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Abstract  
 

This master thesis introduces an approach to using Generative Adversarial 
Networks for the generation of phase space to replace the generated phase space 
instead of large phase space datasets. The original approach was produced by 
Monte Carlo method of ImagingRingTM system at MedAustron. This is intended 
to create the generated particles that can be used in research areas, while creating 
the conventional sampling of phase space is time consuming and challenging. 

To evaluate the outcome of GAN, some methods are proposed to validate the 
generated particles. The efficiency of the generated particles produced by GAN 
has been checked and satisfactory results have been gained for this research.  

As the main result, the particles in the energy range of 20 keV-60 keV were 
generated with the maximum statistical and theoretical significance. In addition, 
the superimposition of the original phase space and generated one can be obtained 
in this given range of the energy. This study shows that no particles were 
generated in the energy above 70 keV for X-Y parameters and the particles in the 
energy range between 60 keV-70 keV were generated with lower superimposition 
of the generated particle and original one due to lack of the reference particles. 

The generated particles by GAN requires only around 10 MB storage compared 
to the phase space produced by ImagingRingTM System which contains tens of 
Gigabyte data. Besides, the process of the particle generation is fast and it is 
efficient to use. 

Moreover, a novel research pathway in the statistical techniques for validation of 
the generated phase space has been opened so that further research can be 
developed. 
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1   Introduction 
 

In this chapter, the motivation and aim of this master thesis will be revealed first, 
and then a brief description of the thesis structure will be defined accordingly. 

 
 
 

1.1  Motivation and objectives  
 
The widespread use of Monto Carlo (MC) simulation is for modeling 
sophisticated radiation machines such as X-ray tubes or ion therapy beam lines 
[68][35]. At MedAustron a novel X-Ray imaging device, the ImagingRingTM 

System is used. A full Monte Carlo model of this system was already created. To 
create the precise Bremsstrahlung spectrum and accurate angular distribution, 
modeling of the X-ray tube by simulating the electron interactions is required. 
The time of computation to implement such simulation is relatively high and 
phase space files have been acknowledged to reduce this time by pre-calculating 
and storing large numbers of particles [68][35]. 
Such a phase space file contains the information of particle position, energy and 
angular momentum distribution. However, these files contain around 50 
gigabytes of data and are cumbersome and inefficient to use. 
This master thesis aims to implement a novel approach to replace phase space 
files with a trained neural network and validation of model performance. For this 
purpose, the generated phase space has to be compared with the full Monte Carlo 
model of x-ray source provided at MedAustron. In particular, the questions are 
considered to what extend the generated phase space is similar to conventional 
one and about the feasibility of using the generated phase space instead of the one 
mentioned above. 
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1.2  Thesis structure 
 
This thesis is structured into seven chapters. Chapter 2 describes the complete 
introduction of the X-ray tube and its applications in medicine and the basics of 
Monte Carlo simulations. Since our used method is a machine learning task, 
chapter 3 is designed based on the theoretical explanation of machine learning 
theory, neural networks, network training, and some basics of gradient descent as 
well as activation function. In chapter 4, the detailed explanation about 
Generative Adversarial Network (GAN) and Wasserstein GAN (WGAN) which 
are used as the neural network technique in this master thesis are introduced. 
Besides, a short explanation of the used technology and the training and 
optimization of GAN as well as the evaluation techniques of the results of the 
GAN are explained in chapter 5. In this thesis, these explained techniques were 
used to generate data by machine learning, that is supposed to match the actual 
data from measurements and evaluate to which extend the actual data is matched, 
by using machine learning techniques. Ultimately the feasibility of this new 
approach is assessed, taking multidisciplinary aspects into account.  
All the results are shown in chapter 6. Finally, in the last chapter, the discussion 
and the conclusion of the project are given and the limitations which were faced 
with. Additionally, further recommendation is proposed. 
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2  Background and related work 
 

MC simulations are extensively utilized to characterize complex radiation 
devices, such as X-ray tubes or ion therapy beam lines. Nevertheless, in general, 
MC simulations could be used to simulate brachytherapy radionuclide seeds, 
proton beam nuzzles, nuclear imaging process, etc. An obvious example is to 
calculate the dose in a patient CT image, in which the simulation is divided into 
2 parts [35][68].  Firstly, detailed MC simulation is done in order to transmit 
particles through the accelerator treatment head elements (primary collimation, 
flattening filter, monitor chambers, mirrors, secondary collimation, etc.) to a 
virtual plane. The features of particles such as energy, position and direction 
which reach the plane are kept in the phase space file and base on detailed features 
of the treatment head components. The second part of the simulation is to track 
particles from the phase space plane through the multi-leaf collimator and the 
patient CT image to analyze and evaluate the distribution dose which is absorbed 
[68].  

In the following, an outline of the principles of X-ray production and spectrum 
and the applications of X-ray in medicine to characterize and model the radiation 
output of X-ray tubes are given. Then, the purpose of the radiotherapy and the 
different treatment planning is discussed. Lastly, the basic introduction of the 
Monte Carlo simulation is introduced in this chapter. 

 

2.1  X-ray history 
 
X-rays could be produced by natural sources, such as radon gas or radioactive 
elements on earth, but can also be generated by technical means. The discovery 
of X-ray by Wilhelm Conrad Röntgen in 1895 marked the beginning of a 
revolution in Medical Imaging and Radiation Therapy. While applying a high 
voltage to a cathode tube, he observed that crystals near the tube started to glow. 
From subsequent experiments, Röntgen concluded that these have been caused 
by a radiation, that was able to penetrate through most substances, including 
human tissue. However there were also substances which X-rays could not pass 
through, like bones and metal, allowing multiple useful applications [45]. 
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2.1.1 Fundamentals of X-ray production  
 
An x-ray tube is an evacuated tube that contains a cathode and an anode, as shown 
in figure 2.1. The cathode is heated by a low voltage current, causing the thermal 
emission of electrons. The released electrons are then accelerated towards the 
anode by a high voltage. When hitting the anode, the electrons are abruptly 
decelerated, resulting in the emission of high-energy electomagnetic waves. Only 
a fraction of the kinetic energy is transfered into radiation, the rest is deposited in 
the anode as thermal energy, implying the need for cooling the anode [45]. 
 
 

 
Figure 2.1: X-ray tube (modified from source [45] p.254). The cathode and the anode are 

seen inside the tube. 

 
 
The following is based on the “Diagnostic Radiology Physics“ book [42]. 
 
 

2.1.2 X-ray spectrum 
 
X-ray output can be plotted as a graph called spectrum. X-ray spectra are the 
results of the deceleration of incoming electrons on the anode when high energy 
is applied to the vacuum tube. X-ray spectrum is the result of attenuation of the 
X-ray beam, which is generated at the target. Two types of X-ray spectra as 
shown in figure 2.2, were defined: Continuous and Discrete. They both result of 
physical process which produce X-ray called Bremsstrahlung and characteristic 
radiation. 
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Figure 2.2: X-ray spectrum (modified from source [42] p.92): Continuous spectrum 

(Bremsstrahlung) and discrete lines (Characteristic radiation) 

 
 

2.1.3 Bremsstrahlung 
 
This type of inelastic interaction takes place when an incident electron interacts 
with the electric field of the nucleus. The bremsstrahlung spectrum results in the 
slowing down of incident electrons and their energy loss. The loss of energy from 
incident electrons due to bremsstrahlung is caused by inelastic scattering or by 
emission of an X-ray photon due to the radial acceleration in the electric field of 
the nucleus. The probability of bremsstrahlung highly depends on Z^2 (Atomic 
number); therefore, the efficiency of bremsstrahlung radiation for heavy material 
such as tungsten is better. The energy of the bremsstrahlung is subtracted from 
the kinetic energy of the electron. Additionally, the angle of photon emission is 
related to the energy of electron.  
 
 

2.1.4 Characteristic radiation 
 

The interaction of an incident electron with an inner shell electron causes the 
inner electron to get ionized and leave the atom if its kinetic energy exceeds the 
binding energy. The generated vacancy will be filled with an electron from a 
higher energy level. When the outer shell electron drops from a higher energy 
state into a lower energy one, the difference of the energy is released as either an 
X-ray photon or in the scattered electron’s energy as it is shown in figure 2.3. 
These photons produce characteristic lines in the spectrum, such as K-lines and 
L-lines. 
 



 

 

6 

                                
Figure 2.3: Schematic interaction of incident electrons on matter (modified from source [45] 

p.254) 

 
The ideal X-ray spectrum without any filtration would be triangular. Different 
filtration such as beryllium and aluminum is used in the actual spectrum to 
illustrate the characteristic lines and continuous spectrum. At the lower portion 
of the energy of spectrum, for instance at 60 kV, as shown in figure 2.4, there are 
no characteristic lines. 
 
 

 
Figure 2.4: The ideal X-ray spectrum. The filtration technique provides the characteristic 
lines and continuous spectrum for the X-ray spectrum (modified from source [42] p.92) 

 

2.2  X-ray sources in medicine  
 
X-ray sources have various applications in medicine such as image-guided 
therapy (radiotherapy imaging) and medical diagnostic imaging. The latter 
denotes the wide range of multiple image modalities: mammography, computed 
tomography, systems for general radiography and interventional X-ray systems 
[4]. In radiation oncology departments, the aim for diagnostic imaging is to 
observe and detect the existing tumor, rather for radiotherapy imaging the exact 
position and the shape of tumor are searched and the plan of treatment based on 
the dose calculation is designed.  
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2.2.1 MedAustron  
 
MedAustron is a center for ion beam therapy and research, located in Wiener 
Neustadt in Lower Austria and is one of the few centers around the world 
providing treatment with carbon ions. For the first time, a carbon ion accelerator 
for clinical usage was opened by the National Institute of Radiological Science 
(China and Japan in 1994) and since that time, thousands of patients have been 
treated [27] [26]. However, still, the number of centers providing carbon in ions 
is scarce. In total, there have been five countries and 12 centers using carbon ion 
radiation therapy so far [28][40]. 
A full Monte Carlo model of the ImagingRingTM System used in this master thesis 
were performed at MedAustron in the Irradiation Room1 (IR1) which is used for 
non-clinical research purposes. The ImagingRingTM System which will be 
described in detail in section 2.4, provided for in-room patient imaging and 
intended to be used as the equipment for creating phase space.  
 

2.3  Radiation Therapy  
 
Cancer is one of the most causes of mortality and morbidity in the recent century 
[43]. In order to treat the cancerous organs or tissue, various types of treatment 
can be considered. Radiation Therapy is one of the effective non-surgical cancer 
treatment modalities which uses high radiation doses to kill or shrink the tumor 
cells. Although radiation therapy can also be used for treatment of the non-
malignant disorders [24][25]. 
Radiation is usually called ionizing radiation since the ionized charged particles 
deposit energy in the body. The aim is to deliver radiation to a target volume 
within the body without any damage to normal surrounding tissues [8]. High 
energy beams eliminate the tumor cell growth by stopping the ability of genetic 
material (DNA) to divide and proliferate further [9]. The treatment plan will be 
designed for each patient depending on the type of tumor and stage of cancer. 
There are two common ways to deliver radiation to the location of tumors: 
external beam radiation and internal beam radiation [8].  
 

¤ External Radiation Therapy  
 
The high-energy X-ray beams (4-20 million volt) are produced mostly by a linear 
accelerator (LINAC) passing through the collimators and then penetrate to the 
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most deep-seated tumors. This type of radiation therapy is planned to radiate the 
target tumor from outside to close location of tumor by aiming of high energy 
beams. The most effective clinically dose used is 6-18 MV which has an accurate 
balance between penetration and surface dose, while sparing the skin and normal 
surrounding tissues [6] [7] [8]. 
 

2.3.1 Volumes and margins  
 
The aim of radiation therapy is to irradiate the cancerous cells by eliminating their 
ability to reproduce, while the exposure dose to healthy tissue in the surrounding 
needs to be as low as possible. However, it is not feasible to treat the malignant 
tumors without irradiating neighboring healthy tissue. In order to standardize the 
description and approach of the distributed dose, a number of different tumor 
volumes and margins were briefly introduced. In this case, the Tumor Control 
Probability (TCP) and the Normal Tissue Complication Probability (NTCP) will 
be improved which causes the optimization of the therapeutic windowing. 
 

 
Figure 2.5: Definition of target volumes [43] in which PTV shows Planning Target Volume, 
GTV describes Gross Tumor Volume, ITV denotes Internal Target Volume and CTV defines 

Clinical Target Volume [31][32]. 

 

The following list of abbreviations: 

GTV Gross Tumor Volume: "is the gross visible or demonstrable extent and 
location of malignant growth" [31].  

CTV Clinical Target Volume: "is the tissue volume that contains a demonstrable 
GTV and/or subclinical/invisible malignant disease, which has to be irradiated. 
The aim of radiotherapy is to treat this volume " [31].  
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IM Internal Margin: "is responsible for considering the variations in size, shape, 
and position of the CTV in relation to anatomical reference points" [32].  

SM Setup Margin: "is defined to specify the uncertainties in patient-beam 
positioning" [32].  

ITV Internal Target Volume: "is the tissue volume that contains Clinical Target 
Volume (CTV) and Internal Margin (IM) for organ motion" [32].  

OAR Organ at Risk: "are healthy tissues whose radiation can lead to influence 
treatment planning. OR are usually placed close to the clinical target volume 
(CTV)" [31,32].  

PTV Planning Target Volume: "is a geometrical concept, which is defined for 
uncertainties in treatment planning and delivery. This will aid to choose suitable 
beam size and their arrangements which considers the possible variations in 
geometry and inaccuracies to provide certainty that does prescribed is in fact 
absorbed in the CTV" [31,32]. 

 
2.3.1.1 Treatment planning and dose calculation   
 
In the first step for radiation therapy, a 3D model of the patient must be created. 
For this purpose, a computed tomography scan or magnetic resonance imaging is 
performed depending on the type and place of the tumor for delineating the 
margins and volumes. Additionally, soft tissues with high contrast can be 
captured. In the further step, the dose level, angle of the beams, and the number 
of the beams needs to be set. In other words, dose calculation shows the relation 
between the parameters of treatment explained in the process of planning, as well 
as their clinical results. The parameters of treatment require to be improved so 
that 95% of the PTV gets the determined dose of 95%. More than that, several 
limitations such as the Median Dose (D50%), Near-min Dose (D98%), and the Near-
max Dose (D2%) to diverse volumes are explained, making the process more 
challenging [33][34]. This treatment planning is a repetitive process which 
finishes with the treatment plan to be optimized. The tumor has an irregular shape, 
to limit the excess irradiation to neighboring normal tissue, the conformal 
radiation therapy (CORT) is introduced which is divided into two main groups; 
3D conformal radiation therapy (3D CORT) and Intensity-modulated radiation 
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therapy. 3D CORT uses the geometrical properties of the tumor to irradiate the 
high number of beams to target volume. 
 
 

2.3.2 Treatment techniques  
 
In the following subsections, some of the treatment methods used in radiotherapy 
will be explained. 
 
2.3.2.1 3D Conformal Radiation Therapy 

The 3D conformal radiotherapy is a technique that aims to shape the radiation 
beams to the PTV. This technique adds CT planning in which the volume to be 
dealt with explained on a 3D data set. As a result, organs in danger are depicted 
and defined to protect them and to reduce side effects. In order to design the 
complicated arrangement of beams, Radiotherapy planning software is utilized to 
evaluate the dose-volume [36]. 

2.3.2.2 Intensity Modulated Radiation Therapy (IMRT) 

Intensity modulated radiation therapy (IMRT) regulates the shape and intensity 
of the beam during treatment by aiming to transfer the higher dose to CTV and 
spare OAR better. For this issue, the angle of the beam will be varied most of the 
times during the treatment. One type of IMRT in an advanced kind is known as 
Volumetric Intensity Modulated Arc Therapy (VMAT). In this type, the radiation 
is sent by a linear accelerator machine (LINAC) which is revolving around the 
patient. Both the speed of rotation and the intensity of it are in the process of 
modulation in this regard. The field shape is constantly adapted and adjusted by 
an Multi-leaf Collimator (MLC) that allows flexibility to some degree during 
treatment process. The advantage of using VMRT in contrast to IMRT is, that it 
is less time consuming in terms of the treatment planning process [37]. 

2.3.2.3 Image Guided Radiation Therapy (IGRT) 

The therapy which uses imaging during radiotherapy is called image guided 
radiotherapy (IGRT). Its aim is to enhance the level of validity and it corrects the 
mispositioning of the patient by acquiring daily imaging of the patient. IGRT is 
a great advantage to be utilized to treat various kinds of tumors; however, it is 
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useful when tumors are placed closely to highly sensitive organs. Moreover, it 
can also be beneficial regarding tumors which have the tendency to be located 
near vital organs such as lungs and livers during the process of treatment 
planning. Because of this, positions of OR and tumor are determined straight 
away before the beginning of treatment fraction, and comparisons in terms of the 
patient’s positions are made during planning treatment. For this reason, IGRT 
needs to use one imaging system which is built into the system of treatment [38]. 

2.3.2.4 Adaptive Radiation Therapy (ART)  

Due to the fact that the plan of treatment is designed a couple of weeks prior the  
Radiation Therapy, anatomical changes, such as losing weight cause changes in  
volume and size of the internal organs. These changes require an adaption of the 
treatment plan. Adaptive Radiation Therapy (ART) is defined to modify the plan 
of treatment by evaluating the errors between CTV and delivered dose 
distribution to the patient. Then, images must be acquired in order to observe and 
verify the possible variations. Finally, the parameters of treatment planning will 
be estimated in order to modify the PTV [39]. 

 
2.3.2.5 Four-Dimensional Radiation Therapy (4DRT)  

Respiratory motion can lead to organs displacing, especially in tumors which are 
located within the thoracic cavity or near the diaphragm. For tumors located 
around the diaphragm, motion amplitude can be as large as three centimeters. Due 
to this fact, Four-Dimensional Radiation Therapy (4DRT) is designed to evaluate 
the tumor movement. This technique helps to eliminate unwanted damage to the 
healthy surrounding tissues. In this type of radiation therapy, the radiation is 
adapted to the patient’s breathing.  

 

2.3.3 Proton beam therapy  
 
The idea of using protons in therapeutic medicine was first proposed by Robert 
Wilson in 1946 to treat tumors located deep in the body with accelerated proton 
beams [19]. 
Proton therapy is a type of external radiation therapy, which aims to irradiate and 
treat target tumors with high energy beams and high accuracy [21]. Protons 
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deposit their maximum energy in the Bragg Peak and reach their maximum 
penetration depth as they decelerate [20]. In proton therapy, the energy deposits 
quickly to zero in the process of slowing down and thus the maximum dose is 
delivered to the target tumor and less spread on near-normal tissue [21]. These 
features allow the tumors to be irradiated with maximum efficiency, while 
healthy surrounding tissues and organs are less irradiated and more critical 
structures spared [23]. The difference of the dose-depth plot for X-rays, electrons, 
and protons is illustrated in figure 2.6. Recent studies demonstrate that 50% of 
spreading of dose on normal tissue is reduced in proton therapy in comparison to 
photon therapy [22]. 
 

 
Figure 2.6: The dose-depth curve (modified from source [46]) for electron (20 MeV), photon 

(18 MeV) and proton (130MeV). Note the different shapes of the mentioned curves.  

 

2.4  ImagingRingTM System  
 
The ImagingRingTM System, which is operated at MedAustron, as shown in 
figure 2.8, is a special type of cone-beam computed tomography for medical 
imaging [11][12][14]. It resembles an industrial robot, designed for medical use 
and includes two robotic arms: a monobloc system (X-ray tube and generator) 
and a flat-panel detector. The detector and the X-ray tube are assembled in an 
ImagingRingTM System, which can be rotated independently by aiming to 
optimize the field of view [16]. 
The position of the patient was designed to move or tilt, additionally to have 
millimeter precision and closely observe the whole patient body during treatment 
[13]. Due to the construction of the ring and movement of the patient through the 
couch, the maximum field of view is capable of imaging, and the maximum 
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precision is expected for releasing of the exposure. In the ImagingRingTM System, 
the ring is mounted on the rail to simplify the imaging without changing the 
position of the patient [15]. 
The ImagingRingTM System at MedAustron has also provided a full Monte Carlo 
model of this system. This full Monte Carlo model known as phase space contains 
important characteristics such as position, energy among others.  
 
 

 
Figure 2.7: ImagingRingTM System at MedAustron [13]. The X-ray head and detector which 

are mounted on a robotic arm are positioned below the patient couch 

 
 

2.4.1 Movement details  
 
The X-ray head can be rotated independently around the patient with a rotational 
movement of about 480. The longitudinal movement of the ring is designed 125 
cm along the couch with a speed of 10 cm per second. 
 

2.4.2 X-ray head and detector 
 
The X-ray radiation penetrates through a glass layer followed by oil and an exit 
window made of polycarbonate. This process results in a built-in self-filtration 
equal to 1.4mm of aluminum. The located X-ray source in the X-ray head pilots 
a photon energy ranging from 40keV to 120keV, which can be varied to 80-
120keV for clinical use. The X-rays are emitted in termed pulses. The time 
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intervals of these pulses have a defined constant length. For each required 
exposure to radiation, the number of pulses and their respective time intervals can 
be determined. The spinning rate is about 0476.21 [14][16]. 
The XRD detector is a silicon flat panel X-ray detector with no shape and features 
which is based on CsI scintillator. The XRD 1642 model utilized in the 
ImagingRingTM System at MedAustron provides a resolution of 1024 x 1024 
pixels and high frame rates of up to 100fps. It is equipped with an active sensor 
area of 41 x 42 cm². The detector can rotate up to 481.5 degrees around the patient 
[14] [16]. 
 
 

2.5  Monte Carlo methods  
 
The Monte Carlo method was developed in the 1940’s, although the idea of MC 
is traced back to the eighteenth century [1][2]. Modern MC simulation was first 
used to model random diffusion of neutrons traveling through radiation shielding 
in the Manhattan Project by Neumann and Ulam [2]. Scientist who worked on 
this method gave the name “Monte Carlo” after the city in Monaco and its many 
casinos [1]. 
The Probability Density Function (PDF) is the base of MC simulation which is 
used to model the system. A large amount of data will be sampled from the series 
of PDFs by using random numbers. The technique which is used for sampling the 
data is the Cumulative Probability Function (CPF) which is defined as an integral 
of PDF. Then the final data is computed by the result of sampling data [2]. 
Particle transport is a kind of physical process that can be described by interaction 
probabilities per unit of distance. The complex and mathematical problems which 
are comprised of various random events, such as particle transport, can be 
simulated with the probability density function [3]. Monte Carlo methods are a 
clarified technique which is used for generation of X-ray spectra. 
The phase space is the outcome of sampling the distribution randomly, instead of 
integrating probability functions which are created by Monte Carlo methods [10]. 
The phase space files contain the information of particle position, energy, and 
angular momentum distribution. However, these files contain typically up to 
several tens of gigabytes of data and are inefficient to use. An inaccuracy that has 
to be accepted for the sake of simplification is, that in reality X-ray emission is 
not originated from one certain point, but rather from the irregular shaped area of 
the anode, called focal spot. 
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2.5.1 Simulation  
 
Geant 4 (v10.5) is the simulation toolkit that is used in this thesis to create a 
Monte Carlo simulation model of ImagingRingTM System [16]. Geant 4 is a 
geometry based tracking software to simulate particles traveling through matter. 
In other words, the particles can be tracked along their path through a specified 
geometry. This simulation toolkit was developed by a collaboration of physicists 
and software engineers from around the world at CERN and was written in C++ 
[18]. The source code of Geant 4 can be downloaded freely. It is widely used in 
nuclear physics, high energy physics, accelerator physics as well as medical 
applications, due to its wide range of functionalities, including electromagnetic, 
hadronic, and optical processes as well as a wide range of energy from 250 MeV 
to 1 TeV [41][30]. 
In Geant 4, each particle is tracked along its way and is simulated individually. 
During this process, the length of tracks is defined by the parameter called step 
size, and based on each step, all interactions are evaluated by sampling from the 
appropriate probability distribution. In order to decrease the computation time, 
another parameter, called track cut ,is specified by removing the particles which 
have no chance of reaching the desired detection space. The average length of the 
removed particles is shorter than their track size [18][41]. 
 

2.5.2 GATE  
 
GATE (the Geant4 Application for Tomographic Emission) is based on the 
GEANT4 framework, which is a toolkit to simulate the physics of radiation [29]. 
Although GEANT4 offers a large number of patterns and models for simulating, 
it provides a user-friendly macro mechanism for controlling sophisticated 
geometries. This feature is considered to be quite helpful for creating brand-new 
devices in medical applications. In addition, for the image acquisition 
optimization, it can be used for reconstructions of an image and haphazard 
reduction of noise [41][29].  
GATE is a program written based on C++. The main function is able to explain 
its core. Based on the core, there is an application layer which is a set of C++ 
classes. However, the layer for user is designed and made up in an easily operated 
way in which C++ skills for programming are not needed. It also permits a control 
through an extended version of the Geant4 for scripting language [29][41].  
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A device geometry, in GATE, can be modeled in a stepwise fashion through 
binding objects which are basic and geometrical like boxes, spheres, cylinders. 
Then, a material for each object is able to be explained. Likewise, one source of 
particle is supplemented. Particle types along with the distribution of energy, as 
well as its direction are defined for reflecting the source in a realistic way [41].  
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3  Machine learning  
 

In Machine Learning (ML) computers learn how to solve problems by trial and 
error. It became one of the most attractive branches of artificial intelligence. The 
learning process can be realized by mathematical algorithms and is capable of  
producing a reasonable output from input data automatically. Machine learning 
models are designed to generalize the learned experiences in order to predict new 
data during training. The training process is required to repeat continuously and 
the final model will be evaluated after the multiple iterations of training [48]. The 
process of generalization is difficult and has different designs for each type of 
application. The relation between input and output data can be presented in the 
function ݕ =  .ݕ and ݔ which defines the correlation between two variables ,(ݔ)݂
In most types of machine learning algorithms, such as regression and 
classifications, the function f is required to approximate the value of ݕ for each 
new value of ݔ. In this case, it is suitable to represent an arbitrary function that is 
reliable for universal approximation. One of the most popular and universal 
predictors is an artificial neural network (ANN) which uses a classifier to model 
the decision [47][49]. 

 
 

 
 

Figure 3.1: A diagram of a neuron [44]. Neurons are inspired by biological nervous system.  
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3.1  Neural networks 
 
 
 
The neuron is the fundamental unit of a Neural Network and the neurons in ANNs 
are inspired by the biological nervous system such as the brain [51]. Figure 3.1 
shows the diagram of a human neuron. ANN consists of simple computing 
elements that are interconnected together, with the aim to solve complicated 
patterns. The complexity of problems can be learned by examples. The selected 
examples must provide useful information, otherwise they cause misguiding and 
incorrect functionality for the network. 
Each neuron in ANN can be considered as a classifier that receives multiple 
inputs 2ݔ ,1ݔ, … and creates a weighted sum for these inputs using the weight 
vector w = (w1, w2, ..wn). Besides, the bias b is added to the weighted sum for 
these inputs. Then a non-linear activation function ℎ(ݔ) is applied to the neuron 
to model the decision [51]. Figure 3.2 illustrates an example of a neuron which is 
derived from the human neuron. Each neuron receives the input from the previous 
neurons through the dendrite, then compares the threshold value through a series 
of mathematical calculations. If it exceeds a certain limit, an output can be 
produced. The output reaches further neurons through the axons. There is a 
synapse between each neuron output and the input of the subsequent neuron 
[74][51]. 
                        
 ܽ = ℎ (∑ ௜ݔ௜ݓ + ܾ௜ ) = ℎ(ݖ)         (3.1) 
 

 
Figure 3.2: An example of a neuron showing a couple of inputs and their corresponding 
weights, a bias, and the activation function f applied to the weighted sum of inputs [74]. 
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The function (3.1) can be simplified by using the dot product of vectorized inputs ࢞ and vectorized weights w instead of the summation function. It can be shown 
in function (3.2). 
 

a = ℎ (wT x + b)= ℎ (z)    (3.2) 
 
All trainable parameters can be summarized as vector . 
 

 = (ܾ0, w1, w2, …,wn )   (3.3) 
 

3.2  Feedforward Neural Network 
 
Feedforward Neural Network (FNN) is a type of ANN which is used to 
approximate the function given an input [50] ݔ. The goal of a FNN is to combine 
multiple neurons and create the directed associated graph in the form of a layer 
without cycles. To summarize, each layer can be assumed as a single function 
consisting of these neurons [50]. 
Every FNN has a similar architecture which is shown in figure 3.3. It contains 
three different layers: the input layer, intermediate layer or hidden layers, which 
contain an arbitrary number of layers of neurons, and the layer computing the 
output, called the output layer. The data is entered into the input layer and then 
will be passed on to one or more hidden layers. The predications of networks 
occur before the data is transferred to the output layer. 
 

 
Figure 3.3: Artificial neural network architecture [5]. It consists of three different layers: one 

input layer, three hidden layers and one output layer. 
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In artificial neural networks, in order to predict the output of new entered data, 
the classifier infers the real and correct class y by a new function called estimated 
function.  
 
 

3.3  Gradient descent  
 
In neural networks algorithms, to find how well the output for given input ݔ is 
approximated, the loss function or cost function, which measures the quality of 
the parameters , is defined [51]. The gradient descent is introduced as an 
iterative technique to find the parameters   by moving in the direction of steepest 
descent which is defined as a negative gradient. During this process, the model 
of performance is gradually increased. The goal of gradient descent is to find the 
local minimum of the loss function f(). The computation of the minimum of the  
simple loss function would be feasible analytically, but for complex functions, 
such as loss function of FNNs, it would be complicated [50]. 
The minimization of loss function f() where  contains all trainable parameters 
is the goal of all training processes in NN [50]. For this purpose, the gradient 
descent which uses the gradient of loss function f() for all trainable parameters 
 is used. During this process, the model performance is gradually increased by 
sequentially updating the . The values in the vector  and the f() are constantly 
changed during full batch training for regular gradient descent, although the f() 
remains static for the same value of . In the full batch learning, the gradient of 
each training set is computed independently, then they are summed up together. 
Gradient descent can be also introduced as a useful technique in NN which 
requires the time-consuming computation of all gradients for whole training 
examples in one single update step. The Stochastic Gradient Descent (SGD) is 
also defined to increase the speed of the learning process, which corresponds to 
mini-batch learning. At each update step, SGD estimates the gradient of the cost 
function, denoted as ft. As a result, each single update in SGD is less time-
consuming in comparison to the full batch learning. The other advantage of SGD 
is that it is capable of performing a frequent update which causes the function to 
fluctuate and converge to the minimum. This fluctuation provides the condition 
in which the function jumps to the better local minima [58][59]. 
 

 
௧ାଵ  = ௧   −  f௧ (௧)   (3.4) 
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Here, t denotes the trainable parameter   at time step t and  denotes the learning 
rate. It can be written as:         
               

௧  =  − f௧ (௧)   (3.5) 
 

 
when t =t+1 - t [17]. 
 
 

3.3.1 Momentum 
 
As described in section 3.3, gradient descent is used to find the minimum of the 
loss function. By using the regular SGD, the ft () may change strikingly for 
subsequent steps. This can lead to a large oscillation of the values in  overtime 
which causes the slowing down of convergence [47]. To counter this, a 
momentum term can be added to equation 3.5. The major advantage of 
momentum is, that the short-term memory, called acceleration, is used to boost 
the learning process [17]. 
 
 

  ௧  =   ௧ିଵ −  f௧ (௧)  (3.6) 
 
Where  is he momentum coefficient which holds a value between 0.5 to 1[47]. 
 
 

3.4  Adaptive Learning Rate Optimizers  
SGD is defined as a powerful optimization technique for training NNs; however, 
the choice of learning rate can influence the result of optimization. If  is chosen 
too large, the training might fluctuate and skip over desired local minima. If it is 
too small, the learning rate causes significant delays of the convergence process. 
To deal with this, a common technique, called learning rate decay, is utilized [54]. 
This method is a hyperparameter in itself, which needs to be designed for each 
network. It also allows a larger  at the beginning of training and a smaller  
towards the end of training. Therefore,  must be tuned by some factors every 
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few epochs. The aim of an adaptive learning rate optimizer is to find the best 
learning rate depending on the application. There are a couple of methods which 
are defined in the following subsection and in these approaches, the learning rate 
is not a global variable. They need the hyperparameters tuning such as Resilient 
backpropagation (Rprop) [61], Root Mean Squared backpropagation (RMSprop) 
[59] as well as Adaptive moment estimation (Adam) [62]. 

 

3.4.1 Rprop and RMSprop 
Rprop training algorithm aims to eliminate the negative effects of the magnitude 
of the partial derivates. During this process, the direction of the weight update is 
determined only by the sign of the derivates while the magnitude of derivate is 
defined separately without any effects on the weight update [61]. This technique 
is known as a robust algorithm in ANNs and corresponds to full-batches. The 
main disadvantage of Rprop is, that it does not work when training with mini-
batches. To counter this, RMSprop is an adaptive learning rate method which is  
a mini-batch version of Rprop, proposed by Geoff Hinton in his course [57]. It 
works by aiming the normalization of the gradient for all parameters , at each 
update. In order to improve learning, RMSprop divides the gradient descent for 
each learnable parameter by the accumulated magnitude of the gradient [59]. 

 

௧  =  − ∇௙೟(೟) ௩೟      (3.7) 

where                     ݒ௧ = ௧ݒଶߚ − 1 + (1 − ∇ଶ)൫ߚ ௧݂(௧)൯²              (3.8) 

 

Here β2 is an additional hyperparameter called decay rate. The division and 
squaring operations denote their elementwise versions.  

3.4.2 Adam  
 
Adam is an SGD method which estimates the first and second-order moments of 
the gradients by computing individual learning rates for different parameters [62]. 
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Adam algorithm consist of three hyperparameters including the learning rate () 
and decay rate for first- and second-order moments, which are defined by β1 and 
β2. vt, mt: first- and second-order moments are given in the equation 3.8 and 3.9. 
 ݉௧ = ଵm௧ߚ − 1 +  (1 −  ଵ) ∇f௧(௧)      (3.9)ߚ 

When mt and vt values are loaded as vectors of zeros, they are biased towards 
zero. This is especially the case when t or their respective decay rates are little in 
amount. Thus, the algorithm uses bias corrected variants of these moments:   

 ݉௧௧ = ଵଵିఉభ  

       

and                                                   ݒ௧௧ = ଵଵିఉమ   

 

The update rule for Adam becomes:  ∆ ௧   =  − η ݉௧௧ݒ௧௧ + ε  
 

Here, ε is a small constant that avoids division by zero.  

 

3.5  Activation function 
 
Activation functions (AF) are non-linear functions that are applied to the 
weighted sum of the inputs. It is added to each neuron in the ANN and denotes 
whether the neuron is activated or not. The activation function is the only source 
of nonlinearity in the NN and has sufficient ability to tackle the complex 
algorithms and learn challenging data.  
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3.5.1 Sigmoid function 
 
One of the simplest and most popular activation functions used in this work is the  
sigmoid function ݂(ݔ) = 1 (1 + ݁ି௫⁄ ). The output range of this function is 
between 0 and 1, where 0 represents tthat the neuron is not activated at all, while 
1  denotes the activating rate at maximum level. The main disadvantage of using 
the sigmoid function is, that for a large value of ݔ, the gradient will vanish and 
cause the slowing down of learning, if ݔ is placed in the saturated area. The other 
drawback is defined because it is not zero-centered and causes inadequate results 
during gradient descent [50]. Although the sigmoid function is not a useful 
method for neurons in hidden layers, it can be interpreted as a predictor of 
probabilities in output neurons. 
 
 

3.5.2 ReLU variants 
 
Another popular activation function is the Rectify Linear ReLU [52] (ReLU) 
which is defined as ReLU(x)=max(0,x). Due to its function, it can result in the 
faster learning of deep ANNs, with gradient descent in comparison to sigmoid 
function, since it is not saturated for a large value of [53] ݔ. Due to the form of 
the ReLU, that is linear and non-saturated, the vanishing of gradient descent in a 
large value of ݔ is omitted [54]. The main problem in this activation function is 
that no gradient is provided when ݔ is negative. A new version of ReLU called 
Leaky ReLU [55]  is presented  and defined in the following to solve this problem:  
 
(ݔ)݂    = ൜  ݁ݏ݅ݓݎℎ݁ݐ݋    ݔߙ/ 01 ݔ ݂݅           ݔ

 
Where  can be set for different layers in NNs and if it sets to a large value, such 
as 100, it behaves similar to the original ReLU. The small value of  causes an 
increment accuracy in classification [56]. Figure 3.4 shows the two different 
types of activation functions, the right figure represents RELU and the left one 
represents the sigmoid function. 
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Figure 3.4: The right figure represents RELU and the left one represents the sigmoid 

function. The popular activation functions used in ANNs. Own work by Matplotlib1 library. 

 
 
  

 
1 https://matplotlib.org 
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4 Generative Adversarial Networks 
 
 
The idea of Generative Adversarial Networks [63] was proposed by Goodfellow 
in 2014 as a method for data generation. GAN consists of two networks: 
Generator (G) and Discriminator (D), which are often implemented as NNs. In 
this code, G and D designed in a three-hidden layer network.  
 
In all generative models, the Gaussian noise distribution z is applied to G(z;θG) 
to model the distribution and produce fake data, in our case the distribution of 
particles. D is also designed to estimate the probabilities of realness and fakeness 
of a sample data. In order to make a convenient training for each model, the 
equilibrium between two models has to be found and maintained.  
 
Training of GAN is a challenging process. Generative and Discriminative model 
are training simultaneously in a so called zero-sum game. In a zero-sum game 
with two players, in this case the D and G, act as maximizer and minimizer, 
striving to increase their own score at the cost of the other one’s. The Generator 
attempts to maximize the probability of its output deceiving the discriminator. 
The discriminator on his part has to keep the probability as low as possible [64]. 
Ideally, an equilibrium between the performance of G and D is reached, called 
the Nash Equilibrium [63][80]. It is mathematically described in ( 4.1)[63]. 
 
In case the performance of G and D is unbalanced, the entire training process 
might stagnate with the output being improved, resulting in a vanishing gradient. 
 
This expression or the GAN purposes in the following defines the complete work 
of the network:    
 
 min max ,ܦ)ݒ (ܩ = [(ݔ)ܦ ݃݋݈]௫௉ௗ௔௧௔(௫)ܧ + ௭୔୸(୸)[log (1ܧ − D(G(Z)))]   ( 4.1 ) 
 
 
Where: 
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Pz (z) : Denotes the noise distribution which is considered as input of G 
Pdata(x): Denotes the real data distribution 
x, z : Denote the inputs of Discriminator and Generator 

  
 
 
The aim of the mentioned formula, which is a function of both G and D, is to 
maximize the D loss, or the log D(x) and minimize the G loss, or log (1- D(G)). 
In this case, expected probability from various outputs of real and fake data are 
defined as: Ex, Ez. 
Besides, this ܦ)ݒ,  is the summation of expected probabilities for real and (ܩ
generated data. 
 
 

 
Figure 4.1: A simple graphical presentation of the GAN setting. The generator produces the 
fake data from the random noise which must convince the discriminator. The discriminator 
gets input as either real data or generated data to distinguish whether its input is real or fake 

[79]. 

 
 
More than that, for training both discriminator and generator, resent flaws are the 
gradients of the following function loss are sent back into the model. 
 
Updated discriminator rule: 
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∇ θௗ ଵ௠ ∑ ቈlog ܦ ቆݔ(௜) + ݃݋݈ ൬1 − ܦ ቀܩ൫ݖ௜൯ቁ൰ቇ቉      (4.2) 

Updated generator rule: 

∇ θg  ଵ௠ ∑ ݃݋݈ ൬1 − ܦ ቀܩ൫ݖ(௜)൯ቁ൰  (4.3) 

 
 
Where m shows the whole number of tested samples in batch prior to being 
updated and with both θd and θg showing each model weight. 
 
 

4.1  Iterative process of GAN 
  
The purpose of this section is to explain the process of training. Every step of one 
training process is known as epoch, a term in machine learning, indicating the 
number of passes of the whole training dataset through the system. Throughout 
every epoch data are processed in a batch, a random fixed size subset (called 
batch size) from the samples in the dataset which are real. The number of epochs 
and the number of iterations is the same, given that the entire training dataset file 
in one batch [78]. Steps inside each batch are as following: 
Firstly, the discriminator receives a real data batch. After that, incoming errors 
from the discriminator output are worked out. Simultaneously, the generator 
produces a fake data batch, using noise vectors batch. In the third place, the 
discriminator receives fake data batch for the second time. Next, the discriminator 
output is calculated either (0) or (1), meaning fake data and real data, respectively. 
Both of these kinds of errors calculated by the discriminator are then propagated 
to the model. Now, errors for the generator are supposed to be calculated, 
meaning that outputs coming out of the discriminator ought to be 1, because they 
are ideally imitated forms of real data. Output errors are supposedly to be 
propagated to the generator model and this cycle is again restarted with another 
batch from this epoch [78].  
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4.2  Difficulty of training GAN 
Training of regular GANs is always accompanied by instability. The cause of this 
instability is the fact that the generator and discriminator are designed with 
different contradicting goals. This can prevent each other’s progress during 
training [64]. Additionally, when the generated data is similar to only a part of 
the real data distribution, failure occurs. This failure mode is called mode collapse 
[64]. Depending on the severity of the mode collapse, the training process could 
be considerably compromised. When mode collapse occurs to a mild extent, the 
model still converges and the training process is applicable. In a severe case of 
mode collapse, only a few samples or even just a single sample is generated, 
which is far from the goal of GAN [65]. 

 

4.3  Wasserstein generative adversarial nets  
 
The goal of the original GAN is to minimize the JS divergence in a min-max 
game [63]. In most cases, the JS divergence will not provide the beneficial 
gradients and cause it to fail to converge. To counter this, Wasserstein GANs 
[66][67] were proposed. WGAN minimize the Earth mover distance instead of 
minimizing the JS divergence between two probability distributions. Besides, the 
training of WGAN is leading to improve the original GAN in different ways and 
cause robustness to mode collapse [66]. The introductory of this section will be 
started by an introduction of Earth Mover (EM) distance. Then this section will 
be finalized by the explanation of WGANs. 
To find the perfect Pθ density model in the given real data x, mastering probability 
distribution using maximum probability estimation is vital. Considering the real 
data distribution pR and the model distribution pG, the restriction (amount of real 
data) of the maximum likelihood estimate is equivalent, so as to minimize the 
Kullback-Leibler (KL) divergence KL(pR||pG). Nonetheless, in case Pθ is not 
obvious, the KL divergence is inexplicable or infinitive in this regard. For 
example, if the distributions are governed by manifolds dimensions, so the 
intersection of model manifold, as well as real distribution support, will not occur 
[67][82]. That is why various generative models strive to put an extra noise term 
to the model distribution, which results in indistinct generated data. To counter 
this, GANs can be trained by randomly feeding variable z through a parametric 
function G, usually applied as a neural network. Therefore, through taking 
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samples directly from the model distribution pG, and changing the model 
parameters θG, adjusting pG to be as similar as pR is possible real distribution pR. 
 
The major advantage to use WGAN is the different approach, so that distances 
between the model distribution pG and the real distribution pR can be measured. 
In the authentic formulation for GANs, which is proposed by Goodfellow et al., 
the aim function of GAN for optimizing is the Jensen-Shannon (JS) divergence. 
In WGAN, the Earth-Mover (EM) distance or Wasserstein-1 distance is utilized 
to estimate distance function, which results in computing the optimal transport 
plan loss for transforming the distribution pR into pG. The Wasserstein-1 distance 
is explained as following:  

 

W(pR,pG)   =       inf             E(x,y)∼γ [||x−y||],  (4.4) 

                                                         γ ∈Π (pR ,pG )  

Π(pR, pG) is the number of all binding distributions γ(x, y) when the amount for 
pR and pG, is small respectively. As the infimum in Equation 4.4 is out of control, 
the binary form of the Wasserstein-1 distance [69][82] is utilized to collect the 
scheme optimization:  

 

W (pR, pG) =    sup       Ex∼pR [D(x)] − Ex∼pG [D(x)] ,  (4.5) 

                                                ||D||L≤1  

When 1-Lipschitz functions are less than the supremum, this constraint can be 
alternated with a K-Lipschitz theory. The binary form only undergoes changes by 
a multiplicative constant of K, that does not alter the optimization problem. Here 
K is able to be absorbed into the learning rate hyperparameter. In case D functions 
family, which are parameterized with parameters θD ∈ W, has functions, which 
are all K-Lipschitz, the subsequent optimization problem, leading to the primary 
training objective for WGAN, can be obtained. Theoretically speaking, the 
supremum in Equation 4.5 can be gained for some θD ∈ W and through merging 
the generator network G(z) as the model distribution pG. The equation can be 
reformed to reach at: 
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max Ex∼pR [D(x)]−Ez∼pz [D(G(z))],     (4.6) 

θ D ∈W 

By the time it is optimized, the Wasserstein-1 distance can show greater features 
in comparison to the JS divergence, as distributions, which are supported by low 
dimensional manifolds, are learned. The result of such events is, that WGAN has 
the capability for learning likelihood distributions in which other learning goals 
derived by the JS and KL divergences fail to do so. Because of the benefit of EM 
distance, to have two main advantages as being continual and distinguishable, the 
functionality of the discriminator is proposed once by Arjovsky et al. to be called 
as a trained critic as it can produce valid gradients. Moreover, while the 
discriminator improves in the standard JS objective of the original GAN, causing 
the JS distance to be saturated locally, brings about disappearance of gradients 
[81][82], as opposed to the WGAN having gradients elsewhere. It is 
recommended that WGAN can tackle the collapse mode problems, because of the 
critic which is about to be trained prior to optimality. As well as that, for 
approximating EM distance, the optimized critic will give permission for a 
relevant explanation of the critic loss [82]. 
 
 

4.3.1 Gradient penalty 
The existence of some factors can cause quality of samples to be lost as well as a 
lack of full convergence, whereas GANs training are being enhanced by WGAN. 
Gulrajani et al. believe these modes failed because of the way the 1-Lipschitz 
restriction is put in the original WGAN. The weight clipping presented in the 
original WGAN means, that the critic has difficulty finding the functions 
optimality, thus its capacity is underused. In addition, norms of gradients are 
affected due to weight clipping, which might also cause disappearance or 
explosion of gradients. Hence, gradients are unsteady as a result, which could 
cause the training to be inefficient and unstable [70]. They also provide some 
proof that the critic in the framework of the WGAN, which is optimal, has a 
normal unit gradient almost everywhere under pR and pG. This can differently 
encourage them to impose the 1-Lipschitz restriction of the original WGAN, 
through utilizing gradient penalty on the critic gradient. Using WGAN-GP 
(gradient penalty) on the contrary to the weight clipping can help to implement 
that Lipschitz is only continuous if the critic is constrained [70][71]. WGAN-GP 
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reaches this through utilizing a gradient penalty to the critic function value. 
WGAN-GP is far better in terms of performance than the regular WGAN because 
of its various generator and critic forms [71].  

The result of that is that the gradient norm is motivated towards 1, forming the 
ground for the Wasserstein Generative Adversarial Network with Gradient 
Penalty (WGAN-GP) training procedure [70]. Gulrajani et al., for this gradient, 
take a uniform sample from a distribution pxˆ, defined along the lines between 
sample pairs from both the real data distribution pR and the model distribution pG.  
When applying this gradient penalty, the original WGAN loss function is altered 
as shown below:  

  

L=Ex∼p [D(x)]−Ez∼pz [D(G(z))]+λExˆ∼p (||∇xˆD(xˆ)|| −1) ,  (4.7) 

 

As it is shown above, λ introduces the penalty coefficient, thus, they discovered 
it can perform well for a number of experiments if the value of λ is 10. 
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5   Method 
 
   
This chapter, first, outlines the most important soft and hardware that used to 
develop, train and evaluate GAN in this thesis and to prepare input data. Then it 
is followed by a comprehensive explanation of the employed GAN details and 
the ending part of this section will be finalized by the introduction of the 
evaluation of the used methods. 
 
 

5.1  Used Technology 
 
In order to describe the complete documentation of used technology, a short 
introduction of popular tools is given below. 
 
 
Python2 is a high-level and interactive programming language which is designed 
by Guido van Rossum and released in 1991. Python allows to execute the codes 
without the need to compile it. Due to powerful libraries, Python is used widely 
in many scientific projects. Over the recent years, python has been the most used 
language to develop Neural Networks and deep learning algorithms.  
 
NumPy3 plays an important role for scientific computing in python. In this master 
thesis, its features were used for editing, removing unnecessary data and in 
evaluating n-dimensional array of objects.  
 
Pandas4 is a software library for manipulation and analysis of data in python. It 
provides the data frame by aiming to simplify data analysis and manipulating of 
large numerical tables. The output matrix of Neural Networks can be evaluated 
by “pandas”. 
 

 
2 https://www.python.org 
3 https://numpy.org 
4 https://pandas.pydata.org 
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Matplotlib5 is the comprehensive library in python which is used to create static, 
interactive and animated visualization of numerical data. 
 
Pytorch6 is an open-source machine learning library which provides two high-
level features: tensor computation with strong GPU acceleration and deep neural 
networks built on a tape-based autograd system (automatic differentiation). 
 
Scikit-Learn7 is a software library for machine learning. It provides many 
convenient methods for preprocessing data and evaluating results. 
Principle Component Analysis (PCA) is the statistical technique which converts 
high dimensional data to low dimensional data by selecting important features. 
PCA can be implemented by using python’s Scikit-Learn library.  
 
Root8 is a high-performance and open-source software which is written in C++. 
Root has been integrated over years with python and the dynamic and unique 
connection between python and C++ is considerably enhanced. Analyzing and 
visualizing a large amount of data can be executed by root. Thus, the phase space 
data, like the one processed in this thesis, is usually stored in root format files. 
 
Uproot9 allows to read and write ROOT files using only Python and Numpy. The 
standard uproot is only an input/output (I/O) library. Uproot does not depend on 
C++ root, instead it unlocks data from root files as Numpy arrays. In the last few 
years, uproot has been widely used in different branches of physics, specifically 
in particle physics.  
 
Colab notebooks are Jupyter Notebooks which run on a cloud and provide GPU-
powered notebooks for free. It is highly integrated with Google Drive. Jupyter 
Notebook10, an open-source web application, prepares a practical learning 
environment which simplify the running, modifying and analyzing data in deep 
learning and artificial intelligence. 
 
 

 
5 https://matplotlib.org 
6 https://pytorch.org 
7 http://scikit-learn.org 
8 https://root.cern 
9 https://pypi.org/project/uproot/ 
10 https://jupyter.org 
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All training of the ML was done on a computer with following specification in 
table 5.1: 
 

Table 5.1: Hardware used for training the data by GAN with the high provided GPU of 
Google Colab. 

Type Model 
CPU 1.8 GHz Dual-Core Intel Core i5 
GPU 12 GB NVIDIA Tesla K80 (based on 

Google Colab 
RAM 8 GB 1600 MHZ DDR3 

Hard Drive 1 T 
Operating System MacOS  10.15 

 
 
Thus, the given training times for the GAN in section 5.2.2 are referring to this 
set of hardware. The most effective hardware part is a GPU, which was provided 
remotely by Google Colab (about 10 hours each time). Finding the best input data 
for training from main datasets, which was done in Jupyter Notebook, was time-
consuming. The splitting of the large phase space into the smaller files took 
around 36 hours. In addition, this process was not feasible in Google Colab with 
fast GPU, because the amount of the reference dataset (50GB) was higher than 
the free space provided by Google drive (15GB). 
 

5.2  Used Method 
 
 
The code used in this thesis [73] is the Generative Adversarial Network written 
by Sarrut, which was extracted from GitHub to model the large phase space files 
used in Monte Carlo Simulation [68].  
In order to describe the complete documentation of the used method, a short 
introduction of my approach, given in the subsections below, consists of the pre-
processing the dataset, training the data and tunning the parameters. 
 

5.2.1 Training data 
 
A large phase space dataset of around 50 GB in root file format was provided. It 
was produced by a Monte Carlo model of ImagingRingTM System, containing a 
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set of parameters including position, energy, direction, weight, etc. After 
removing unnecessary details, the rest of data should be converted into the numpy 
files to be used for the GAN training. The numpy file size was selected to be 
convenient to train GAN. The final training datasets used in the training part was 
around 1.4 GB which contained 4.8 × 107 of the particles. A screenshot of training 
data extracted from a Jupyter Nootebook is shown in figure 5.1. 
The details of the particles are input parameters (seven). The first one for energy, 
the next three of each particle for the particle position, the last three ones for the 
direction of particle. 
 
 

 
Figure 5.1: A screenshot of training data obtained from Jupyter Notebook. Panda package 

was used to generate the data frame to be convenient to evaluate. 

 
 
 

5.2.2 GAN architecture and parameters  
 
Training of our GAN requires a json file described by implementing a set of 
dependent hyperparameters. A screenshot of the json file is shown in figure 5.2. 
Some of these parameters are designed empirically by trial and error. The 
architecture of both Generator and Discriminator Network is the following: 400 
neurons for each of the three hidden layers. The value of weights and biases was 
set empirically based on literature data [68]. 
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Figure 5.2: A screenshot of the json file obtained from GAN’s code [73]. All the 

hyperparameters used for the training, existed in json file. Note the intervals (constraints) of 
the six parameters which have been specified. 

 
Two different types of activation functions are used in this WGAN, A Rectified 
Linear Unit (Relu) and sigmoid function. The sigmoid function is just used in the 
last hidden layer in generator. The total number of weights for both Generator 
and Discriminator is around 5  10ହ [68][66]. The RMSProp optimizer [59] has 
been used instead of the conventional Adam optimizer [62] to avoid instability 
during the training process [68][66]. 
The batch size is set to around 103 per iteration and the number of epochs is set 
to 104. Each iteration took around 3 seconds, using Google Colab one run took 
about 10 hours in total. The learning rate is the most important part during 
training, I used 210ିହ to achieve the best superimposition of fake data on real 
data. Figures 5.3 - 5.8 show the marginal distributions of the six parameters 
gained from the reference phase space and from the GAN produced by the 
described hyperparameters, whereas one of the parameters of the input is 
considered constant. The 104 particles obtained from Gaga_Generate are 
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compared to original particles. The bin size is set to 200. The mentioned figures 
have been obtained from Gaga_plot code which is described in code description. 
 
 
 

 
 Energy (keV) × 103 

 

Figure 5.3: Histogram of the photon beam energy for GAN generated fake data (red) and 
Monte Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and 

standard deviation for two distributions are indicated in the figure legend. Note the similar 
shape of the distributions. 

 
 
 

 
 X (mm) 

 

Figure 5.4: Histogram of the position (X) for GAN generated fake data (red) and Monte 
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard 
deviation for two distributions are indicated in the figure legend. Note the slight differences 

in the mean value of two distributions. 
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Y (mm) 

 

Figure 5.5: Histogram of the position (Y) for GAN generated fake data (red) and Monte 
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard 
deviation for two distributions are indicated in the figure legend. Note the slight differences 

in the mean value and standard deviation of two distributions. 

 
 
 
 
 

 
dX (mm) 

 

Figure 5.6: Histogram of the direction (dX) for GAN generated fake data (red) and Monte 
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard 
deviation for two distributions are indicated in the figure legend. Note the similar shape of 

the distributions. 
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   dY (mm) 

 

Figure 5.7: Histogram of the direction (dY) for GAN generated fake data (red) and Monte 
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard 
deviation for two distributions are indicated in the figure legend. Note the similar shape of 

the distributions. 
 
 
 

 
             dZ (mm) 

 

Figure 5.8: Histogram of the direction (dZ) for GAN generated fake data (red) and Monte 
Carlo simulated reference data (green) using 104 photons and 200 bins. Mean and standard 
deviation for two distributions are indicated in the figure legend. Note the similar shape of 

the distributions. 

 

5.2.3 Implementation  
 
The GAN for training and the particle generation was a WGAN with gradient 
penalty. It was implemented in Pytorch with the Pytorch framework [68][83]. The 
generated particles are produced by running the python’s file called Gaga_train 
which is described in code description. 
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5.3  Experiments and Evaluation methods 
 
Two phase space files, generated using a Monte Carlo model of the 
ImagingRingTM System at MedAustron, were provided for this thesis: one file 
was used for training the GAN and the other for evaluating [68]. The file used for 
training was split into smaller numpy files. The generated particles can be 
obtained by Gaga_generate after training the ANNs. Gaga_generate gives this 
feasibility to get as many arbitrary numbers of particles as needed, whether more 
or less through using its coding [68]. 
In order to answer the aim of this thesis question, the generated data must be 
compared with real data. In this regard, the evaluation part of the implementation 
in the generated phase space file needs to be compared with the real phase space. 
Due to the fact that the interpretation of large datasets is demanding and 
challenging, two different methods were considered to evaluate the results: 1- the 
visualized process and 2- the numerical process. One way to interpret the 
visualized process can be defined as Principle Component Analysis. 
 
 

5.3.1 Principle Component Analysis  
 
Principal Component Analysis [72] is a method which is used to visualize 
variables of multiple dimensions by creating new variables. These new variables 
are uncorrelated linear functions derived from the respective 
eigenvalue/eigenvector problem of the data. They represent the best linear 
approximation of the given dataset in a lower dimensional subspace. Thus, the 
variance is maximized and loss of information minimized. The dimension of the 
dataset is reduced by these new variables, allowing an easier interpretation. This 
technique reduces the dimension of the data to two in order to project them on 
two orthogonal axes. Since PCA is also an unsupervised process, the number of 
features xA,..,xZ  can be explained and defined [72]. 
The phase space file in numpy format needs to be converted to a data frame for 
the first step of performing principle component analysis. The main prerequisite, 
as for any machine learning task, is that the data has to be scaled. One way to 
perform the scaling is using the StandardScaler class from the Scikit-Learn 
package. StandardScaler is used to standardize the input features. 
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5.3.2 Marginal Correlation 
 
The second type of visualized method is termed Marginal Correlation. In this 
type, each variable of fake data and real data in a plot is compared to see, if they 
are superimposed or not. The amount of energy for both real data and fake data 
is considered stable and constant. The superimposition of real and fake data on 
each other can be seen for the position of parameters and direction of particles. 
The number of input data, which is extracted from real and fake data, is about one 
million particles, and the bin size is set to 200. 
 
 

5.3.3  Correlation of X-Y plots 
 
Two of seven input parameters were chosen and extracted for both real particles 
and fake particles. Two characters of particles which are X-Y are plotted for any 
specific energy range. This method might have a higher loss of information 
compared to PCA due to the fact that the left parameters are not considered. 
However, they can show how particles in X-Y coordination behave and are 
distributed on the surface.  
 
 

5.3.4 Validation of data with p-value 
 
Karl Pearson was the first pioneer of proposing the P-value in his Pearson's chi-
squared test [76]. In order to use this method, a null hypothesis and a level of 
significance are required. If the null hypothesis is not rejected, it can be concluded 
the null hypothesis might be statistically significant. But if it is rejected, the 
conclusion can be drawn that the null hypothesis is not statistically significant 
[76]. This is a numerical method which shows how similar fake and real data are; 
however, the code written by myself can be used as a visualized method for 
various energy ranges or (bins of energy) for different number of particles.    
The null hypothesis shows the fact that both real data and fake data are similar 
and alpha, which defines the level of significance, is set to 0.05, meaning that the 
confidence level is at 95%. A P-value below this range illustrates the inequality 
of real data and fake data at the mentioned confidence level. In this case the null 
hypothesis is rejected and an alternative hypothesis is needed. Each p-value was 
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obtained from the two-sample Kolmogorov-Smirnov test (ks_2samp) in python 
with the SciPy11 library. 
 
5.3.4.1 Visualized p-value 
 
The studies with extremely large samples are associated with problems in which 
p-value goes quickly to zero and results in no practical usefulness [77]. In order 
to compare the fake and real data in large scale, the visualized p-value is devised. 
The function in the visualized p-value was implemented in python code in order 
to obtain the amount of the p-value for each bin for specified energy range. The 
mentioned method was used to define the given amount of the energy and to 
design the p-value plot of the rest of the parameters in different values for bins.  
 
 

5.3.5 Correlation matrices  
 
The correlation matrix aims to identify the correlation coefficients between 
variables used as a statistical technique to define the covariance normalized by 
the product of their standard deviations between the six parameters obtained from 
training and from the full Monte Carlo model.  
  

 
11 https://www.scipy.org 
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6 Results 
 
The value of discriminator loss at the beginning of training, for 104 iterations and 
103 batch size, for given data (4.8 × 107) is negative and larger than final 
discriminator loss. As soon the generator is sufficiently trained, the final 
discriminator loss converges to zero, as it was expected according to previous 
work [68]. The final D-Loss and G-Loss are shown in table 6.9. 
The first result of training the particles, as it is shown in figure 5.3 - 5.8, illustrate 
the distributions of the six parameters (Ekine, X, Y, dX, dY, dZ). In each figure, 
the x-axis denotes the intervals of each parameter and the y-axis shows the counts 
gained from the reference phase space compared to the ones from the GAN. The 
104 particles obtained from Gaga_Generate are compared to the original particles. 
The bin size is set to 200. The ideal marginal distribution of each parameter 
obtained from GAN and reference dataset is supposed to have an equal value for 
both standard deviations and for both mean values [68]. For each parameter, the 
obtained mean and standard deviation were obtained almost equal. 
Figure 6.1 below shows the overlay of 500 samples from each the real data, 
produced by the full Monte Carlo model and the fake data, generated by the GAN. 
The plot was obtained by PCA method as it was mentioned in section 5.3.1. This 
superimposition is the result of well-matched generated data by training with the 
real data, for small number of particles.  
 

 
Figure 6.1: PCA plot for GAN generated fake data (red) and Monte Carlo simulated reference 

data (blue) suing 500 photons. Note the superimposition of real data and fake data. Most of 
the photons have been projected at the center. 
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In table 6.1, the PCA method was implemented for different energy ranges. For 
a higher number of particles, PCA plots demonstrate slight differences between 
fake data, depicted in red, and real data, in blue. This table also shows that, PCA 
plots for all different energy ranges, from 20kV to 70kV, for 104 number of 
particles denote the well-matching of real and fake particles.  
 
 
Table 6.1: PCA plot for GAN generated fake data (red) and Monte Carlo simulated reference 

data (blue) using (103,104,105,106) photons and different energy ranges from 20keV to 70 
keV. Note the best matching of the PCA plots for the energy ranges between 20keV to 60keV 

for small number of photons. 
 

Energy/ 
particles 

 
103 

 
104 

 
105 

 
106 

 
 

 20 keV- 30 keV 

    

 
 

 30 keV - 40 keV 

    
 
 

40 keV - 50keV 

    
 
 

 50 keV - 60 keV 

    

 
 

60 keV- 70 keV 
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In the following figures, the marginal correlation of the six parameters obtained 
from the reference phase space file and from the GAN is shown. In each plot in 
the following figures (6.2 - 6.7), the x-axis shows the interval of each parameter 
and the y-axis denotes the counts of particles. The number of input data, which is 
extracted from real and fake data, is about one million particles, and the bin size 
is set to 200.  
The plots of parameters in the energy range of 20keV- 60keV in figures 6.2-6.5 
show that the fake data and real data are superimposed on each other without 
considering the slight differences in some areas. The obtained corresponding 
standard deviation and the mean of each plot are approximately equal. As it is 
shown in figure 6.6, the superimposition of particles has not been seen, for the 
energy range of 60keV-70keV. 
 
 
 

 
 

Figure 6.2: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo 
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges 

between 20keV-30keV. Note the slight differences in terms of superimposition of real data 
and fake data for 103 photons. 
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Figure 6.3: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo 
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges 

between 30keV-40keV. Note the slight differences in terms of superimposition of real data 
and fake data for 103 photons (exception for dZ). 

 

 
 

Figure 6.4: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo 
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges 

between 40keV-50keV. Note the slight differences in terms of superimposition of real data 
and fake data for 103 photons for X and dX. 
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Figure 6.5: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo 
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges 

between 50keV-60keV. Note the slight differences in terms of superimposition of real data 
and fake data for 103 and 104 photons. 

 

 
 

Figure 6.6: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo 
simulated reference data (green) using (103, 104, 105, 106) photons and the energy ranges 

between 60keV-70keV. Note the huge differences regarding superimposition of real data and 
fake data. 
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By increasing the number of data considering the whole given energy range, as it 
is shown in figure 6.7, better superimposition of fake data on real data has been 
observed. The best overlay belongs to 1 million samples of data. 
 
 

 
 

Figure 6.7: Marginal correlation plots for GAN generated fake data (red) and Monte Carlo 
simulated reference data (green) using (103, 104, 105, 106) photons and all the energy ranges 
between 20keV-70keV. Note the considerable overlap regarding superimposition of real and 

fake data. 

 
 
 
 
As it is shown in tables 6.2, in the correlation X-Y plots, the superimposition of 
the real particles and fake ones are analyzed, based on different energy ranges, 3 
different number of data (104,105,106) were selected. For energy range between 
70keV-80keV, as it is shown in figure 6.8, no data was generated for X and Y 
parameters in spite of the fact, that real particles in this range do exist. 
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Table 6.2: X-Y plots for GAN generated fake data (blue) and Monte Carlo simulated 

reference data (orange) using (104, 105, 106) photons and the energy ranges between 20keV-
70keV. These plots show how the particles distributed on the x-y coordinate. X-axis and y-
axis show the intervals of the X and Y in millimeters, respectively. Note how the reference 

data is scattered for 106 photons and the energy range between 20keV to 60keV. 

 
Energy range/ 
particles 

                
                        104 

 
                           105 

               
                        106 

 
 
20keV-30keV 

   
 
 
30keV-40keV 
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Figure 6.8: X-Y plots for GAN generated fake data (blue) and Monte Carlo simulated 

reference data (orange) for the energy range between 70keV-80keV. These plots show how 
the particles distributed on the x-y coordinate for the mentioned energy range. X-axis and y-

axis show the intervals of the X and Y in millimeters, respectively. Note that no data was 
generated. 

 
 
To obtain to which extent the generated particles are statistically significant, the 
tables 6.3-6.7 have been designed. The marked number of p-values in the 
following tables shows that for every data characteristic (number of data, 
parameters and energy range), considering the significance level, the null 
hypothesis is rejected in this area. The p-values in the mentioned tables have been 
obtained between the data generated by the GAN and the data from reference 
dataset (PHSP1). 
 
 
 

Table 6.3: P-value between GAN generated fake data and Monte Carlo simulated reference 
data (PHSP1) for the energy range between 20keV-30keV using (103,104,105) photons. Note 

the p-values for 103 photons. 
Photons/Parameters X Y dX dY dZ 

 
103 

 
0.10 

 

 
0.02 

 
 

 
0.16 

 

 
0.00 

 

 
0.02 

 

 
104 

 
0.83 

 

 
0.49 

 
 

 
0.79 

 

 
0.28 

 

 
0.66 

 
105 

 
1 
 

 
1 
 

 
1 

 
1 

 
1 
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Table 6.4: P-value between GAN generated fake data and Monte Carlo simulated reference 
data (PHSP1) for the energy range between 30keV-40keV using (103,104,105) photons. Note 

the p-values for 105 photons 

Photons/Parameters X Y dX dY dZ 
 

103 
 

0.47 
 

 
0.48 

 

 
0.45 

 

 
0.34 

 

 
0.65 

 
 

 
104 

 
1 
 

 
1 

 
1 
 

 
1 
 

 
1 
 
 

 
105 

 
0.16 

 

 
0 

 
0.27 

 

 
0 

 
0 
 

 
 

Table 6.5: P-value between GAN generated fake data and Monte Carlo simulated reference 
data (PHSP1) for the energy range between 40keV-50keV using (103,104,105) photons. Note 

the p-values for 105 photons. 
Photons/Parameters X Y dX dY dZ 

 
103 

 
0.57 

 

 
0.54 

 

 
0.43 

 

 
0.59 

 

 
0.27 

 
 

104 
 
1 
 

 
1 
 

 
1 

 
1 

 
1 
 

 
105 

 
0.15 

 

 
0 
 

 
0 

 
0.14 

 
0.00 

 

 
 

Table 6.6: P-value between GAN generated fake data and Monte Carlo simulated reference 
data (PHSP1) for the energy range between 50keV-60keV using (103,104,105) photons. 

Photons/Parameters X Y dX dY dZ 
 

103 
 

0.77 
 

 
0.20 

 

 
0.96 

 

 
0.14 

 

 
0.30 

 
 

104 
 

0.77 
 

 
0.20 

 

 
0.96 

 
 

 
0.14 

 
 

 
0.30 

 

 
105 

 
0.77 

 

 
0.20 

 

 
0.96 

 
 

 
0.14 

 
 

 
0.30 
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Table 6.7: P-value between GAN generated fake data and Monte Carlo simulated reference 
data (PHSP1) for the energy range between 60keV-70keV using (103,104,105) photons. Note 

the p-values for 104 and 105 photons. 

Photons/Parameters X Y dX dY dZ 
 

103 
 

0.12 
 

 
0.98 

 

 
0.21 

 

 
0.89 

 
0.89 

 
 

104 
 

0.12 
 

 
0.00 

 

 
0.14 

 

 
0.00 

 
0.00 

 
 

105 
 

0.12 
 

 
0.00 

 

 
0.14 

 

 
0.00 

 
0.00 

 

 
As shown in the figure 6.9 and 6.10, for five different characteristics of the 
particles, the x-axis shows the bins of energy and the y-axis denotes the p-value 
amount. Each colored point in the figures below demonstrates the p-value 
corresponding to each bin. The confidence level is marked by red horizontal line. 
In figure 6.9 for 103 particles, bin is set to 10 and the p-values between the real 
and fake data denotes, that the GAN was trained well due to the fact that 
respective p-values are above the significance level. In Figure 6.10 it is shown, 
that the p-values which are located beneath the confidence level reject our null-
hypothesis for a higher number of particles. 

 

 
Figure 6.9: The visualized p-value plot between GAN generated data and Monte Carlo 
simulated reference data (PHSP1) using 103 photons and 10 bins of energy. Alpha and 

confidence level have been chosen 0.05 and 95%, respectively. Five different parameters for 
two datasets are indicated in the figure legend. Note that the whole p-values are above 

significance level. 
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        Energy bins 

Figure 6.10: The visualized p-value plot between GAN generated data and Monte Carlo 
simulated reference data (PHSP1) using 106 photons and 100 bins of energy. Alpha and 

confidence level have been chosen 0.05 and 95%, respectively. Five different parameters for 
two datasets are indicated in the figure legend. Note the most of the p-values are above 

significance level and only a few of p-values rejects the null hypothesis.       

 
The correlation matrices shown in figure 6.11 and figure 6.12 define the 
covariance normalized by the product of their standard deviations between the 
six parameters for the original phase space and the fake one. As an example, the 
value of 0.96 in figure 6.11 denotes that there is high correlation between two 
parameters (X,dX) in the phase space produced by MC simulations, which is also 
equal to the value in figure 6.12 produced by fake data. This is also valid for (Y-
dY).  

                    
Figure 6.11: Correlation matrix for Monte Carlo simulated reference data (original data) 

using 106 photons. Note the correlation value between Y-dY and X-dX. 
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     Figure 6.12: Correlation matrix for GAN generated data (fake) using 106 photons. Note 

the correlation value between Y-dY and X-dX.         
 
 

The following plots obtained from the PCA codes for (103,104,105) photons by 
increasing transparency of the colored dots for all the energy ranges. As it is 
shown in figures 6.13-6.15, the majority of particles has been positioned at the 
center of PCA plot. 
 
 

        
Figure 6.13: PCA plot for GAN generated fake data (red) and Monte Carlo simulated 

reference data (blue) using 103 photons. Note the superimposition of photons with an increase 
in transparency. 
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Figure 6.14: PCA plot for GAN generated fake data (red) and Monte Carlo simulated 

reference data (blue) using 104 photons. Note the superimposition of photons with an increase 
in transparency. 

          
Figure 6.15: PCA plot for GAN generated fake data (red) and Monte Carlo simulated 

reference data (blue) using 105 photons. Note the superimposition of photons with an increase 
in transparency. 

 
 
Table 6.8: P-value between Monte Carlo simulated reference data for training (PHSP1) and 

Monte Carlo simulated data for the evaluation (PHSP2) using (103,106) photons. Note that all 
the p-values are above significance level. 

Data/Parameters Ekine X Y dX dY dZ 
 

103 
 

0.97 
 

0.99 
 

0.11 
 

0.96 
 

      0.09 
 
    0.96 

             
               106 

       
      0.97 

 
0.99 

 

 
0.11 

 
0.97 

 
0.09 

 
    0.96 
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As it was mentioned in section 5.3, two phase space files, produced using a MC 
model, were provided. The file used for training is called PHSP1 and the other 
one used for evaluating is called PHSP2. The p-values in table 6.8 were gained 
in order to compare both phase space produced by MC model. The equal p-values 
for each parameter (103 and 106 photons) have been obtained. The maximum of 
P-value belongs to the X. 
 
 

Table 6.9: The values of final D-Loss and G-Loss obtained at the end of training after 104 
iterations. 

Final D-Loss Final G-Loss 

-0.0002   0.0083 
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7 Discussion and Conclusion  
 

In this chapter, at first, the results of the study are discussed and a conclusion is 
given. The suggestions for further research are presented to the readers. In the 
end, the limitation of the presented study is reported.  

 

7.1  Discussion  
 
The purpose of the present study was to implement a Generative Adversarial 
Network in order to produce a fake phase space and to evaluate the degree of 
similarity between the generated particles and the real ones. As mentioned before, 
training of GAN is a challenging process and due to the fact that GAN is always 
accompanied with the instability and mode collapse, the proposed method, called 
WGAN [66] was used in this research.  
 
I verified that the phase space produced by GAN requires less than 10 MB of 
storage and the generation of particles from GAN is a fast process (within 
seconds), similar to the one produced in this related work [68]. The fake data was 
generated after around 10 hours, by using Google Colab. The process of training 
took 5 times longer than in the previous work by Sarrut [68]. Also, the learning 
rate was set to 2 × 10-5, which is two times more than the value used in the related 
work [68] and the batch size was selected to 103, which is 10 times less [68]. The 
rest of the hyperparameters, like the number of neurons and the number of layers 
were already checked and altered. No significant improvement was achieved by 
that. However, with 103 batch size and 104 iterations, my final D-Loss was 
perfectly converged to zero (-0.002), which is significantly higher than the final 
D-Loss (-0.005) reported by Sarrut, with a batch size of 104 [68]. My work 
therefore shows, that the accurate particles generated by GAN were achieved by 
a smaller training dataset. 
 
The particles generated by GAN were compared to the original phase space by 
MC model. For the assessment, two different techniques were employed to 
compare both the generated data from the Generator and the real data for a 
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specified amount of energy. To evaluate the generated data respectively, the 
numerical method and the visualized method were used. In this work, a new 
method to visualize the p-value was proposed in order to attain a better 
comprehension in the evaluation process. This method was implemented as a 
function in python as it was mentioned in 5.3.4.1. 
 
The implementation was part of my work. In the following, all the evaluation 
techniques used in this thesis are discussed. 
 
As shown in table 6.1, PCA plots for different energy ranges from 20kV to 60kV 
and for a particular number of 104 denote the well-matching of real and fake 
particles. In the mentioned table, the PCA plots for a larger number of particles 
were not matched well. Once the value of transparency was increased, the claim 
was rejected, since the majority of particles existed at the center and only a small 
fraction of them was scattered in the surrounding, as it shown in figure 6.14 and 
figure 6.15. This small fraction could not cause the non-matching of the particles.  
 
The marginal correlation plots of the parameters in the energy range of 20 keV- 
60 keV in the figures 6.2-6.7 show that the fake data and real data were 
superimposed on each other, neglecting the slight differences in some areas. One 
limitation of such method is that it could not be suitable for larger energies (60 
keV - 70 keV), meaning that such energy range lacks superimposition, as shown 
in figure 6.6. By comparing all the PCA obtained plots of the energy range (60 
keV - 70 keV) in table 6.1 with figure 6.6, it denotes that the non-superimposition 
of plots in the mentioned energy range could be due to a lack of data for training.  
In addition, figure 6.7 denotes that the particles generated by the GAN were 
completely matched with the particles generated by MC simulations if no energy 
range considered. 
 
In X-Y correlation technique, for the highest number particles, as well as the 
energy range between 20keV-60keV, the particles were superimposed 
thoroughly. However, below this range, real particles and fake ones were not 
overlaid perfectly. As shown in figure 6.8, no particle was generated, in the 
energy range of 70keV-80keV, due to fact that real data in this range was also 
limited. I realized that this technique was not powerful like PCA, since only two 
parameters were used. Nevertheless, it shows how particles were scattered on the 
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x-y coordinate. If a low number of particles were chosen, the majority of them 
would distribute at the center. 
As a result of the correlation matrix, as it shown in figure 6.11 and figure 6.12, 
the high order of the correlations for X-dX and Y-dY were also modeled by the 
GAN. The correlation between X-dX and Y-dY was the same for generated data 
and original ones. The equivalent correlation shows satisfactory results, which 
denotes that the phase space was trained well. The reason for this issue is that the 
X-dX and Y-dY correlations are initiated from the cone geometry of the X-ray 
[68] which were obtained equivalent for the original and fake data. 
 
The major difference as shown among figure 6.9 and figure 6.10 is, that by 
increasing the number of samples (particles) for 100 bins, more particles were 
needed to be compared with each other in each bin in the visualized p-value 
technique. This causes the p-value to easily go down to zero. If 106 particles are 
used for 100 bins, the calculated p-value may face a limitation. Once the number 
of the particles in each bin was more than 104, then the approximate values were 
gained by the ks_2samp in Kolmogorov-Smirnov in python [75]. This shows that 
the test could not provide exact values when the number of comparative particles 
was more 104. However, in case of having fewer than 104 particles in each bin, 
such limitation no longer occurs.  
 
The p-values obtained in the tables 6.3-6.7 showed contradictory results in 
comparison with the slight differences existed in the marginal correlation plots. 
For better comparison, the values in table 7.1 were calculated from tables 6.3-6.7. 
This technique was proposed as a comparative method, to check the total p-values 
of each mentioned table against each other. As an example, 80% means that in 
the energy range between 20keV-30KeV, 80% of the p-values in table 6.3 were 
above significance level. The lowest significance score (60%), obtained from 
table 6.7, was apparently caused by the lack of data, seen in PCA and X-Y 
correlation methods for the given energy range (60keV-70keV).  
 
 
Table 7.1: The significance score obtained from tables 6.10-6.14 for different energy ranges. 

 

Energy 
range 

20-30 keV 30-40 keV 40-50 keV 50-60 keV 60-70 keV 

Significance 
score 

 
80% 

 
80% 

 
80% 

 
100 % 

 
60% 
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The p-value in the energy range between 50keV-60keV was completely 
statistically significant, that is to say, the p-values in all areas were above 
significance level (100%). As a result of the marginal correlation plots, the real 
and fake data were overlaid on each other in the range of 20keV-60keV and the 
value existed in the given range in table 7.1 concluded, that the amount of 
significance score (80%-100%) for the mentioned energy range was precise. 
Besides, the p-value in the energy range of 60keV-70keV had the lowest 
significance score as shown in the mentioned table. The lack of superimposition 
existed in figure 6.6, which is initiated from the lack of reference particles for the 
given energy range, results in the lowest significance score.  
 
The superimposition of real and fake data on each other, for the energy range of 
20keV-60keV, is seen for the position of the parameters and the direction of the 
particles. The significance score in the given range is 80%-100%, means that only 
about 20% of p-values reject the null hypothesis. However, for the energy range 
of 60keV-70keV, the significance score results 60% which indicates 40% of p-
values reject the null hypothesis, which is considerable high. 
 
Most of the particles in the reference dataset (PHSP1) were distributed in the 
energy range of 20keV-60keV, as it shown in figure 5.3. In the evaluation 
techniques, the energy range of 60keV-70keV was also considered to assess the 
importance of insufficient data for training. 
 
After reviewing all the evaluation techniques, I conclude that, p-value and PCA 
techniques were not suitable methods to analyze millions of photons generated 
by GAN. Although the mentioned techniques were very effective for the low 
number of photons. 
 
Overall, the results of all used evaluation methods for generated and original 
phase space denote that the generated particles were approximative but not 
exactly matching. However, two phase spaces produced by MC had the 
equivalent p-values for a different number of particles (103, 106). As a conclusion 
of used evaluation techniques, the used methods in this thesis like PCA, 
correlation plot and correlation matrix show that the best superimposition of real 
and fake data are seen in the energy range of 20keV-60keV.  
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A considerable advantage of using GAN to generate the characteristic of particles 
is that an arbitrary number of particles can be produced within seconds by 
modeling a large phase space file [68]. In addition, the phase space file produced 
by GAN which requires less storage, was produced based on a smaller training 
dataset. 
 

7.2  Conclusion  
In this thesis, it was researched whether it is possible to use ANN to generate the 
phase space which contains the characteristic of the particles. In order to do so, a 
method called Generative Adversarial Network proposed by Sarrut was used. 
This approach concludes that the generated phase space requires less than 10 MB 
storage which is considerably less in comparison to the 50 GB reference dataset. 
In addition, the generation of the 106 particles takes less than few seconds. 
Besides, all the evaluation techniques, marginal distribution, PCA, P-value 
technique, etc., denote that our generated data has the feasibility to be replaced 
by original one. The results demonstrates that the purpose of this thesis has come 
true, if there is sufficient data provided for training. 

 

7.3  Suggestions for Further Research  
 
GAN has been proposed, for the first time, to generate data with a higher number 
of dimensions and less smooth distributions like images [68]. The use of a special 
type of GAN, Wasserstein GAN with gradient penalty, to generate the 
characteristic of particles, was a novel method proposed by Sarrut. Nevertheless, 
GAN has different types that are considering the state-of-the-art techniques in the 
artificial intelligence. For this purpose, working on different neural network 
methods like cycle GAN or conditional GAN to generate the phase space 
characteristics would be a good suggestion. 
 
 

7.4  Limitations of the Study  
  
The limitation of this work is initiated from a lack of reference particles in the 
energy range between 60keV-70keV as it is obviously shown in the table 6.1 and 
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in table 6.2 as well. If the original phase space contains all the given energy 
ranges, the generated one would be 80% or more statistically significant. 
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Appendix 
 
The p-value for each parameter was obtained for different energy intervals. 
Although the p-value for the whole distribution was unexpectedly small, the null 
hypothesis was rejected and two distributions were not the same. The reason is 
that the p-value in the wo-sample Kolmogorov-Smirnov test could not be an 
accurate factor for comparing the large amount of data.  
In order to compare two proposed methods (numerical p-value method and the 
correlation plot method), each corresponding table and figure for these two 
techniques were considered. It is clear that in some related areas, the p-value was 
below the significance level, meaning that the result was not statistically 
significant but the corresponding plot was perfectly overlaid. For this issue, the 
table 7.1 was designed in order to denote that to what extent the p-value was 
precise in this case. As the result of the correlation of plots, the real and fake data 
were overlaid on each other in the range of 20keV-60keV and the p-value 
percentage in the given range concluded that the amount of significance (80-
100%) for the mentioned energy range was precise . Surprisingly, the p-value in 
the energy range between 50keV-60 keV was completely statistically significant, 
that is to say, the p-values in all areas were above significance level (100%). 
Besides, the p-value in the energy range of 60keV-70keV was not statistically 
significant, as table 6.7 shown the lack of superimposition for such range of 
energy. 
The small amount of the p-values below significance level rejects the null 
hypothesis; however, it can be concluded that the both distributions are not the 
same but the reason for this issue could be due to the size of the comparative data. 
The superimposition of real and fake data on each other, for the energy range of 
20keV-60 keV, was seen for the position of the parameters and the direction of 
the particles. The significance score in the given range 80%-100% means that 
about 20% of p-values rejects the null hypothesis and concludes two distributions 
(fake and real data) are not same. Without considering this percentage and by 
observing the visualized methods (PCA, correlation plot and X-Y plot), the best 
superimposition of real and fake data was seen in the energy range of 20keV-
60keV. For the energy range of 60keV-70 keV, no superimposition was observed 
and the numerical p-value method defined the 40% of the p-values rejects the null 
hypothesis.  
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Code description 
 
 
Below, the different sections of the GAN code model will be explained, which is 
the base for the rest of GAN systems shown in this project. It is important to 
highlight that the base code and structure of this script has been extracted from 
GitHub [73].  
 
Gaga_train: 
 
In the first few lines, the necessary packages like json, click, numpy and etc, have 
been imported. Then the three pre-specified directories for the input file (training 
data), json file (file which contains the all GAN’s parameters) and the output file 
with pth format have been defined. In the following lines of the code, the 
parameters existed in the json file and in the input file were read. The training 
part of GAN has been done after normalization of considered parameters or keys 
in input file. In the last step, the trained data have been saved in the mentioned 
directory as the output file. 
 
import click 
import json 
import time 
import socket 
import gatetools.phsp as phsp 
import gaga 
import copy 
import numpy as np 
from colorama import init 
from colorama import Fore, Style 
import torch 
def gaga_train(phsp_filename, json_filename, output_filename, 
epoch,progress_bar, plot,  plot_every_epoch, w_e, w_n, w_l, w_p,  keys, 
validation_dataset, validation_every_epoch, start_pth): 
    ''' 
    \b 
    Train GAN to learn a PHSP (Phase Space File) 
 
    \b 
    <PHSP_FILENAME>   : input PHSP file (.npy) 
    <JSON_FILENAME>   : input json file with all GAN parameters 
    <OUTPUT_FILENAME> : output GAN as pth file 
    ''' 
 
 
    # term color 
    init() 
    pkeys = keys 
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    # read parameters 
    param_file = open(json_filename).read() 
    params = json.loads(param_file) 
    params['progress_bar'] = progress_bar 
    params['plot'] = plot 
    params['plot_every_epoch'] = plot_every_epoch 
    params['training_filename'] = phsp_filename 
    params['validation_filename'] = validation_dataset 
    params['validation_every_epoch'] = validation_every_epoch 
    start = datetime.datetime.now() 
    params['start date'] = start.strftime(gaga.date_format) 
    params['hostname'] = socket.gethostname() 
    params['dump_wasserstein_every'] = int(w_e) 
    params['w_n'] = int(w_n) 
    params['w_l'] = int(w_l) 
    params['w_p'] = int(w_p) 
    params['start_pth'] = start_pth 
 
    # the epoch parma in the json file may be overwritten by the option 
    if epoch: 
        params['epoch'] = epoch 
 
    # read input training dataset 
    print(Fore.CYAN +"Loading training dataset ... 
"+phsp_filename+Style.RESET_ALL) 
    x, read_keys, m = phsp.load(phsp_filename) 
 
    # consider only some keys 
    if 'keys' in params: 
        keys = params['keys'] 
        if pkeys != '': 
            keys = pkeys 
        keys = phsp.str_keys_to_array_keys(keys) 
        if 'angleXY' in keys: 
            x, read_keys = phsp.add_angle(x, read_keys, 'X', 'Y') 
        x = phsp.select_keys(x, read_keys, keys) 
    else: 
        keys = read_keys 
 
    params['training_size'] = len(x) 
    params['keys'] = keys 
    params['x_dim'] = len(keys) 
 
    # normalisation 
    x_mean = np.mean(x, 0, keepdims=True) 
    x_std = np.std(x, 0, keepdims=True) 
    params['x_mean'] = x_mean 
    params['x_std'] = x_std 
    x = (x-x_mean)/x_std 
 
    # print parameters 
    for e in params: 
        if (e[0] != '#'): 
            print('   {:22s} {}'.format(e, str(params[e]))) 
 
    # train 
    print(Fore.CYAN +'Building the GAN model ...'+Style.RESET_ALL) 
    gan = gaga.Gan(params,x) 
    print(Fore.CYAN +'Start training ...'+Style.RESET_ALL) 
    optim = gan.train() 



 

 

73 

 
    # save 
    stop = datetime.datetime.now() 
    params['end date'] = stop.strftime(gaga.date_format) 
    output = dict() 
    output['params'] = params 
    output['optim'] = optim 
    state = copy.deepcopy(gan.G.state_dict()) 
    output['g_model_state'] = state 
    state = copy.deepcopy(gan.D.state_dict()) 
    output['d_model_state'] = state 
 
    torch.save(output, output_filename) 
 

 

Gaga_generate 
 
As it was mentioned earlier, Gaga_generate provides the arbitrary number of 
generated particles. In addition, the generated particles requires less than few 
megabytes storage. Its function needs two inputs, first the directory of pth file 
coming from Gaga_train must be defined and then the number of arbitrary 
particles has to be specified. 

 

 
import click 
import gaga 
import gatetools.phsp as phsp 
import torch 
import os 
import numpy as np 
from torch.autograd import Variable 
 
def gaga_plot(pth_filename, n, output, toggle, radius): 
    ''' 
    \b 
    Generate a PHSP from a GAN 
 
    \b 
    <PTH_FILENAME>    : input GAN PTH file (.pth) 
    ''' 
 
    n = int(n) 
 
    # load pth 
    params, G, optim, dtypef= gaga.load(pth_filename) 
    f_keys = list(params['keys']) 
 
    # generate samples 
    b = 1e5 
    fake = gaga.generate_samples2(params, G, n, b, False, True) 
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    # Keep X,Y or convert to toggle 
    if toggle: 
        keys = phsp.keys_toggle_angle(f_keys) 
        fake, f_keys = phsp.add_missing_angle(fake, f_keys, keys, radius) 
        fake = phsp.select_keys(fake, f_keys, keys) 
    else: 
        keys = f_keys 
 
    # special case (for retro-compatibility) 
    try: 
        i = keys.index('E') 
        fake[:,i][fake[:,i] <0] = 0.00000000001 # E should not be zero ! 
    except: 
        i = keys.index('Ekine') 
        fake[:,i][fake[:,i] <0] = 0.00000000001 # E should not be zero ! 
 
    # write     
    if output == 'AUTO': 
        b, extension = os.path.splitext(pth_filename) 
        output = b+'.npy' 
phsp.save_npy(output, fake, keys) 

 

 

Gaga_plot 
 
The gaga_plot code provides the marginal distribution plots for six parameters 
(Ekine, X, Y, dX, dY, dZ) obtained by the GAN and the reference dataset. Each 
plot also shows the mean and standard deviation in order to compare the 
generated data and real data. It requires two input file: the training data in NumPy 
format and also the path file in pth format generated by gaga_train code. 

 

import click 
import gaga 
import gatetools.phsp as phsp 
import torch 
import numpy as np 
from torch.autograd import Variable 
 
 
def gaga_plot(phsp_filename, pth_filename, n, nb_bins, 
              toggle, radius, quantile, plot2d): 
 
    # nb of values 
    n = int(n) 
 
    keys_2d = plot2d; 
    if keys_2d == None: 
        keys_2d = [] 
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    # load phsp 
    real, r_keys, m = phsp.load(phsp_filename, n) 
 
    # load pth 
    params, G, D, optim, dtypef= gaga.load(pth_filename) 
    f_keys = params['keys'] 
    keys = f_keys.copy() 
 
    # generate samples 
    fake = gaga.generate_samples2(params, G, n, int(1e5), False, True) 
 
    # Keep X,Y or convert to toggle 
    if toggle: 
        keys = phsp.keys_toggle_angle(keys) 
 
    real, r_keys = phsp.add_missing_angle(real, r_keys, keys, radius) 
    fake, f_keys = phsp.add_missing_angle(fake, f_keys, keys, radius) 
 
    real = phsp.select_keys(real, r_keys, keys) 
    fake = phsp.select_keys(fake, f_keys, keys) 
 
    # curate keys_2d 
    k2 = [] 
    for k in keys_2d: 
        if (k[1] in keys) and (k[0] in keys): 
            k2.append(k) 
    keys_2d = k2 
 
    # fig panel 
    nb_fig = len(keys)+len(keys_2d) 
    nrow, ncol = phsp.fig_get_nb_row_col(nb_fig) 
    fig, ax = plt.subplots(nrow, ncol, figsize=(25,10)) 
 
    # plot all keys for real data 
    i = 0 
 
    q = {} 
    for k in keys: 
        index = keys.index(k) 
        d = real[:,index] 
        q1 = quantile 
        q2 = 1.0-quantile 
        q[k] = (np.quantile(d, q1), np.quantile(d, q2)) 
        gaga.fig_plot_marginal(real, k, keys, ax, i, nb_bins, 'g', q[k]) 
        i = i+1 
 
    # plot all keys for fake data 
    i = 0 
    for k in keys: 
        index = keys.index(k) 
        d = real[:,index] 
        #q1 = quantile 
        #q2 = 1.0-quantile 
        #q = (np.quantile(d, q1), np.quantile(d, q2)) 
        #print(q) 
        gaga.fig_plot_marginal(fake, k, keys, ax, i, nb_bins, 'r', q[k]) 
        i = i+1 
 
 
    # plot 2D distribution 
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    if len(keys) > 1: 
        starti = i 
        for kk in keys_2d: 
            gaga.fig_plot_marginal_2d(real, kk[0], kk[1], keys, ax, i, 
nb_bins, 'g') 
            i = i+1 
 
        # plot 2D distribution 
        i = starti 
        for kk in keys_2d: 
            gaga.fig_plot_marginal_2d(fake, kk[0], kk[1], keys, ax, i, 
nb_bins, 'r') 
            i = i+1 
 
        if False: 
            for kk in keys_2d: 
                a = phsp.fig_get_sub_fig(ax,i) 
                gaga.fig_plot_diff_2d(real, fake, keys, kk, a, fig, 
nb_bins) 
                i = i+1 
 
 
    # remove empty plot 
    phsp.fig_rm_empty_plot(nb_fig, ax) 
 
    plt.suptitle(pth_filename) 
    plt.tight_layout() 
    plt.subplots_adjust(top=0.9) 
    plt.show() 
 
    #output_filename = 'aa.png' 
    #plt.savefig(output_filename) 
    #plt.close() 
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