive
manner with each sample in the training sequence per each epoch
may be better for learning latent sequential track relationships.
More work is likely needed to find an optimal setup using bidirec-
tional attention with the MLM task.

The slight performance improvement when using the track em-
beddings as the contextual vector for the contrastive task may imply
that while immediate session-level contextual information is useful

in learning from negative feedback, reducing this emphasis may
provide a slightly stronger signal for preference of a user’s next
desired track.

5 CONCLUSION AND FUTUREWORK
Overall, we have presented both a study on the use of transformer-
based architectures for sequential music recommendation, as well
as a contrastive-based task to learn from negative feedback. We
show through our experiments that the contrastive task results in
greater hit rate on both unidirectional and bidirectional architec-
tures. Multiple avenues for future work arise, namely the inclusion
of long-term user profiles for better modelling of long term and
changing user-taste. Additionally, contextual and content infor-
mation can be injected into the embeddings to learn more pow-
erful contextual representations. An analysis of the performance
on different session types and streaming behaviors (playlist, auto-
generated, user-curated, etc.) [12] would also provide better insight
into the performance in different listening contexts.
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