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A B S T R A C T

We prove that the unit sphere is the only smooth, strictly convex solution to the isotropic 𝐿𝑝
dual Minkowski problem ℎ𝑝−1

|𝐷ℎ|𝑛+1−𝑞 = 1, provided (𝑝, 𝑞) ∈ (−𝑛 − 1,−1] × [𝑛, 𝑛 + 1).

. Introduction

An important question in convex geometry is the uniqueness or non-uniqueness of origin-centered spheres as solutions to the
sotropic 𝐿𝑝 dual Minkowski problem:

ℎ𝑝−1|𝐷ℎ|𝑛+1−𝑞 = 𝑐, 𝑐 ∈ (0,∞). (1.1)

The 𝐿𝑝 dual Minkowski problem was first introduced by Lutwak, Yang, and Zhang [34], acting as a bridge that connects
he 𝐿𝑝-Minkowski problem to the dual Minkowski problem. The former, the 𝐿𝑝-Minkowski problem, was introduced by Lutwak
n his influential paper [31] three decades ago and has since been extensively investigated; see, e.g., [3,6,7,9,11,16,17,22,24–
6,32,33,35,38–40,43]. The latter, the dual Minkowski problem, was proposed recently by Huang et al. in [20] and further
tudied in [5,13,18,19,28,41,42]. There has been significant progress on the 𝐿𝑝 dual Minkowski problem after the paper [34],
uch as [4,12,14,21,27]; however, the complete answer to the uniqueness and non-uniqueness question, as stated above, has been
lusive in the most interesting case: without the origin-symmetry assumption.

Here are the known uniqueness and non-uniqueness results for the isotropic 𝐿𝑝 dual Minkowski problem:

• [8], uniqueness of solutions for −(𝑛 + 1) ≤ 𝑝 < 1 and 𝑞 = 𝑛 + 1 (see also [1,2,37]);
• [21], uniqueness of solutions for 𝑝 > 𝑞;
• [12], uniqueness of origin-symmetric solutions for

−(𝑛 + 1) ≤ 𝑝 < 𝑞 ≤ min{𝑛 + 1, 𝑛 + 1 + 𝑝};

• [14], uniqueness of solutions for 1 < 𝑝 < 𝑞 ≤ 𝑛 + 1, or −(𝑛 + 1) ≤ 𝑝 < 𝑞 < −1, or the uniqueness of solutions up to rescaling for
𝑝 = 𝑞;

• [30], complete classification for 𝑛 = 1;
• [10], non-uniqueness of solutions under any of the following assumptions:
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(i) 𝑞 − 2(𝑛 + 1) > 𝑝 ≥ 0;
(ii) 𝑞 > 0 and −𝑞∗ < 𝑝 < min{0, 𝑞 − 2𝑛 − 2}, where

𝑞∗ ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞
𝑞 − 𝑛

, if 𝑞 ≥ 𝑛 + 1

𝑛𝑞
𝑞 − 1

, if 1 < 𝑞 < 𝑛 + 1

+ ∞, if 0 < 𝑞 ≤ 1;

(iii) 𝑝 + 2(𝑛 + 1) < 𝑞 ≤ 0.

In the recent work [23], employing the local Brunn–Minkowski inequality, the following uniqueness was proved.

Theorem. Let 𝑛 ≥ 2 and assume −(𝑛 + 1) ≤ 𝑝 and 𝑞 ≤ 𝑛 + 1, with at least one being strict. Suppose 𝑛 is a smooth, strictly convex,
origin-centered hypersurface such that ℎ𝑝−1|𝐷ℎ|𝑛+1−𝑞 = 𝑐 with 𝑐 > 0. Then 𝑛 is an origin-centered sphere.

Here, we also employ the local Brunn–Minkowski inequality as our main tool to establish the following uniqueness result.

heorem 1.1. Let 𝑛 ≥ 2. Suppose𝑛 is a smooth, strictly convex hypersurface with ℎ > 0, such that ℎ𝑝−1|𝐷ℎ|𝑛+1−𝑞 = 1. Suppose either

1. −(𝑛 + 1) < 𝑝 ≤ −1 and 𝑛 ≤ 𝑞 ≤ 𝑛 + 1,
2. or −(𝑛 + 1) ≤ 𝑝 ≤ −𝑛 and 1 ≤ 𝑞 < 𝑛 + 1.

hen 𝑛 is the unit sphere.

. Background

.1. Convex geometry

Let (R𝑛+1, 𝛿 ∶= ⟨ , ⟩, 𝐷) denote the Euclidean space with its standard inner product and flat connection, and let (S𝑛, �̄�, ∇̄) denote
he unit sphere equipped with its standard round metric and Levi-Civita connection.

Suppose 𝐾 is a smooth, strictly convex body in R𝑛+1 with the origin in its interior. Write  = 𝑛 = 𝜕𝐾 for the boundary of 𝐾.
he Gauss map of , denoted by 𝜈, takes the point 𝑝 ∈  to its unique unit outward normal 𝑥 = 𝜈(𝑝) ∈ S𝑛. The support function
f 𝐾 is defined by

ℎ(𝑥) ∶= max{⟨𝑥, 𝑦⟩ ∶ 𝑦 ∈ 𝐾}, 𝑥 ∈ S𝑛.

he inverse Gauss map 𝑋 = 𝜈−1 ∶ S𝑛 →  is given by

𝑋(𝑥) = 𝐷ℎ(𝑥) = ∇̄ℎ(𝑥) + ℎ(𝑥)𝑥, 𝑥 ∈ S𝑛.

he support function can also be expressed as ℎ(𝑥) = ⟨𝑋(𝑥), 𝑥⟩ = ⟨𝜈−1(𝑥), 𝑥⟩, for 𝑥 ∈ S𝑛. The radial function of 𝐾 is defined by

𝑟(𝑥) ∶= |𝑋(𝑥)| = (|∇̄ℎ(𝑥)|2 + ℎ2(𝑥))
1
2 .

Moreover, the Gauss curvature of  is defined as

1
(𝑥)

∶=
det(∇̄2ℎ + �̄�ℎ)

det(�̄�)
|

|

|𝑥
, 𝑥 ∈ S𝑛.

Note that the matrix 𝐴[ℎ] ∶= ∇̄2ℎ + ℎ�̄� = 𝐷2ℎ|𝑇S𝑛 is positive-definite. The eigenvalues of the matrix 𝐴[ℎ]|𝑥 with respect to the
etric �̄�|𝑥, denoted by {𝜆𝑖}𝑛𝑖=1 are the principal radii of curvature at the point 𝑋(𝑥) ∈ . Then 𝜎𝑛 = −1 = 𝛱𝑖𝜆𝑖. The curvature

equation (1.1) can be reformulated as the following Monge–Ampére equation:

ℎ1−𝑝|𝐷ℎ|𝑞−𝑛−1 det(∇̄2ℎ + �̄�ℎ) = 𝑐.

The polar body of 𝐾 is defined by

∗ 𝑛+1
2

𝐾 ∶= {𝑦 ∈ R ∶ ⟨𝑥, 𝑦⟩ ≤ 1 ∀𝑥 ∈ 𝐾}.
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It is well-known that 𝐾∗ is also a smooth, strictly convex body in R𝑛+1 with the origin in its interior. Moreover, the following identity
holds

ℎ𝑛+2(𝑥)(ℎ∗(𝑥∗))𝑛+2

(𝑥)∗(𝑥∗)
= 1. (2.1)

ere ℎ∗ and ∗ denote respectively the support function and Gauss curvature of 𝐾∗, and 𝑥∗ ∶= 𝑋(𝑥)∕|𝑋(𝑥)|.
Finally, let us introduce the measure 𝑑𝑉 ∶= ℎ𝜎𝑛𝑑𝜇 = (ℎ∕)𝑑𝜇, where 𝜇 is the spherical Lebesgue measure of the unit sphere S𝑛.

hen the measure 𝜎𝑛𝑑𝜇 is the surface-area measure of 𝐾, and 𝑉 is a constant multiple of the cone-volume measure of 𝐾. We refer
o [38] for additional background.

.2. Centro-affine geometry

In this section, we recall some basics from centro-affine geometry. For the related concepts, we refer the reader to [29,36] and,
n particular, to the excellent paper by Milman [35].

Let 𝑋 ∶ S𝑛 →  be a smooth embedding of  (which we consider it to be 𝐷ℎ as in the previous section), and consider the
ransversal normal field 𝜉(𝑥) ∶= 𝑋(𝑥) (the centro-affine normal). The transversal vector 𝜉 induces the volume form 𝑉 (as in the
revious section),

𝑉 (𝑒1,… , 𝑒𝑛) = det(𝑑𝑋(𝑒1),… , 𝑑𝑋(𝑒𝑛), 𝜉), 𝑒𝑖 ∈ 𝑇S𝑛,

connection ∇, as well as a metric 𝑔𝜉 on S𝑛 as follows:

𝐷𝑢𝑑𝑋(𝑣) = 𝑑𝑋(∇𝑢𝑣) − 𝑔𝜉 (𝑢, 𝑣)𝜉, 𝑢, 𝑣 ∈ 𝑇S𝑛. (2.2)

ote that 𝑔𝜉 is symmetric and positive-definite. Moreover, while ∇ is not the Levi-Civita connection of 𝑔𝜉 , it is torsion-free and

∇𝑉 ≡ 0. (2.3)

The conormal field 𝜉∗ ∶ S𝑛 → (R𝑛+1)∗ ∼ R𝑛+1 is the unique smooth vector field to the dual space of R𝑛+1, such that ⟨𝜉∗, 𝑑𝑋⟩ = 0
nd ⟨𝜉, 𝜉∗⟩ = 1. Moreover, 𝜉∗ is an immersion and transversal to its image, and it induces a bilinear form 𝑔𝜉∗ and a torsion-free
onnection ∇∗ on S𝑛,

𝐷𝑢𝑑𝜉
∗(𝑣) = 𝑑𝜉∗(∇∗

𝑢𝑣) − 𝑔𝜉
∗
(𝑢, 𝑣)𝜉∗, 𝑢, 𝑣 ∈ 𝑇S𝑛.

e furnish all geometric quantities associated with 𝜉∗ with ∗.
It is known that 𝑔𝜉 = 𝑔𝜉∗ and that the two connections ∇∗ and ∇ are conjugate with respect to 𝑔𝜉 :

𝑢𝑔𝜉 (𝑣1, 𝑣2) = 𝑔𝜉 (∇𝑢𝑣1, 𝑣2) + 𝑔𝜉 (𝑣1,∇∗
𝑢𝑣2), 𝑢, 𝑣1, 𝑣2 ∈ 𝑇S𝑛.

oreover, by [35, Proposition 4.2] (or taking the inner product of (2.2) with 𝜈), we find

𝑔𝜉 = 𝑔𝜉
∗
= 𝐴[ℎ]

ℎ
=∶ 𝑔.

For a smooth function 𝑓 ∶ S𝑛 → R, the Hessian and Laplacian with respect to (∇, 𝑔) are defined as

Hess 𝑓 (𝑢, 𝑣) = ∇𝑑𝑓 (𝑢, 𝑣) = 𝑣(𝑢𝑓 ) − 𝑑𝑓 (∇𝑣𝑢)

and 𝛥𝑓 = div𝑔(∇𝑓 ) =
∑

𝑖 𝑔(∇𝑒𝑖∇𝑓, 𝑒𝑖), where {𝑒𝑖}𝑛𝑖=1 is a local 𝑔-orthonormal frame of 𝑇S𝑛. We write Hess∗ and 𝛥∗ respectively for
he Hessian and Laplacian with respect to (∇∗, 𝑔). Since ∇,∇∗ are conjugate, we have

𝑣(𝑢𝑓 ) = 𝑣𝑔(∇𝑓, 𝑢) = 𝑔(∇𝑣∇𝑓, 𝑢) + 𝑑𝑓 (∇∗
𝑣𝑢).

Therefore, we obtain

𝛥𝑓 = tr𝑔 Hess∗ 𝑓, 𝛥∗𝑓 = tr𝑔 Hess 𝑓.

By [35, Proposition 4.2], we have

Hess∗ 𝑓 + 𝑔𝑓 = 1
ℎ
(

∇̄2(ℎ𝑓 ) + �̄�ℎ𝑓
)

=
𝐴[ℎ𝑓 ]

ℎ
.

et us define 𝑄(𝑢, 𝑣) = ∇∗
𝑣𝑢 − ∇𝑣𝑢 for all 𝑢, 𝑣 ∈ 𝑇S𝑛. Then by [29, (6.2)],

tr𝑔 𝑄 = −∇ log
(

ℎ𝑛+2



)

.

n particular, we have

(𝛥 − 𝛥∗)𝑓 = −
∑

𝑄(𝑒𝑖, 𝑒𝑖)𝑓 = 𝑑 log ℎ𝑛+2 (∇𝑓 ). (2.4)
3

𝑖 
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We conclude this section by recalling the local Brunn–Minkowski inequality, reformulated in the language of centro-affine
eometry (cf. [35]): Let 𝑓 ∈ 𝐶1(S𝑛). Then

𝑛∫ 𝑓 2𝑑𝑉 ≤ ∫ |∇𝑓 |2𝑔𝑑𝑉 + 𝑛
(∫ 𝑓𝑑𝑉 )2

∫ 𝑑𝑉
. (2.5)

he equality holds if and only if for some 𝑤 ∈ R𝑛+1,

𝑓 (𝑥) = ⟨

𝑥
ℎ(𝑥)

, 𝑤⟩, ∀𝑥 ∈ S𝑛.

oreover, by [35, (5.9)] we also have

𝑛∫ |∇𝑓 |2𝑔𝑑𝑉 ≤ ∫ (𝛥𝑓 )2𝑑𝑉 , ∀𝑓 ∈ 𝐶2(S𝑛).

3. Uniqueness

The following identity is at the heart of our approach to employing the local Brunn–Minkowski inequality.

Theorem 3.1. There holds

𝛥𝑋 + 𝑛𝑋 = ℎ∇̄ log ℎ𝑛+2


. (3.1)

n particular,

𝑛∫ 𝑋𝑑𝑉 = ∫ ℎ∇̄ log ℎ𝑛+2


𝑑𝑉 .

roof. Let 𝑤 ∈ R𝑛+1 be a fixed vector. By the centro-affine Gauss equation for 𝜉 = 𝑋 (cf. (2.2) and [35, Section 3.8]), we have

𝛥∗
⟨𝑋,𝑤⟩ + 𝑛⟨𝑋,𝑤⟩ = 0.

ow let {𝑣𝑖}𝑛𝑖=1 be a local �̄�-orthonormal frame of 𝑇S𝑛 that diagonalizes 𝐴[ℎ] at 𝑥0 and 𝐴[ℎ]|𝑥0 (𝑣𝑖, 𝑣𝑗 ) = 𝛿𝑖𝑗𝜆𝑖. Define 𝑒𝑖 =
√

ℎ
𝜆𝑖
𝑣𝑖,

𝑖 = 1,… , 𝑛. Then we have 𝑔|𝑥0 (𝑒𝑖, 𝑒𝑗 ) = 𝛿𝑖𝑗 . Hence, using 𝑒𝑖𝑋|𝑥0 = 𝜆𝑖𝑒𝑖 (cf. [15, (4.15)]) and (2.4), at 𝑥0 we obtain

𝛥⟨𝑋,𝑤⟩ + 𝑛⟨𝑋,𝑤⟩ = (𝛥 − 𝛥∗)⟨𝑋,𝑤⟩

= 𝑔(∇ log ℎ𝑛+2


,∇⟨𝑋,𝑤⟩)

=
∑

𝑖
𝑔(∇ log ℎ𝑛+2


, 𝜆𝑖⟨𝑒𝑖, 𝑤⟩𝑒𝑖)

=
∑

𝑖
𝜆𝑖⟨𝑒𝑖, 𝑤⟩𝑑 log ℎ𝑛+2


(𝑒𝑖)

=
∑

𝑖
⟨∇̄ log ℎ𝑛+2


, ℎ𝑤⟩.

The second identity follows from integrating (3.1) against 𝑑𝑉 . □

Lemma 3.2. Let 0 < 𝑓 ∈ 𝐶2(S𝑛). Then

∫ 𝑓 2
(

⟨∇̄ log ℎ𝑛+2


, ℎ𝑋⟩ − |𝑋|

2
|∇ log𝑓 |2𝑔

)

𝑑𝑉 ≤ 𝑛
| ∫ 𝑓𝑋𝑑𝑉 |

2

∫ 𝑑𝑉
.

Proof. Let {𝐸𝑘}𝑛+1𝑘=1 be an orthonormal basis of R𝑛+1. We define

𝑓𝑘 = 𝑓 ⟨𝑋,𝐸𝑘⟩, 𝑘 = 1,… , 𝑛 + 1.

n view of Theorem 3.1, we have

𝛥𝑓𝑘 + 𝑛𝑓𝑘 = 𝑓 ⟨∇̄ log ℎ𝑛+2


, ℎ𝐸𝑘⟩ + ⟨𝑋,𝐸𝑘⟩𝛥𝑓 + 2𝑔(∇𝑓,∇⟨𝑋,𝐸𝑘⟩).

herefore,
∑

𝑘
𝑓𝑘(𝛥𝑓𝑘 + 𝑛𝑓𝑘) = 𝑓 2

⟨∇̄ log ℎ𝑛+2


, ℎ𝑋⟩ + 𝑓 |𝑋|

2𝛥𝑓 + 𝑓𝑔(∇𝑓,∇|𝑋|

2). (3.2)

oreover, by integration by parts (cf. (2.3)), there holds

|𝑋|

2𝑓𝛥𝑓 + 𝑓𝑔(∇𝑓,∇|𝑋|

2)𝑑𝑉 = − |𝑋|

2
|∇𝑓 |2𝑑𝑉 . (3.3)
4

∫ ∫ 𝑔



Nonlinear Analysis 241 (2024) 113493Y. Hu and M.N. Ivaki

T

L

P

a

S

T

H

By the local Brunn–Minkowski inequality (see (2.5)), we have

∑

𝑘
∫ 𝑓𝑘(𝛥𝑓𝑘 + 𝑛𝑓𝑘)𝑑𝑉 ≤ 𝑛

∑

𝑘

⟨∫ 𝑓𝑋𝑑𝑉 ,𝐸𝑘⟩
2

∫ 𝑑𝑉
.

hus the claim follows from (3.2) and (3.3). □

emma 3.3. Suppose 𝜑 ∶ (0,∞) → (0,∞) is 𝐶1-smooth and 𝑓 = 𝜑(𝑟). Then we have

∫ 𝑓 2
⟨∇̄ log ℎ𝑛+2


− (𝑟(log𝜑)′)2∇̄ log 𝑟, ℎ𝑋⟩𝑑𝑉 ≤ 𝑛

| ∫ 𝑓𝑋𝑑𝑉 |

2

∫ 𝑑𝑉
.

roof. Let {𝑣𝑖}𝑛𝑖=1 and {𝑒𝑖}𝑛𝑖=1 be as in the proof of Theorem 3.1. We calculate

𝑒𝑖(log 𝑓 ) = (log𝜑)′𝑒𝑖𝑟 =
(log𝜑)′

𝑟
𝜆𝑖⟨𝑒𝑖, 𝑋⟩ =

(log𝜑)′

𝑟
√

ℎ𝜆𝑖⟨𝑣𝑖, 𝑋⟩,

nd

𝑟2|∇ log𝑓 |2𝑔 =
∑

𝑖
((log𝜑)′)2ℎ𝜆𝑖(𝑑ℎ(𝑣𝑖))2 =

∑

𝑖
(𝑟(log𝜑)′)2⟨∇̄ log 𝑟, ℎ𝑋⟩.

Now the inequality follows from Lemma 3.2. □

Proof of Theorem 1.1. Let 𝛼 = 𝑞 − 𝑛− 1. Due to Lemma 3.3 with 𝜑(𝑟) = 𝑟𝑞−𝑛−1, our assumption ℎ𝑛+2−1 = ℎ𝑛+1+𝑝𝑟𝑛+1−𝑞 , we obtain

(𝑛 + 1 + 𝑝)∫ 𝑟2𝛼|∇̄ℎ|2𝑑𝑉 ≤ 𝛼(𝛼 + 1)∫ 𝑟2𝛼⟨∇̄ log 𝑟, ℎ∇̄ℎ⟩𝑑𝑉 + 𝑛
| ∫ 𝑟𝛼𝑋𝑑𝑉 |

2

∫ 𝑑𝑉
.

Assuming 𝛼2 + 𝛼 ≤ 0 (i.e. 𝑛 ≤ 𝑞 ≤ 𝑛 + 1) we obtain

(𝑛 + 1 + 𝑝)∫ 𝑟2𝛼|∇̄ℎ|2𝑑𝑉 ≤ 𝑛
| ∫ 𝑟𝛼𝑋𝑑𝑉 |

2

∫ 𝑑𝑉
. (3.4)

Using the identity 𝛥𝑥 + 𝑛𝑥 = 0 and integration by parts, we have

∫ ℎ𝑝𝑋𝑑𝜇 = ∫ ℎ𝑝+1𝑥 + ℎ𝑝∇̄ℎ𝑑𝜇

= ∫ −ℎ𝑝+1

𝑛
𝛥𝑥 + ℎ𝑝∇̄ℎ𝑑𝜇

=
𝑛 + 𝑝 + 1

𝑛 ∫ ℎ𝑝∇̄ℎ𝑑𝜇.

Therefore, due to 𝑟𝛼𝑑𝑉 = 𝑟𝛼 ℎ
𝑑𝜇 = ℎ𝑝𝑑𝜇, we obtain

∫ 𝑟𝛼𝑋𝑑𝑉 = ∫ ℎ𝑝𝑋𝑑𝜇 =
𝑛 + 1 + 𝑝

𝑛 ∫ ℎ𝑝∇̄ℎ𝑑𝜇

=
𝑛 + 1 + 𝑝

𝑛 ∫ 𝑟𝛼∇̄ℎ𝑑𝑉 .

ince 𝑛 + 1 + 𝑝 > 0, inequality (3.4) yields

∫ 𝑟2𝛼|∇̄ℎ|2𝑑𝑉 ≤ 𝑛 + 1 + 𝑝
𝑛

| ∫ 𝑟𝛼∇̄ℎ𝑑𝑉 |

2

∫ 𝑑𝑉
.

We may rewrite this inequality as

∫

|

|

|

|

|

𝑟𝛼∇̄ℎ −
∫ 𝑟𝛼∇̄ℎ𝑑𝑉

∫ 𝑑𝑉

|

|

|

|

|

2

𝑑𝑉 ≤ 𝑝 + 1
𝑛

| ∫ 𝑟𝛼∇̄ℎ𝑑𝑉 |

2

∫ 𝑑𝑉
.

hus ℎ is constant, provided −(𝑛 + 1) < 𝑝 ≤ −1 and 𝑛 ≤ 𝑞 ≤ 𝑛 + 1.
In view of (2.1), the polar body 𝐾∗ satisfies the following isotropic 𝐿−𝑞 dual Minkowski problem:

(ℎ∗)−1−𝑞|𝐷ℎ∗|𝑛+1+𝑝∗ = 1.

ence, the uniqueness result also holds when 𝑛 ≤ −𝑝 ≤ (𝑛 + 1) and −(𝑛 + 1) < −𝑞 ≤ −1. □

Data availability

No data was used for the research described in the article.
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