

DIPLOMARBEIT

Monte Carlo simulations of X-ray sources by machine learning
approaches

Ausgeführt am Atominstitut der Technischen Universität Wien

In Zusammenarbeit mit der

Universitätsklinik für Radioonkologie

der Medizinische Universität Wien

unter der Anleitung von Univ.-Prof. Dr. DI Dietmar Georg

und Ko-Betreuung von DI Hermann Fuchs, PhD

und Mag. Peter Kuess, PhD

durch
Sanaz Alijani

Oktober 2021 Unterschrift (Student)

II

Contents
List of Figures... V

List of Tables.. IX

Abstract ... X

1 Introduction .. 1

1.1 Motivation and objectives .. 1

1.2 Thesis structure ... 2

2 Background and related work .. 3

2.1 X-ray history ... 3
2.1.1 Fundamentals of X-ray production ... 4
2.1.2 X-ray spectrum .. 4
2.1.3 Bremsstrahlung ... 5
2.1.4 Characteristic radiation ... 5

2.2 X-ray sources in medicine .. 6
2.2.1 MedAustron ... 7

2.3 Radiation Therapy .. 7
2.3.1 Volumes and margins .. 8
2.3.2 Treatment techniques .. 10
2.3.3 Proton beam therapy ... 11

2.4 ImagingRingTM System .. 12
2.4.1 Movement details .. 13
2.4.2 X-ray head and detector .. 13

2.5 Monte Carlo methods ... 14
2.5.1 Simulation ... 15
2.5.2 GATE .. 15

3 Machine learning ... 17

3.1 Neural networks .. 18

3.2 Feedforward Neural Network ... 19

3.3 Gradient descent ... 20
3.3.1 Momentum .. 21

3.4 Adaptive Learning Rate Optimizers ... 21

III

3.4.1 Rprop and RMSprop ... 22
3.4.2 Adam ... 22

3.5 Activation function ... 23
3.5.1 Sigmoid function ... 24
3.5.2 ReLU variants ... 24

4 Generative Adversarial Networks .. 26

4.1 Iterative process of GAN .. 28

4.2 Difficulty of training GAN ... 29

4.3 Wasserstein generative adversarial nets ... 29
4.3.1 Gradient penalty .. 31

5 Method .. 33

5.1 Used Technology ... 33

5.2 Used Method ... 35
5.2.1 Training data ... 35
5.2.2 GAN architecture and parameters ... 36
5.2.3 Implementation ... 40

5.3 Experiments and Evaluation methods .. 41
5.3.1 Principle Component Analysis .. 41
5.3.2 Marginal Correlation ... 42
5.3.3 Correlation of X-Y plots ... 42
5.3.4 Validation of data with p-value ... 42
5.3.5 Correlation matrices .. 43

6 Results ... 44

7 Discussion and Conclusion .. 58

7.1 Discussion .. 58

7.2 Conclusion ... 62

7.3 Suggestions for Further Research ... 62

7.4 Limitations of the Study ... 62

Bibliography .. 64

Appendix .. 70

Code description .. 71

IV

Acknowledgements

I would like to thank my thesis advisors Hermann Fuchs and Peter Kuess for their
constant motivation and encouragement for my work. They consistently allowed
this thesis to be our own work but steered us in the right direction whenever they
thought we needed it. I would also like to thank Lukas Fetty who was involved
in the validation survey for this research project.

Without their passionate participation and input, the validation survey could not
have been successfully conducted. Also, Professor Dietmar Georg for providing
me the chance to do my master thesis at the Medical University of Vienna. An
especial gratitude to my family and my husband for unconditional support and
care.

V

List of Figures
Figure 2.1: X-ray tube (modified from source [45] p.254). The cathode and the
anode are seen inside the tube. ... 4
Figure 2.2: X-ray spectrum (modified from source [42] p.92): Continuous
spectrum (Bremsstrahlung) and discrete lines (Characteristic radiation) 5
Figure 2.3: Schematic interaction of incident electrons on matter (modified from
source [45] p.254)... 6
Figure 2.4: The ideal X-ray spectrum. The filtration technique provides the
characteristic lines and continuous spectrum for the X-ray spectrum (modified
from source [42] p.92) .. 6
Figure 2.5: Definition of target volumes [43] in which PTV shows Planning
Target Volume, GTV describes Gross Tumor Volume, ITV denotes Internal
Target Volume and CTV defines Clinical Target Volume [31][32]. 8
Figure 2.6: The dose-depth curve (modified from source [46]) for electron (20
MeV), photon (18 MeV) and proton (130MeV). Note the different shapes of the
mentioned curves. ... 12
Figure 2.7: ImagingRingTM System at MedAustron [13]. The X-ray head and
detector which are mounted on a robotic arm are positioned below the patient
couch .. 13
Figure 3.1: A diagram of a neuron [44]. Neurons are inspired by biological
nervous system. .. 17
Figure 3.2: An example of a neuron showing a couple of inputs and their
corresponding weights, a bias, and the activation function f applied to the
weighted sum of inputs [74]. .. 18
Figure 3.3: Artificial neural network architecture [5]. It consists of three different
layers: one input layer, three hidden layers and one output layer. 19
Figure 3.4: The right figure represents RELU and the left one represents the
sigmoid function. The popular activation functions used in ANNs. Own work by
Matplotlib library. .. 25
Figure 4.1: A simple graphical presentation of the GAN setting. The generator
produces the fake data from the random noise which must convince the
discriminator. The discriminator gets input as either real data or generated data to
distinguish whether its input is real or fake [79]. ... 27
Figure 5.1: A screenshot of training data obtained from Jupyter Notebook. Panda
package was used to generate the data frame to be convenient to evaluate. 36

VI

Figure 5.2: A screenshot of the json file obtained from GAN’s code [73]. All the
hyperparameters used for the training, existed in json file. Note the intervals
(constraints) of the six parameters which have been specified. 37
Figure 5.3: Histogram of the photon beam energy for GAN generated fake data
(red) and Monte Carlo simulated reference data (green) using 104 photons and
200 bins. Mean and standard deviation for two distributions are indicated in the
figure legend. Note the similar shape of the distributions. 38
Figure 5.4: Histogram of the position (X) for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using 104 photons and 200 bins.
Mean and standard deviation for two distributions are indicated in the figure
legend. Note the slight differences in the mean value of two distributions. 38
Figure 5.5: Histogram of the position (Y) for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using 104 photons and 200 bins.
Mean and standard deviation for two distributions are indicated in the figure
legend. Note the slight differences in the mean value and standard deviation of
two distributions. .. 39
Figure 5.6: Histogram of the direction (dX) for GAN generated fake data (red)
and Monte Carlo simulated reference data (green) using 104 photons and 200 bins.
Mean and standard deviation for two distributions are indicated in the figure
legend. Note the similar shape of the distributions. ... 39
Figure 5.7: Histogram of the direction (dY) for GAN generated fake data (red)
and Monte Carlo simulated reference data (green) using 104 photons and 200 bins.
Mean and standard deviation for two distributions are indicated in the figure
legend. Note the similar shape of the distributions. ... 40
Figure 5.8: Histogram of the direction (dZ) for GAN generated fake data (red)
and Monte Carlo simulated reference data (green) using 104 photons and 200 bins.
Mean and standard deviation for two distributions are indicated in the figure
legend. Note the similar shape of the distributions. ... 40
Figure 6.1: PCA plot for GAN generated fake data (red) and Monte Carlo
simulated reference data (blue) suing 500 photons. Note the superimposition of
real data and fake data. Most of the photons have been projected at the center. 44
Figure 6.2: Marginal correlation plots for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using (103, 104, 105, 106) photons
and the energy ranges between 20keV-30keV. Note the slight differences in terms
of superimposition of real data and fake data for 103 photons. 46
Figure 6.3: Marginal correlation plots for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using (103, 104, 105, 106) photons

VII

and the energy ranges between 30keV-40keV. Note the slight differences in terms
of superimposition of real data and fake data for 103 photons (exception for dZ).
 .. 47
Figure 6.4: Marginal correlation plots for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using (103, 104, 105, 106) photons
and the energy ranges between 40keV-50keV. Note the slight differences in terms
of superimposition of real data and fake data for 103 photons for X and dX. 47
Figure 6.5: Marginal correlation plots for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using (103, 104, 105, 106) photons
and the energy ranges between 50keV-60keV. Note the slight differences in terms
of superimposition of real data and fake data for 103 and 104 photons. 48
Figure 6.6: Marginal correlation plots for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using (103, 104, 105, 106) photons
and the energy ranges between 60keV-70keV. Note the huge differences
regarding superimposition of real data and fake data... 48
Figure 6.7: Marginal correlation plots for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using (103, 104, 105, 106) photons
and all the energy ranges between 20keV-70keV. Note the considerable overlap
regarding superimposition of real and fake data. ... 49
Figure 6.8: X-Y plots for GAN generated fake data (blue) and Monte Carlo
simulated reference data (orange) for the energy range between 70keV-80keV.
These plots show how the particles distributed on the x-y coordinate for the
mentioned energy range. X-axis and y-axis show the intervals of the X and Y in
millimeters, respectively. Note that no data was generated. 51
Figure 6.9: The visualized p-value plot between GAN generated data and Monte
Carlo simulated reference data (PHSP1) using 103 photons and 10 bins of energy.
Alpha and confidence level have been chosen 0.05 and 95%, respectively. Five
different parameters for two datasets are indicated in the figure legend. Note that
the whole p-values are above significance level. ... 53
Figure 6.10: The visualized p-value plot between GAN generated data and Monte
Carlo simulated reference data (PHSP1) using 106 photons and 100 bins of
energy. Alpha and confidence level have been chosen 0.05 and 95%, respectively.
Five different parameters for two datasets are indicated in the figure legend. Note
the most of the p-values are above significance level and only a few of p-values
rejects the null hypothesis. ... 54

VIII

Figure 6.11: Correlation matrix for Monte Carlo simulated reference data
(original data) using 106 photons. Note the correlation value between Y-dY and
X-dX. .. 54
Figure 6.12: Correlation matrix for GAN generated data (fake) using 106 photons.
Note the correlation value between Y-dY and X-dX. .. 55
Figure 6.13: PCA plot for GAN generated fake data (red) and Monte Carlo
simulated reference data (blue) using 103 photons. Note the superimposition of
photons with an increase in transparency. .. 55
Figure 6.14: PCA plot for GAN generated fake data (red) and Monte Carlo
simulated reference data (blue) using 104 photons. Note the superimposition of
photons with an increase in transparency. .. 56
Figure 6.15: PCA plot for GAN generated fake data (red) and Monte Carlo
simulated reference data (blue) using 105 photons. Note the superimposition of
photons with an increase in transparency. .. 56

IX

List of Tables
Table 5.1: Hardware used for training the data by GAN with the high provided
GPU of Google Colab. ... 35
Table 6.1: PCA plot for GAN generated fake data (red) and Monte Carlo
simulated reference data (blue) using (103,104,105,106) photons and different
energy ranges from 20keV to 70 keV. Note the best matching of the PCA plots
for the energy ranges between 20keV to 60keV for small number of photons. . 45
Table 6.2: X-Y plots for GAN generated fake data (blue) and Monte Carlo
simulated reference data (orange) using (104, 105, 106) photons and the energy
ranges between 20keV-70keV. These plots show how the particles distributed on
the x-y coordinate. X-axis and y-axis show the intervals of the X and Y in
millimeters, respectively. Note how the reference data is scattered for 106 photons
and the energy range between 20keV to 60keV. .. 50
Table 6.3: P-value between GAN generated fake data and Monte Carlo simulated
reference data (PHSP1) for the energy range between 20keV-30keV using
(103,104,105) photons. Note the p-values for 103 photons. 51
Table 6.4: P-value between GAN generated fake data and Monte Carlo simulated
reference data (PHSP1) for the energy range between 30keV-40keV using
(103,104,105) photons. Note the p-values for 105 photons 52
Table 6.5: P-value between GAN generated fake data and Monte Carlo simulated
reference data (PHSP1) for the energy range between 40keV-50keV using
(103,104,105) photons. Note the p-values for 105 photons. 52
Table 6.6: P-value between GAN generated fake data and Monte Carlo simulated
reference data (PHSP1) for the energy range between 50keV-60keV using
(103,104,105) photons. ... 52
Table 6.7: P-value between GAN generated fake data and Monte Carlo simulated
reference data (PHSP1) for the energy range between 60keV-70keV using
(103,104,105) photons. Note the p-values for 104 and 105 photons. 53
Table 6.8: P-value between Monte Carlo simulated reference data for training
(PHSP1) and Monte Carlo simulated data for the evaluation (PHSP2) using
(103,106) photons. Note that all the p-values are above significance level. 56
Table 6.9: The values of final D-Loss and G-Loss obtained at the end of training
after 104 iterations. ... 57
Table 7.1: The significance score obtained from tables 6.10-6.14 for different
energy ranges. ... 60

X

Abstract

This master thesis introduces an approach to using Generative Adversarial
Networks for the generation of phase space to replace the generated phase space
instead of large phase space datasets. The original approach was produced by
Monte Carlo method of ImagingRingTM system at MedAustron. This is intended
to create the generated particles that can be used in research areas, while creating
the conventional sampling of phase space is time consuming and challenging.

To evaluate the outcome of GAN, some methods are proposed to validate the
generated particles. The efficiency of the generated particles produced by GAN
has been checked and satisfactory results have been gained for this research.

As the main result, the particles in the energy range of 20 keV-60 keV were
generated with the maximum statistical and theoretical significance. In addition,
the superimposition of the original phase space and generated one can be obtained
in this given range of the energy. This study shows that no particles were
generated in the energy above 70 keV for X-Y parameters and the particles in the
energy range between 60 keV-70 keV were generated with lower superimposition
of the generated particle and original one due to lack of the reference particles.

The generated particles by GAN requires only around 10 MB storage compared
to the phase space produced by ImagingRingTM System which contains tens of
Gigabyte data. Besides, the process of the particle generation is fast and it is
efficient to use.

Moreover, a novel research pathway in the statistical techniques for validation of
the generated phase space has been opened so that further research can be
developed.

XI

1

1 Introduction

In this chapter, the motivation and aim of this master thesis will be revealed first,
and then a brief description of the thesis structure will be defined accordingly.

1.1 Motivation and objectives

The widespread use of Monto Carlo (MC) simulation is for modeling
sophisticated radiation machines such as X-ray tubes or ion therapy beam lines
[68][35]. At MedAustron a novel X-Ray imaging device, the ImagingRingTM

System is used. A full Monte Carlo model of this system was already created. To
create the precise Bremsstrahlung spectrum and accurate angular distribution,
modeling of the X-ray tube by simulating the electron interactions is required.
The time of computation to implement such simulation is relatively high and
phase space files have been acknowledged to reduce this time by pre-calculating
and storing large numbers of particles [68][35].
Such a phase space file contains the information of particle position, energy and
angular momentum distribution. However, these files contain around 50
gigabytes of data and are cumbersome and inefficient to use.
This master thesis aims to implement a novel approach to replace phase space
files with a trained neural network and validation of model performance. For this
purpose, the generated phase space has to be compared with the full Monte Carlo
model of x-ray source provided at MedAustron. In particular, the questions are
considered to what extend the generated phase space is similar to conventional
one and about the feasibility of using the generated phase space instead of the one
mentioned above.

2

1.2 Thesis structure

This thesis is structured into seven chapters. Chapter 2 describes the complete
introduction of the X-ray tube and its applications in medicine and the basics of
Monte Carlo simulations. Since our used method is a machine learning task,
chapter 3 is designed based on the theoretical explanation of machine learning
theory, neural networks, network training, and some basics of gradient descent as
well as activation function. In chapter 4, the detailed explanation about
Generative Adversarial Network (GAN) and Wasserstein GAN (WGAN) which
are used as the neural network technique in this master thesis are introduced.
Besides, a short explanation of the used technology and the training and
optimization of GAN as well as the evaluation techniques of the results of the
GAN are explained in chapter 5. In this thesis, these explained techniques were
used to generate data by machine learning, that is supposed to match the actual
data from measurements and evaluate to which extend the actual data is matched,
by using machine learning techniques. Ultimately the feasibility of this new
approach is assessed, taking multidisciplinary aspects into account.
All the results are shown in chapter 6. Finally, in the last chapter, the discussion
and the conclusion of the project are given and the limitations which were faced
with. Additionally, further recommendation is proposed.

3

2 Background and related work

MC simulations are extensively utilized to characterize complex radiation
devices, such as X-ray tubes or ion therapy beam lines. Nevertheless, in general,
MC simulations could be used to simulate brachytherapy radionuclide seeds,
proton beam nuzzles, nuclear imaging process, etc. An obvious example is to
calculate the dose in a patient CT image, in which the simulation is divided into
2 parts [35][68]. Firstly, detailed MC simulation is done in order to transmit
particles through the accelerator treatment head elements (primary collimation,
flattening filter, monitor chambers, mirrors, secondary collimation, etc.) to a
virtual plane. The features of particles such as energy, position and direction
which reach the plane are kept in the phase space file and base on detailed features
of the treatment head components. The second part of the simulation is to track
particles from the phase space plane through the multi-leaf collimator and the
patient CT image to analyze and evaluate the distribution dose which is absorbed
[68].

In the following, an outline of the principles of X-ray production and spectrum
and the applications of X-ray in medicine to characterize and model the radiation
output of X-ray tubes are given. Then, the purpose of the radiotherapy and the
different treatment planning is discussed. Lastly, the basic introduction of the
Monte Carlo simulation is introduced in this chapter.

2.1 X-ray history

X-rays could be produced by natural sources, such as radon gas or radioactive
elements on earth, but can also be generated by technical means. The discovery
of X-ray by Wilhelm Conrad Röntgen in 1895 marked the beginning of a
revolution in Medical Imaging and Radiation Therapy. While applying a high
voltage to a cathode tube, he observed that crystals near the tube started to glow.
From subsequent experiments, Röntgen concluded that these have been caused
by a radiation, that was able to penetrate through most substances, including
human tissue. However there were also substances which X-rays could not pass
through, like bones and metal, allowing multiple useful applications [45].

4

2.1.1 Fundamentals of X-ray production

An x-ray tube is an evacuated tube that contains a cathode and an anode, as shown
in figure 2.1. The cathode is heated by a low voltage current, causing the thermal
emission of electrons. The released electrons are then accelerated towards the
anode by a high voltage. When hitting the anode, the electrons are abruptly
decelerated, resulting in the emission of high-energy electomagnetic waves. Only
a fraction of the kinetic energy is transfered into radiation, the rest is deposited in
the anode as thermal energy, implying the need for cooling the anode [45].

Figure 2.1: X-ray tube (modified from source [45] p.254). The cathode and the anode are

seen inside the tube.

The following is based on the “Diagnostic Radiology Physics“ book [42].

2.1.2 X-ray spectrum

X-ray output can be plotted as a graph called spectrum. X-ray spectra are the
results of the deceleration of incoming electrons on the anode when high energy
is applied to the vacuum tube. X-ray spectrum is the result of attenuation of the
X-ray beam, which is generated at the target. Two types of X-ray spectra as
shown in figure 2.2, were defined: Continuous and Discrete. They both result of
physical process which produce X-ray called Bremsstrahlung and characteristic
radiation.

5

Figure 2.2: X-ray spectrum (modified from source [42] p.92): Continuous spectrum

(Bremsstrahlung) and discrete lines (Characteristic radiation)

2.1.3 Bremsstrahlung

This type of inelastic interaction takes place when an incident electron interacts
with the electric field of the nucleus. The bremsstrahlung spectrum results in the
slowing down of incident electrons and their energy loss. The loss of energy from
incident electrons due to bremsstrahlung is caused by inelastic scattering or by
emission of an X-ray photon due to the radial acceleration in the electric field of
the nucleus. The probability of bremsstrahlung highly depends on Z^2 (Atomic
number); therefore, the efficiency of bremsstrahlung radiation for heavy material
such as tungsten is better. The energy of the bremsstrahlung is subtracted from
the kinetic energy of the electron. Additionally, the angle of photon emission is
related to the energy of electron.

2.1.4 Characteristic radiation

The interaction of an incident electron with an inner shell electron causes the
inner electron to get ionized and leave the atom if its kinetic energy exceeds the
binding energy. The generated vacancy will be filled with an electron from a
higher energy level. When the outer shell electron drops from a higher energy
state into a lower energy one, the difference of the energy is released as either an
X-ray photon or in the scattered electron’s energy as it is shown in figure 2.3.
These photons produce characteristic lines in the spectrum, such as K-lines and
L-lines.

6

Figure 2.3: Schematic interaction of incident electrons on matter (modified from source [45]

p.254)

The ideal X-ray spectrum without any filtration would be triangular. Different
filtration such as beryllium and aluminum is used in the actual spectrum to
illustrate the characteristic lines and continuous spectrum. At the lower portion
of the energy of spectrum, for instance at 60 kV, as shown in figure 2.4, there are
no characteristic lines.

Figure 2.4: The ideal X-ray spectrum. The filtration technique provides the characteristic
lines and continuous spectrum for the X-ray spectrum (modified from source [42] p.92)

2.2 X-ray sources in medicine

X-ray sources have various applications in medicine such as image-guided
therapy (radiotherapy imaging) and medical diagnostic imaging. The latter
denotes the wide range of multiple image modalities: mammography, computed
tomography, systems for general radiography and interventional X-ray systems
[4]. In radiation oncology departments, the aim for diagnostic imaging is to
observe and detect the existing tumor, rather for radiotherapy imaging the exact
position and the shape of tumor are searched and the plan of treatment based on
the dose calculation is designed.

7

2.2.1 MedAustron

MedAustron is a center for ion beam therapy and research, located in Wiener
Neustadt in Lower Austria and is one of the few centers around the world
providing treatment with carbon ions. For the first time, a carbon ion accelerator
for clinical usage was opened by the National Institute of Radiological Science
(China and Japan in 1994) and since that time, thousands of patients have been
treated [27] [26]. However, still, the number of centers providing carbon in ions
is scarce. In total, there have been five countries and 12 centers using carbon ion
radiation therapy so far [28][40].
A full Monte Carlo model of the ImagingRingTM System used in this master thesis
were performed at MedAustron in the Irradiation Room1 (IR1) which is used for
non-clinical research purposes. The ImagingRingTM System which will be
described in detail in section 2.4, provided for in-room patient imaging and
intended to be used as the equipment for creating phase space.

2.3 Radiation Therapy

Cancer is one of the most causes of mortality and morbidity in the recent century
[43]. In order to treat the cancerous organs or tissue, various types of treatment
can be considered. Radiation Therapy is one of the effective non-surgical cancer
treatment modalities which uses high radiation doses to kill or shrink the tumor
cells. Although radiation therapy can also be used for treatment of the non-
malignant disorders [24][25].
Radiation is usually called ionizing radiation since the ionized charged particles
deposit energy in the body. The aim is to deliver radiation to a target volume
within the body without any damage to normal surrounding tissues [8]. High
energy beams eliminate the tumor cell growth by stopping the ability of genetic
material (DNA) to divide and proliferate further [9]. The treatment plan will be
designed for each patient depending on the type of tumor and stage of cancer.
There are two common ways to deliver radiation to the location of tumors:
external beam radiation and internal beam radiation [8].

¤ External Radiation Therapy

The high-energy X-ray beams (4-20 million volt) are produced mostly by a linear
accelerator (LINAC) passing through the collimators and then penetrate to the

8

most deep-seated tumors. This type of radiation therapy is planned to radiate the
target tumor from outside to close location of tumor by aiming of high energy
beams. The most effective clinically dose used is 6-18 MV which has an accurate
balance between penetration and surface dose, while sparing the skin and normal
surrounding tissues [6] [7] [8].

2.3.1 Volumes and margins

The aim of radiation therapy is to irradiate the cancerous cells by eliminating their
ability to reproduce, while the exposure dose to healthy tissue in the surrounding
needs to be as low as possible. However, it is not feasible to treat the malignant
tumors without irradiating neighboring healthy tissue. In order to standardize the
description and approach of the distributed dose, a number of different tumor
volumes and margins were briefly introduced. In this case, the Tumor Control
Probability (TCP) and the Normal Tissue Complication Probability (NTCP) will
be improved which causes the optimization of the therapeutic windowing.

Figure 2.5: Definition of target volumes [43] in which PTV shows Planning Target Volume,
GTV describes Gross Tumor Volume, ITV denotes Internal Target Volume and CTV defines

Clinical Target Volume [31][32].

The following list of abbreviations:

GTV Gross Tumor Volume: "is the gross visible or demonstrable extent and
location of malignant growth" [31].

CTV Clinical Target Volume: "is the tissue volume that contains a demonstrable
GTV and/or subclinical/invisible malignant disease, which has to be irradiated.
The aim of radiotherapy is to treat this volume " [31].

9

IM Internal Margin: "is responsible for considering the variations in size, shape,
and position of the CTV in relation to anatomical reference points" [32].

SM Setup Margin: "is defined to specify the uncertainties in patient-beam
positioning" [32].

ITV Internal Target Volume: "is the tissue volume that contains Clinical Target
Volume (CTV) and Internal Margin (IM) for organ motion" [32].

OAR Organ at Risk: "are healthy tissues whose radiation can lead to influence
treatment planning. OR are usually placed close to the clinical target volume
(CTV)" [31,32].

PTV Planning Target Volume: "is a geometrical concept, which is defined for
uncertainties in treatment planning and delivery. This will aid to choose suitable
beam size and their arrangements which considers the possible variations in
geometry and inaccuracies to provide certainty that does prescribed is in fact
absorbed in the CTV" [31,32].

2.3.1.1 Treatment planning and dose calculation

In the first step for radiation therapy, a 3D model of the patient must be created.
For this purpose, a computed tomography scan or magnetic resonance imaging is
performed depending on the type and place of the tumor for delineating the
margins and volumes. Additionally, soft tissues with high contrast can be
captured. In the further step, the dose level, angle of the beams, and the number
of the beams needs to be set. In other words, dose calculation shows the relation
between the parameters of treatment explained in the process of planning, as well
as their clinical results. The parameters of treatment require to be improved so
that 95% of the PTV gets the determined dose of 95%. More than that, several
limitations such as the Median Dose (D50%), Near-min Dose (D98%), and the Near-
max Dose (D2%) to diverse volumes are explained, making the process more
challenging [33][34]. This treatment planning is a repetitive process which
finishes with the treatment plan to be optimized. The tumor has an irregular shape,
to limit the excess irradiation to neighboring normal tissue, the conformal
radiation therapy (CORT) is introduced which is divided into two main groups;
3D conformal radiation therapy (3D CORT) and Intensity-modulated radiation

10

therapy. 3D CORT uses the geometrical properties of the tumor to irradiate the
high number of beams to target volume.

2.3.2 Treatment techniques

In the following subsections, some of the treatment methods used in radiotherapy
will be explained.

2.3.2.1 3D Conformal Radiation Therapy

The 3D conformal radiotherapy is a technique that aims to shape the radiation
beams to the PTV. This technique adds CT planning in which the volume to be
dealt with explained on a 3D data set. As a result, organs in danger are depicted
and defined to protect them and to reduce side effects. In order to design the
complicated arrangement of beams, Radiotherapy planning software is utilized to
evaluate the dose-volume [36].

2.3.2.2 Intensity Modulated Radiation Therapy (IMRT)

Intensity modulated radiation therapy (IMRT) regulates the shape and intensity
of the beam during treatment by aiming to transfer the higher dose to CTV and
spare OAR better. For this issue, the angle of the beam will be varied most of the
times during the treatment. One type of IMRT in an advanced kind is known as
Volumetric Intensity Modulated Arc Therapy (VMAT). In this type, the radiation
is sent by a linear accelerator machine (LINAC) which is revolving around the
patient. Both the speed of rotation and the intensity of it are in the process of
modulation in this regard. The field shape is constantly adapted and adjusted by
an Multi-leaf Collimator (MLC) that allows flexibility to some degree during
treatment process. The advantage of using VMRT in contrast to IMRT is, that it
is less time consuming in terms of the treatment planning process [37].

2.3.2.3 Image Guided Radiation Therapy (IGRT)

The therapy which uses imaging during radiotherapy is called image guided
radiotherapy (IGRT). Its aim is to enhance the level of validity and it corrects the
mispositioning of the patient by acquiring daily imaging of the patient. IGRT is
a great advantage to be utilized to treat various kinds of tumors; however, it is

11

useful when tumors are placed closely to highly sensitive organs. Moreover, it
can also be beneficial regarding tumors which have the tendency to be located
near vital organs such as lungs and livers during the process of treatment
planning. Because of this, positions of OR and tumor are determined straight
away before the beginning of treatment fraction, and comparisons in terms of the
patient’s positions are made during planning treatment. For this reason, IGRT
needs to use one imaging system which is built into the system of treatment [38].

2.3.2.4 Adaptive Radiation Therapy (ART)

Due to the fact that the plan of treatment is designed a couple of weeks prior the
Radiation Therapy, anatomical changes, such as losing weight cause changes in
volume and size of the internal organs. These changes require an adaption of the
treatment plan. Adaptive Radiation Therapy (ART) is defined to modify the plan
of treatment by evaluating the errors between CTV and delivered dose
distribution to the patient. Then, images must be acquired in order to observe and
verify the possible variations. Finally, the parameters of treatment planning will
be estimated in order to modify the PTV [39].

2.3.2.5 Four-Dimensional Radiation Therapy (4DRT)

Respiratory motion can lead to organs displacing, especially in tumors which are
located within the thoracic cavity or near the diaphragm. For tumors located
around the diaphragm, motion amplitude can be as large as three centimeters. Due
to this fact, Four-Dimensional Radiation Therapy (4DRT) is designed to evaluate
the tumor movement. This technique helps to eliminate unwanted damage to the
healthy surrounding tissues. In this type of radiation therapy, the radiation is
adapted to the patient’s breathing.

2.3.3 Proton beam therapy

The idea of using protons in therapeutic medicine was first proposed by Robert
Wilson in 1946 to treat tumors located deep in the body with accelerated proton
beams [19].
Proton therapy is a type of external radiation therapy, which aims to irradiate and
treat target tumors with high energy beams and high accuracy [21]. Protons

12

deposit their maximum energy in the Bragg Peak and reach their maximum
penetration depth as they decelerate [20]. In proton therapy, the energy deposits
quickly to zero in the process of slowing down and thus the maximum dose is
delivered to the target tumor and less spread on near-normal tissue [21]. These
features allow the tumors to be irradiated with maximum efficiency, while
healthy surrounding tissues and organs are less irradiated and more critical
structures spared [23]. The difference of the dose-depth plot for X-rays, electrons,
and protons is illustrated in figure 2.6. Recent studies demonstrate that 50% of
spreading of dose on normal tissue is reduced in proton therapy in comparison to
photon therapy [22].

Figure 2.6: The dose-depth curve (modified from source [46]) for electron (20 MeV), photon

(18 MeV) and proton (130MeV). Note the different shapes of the mentioned curves.

2.4 ImagingRingTM System

The ImagingRingTM System, which is operated at MedAustron, as shown in
figure 2.8, is a special type of cone-beam computed tomography for medical
imaging [11][12][14]. It resembles an industrial robot, designed for medical use
and includes two robotic arms: a monobloc system (X-ray tube and generator)
and a flat-panel detector. The detector and the X-ray tube are assembled in an
ImagingRingTM System, which can be rotated independently by aiming to
optimize the field of view [16].
The position of the patient was designed to move or tilt, additionally to have
millimeter precision and closely observe the whole patient body during treatment
[13]. Due to the construction of the ring and movement of the patient through the
couch, the maximum field of view is capable of imaging, and the maximum

13

precision is expected for releasing of the exposure. In the ImagingRingTM System,
the ring is mounted on the rail to simplify the imaging without changing the
position of the patient [15].
The ImagingRingTM System at MedAustron has also provided a full Monte Carlo
model of this system. This full Monte Carlo model known as phase space contains
important characteristics such as position, energy among others.

Figure 2.7: ImagingRingTM System at MedAustron [13]. The X-ray head and detector which

are mounted on a robotic arm are positioned below the patient couch

2.4.1 Movement details

The X-ray head can be rotated independently around the patient with a rotational
movement of about 480. The longitudinal movement of the ring is designed 125
cm along the couch with a speed of 10 cm per second.

2.4.2 X-ray head and detector

The X-ray radiation penetrates through a glass layer followed by oil and an exit
window made of polycarbonate. This process results in a built-in self-filtration
equal to 1.4mm of aluminum. The located X-ray source in the X-ray head pilots
a photon energy ranging from 40keV to 120keV, which can be varied to 80-
120keV for clinical use. The X-rays are emitted in termed pulses. The time

14

intervals of these pulses have a defined constant length. For each required
exposure to radiation, the number of pulses and their respective time intervals can
be determined. The spinning rate is about 0476.21 [14][16].
The XRD detector is a silicon flat panel X-ray detector with no shape and features
which is based on CsI scintillator. The XRD 1642 model utilized in the
ImagingRingTM System at MedAustron provides a resolution of 1024 x 1024
pixels and high frame rates of up to 100fps. It is equipped with an active sensor
area of 41 x 42 cm². The detector can rotate up to 481.5 degrees around the patient
[14] [16].

2.5 Monte Carlo methods

The Monte Carlo method was developed in the 1940’s, although the idea of MC
is traced back to the eighteenth century [1][2]. Modern MC simulation was first
used to model random diffusion of neutrons traveling through radiation shielding
in the Manhattan Project by Neumann and Ulam [2]. Scientist who worked on
this method gave the name “Monte Carlo” after the city in Monaco and its many
casinos [1].
The Probability Density Function (PDF) is the base of MC simulation which is
used to model the system. A large amount of data will be sampled from the series
of PDFs by using random numbers. The technique which is used for sampling the
data is the Cumulative Probability Function (CPF) which is defined as an integral
of PDF. Then the final data is computed by the result of sampling data [2].
Particle transport is a kind of physical process that can be described by interaction
probabilities per unit of distance. The complex and mathematical problems which
are comprised of various random events, such as particle transport, can be
simulated with the probability density function [3]. Monte Carlo methods are a
clarified technique which is used for generation of X-ray spectra.
The phase space is the outcome of sampling the distribution randomly, instead of
integrating probability functions which are created by Monte Carlo methods [10].
The phase space files contain the information of particle position, energy, and
angular momentum distribution. However, these files contain typically up to
several tens of gigabytes of data and are inefficient to use. An inaccuracy that has
to be accepted for the sake of simplification is, that in reality X-ray emission is
not originated from one certain point, but rather from the irregular shaped area of
the anode, called focal spot.

15

2.5.1 Simulation

Geant 4 (v10.5) is the simulation toolkit that is used in this thesis to create a
Monte Carlo simulation model of ImagingRingTM System [16]. Geant 4 is a
geometry based tracking software to simulate particles traveling through matter.
In other words, the particles can be tracked along their path through a specified
geometry. This simulation toolkit was developed by a collaboration of physicists
and software engineers from around the world at CERN and was written in C++
[18]. The source code of Geant 4 can be downloaded freely. It is widely used in
nuclear physics, high energy physics, accelerator physics as well as medical
applications, due to its wide range of functionalities, including electromagnetic,
hadronic, and optical processes as well as a wide range of energy from 250 MeV
to 1 TeV [41][30].
In Geant 4, each particle is tracked along its way and is simulated individually.
During this process, the length of tracks is defined by the parameter called step
size, and based on each step, all interactions are evaluated by sampling from the
appropriate probability distribution. In order to decrease the computation time,
another parameter, called track cut ,is specified by removing the particles which
have no chance of reaching the desired detection space. The average length of the
removed particles is shorter than their track size [18][41].

2.5.2 GATE

GATE (the Geant4 Application for Tomographic Emission) is based on the
GEANT4 framework, which is a toolkit to simulate the physics of radiation [29].
Although GEANT4 offers a large number of patterns and models for simulating,
it provides a user-friendly macro mechanism for controlling sophisticated
geometries. This feature is considered to be quite helpful for creating brand-new
devices in medical applications. In addition, for the image acquisition
optimization, it can be used for reconstructions of an image and haphazard
reduction of noise [41][29].
GATE is a program written based on C++. The main function is able to explain
its core. Based on the core, there is an application layer which is a set of C++
classes. However, the layer for user is designed and made up in an easily operated
way in which C++ skills for programming are not needed. It also permits a control
through an extended version of the Geant4 for scripting language [29][41].

16

A device geometry, in GATE, can be modeled in a stepwise fashion through
binding objects which are basic and geometrical like boxes, spheres, cylinders.
Then, a material for each object is able to be explained. Likewise, one source of
particle is supplemented. Particle types along with the distribution of energy, as
well as its direction are defined for reflecting the source in a realistic way [41].

17

3 Machine learning

In Machine Learning (ML) computers learn how to solve problems by trial and
error. It became one of the most attractive branches of artificial intelligence. The
learning process can be realized by mathematical algorithms and is capable of
producing a reasonable output from input data automatically. Machine learning
models are designed to generalize the learned experiences in order to predict new
data during training. The training process is required to repeat continuously and
the final model will be evaluated after the multiple iterations of training [48]. The
process of generalization is difficult and has different designs for each type of
application. The relation between input and output data can be presented in the
function = (), which defines the correlation between two variables and .
In most types of machine learning algorithms, such as regression and
classifications, the function f is required to approximate the value of for each
new value of . In this case, it is suitable to represent an arbitrary function that is
reliable for universal approximation. One of the most popular and universal
predictors is an artificial neural network (ANN) which uses a classifier to model
the decision [47][49].

Figure 3.1: A diagram of a neuron [44]. Neurons are inspired by biological nervous system.

18

3.1 Neural networks

The neuron is the fundamental unit of a Neural Network and the neurons in ANNs
are inspired by the biological nervous system such as the brain [51]. Figure 3.1
shows the diagram of a human neuron. ANN consists of simple computing
elements that are interconnected together, with the aim to solve complicated
patterns. The complexity of problems can be learned by examples. The selected
examples must provide useful information, otherwise they cause misguiding and
incorrect functionality for the network.
Each neuron in ANN can be considered as a classifier that receives multiple
inputs 1, 2, … and creates a weighted sum for these inputs using the weight
vector w = (w1, w2, ..wn). Besides, the bias b is added to the weighted sum for
these inputs. Then a non-linear activation function ℎ() is applied to the neuron
to model the decision [51]. Figure 3.2 illustrates an example of a neuron which is
derived from the human neuron. Each neuron receives the input from the previous
neurons through the dendrite, then compares the threshold value through a series
of mathematical calculations. If it exceeds a certain limit, an output can be
produced. The output reaches further neurons through the axons. There is a
synapse between each neuron output and the input of the subsequent neuron
[74][51].

 = ℎ (∑ +) = ℎ() (3.1)

Figure 3.2: An example of a neuron showing a couple of inputs and their corresponding
weights, a bias, and the activation function f applied to the weighted sum of inputs [74].

19

The function (3.1) can be simplified by using the dot product of vectorized inputs

 and vectorized weights w instead of the summation function. It can be shown
in function (3.2).

a = ℎ (wT x + b)= ℎ (z) (3.2)

All trainable parameters can be summarized as vector .

 = (0, w1, w2, …,wn) (3.3)

3.2 Feedforward Neural Network

Feedforward Neural Network (FNN) is a type of ANN which is used to
approximate the function given an input [50]. The goal of a FNN is to combine
multiple neurons and create the directed associated graph in the form of a layer
without cycles. To summarize, each layer can be assumed as a single function
consisting of these neurons [50].
Every FNN has a similar architecture which is shown in figure 3.3. It contains
three different layers: the input layer, intermediate layer or hidden layers, which
contain an arbitrary number of layers of neurons, and the layer computing the
output, called the output layer. The data is entered into the input layer and then
will be passed on to one or more hidden layers. The predications of networks
occur before the data is transferred to the output layer.

Figure 3.3: Artificial neural network architecture [5]. It consists of three different layers: one

input layer, three hidden layers and one output layer.

20

In artificial neural networks, in order to predict the output of new entered data,
the classifier infers the real and correct class y by a new function called estimated
function.

3.3 Gradient descent

In neural networks algorithms, to find how well the output for given input is
approximated, the loss function or cost function, which measures the quality of
the parameters , is defined [51]. The gradient descent is introduced as an
iterative technique to find the parameters by moving in the direction of steepest
descent which is defined as a negative gradient. During this process, the model
of performance is gradually increased. The goal of gradient descent is to find the
local minimum of the loss function f(). The computation of the minimum of the
simple loss function would be feasible analytically, but for complex functions,
such as loss function of FNNs, it would be complicated [50].
The minimization of loss function f() where contains all trainable parameters
is the goal of all training processes in NN [50]. For this purpose, the gradient
descent which uses the gradient of loss function f() for all trainable parameters
 is used. During this process, the model performance is gradually increased by
sequentially updating the . The values in the vector and the f() are constantly
changed during full batch training for regular gradient descent, although the f()
remains static for the same value of . In the full batch learning, the gradient of
each training set is computed independently, then they are summed up together.
Gradient descent can be also introduced as a useful technique in NN which
requires the time-consuming computation of all gradients for whole training
examples in one single update step. The Stochastic Gradient Descent (SGD) is
also defined to increase the speed of the learning process, which corresponds to
mini-batch learning. At each update step, SGD estimates the gradient of the cost
function, denoted as ft. As a result, each single update in SGD is less time-
consuming in comparison to the full batch learning. The other advantage of SGD
is that it is capable of performing a frequent update which causes the function to
fluctuate and converge to the minimum. This fluctuation provides the condition
in which the function jumps to the better local minima [58][59].

 = − f () (3.4)

21

Here, t denotes the trainable parameter at time step t and denotes the learning
rate. It can be written as:

 = − f () (3.5)

when t =t+1 - t [17].

3.3.1 Momentum

As described in section 3.3, gradient descent is used to find the minimum of the
loss function. By using the regular SGD, the ft () may change strikingly for
subsequent steps. This can lead to a large oscillation of the values in overtime
which causes the slowing down of convergence [47]. To counter this, a
momentum term can be added to equation 3.5. The major advantage of
momentum is, that the short-term memory, called acceleration, is used to boost
the learning process [17].

 = − f () (3.6)

Where is he momentum coefficient which holds a value between 0.5 to 1[47].

3.4 Adaptive Learning Rate Optimizers
SGD is defined as a powerful optimization technique for training NNs; however,
the choice of learning rate can influence the result of optimization. If is chosen
too large, the training might fluctuate and skip over desired local minima. If it is
too small, the learning rate causes significant delays of the convergence process.
To deal with this, a common technique, called learning rate decay, is utilized [54].
This method is a hyperparameter in itself, which needs to be designed for each
network. It also allows a larger at the beginning of training and a smaller
towards the end of training. Therefore, must be tuned by some factors every

22

few epochs. The aim of an adaptive learning rate optimizer is to find the best
learning rate depending on the application. There are a couple of methods which
are defined in the following subsection and in these approaches, the learning rate
is not a global variable. They need the hyperparameters tuning such as Resilient
backpropagation (Rprop) [61], Root Mean Squared backpropagation (RMSprop)
[59] as well as Adaptive moment estimation (Adam) [62].

3.4.1 Rprop and RMSprop
Rprop training algorithm aims to eliminate the negative effects of the magnitude
of the partial derivates. During this process, the direction of the weight update is
determined only by the sign of the derivates while the magnitude of derivate is
defined separately without any effects on the weight update [61]. This technique
is known as a robust algorithm in ANNs and corresponds to full-batches. The
main disadvantage of Rprop is, that it does not work when training with mini-
batches. To counter this, RMSprop is an adaptive learning rate method which is
a mini-batch version of Rprop, proposed by Geoff Hinton in his course [57]. It
works by aiming the normalization of the gradient for all parameters , at each
update. In order to improve learning, RMSprop divides the gradient descent for
each learnable parameter by the accumulated magnitude of the gradient [59].

 = − ∇ () (3.7)

where = − 1 + (1 −) ∇ () ² (3.8)

Here β2 is an additional hyperparameter called decay rate. The division and
squaring operations denote their elementwise versions.

3.4.2 Adam

Adam is an SGD method which estimates the first and second-order moments of
the gradients by computing individual learning rates for different parameters [62].

23

Adam algorithm consist of three hyperparameters including the learning rate ()
and decay rate for first- and second-order moments, which are defined by β1 and
β2. vt, mt: first- and second-order moments are given in the equation 3.8 and 3.9.
 = m − 1 + (1 −) ∇f () (3.9)

When mt and vt values are loaded as vectors of zeros, they are biased towards
zero. This is especially the case when t or their respective decay rates are little in
amount. Thus, the algorithm uses bias corrected variants of these moments:

 =

and =

The update rule for Adam becomes: ∆ = − η + ε

Here, ε is a small constant that avoids division by zero.

3.5 Activation function

Activation functions (AF) are non-linear functions that are applied to the
weighted sum of the inputs. It is added to each neuron in the ANN and denotes
whether the neuron is activated or not. The activation function is the only source
of nonlinearity in the NN and has sufficient ability to tackle the complex
algorithms and learn challenging data.

24

3.5.1 Sigmoid function

One of the simplest and most popular activation functions used in this work is the
sigmoid function () = 1 (1 +⁄). The output range of this function is
between 0 and 1, where 0 represents tthat the neuron is not activated at all, while
1 denotes the activating rate at maximum level. The main disadvantage of using
the sigmoid function is, that for a large value of , the gradient will vanish and
cause the slowing down of learning, if is placed in the saturated area. The other
drawback is defined because it is not zero-centered and causes inadequate results
during gradient descent [50]. Although the sigmoid function is not a useful
method for neurons in hidden layers, it can be interpreted as a predictor of
probabilities in output neurons.

3.5.2 ReLU variants

Another popular activation function is the Rectify Linear ReLU [52] (ReLU)
which is defined as ReLU(x)=max(0,x). Due to its function, it can result in the
faster learning of deep ANNs, with gradient descent in comparison to sigmoid
function, since it is not saturated for a large value of [53]. Due to the form of
the ReLU, that is linear and non-saturated, the vanishing of gradient descent in a
large value of is omitted [54]. The main problem in this activation function is
that no gradient is provided when is negative. A new version of ReLU called
Leaky ReLU [55] is presented and defined in the following to solve this problem:

 () = 01/ ℎ

Where can be set for different layers in NNs and if it sets to a large value, such
as 100, it behaves similar to the original ReLU. The small value of causes an
increment accuracy in classification [56]. Figure 3.4 shows the two different
types of activation functions, the right figure represents RELU and the left one
represents the sigmoid function.

25

Figure 3.4: The right figure represents RELU and the left one represents the sigmoid

function. The popular activation functions used in ANNs. Own work by Matplotlib1 library.

1 https://matplotlib.org

26

4 Generative Adversarial Networks

The idea of Generative Adversarial Networks [63] was proposed by Goodfellow
in 2014 as a method for data generation. GAN consists of two networks:
Generator (G) and Discriminator (D), which are often implemented as NNs. In
this code, G and D designed in a three-hidden layer network.

In all generative models, the Gaussian noise distribution z is applied to G(z;θG)
to model the distribution and produce fake data, in our case the distribution of
particles. D is also designed to estimate the probabilities of realness and fakeness
of a sample data. In order to make a convenient training for each model, the
equilibrium between two models has to be found and maintained.

Training of GAN is a challenging process. Generative and Discriminative model
are training simultaneously in a so called zero-sum game. In a zero-sum game
with two players, in this case the D and G, act as maximizer and minimizer,
striving to increase their own score at the cost of the other one’s. The Generator
attempts to maximize the probability of its output deceiving the discriminator.
The discriminator on his part has to keep the probability as low as possible [64].
Ideally, an equilibrium between the performance of G and D is reached, called
the Nash Equilibrium [63][80]. It is mathematically described in (4.1)[63].

In case the performance of G and D is unbalanced, the entire training process
might stagnate with the output being improved, resulting in a vanishing gradient.

This expression or the GAN purposes in the following defines the complete work
of the network:

 min max (,) = ()[()] + ()[log (1 − D(G(Z)))] (4.1)

Where:

27

Pz (z) : Denotes the noise distribution which is considered as input of G
Pdata(x): Denotes the real data distribution
x, z : Denote the inputs of Discriminator and Generator

The aim of the mentioned formula, which is a function of both G and D, is to
maximize the D loss, or the log D(x) and minimize the G loss, or log (1- D(G)).
In this case, expected probability from various outputs of real and fake data are
defined as: Ex, Ez.
Besides, this (,) is the summation of expected probabilities for real and
generated data.

Figure 4.1: A simple graphical presentation of the GAN setting. The generator produces the
fake data from the random noise which must convince the discriminator. The discriminator
gets input as either real data or generated data to distinguish whether its input is real or fake

[79].

More than that, for training both discriminator and generator, resent flaws are the
gradients of the following function loss are sent back into the model.

Updated discriminator rule:

28

∇ θ ∑ log () + 1 − (4.2)

Updated generator rule:

∇ θg ∑ 1 − () (4.3)

Where m shows the whole number of tested samples in batch prior to being
updated and with both θd and θg showing each model weight.

4.1 Iterative process of GAN

The purpose of this section is to explain the process of training. Every step of one
training process is known as epoch, a term in machine learning, indicating the
number of passes of the whole training dataset through the system. Throughout
every epoch data are processed in a batch, a random fixed size subset (called
batch size) from the samples in the dataset which are real. The number of epochs
and the number of iterations is the same, given that the entire training dataset file
in one batch [78]. Steps inside each batch are as following:
Firstly, the discriminator receives a real data batch. After that, incoming errors
from the discriminator output are worked out. Simultaneously, the generator
produces a fake data batch, using noise vectors batch. In the third place, the
discriminator receives fake data batch for the second time. Next, the discriminator
output is calculated either (0) or (1), meaning fake data and real data, respectively.
Both of these kinds of errors calculated by the discriminator are then propagated
to the model. Now, errors for the generator are supposed to be calculated,
meaning that outputs coming out of the discriminator ought to be 1, because they
are ideally imitated forms of real data. Output errors are supposedly to be
propagated to the generator model and this cycle is again restarted with another
batch from this epoch [78].

29

4.2 Difficulty of training GAN
Training of regular GANs is always accompanied by instability. The cause of this
instability is the fact that the generator and discriminator are designed with
different contradicting goals. This can prevent each other’s progress during
training [64]. Additionally, when the generated data is similar to only a part of
the real data distribution, failure occurs. This failure mode is called mode collapse
[64]. Depending on the severity of the mode collapse, the training process could
be considerably compromised. When mode collapse occurs to a mild extent, the
model still converges and the training process is applicable. In a severe case of
mode collapse, only a few samples or even just a single sample is generated,
which is far from the goal of GAN [65].

4.3 Wasserstein generative adversarial nets

The goal of the original GAN is to minimize the JS divergence in a min-max
game [63]. In most cases, the JS divergence will not provide the beneficial
gradients and cause it to fail to converge. To counter this, Wasserstein GANs
[66][67] were proposed. WGAN minimize the Earth mover distance instead of
minimizing the JS divergence between two probability distributions. Besides, the
training of WGAN is leading to improve the original GAN in different ways and
cause robustness to mode collapse [66]. The introductory of this section will be
started by an introduction of Earth Mover (EM) distance. Then this section will
be finalized by the explanation of WGANs.
To find the perfect Pθ density model in the given real data x, mastering probability
distribution using maximum probability estimation is vital. Considering the real
data distribution pR and the model distribution pG, the restriction (amount of real
data) of the maximum likelihood estimate is equivalent, so as to minimize the
Kullback-Leibler (KL) divergence KL(pR||pG). Nonetheless, in case Pθ is not
obvious, the KL divergence is inexplicable or infinitive in this regard. For
example, if the distributions are governed by manifolds dimensions, so the
intersection of model manifold, as well as real distribution support, will not occur
[67][82]. That is why various generative models strive to put an extra noise term
to the model distribution, which results in indistinct generated data. To counter
this, GANs can be trained by randomly feeding variable z through a parametric
function G, usually applied as a neural network. Therefore, through taking

30

samples directly from the model distribution pG, and changing the model
parameters θG, adjusting pG to be as similar as pR is possible real distribution pR.

The major advantage to use WGAN is the different approach, so that distances
between the model distribution pG and the real distribution pR can be measured.
In the authentic formulation for GANs, which is proposed by Goodfellow et al.,
the aim function of GAN for optimizing is the Jensen-Shannon (JS) divergence.
In WGAN, the Earth-Mover (EM) distance or Wasserstein-1 distance is utilized
to estimate distance function, which results in computing the optimal transport
plan loss for transforming the distribution pR into pG. The Wasserstein-1 distance
is explained as following:

W(pR,pG) = inf E(x,y)∼γ [||x−y||], (4.4)

 γ ∈Π (pR ,pG)

Π(pR, pG) is the number of all binding distributions γ(x, y) when the amount for
pR and pG, is small respectively. As the infimum in Equation 4.4 is out of control,
the binary form of the Wasserstein-1 distance [69][82] is utilized to collect the
scheme optimization:

W (pR, pG) = sup Ex∼pR [D(x)] − Ex∼pG [D(x)] , (4.5)

 ||D||L≤1

When 1-Lipschitz functions are less than the supremum, this constraint can be
alternated with a K-Lipschitz theory. The binary form only undergoes changes by
a multiplicative constant of K, that does not alter the optimization problem. Here
K is able to be absorbed into the learning rate hyperparameter. In case D functions
family, which are parameterized with parameters θD ∈ W, has functions, which
are all K-Lipschitz, the subsequent optimization problem, leading to the primary
training objective for WGAN, can be obtained. Theoretically speaking, the
supremum in Equation 4.5 can be gained for some θD ∈ W and through merging
the generator network G(z) as the model distribution pG. The equation can be
reformed to reach at:

31

max Ex∼pR [D(x)]−Ez∼pz [D(G(z))], (4.6)

θ D ∈W

By the time it is optimized, the Wasserstein-1 distance can show greater features
in comparison to the JS divergence, as distributions, which are supported by low
dimensional manifolds, are learned. The result of such events is, that WGAN has
the capability for learning likelihood distributions in which other learning goals
derived by the JS and KL divergences fail to do so. Because of the benefit of EM
distance, to have two main advantages as being continual and distinguishable, the
functionality of the discriminator is proposed once by Arjovsky et al. to be called
as a trained critic as it can produce valid gradients. Moreover, while the
discriminator improves in the standard JS objective of the original GAN, causing
the JS distance to be saturated locally, brings about disappearance of gradients
[81][82], as opposed to the WGAN having gradients elsewhere. It is
recommended that WGAN can tackle the collapse mode problems, because of the
critic which is about to be trained prior to optimality. As well as that, for
approximating EM distance, the optimized critic will give permission for a
relevant explanation of the critic loss [82].

4.3.1 Gradient penalty
The existence of some factors can cause quality of samples to be lost as well as a
lack of full convergence, whereas GANs training are being enhanced by WGAN.
Gulrajani et al. believe these modes failed because of the way the 1-Lipschitz
restriction is put in the original WGAN. The weight clipping presented in the
original WGAN means, that the critic has difficulty finding the functions
optimality, thus its capacity is underused. In addition, norms of gradients are
affected due to weight clipping, which might also cause disappearance or
explosion of gradients. Hence, gradients are unsteady as a result, which could
cause the training to be inefficient and unstable [70]. They also provide some
proof that the critic in the framework of the WGAN, which is optimal, has a
normal unit gradient almost everywhere under pR and pG. This can differently
encourage them to impose the 1-Lipschitz restriction of the original WGAN,
through utilizing gradient penalty on the critic gradient. Using WGAN-GP
(gradient penalty) on the contrary to the weight clipping can help to implement
that Lipschitz is only continuous if the critic is constrained [70][71]. WGAN-GP

32

reaches this through utilizing a gradient penalty to the critic function value.
WGAN-GP is far better in terms of performance than the regular WGAN because
of its various generator and critic forms [71].

The result of that is that the gradient norm is motivated towards 1, forming the
ground for the Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP) training procedure [70]. Gulrajani et al., for this gradient,
take a uniform sample from a distribution pxˆ, defined along the lines between
sample pairs from both the real data distribution pR and the model distribution pG.
When applying this gradient penalty, the original WGAN loss function is altered
as shown below:

L=Ex∼p [D(x)]−Ez∼pz [D(G(z))]+λExˆ∼p (||∇xˆD(xˆ)|| −1) , (4.7)

As it is shown above, λ introduces the penalty coefficient, thus, they discovered
it can perform well for a number of experiments if the value of λ is 10.

33

5 Method

This chapter, first, outlines the most important soft and hardware that used to
develop, train and evaluate GAN in this thesis and to prepare input data. Then it
is followed by a comprehensive explanation of the employed GAN details and
the ending part of this section will be finalized by the introduction of the
evaluation of the used methods.

5.1 Used Technology

In order to describe the complete documentation of used technology, a short
introduction of popular tools is given below.

Python2 is a high-level and interactive programming language which is designed
by Guido van Rossum and released in 1991. Python allows to execute the codes
without the need to compile it. Due to powerful libraries, Python is used widely
in many scientific projects. Over the recent years, python has been the most used
language to develop Neural Networks and deep learning algorithms.

NumPy3 plays an important role for scientific computing in python. In this master
thesis, its features were used for editing, removing unnecessary data and in
evaluating n-dimensional array of objects.

Pandas4 is a software library for manipulation and analysis of data in python. It
provides the data frame by aiming to simplify data analysis and manipulating of
large numerical tables. The output matrix of Neural Networks can be evaluated
by “pandas”.

2 https://www.python.org
3 https://numpy.org
4 https://pandas.pydata.org

34

Matplotlib5 is the comprehensive library in python which is used to create static,
interactive and animated visualization of numerical data.

Pytorch6 is an open-source machine learning library which provides two high-
level features: tensor computation with strong GPU acceleration and deep neural
networks built on a tape-based autograd system (automatic differentiation).

Scikit-Learn7 is a software library for machine learning. It provides many
convenient methods for preprocessing data and evaluating results.
Principle Component Analysis (PCA) is the statistical technique which converts
high dimensional data to low dimensional data by selecting important features.
PCA can be implemented by using python’s Scikit-Learn library.

Root8 is a high-performance and open-source software which is written in C++.
Root has been integrated over years with python and the dynamic and unique
connection between python and C++ is considerably enhanced. Analyzing and
visualizing a large amount of data can be executed by root. Thus, the phase space
data, like the one processed in this thesis, is usually stored in root format files.

Uproot9 allows to read and write ROOT files using only Python and Numpy. The
standard uproot is only an input/output (I/O) library. Uproot does not depend on
C++ root, instead it unlocks data from root files as Numpy arrays. In the last few
years, uproot has been widely used in different branches of physics, specifically
in particle physics.

Colab notebooks are Jupyter Notebooks which run on a cloud and provide GPU-
powered notebooks for free. It is highly integrated with Google Drive. Jupyter
Notebook10, an open-source web application, prepares a practical learning
environment which simplify the running, modifying and analyzing data in deep
learning and artificial intelligence.

5 https://matplotlib.org
6 https://pytorch.org
7 http://scikit-learn.org
8 https://root.cern
9 https://pypi.org/project/uproot/
10 https://jupyter.org

35

All training of the ML was done on a computer with following specification in
table 5.1:

Table 5.1: Hardware used for training the data by GAN with the high provided GPU of
Google Colab.

Type Model
CPU 1.8 GHz Dual-Core Intel Core i5
GPU 12 GB NVIDIA Tesla K80 (based on

Google Colab
RAM 8 GB 1600 MHZ DDR3

Hard Drive 1 T
Operating System MacOS 10.15

Thus, the given training times for the GAN in section 5.2.2 are referring to this
set of hardware. The most effective hardware part is a GPU, which was provided
remotely by Google Colab (about 10 hours each time). Finding the best input data
for training from main datasets, which was done in Jupyter Notebook, was time-
consuming. The splitting of the large phase space into the smaller files took
around 36 hours. In addition, this process was not feasible in Google Colab with
fast GPU, because the amount of the reference dataset (50GB) was higher than
the free space provided by Google drive (15GB).

5.2 Used Method

The code used in this thesis [73] is the Generative Adversarial Network written
by Sarrut, which was extracted from GitHub to model the large phase space files
used in Monte Carlo Simulation [68].
In order to describe the complete documentation of the used method, a short
introduction of my approach, given in the subsections below, consists of the pre-
processing the dataset, training the data and tunning the parameters.

5.2.1 Training data

A large phase space dataset of around 50 GB in root file format was provided. It
was produced by a Monte Carlo model of ImagingRingTM System, containing a

36

set of parameters including position, energy, direction, weight, etc. After
removing unnecessary details, the rest of data should be converted into the numpy
files to be used for the GAN training. The numpy file size was selected to be
convenient to train GAN. The final training datasets used in the training part was
around 1.4 GB which contained 4.8 × 107 of the particles. A screenshot of training
data extracted from a Jupyter Nootebook is shown in figure 5.1.
The details of the particles are input parameters (seven). The first one for energy,
the next three of each particle for the particle position, the last three ones for the
direction of particle.

Figure 5.1: A screenshot of training data obtained from Jupyter Notebook. Panda package

was used to generate the data frame to be convenient to evaluate.

5.2.2 GAN architecture and parameters

Training of our GAN requires a json file described by implementing a set of
dependent hyperparameters. A screenshot of the json file is shown in figure 5.2.
Some of these parameters are designed empirically by trial and error. The
architecture of both Generator and Discriminator Network is the following: 400
neurons for each of the three hidden layers. The value of weights and biases was
set empirically based on literature data [68].

37

Figure 5.2: A screenshot of the json file obtained from GAN’s code [73]. All the

hyperparameters used for the training, existed in json file. Note the intervals (constraints) of
the six parameters which have been specified.

Two different types of activation functions are used in this WGAN, A Rectified
Linear Unit (Relu) and sigmoid function. The sigmoid function is just used in the
last hidden layer in generator. The total number of weights for both Generator
and Discriminator is around 5 10 [68][66]. The RMSProp optimizer [59] has
been used instead of the conventional Adam optimizer [62] to avoid instability
during the training process [68][66].
The batch size is set to around 103 per iteration and the number of epochs is set
to 104. Each iteration took around 3 seconds, using Google Colab one run took
about 10 hours in total. The learning rate is the most important part during
training, I used 210 to achieve the best superimposition of fake data on real
data. Figures 5.3 - 5.8 show the marginal distributions of the six parameters
gained from the reference phase space and from the GAN produced by the
described hyperparameters, whereas one of the parameters of the input is
considered constant. The 104 particles obtained from Gaga_Generate are

38

compared to original particles. The bin size is set to 200. The mentioned figures
have been obtained from Gaga_plot code which is described in code description.

 Energy (keV) × 103

Figure 5.3: Histogram of the photon beam energy for GAN generated fake data (red) and
Monte Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and

standard deviation for two distributions are indicated in the figure legend. Note the similar
shape of the distributions.

 X (mm)

Figure 5.4: Histogram of the position (X) for GAN generated fake data (red) and Monte
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard
deviation for two distributions are indicated in the figure legend. Note the slight differences

in the mean value of two distributions.

39

Y (mm)

Figure 5.5: Histogram of the position (Y) for GAN generated fake data (red) and Monte
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard
deviation for two distributions are indicated in the figure legend. Note the slight differences

in the mean value and standard deviation of two distributions.

dX (mm)

Figure 5.6: Histogram of the direction (dX) for GAN generated fake data (red) and Monte
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard
deviation for two distributions are indicated in the figure legend. Note the similar shape of

the distributions.

40

 dY (mm)

Figure 5.7: Histogram of the direction (dY) for GAN generated fake data (red) and Monte
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard
deviation for two distributions are indicated in the figure legend. Note the similar shape of

the distributions.

 dZ (mm)

Figure 5.8: Histogram of the direction (dZ) for GAN generated fake data (red) and Monte
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard
deviation for two distributions are indicated in the figure legend. Note the similar shape of

the distributions.

5.2.3 Implementation

The GAN for training and the particle generation was a WGAN with gradient
penalty. It was implemented in Pytorch with the Pytorch framework [68][83]. The
generated particles are produced by running the python’s file called Gaga_train
which is described in code description.

41

5.3 Experiments and Evaluation methods

Two phase space files, generated using a Monte Carlo model of the
ImagingRingTM System at MedAustron, were provided for this thesis: one file
was used for training the GAN and the other for evaluating [68]. The file used for
training was split into smaller numpy files. The generated particles can be
obtained by Gaga_generate after training the ANNs. Gaga_generate gives this
feasibility to get as many arbitrary numbers of particles as needed, whether more
or less through using its coding [68].
In order to answer the aim of this thesis question, the generated data must be
compared with real data. In this regard, the evaluation part of the implementation
in the generated phase space file needs to be compared with the real phase space.
Due to the fact that the interpretation of large datasets is demanding and
challenging, two different methods were considered to evaluate the results: 1- the
visualized process and 2- the numerical process. One way to interpret the
visualized process can be defined as Principle Component Analysis.

5.3.1 Principle Component Analysis

Principal Component Analysis [72] is a method which is used to visualize
variables of multiple dimensions by creating new variables. These new variables
are uncorrelated linear functions derived from the respective
eigenvalue/eigenvector problem of the data. They represent the best linear
approximation of the given dataset in a lower dimensional subspace. Thus, the
variance is maximized and loss of information minimized. The dimension of the
dataset is reduced by these new variables, allowing an easier interpretation. This
technique reduces the dimension of the data to two in order to project them on
two orthogonal axes. Since PCA is also an unsupervised process, the number of
features xA,..,xZ can be explained and defined [72].
The phase space file in numpy format needs to be converted to a data frame for
the first step of performing principle component analysis. The main prerequisite,
as for any machine learning task, is that the data has to be scaled. One way to
perform the scaling is using the StandardScaler class from the Scikit-Learn
package. StandardScaler is used to standardize the input features.

42

5.3.2 Marginal Correlation

The second type of visualized method is termed Marginal Correlation. In this
type, each variable of fake data and real data in a plot is compared to see, if they
are superimposed or not. The amount of energy for both real data and fake data
is considered stable and constant. The superimposition of real and fake data on
each other can be seen for the position of parameters and direction of particles.
The number of input data, which is extracted from real and fake data, is about one
million particles, and the bin size is set to 200.

5.3.3 Correlation of X-Y plots

Two of seven input parameters were chosen and extracted for both real particles
and fake particles. Two characters of particles which are X-Y are plotted for any
specific energy range. This method might have a higher loss of information
compared to PCA due to the fact that the left parameters are not considered.
However, they can show how particles in X-Y coordination behave and are
distributed on the surface.

5.3.4 Validation of data with p-value

Karl Pearson was the first pioneer of proposing the P-value in his Pearson's chi-
squared test [76]. In order to use this method, a null hypothesis and a level of
significance are required. If the null hypothesis is not rejected, it can be concluded
the null hypothesis might be statistically significant. But if it is rejected, the
conclusion can be drawn that the null hypothesis is not statistically significant
[76]. This is a numerical method which shows how similar fake and real data are;
however, the code written by myself can be used as a visualized method for
various energy ranges or (bins of energy) for different number of particles.
The null hypothesis shows the fact that both real data and fake data are similar
and alpha, which defines the level of significance, is set to 0.05, meaning that the
confidence level is at 95%. A P-value below this range illustrates the inequality
of real data and fake data at the mentioned confidence level. In this case the null
hypothesis is rejected and an alternative hypothesis is needed. Each p-value was

43

obtained from the two-sample Kolmogorov-Smirnov test (ks_2samp) in python
with the SciPy11 library.

5.3.4.1 Visualized p-value

The studies with extremely large samples are associated with problems in which
p-value goes quickly to zero and results in no practical usefulness [77]. In order
to compare the fake and real data in large scale, the visualized p-value is devised.
The function in the visualized p-value was implemented in python code in order
to obtain the amount of the p-value for each bin for specified energy range. The
mentioned method was used to define the given amount of the energy and to
design the p-value plot of the rest of the parameters in different values for bins.

5.3.5 Correlation matrices

The correlation matrix aims to identify the correlation coefficients between
variables used as a statistical technique to define the covariance normalized by
the product of their standard deviations between the six parameters obtained from
training and from the full Monte Carlo model.

11 https://www.scipy.org

44

6 Results

The value of discriminator loss at the beginning of training, for 104 iterations and
103 batch size, for given data (4.8 × 107) is negative and larger than final
discriminator loss. As soon the generator is sufficiently trained, the final
discriminator loss converges to zero, as it was expected according to previous
work [68]. The final D-Loss and G-Loss are shown in table 6.9.
The first result of training the particles, as it is shown in figure 5.3 - 5.8, illustrate
the distributions of the six parameters (Ekine, X, Y, dX, dY, dZ). In each figure,
the x-axis denotes the intervals of each parameter and the y-axis shows the counts
gained from the reference phase space compared to the ones from the GAN. The
104 particles obtained from Gaga_Generate are compared to the original particles.
The bin size is set to 200. The ideal marginal distribution of each parameter
obtained from GAN and reference dataset is supposed to have an equal value for
both standard deviations and for both mean values [68]. For each parameter, the
obtained mean and standard deviation were obtained almost equal.
Figure 6.1 below shows the overlay of 500 samples from each the real data,
produced by the full Monte Carlo model and the fake data, generated by the GAN.
The plot was obtained by PCA method as it was mentioned in section 5.3.1. This
superimposition is the result of well-matched generated data by training with the
real data, for small number of particles.

Figure 6.1: PCA plot for GAN generated fake data (red) and Monte Carlo simulated reference

data (blue) suing 500 photons. Note the superimposition of real data and fake data. Most of
the photons have been projected at the center.

45

In table 6.1, the PCA method was implemented for different energy ranges. For
a higher number of particles, PCA plots demonstrate slight differences between
fake data, depicted in red, and real data, in blue. This table also shows that, PCA
plots for all different energy ranges, from 20kV to 70kV, for 104 number of
particles denote the well-matching of real and fake particles.

Table 6.1: PCA plot for GAN generated fake data (red) and Monte Carlo simulated reference

data (blue) using (103,104,105,106) photons and different energy ranges from 20keV to 70
keV. Note the best matching of the PCA plots for the energy ranges between 20keV to 60keV

for small number of photons.

Energy/
particles

103

104

105

106

 20 keV- 30 keV

 30 keV - 40 keV

40 keV - 50keV

 50 keV - 60 keV

60 keV- 70 keV

46

In the following figures, the marginal correlation of the six parameters obtained
from the reference phase space file and from the GAN is shown. In each plot in
the following figures (6.2 - 6.7), the x-axis shows the interval of each parameter
and the y-axis denotes the counts of particles. The number of input data, which is
extracted from real and fake data, is about one million particles, and the bin size
is set to 200.
The plots of parameters in the energy range of 20keV- 60keV in figures 6.2-6.5
show that the fake data and real data are superimposed on each other without
considering the slight differences in some areas. The obtained corresponding
standard deviation and the mean of each plot are approximately equal. As it is
shown in figure 6.6, the superimposition of particles has not been seen, for the
energy range of 60keV-70keV.

Figure 6.2: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges

between 20keV-30keV. Note the slight differences in terms of superimposition of real data
and fake data for 103 photons.

47

Figure 6.3: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges

between 30keV-40keV. Note the slight differences in terms of superimposition of real data
and fake data for 103 photons (exception for dZ).

Figure 6.4: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges

between 40keV-50keV. Note the slight differences in terms of superimposition of real data
and fake data for 103 photons for X and dX.

48

Figure 6.5: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges

between 50keV-60keV. Note the slight differences in terms of superimposition of real data
and fake data for 103 and 104 photons.

Figure 6.6: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges

between 60keV-70keV. Note the huge differences regarding superimposition of real data and
fake data.

49

By increasing the number of data considering the whole given energy range, as it
is shown in figure 6.7, better superimposition of fake data on real data has been
observed. The best overlay belongs to 1 million samples of data.

Figure 6.7: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo
simulated reference data (green) using (103, 104, 105, 106) photons and all the energy ranges
between 20keV-70keV. Note the considerable overlap regarding superimposition of real and

fake data.

As it is shown in tables 6.2, in the correlation X-Y plots, the superimposition of
the real particles and fake ones are analyzed, based on different energy ranges, 3
different number of data (104,105,106) were selected. For energy range between
70keV-80keV, as it is shown in figure 6.8, no data was generated for X and Y
parameters in spite of the fact, that real particles in this range do exist.

50

Table 6.2: X-Y plots for GAN generated fake data (blue) and Monte Carlo simulated

reference data (orange) using (104, 105, 106) photons and the energy ranges between 20keV-
70keV. These plots show how the particles distributed on the x-y coordinate. X-axis and y-
axis show the intervals of the X and Y in millimeters, respectively. Note how the reference

data is scattered for 106 photons and the energy range between 20keV to 60keV.

Energy range/
particles

 104

 105

 106

20keV-30keV

30keV-40keV

40keV-50keV

50keV-60keV

60keV-70keV

51

Figure 6.8: X-Y plots for GAN generated fake data (blue) and Monte Carlo simulated

reference data (orange) for the energy range between 70keV-80keV. These plots show how
the particles distributed on the x-y coordinate for the mentioned energy range. X-axis and y-

axis show the intervals of the X and Y in millimeters, respectively. Note that no data was
generated.

To obtain to which extent the generated particles are statistically significant, the
tables 6.3-6.7 have been designed. The marked number of p-values in the
following tables shows that for every data characteristic (number of data,
parameters and energy range), considering the significance level, the null
hypothesis is rejected in this area. The p-values in the mentioned tables have been
obtained between the data generated by the GAN and the data from reference
dataset (PHSP1).

Table 6.3: P-value between GAN generated fake data and Monte Carlo simulated reference
data (PHSP1) for the energy range between 20keV-30keV using (103,104,105) photons. Note

the p-values for 103 photons.
Photons/Parameters X Y dX dY dZ

103

0.10

0.02

0.16

0.00

0.02

104

0.83

0.49

0.79

0.28

0.66

105

1

1

1

1

1

52

Table 6.4: P-value between GAN generated fake data and Monte Carlo simulated reference
data (PHSP1) for the energy range between 30keV-40keV using (103,104,105) photons. Note

the p-values for 105 photons

Photons/Parameters X Y dX dY dZ

103

0.47

0.48

0.45

0.34

0.65

104

1

1

1

1

1

105

0.16

0

0.27

0

0

Table 6.5: P-value between GAN generated fake data and Monte Carlo simulated reference
data (PHSP1) for the energy range between 40keV-50keV using (103,104,105) photons. Note

the p-values for 105 photons.
Photons/Parameters X Y dX dY dZ

103

0.57

0.54

0.43

0.59

0.27

104

1

1

1

1

1

105

0.15

0

0

0.14

0.00

Table 6.6: P-value between GAN generated fake data and Monte Carlo simulated reference
data (PHSP1) for the energy range between 50keV-60keV using (103,104,105) photons.

Photons/Parameters X Y dX dY dZ

103

0.77

0.20

0.96

0.14

0.30

104

0.77

0.20

0.96

0.14

0.30

105

0.77

0.20

0.96

0.14

0.30

53

Table 6.7: P-value between GAN generated fake data and Monte Carlo simulated reference
data (PHSP1) for the energy range between 60keV-70keV using (103,104,105) photons. Note

the p-values for 104 and 105 photons.

Photons/Parameters X Y dX dY dZ

103

0.12

0.98

0.21

0.89

0.89

104

0.12

0.00

0.14

0.00

0.00

105

0.12

0.00

0.14

0.00

0.00

As shown in the figure 6.9 and 6.10, for five different characteristics of the
particles, the x-axis shows the bins of energy and the y-axis denotes the p-value
amount. Each colored point in the figures below demonstrates the p-value
corresponding to each bin. The confidence level is marked by red horizontal line.
In figure 6.9 for 103 particles, bin is set to 10 and the p-values between the real
and fake data denotes, that the GAN was trained well due to the fact that
respective p-values are above the significance level. In Figure 6.10 it is shown,
that the p-values which are located beneath the confidence level reject our null-
hypothesis for a higher number of particles.

Figure 6.9: The visualized p-value plot between GAN generated data and Monte Carlo
simulated reference data (PHSP1) using 103 photons and 10 bins of energy. Alpha and

confidence level have been chosen 0.05 and 95%, respectively. Five different parameters for
two datasets are indicated in the figure legend. Note that the whole p-values are above

significance level.

54

 Energy bins

Figure 6.10: The visualized p-value plot between GAN generated data and Monte Carlo
simulated reference data (PHSP1) using 106 photons and 100 bins of energy. Alpha and

confidence level have been chosen 0.05 and 95%, respectively. Five different parameters for
two datasets are indicated in the figure legend. Note the most of the p-values are above

significance level and only a few of p-values rejects the null hypothesis.

The correlation matrices shown in figure 6.11 and figure 6.12 define the
covariance normalized by the product of their standard deviations between the
six parameters for the original phase space and the fake one. As an example, the
value of 0.96 in figure 6.11 denotes that there is high correlation between two
parameters (X,dX) in the phase space produced by MC simulations, which is also
equal to the value in figure 6.12 produced by fake data. This is also valid for (Y-
dY).

Figure 6.11: Correlation matrix for Monte Carlo simulated reference data (original data)

using 106 photons. Note the correlation value between Y-dY and X-dX.

55

 Figure 6.12: Correlation matrix for GAN generated data (fake) using 106 photons. Note

the correlation value between Y-dY and X-dX.

The following plots obtained from the PCA codes for (103,104,105) photons by
increasing transparency of the colored dots for all the energy ranges. As it is
shown in figures 6.13-6.15, the majority of particles has been positioned at the
center of PCA plot.

Figure 6.13: PCA plot for GAN generated fake data (red) and Monte Carlo simulated

reference data (blue) using 103 photons. Note the superimposition of photons with an increase
in transparency.

56

Figure 6.14: PCA plot for GAN generated fake data (red) and Monte Carlo simulated

reference data (blue) using 104 photons. Note the superimposition of photons with an increase
in transparency.

Figure 6.15: PCA plot for GAN generated fake data (red) and Monte Carlo simulated

reference data (blue) using 105 photons. Note the superimposition of photons with an increase
in transparency.

Table 6.8: P-value between Monte Carlo simulated reference data for training (PHSP1) and

Monte Carlo simulated data for the evaluation (PHSP2) using (103,106) photons. Note that all
the p-values are above significance level.

Data/Parameters Ekine X Y dX dY dZ

103

0.97

0.99

0.11

0.96

 0.09

 0.96

 106

 0.97

0.99

0.11

0.97

0.09

 0.96

57

As it was mentioned in section 5.3, two phase space files, produced using a MC
model, were provided. The file used for training is called PHSP1 and the other
one used for evaluating is called PHSP2. The p-values in table 6.8 were gained
in order to compare both phase space produced by MC model. The equal p-values
for each parameter (103 and 106 photons) have been obtained. The maximum of
P-value belongs to the X.

Table 6.9: The values of final D-Loss and G-Loss obtained at the end of training after 104
iterations.

Final D-Loss Final G-Loss

-0.0002 0.0083

58

7 Discussion and Conclusion

In this chapter, at first, the results of the study are discussed and a conclusion is
given. The suggestions for further research are presented to the readers. In the
end, the limitation of the presented study is reported.

7.1 Discussion

The purpose of the present study was to implement a Generative Adversarial
Network in order to produce a fake phase space and to evaluate the degree of
similarity between the generated particles and the real ones. As mentioned before,
training of GAN is a challenging process and due to the fact that GAN is always
accompanied with the instability and mode collapse, the proposed method, called
WGAN [66] was used in this research.

I verified that the phase space produced by GAN requires less than 10 MB of
storage and the generation of particles from GAN is a fast process (within
seconds), similar to the one produced in this related work [68]. The fake data was
generated after around 10 hours, by using Google Colab. The process of training
took 5 times longer than in the previous work by Sarrut [68]. Also, the learning
rate was set to 2 × 10-5, which is two times more than the value used in the related
work [68] and the batch size was selected to 103, which is 10 times less [68]. The
rest of the hyperparameters, like the number of neurons and the number of layers
were already checked and altered. No significant improvement was achieved by
that. However, with 103 batch size and 104 iterations, my final D-Loss was
perfectly converged to zero (-0.002), which is significantly higher than the final
D-Loss (-0.005) reported by Sarrut, with a batch size of 104 [68]. My work
therefore shows, that the accurate particles generated by GAN were achieved by
a smaller training dataset.

The particles generated by GAN were compared to the original phase space by
MC model. For the assessment, two different techniques were employed to
compare both the generated data from the Generator and the real data for a

59

specified amount of energy. To evaluate the generated data respectively, the
numerical method and the visualized method were used. In this work, a new
method to visualize the p-value was proposed in order to attain a better
comprehension in the evaluation process. This method was implemented as a
function in python as it was mentioned in 5.3.4.1.

The implementation was part of my work. In the following, all the evaluation
techniques used in this thesis are discussed.

As shown in table 6.1, PCA plots for different energy ranges from 20kV to 60kV
and for a particular number of 104 denote the well-matching of real and fake
particles. In the mentioned table, the PCA plots for a larger number of particles
were not matched well. Once the value of transparency was increased, the claim
was rejected, since the majority of particles existed at the center and only a small
fraction of them was scattered in the surrounding, as it shown in figure 6.14 and
figure 6.15. This small fraction could not cause the non-matching of the particles.

The marginal correlation plots of the parameters in the energy range of 20 keV-
60 keV in the figures 6.2-6.7 show that the fake data and real data were
superimposed on each other, neglecting the slight differences in some areas. One
limitation of such method is that it could not be suitable for larger energies (60
keV - 70 keV), meaning that such energy range lacks superimposition, as shown
in figure 6.6. By comparing all the PCA obtained plots of the energy range (60
keV - 70 keV) in table 6.1 with figure 6.6, it denotes that the non-superimposition
of plots in the mentioned energy range could be due to a lack of data for training.
In addition, figure 6.7 denotes that the particles generated by the GAN were
completely matched with the particles generated by MC simulations if no energy
range considered.

In X-Y correlation technique, for the highest number particles, as well as the
energy range between 20keV-60keV, the particles were superimposed
thoroughly. However, below this range, real particles and fake ones were not
overlaid perfectly. As shown in figure 6.8, no particle was generated, in the
energy range of 70keV-80keV, due to fact that real data in this range was also
limited. I realized that this technique was not powerful like PCA, since only two
parameters were used. Nevertheless, it shows how particles were scattered on the

60

x-y coordinate. If a low number of particles were chosen, the majority of them
would distribute at the center.
As a result of the correlation matrix, as it shown in figure 6.11 and figure 6.12,
the high order of the correlations for X-dX and Y-dY were also modeled by the
GAN. The correlation between X-dX and Y-dY was the same for generated data
and original ones. The equivalent correlation shows satisfactory results, which
denotes that the phase space was trained well. The reason for this issue is that the
X-dX and Y-dY correlations are initiated from the cone geometry of the X-ray
[68] which were obtained equivalent for the original and fake data.

The major difference as shown among figure 6.9 and figure 6.10 is, that by
increasing the number of samples (particles) for 100 bins, more particles were
needed to be compared with each other in each bin in the visualized p-value
technique. This causes the p-value to easily go down to zero. If 106 particles are
used for 100 bins, the calculated p-value may face a limitation. Once the number
of the particles in each bin was more than 104, then the approximate values were
gained by the ks_2samp in Kolmogorov-Smirnov in python [75]. This shows that
the test could not provide exact values when the number of comparative particles
was more 104. However, in case of having fewer than 104 particles in each bin,
such limitation no longer occurs.

The p-values obtained in the tables 6.3-6.7 showed contradictory results in
comparison with the slight differences existed in the marginal correlation plots.
For better comparison, the values in table 7.1 were calculated from tables 6.3-6.7.
This technique was proposed as a comparative method, to check the total p-values
of each mentioned table against each other. As an example, 80% means that in
the energy range between 20keV-30KeV, 80% of the p-values in table 6.3 were
above significance level. The lowest significance score (60%), obtained from
table 6.7, was apparently caused by the lack of data, seen in PCA and X-Y
correlation methods for the given energy range (60keV-70keV).

Table 7.1: The significance score obtained from tables 6.10-6.14 for different energy ranges.

Energy
range

20-30 keV 30-40 keV 40-50 keV 50-60 keV 60-70 keV

Significance
score

80%

80%

80%

100 %

60%

61

The p-value in the energy range between 50keV-60keV was completely
statistically significant, that is to say, the p-values in all areas were above
significance level (100%). As a result of the marginal correlation plots, the real
and fake data were overlaid on each other in the range of 20keV-60keV and the
value existed in the given range in table 7.1 concluded, that the amount of
significance score (80%-100%) for the mentioned energy range was precise.
Besides, the p-value in the energy range of 60keV-70keV had the lowest
significance score as shown in the mentioned table. The lack of superimposition
existed in figure 6.6, which is initiated from the lack of reference particles for the
given energy range, results in the lowest significance score.

The superimposition of real and fake data on each other, for the energy range of
20keV-60keV, is seen for the position of the parameters and the direction of the
particles. The significance score in the given range is 80%-100%, means that only
about 20% of p-values reject the null hypothesis. However, for the energy range
of 60keV-70keV, the significance score results 60% which indicates 40% of p-
values reject the null hypothesis, which is considerable high.

Most of the particles in the reference dataset (PHSP1) were distributed in the
energy range of 20keV-60keV, as it shown in figure 5.3. In the evaluation
techniques, the energy range of 60keV-70keV was also considered to assess the
importance of insufficient data for training.

After reviewing all the evaluation techniques, I conclude that, p-value and PCA
techniques were not suitable methods to analyze millions of photons generated
by GAN. Although the mentioned techniques were very effective for the low
number of photons.

Overall, the results of all used evaluation methods for generated and original
phase space denote that the generated particles were approximative but not
exactly matching. However, two phase spaces produced by MC had the
equivalent p-values for a different number of particles (103, 106). As a conclusion
of used evaluation techniques, the used methods in this thesis like PCA,
correlation plot and correlation matrix show that the best superimposition of real
and fake data are seen in the energy range of 20keV-60keV.

62

A considerable advantage of using GAN to generate the characteristic of particles
is that an arbitrary number of particles can be produced within seconds by
modeling a large phase space file [68]. In addition, the phase space file produced
by GAN which requires less storage, was produced based on a smaller training
dataset.

7.2 Conclusion
In this thesis, it was researched whether it is possible to use ANN to generate the
phase space which contains the characteristic of the particles. In order to do so, a
method called Generative Adversarial Network proposed by Sarrut was used.
This approach concludes that the generated phase space requires less than 10 MB
storage which is considerably less in comparison to the 50 GB reference dataset.
In addition, the generation of the 106 particles takes less than few seconds.
Besides, all the evaluation techniques, marginal distribution, PCA, P-value
technique, etc., denote that our generated data has the feasibility to be replaced
by original one. The results demonstrates that the purpose of this thesis has come
true, if there is sufficient data provided for training.

7.3 Suggestions for Further Research

GAN has been proposed, for the first time, to generate data with a higher number
of dimensions and less smooth distributions like images [68]. The use of a special
type of GAN, Wasserstein GAN with gradient penalty, to generate the
characteristic of particles, was a novel method proposed by Sarrut. Nevertheless,
GAN has different types that are considering the state-of-the-art techniques in the
artificial intelligence. For this purpose, working on different neural network
methods like cycle GAN or conditional GAN to generate the phase space
characteristics would be a good suggestion.

7.4 Limitations of the Study

The limitation of this work is initiated from a lack of reference particles in the
energy range between 60keV-70keV as it is obviously shown in the table 6.1 and

63

in table 6.2 as well. If the original phase space contains all the given energy
ranges, the generated one would be 80% or more statistically significant.

64

Bibliography

1. Aderibigbe, A. (2014). A Term Paper on Monte Carlo Analysis/Simulation. University
of Ibadan. www.academia.edu/8748422/Monte_Carlo_Simulation.

2. Harrison, R. L. (2010). Introduction To Monte Carlo Simulation. AIP Conference
Proceedings, 1204, 17–21. https://doi.org/10.1063/1.3295638

3. Haghighat, A. (2020). Monte Carlo methods for particle transport. Crc Press.
4. Behling, R. (2015). Modern Diagnostic X-Ray Sources: Technology, Manufacturing,

Reliability. CRC Press.
5. Bre, Facundo & Gimenez, Juan & Fachinotti, Víctor. (2017). Prediction of wind

pressure coefficients on building surfaces using Artificial Neural Networks. Energy and
Buildings. 158. 10.1016/j.enbuild.2017.11.045.

6. Hoskin, P. (2019). External Beam Therapy (3rd ed.). Oxford University Press.
https://doi.org/10.1093/med/9780198786757.001.0001

7. National Cancer Institute (NCI). (2019, December 27). Getting External Beam
Radiation Therapy. Cancer.org.
https://www.cancer.org/content/dam/CRC/PDF/Public/9245.00.pdf

8. Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy:
current advances and future directions. International journal of medical sciences, 9(3),
193–199. https://doi.org/10.7150/ijms.3635

9. Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and
disease. Nature, 461(7267), 1071-1078.

10. Ferrari, A. (2011, November). Monte Carlo Sampling. 18th Fluka Course, Shanghai,
China.
https://indico.cern.ch/event/540415/contributions/2194806/attachments/1285749/1912
258/09_Statistics_and_sampling_2015.pdf

11. Zechner, A., Stock, M., Kellner, D., Ziegler, I., Keuschnigg, P., Huber, P., Mayer, U.,
Sedlmayer, F., Deutschmann, H., & Steininger, P. (2016). Development and first use of
a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel
imaging devices used in image-guided ion beam therapy. Physics in medicine and
biology, 61(22), N592–N605. https://doi.org/10.1088/0031-9155/61/22/N592

12. Keuschnigg, P., Kellner, D., Fritscher, K., Zechner, A., Mayer, U., Huber, P.,
Sedlmayer, F., Deutschmann, H., & Steininger, P. (2017). Nine-degrees-of-freedom
flexmap for a cone-beam computed tomography imaging device with independently
movable source and detector. Medical physics, 44(1), 132–142.
https://doi.org/10.1002/mp.12033

13. EBG MedAustron GmbH. (n.d.). Medical Technology. medaustron.at. Retrieved
October 3, 2021, from https://www.medaustron.at/en/medical-technology

14. medPhoton GmbH. (2015) ImagingRing Geometry Specifications Interface Control
Document. Salzburg, Austria.

65

15. van der Heyden, B. (2020). Advanced Computed Tomography imaging in radiotherapy.
Maastricht University.

16. MedPhoton GmbH. (n.d.) ImagingRing Benutzerhandbuch IR (Version 1.1). Salzburg,
Austria

17. Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J. Learning
Representations by Back-Propagating Errors. nature, 323(6088):533, 1986.

18. Geant4 Collaboration. (2016). Geant4 User’s Guide for Application Developers
(Version 10.3 ed.). https://geant4-
userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.3/fo
/BookForAppliDev.pdf

19. Wilson, R. R. (1946). Radiological use of fast protons. Radiology, 47(5), 487-491.
20. Bragg, W. H., and Kleeman, R. (1905). XXXIX. On the α particles of radium, and their

loss of range in passing through various atoms and molecules. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 10(57), 318-340.

21. K. P. Nesteruk, C. Calzolaio, D. Meer, V. Rizzoglio, M. Seidel, and J. M. Schippers
(2018) Large energy acceptance gantry for proton therapy utilizing superconducting
technology

22. Delaney TF, Kooy HM editors. (2008). Proton and charged particle radiotherapy [M]
Philadelphia: Lippincott Williams and Wilkins;

23. Liu, H. and Chang, J.Y. (2011). Proton therapy in clinical practice. Chinese journal of
cancer, 30(5), p.315.

24. M H Seegenschmiedt, O Micke, R Muecke (2015) Radiotherapy for non-malignant
disorders: state of the art and update of the evidence-based practice guidelines

25. Mücke, R., Seegenschmiedt, M. H., Heyd, R., Schäfer, U., Prott, F. J., Glatzel, M.,
Micke, O., & German Cooperative Group on Radiotherapy for Benign Diseases (GCG-
BD) (2010). Strahlentherapie bei schmerzhafter Kniegelenkarthrose (Gonarthrose):
Ergebnisse einer deutschen Patterns-of-Care-Studie [Radiotherapy in painful
gonarthrosis. Results of a national patterns-of-care study]. Strahlentherapie und
Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al], 186(1), 7–17.
https://doi.org/10.1007/s00066-009-1995-7

26. Kamada T. (2015). Twenty years of carbon ion radiation therapy at the national institute
of radiological sciences: accomplishments and prospects. Int J Particle Ther. 2:459–63.
doi: 10.14338/IJPT-15-00030.1

27. Weaver, K., Rowland, J., Bellizzi, K., & Aziz, N. (2010). Forgoing medical care because
of cost. Cancer, 116(14), 3493-3504.

28. Rackwitz, T., & Debus, J. (2019). Clinical applications of proton and carbon ion therapy.
Seminars in oncology, 46(3), 226–232.
https://doi.org/10.1053/j.seminoncol.2019.07.005

29. S. Jan et al.(2004). Gate: a simulation toolkit for PET and SPECT. Physics in Medicine
and Biology, 49(19):4543.

30. S. A. et al. (2003) Geant4 - a simulation toolkit. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 506(3):250–303. doi: 10.1016/s0168-9002(03)01368-8.

66

31. Landberg T, Chavaudra J, Dobbs J, et al. (1993). ICRU Report 50: Prescribing,
Recording, and Reporting Photon Beam Therapy. International Commission on
Radiation Units and Measurements.

32. Landberg T, Chavaudra J, Dobbs J, et al. (1999). ICRU Report 62. Prescribing,
Recording, and Reporting Photon Beam Therapy (Supplement to ICRU Report 50).
International Commission on Radiation Units and Measurements.

33. ICRU. (2007). Estimation and Presentation of Uncertainty in the Delivered Dose.
Journal of the ICRU, 7(2), 131–134. https://doi.org/10.1093/jicru_ndm042

34. N. Hodapp. (2012) The ICRU Report No. 83: Prescribing, recording and reporting
photon-beam intensity-modulated radiation therapy (IMRT), International Commission
on Radiation Units and Measurements.

35. Andreo, P. (2018) The physics of small megavoltage photon beam dosimetry.
Radiotherapy and Oncology, 126(2):205–213.

36. Knipe, H., Jones, J. (n.d). 3D conformal radiation therapy. Reference article,
Radiopaedia.org. (accessed on 01 Oct 2021) https://radiopaedia.org/articles/67493

37. Cancer Research UK. (2020, November 6). Intensity Modulated Radiotherapy (IMRT).
Cancerresearchuk. https://www.cancerresearchuk.org/about-cancer/cancer-in-
general/treatment/radiotherapy/external/types/intensity-modulated-radiotherapy-imrt

38. Mayo Foundation for Medical Education and Research. (2012). Image-guided radiation
therapy (IGRT). mayoclinic.org. https://www.mayoclinic.org/tests-procedures/image-
guided-radiation-therapy/about/pac-20385267

39. Di Yan. (2006). Image-Guided/Adaptive Radiotherapy, Springer Berlin Heidelberg,
321–336

40. PTCOG. (2021) Particle Therapy Facilities in Clinical Operation. Ptcog.ch, Particle
Therapy Co-Operative Group (PTCOG), www.ptcog.ch/index.php/facilities-in-
operation.

41. Reiz, N. (2018) Head scatter modeling of the ImagingRing System
42. INTERNATIONAL ATOMIC ENERGY AGENCY. (2014) Diagnostic Radiology

Physics. IAEA. Vienna
43. WHO. (9 Dec. 2020). The Top 10 Causes of Death. who.int. WHO. www.who.int/news-

room/fact-sheets/detail/the-top-10-causes-of-death.
44. SEER Training Modules, Module Name. U. S. National Institutes of Health, National

Cancer Institute, https://training.seer.cancer.gov
45. Demtröder, W. (2015). Experimentalphysik 3 (5th Edition). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-662-49094-5
46. Kaiser, Adeel & Eley, John & Onyeuku, Nasarachi & Rice, Stephanie & Wright, Carleen

& McGovern, Nathan & Sank, Megan & Zhu, Mingyao & Vujaskovic, Zeljko &
Simone, Charles & Hussain, Arif. (2019). Proton Therapy Delivery and Its Clinical
Application in Select Solid Tumor Malignancies. Journal of Visualized Experiments.
10.3791/58372

47. Alpaydin, Ethem. (2014) Introduction to Machine Learning. MIT press
48. Lundervold, A.S. and Lundervold, A. (2019). An overview of deep learning in medical

imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), pp.102-127.

67

49. Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron. (2016) Deep learning,
volume 1. MIT press Cambridge,

50. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

51. Maier, A., Syben, C., Lasser, T. and Riess, C. (2019). A gentle introduction to deep
learning in medical image processing. Zeitschrift für Medizinische Physik, 29(2), pp.86-
101

52. Nair, Vinod and Hinton, Geoffrey E. (2010). Rectified Linear Units Improve Restricted
Boltzmann machines. In Proceedings of the 27th international conference on machine
learning (ICML- 10), pages 807–814

53. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25
(NIPS), pages 1097–1105. Curran Associates, Inc

54. Li, F.-F., Johnson, J., and Yeung, S. (2017). CS231n: Convolutional neural networks for
visual recognition.

55. Maas, Andrew L and Hannun, Awni Y and Ng, Andrew Y. (2013). Rectifier
Nonlinearities Improve Neural Network Acoustic Models. In Proc. icml, volume 30,
page 3

56. Xu, Bing and Wang, Naiyan and Chen, Tianqi and Li, Mu. (2015). Empirical Evaluation
of Rectified Activations in Convolutional Network. arXiv preprint arXiv:1505.00853.

57. Hinton, Geoffrey. (n.d.).Neural Networks for Machine Learning. YouTube, uploaded
by Blitz Kim, 8. Dezember 2016, www.youtube.com/watch?v=SJ48OZ_qlrc.

58. Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747

59. Tieleman, Tijmen and Hinton, Geoffrey. (2012). Lecture 6.5-rmsprop: Divide the
Gradient by a Running Average of its Recent Magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31

60. Hinton, G., Srivastava, N., and Swersky, K. (2012). Lecture 6a: Overview of mini- batch
gradient descent. COURSERA: Neural Networks for Machine Learning

61. Riedmiller, Martin and Rprop, I. (1994) Rprop-Description and Implementation Details
62. Kingma, Diederik P and Ba, Jimmy Adam. (2014). A Method for Stochastic

Optimization. arXiv preprint arXiv:1412.6980
63. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, & Yoshua Bengio. (2014). Generative Adversarial
Networks.

64. Goodfellow, Ian. (2017) NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv
preprint arXiv:1701.00160,

65. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X.
(2016). Improved Techniques for Training GANs. Pages 2234–2242,

66. Arjovsky, Martin and Chintala, Soumith and Bottou, L ́eon. (2017) Wasserstein GAN.
arXiv preprint arXiv:1701.07875

67. Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Generative Adversarial
Networks. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International

68

Conference on Machine Learning (ICML), volume 70 of Proceedings of Machine
Learning Research, pages 214–223. PMLR

68. Sarrut, D., Krah, N. and Létang, J.M. (2019). Generative adversarial networks (GAN)
for compact beam source modelling in Monte Carlo simulations. Physics in Medicine &
Biology, 64(21), p.215004.

69. Villani, C. (2008). Optimal Transport. Springer.
70. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).

Improved training of Wasserstein GANs. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30 (NIPS), pages 5769–5779. Curran Associates, Inc

71. Gulrajani, Ishaan and Ahmed, Faruk and Arjovsky, Martin and Dumoulin, Vincent and
Courville, Aaron C. (2017) Improved Training of Wasserstein GANs. In Advances in
Neural Information Processing Systems, pages 5769–5779.

72. Jolliffe, I.T. and Cadima, J. (2016). Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 374(2065), p.20150202

73. Sarrut, David. (2021)GAGA = GAN for GATE. python. commit 84163e8. GitHub.
https://github.com/dsarrut/gaga

74. Li, Fei-Fei, Krishna, R. & Xu, D. (2021, 8. April). Lecture 4: Neural Networks and
Backpropagation [lecture slides]. Stanford University.

75. The SciPy community. (2021, August 2). scipy.stats.ks_2samp. SciPy Documentation.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html

76. Pearson, K. (1900). X. On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 50(302), 157-175.

77. Lin, M., Lucas Jr, H. C., & Shmueli, G. (2013). Research commentary—too big to fail:
large samples and the p-value problem. Information Systems Research, 24(4), 906-917.

78. Piacentino, E. (2019) Generative Adversarial Network based Machine for Fake Data
Generation.

79. Brownlee, J. (2019, June 12). Best Resources for Getting Started With GANs.
Machinelearningmastery. Retrieved October 15, 2021, from
https://machinelearningmastery.com/resources-for-getting-started-with-generative-
adversarial-networks/

80. Fedus W., Rosca M., Lakshminarayanan B., Dai A.M., Mohamed S. and Goodfellow I.
(2018). “Many Paths to Equilibrium: GANs Do Not Need to Decrease aDivergence At
Every Step”. arXiv preprint arXiv:1710.08446.

81. Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training
Generative Adversarial Networks. In Proceedings of the Fifth International Conference
on Learning Representations (ICLR).

82. Neff, T. (2018) Data Augmentation in Deep Learning using Generative Adversarial
Networks.

83. Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., Desmaison
A., Antiga L. and Lerer A. (2017). “Automatic differentiation in PyTorch”.

https://github.com/dsarrut/gaga
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html
https://machinelearningmastery.com/resources-for-getting-started-with-generative-adversarial-networks/
https://machinelearningmastery.com/resources-for-getting-started-with-generative-adversarial-networks/

69

70

Appendix

The p-value for each parameter was obtained for different energy intervals.
Although the p-value for the whole distribution was unexpectedly small, the null
hypothesis was rejected and two distributions were not the same. The reason is
that the p-value in the wo-sample Kolmogorov-Smirnov test could not be an
accurate factor for comparing the large amount of data.
In order to compare two proposed methods (numerical p-value method and the
correlation plot method), each corresponding table and figure for these two
techniques were considered. It is clear that in some related areas, the p-value was
below the significance level, meaning that the result was not statistically
significant but the corresponding plot was perfectly overlaid. For this issue, the
table 7.1 was designed in order to denote that to what extent the p-value was
precise in this case. As the result of the correlation of plots, the real and fake data
were overlaid on each other in the range of 20keV-60keV and the p-value
percentage in the given range concluded that the amount of significance (80-
100%) for the mentioned energy range was precise . Surprisingly, the p-value in
the energy range between 50keV-60 keV was completely statistically significant,
that is to say, the p-values in all areas were above significance level (100%).
Besides, the p-value in the energy range of 60keV-70keV was not statistically
significant, as table 6.7 shown the lack of superimposition for such range of
energy.
The small amount of the p-values below significance level rejects the null
hypothesis; however, it can be concluded that the both distributions are not the
same but the reason for this issue could be due to the size of the comparative data.
The superimposition of real and fake data on each other, for the energy range of
20keV-60 keV, was seen for the position of the parameters and the direction of
the particles. The significance score in the given range 80%-100% means that
about 20% of p-values rejects the null hypothesis and concludes two distributions
(fake and real data) are not same. Without considering this percentage and by
observing the visualized methods (PCA, correlation plot and X-Y plot), the best
superimposition of real and fake data was seen in the energy range of 20keV-
60keV. For the energy range of 60keV-70 keV, no superimposition was observed
and the numerical p-value method defined the 40% of the p-values rejects the null
hypothesis.

71

Code description

Below, the different sections of the GAN code model will be explained, which is
the base for the rest of GAN systems shown in this project. It is important to
highlight that the base code and structure of this script has been extracted from
GitHub [73].

Gaga_train:

In the first few lines, the necessary packages like json, click, numpy and etc, have
been imported. Then the three pre-specified directories for the input file (training
data), json file (file which contains the all GAN’s parameters) and the output file
with pth format have been defined. In the following lines of the code, the
parameters existed in the json file and in the input file were read. The training
part of GAN has been done after normalization of considered parameters or keys
in input file. In the last step, the trained data have been saved in the mentioned
directory as the output file.

import click
import json
import time
import socket
import gatetools.phsp as phsp
import gaga
import copy
import numpy as np
from colorama import init
from colorama import Fore, Style
import torch
def gaga_train(phsp_filename, json_filename, output_filename,
epoch,progress_bar, plot, plot_every_epoch, w_e, w_n, w_l, w_p, keys,
validation_dataset, validation_every_epoch, start_pth):
 '''
 \b
 Train GAN to learn a PHSP (Phase Space File)

 \b
 <PHSP_FILENAME> : input PHSP file (.npy)
 <JSON_FILENAME> : input json file with all GAN parameters
 <OUTPUT_FILENAME> : output GAN as pth file
 '''

 # term color
 init()
 pkeys = keys

72

 # read parameters
 param_file = open(json_filename).read()
 params = json.loads(param_file)
 params['progress_bar'] = progress_bar
 params['plot'] = plot
 params['plot_every_epoch'] = plot_every_epoch
 params['training_filename'] = phsp_filename
 params['validation_filename'] = validation_dataset
 params['validation_every_epoch'] = validation_every_epoch
 start = datetime.datetime.now()
 params['start date'] = start.strftime(gaga.date_format)
 params['hostname'] = socket.gethostname()
 params['dump_wasserstein_every'] = int(w_e)
 params['w_n'] = int(w_n)
 params['w_l'] = int(w_l)
 params['w_p'] = int(w_p)
 params['start_pth'] = start_pth

 # the epoch parma in the json file may be overwritten by the option
 if epoch:
 params['epoch'] = epoch

 # read input training dataset
 print(Fore.CYAN +"Loading training dataset ...
"+phsp_filename+Style.RESET_ALL)
 x, read_keys, m = phsp.load(phsp_filename)

 # consider only some keys
 if 'keys' in params:
 keys = params['keys']
 if pkeys != '':
 keys = pkeys
 keys = phsp.str_keys_to_array_keys(keys)
 if 'angleXY' in keys:
 x, read_keys = phsp.add_angle(x, read_keys, 'X', 'Y')
 x = phsp.select_keys(x, read_keys, keys)
 else:
 keys = read_keys

 params['training_size'] = len(x)
 params['keys'] = keys
 params['x_dim'] = len(keys)

 # normalisation
 x_mean = np.mean(x, 0, keepdims=True)
 x_std = np.std(x, 0, keepdims=True)
 params['x_mean'] = x_mean
 params['x_std'] = x_std
 x = (x-x_mean)/x_std

 # print parameters
 for e in params:
 if (e[0] != '#'):
 print(' {:22s} {}'.format(e, str(params[e])))

 # train
 print(Fore.CYAN +'Building the GAN model ...'+Style.RESET_ALL)
 gan = gaga.Gan(params,x)
 print(Fore.CYAN +'Start training ...'+Style.RESET_ALL)
 optim = gan.train()

73

 # save
 stop = datetime.datetime.now()
 params['end date'] = stop.strftime(gaga.date_format)
 output = dict()
 output['params'] = params
 output['optim'] = optim
 state = copy.deepcopy(gan.G.state_dict())
 output['g_model_state'] = state
 state = copy.deepcopy(gan.D.state_dict())
 output['d_model_state'] = state

 torch.save(output, output_filename)

Gaga_generate

As it was mentioned earlier, Gaga_generate provides the arbitrary number of
generated particles. In addition, the generated particles requires less than few
megabytes storage. Its function needs two inputs, first the directory of pth file
coming from Gaga_train must be defined and then the number of arbitrary
particles has to be specified.

import click
import gaga
import gatetools.phsp as phsp
import torch
import os
import numpy as np
from torch.autograd import Variable

def gaga_plot(pth_filename, n, output, toggle, radius):
 '''
 \b
 Generate a PHSP from a GAN

 \b
 <PTH_FILENAME> : input GAN PTH file (.pth)
 '''

 n = int(n)

 # load pth
 params, G, optim, dtypef= gaga.load(pth_filename)
 f_keys = list(params['keys'])

 # generate samples
 b = 1e5
 fake = gaga.generate_samples2(params, G, n, b, False, True)

74

 # Keep X,Y or convert to toggle
 if toggle:
 keys = phsp.keys_toggle_angle(f_keys)
 fake, f_keys = phsp.add_missing_angle(fake, f_keys, keys, radius)
 fake = phsp.select_keys(fake, f_keys, keys)
 else:
 keys = f_keys

 # special case (for retro-compatibility)
 try:
 i = keys.index('E')
 fake[:,i][fake[:,i] <0] = 0.00000000001 # E should not be zero !
 except:
 i = keys.index('Ekine')
 fake[:,i][fake[:,i] <0] = 0.00000000001 # E should not be zero !

 # write
 if output == 'AUTO':
 b, extension = os.path.splitext(pth_filename)
 output = b+'.npy'
phsp.save_npy(output, fake, keys)

Gaga_plot

The gaga_plot code provides the marginal distribution plots for six parameters
(Ekine, X, Y, dX, dY, dZ) obtained by the GAN and the reference dataset. Each
plot also shows the mean and standard deviation in order to compare the
generated data and real data. It requires two input file: the training data in NumPy
format and also the path file in pth format generated by gaga_train code.

import click
import gaga
import gatetools.phsp as phsp
import torch
import numpy as np
from torch.autograd import Variable

def gaga_plot(phsp_filename, pth_filename, n, nb_bins,
 toggle, radius, quantile, plot2d):

 # nb of values
 n = int(n)

 keys_2d = plot2d;
 if keys_2d == None:
 keys_2d = []

75

 # load phsp
 real, r_keys, m = phsp.load(phsp_filename, n)

 # load pth
 params, G, D, optim, dtypef= gaga.load(pth_filename)
 f_keys = params['keys']
 keys = f_keys.copy()

 # generate samples
 fake = gaga.generate_samples2(params, G, n, int(1e5), False, True)

 # Keep X,Y or convert to toggle
 if toggle:
 keys = phsp.keys_toggle_angle(keys)

 real, r_keys = phsp.add_missing_angle(real, r_keys, keys, radius)
 fake, f_keys = phsp.add_missing_angle(fake, f_keys, keys, radius)

 real = phsp.select_keys(real, r_keys, keys)
 fake = phsp.select_keys(fake, f_keys, keys)

 # curate keys_2d
 k2 = []
 for k in keys_2d:
 if (k[1] in keys) and (k[0] in keys):
 k2.append(k)
 keys_2d = k2

 # fig panel
 nb_fig = len(keys)+len(keys_2d)
 nrow, ncol = phsp.fig_get_nb_row_col(nb_fig)
 fig, ax = plt.subplots(nrow, ncol, figsize=(25,10))

 # plot all keys for real data
 i = 0

 q = {}
 for k in keys:
 index = keys.index(k)
 d = real[:,index]
 q1 = quantile
 q2 = 1.0-quantile
 q[k] = (np.quantile(d, q1), np.quantile(d, q2))
 gaga.fig_plot_marginal(real, k, keys, ax, i, nb_bins, 'g', q[k])
 i = i+1

 # plot all keys for fake data
 i = 0
 for k in keys:
 index = keys.index(k)
 d = real[:,index]
 #q1 = quantile
 #q2 = 1.0-quantile
 #q = (np.quantile(d, q1), np.quantile(d, q2))
 #print(q)
 gaga.fig_plot_marginal(fake, k, keys, ax, i, nb_bins, 'r', q[k])
 i = i+1

 # plot 2D distribution

76

 if len(keys) > 1:
 starti = i
 for kk in keys_2d:
 gaga.fig_plot_marginal_2d(real, kk[0], kk[1], keys, ax, i,
nb_bins, 'g')
 i = i+1

 # plot 2D distribution
 i = starti
 for kk in keys_2d:
 gaga.fig_plot_marginal_2d(fake, kk[0], kk[1], keys, ax, i,
nb_bins, 'r')
 i = i+1

 if False:
 for kk in keys_2d:
 a = phsp.fig_get_sub_fig(ax,i)
 gaga.fig_plot_diff_2d(real, fake, keys, kk, a, fig,
nb_bins)
 i = i+1

 # remove empty plot
 phsp.fig_rm_empty_plot(nb_fig, ax)

 plt.suptitle(pth_filename)
 plt.tight_layout()
 plt.subplots_adjust(top=0.9)
 plt.show()

 #output_filename = 'aa.png'
 #plt.savefig(output_filename)
 #plt.close()

	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Motivation and objectives
	1.2 Thesis structure

	2 Background and related work
	2.1 X-ray history
	2.1.1 Fundamentals of X-ray production
	2.1.2 X-ray spectrum
	2.1.3 Bremsstrahlung
	2.1.4 Characteristic radiation

	2.2 X-ray sources in medicine
	2.2.1 MedAustron

	2.3 Radiation Therapy
	2.3.1 Volumes and margins
	2.3.1.1 Treatment planning and dose calculation

	2.3.2 Treatment techniques
	2.3.2.1 3D Conformal Radiation Therapy
	2.3.2.2 Intensity Modulated Radiation Therapy (IMRT)
	2.3.2.3 Image Guided Radiation Therapy (IGRT)
	2.3.2.4 Adaptive Radiation Therapy (ART)
	2.3.2.5 Four-Dimensional Radiation Therapy (4DRT)

	2.3.3 Proton beam therapy

	2.4 ImagingRingTM System
	2.4.1 Movement details
	2.4.2 X-ray head and detector

	2.5 Monte Carlo methods
	2.5.1 Simulation
	2.5.2 GATE

	3 Machine learning
	3.1 Neural networks
	3.2 Feedforward Neural Network
	3.3 Gradient descent
	3.3.1 Momentum

	3.4 Adaptive Learning Rate Optimizers
	3.4.1 Rprop and RMSprop
	3.4.2 Adam

	3.5 Activation function
	3.5.1 Sigmoid function
	3.5.2 ReLU variants

	4 Generative Adversarial Networks
	4.1 Iterative process of GAN
	4.2 Difficulty of training GAN
	4.3 Wasserstein generative adversarial nets
	4.3.1 Gradient penalty

	5 Method
	5.1 Used Technology
	5.2 Used Method
	5.2.1 Training data
	5.2.2 GAN architecture and parameters
	5.2.3 Implementation

	5.3 Experiments and Evaluation methods
	5.3.1 Principle Component Analysis
	5.3.2 Marginal Correlation
	5.3.3 Correlation of X-Y plots
	5.3.4 Validation of data with p-value
	5.3.4.1 Visualized p-value

	5.3.5 Correlation matrices

	6 Results
	7 Discussion and Conclusion
	7.1 Discussion
	7.2 Conclusion
	7.3 Suggestions for Further Research
	7.4 Limitations of the Study

	Bibliography
	Appendix
	Code description

