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I

Abstract

Lattice materials are becoming increasingly important in lightweight design as they can now be manufactured

to meet desired properties using advancing additive manufacturing techniques. Reliable predictions of their

mechanical response are required to use them in engineering applications in an efficient way. Among the

numerous failure mechanisms that may occur in lattice materials, this thesis focuses on the buckling of lattice

beams caused by global compressive loading. For the sake of efficiency, a continuum modeling approach is

aimed for, which is addressed by using micropolar continuum theory. It is a promising approach to describe the

required deformation mechanisms based on the internal length scale of the micropolar continuum. However,

investigating buckling of lattice beams based on micropolar modeling is not common in the literature. In

a first step, the micropolar elastic constants for the constitutive relations are determined, since these are

generally not available in the literature. Additionally, a geometrically nonlinear model is required to study

buckling. Such a model is not yet available out of the box and, therefore, must be implemented in the Finite

Element Method framework of interest.

An energy-based homogenization approach commonly used in the literature is employed to derive the mi-

cropolar elastic constants of 2D and 3D lattices. The method provides two sets of constants for the very same

lattice depending on assumptions made during the derivation. Comparing these sets, some of the constants

associated with the rotation field differ from each other in both sign and magnitude. Both sets have caused

some controversy in the literature about the validity of the method in general. To contribute to the discussion

a numerical study is carried out based on 2D lattices. This study is also used as basis for the derivation of

the constants of the 3D lattices aimed for in the present thesis. For the set with constants showing negative

signs, the internal length of the lattices and the meshing parameters are found to be competing length scales.

Conditions are proposed to circumvent such interference. In contrast, the set with constants showing only

positive signs can be used without constraints as long as a proper discretization is ensured such that the

gradients of the kinematic fields are captured properly. Based on the findings, micropolar elastic constants

of various types of 3D lattices are derived. To evaluate the validity of these constants, continuum models are

compared to discrete models in terms of strain energies and rotation fields.

To study buckling, a geometrically nonlinear model proposed in the literature is implemented in ABAQUS

as a user element. For verification of the implementation, benchmark problems are used. It is investigated

to what extent the model is capable of estimating critical loads and predicting the postbuckling behavior

of lattice beams when remaining within the linear strain regime. Discrete models serve as reference. The

postbuckling regime is accessed by imposing eigenmode-affine imperfections based on linear eigenvalue anal-

ysis of the discrete models and random-based imperfections inspired by imperfections commonly occurring

in additive manufacturing. The comparison with discrete models shows that the overall behavior can be

qualitatively captured by the models and that even localizations of deformation are captured as long as the

localized deformations remain small. While further studies are necessary to identify the limits of the model

to provide the reliability required for any engineering application, the present contribution provides evidence
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that the micropolar continuum offers the capability of replacing discrete models for buckling and postbuckling

predictions of lattice materials.
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Kurzfassung

Gittermaterialien gewinnen im Leichtbau zunehmend an Bedeutung, da sie heute mithilfe additiver Fer-

tigungsverfahren mit den gewünschten Eigenschaften hergestellt werden können. Zuverlässige Vorhersagen

des mechanischen Verhaltens sind erforderlich, um sie in technischen Anwendungen in effizienter Weise ein-

setzen zu können. Unter den zahlreichen Versagensmechanismen, die in Gittermaterialen auftreten können,

konzentriert sich diese Arbeit auf das Knicken von Gitterbalken, das durch globale Drucklasten verursacht

werden kann. Aus Gründen der Effizienz wird dabei ein kontinuumsmechanischer Ansatz auf Basis der mi-

kropolaren Theorie verfolgt. Diese Theorie stellt einen vielversprechenden Ansatz dar, um die benötigten

Verformungsmechanismen mithilfe einer internen Länge, welche dieser Theorie zugrunde liegt, zu beschrei-

ben. Allerdings, sind Beulanalysen von Gitterbalken mithilfe mikropolarer Modelle in der Literature nicht

üblich. In einem ersten Schritt werden die mikropolar elastischen Konstanten für das zugrundeliegende Kon-

stitutivgesetz bestimmt, da diese im Allgemeinen nicht in der Literatur verfügbar sind. Zusätzlich wird ein

geometrisch nichtlineares Modell benötigt, um Beulen untersuchen zu können. Solche Modelle sind nicht als

Standardmodelle verfügbar und sind daher erst in ein Finite Elemente Programm zu implementieren.

Eine in der Literatur übliche energiebasierte Homogenisierungsmethode wird angewendet, um die mikropolar

elastischen Konstanten von 2D und 3D Gittermaterialien zu bestimmen. In Abhängigkeit der getroffenen

Annahmen, liefert diese Methode zwei Sätze von Konstanten für ein und dasselbe Gitter. Vergleicht man

diese beiden Sätze, so unterscheiden sich einige der Konstanten, die mit dem Rotationsfeld verknüpft sind,

sowohl im Vorzeichen als auch in der Größe. Beide Sätze haben in der Literatur zu einer gewissen Kontroverse

über die Gültigkeit der Methode im allgemeinen geführt. Daher wird eine numerische Studie auf Basis von

2D Gittern durchgeführt, um einerseits zur Diskussion beizutragen und andererseits eine Grundlage für die

Bestimmung der Konstanten für die 3D Gitter zu erhalten, die in dieser Arbeit bestimmt werden sollen.

Für den Satz von Konstanten mit negativen Vorzeichen werden dabei die interne Länge des Gitters und die

Vernetzungsparameter als zwei konkurrierende Längenskalen identifiziert. Es werden Bedingungen formuliert,

um Interferenzen zu vermeiden. Hingegen kann der Satz von Konstanten mit positiven Vorzeichen ohne

Einschränkungen verwendet werden, sofern die Diskretisierung ausreichend fein ist, um Gradienten in den

kinematischen Feldern abbilden zu können. Basierend auf diesen Ergebnissen werden mikropolare elastische

Konstanten für verschiedene 3D Gittertypen ermittelt. Die Validität der Konstanten wird durch den Vergleich

von Kontinuumsmodellen mit diskreten Modellen evaluiert.

Um Beulen zu untersuchen, wird ein in der Literatur vorgeschlagenes, geometrisch nichtlineares Modell in

ABAQUS als Benutzerelement implementiert. Die Implementierung wird anhand von Benchmark-Problemen

verifiziert. Es wird untersucht bis zu welchem Grad das Modell, unter der Annahme kleiner Verzerrungen, in

der Lage ist, kritische Lasten abschätzen und das Nachbeulverhalten von Gitterbalken abbilden zu können.

Diskrete Modelle dienen dabei als Referenz. Das Nachbeulverhalten wird einerseits durch Eigenform affine

Imperfektionen, basierend auf linearen Eigenwertanalysen der diskreten Modelle zugänglich gemacht. Ande-

rerseits werden zufallsbasierte Imperfektionen verwendet, welche durch gewöhnlich in der additiven Fertigung
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auftretende Imperfektionen inspiriert sind. Der Vergleich mit diskreten Modellen zeigt, dass die Kontinuums-

modelle sowohl das globale Verhalten qualitativ erfassen als auch Deformationslokalisierungen, solange diese

klein sind, abbilden können. Während weitere Studien notwendig sind, um die Grenzen der mikropolaren Mo-

delle bestimmen zu können, die in technischen Anwendungen zwingend erforderlich sind, zeigt diese Arbeit

auf, dass mikropolare Kontinuumsmodelle, grundsätzlich die Möglichkeit bieten diskrete Modelle für Beul-

und Nachbeulanalysen zu ersetzen.
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Notation

Throughout this thesis italic letters refer to scalars and boldface letters designate tensorial quantities. Un-

derlined letters indicate first order tensors or vectors, letters with a single tilde placed below refer to second

order tensors, underlined letters with a single tilde placed below designate third order tensors, and blackboard

letters with a double tilde placed below indicate fourth order tensors. All components of tensors are given

with respect to a Cartesian basis.

Square brackets indicate that either vectors and matrices in general or a vector-matrix notation of second

or fourth order tensors is used. Unless stated otherwise, the components for the vector-matrix notation are

arranged as given in Eq. (2.62). Ambiguity remains for second order tensors in vector-matrix notation and

for matrices in general. Thus, if a tensor is used, this is explicitly stated.

Tensor notation

a, b . . . scalars

a, b . . . tensors of the first order (or first order tensors) or vectors

A~ , a~ . . . tensors of the second order (or second order tensors)

A~ , a~ . . . tensors of the third order (or third order tensors)

A~~ , ❛~~ . . . tensors of the fourth order (or fourth order tensors)

Index notation

a, b . . . scalars

ai, bi . . . vectors

Aij , aij . . . second order tensors

Aijk, aijk . . . third order tensors

Aijkl , ❛ijkl . . . fourth orders tensor

Vector-matrix notation

[A~ ], [a~] . . . second order tensors

[A~~ ], [❛~~] . . . fourth order tensors

Vectors and matrices in general

[A], [a] . . . vector

[A~ ], [a~] . . . matrix
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List of Symbols

The symbols are grouped by scalars, first, second, third and fourth order tensors, and FEM related variables,

respectively. Within each group, Latin symbols in alphabetic order are placed before Greek symbols in

alphabetic order.

Scalars

A . . . . . . . . . . . cross section of 3D lattice member mm2

Abc . . . . . . . . . area of base cell mm2

Aint, Aext . . . internal and external energies Nmm

B . . . . . . . . . . . micropolar body

Es . . . . . . . . . . Young’s modulus of parent material N/mm2

Ese, ∆Ese . . . total and incremental strain energies Nmm

Gs . . . . . . . . . . shear modulus of parent material N/mm2

h . . . . . . . . . . . . out-of-plane thickness associated with plane strain assumption mm

H(·) . . . . . . . . Heavyside function

Im, In, It . . . . geometrical moments of inertia of m-, n-, and t-axis of 3D lattice member mm4

J . . . . . . . . . . . determinant of the deformation gradient tensor

L, l . . . . . . . . . lengths at macroscale and microscale mm

nbc . . . . . . . . . . number of lattice members comprising a base cell

N1xN2(xN3) number of base cells in 1, 2, (and 3)-direction comprising the lattice

P . . . . . . . . . . . material point or particle

r . . . . . . . . . . . . radius of 3D lattice member mm

S, s . . . . . . . . . surfaces in reference and current configurations mm2

∂R0, ∂Rt . . . surface boundaries in reference and current configurations mm2

t . . . . . . . . . . . . thickness of 2D lattice member mm

t . . . . . . . . . . . . time s

V, v . . . . . . . . . volumes of micropolar body in reference and current configurations mm3

Vbc, Vs . . . . . . volumes of basce cell and parent material mm3

WIJ . . . . . . . . . strain energy of lattice member IJ mm2

ηi, Hi . . . . . . ith eigenvalue and eigenmode

λ, µ, ν;α, β, γ micropolar elastic constants of isotropic material N/m2m; N

νs . . . . . . . . . . . Poisson’s ratio of parent material

ξi, ξ . . . . . . . . . scaling factor for the ith eigenmode and for deviation of radii

ρ0, ρt . . . . . . . densities in reference and current configurations kg/mm3

ρr . . . . . . . . . . . relative density

χy . . . . . . . . . . averaged relative error of DOF y

ψ . . . . . . . . . . . strain energy density N/mm2
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First order tensors and general vectors

Ei, ei . . . . . . . basis vectors in 1, 2, and 3-direction in reference and current configurations

Di, di . . . . . . . directors i = 1, 2, 3 of trihedral of P in reference and current configurations

f . . . . . . . . . . . . body force density vector N/kg

m . . . . . . . . . . . body moment density vector Nmm/kg

t, t̃, t̆ . . . . . . . stress vectors related to Cauchy-, PK1-, and PK2-like stress tensors N/mm2

κt, κt̃, κt̆ . . . . couple stress vectors related to Cauchy-, PK1-, and PK2-like

couple stress tensors N/mm
χt, χt̃, χt̆ . . . axial vectors of Cauchy-, PK1-, and PK2-like stress tensor N/mm2

u . . . . . . . . . . . . displacement vector mm

UI . . . . . . . . . . nodal displacement vector at node I mm

X, x . . . . . . . . position vectors of particle in the reference and current configurations mm

[ε~] . . . . . . . . . . . linear micropolar generalized vector of strain and curvature components -,1/mm

[σ~ ] . . . . . . . . . . linear micropolar generalized vector of stress and couple stress components N/mm2, N/mm

ϕ . . . . . . . . . . . microrotation vector rad

ΦI . . . . . . . . . . nodal rotation vector at node I rad

Second order tensors and general matrices

[D~~ ] . . . . . . . . . . generalized fourth order elasticity tensor in vector-matrix notation

or micropolar elasticity matrix N/mm2, N

E~ , e~ . . . . . . . . . micropolar relative Lagrangian and Eulerian stretch tensors

F~ . . . . . . . . . . . deformation gradient tensor

I~ . . . . . . . . . . . . identity tensor

K~ , k~ . . . . . . . micropolar relative Lagrangian and Eulerian wryness tensors 1/mm

T~ , T̃~ , T̆~ . . . . . Cauchy-, PK1-, and PK2-like stress tensors N/mm2

κT~ ,κT̃~ ,κT̆~ . . . Cauchy-, PK1-, and PK2-like couple stress tensors N/mm

[T~ (e)
r ] . . . . . . . transformation matrix

R~ ,R~mac,R~ eff . microrotation, macrorotation, and effective rotation tensors

ε~, κ~ . . . . . . . . . linearized micropolar strain and curvature tensors -, 1/mm

σ~ , κσ~ . . . . . . . linear stress and couple stress tensors N/mm2, N/mm

Third order tensors

ϵ~ . . . . . . . . . . . . Levi-Civita symbol or permutation tensor

Fourth order tensors

A~~ . . . . . . . . . . . elasticity tensor relating strains and stresses N/mm2

B~~ . . . . . . . . . . . elasticity tensor relating curvatures and couple stresses N

C~~ . . . . . . . . . . . elasticity tensor coupling strains-curvatures and stresses-couple stresses N/mm2, N

O~~ . . . . . . . . . . . zero fourth order tensor

T~~ . . . . . . . . . . . transformation tensor

FEM related

[B~ (e)
N ] . . . . . . . matrix of derivatives of element shape functions

[d~] . . . . . . . . . . differential operator matrix

he . . . . . . . . . . . element size mm

J̆~ξ, J~ξ . . . . . . . Jacobian matrices to map reference and current configurations

to parent element space
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Chapter 1

Introduction

1.1 Motivation

The ongoing process of weight reduction for improving the performance of structures in various engineering

applications is a constant challenge for lightweight design encompassing designs, materials, and manufactur-

ing processes. Over the past decades, advances in all three disciplines have significantly contributed to the

development of so-called lattice materials. Lattice materials consist of a combination of one or more materials

arranged in a predefined arrangement on a much smaller scale, namely, the microscopic scale. Hence, their

mechanical properties depend not only on the combination of the materials used, but also on the structural

configuration at the microscale, i.e., the microstructure. For periodic arrangements of base cells, which are

the smallest geometric unit on the microscale that can be used to represent the lattice by periodic arrange-

ment in all spatial directions, the microstructure acts as a main contributor to the mechanical properties on

the macroscopic scale [38]. On the basis of this knowledge and progressing additive manufacturing (AM)

techniques, e.g., [60, 70], the chance of designing man-tailored structures comes up to meet desired properties.

Superior mechanical properties can be achieved in terms of stiffness-to-density ratios [91], strength-to-density

ratios, auxeticity [11], energy-absorbing capabilities [87], and much more, see, e.g., [31]. Hence, lattice mate-

rials are becoming increasingly important in a wide range of advanced biomedical and aerospace applications,

such as patient-specific medical implants [84] and multifunctional sandwich panels [12], respectively. Appli-

cations based on lattice materials cover various length scales, ranging from dimensions of micrometers to

meters, such as microlattice materials [45, 81, 87] and composite lattice materials [50], respectively. Lattice

materials have already been manufactured on the nanoscale, e.g., [94]. Based on the differences in length

scale between the macroscopic deformations and the microstructure one distinguishes sometimes between

lattice materials and lattice structures, see, e.g., [85]. No differentiation is made in this work and the terms

are used synonymously.

The high strength-to-density ratio of lattice structures is of special interest in lightweight design applications.

To further exploit their weight-saving potential, slender lattice structures can be used. However, slender

lattice structures are prone to structural instabilities when exposed to compressive stress states, which may

be caused by both tensile and compressive overall loading conditions. The compressive strength of these ma-

terials is governed by the buckling load rather than the strength of the parent material [67]. The resistance

to buckling is determined by various parameters, such as macroscopic dimensions, microstructure, boundary

conditions, free edges, and deviations from the originally intended perfect design known as imperfections.

Additionally, these parameters influence the resulting deformations on both the microscopic and the macro-
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scopic scale once the critical buckling load is exceeded. The resulting buckling modes with wavelengths as

small as the microstructure are referred to as local instabilities while those close to the overall dimension of

the lattice structure are designated as global instabilities. For lattice structures manufactured by AM, imper-

fections based on the manufacturing process are likely to occur. Common manufacturing imperfections are

deviations from the originally intended geometry and a poor distribution of material, e.g., [99]. Even small

deviations can change the overall structural behavior of the lattice structure, making buckling more likely

and undermining its functionality in service. Independent of whether buckling is intended to be avoided in

engineering applications, e.g., [51], or to be exploited, e.g., [52], appropriate descriptive models are necessary

to properly predict the structural behavior of lattice structures. To achieve safety-related reliability for their

utilization, detailed information about local mechanisms, such as local nonlinear deformations is necessary.

For this purpose, numerical modeling by means of the Finite Element Method (FEM) is often employed.

This can save both time and cost in the development process of such materials and components made out of

them.

Discrete FEM models of lattice materials, i.e., models explicitly resolving each lattice member by finite ele-

ments, may be the first choice to predict the mechanical response of such materials. The lattice members can

be discretized by either using solid elements, e.g., [57], or using structural elements, such as beam elements,

e.g., [59]. However, for finite-sized lattice structures comprised of a large number of base cells, FEM simu-

lations of such models may show high computational effort, especially when considering the aforementioned

buckling nonlinearities. Furthermore, as pre-processing is one of the most time-consuming steps for structural

engineers conducting FEM simulations [14], discrete modeling approaches are disadvantageous compared to

other modeling strategies such as continuum modeling.

To address the drawbacks of discrete models, one may prefer to treat the internal architecture as an effective,

or homogenized, material. For this purpose, an appropriate constitutive law is required that shows the same

effective mechanical response as the discrete structure. As long as the base cell is far smaller than the

macroscopic dimensions of the lattice, i.e., the separation of scales is satisfied, the classical elasticity theory

(CET), or Cauchy continuum theory, is applicable for describing the effective response of the lattice structure.

Various first-order homogenization approaches are available to determine the corresponding effective material

moduli for the CET continuum, see [3] for an overview. Once the macroscopic dimensions of the lattice

structure and the size of its microstructure are of the same order of magnitude, i.e., the separation of scales

is not satisfied, the CET continuum is no longer able to capture the effective response properly. Size effects

start to play an important role, e.g., [54, 97], which are directly related to the size of the microstructure with

respect to the macroscopic dimensions of the sample. This also holds true for cases where local instabilities

occur as observed, e.g., in the formation of crush bands [74, 77]. To account for these phenomena, generalized

continuum models can be used to introduce an additional length scale into the constitutive laws. Various

generalized continuum theories are available in the literature, see, e.g., [32, 33, 73] for an overview.

Which of these theories is best suited for serving as an appropriate descriptive model depends mainly on

the deformation mechanisms of the microstructure. To decide which deformation mechanism dominates the

mechanical response, it is of interest whether the response is governed by stretching or bending of the lattice

members, i.e., stretching-dominated and bending-dominated lattice materials are distinguished, e.g. [5, 20].

The deformation of the lattice members of slender rigid-jointed lattice materials can either be stretching-

or bending-dominated depending various parameters, such as the geometry of the base cell. However, due

to their slenderness their deformation behavior is characterized by both displacements and rotations as

independent fields. Consequently, the modeling of such lattice materials in terms of continuum theory asks

for generalized theories capable of accounting for both fields independently. The micropolar field theory is
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such a theory and may serve as the basis for an appropriate descriptive model [73]. This theory is used in

the present work.

The capability of micropolar continuum modeling for reasonably predicting the buckling and postbuckling

behavior of finite-sized slender lattice structures by means of the FEM is investigated in the present work.

For lattice structures, the challenge is to account for both global and local structural instabilities caused by

certain loading conditions. For micropolar continuum modeling, this means that both large displacements and

finite rotations as well as finite strains on the macroscale need to be considered, respectively. The macroscopic

finite strains are governed by large displacements or finite rotations within the microstructure rather than by

material nonlinearities of the parent material, such as plasticity and damage. To deal with the complexity

of the nonlinearities present in micropolar continuum modeling of lattice structures, a descriptive model

capable of handling the mechanical response in the linear regime is sought for and investigated in a first step.

Based on these insights, the micropolar continuum model is extended to account for large displacements and

finite rotations while remaining within the small strain regime. Therefore, the model shall allow to capture

global instabilities. Once the critical global load is reached, the postbuckling behavior can be studied. The

capability of the model to capture local instabilities without explicitly considering finite strains is of further

interest in the present work.

1.2 State of the art

The approaches in the literature for modeling lattice structures using the FEM are quite extensive. For the

sake of brevity, the focus is set on continuum modeling approaches and, in particular, on micropolar continuum

modeling, which is the approach aimed for in the present thesis. Various other continuum approaches can

be found in the literature, see, e.g., [95], and some of them are briefly outlined to provide a brief overview of

the various types of models.

The constitutive laws necessary for describing the effective mechanical response of lattice materials are of-

ten based on a strain energy functional derived via various homogenization techniques exploiting different

continuum theories. Which approach is well-suited for a particular lattice is mainly determined by the local

deformation mechanisms, which can be roughly divided into stretching- and bending-dominated ones [5, 20].

Models accounting for stretching-dominated, or pin-jointed, periodic networks is addressed, e.g., in [76] using

CET and in [19, 21] using second gradient theory. These models have in common that the strain energy

contribution of angle changes between lattice members is described via the displacement field rather than

introducing independent rotational degrees of freedom (DOFs) as is the case for micropolar continua. In

[76], the effective constitutive response of a pin-jointed honeycomb is derived based on the potential energy

functional of a base cell accounting for the local snap-through mechanism. Stretching-dominated diamond,

and triangular lattices are used to study the capability of the model presented in [21], which accounts for

localized deformation, such as plasticized lattice members. Pantographic lattices, which consist of two families

of beams connected by pin joints that allow relative motion at the expense of some deformation energy, are

the basis for the model presented in [19] to describe the deformations of such lattices. In [39], the buckling

modes of pantographic lattices are further investigated using a similar model.

Continuum modeling of bending-dominated, or rigid-jointed, lattice materials are addressed, e.g., in [63, 64]

employing CET, in [16, 42, 53, 86] using micropolar continuum theory, in [40, 41] making use of second

gradient theory, and in [13] using a micromorphic continuum model. Beam-like lattice structures subjected

to large deformations are the basis for evaluating the model presented in [63]. This model accounts for the

underlying small-scale deformation mechanisms based on a strain energy functional that is set up by a finite
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set of assumed local deformation modes of the corresponding discrete lattice without resorting to micropolar

elasticity. The investigations are based on large planar structures consisting of only a small number of base

cells. In [64], the model is extended to account for elasto-plastic material behavior. The multiscale modeling

technique presented in [40] is a second gradient model accounting for both translational and rotational

DOFs at the macroscale and allows numerically efficient modeling of inhomogeneous deformation states

on the macroscale. It is a compromise between computational homogenization methods (FE2), where the

deformation state of a representative volume element is solved numerically, and analytical methods. In

[41], the model was extended to three dimensions (3D) to study, e.g., the bending-dominated bitruncated

octahedron lattice.

Other concepts of continuum modeling include multiscale approaches, e.g., in [92, 93], quasicontinuum meth-

ods, e.g., in [78], and substructuring approaches, e.g., in [49]. In [93], local buckling modes of bending-

dominated lattices are accounted for via a FE2 approach, which allows for a nonlinear constitutive model at

the macroscale. The quasicontinuum model in [78] with the focus set on computational efficiency accounts

for geometrically nonlinear deformations at the microscale and is well-suited for stretching-dominated lat-

tices. Substructuring is used in [49] to investigate the buckling of large structures. The micromorphic model

presented in [90] is able to capture local and global buckling of a pattern-transforming metamaterial.

The majority of the more sophisticated models mentioned, such as [40, 41, 78, 90], are considered to be too

complex for a straightforward implementation, either in terms of the homogenization approach or the technical

realization. Therefore, this work focuses on micropolar continuum modeling for the following reasons. On the

one hand, it has already been shown in the literature that micropolar continuum models are able to capture

local deformation mechanisms related to the microscale. They allow, e.g., modeling shear localization in two-

dimensional (2D) granular media [74]. On the other hand, it is well-suited also for lattice materials showing

bending-dominated behavior at the microscale [73]. Furthermore, micropolar modeling of lattice materials is

widely used in the literature, e.g., in [15, 16, 53, 86, 97] for 2D and in [18, 23] for 3D lattices.

To study lattice materials with micropolar continuum models, a suitable homogenization method is required

to obtain the effective material, i.e., the corresponding micropolar elastic constants (MECs) required for

the constitutive relations. Various methods are available in the literature, such as energy-based methods,

e.g., in [15, 36, 53], methods based on structural analysis of the base cell, e.g., in [96], and asymptotic

homogenization methods, e.g., in [22, 42] for linear and in [24, 25] for nonlinear deformations, respectively.

With the exception of [24, 25], these methods are only suitable to account for the linear elastic response and

have been employed mainly to study 2D lattices. For studying 3D lattices with micropolar models, there are

only a few contributions in the literature. Linear modeling has been used, e.g., in [23] to study a 3D chiral

lattice and in [18] to give insight into the mechanical couplings in the constitutive relations predicted by the

so-called decoupled micropolar elasticity theory presented therein. Models must be able to account for large

deformations to study buckling, i.e., geometrically nonlinear models are required.

Geometrically nonlinear models based on continuum elements have been presented in [8, 9, 44, 69, 74] con-

sidering isotropic materials and in [69] even for transversally isotropic materials. All these models account

for 3D, except the model in [74], which investigates shear localization in 2D granular media considering a

hypoplastic constitutive law. Models based on micropolar beam theory can be found in [56, 75], where size-

dependence in isotropic materials is considered in [75], and buckling of 3D chiral column lattices is studied

in [56]. However, the beam element based models are inferior to the continuum element based models in

terms of a broader range of applications, which is why the latter are of interest in this work. Continuum

element based models must be considered mathematically intricate for deriving the tangent stiffness matrix.

Therefore, a central finite difference scheme to numerically evaluate the tangent stiffness matrix [8] is used

in the present thesis.
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To properly capture the deformation mechanisms for large deformations even at the microscale, a suitable

homogenization method is required, such as the nonlinear asymptotic homogenization method presented in

[24]. However, the nonlinear behavior at the microscale in conjunction with a geometrically nonlinear model

must be considered as very complex for the implementation in a FEM framework. Therefore, linear elastic

material behavior is considered in the first place. The energy-based homogenization methods, such as the

ones presented in [10, 36, 53], are considered to be suitable for determining the corresponding MECs. For

the sake of simplicity, the homogenization approach presented for 2D models in [10, 53] is used and extended

to 3D accordingly. To the best of the author’s knowledge, micropolar modeling of lattice materials using

a continuum element based formulation in 3D undergoing large deformations but staying within the linear

strain regime has not been presented in the literature before.

1.3 Scope of present work

The overall aim of the present thesis is to set up a framework by means of the FEM for studying 3D beams

made out of lattice materials, in the following denoted as lattice beams, under global compressive loading

within the context of continuum modeling. For this purpose, the micropolar continuum theory is employed,

which is well-suited for bending-dominated slender lattices and allows for a more relaxed separation of scales

compared to the CET continuum. To study 3D lattices in the context of micropolar continuum modeling, the

corresponding MECs need to be determined. These constants are in general not available in the literature

and are derived for various lattice types based on the homogenization method presented in [10, 53]. This

method yields two different sets of MECs for the same lattice type, based on the assumptions made during

the derivation. This has caused an ongoing debate in the literature. To decide which set is to be used for

the 3D lattices, a numerical study is carried out on the basis of 2D lattices. To verify the MECs obtained

for the 3D lattices, a comparison is made between continuum and discrete lattice models. Slender lattice

beams undergoing large displacements and rotations under global compressive loading, require geometrically

nonlinear micropolar continuum models. Therefore, the geometrically nonlinear micropolar model presented

in [8] is implemented in ABAQUS with some modifications based on [44]. The geometrically nonlinear

micropolar continuum is verified against benchmark examples taken from literature. Within the scope of the

present thesis, only the linear strain regime is considered. Otherwise, nonlinear homogenization methods are

needed.

1.4 Outline of the thesis

In Chapter 2 the micropolar continuum theory necessary to set up a boundary-value problem (BVP) is

presented. The stress and strain measures as well as the constitutive laws used for the FEM implementation

presented in Chapter 4 are introduced.

Chapter 3 focuses on the homogenization method used to derive the MECs of lattice structures for an

equivalent micropolar continuum. These constants are derived for the primitive orthorhombic (PO), the

body centered cubic (BCC), and the body centered cubic reinforced by primitive cubic (BCCCP) lattices.

Additionally, the controversy that the method has caused in the literature is addressed, and a numerical

study based on 2D lattices is proposed to contribute to the discussion.

In Chapter 4 the FEM implementations are outlined, where two different FEM frameworks are used, namely,

ABAQUS and NGSolve. Implementations in two and three dimensions are presented for the linear micropolar
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continuum using both frameworks. Additionally, the implementation of the 3D geometrically nonlinear

micropolar continuum in ABAQUS is outlined.

Chapters 5, 6, and 7 cover the numerical applications. Chapter 5 outlines the numerical study proposed in

Chapter 3 to contribute to the discussion on the controversially disputed homogenization method. To verify

the MECs derived for the 3D lattices presented in Chapter 3, a comparison is made between continuum and

discrete lattice models for various load cases presented in Chapter 6. In Chapter 7, the geometrically nonlinear

micropolar continuum is verified against benchmark examples taken from literature and the chapter is closed

by studying the capabilities of the geometrically nonlinear micropolar continuum to account for slender lattice

beams under global compressive loadings.

Finally, Chapter 8 summarizes the results and gives a brief outlook on future work.
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Chapter 2

Micropolar theory

In the following, the micropolar continuum is introduced within the generalized mechanical continuum theory.

The kinematics and kinetics resulting from the additional DOFs compared to CET are presented. The

equations of motion and boundary conditions to set up a BVP as well as constitutive laws for micropolar

continua are introduced. From the defined nonlinear strain measures, the corresponding measures of the

linear micropolar continuum are derived. The presented micropolar theory mainly follows [28]. This also

applies to the notation used to represent the physical quantities. No proofs or derivations are provided for

the various equations given, which have already been outlined in [28] as well as in various other works. Only

the equations necessary for the implementation in Chapter 4 are presented.

2.1 Classification of micropolar continua

Following the classification of generalized mechanical continuum theories proposed in [32], the micropolar

continuum is introduced. The classification is shown in Figure 2.1. For any continuous media B, it dis-

tinguishes between continua that do or do not satisfy the principle of local action. The principle of local

action states that the mechanical state at each material point or particle, P, of B is uniquely determined

by an arbitrary small neighborhood of P [89]. Media that do not satisfy this principle are called nonlocal

and are using an integral formulation for the constitutive equations, e.g., [29]. In [62], models describing this

type of media are summarized as strongly nonlocal. Media satisfying the principle of local action, are further

classified into simple and non-simple media. According to [32], for simple media, the response at P of B to

deformations homogeneous in a neighborhood of P uniquely determines its response to every deformation at

P. The continuum based on the CET belongs to this kind of media. The non-simple media are subdivided

into the classes of higher grade and higher order media. The material behaviour of higher grade media is

sensitive to higher gradients of the displacement field, such as second or third order [65], or, even more gener-

ally, to higher gradients of some internal variables [61], e.g., variables describing the localization of damage.

The material behaviour of higher order media is characterized by additional DOFs at each material point P,

which introduces internal length scales into the field theory [30]. The response of this kind of media depends

on the ratio of the external characteristic length L to the internal or intrinsic characteristic length l, which

is directly related to the microstructure of the media. The media shows size-dependent material behaviour.

For this reason, the separation of length scales that applies to these media is more relaxed than within the

CET, for which L/l ≫ 1 must apply, otherwise the principle of local action is not satisfied [30]. Higher order

media are sometimes called continua with microstructure.
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Figure 2.1: Flowchart showing the classification of generalized continua. Taken and modified from [32].

The simplest continuum belonging to this class is the micropolar continuum or Cosserat continuum, which

is characterized by three additional rotational DOFs in the form of a rigid triad attached to every P. The

mechanical foundation of this type of continuum has been mainly developed by Eringen and his co-workers

based on the ideas of the Cosserat brothers [17] and is summarized within the book of Eringen [30], in-

cluding an overview of the historical background. If the rigid directors of the triad are replaced by stretchable

ones without accounting for shear deformations, i.e., being constrained to have breathing-type microdefor-

mations [30], the microstretch media is obtained showing four additional DOFs at each material point P
compared to CET. If the directors additionally account for shear deformations, i.e., are fully deformable,

the micromorphic continuum is obtained which is characterized by nine additional DOFs at P compared to

CET. As a special case, the couple stress theory (CST) can be considered, e.g., [66], which exists somewhere

between the micropolar continuum and the CET continuum. Its rotation field depends only on the displace-

ment field, i.e., no additional DOFs are added. The classification proposed by [32] cannot be considered a

complete picture, as there is a number of different other approaches and variations of the aforementioned

approaches, e.g., the relaxed linear micromorphic continuum presented in [71]. However, it provides a good

basis for classifying the micropolar continua. For the studies on continuum modeling of rigid-jointed lattice

structures intended in this work, the micropolar continuum is considered to be an appropriate descriptive

model [73]. Its theory is outlined in Sections 2.2 - 2.4.

2.2 Kinematics

Introduction. The micropolar theory belongs to the class of higher order theories. Compared to the CET,

the translational or displacement DOFs are supplemented by independent rotational or orientational DOFs to

describe the motion of its particles P. Each particle’s motion is defined by a position vector associated with

the displacement DOFs and an attached rigid orthonormal trihedral associated with the rotational DOFs,

see Figure 2.2.

Measures of deformation. The relative deformation of the continuum, which combines rigid body motions

and changes in size and shape, is measured by introducing two configurations of B at two points in time, t1 and

t2. At t1 = 0 or another fixed point in time, the configuration is called reference or material configuration,
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R0, while at time t2 = t it is called current or spatial configuration, Rt. In general, it is distinguished

between a reference and a spatial frame of reference given by the base vectors EI and ei, respectively, where

I and i denote the three spatial directions corresponding to the material and spatial frame of reference,

respectively. For the sake of simplicity, both frames are assumed to remain equal during deformation as

shown in Figure 2.2 and, thus, for tensorial quantities, no distinction is made between lower and upper case

letters in the indices. In Figure 2.2, the position vectors are denoted by X and x, while the directors or base

vectors of the trihedral are denoted by Di and di, for the reference and current configurations, respectively.

The vector fields describing the motion of B read

x = x(X, t) , di = di(X, t) . (2.1)

Since the directors di of the trihedral remain orthonormal during the deformation process, the change of

the directors from the reference to the current configuration can be described by a proper orthogonal second

order tensor

R~ = di ⊗Di , Rij = Rijei ⊗Ej , (2.2)

di = R~Di (2.3)

which is called the microrotation tensor. The microrotation tensor as a proper orthogonal second order tensor

shows the following properties

R~TR~ = I~ , det(R~ ) = 1 , R~−1 = R~T , (2.4)

Figure 2.2: Deformation of a micropolar body B and particle P with displacement DOFs and attached rigid
orthonormal trihedral associated with rotational DOFs.
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and belongs to the so-called special orthogonal group or rotation group SO(3), i.e., R~ ∈ SO(3). Any orthog-

onal second order tensor with property det(R~ ) = −1 represents a pure reflection of the basis and does not

belong to this group. It follows that Eq. (2.1) can be alternatively described by the relation

u = u(X, t) = x(X, t)−X , R~= R~ (X, t) , (2.5)

ui(Xj , t) = xi(Xj , t)−Xi ,

where the displacement vector, u, is used as an alternative to the position vector to describe the translational

DOFs and the microrotation tensor, R~ , is used to describe the rotational DOFs. The three components of

the displacement vector u are independent. In contrast, among the nine components of R~ only three are

independent. The other six are constrained by the orthogonality conditions given in Eq. (2.4). This gives

rise to the use of a parametrization of the rotation. There are many different ways to parameterize the

rotation, which can roughly be divided into two classes, namely, vectorial and non-vectorial parametrizations

[80], respectively. The vectorial parametrization uses three independent scalar parameters as Cartesian

components of a generalized vector, such as various finite rotation vectors or exponential map parameters.

The non-vectorial parametrization can either be composed of three scalar parameters, which cannot be

treated as vector components, such as Euler angles, or expressed in terms of even more scalar parameters

with additional constraints, such as quaternions or direction cosines.

In this work, a vectorial parametrization is employed that uses a finite rotation vector. Following [4], there

exists a skew-symmetric second order tensor W~ = −W~ T for every rotation allowing to express the rotation

tensor as

R~ = exp(W~ ) =

∞∑
n=0

W~ n

n!
= I~+W~ +

W~ 2

2!
+

W~ 3

3!
+ ... . (2.6)

The skew-symmetric second order tensor, W~ , allows the following relation for any arbitrary non-zero vector

c to be described by

W~ c = ϕ× c (2.7)

with ϕ being the axial vector of W~ , namely,

ϕ = axl(W~ ) (2.8)

The definition of axl(·) is given in Eq. (A.20). The axial vector, ϕ, is called the microrotation vector, if

its corresponding skew-symmetric second order tensor W~ is related to the microrotation tensor R~ . The

microrotation vector is composed of a rotation axis ϕ/∥ϕ∥ and its rotation angle, ∥ϕ∥ =
√
ϕ · ϕ = Φ. In

[80], a closed-form expression of Eq. (2.6) is given as

R~ = cos(∥ϕ∥)I~+ 1− cos(∥ϕ∥)
∥ϕ∥2 (ϕ⊗ ϕ) +

sin(∥ϕ∥)
∥ϕ∥ ϕ× I~ , (2.9)

Rij = cos(Φ)δij +
(1− cos(Φ))

Φ2
ϕiϕj +

sin(Φ)

Φ
ϵikjϕk ,

where ϕ × I~ is equal to the skew-symmetric tensor of ϕ, i.e., W~ = ϕ × I~, see Appendix A for further

information on skew-symmetric matrices.

Since the microrotation tensor, R~ , can be expressed in terms of the microrotation vector, ϕ, using Eq. (2.9),

Eq. (2.5) can also be given as

x = x(X, t) , ϕ = ϕ(X, t) . (2.10)
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For finite rotations, the non-commutativity and non-additivity of members of the SO(3) group need to be

considered. In general, for a compound rotation of two rotations R~ 1 and R~ 2 the non-commutativity is

expressed by

R~ 1R~ 2 ̸= R~ 2R~ 1 , (2.11)

which means that a different order of consecutive rotations gives different results. This is true, unless the

axes of rotation are parallel. The non-additivity of two consecutive rotations reads

R~ 1 +R~ 2 ≠ R~ 3 , R~ 1R~ 2 = R~ 3 , (2.12)

Deformation gradient tensor. For describing the deformation of a continuum, the relation between an

infinitesimal material line element or material tangent vector dX in the reference configuration and an

infinitesimal spatial line element or spatial tangent vector dx in the current configuration is associated with

the two-point deformation gradient tensor defined as

F~ = GradR(x) = x⊗∇X =
∂xi

∂Xj
ei ⊗Ej = Fijei ⊗Ej =

[
∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

] , (2.13)

Fij = ui∇j + δij ,

which allows for the map dx = F~(X, t)dX. The deformation process is assumed to be invertible such that

dX = F~−1(x, t)dx holds true, where F~−1 is the inverse of the deformation gradient tensor. This implies

J = det(F~) ̸= 0.

The deformation gradient tensor can further be used to transform any infinitesimal material surface element

dS = NdS and material volume element dV from the reference to the current configuration via

ds = J(X, t)F~(X, t)−TdS , (2.14)

dv = J(X, t)dV , (2.15)

where ds = nds denotes the spatial surface element and dv is the spatial volume element. The surface normals

N and n are defined with respect to the reference and current configuration, respectively. From Eq. (2.15),

it follows that J > 0 for physical reasons, i.e., the impenetrability of matter. From the conservation of mass

follows J = ρ0/ρt, where ρ0 and ρt are the densities corresponding to the reference and current configuration,

respectively.

Macrorotation tensor. For the micropolar continuum, the polar decomposition of the deformation gradient

tensor into stretch and rigid body rotation tensors, as known for the CET, can be extended. A diagram con-

sidering all the splits possible for this continuum is presented in [69]. Based on the fact that the microrotation

tensor defines the orientation of the particles, cf. Eq. (2.2), it is shown in [69], that the microrotation tensor

is the reason for the micropolar nature of the problem but does not describe the micropolar mechanical

response. This is based on the fact that the microrotation tensor is composed of the macrorotation field

described by R~mac and an additional field denoted by R~ eff given as

R~ = R~mac
(
R~ eff

)T

. (2.16)



12 CHAPTER 2. MICROPOLAR THEORY

Due to the nature of the macrorotation tensor representing a rigid body rotation, the effect is solely based on

the additional field, R~ eff, which will further be called effective rotation field. The macrorotation tensor can be

derived from the polar decomposition of the deformation gradient tensor into a (macro)rotation tensor and

a stretch tensor based on the CET continuum, see, e.g., [48]. With the macrorotation at hand, the effective

rotation field is obtained via rearranging Eq. (2.16) as

R~ eff = R~TR~mac . (2.17)

Strain measures. The deformation gradient tensor, F~ , is not appropriate for describing the local changes in

size and shape as it additionally contains local rigid body rotations. This also holds true for the microrotation

tensor, R~ , describing the changes in orientation. Therefore, it is necessary to define proper measures to

describe the deformations due to stretching and curvature changes in the form of second order tensors, which

are further referred to as strain measures. For the nonlinear micropolar continuum, the strain measures for

stretches and changes of orientations can be defined on the basis of different methods. In [79], the strain

measures are introduced via three methods, namely, via a geometrical approach, as work-conjugates of the

corresponding stress measures based on the local equilibrium equations, and via the principle of material

frame-indifference of the strain energy potential. It is shown that the same strain measures can be obtained

with all three methods. The introduced strain measures account for unrestricted translations, stretches, and

changes of orientations of the micropolar body B. These measures are used in this work. In the literature,

various other measures have been proposed. For an overview see [79].

In [79], the strain measures for stretches and changes of orientations of B with respect to the reference

configuration are called the relative Lagrangian stretch tensor, E~ , and relative Lagrangian wryness tensors,

K~ , and are defined as

E~ = R~TF~ − I~ , (2.18)

Eij = RkiFkj − δij ,

K~ = axl(R~T ∂R~∂Xk
)⊗Ek = −1

2
ϵ~ : (R~T ·GradR(R~ )) = −1

2
ϵ~ : Γ~ , (2.19)

Kij = −1

2
ϵiklΓklj with Γklj = RmkRml∇j

=
1

2
ϵikmRlmRlk,j with Rlk,j = Rlk∇j ,

respectively, whereR~ is the microrotation tensor given in Eq. (2.9), F~ denotes the deformation gradient tensor

given in Eq. (2.13), and ϵ~ is the Levi-Civita tensor of third order, cf. Eq. (A.1). The corresponding strain

measures with respect to the current configuration are called relative Eulerian stretch tensor and relative

Eulerian wryness tensor and are defined as [79]

e~ = I~−R~F~−1 , (2.20)

eij = δij −RikF
−1
kj ,

k~ = −1

2
R~ ϵ~ : (R~T · gradR(R~ )) , (2.21)

kij = −1

2
Rikγkj with γkj = ϵklmΓlmj

= −1

2
RikϵknmRlmRln,j ,
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respectively. In [79], the relations between the Lagrangian and Eulerian strain measures are given as

e~ = R~E~F~−1 , k~ = R~K~ F~−1 , (2.22)

E~ = R~Te~F~ , K~ = R~Tk~F~ . (2.23)

The most important properties of these strain measures are [79],

• For the absence of any deformation or mere rigid body translations, i.e., F~ = R~ = I~, the measures

vanish. Therefore, these measures are also called natural or being of relative type.

• For any rigid body deformations of B, i.e., x = R~X + a and di = R~Di, where a denotes a constant

displacement and R~ represents a proper orthogonal tensor, the measures vanish as well.

• In general, the measures are non-symmetric, i.e., E~ ̸= E~T and K~ ̸= K~ T as well as e~ ̸= e~T and k~ ̸= k~T.

For further details see [79]. For infinitesimal or small displacements and rotations, i.e.,

∥u∥ ≪ 1 , ∥GradR(u)∥ ≪ 1 , ∥ϕ∥ ≪ 1 , and ∥GradR(ϕ)∥ ≪ 1 , (2.24)

the strain measures associated with the linear micropolar continuum theory are obtained. The microrotation

tensor given in Eq.(2.9) takes the form

R~ ≈ I~+ ϕ× I~ , (2.25)

with the geometrically linearized trigonometric functions sin ∥ϕ∥ ≈ ∥ϕ∥ and cos ∥ϕ∥ ≈ 1, see, e.g., [80]. The

linear strain measures are then obtained from Eqs. (2.18) and (2.19) or Eqs. (2.20) and (2.21) using Eq. (2.25)

as

ε~ = GradR(u)− ϕ× I~= u⊗∇− ϕ× I~ , εij = ui,j + ϵijkϕk , (2.26)

κ~ = GradR(ϕ) = ϕ⊗∇ , κij = ϕi,j , (2.27)

where ε~ and κ~ will further be called strain tensor and curvature tensor, respectively. These measures can

also be found, e.g., in [44], but can also be defined by applying the gradient from the left to the kinematic

fields with appropriate consideration of the microrotations, see, e.g., [47, 53]. This leads to

ε̂~ = GradL(u) + ϕ× I~= ∇⊗ u+ ϕ× I~ , ε̂ij = uj,i − ϵijkϕk , (2.28)

κ̂~ = GradL(ϕ) = ∇⊗ ϕ , κ̂ij = ϕj,i . (2.29)

Note that the relation ε~ = ε̂~T and κ~ = κ̂~T hold true. There are also mixed definitions, e.g., in [30], where

the gradient is applied to the displacement field from the left and to the rotation field from the right. For

infinitesimal displacements and rotations, it further follows that X ≈ x and GradR(u) ≈ gradR(u), see, e.g.,

[28], which leads to the following relation

ε~ ≈ E~ ≈ e~ , κ~ ≈ K~ ≈ k~ . (2.30)

Which definitions of the strain measures given in Eqs. (2.18)-(2.21) and Eqs. (2.26)-(2.29) are used for the

implementations will be stated in the corresponding sections.
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2.3 Kinetics

In the following, the stress measures of the micropolar continuum are introduced and the equations of motion

for static problems are outlined. Boundary conditions are introduced to set up a BVP. The equations are

given with respect to the reference and spatial configuration.

Following [28], the Cauchy theorem for the micropolar continuum states that for any point P of B there exist

second order tensors T~ and κT~ such that the stress vector, t, and the couple stress vector, κt, acting at a

point of a surface with normal, n, can be expressed through

t(x,ϕ,n) = T~ (x,ϕ, t)n , ti = Tijnj , (2.31)

κt(x,ϕ,n) = κT~ (x,ϕ, t)n , κti =
κTijnj . (2.32)

In [28], the existence of the stress and couple stress tensors is proven by using the first and second Euler’s

law of motion or balance of momentum and balance of moment of momentum, respectively. First the balance

equations are applied to an arbitrary parallelepiped and then to an arbitrary tetrahedron. This proof is

possible only with the help of Cauchy’s lemma, which represents Newton’s third axiom of reciprocal actions

for micropolar bodies [28]. It postulates that stress and couple stress vectors are odd functions with respect

to the surface normal, n, reading

t(x,n) = −t(x,−n) , (2.33)

κt(x,n) = −κt(x,−n) . (2.34)

A proof of this lemma can be found in [28], which is based on dividing B into two parts by an arbitrary

surface and then applying the balance equations to both parts. The stress tensor in Eq. (2.31) and the couple

stress tensor in Eq. (2.32) are referred to as being Cauchy-like, meaning that the measures are defined with

respect to the current configuration. The components of the stress and couple stress tensors with respect to

a Cartesian basis ei are defined as

T~ = Tijei ⊗ ej , κT~ = κTijei ⊗ ej , (2.35)

where the first subscript, i, denotes the direction of the coordinate base and the second subscript, j, represents

the direction of the surface normal. This is schematically depicted in Figure 2.3, where also the rule of signs

for the components can be found. This notation of subscripts will further be called the right hand-side

definition of stress components (RSD). There exists a different notation, where first and second subscript

interchange, which will further be called left hand-side definition of stress components (LSD). In the literature,

both notations can be found. In general, the stress as well as the couple stress tensor are not symmetric, i.e.,

T~ ̸= T~T and κT~ ̸= κT~T. Consequently, attention must be paid to the definition of the indices. Furthermore,

the non-symmetry of the tensors prevents the use of the spectral decomposition to determine principal stresses,

for alternative methods see [28].

The equations of motion of a micropolar body B in the local form can be derived through Euler’s first and

second law [28]. For a static problem, the equations read

divR(T~ ) + ρtf = 0 , (2.36)

divR(
κT~ )− χt+ ρtm = 0 , (2.37)
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Figure 2.3: Stress and couple stress components acting on a cuboid based on the right hand-side definition of
stress components, where the solid arrows indicate positive values and dashed arrows represent
negative values.

where f and m denote the body forces and moments per unit mass, respectively, ρt describes the density

in the current configuration, and χt = (T~ )× is the axial stress vector defined according to Eq. (A.21)

in Appendix A. All quantities are given with respect to the current configuration, hence, the equations are

referred to as Eulerian equations of motion. In the literature, various representations of the axial stress vector
χt can be found. Note that if Eq. (A.20) is used to define the axial stress vector χt as χt = axl(T~ −T~T) =

−ϵ~ : T~ (= −(T~ )×), Eq. (2.37) reads divR(
κT~ ) + χt + ρtm = 0, see, e.g., [8] and [26]. Consequently, the

definition of χt has an impact on the formulation of the balance equations.

In [28], Piola’s identity,

DivR(JF~−T) = 0, (2.38)

is used to obtain the corresponding Lagrangian equations of motion, which reads

DivR(T̃~ ) + ρ0f = 0 , (2.39)

DivR(
κT̃~ )− χt̃+ ρ0m = 0 , (2.40)

where T̃~ is the first Piola-Kirchhoff (PK1)-like stress tensor, κT̃~ denotes the PK1-like couple stress tensor,
χt̃ = (T̃~F~T)× is the PK1-like axial stress vector, and ρ0 is the density in the reference configuration. The

PK1-like stress tensors are two-point tensors with the left and right legs associated with the current and

reference configurations, respectively. To entirely refer to the reference configuration, the second Piola-

Kirchhoff (PK2)-like tensors can be introduced by

T̆~ = R~TT̃~ , κT̆~ = R~TκT̃~ , (2.41)

where T̆~ is the PK2-like stress tensor and κT̆~ denotes the PK2-like couple stress tensor [28]. This relation

can be used together with Eqs. (2.39) and (2.40) to obtain the Lagrangian equations of motion based on the

PK2-like stress tensors as

DivR(R~ T̆~ ) + ρ0f = 0 , (2.42)

DivR(R~ κT̆~ )− χt̆+ ρ0m = 0 , (2.43)
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respectively, where χt̆ = (R~ T̆~F~T)× is the PK2-like axial stress vector. Complementing the equations of

motion with the corresponding boundary conditions, the BVP in Lagrangian and Eulerian description is

obtained, respectively. Static boundary conditions consist of external forces and couples as well as kinematic

conditions, also known as Neumann-type and Dirichlet-type boundary conditions, respectively. Whether

the boundary conditions should be applied on the boundary surface ∂R0 corresponding to the reference

configuration or applied on the ∂Rt of current configuration, depends on the equations of motion chosen for

the BVP. For the external forces and couples, it follows

t∗ = T~n on ∂Rf
t , t∗i = Tijnj on ∂Rfi

t ,

κt∗ = κT~n on ∂Rm
t , κt∗i = κTijnj on ∂Rmi

t ,

t̃
∗
= T̃~N on ∂Rf

0 , t̃∗i = T̃ijNj on ∂Rfi
0 ,

κt̃
∗
= κT̃~N on ∂Rm

0 , κt̃∗i = κT̃ijNj on ∂Rmi
0 ,

t̆
∗
= (R~ T̆~ )N on ∂Rf

0 , t̆∗i = RikT̆kjNj on ∂Rfi
0 ,

κt̆
∗
= (R~ κT̆~ )N on ∂Rm

0 , κt̆∗i = Rik
κT̆kjNj on ∂Rmi

0 ,

(2.44)

where the superscript ∗ indicates prescribed values and the relations ∂Rf
0 ∪∂Rm

0 = ∂Rσf

0 and ∂Rf
t ∪∂Rm

t =

∂Rσf

t hold. The kinematic boundary conditions can be given as

u = u∗ on ∂Ru
t (or ∂Ru

0 ) , ui = u∗
i on ∂Rui

t (or ∂Rui
0 ) , (2.45)

ϕ = ϕ∗ (or R~ = R~ ∗) on ∂Rϕ
t (or ∂Rϕ

0 ) , ϕi = ϕ∗
i (or Rij = R∗

ij) on ∂Rϕi

t (or ∂Rϕi

0 ) , (2.46)

where either the finite rotation vector or the microrotation tensor can be used for prescribing rotational

DOFs. For the kinematic conditions, the relations ∂Ru
0 ∪ ∂Rϕ

0 = ∂Rσu
0 and ∂Ru

t ∪ ∂Rϕ
t = ∂Rσu

t hold. For

the particular case of a fixed micropolar body, it follows that

u = 0 on ∂Ru
t (or ∂Ru

0 ) , (2.47)

ϕ = 0 (or R~ = I~) on ∂Rϕ
t (or ∂Rϕ

0 ) . (2.48)

The relation ∂Rσ
t ∩ ∂Ru

t = ∅ is necessary to exclude Robin boundary conditions, i.e., mixed boundary

conditions as a combination of Neumann- and Dirichlet-type boundary conditions.

As already indicated by Piola’s identity Eq. (2.38) and Eq. (2.41), the stress and couple stress tensors of

the micropolar body show certain relations with respect to the reference and current configuration. These

relations can be summarized as Piola transformations, i.e., push-forward and pull-back operations for stress

and couple stress tensors. In [28], the following relations are given

T~ =
1

J
R~ T̆~F~T , T~ =

1

J
T̃~F~T , κT~ =

1

J
R~ κT̆~F~T , κT~ =

1

J
κT̃~F~T ,

T̃~ = JT~F~−T , T̃~ = R~ T̆~ , κT̃~ = JκT~F~−T , κT̃~ = R~ κT̆~ ,

T̆~ = JR~TT~F~−T , T̆~ = R~TT̃~ , κT̆~ = JR~TκT~F~−T , κT̆~ = R~TκT̃~ .

(2.49)

The stress and strain measures defined must be work-conjugate in order to give reasonable physical results. In

[28], it is shown that the Cauchy-like stress and couple stress tensors are the work-conjugates to the relative

Eulerian stretch and wryness tensors, respectively, and the PK2-like stress and couple stress tensors are the
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Figure 2.4: Boundary conditions for the BVP.

work-conjugates to the relative Lagrangian stretch and wryness tensors, respectively. This is summarized as

follows
T~ ↔ e~ , κT~ ↔ k~ ,

T̃~ ↔ R~E~ , κT̃~ ↔ R~K~ ,

T̆~ ↔ E~ , κT̆~ ↔ K~ .

(2.50)

It is worth noting that the CET continuum is obtained by setting κT~ = 0~ and not considering any body

moments m = 0, which leads to χt = (T~ )× = 0~ and further to T~ = T~T.

2.4 Constitutive law

The dependence of the stress measures on the deformations are described by constitutive laws. For conser-

vative systems, the strain energy density or strain energy potential of isothermal physically linear micropolar

solids, is given as a quadratic function of strain measures as

ψ(E~ ,K~ ) =
1

2
(E~ : A~~0 : E~ + 2E~ : C~~0 : K~ +K~ : B~~0 : K~ ) , (2.51)

ψ(Eij ,Kij) =
1

2
(A0

klmnEklEmn + 2C0
klmnEklKmn + B0

klmnKklKmn) ,

where A~~0, B~~0, C~~0 are fourth order elasticity tensors in the material description, i.e., (·)0 indicates that the

tensors are given with respect to the reference configuration. The elasticity tensor A~~0 is related to the stretch

and stress measures, while B~~0 is related to the wryness and couple stress measures. The elasticity tensor C~~0

couples the stretch tensor and the wryness tensor.
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Considering only infinitesimal displacements and rotations as given in Eq. (2.24), the linear micropolar solid

is obtained, for which the strain energy density takes the form

ψ(ε~,κ~) = 1

2
(ε~ : A~~ : ε~+ 2ε~ : C~~ : κ~ + κ~ : B~~ : κ~) , (2.52)

ψ(εij , κij) =
1

2
(Aklmnεklεmn + 2Cklmnεklκmn + Bklmnκklκmn) ,

where no superscript is attached to the elasticity tensors indicating the linear character. As all further

considerations are restricted to conservative systems, stresses and couple stresses of the linear micropolar

continuum can be derived directly from the strain energy potential by

σ~ =
∂ψ

∂ε~ , σij =
∂ψ

∂εij
,

κσ~ =
∂ψ

∂κ~ , κσij=
∂ψ

∂κij
.

(2.53)

and the elasticity tensors can be given as

A~~ =
∂2ψ

∂ε~∂ε~ , Aijkl =
∂2ψ

∂εij∂εkl
,

B~~ =
∂2ψ

∂κ~∂κ~ , Bijkl=
∂2ψ

∂κij∂κkl
,

C~~ =
∂2ψ

∂ε~∂κ~ , Cijkl=
∂2ψ

∂εij∂κkl
.

(2.54)

With Eqs. (2.52) and (2.53), the constitutive laws can be given as

σ~ = A~~ : ε~+ C~~ : κ~ , σij = Aijklεkl + Cijklκkl ,

κσ~ = C~~T : ε~+ B~~ : κ~ , κσij= Cklijεkl + Bijklκkl .
(2.55)

Equation (2.54) already reveals that the elasticity tensors A~~ and B~~ show major symmetry, i.e.,

A~~ = A~~T , Aijkl= Aklij , (2.56)

B~~ = B~~T , Bijkl= Bklij . (2.57)

For the most general case, this leads to 45 independent components for each of the elasticity tensors A~~ and B~~,which is a consequence of the non-symmetry of the strain and curvature measures, see Eqs. (2.26) and (2.27).

The components of the elasticity tensors are further referred to as micropolar elastic constants MECs. The

coupling tensor C~~ does not show any symmetry, hence, it is composed of 81 independent MECs. In total, the

linear micropolar continuum shows 171 independent MECs for the general anisotropic case, e.g., [98]. The

number of independent constants can be significantly reduced by taking material symmetries into account. In

[27], the strain energy density is proposed to additionally depend on the so-called microstructure curvature

tensor defined therein, resulting in even more MECs to be required. In this work, it is assumed that the

elasticity tensors depend only on the strain measures as given in Eq. (2.51) or Eq. (2.52).
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For the case of centrosymmetric materials exclusively studied in this work, it follows that C~~ = O~~ . This

reduces the number of independent MECs to 90. For such materials, the strain energy density according to

Eq. (2.52) and the constitutive law given in Eq. (2.55) take the form

ψ =
1

2
(ε~ : A~~ : ε~+ κ~ : B~~ : κ~) , (2.58)

σ~ = A~~ : ε~ , (2.59)

κσ~ = B~~ : κ~ . (2.60)

In vector-matrix notation, the constitutive law for the linear micropolar continuum follows as[ [σ~ ]
[κσ~ ]

]
, ,, ,

[σ~ ]

=

[ [A~~ ] [C~~ ]
[C~~ ]T [B~~]

]
, ,, ,

[D~~ ]

[[ε~]
[κ~]

]
, ,, ,

[ε~]
, (2.61)

where [D~~ ] is the corresponding micropolar elasticity matrix, [σ~ ] and [ε~] denote the generalized vectors of

strain and stress measure components, respectively. For the vector-matrix notation, any sequence of tensor

components can be chosen. In this work, the components are arranged in the following order

(·)ij with ij = {11, 22, 33, 23, 31, 12, 32, 13, 21} , (2.62)

which corresponds to the arrangement used in [27], see Appendix B. For 3D problems, the vector-matrix

notation does not offer much advantage over the tensorial representation, which is in contrast to the CET

when using, e.g., Voigt-Nye notation. This is a consequence of the non-symmetry of the strain and stress

measures of the micropolar continuum, which does not allow to reduce the size of the matrices. Nevertheless,

for in-plane or 2D considerations, the vector-matrix notation leads to a more compact form.

For in-plane considerations, either a state of plane strain or plane stress can be used. For all 2D problems

considered in this work, the dimension of the out-of-plane direction e3 is much larger than those of the

two remaining in-plane directions e1 and e2. Therefore, non-generalized plane strain is assumed to be an

acceptable approximation. All physical quantities are independent of x3 and, hence, just depend on x1, x2,

and t. For stress measures based on LSD as well as strain measures based on gradients applied from the

left hand-side, the constitutive law for the linear micropolar continuum in matrix-vector notation considering

centrosymmetric materials in 2D then leads to[

σ11

σ22

σ12

σ21

κσ13

κσ23

]
=

[

D11 D12

D12 D22

D33 D34

D34 D44

D55

D66

]

[

ε11

ε22

ε12

ε21

κ13

κ23

]
, (2.63)

where the components of the kinematic fields that are not associated with the plane strain assumption are

considered to be zero, i.e., u3 = ϕ1 = ϕ2 = 0. The out-of-plane stress and couple stress follow as σ33 = A33klεkl

and κσ33 = B33klκkl, respectively. Both are not of interest in the present work. In index notation, the strain
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measures based on applying right gradients, cf. Eqs. (2.26) and (2.27), as well as applying left gradients, cf.

Eqs. (2.28) and (2.29), then take the form

εij = ui,j + ϵij3ϕ3 , κ3j= ϕ3,j , (2.64)

ε̂ij = uj,i − ϵij3ϕ3 , κ̂j3= ϕ3,j , (2.65)

respectively, with i, j ∈ {1, 2}.

2.5 Material symmetries

If symmetries exist for a particular material, the number of independent MECs can be significantly reduced.

The symmetries are obtained by mirror reflections and rotations about different axes in space. Following

[27], the most important symmetries for the present thesis can be obtained by

• mirror reflection and rotations of 180◦ about a single unit vector e resulting in monoclinic symmetry.

• mirror reflection and rotations of 180◦ about three orthonormal unit vectors ei resulting in orthotropic

symmetry.

• mirror reflection and rotations of 90◦ about three orthonormal unit vectors ei resulting in cubic sym-

metry.

• mirror reflection and arbitrary rotations about a unit vector e resulting in transversely isotropic sym-

metry.

• arbitrary mirror reflections and rotations about three orthonormal unit vectors ei resulting in isotropy,

which is considered to show full symmetry.

The corresponding elasticity tensors for these symmetries with respect to the material principle axes can be

found in vector-matrix notation based on Eq. (2.62) in Appendix B.

Isotropic material. Following the notation used in [26, 44], the constitutive law for a linear micropolar

isotropic material reads

T~ = λtr(E~)I~+ (µ+ ν)E~ + (µ− ν)E~T = A~~ : E~ , (2.66)

Tij = λEkkδij + (µ+ ν)Eij + (µ− ν)Eji = AijklEkl ,

κT~ = αtr(K~ )I~+ (β + γ)K~ + (β − γ)K~ T = B~~ : K~ , (2.67)

κTij = αKkkδij + (β + γ)Kij + (β − γ)Kji = BijklKkl ,

where λ and µ are the standard Lamé parameters, and ν, α, β, γ are additional material moduli associated with

the micropolar continuum. There does not exist a unique definition for these moduli as different definitions

can be found in the literature, e.g., in [8, 28, 30], but need to satisfy a set of inequalities to ensure the

quadratic form of the strain energy density to be non-negative, see, e.g., [30]. The elasticity tensors read

A~~ = λI~⊗ I~+ (µ+ ν)I~~+ (µ− ν)Î~~ , (2.68)

B~~ = αI~⊗ I~+ (β + γ)I~~+ (β − γ)Î~~ , (2.69)

where I~~= δikδjlei ⊗ ej ⊗ ek ⊗ el and Î~~= δilδjkei ⊗ ej ⊗ ek ⊗ el. Note that for micropolar isotropic materials

the relation Aijkl = Ajilk holds true. However, the minor symmetries are not satisfied and, consequently,
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Aijkl ̸= Ajikl and Aijkl ̸= Aijlk. This also holds true for B~~. In [44], the micropolar material moduli are

related to their corresponding engineering parameters as

λ = 2~n ~G/(1− 2~n) , µ = ~G , ν = ~G ~N2/(1− ~N2) , (2.70)

α = (2 ~G~l2t (1− ~ψ))/ ~ψ , β = ~G~l2t , γ = ~G(4~l2b − ~l2t ) , (2.71)

where ~n is the Poisson ratio, ~G denotes the shear modulus, ~lt and ~lb are associated with the characteristic

length for torsion and bending analyses, respectively, ~N ∈ [0, 1] denotes the classical micropolar coupling

number referring to the degree of coupling between displacement and rotation field, and ~ψ ∈ [0, 1.5] is

associated with the polar ratio, which relates the torsional strains, i.e., the diagonal components of the

curvature tensor, in a similar manner as the Poisson ratio does for the normal strains [26]. The CST is

obtained for ~N = 1 or ν → ∞. For a discussion on the physical interpretation of the micropolar material

moduli, see, e.g., [55]. For material moduli given for various polymeric foams and a comparison to their

classical material moduli, see, e.g., [47].

For plane strain problems, the material moduli of the linear micropolar isotropic material reduce to four,

namely, λ, µ, ν, β + γ according to the notation used in [44]. The elasticity tensors in vector-matrix notation

as given in Eq. (2.63) reads as follows

[D~~ ] =

[

λ+ 2µ λ

λ λ+ 2µ

µ+ ν µ− ν

µ− ν µ+ ν

β + γ

β + γ

]
. (2.72)

2.6 Notes on the elasticity tensors

Right hand-side definition of elasticity tensors. The stress and strain measures defined for the deriva-

tion of the MECs are based on the definitions used in [53]. Therein, the left hand-side definition of stress

components is used, cf. Section 2.3, and the strain measures are defined by applying the gradient from

the left, cf. Section 2.2 Eq. (2.28). The resulting components of the elasticity tensors are related to these

definitions through Eq. (2.54) and are further referred to as of left-hand side definition of elasticity tensors.

In order to obtain the components of the elasticity tensors based on the right hand-side definition of stress

components (RSD), i.e., by using the right hand-side definition of stress components and strain measures

defined via applying the gradient from the right, the following conversion rule can be applied

ARSD
ijkl = ALSD

jilk . (2.73)

For the right hand-side definition of stress components and strain measures based on applying the gradient

from the left denoted by MD1 as well as vice versa referred to as MD2, the following conversion rule can be

used

AMD1
ijkl = ALSD

jikl , (2.74)

AMD2
ijkl = ALSD

ijlk , (2.75)
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respectively. These conversion rules should not be confused with the definition of minor symmetries of a

fourth order tensor.

For the present thesis, only elasticity tensors according to LSD and RSD are needed. Based on the definition

of stress and strain measures, the conversion rule given in Eq. (2.73) needs to be applied to the elasticity

tensors obtained for the lattices in Chapter 3. Conversion is required for the PO lattice, but not for the

PC lattice. No conversion is required for the BCC lattice, which also applies to isotropic materials, since

Aijkl = Ajilk is satisfied.

Rotation of elasticity tensors. To study a given lattice in a configuration rotated with respect to the

global coordinate system, the elasticity tenors need to be rotated accordingly. The rotation of an arbitrary

tensor of fourth order reads

Ȳ~~ = Q~Q~Y~~Q~TQ~T , Ȳijkl = QipQjqQkrQlsZpqrs , (2.76)

with Q~ as a proper orthogonal second order tensor. For a mathematical positive rotation θ around a single

axis of a defined coordinate system, e.g., 1-, 2-, and 3-axis, the following rotation matrices can be directly

applied

Q~+
1
=

[
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

] , Q~+
2
=

[
cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

] , Q~+
3
=

[
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

] .

For the rotation about any axis, the rotation matrix can be determined using Eq. (2.9).

Elasticity tensors in Lagrangian and Eulerian description. Elasticity tensors based on different work-

conjugate measures can be converted into each other based on pull-back and push-forward operations of strain

measures according to Eqs. (2.22) and (2.23) as well as Piola transformations of stress measures Eq. (2.49).

Whether the elasticity tensor in Lagrangian (or material) or Eulerian (or spatial) description is known, the

following transformation rules can be applied

At
mnop =

1

J
RmiFnjRokFplA0

ijkl , (2.77)

A0
ijkl = JRT

imF−1
jn RT

koF
−1
lp At

mnop , (2.78)

respectively, where (·)0 denotes the Lagrangian and (·)t refers to the Eulerian description. Note that this

applies to all elasticity tensors given in Eq. (2.51).

For the lattice materials, the elasticity tensors are derived based on the linear micropolar theory, cf. Chapter 3.

Hence, the constitutive laws based on these tensors are only suitable for predicting the response of linear

elastic materials. To account for large displacements and rotations, either the Lagrangian or Eulerian strain

measures need to be considered for the FEM implementation to get rid of rigid body rotations. For the

usage of large strains, this implies that the response of the lattice material is correctly captured as long as

these measures are small in magnitude. For the CET, smallness implies that the transformations reduce

to mere (macro)rotations Eq. (2.77), see, e.g., [7]. For the micropolar continuum, this holds true as well,

cf. Eq. (2.16), which gives R~R~T → R~macR~mac T = I~. For isotropic materials in small strain regimes, no

transformation is needed due to isotropy. However, for anisotropic materials the transformation must be

considered. As the components of the Lagrangian strain measures are invariant under rigid body rotations, it
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follows that the elasticity tensors derived can be directly used in a pure Lagrangian description, i.e., A~~0 = A~~and B~~0 = B~~. For Eulerian strain measures, the transformation given in Eq. (2.77) needs to be applied.
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Chapter 3

Energy based homogenization

In the following, the homogenization method used to derive the components of the elasticity tensors, or

micropolar elastic constants (MECs) of lattice structures for an equivalent micropolar continuum is presented.

The method was originally introduced by [10] and applied to various centrosymmetric 2D lattices by [53].

The method yields two sets of MECs for the very same lattice material based on different assumptions

during the derivation. The assumptions made and the characteristics of the two different sets have caused

some controversy in the literature, which will be discussed after the method is presented. In this thesis,

the method is used to obtain the MECs of 3D centrosymmetric lattices, namely, the primitive orthorhombic

(PO), the body centered cubic (BCC), and the body centered cubic reinforced by primitive cubic (BCCCP)

lattices. For the 2D lattices, the MECs are directly taken from [53], see Appendix D.

3.1 Method

The homogenization technique presented in [10] is a discrete energy based homogenization method. For a

discrete base cell, the effective MECs of an equivalent micropolar continuum can be obtained. The method is

restricted to lattices, for which a periodic unit cell can be found containing a single joint. It has been applied

to various periodic centrosymmetric 2D lattices, see, e.g., [53].

An appropriate base cell of the discrete lattice is identified and its strain energy is constructed by the strain

energy contributions of its individual members. The strain energy of each lattice member can be expressed

as a function of its joint displacements and rotations

WIJ(UI ,UJ ,ΦI ,ΦJ) , (3.1)

where I and J denote the joints at both ends, see Figure 3.1. To obtain the approximation for the micropolar

continuum, it is assumed that the joint displacements and rotations of each member can be expressed in

terms of the origin of the base cell located at point O. The origin does not necessarily coincide with any

joint of the lattice [53]. However, for the lattices studied in this work, all members of a base cell meet at a

commonly shared origin joint, which is further denoted as O. The displacements and rotations at this origin

joint O are denoted by u (= UO) and ϕ (= ΦO), respectively. A Taylor series expansion of the kinematics of
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each remaining joint K of the lattice is then developed, where only terms up to the second order are retained,

reading

UK ≈ u+ lOK
∂u

∂tOK
+

1

2
l2OK

∂2u

∂t2OK

,

ΦK ≈ ϕ+ lOK
∂ϕ

∂tOK
+

1

2
l2OK

∂2ϕ

∂t2OK

,

(3.2)

with tOK as the spatial coordinates along the directions OK and lOK as the length of the member K. The

strain energy density of the continuum approximation of a particular base cell is then constructed by summing

the strain energies of each member K and referring the sum to the volume of the base cell, Vbc. It can be

given as

ψ =
1

Vbc

nbc∑
K=1

WOK(u,ϕ,UK ,ΦK) , (3.3)

where nbc is the number of members comprising the base cell. The first order direction derivatives in Eq. (3.2)

with respect to the local beam coordinate system can be expressed as functions of first order spatial direction

derivatives with respect to the global coordinate system as

∂

∂tOK
= f(a

∂

∂x1
, b

∂

∂x2
, c

∂

∂x3
) , (3.4)

where a, b, c are constants. These constants are determined by the direction of the individual beam lying in

space with respect to the global coordinate system. Any second order direction derivative is converted to

first order direction derivative via integration by parts [10, 53]. Inserting the displacement and rotation fields

of Eq. (3.2) into Eq. (3.3) and integration by parts for the second order spatial directions gives the strain

energy density of the continuum approximation in terms of strain ε~ and curvature κ~ as

ψ(u,ϕ,
∂u

∂xi
,
∂ϕ

∂xi
) ⇒ ψ(ε~,κ~) . (3.5)

All further considerations are restricted to conservative systems, hence, the stresses, the couple stresses, and

the MECs can be derived directly from the strain energy density by using Eqs. (2.53) and (2.54), respectively.

Figure 3.1: Schematic of beam element with end nodes I and J , and its local beam coordinate system with
axes et, en, and em.
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3.2 Controversy in the literature

The method presented yields two different sets of MECs for the very same lattice material, based on the

number of higher order terms of the Taylor series expansion considered for the approximated displacement

and rotation fields in Eq. (3.2). The two sets differ only in those MECs that link the couple stress and

curvature, see Eq. (2.54). These MECs are different in both sign and magnitude. Neglecting the second

order terms of the series leads to positive signs of these MECs, e.g., [6, 53], which are further referred to as

positive constants. However, this set of constants does not give rise to an equilibrium of forces acting on the

origin joint [10]. Retaining the second order terms of the series, leads to negative signs of the MECs, e.g.,

[10, 53], which are further referred to as negative constants. In some cases, the negative constants violate the

positive definiteness of the strain energy defined for isotropic materials, see, e.g., [30]. This is the case for the

equilateral triangular lattice, which motivated the discussion on the positive definiteness of the strain energy

density given in [53]. Therein, it is argued that lattice materials show limited non-locality, which implies that

the element size needs to be larger than the underlying internal characteristic length1.

On the one hand, the necessity to ensure the equilibrium of forces at the origin joint, i.e., retaining the second

order terms, has often been ignored in later works, e.g., for the strain gradient model for fracture analysis

in [15], for obtaining MECs of a chiral auxetic lattice in [86], for studying the capability of accounting for

size-effects of lattice materials in [97], and very recently for studying zigzag lattices in [16]. In [97], negative

constants are even questioned with respect to consistency and stability.

On the other hand, some authors have presented homogenization approaches retaining the second order

terms, e.g., for chiral lattices in [58] and for 2D and 3D lattices allowing more than a single joint in a base

cell in [36]. The homogenization approach presented in [36] allows the authors to identify positive constants

of the rectangular lattice when retaining second order terms. Not clearly classifiable is the homogenization

approach presented in [72], where second order terms are retained in the first place, but at some point it is

decided that second order derivatives can be neglected on the basis of the strain definition. However, the

authors ensure that the compatibility of kinematics and equilibrium of forces and moments are guaranteed.

Furthermore, the MECs based on first order terms for the regular hexagon honeycomb lattice presented in

[15] do not agree with the well-established ones presented in [38], leading the authors in [46] to conclude that

the validity of the Taylor series approach is in question. For their non-Taylor series based homogenization

approach presented in [46], closed form expressions for the MECs with positive sign are found. However,

positive constants of the rectangular lattice were identified in [36] using the Taylor series expansion even

though second order terms were retained.

Both, the positive and negative constants derived in [53] are often used in the literature for the verification of

MECs obtained by either new or similar homogenization methods and mainly serve as comparison for limiting

cases of lattices. In [86], the MECs for a limiting case of the studied chiral auxetic lattice are compared with

positive constants for the triangular lattice presented in [53]. The authors in [58] refer to both positive

and negative constants for the triangular lattice presented in [53], which are shown to be obtained for a

limiting case of the homogenization approach presented therein. In [16], the positive constants obtained for

the triangular and square lattice in [53] are used for comparison with the MECs identified for limiting cases

of zigzag chiral lattices. In [36], the MECs of the square lattice based on the presented homogenization

approach are compared with positive and negative constants derived in [53].

1”The continuum material element cannot be less than the characteristic cell size over which the continuum strain energy
density is defined.” and ”The strain energy function averaged over this volume of element should be positive definite and not
the pointwise local strain energy function.” [53]
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Summarized, there is some controversy in the literature about the validity of the method in general. On the

one hand, the resulting strain energy density appears to violate the positive definiteness criterion defined in

[30] for certain cases when retaining second order terms in the Taylor series expansion of the kinematic fields.

On the other hand, the derived MECs lead to a lack of equilibrium of forces when neglecting second-order

terms [10]. Therefore, a numerical study is performed in Chapter 5 to evaluate the predictive capabilities

of both positive and negative constants for the mechanical response of finite-sized lattice structures using

discrete models as a basis for comparison.

For building a framework for further research rather than comparing homogenization methods, the homoge-

nization method based on the Taylor series expansion [10, 53] is considered to be the most suitable method.

It can be easily applied to various 3D lattice materials. Furthermore, only first order terms are retained. The

reason for this is two-fold. Negative constants lead to oscillating solution fields, if the element size is smaller

than the internal characteristic length of the lattice, which is not the case when using positive constants, cf.

Chapter 5. Additionally, the positive constants are much easier to determine since no integration by parts is

required in the derivation. Consequently, only positive constants are derived for the 3D lattices in the next

section. The non-equilibrium of forces at the origin joint as a consequence of these constants is accepted

on the basis of the results obtained for the 2D lattice simulations in Chapter 5. Therein, it is shown that

positive constants have no disadvantages compared to negative constants at least for the lattices studied in

this work.

3.3 Micropolar elastic constants of 3D centrosymmetric lattices

The configuration of each investigated lattice, namely, primitive orthorhombic, body centered cubic, and

body centered cubic reinforced by primitive cubic, is schematically depicted in Figures 3.2, 3.3, and 3.4,

respectively. Each lattice member is modeled as a Hermite beam showing two end nodes I and J , see

Figure 3.1. The stiffness matrix of such a beam element, [k~(e)
local] , and its corresponding vector of nodal

kinematics, [U
(e)
local], can be found in Appendix C. The stiffness matrix in Eq. (C.1) and the vector of nodal

kinematics in Eq. (C.2) are given with respect to the local beam coordinate system. The transformation

matrix, [T~ (e)
r ], given in Eq. (C.3) is used to transform the quantities to the global basis as

[k~(e)
global] = [T~ (e)

r ]T[k~(e)
local][T~ (e)

r ] , (3.6)

[U
(e)
global] = [T~ (e)

r ][U
(e)
local] . (3.7)

with the corresponding global vector of nodal kinematics

[U
(e)
global] = [UI ,ΦI ,UJ ,ΦJ ]

T = [UI1, UI2, UI3,ΦI1,ΦI2,ΦI3, UJ1, UJ2, UJ3,ΦJ1,ΦJ2,ΦJ3]
T . (3.8)

The strain energy of each lattice member in terms of joint displacements and rotations reads

WIJ(UI ,ΦI ,UJ ,ΦJ) =
1

2
[U

(e)
local]

T[k~(e)
local][U

(e)
local] ,

=
1

2
[U

(e)
global]

T[k~(e)
global][U

(e)
global] .

(3.9)
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The strain energy density of the continuum approximation of the base cells studied are then obtained by

using Eq. (3.3), which follows in terms of stiffness matrix and vector of nodal kinematics of each member

OK as

ψ =
1

Vbc

(
nbc∑
K=1

WOK(u,ϕ,UK ,ΦK)

)
=

1

Vbc

( nbc∑
(e)=1

1

2
[U

(e)
global]

T[k~(e)
global][U

(e)
global]

) . (3.10)

The joint displacements and rotations of each member are then expressed in terms of the displacements, u,

and rotations, ϕ, of a commonly shared origin joint O located in the center of the base cell by using Eq. (3.2).

Only terms up to the first order are considered based on the discussion in Section 3.2. The strain energy

density of the continuum approximation can then be expressed in terms of strain and curvature, see Eq. (3.3).

From the strain energy density, the components of the fourth order elasticity tensors Aijkl, Bijkl, and Cijkl

can be determined by using Eq. (2.54), respectively. For centrosymmetric lattices, the elasticity tensor Cijkl

vanishes, see, e.g., [88], which is the case for the uniform periodically repeating 2D base cells discussed in

[53]. This is also true for the 3D lattices studied in the present work, which is confirmed by the fact that no

couple terms could be identified in the derived strain energy potential. Following [53], the components of the

elasticity tensors are based on strain measures defined via applying the gradient from the left, which require

the left hand-side definition of stress components. For the conversion of elasticity components in order to fit

to strain measures based on the right gradient, see Section 2.6.

A comparison with ABAQUS is performed to verify a correct transformation of the local stiffness matrices

given in Eq. (3.6), which enter Eq. (3.10). For each base cell, an overall stiffness matrix [K~ bc] is assembled,

which is composed of the individual stiffness matrices, [k~(e)], of all its members, nbc. The assembled global

stiffness matrix reads

[K~ bc] =

nbc∑
(e)=1

[T~ (e)
k ]T [T~ (e)

r ]T[k~(e)
local][T~ (e)

r ], ,, ,
[k~(e)

global]]

[T~ (e)
k ] . (3.11)

where [T~ (e)
k ] accounts for the connectivity of the individual elements. The resulting stiffness matrix is com-

pared to the stiffness matrix assembled by ABAQUS using Euler-Bernoulli two-node cubic beam elements

(B33) provided by ABAQUS. These elements correspond to the Hermite beam element. To output the stiff-

ness matrix assembled by ABAQUS, a substructure needs to be generated in a first step to be able to create

a conventional .mtx file in a subsequent step. The stiffness matrix can then be obtained via the keyword

*SUBSTRUCTURE MATRIX OUTPUT. The differences between the stiffness matrices obtained from the evaluation

of Eq. (3.6) using numerical values for the analytical variables and for ABAQUS are considered negligible.

3.3.1 Primitive orthorhombic and primitive cubic lattice

The PO lattice is composed of six lattice members OK with end nodes, K ∈ {A,B,C,D,E,F}, connected at

the center O of the base cell as depicted in Figure 3.2. For the derivation of the MECs, opposite members such

as OA and OC need to show the same bending stiffness with respect to a common axis. The bending stiffness

of an individual member is directly related to the definition of the local beam coordinate system. This needs

to be considered when defining the local beam coordinate systems for each member, as shown for the PO

lattice base cell in Figure 3.2. For example, the bending stiffnesses of members OA and OC according to their

local beam axes em and en follow as EsImA = EsImC = EsIm1 and EsInA = EsInC = EsIn1, respectively,

where Es denotes the Young’s modulus of the parent material and Im, In are the area moments of inertia

corresponding to em and en. Note that the indices for the area moments of inertia are not italicized to avoid

confusion with tensorial quantities. It follows that only three sets of geometrical properties remain for the
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lattice members, i.e., three unique lattice members composed of opposite members regarding the bending

stiffness remain, OA=OC, OB=OD, and OE=OF. Otherwise, the centrosymmetry is broken and coupling

terms are obtained. However, for different cross-sections or polar moments of inertia of opposite members,

the centrosymmetry is preserved and the average values replace the individual values. In this thesis, opposite

members are assumed to have the same cross-sections, area moments of inertia, and polar moments of inertia

resulting in three sets of geometrical properties, i.e., OA=OC, OB=OD, and OE=OF.

The strain energy density for the PO lattice using Eq. (3.10) reads

ψPO =
1

Vbc

nbc=6∑
K

WOK , (3.12)

where Vbc = l1l2l3 is the volume occupied by the base cell. The strain energy density in terms of strain

measures using Eq. (3.2) leads to

ψPO =
A1Esε

2
11

2l2l3
+

A2Esε
2
22

2l1l3
+

A3Esε
2
33

2l1l2
+

2EsIm1κ
2
12

l2l3

+
6EsIm1ε

2
13

l21l2l3
+

2EsIm2κ
2
21

l1l3
+

6EsIm2ε
2
23

l1l22l3
+

2EsIm3κ
2
31

l1l2

+
6EsIm3ε

2
32

l1l2l23
+

2EsIn1κ
2
13

l2l3
+

6EsIn1ε
2
12

l21l2l3
+

2EsIn2κ
2
23

l1l3

+
6EsIn2ε

2
21

l1l22l3
+

2EsIn3κ
2
32

l1l2
+

6EsIn3ε
2
31

l1l2l23
+

GsIt1κ
2
11

2l2l3

+
GsIt2κ

2
22

2l1l3
+

GsIt3κ
2
33

2l1l2
,

(3.13)

Figure 3.2: Schematic of base cell of PC lattice showing local beam coordinate systems with black, blue,
and red arrows denoting axes et, en, and em, respectively.
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where Ak, lk, Imk, Ink, and Itk denote the cross-section, length, area moment of inertia with respect to the

local m- and n-axis, and polar moment of inertia for each lattice member k = 1, 2, 3, respectively. The length

of the lattice members is shown in Figure 3.2. The MECs are determined by differentiating the strain energy

density with respect to the strain measures according to Eq. (2.54). All non-zero components of the elasticity

tensors, Aijkl and Bijkl, are identified as

A1111 =
A1Es

l2l3
, B1111 =

GsIt1
l2l3

,

A1212 =
12EsIn1
l21l2l3

, B1212 =
4EsIm1

l2l3
,

A1313 =
12EsIm1

l21l2l3
, B1313 =

4EsIn1
l2l3

,

A2121 =
12EsIn2
l1l22l3

, B2121 =
4EsIm2

l1l3
,

A2222 =
A2Es

l1l3
, B2222 =

GsIt2
l1l3

,

A2323 =
12EsIm2

l1l22l3
, B2323 =

4EsIn2
l1l3

,

A3131 =
12EsIn3
l1l2l23

, B3131 =
4EsIm3

l1l2
,

A3232 =
12EsIm3

l1l2l23
, B3232 =

4EsIn3
l1l2

,

A3333 =
A3Es

l1l2
, B3333 =

GsIt3
l1l2

.

(3.14)

No non-zero components corresponding to the coupling elasticity tensor Cijkl could be identified, which

is expected due to the considered centrosymmetry of the lattice. The elasticity tensors show orthotropic

symmetry as expected, cf. Eq. (B.1). Note that for this lattice the effective Poisson’s ratio is zero in

all directions. Consequently, all off-diagonal components of the remaining elasticity tensors are zero. A

comparison between the MECs derived for the primitive orthorhombic lattice and those derived for the 2D

rectangular lattice in [53] can be found in Appendix E.

If all lattice members show the same geometrical properties, namely, lk = l, Imk = Ink = I, Itk = It, and

Ak = A, the strain energy density of the primitive cubic (PC) lattice, ψPC, is obtained. This lattice shows

cubic symmetry, cf. Eq. (B.2).

3.3.2 Body centered cubic lattice

The BCC lattice is composed of eight lattice members OK with end nodes, K ∈ {Atop, Btop, Ctop, Dtop,

Abot, Bbot, Cbot, Dbot}, connected at the center, O, of the base cell as depicted in Figure 3.3. The BCC

lattice spans a cubic base cell with side length, l, resulting in a length, lBCC =
√
3l/2, for each individual

lattice member. For the sake of simplicity, all members possess the same geometrical properties. The local

coordinate system of each member of the base cell is shown in Figure 3.3. The strain energy density for the

BCC lattice using Eq. (3.10) reads

ψBCC =
1

Vbc

nbc=8∑
K

WOK , (3.15)
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with Vbc = l3. The strain energy density in terms of strain measures using Eq. (3.2) leads to

ψBCC =
2
√
3

9l4
(AEsε

2
11l

2 + 2AEsε11ε22l
2 + 2AEsε11ε33l

2 +AEsε
2
12l

2 + 2AEsε12ε21l
2 +AEsε

2
13l

2

+ 2AEsε13ε31l
2 +AEsε

2
21l

2 +AEsε
2
22l

2 + 2AEsε22ε33l
2 +AEsε

2
23l

2 + 2AEsε23ε32l
2

+AEsε
2
31l

2 +AEsε
2
32l

2 +AEsε
2
33l

2 + 32EsIε
2
11 − 32EsIε11ε22 − 32EsIε11ε33 + 32EsIε

2
12

− 32EsIε12ε21 + 32EsIε
2
13 − 32EsIε13ε31 + 32EsIε

2
21 + 32EsIε

2
22 − 32EsIε22ε33 + 32EsIε

2
23

− 32EsIε23ε32 + 32EsIε
2
31 + 32EsIε

2
32 + 32EsIε

2
33 + 8EsIκ

2
11l

2 − 8EsIκ11κ22l
2 − 8EsIκ11κ33l

2

+ 8EsIκ
2
12l

2 − 8EsIκ12κ21l
2 + 8EsIκ

2
13l

2 − 8EsIκ13κ31l
2 + 8EsIκ

2
21l

2 + 8EsIκ
2
22l

2 − 8EsIκ22κ33l
2

+ 8EsIκ
2
23l

2 − 8EsIκ23κ32l
2 + 8EsIκ

2
31l

2 + 8EsIκ
2
32l

2 + 8EsIκ
2
33l

2 +GsItκ
2
11l

2

+ 2GsItκ11κ22l
2 + 2GsItκ11κ33l

2 +GsItκ
2
12l

2 + 2GsItκ12κ21l
2 +GsItκ

2
13l

2 + 2GsItκ13κ31l
2

+GsItκ
2
21l

2 +GsItκ
2
22l

2 + 2GsItκ22κ33l
2 +GsItκ

2
23l

2 + 2GsItκ23κ32l
2 +GsItκ

2
31l

2

+GsItκ
2
32l

2 +GsItκ
2
33l

2) .

(3.16)

All non-zero components of the elasticity tensors, Aijkl and Bijkl, are identified as

A1111 =
4
√
3Es

(
Al2 + 32I

)
9l4

, B1111 =
4
√
3 (GsIt + 8EsI)

9l2
,

A1122 =
4
√
3Es

(
Al2 − 16I

)
9l4

, B1122 =
4
√
3 (GsIt − 4EsI)

9l2
,

(3.17)

with
Aiiii = Aijij = A1111 , Biiii = Bijij = B1111 ,

Aiijj = Aijji = A1122 , Biijj = Bijij = B1122 .
(3.18)

Figure 3.3: Schematic of base cell of BCC lattice showing local beam coordinate systems with black, blue,
and red arrows denoting axes et, en, and em, respectively.
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This results in 21 non-zero components for each of the two elasticity tensors. No non-zero components

corresponding to the coupling elasticity tensor Cijkl could be identified.

3.3.3 Body centered cubic reinforced by primitive cubic lattice

The BCCCP lattice is composed of 14 lattice members with end nodes of the BCC and PC lattices, which are

connected at the center, O, of the base cell as depicted in Figure 3.4. The lattice represents a superposition

of BCC and PC lattices. The base cell of the BCCCP lattice spans a cubic base cell with side length, l. The

length of the lattice members belonging to the BCC lattice contribution is lBCC =
√
3l/2 whereas for the PC

contribution the length of the members is lPC = l/2. For the sake of simplicity, the geometric properties of

all members belonging to one of the contributing lattices are assumed to be the same. The local coordinate

system of each member is shown in Figure 3.4. The strain energy density for the BCCCP lattice is obtained

by the superposition of the individual strain energy densities of BCC and PC lattices

ψBCCCP = ψBCC + ψPC . (3.19)

The contribution of the strain energy density ψPC follows from Eq. (3.13) with lk = lPC, Ak = APC,

Imk = Ink = IPC, and Itk = IPC
t for k = 1, 2, 3. The contribution of the strain energy density ψBCC follows

directly from Eq. (3.16), where quantities are superscripted by BCC. For the sake of brevity, the resulting

strain energy density is not explicitly stated.

Figure 3.4: Schematic of base cell of BCCCP lattice showing local beam coordinate systems with black,
blue, and red arrows denoting axes et, en, and em, respectively.
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The MECs of this lattice can be determined either by differentiating the strain energy density given in

Eq. (3.19) with respect to the strain measures or by superposition of the elasticity tensors of the BCC and

PC lattice. The elasticity tensors of the BCCCP lattice read

A~~BCCCP = A~~PC + A~~BCC , B~~BCCCP = B~~PC + B~~BCC . (3.20)

Note that CBCCCP
ijkl = 0. The components read

A1111 =

√
3Es

(
4ABCCl2 + 128IBCC + 3

√
3APCl2

)
9l4

, B1111 =

√
3
(
32EsI

BCC + 4GsI
BCC
t + 3

√
3GsI

PC
t

)
9l2

,

A1122 =
4
√
3Es

(
ABCCl2 − 16IBCC

)
9l4

, B1122 =
4
√
3
(
GsI

BCC
t − 4EsI

BCC
)

9l2
,

A1212 =
4
√
3Es

(
ABCCl2 + 32IBCC + 9

√
3IPC

)
9l4

, B1212 =
4
√
3
(
8EsI

BCC + 3
√
3EsI

PC +GsI
BCC
t

)
9l2

,

A1221 =
4
√
3Es

(
ABCCl2 − 16IBCC

)
9l4

, B1221 =
4
√
3
(
GsI

BCC
t − 4EsI

BCC
)

9l2
,

(3.21)

with

Aiiii = A1111 , Aijij = A1212 , Aijji = A1221 , Aiijj = A1122 . (3.22)

As expected, the elasticity tensors show cubic symmetry, cf. Eq. (B.2). The off-diagonal components of these

tensors are different from zero compared to the PC lattice, resulting from the contribution of the BCC lattice

introducing Poisson effects.
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Chapter 4

FEM implementation

In the following, the FEM implementation is outlined. Starting from the field equations of the micropolar

continuum given in Chapter 2, the equations necessary for the FEM implementation are derived. Various

implementations are made to accommodate geometrically nonlinear and linear micropolar boundary value

problems. The implementation of the 3D geometrically nonlinear problem mainly follows [8, 26], where

a discrete, i.e., a numerical consistent tangent matrix, is used instead of an analytical one to overcome

excessive implementation work [8]. The framework for this implementation is ABAQUS, which is a robust

and widely accepted commercial FEM program. The implementation of the linear problem considering two

and three dimensions follows [53]. ABAQUS as well as the open-source FEM software NGSolve serve as the

basis for the implementations to achieve the desired flexibility in post-processing of the simulation results

and to employ their respective advantages. On the one hand, in ABAQUS, the postprocessing of results

is tedious for user elements, which is the implementation interface used in this work. On the other hand,

ABAQUS offers the possibility to employ user elements in conjunction with any other element from the

element library and, hence, makes it interesting for industrial applications. In contrast, NGSolve provides

convenient postprocessing capabilities based on the python based implementation interface. However, it does

not provide any element library.

4.1 Geometrically nonlinear micropolar continuum in 3D

4.1.1 General concept

A total Lagrangian formulation for the FEM implementation is aimed for in order to overcome the necessity

of transforming the elasticity tensors according to Eq. (2.77). The starting point is the weak form of the

Lagrangian equations as derived, e.g., in [26, 28]. In [26], the derivation is based on introducing arbitrary

vector valued weighting or test functions δu and δϕ, which have to be sufficiently often differentiable and

must vanish in regions of prescribed kinematic boundary conditions. The test functions are multiplied to

the strong form of the BVP being composed of the Eulerian equilibrium equations given in Eqs. (2.36) and

(2.37) including the corresponding boundary conditions given in Eqs. (2.45), (2.46), and (2.44). Integration

by parts and some algebraic manipulations yield the principle of virtual work in the Eulerian description. By
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integral and variable transformations, the principle of virtual work in the Lagrangian description is obtained,

for further details see [26]. It reads

Aint −Aext = G(u,ϕ, δu, δϕ) = 0 ,∫
R0

T̆~ : δE~ + κT̆~ : δK~ dV −
∫
R0

ρ0f · δu+ ρ0m · δϕ dV −
∫
∂R0

t̆
∗ · δu+ κt̆

∗ · δϕ dS = 0 , (4.1)

where Aint and Aext denote the virtual work of internal and external forces, respectively, G represents a

functional based on displacement and rotation fields, δE~ and δK~ represent the virtual relative Lagrangian

stretch and wryness tensors, respectively. The virtual displacement and microrotation fields are denoted by

δu and δϕ, respectively. The applied surface tractions and moments given in Eq. (2.44) are denoted as t̆
∗

and κt̆
∗
, respectively. In [26], the virtual strain measures are derived on the basis of expressing the external

loads in Eq. (4.1) by using the Lagrangian equilibrium equations Eqs. (2.42) and (2.43) and subsequently

equating the coefficients. The virtual strain measures read

δE~ = R~T(δu⊗∇X + sk(δϕ)TF~) , (4.2)

δK~ = R~Tδ(ϕ⊗∇X) , (4.3)

where sk(·) takes an axial vector and gives the corresponding skew-symmetric matrix as given in Eq. (A.19).

Inserting Eqs. (4.2) and (4.3) into the virtual work in Eq. (4.1) yields

G(u,ϕ, δu, δϕ) =

∫
R0

T̆~ : (R~T(δu⊗∇X + sk(δϕ)TF~)) + κT̆~ : R~T(δϕ⊗∇X) dV

−
∫
R0

ρ0f · δu+ ρ0m · δϕ dV −
∫
∂R0

t̆
∗ · δu+ κt̆

∗ · δϕ dS = 0 . (4.4)

To solve the nonlinear BVP by the FEM, the problem is discretized. The computational domain, Ωh = R0,

is subdivided into a set of subdomains or finite elements, i.e., Ω(e) ∈ Ωh, reading

Ωh =

nelU
(e)=1

Ω(e) , (4.5)

where (e) is the element number, nel denotes the number of elements, and
U

refers to an assembly operator,

which enforces the continuity of the kinematic fields between the elements. The superscript h denotes the

approximation by finite elements, which will further be attached to quantities indicating their approximative

character. To approximate the displacement and rotation fields within an element, the following interpolation

functions are used

uh(X, t) = Nu
I (X)uI(t) , (4.6)

ϕh(X, t) = Nϕ
I (X)ϕI(t) , (4.7)

where I denotes a node at the element level with I = {1, ..., n(e)}, where n(e) is the number of nodes comprising

the element. The interpolation functions show the following properties

Nu
I (XJ) = δIJ , Nϕ

I (XJ) = δIJ . (4.8)
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The virtual displacement and rotation fields are approximated in the same way as the kinematic fields given

in Eqs. (4.6) and (4.7), respectively, i.e., Galerkin’s method is applied. The approximation reads

δuh(X) = Nu
I (X)δuI , (4.9)

δϕh(X) = Nϕ
I (X)δϕI . (4.10)

An isoparametric element is aimed for, i.e., the geometry or position vectors are approximated in the same

way as the displacement field, reading

xh(X, t) = Nu
I (X)xI(t) , (4.11)

Xh(X, t) = Nu
I (X)XI(t) . (4.12)

In the following, the interpolation functions are also called shape functions.

To solve the discretized nonlinear BVP, the problem is linearized and solved employing an incrementally-

iterative procedure, i.e., a sequence of linear problems is solved. Therefore, the virtual work given in Eq. (4.4)

is prepared to be solved by the FEM. Following [69], this reads

[δya] · [K~ T([y
a])][∆y] = [δya] · [r([ya])] ⇒ [K~ T([y

a])][∆y] = [r([ya])] , (4.13)

where [K~ T] denotes the stiffness matrix, [r] = [qint] − [qext] is the generalized residual vector composed of

internal, [qint], and external force and moment vectors, [qext], and [y] = [u,ϕ]T denotes the solution vector

of the problem, which is composed of the solution variables, namely, nodal displacements and rotations. The

corresponding variation and the incremental value or linear change of the solution variables are denoted by

[δy] = [δu, δϕ]T and [∆y] = [∆u,∆ϕ]T, respectively. The superscript a indicates the expansion point of the

linearization. The solution variables must be isolated in Eq. (4.4) to be solved in the targeted set of linear

equations as indicated by the right hand-side of Eq. (4.13), which is to be solved for [∆y]. Note that in

the following the tensorial quantities are used to determine the components of the residual vector and of the

tangent stiffness matrix instead of introducing an operator notation.

Following [69], the linearization of Eq. (4.4) by a Taylor series expansion around point a using the discretized

kinematic fields reads

Lin(Gh([ya], [δya], [∆y])) = Gh([ya], [δya]) +DGh([ya], [δya])[∆y] , (4.14)

where DGh represents the first order term of the Taylor series. No coupling between displacement and

rotation is considered to obtain a linear system of equations as given in Eq. (4.13) [69]. For the linearization

of Gh, the same applies as in Eq. (4.4) yielding

Lin(Gh([ya], [δya], [∆y])) = 0 ⇒ DGh([ya], [δya])[∆y] = −Gh([ya], [δya]) , (4.15)
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which is associated with the right hand-side of Eq. (4.13). The variation of the residual force and moment

vectors for the given expansion point a reads

−Gh([ya], [δya]) =

nelU
(e)=1

−Gh([ya(e)], [δya(e)]) (4.16)

=

nelU
(e)=1

−
∫
R0

T̆~ : (R~T(δuh ⊗∇X + sk(δϕh)TF~)) + κT̆~ : (R~T(δϕh ⊗∇X) dV

+

∫
R0

ρ0f · δuh + ρ0m · δϕh dV +

∫
∂R0

t̆
∗ · δuh + κt̆

∗ · δϕh dS ,

Note that the superscript h is not attached to the tensorial quantities for the sake of brevity. The same holds

for the element identifier (e). After the isolation of the solution variables as shown in [26], Eq. (4.16) reads

−Gh([ya], [δya]) =

nelU
(e)=1

−[δy(e)] · [r(e)] =
nelU

(e)=1

−[δy(e)] · ([q(e)
int ]− [q

(e)
ext]) , (4.17)

where the residual force and moment vector can be split into internal and external parts denoted by [q
(e)
int ]

and [q
(e)
ext], respectively. To not end up with matrices specific to a particular element, the residuals are given

with respect to a single node I corresponding to a particular element comprised of a certain number of nodes,

n(e). The corresponding nodal equations of the element level based on Eq. (4.17) read

[δy
(e)
I ] · [r(e)I ] = [δy

(e)
I ] · ([q(e)

int,I ]− [q
(e)
ext,I ]) = δu

(e)
I · (uq(e)

int,I −u q
(e)
ext,I) + δϕ

(e)
I · (ϕq(e)

int,I −ϕ q
(e)
ext,I) , (4.18)

where the nodal quantities are arranged as [y
(e)
I ] = [u1;I , u2;I , u3;I , ϕ1;I , ϕ2;I , ϕ3;I ]

T, the internal and ex-

ternal force and moment vectors at node I are comprised of [q
(e)
int;I ] =

[
uq

(e)
int;I ,

ϕ q
(e)
int;I

]T
and [q

(e)
ext;I ] =[

uq
(e)
ext;I ,

ϕ q
(e)
ext;I

]T
, respectively. In [26], the internal force and moment vectors at node I are given as

uq
(e)
int;I =

∫
V

R~ T̆~∇XNu
I dV , (4.19)

ϕq
(e)
int;I =

∫
V

R~ κT̆~∇XNϕ
I + 2Nϕ

I axl(skew(F~T̆~T
R~T)) dV , (4.20)

with skew((·)) giving the skew-symmetric part of (·), cf. Eq. (A.23), and the external force and moment

vectors at node I are given as

uq
(e)
ext;I =

∫
V

ρ0fN
u
I dV +

∫
∂R0

t̆
∗
Nu

I dS , (4.21)

ϕq
(e)
ext;I =

∫
V

ρ0mNϕ
I +

∫
∂R0

κt̆
∗
Nϕ

I dS . (4.22)

Using Eq. (4.18) the residuals read

ur
(e)
I =

∫
V

R~ T̆~∇XNu
I − ρ0fN

u
I dV −

∫
∂R0

t̆
∗
Nu

I dS ∀I /∈ ∂Ru
0 , (4.23)

ϕr
(e)
I =

∫
V

R~ κT̆~∇XNϕ
I + 2Nϕ

I axl(skew(F~T̆~T
R~T))− ρ0mNϕ

I dV

−
∫
∂R0

κt̆
∗
Nϕ

I dS ∀I /∈ ∂Rϕ
0 . (4.24)
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For further details on the derivation of the residuals, see [26].

The right term of the linearization of the variational formulation given in Eq. (4.15), DGh, represents the

linear change in the variational formulation around the expansion point [ya] from which the tangent stiffness

matrix can be obtained. Note that for considering only conservative loads, which are independent of the

displacement and rotation fields, only the internal forces contribute. The isolation of the solution variables

in order to obtain the right hand-side of Eq. (4.13) is mathematically intricate. Furthermore, the analytical

expression for the consistent tangent element matrix leads to excessive implementation work, see, e.g., [26,

43, 69]. In [26], the tangent stiffness matrix is derived considering isotropic material, which allows for some

simplifications of the equations that are otherwise even more complex for considering anisotropic material.

This motivates to apply the approach suggested in [8] to alternatively determine the tangent stiffness matrix

for micropolar problems using a central difference scheme. Therein, the individual element stiffness matrices

associated with the assembled stiffness matrix given in Eq. (4.38) are determined numerically based on the

element right hand-side residual vectors given in Eqs. (4.23) and (4.24) without external load contribution.

The element stiffness matrix is determined via

[K~ (k)
T;IJ ] =

∂riI
∂yjJ

||||
k

≈ riI([yJ ] + ϑ[ej ])− riI([yJ ]− ϑ[ej ])

2ϑ

||||
k

, (4.25)

where the solution vector, [y], is perturbed in each DOF denoted by i, j by an perturbation of size ϑ denoted

by the vector [e]. Throughout this thesis, the perturbation parameter is chosen as ϑ = 10−8, which depends

on machine accuracy and typical values of the solution vector, for further details see [8]. In [8] it is stated

that the computation time for the determination of the residuals is even lower than for the determination of

the analytical tangent matrix given in [43], although the element residuals need to be computed 2 (nel n
(e) ·6)

times.

The spatial discretization given in Eq. (4.5) allows the integration over R0 to be approximated by the sum

of the integration over each subdomain, Ω(e), reading∫
R0

(·)(X) dV ≈
nelU

(e)=1

∫
Ω(e)

(·)(e)(X) dΩ(e) . (4.26)

In the following, the superscript (e) is not attached to the element quantities for the sake of brevity. Intro-

ducing a parent domain of each element, Ω
(e)
ξ , the integration over the global domain can be given as

nelU
(e)=1

∫
Ω(e)

(·)(e)(X) dΩ(e) =

nelU
(e)=1

∫
Ω

(e)
ξ

(·)(e)(ξ)J̆ξ(ξ) dΩ(e)
ξ , (4.27)

where J̆ξ = det(∂X/∂ξ) denotes the determinant of the Jacobian of the element and represents the map

between the element reference and its parent configuration. It reads

J̆~ξ(ξ) = XI ⊗∇ξNI(ξ) (4.28)

=

[

∂N
(e)
I

∂ξ
X

(e)
1I

∂N
(e)
I

∂η
X

(e)
1I

∂N
(e)
I

∂ζ
X

(e)
1I

∂N
(e)
I

∂ξ
X

(e)
2I

∂N
(e)
I

∂η
X

(e)
2I

∂N
(e)
I

∂ζ
X

(e)
2I

∂N
(e)
I

∂ξ
X

(e)
3I

∂N
(e)
I

∂η
X

(e)
3I

∂N
(e)
I

∂ζ
X

(e)
3I

]
.
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Note that for the ABAQUS implementation in Section 4.1.2, the gradient is applied from the left, cf.

Eq. (F.10), and, consequently, J̆~ξ does not need to be transposed in the following equations. As the el-

ement parent configuration is the same for each element, the Gaussian quadrature scheme is used for the

integration over the element domain reading as∫
Ω

(e)
ξ

(·)(ξ)J̆ξ(ξ) dΩ(e)
ξ ≈

nint∑
p=1

(·)(ξp)J̆ξ(ξp)wp , (4.29)

where p denotes the integration point, nint is the number of integration points, ξp(ξp, ηp, ζp) represents the

vector of the element parent coordinates of each individual integration point, and wp is the corresponding

weighting factor. The element parent coordinates and the corresponding weighting factors of each integration

point are known for certain types of elements and can be found in standard finite element text books, see ,

e.g., [7].

The consideration of conservative loads allows to introduce traction and surface traction boundary conditions

at a later stage. Making use of Eqs.(4.26), (4.28), and (4.29), the nodal residual vectors at the element level

based on Eqs. (4.23) and (4.24) follow as

ur
(e)
I =

nint∑
p=1

(
R~ T̆~ (ξp)J̆~−T

ξ (ξp)∇ξN
u
I (ξp)− ρ0f(ξp)N

u
I (ξp)

)
J̆ξ(ξp)wp , (4.30)

ϕr
(e)
I =

nint∑
p=1

(
R~ κT̆~ (ξp)J̆~−T

ξ (ξp)∇ξN
ϕ
I (ξp)− χt̆(ξp)N

ϕ
I (ξp)− ρ0m(ξp)N

ϕ
I (ξp)

)
J̆ξ(ξp)wp , (4.31)

where in each equation the last term is associated with external forces and moments and the other terms are as-

sociated with stresses and couple stresses. The axial stress vector is introduced as χt̆ = −2axl(skew(F~T̆~T
R~T)) =

2axl(skew(R~ T̆~F~T)) = axl(R~ T̆~F~T − F~T̆~T
R~T). Introducing auxiliary vectors

B̆
u

I (ξp) = J̆~−T

ξ (ξp)∇ξN
u
I (ξp) , (4.32)

B̆
ϕ

I (ξp) = J̆~−T

ξ (ξp)∇ξN
ϕ
I (ξp) , (4.33)

the residual vectors given in Eqs. (4.30) and (4.31) read

ur
(e)
I =

nint∑
p=1

(
R~ T̆~ B̆u

I − ρ0fN
u
I

)
J̆ξwp , (4.34)

ϕr
(e)
I =

nint∑
p=1

(
R~ κT̆~ B̆ϕ

I − χt̆Nϕ
I − ρ0mNϕ

I

)
J̆ξwp . (4.35)

respectively, where the dependencies of the variables on ξp are not explicitly stated. For the sake of brevity,

the residuals are summarized in a single column vector

[r
(e)
I ] = [ur

(e)
I ,ϕ r

(e)
I ]T (4.36)

as given in Eq. (4.18) with the dimension of (6x1).

The element stiffness matrices as well as the element residual vectors are then assembled reading

[K~ T] =

nelU
(e)=1

[K~ (e)
T ] , [r] =

nelU
(e)=1

[r(e)] . (4.37)
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Finally, for the incrementally-iterative procedure, the Newton-Raphson scheme is used, where the load is

incrementally applied and an equilibrium iteration within each increment is performed. On the global or

assembled level in terms of nodes following [8], this reads

[r
(k+1)
I ] = [r

(k)
I ] +

[∂r
(k)
I ]

[∂y
(k)
J ]

[∆y
(k)
J ] = [0]

⇒ [K~ (k)
T;IJ ][∆y

(k)
J ] = [r

(k)
I ] and solve for [∆y

(k)
J ] , (4.38)

repeat until ∥[r(k+1)
I ]∥ < ϵ then [y

(1)
(m+1)J ] ← [y

(keq)

(m)J ]
(
= [y

(k+1)
J ] ← [y

(k)
J ] + [∆y

(k)
J ]

)
, (4.39)

where the superscript a from Eq. (4.13) is replaced by k, which is the step counter of the equilibrium iteration.

The number of increments is denoted bym and represents the starting point based on the previously converged

increment while m + 1 is referred to as the current increment. Once a certain criterion is fulfilled, e.g., the

norm of the residual vector at node I is below a predefined threshold value ϵ, the solution is considered as

converged with a total number of iterations, keq, and the next load increment can be applied with setting

the iteration step counter to k = 1. For highly nonlinear problems, the tangent matrix should be updated

within every iteration as pointed out in [8].

Updated Lagrangian formulation. For the sake of completeness, the derivation of the equivalent updated

Lagrangian formulation is obtained by starting from the Eulerian equations of motion given in Eqs. (2.42)

and (2.43). In [44], the virtual work for this formulation is given as

Aint −Aext = G(u,ϕ, δu, δϕ) = 0 , (4.40)∫
Rt

T~ : δe~+ κT~ : δk~ dv−
∫
Rt

ρtf · δu+ ρtm · δϕ dv−
∫
∂Rt

t∗ · δu+ κt∗ · δϕ ds = 0 .

The derivation is abbreviated and takes directly the residual force and moment vectors of the discrtized

problem given in Eqs. (4.23) and (4.24), which are then expressed with respect to the current configuration.

The volume, v, and the surface, s, both with respect to the current configuration are obtained by using

Eqs. (2.15) and (2.14), respectively. The gradient with respect to the current configuration, gradR(·) =

(·) ⊗ ∇x, is obtained by using Eq. (A.25). Furthermore, the boundary conditions given in Eq. (2.44) are

considered. This leads to∫
Rt

(R~ T̆~F~T∇xN
u
I − ρ0fN

u
I )

1

J
dv−

∫
∂Rt

R~ T̆~Nu
I F~T 1

J
n ds = 0 ∀I /∈ ∂Ru

t , (4.41)∫
Rt

(R~ κT̆~F~T∇xN
ϕ
I + 2Nϕ

I axl(skew(F~T̆~T
R~T))− ρ0mNϕ

I )
1

J
dv

−
∫
∂Rt

R~ κT̆~Nϕ
I F~T 1

J
n ds = 0 ∀I /∈ ∂Rϕ

t . (4.42)

Making use of the Piola transformations of the stress measures given in Eq. (2.49) and considering χt =

−2
1

J
axl(skew(F~T̆~T

R~T)) = −2axl(skew(T~T)) yield

∫
Rt

(T~∇xN
u
I − ρtfN

u
I ) dv−

∫
∂Rt

t∗NI ds = 0 ∀I /∈ ∂Ru
0 , (4.43)∫

Rt

(κT~∇xN
ϕ
I − χtNϕ

I − ρtmNϕ
I ) dv−

∫
∂Rt

κt∗NI ds = 0 ∀I /∈ ∂Rϕ
0 , (4.44)
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where all quantities are considered with respect to the current configuration. To obtain the updated La-

grangian formulation for the FEM implementation, these equations are integrated by the Gaussian quadra-

ture rule given in Eq. (4.29), where the Jacobian of the element must now be considered as a mapping between

current and element parent configuration reading

J~ξ(ξ) = xI ⊗∇ξNI(ξ) , (4.45)

where x is the position vector in the current configuration. With this at hand, the nodal residual vectors can

be given as

ur
(e)
I =

nint∑
p=1

(T~Bu
I − ρtfNI) Jξwp , (4.46)

ϕr
(e)
I =

nint∑
p=1

(
κT~Bϕ

I − χtNI − ρtmNI

)
Jξwp , (4.47)

where Jξ is the determinant of J~ξ and Bu
I (ξp) = J~−T

ξ (ξp)∇ξN
u
I (ξp) as well as B

ϕ
I (ξp) = J~−T

ξ (ξp)∇ξN
ϕ
I (ξp)

represent auxiliary vectors. The nodal residual vectors are the same as given, e.g., in [8]. The resulting

nodal residual vectors based on the updated, cf. Eqs. (4.46) and (4.47), and total Lagrangian formulations,

cf. Eqs. (4.34) and (4.35), must be equal. Note that for the ABAQUS implementation in Section 4.1.2, the

gradient in Eq. (4.45) is applied from the left and, consequently, J~ξ does not need to be transposed in the

equations above.

Update of strain measures. The nodal residual vector corresponding to Eq. (4.36) is determined based on

the updated or estimated values of the solution variables, i.e., nodal displacements and rotations. First, the

approximated deformation gradient tensor and the approximated microrotation tensor are determined from

which the strain measures are calculated. Once the strain measures are available, the stress measures can be

determined based on the constitutive laws. Since the present thesis aims at a total Lagrangian formulation,

only the updates of the Lagrangian strain measures are presented.

The deformation gradient tensor given in Eq. (2.13) using Eq. (4.6) is approximated by

F~h(X, t) = I~+ uI(t)⊗∇XNu
I (X) . (4.48)

The microrotation tensor given in Eq. (2.6) using Eq. (4.7) is approximated by

R~ h(X, t) = exp (sk(Nϕ
I (X)ϕI(t))) . (4.49)

Note that the superscript h is not attached to the following tensorial quantities for the sake of brevity.

The update of the deformation gradient tensor is performed by directly using the updated nodal displacement

vectors. It reads

F~(k+1) = I~+ u
(k+1)
I ⊗∇XNu

I , (4.50)

where dependencies are not explicitly stated.

To ensure proper convergence of the solution, the microrotation tensor is updated as follows

R~ (k+1) = ∆R~ (k)R~ (k) (4.51)
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where ∆R~ (k) denotes the incremental rotation and reads

∆R~ (k) = exp (sk(Nϕ
I ∆ϕ

(k)
I )) , (4.52)

corresponding to Eq. (4.49).

For the update of the relative Lagrangian stretch tensor in Eqs. (2.18), (4.50), and (4.51) are used to obtain

E~ (k+1) = R~ (k+1)TF~(k+1) − I~ . (4.53)

For the update of the relative Lagrangian wryness tensor given in Eq. (2.19), different approaches are found

in [8] and [26]. Following [26], the tensor is updated as follows

K~ (k+1) = K~ (k) +∆K~ (k) = K~ (k) +R~ (k+1)TH~ (∆ϕ(k))(∆ϕ(k) ⊗∇X) , (4.54)

where K~ (k) represents the wryness tensor of the previous increment. The second order tensor, H~ , reads

H~ (∆ϕ) = I~+ 1− cos(∥∆ϕ∥)
∥∆ϕ∥2 (∆ϕ× I~) + ∥∆ϕ∥ − sin(∥∆ϕ∥)

∥∆ϕ∥3 (∆ϕ× I~)2 , (4.55)

with its derivation given in [37]. Following [8], the update of the relative Lagrangian wryness tensor reads

K~ (k+1) = (axl(R~ (k+1)T ∂R~ (k+1)

∂Xk
))⊗Ek , (4.56)

where the gradient of the microrotation tensor with respect to each spatial direction, Xk, is obtained by

applying the chain rule to Eq. (4.51) and follows as

∂R~ (k+1)

∂Xk
=

∂∆R~ (k)

∂Xk
R~ (k) +∆R~ (k) ∂R~ (k)

∂Xk
. (4.57)

Note that in [8] also a different approximation of the microrotation tensor is used, which reads

R~ h(X, t) = Nϕ
I (X) exp (sk(ϕI(t))) , (4.58)

where the interpolation functions are not within the exponent compared to Eq. (4.49). It gives a slightly

different approximation not only for the microrotation tensor, but also for the strain measures. The gradient

of the microrotation tensor using Eq. (4.58) is given in Eq. (F.12) in the Appendix F. Which of the definitions

of the microrotation tensors given in Eqs. (4.49) and (4.58) is used for the implementation, is specified in

Section 4.1.2. The same applies to the updates of K~ given in Eqs. (4.54) and (4.57).

In the first iteration, k = 1, no deformation is assumed, reading

u = 0 , ϕ = 0 → F~ = I~ , R~ = I~ , E~ = 0~ , K~ = 0~ . (4.59)

The system of equations is then solved for [∆y1], then [y(2)] ← [y(1)] + [∆y(1)], see Eq. (4.38). If an

equilibrium for an increment is achieved for keq iterations, the quantities are stored as (·)(1)(m+1) ← (·)(keq)

(m) .
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Strain energy. On the element level, the incremental strain energy is approximated based on a trapezoidal

rule reading

∆E(k)
se ≈

nint∑
p=1

1

2

(
(T̆~ (k+1)

+ T̆~ (k)
) : (E~ (k+1) −E~ (k)) + (κT̆~ (k+1)

+ κT̆~ (k)
) : (K~ (k+1) −K~ (k))

)
J̆ξwp ,

(4.60)

and updated accordingly

E(k+1)
se = ∆E(k)

se + E(k)
se , (4.61)

with all quantities evaluated at the integration points (ξp). Optionally, the strain energy can be directly

determined via

E(k+1)
se =

nint∑
p=1

1

2

(
T̆~ (k+1)

: E~ (k+1) + κT̆~ (k+1)
: K~ (k+1)

)
J̆ξwp . (4.62)

Due to the absence of any energy dissipation, the strain energy must be equal to the work done by the

external loads, i.e., Ese + Eext = 0.
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4.1.2 Implementation as user element

The implementation of the geometrically nonlinear micropolar continuum is performed in ABAQUS and is

done on the element level via the ABAQUS user element (UEL) interface. This is the only interface provided

by ABAQUS that allows to define the necessary additional rotational DOFs of the micropolar continuum.

This element is capable of dealing with 3D problems involving large displacements and rotations in the small

strain regime. For the present implementation, RSD of stress measures is used and the gradients are applied

from the right side except for the Jacobian matrix defined in Eq. (F.10). Note that for some anisotropic

materials the corresponding conversion rule of elasticity tensors needs to be considered, cf. Eq. (2.73). The

advantage of an implementation in ABAQUS is the possibility of the user element to be used in combination

with the elements available in the ABAQUS element library.

The UEL interface is provided by ABAQUS in the form of a subroutine written in Fortran77 or Fortran90,

the latter being chosen for implementation. The interface provides information that is passed to the UEL

subroutine. The most important information are the arrays containing the current estimates of the basic

solution variables, i.e., total and incremental nodal values for the active DOF of the element at the end of the

current increment/iteration. For the micropolar continuum, the active DOFs, yN , are displacements uN and

microrotations ϕN with N denoting the DOF, see Eq. (F.4). The subroutine contains variables to be updated

when passing through the subroutine. These variables are the right hand-side vector, RHS, with components

FN defined as external minus internal forces or moments, the consistent tangent matrix, amatrx, with com-

ponents defined as KT;NM = −∂FN/∂yM , the user-defined solution-dependent state variables (SDVs), such

as stresses and strains, the energy variables, such as the strain energy, and an optional time incrementation

parameter to change the step size if convergence issues show up. The element residuals are determined via

Eqs. (4.34) and (4.35). The element tangent stiffness matrices are determined based on Eq. (4.25). Both

quantities are assembled to form a global system of equations, taking into account all boundary conditions,

which is performed by ABAQUS. The global system of equations in each increment and iteration, k, reads

[K~ (k)
T ][∆y(k)] = [r(k)] + NBC|t,κt , (4.63)

where NBC|t,κt denotes the Neumann-type boundary conditions incorporated at this stage, cf. the additional

terms associated with the traction and surface traction boundary conditions in Eqs. (4.23) and (4.24) with

Eqs. (4.34) and (4.35). In general, [K~ ] ̸= [K~ ]T, which requires the use of the unsymmetric matrix storage

and solution capabilities of ABAQUS. The UEL is implemented such that it must be used in conjunction

with the Newton-Raphson scheme as outlined in Eqs. (4.38) and (4.39). To use the Riks solution procedure

capabilities of ABAQUS, an incremental load vector needs to be defined additionally, which is beyond of the

scope of this thesis.

In the present thesis, a hexahedral element with linear shape functions is implemented. The shape functions

used for the implementation are given in Eq. (F.1) with nodes following the convention used for solid elements

available in the ABAQUS element library, cf. Figure 4.2. The displacements and rotations are approximated

with the same interpolation functions, namely,

Nu
I (X) = Nϕ

I (X) = NI(X) . (4.64)

The geometry uses the same interpolation functions as the solution variables, hence, the element is referred

to being an isogeometric element, cf. Eq. (4.11). A Gaussian integration scheme is used, cf. Eq. (4.29), with

the corresponding integration point coordinates and weighting factors given in Table F.1 in the Appendix F.

This element is further referred to as C3D8MP.
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nlgeom

*STATIC

curvmeasure LRSD

R~ : Eq. (2.9) and update Eq. (4.58)
E~ : Eq. (2.20) and update Eq. (4.53)
K~ : Eq. (2.21) and update Eq. (4.56)

R~ : Eq. (2.9) and update Eq. (4.49)
E~ : Eq. (2.18) and update Eq. (4.53)
K~ : Eq. (2.19) and update Eq. (4.54)

lagreul

...

T~ , κT~ , e~,k~ T̆~ , κT̆~ ,E~ ,K~

R~ : Eq. (2.25)
ε̂~: Eq. (2.28)
κ̂~: Eq. (2.29)

R~ : Eq. (2.25)
ε~: Eq. (2.26)
κ~: Eq. (2.27)

σ~, κσ~, ε~,κ~

..

.

yes no

GRBCIC

BAUER

TL

UL

RSD
LSD

Figure 4.1: Flowchart of variables to be defined by the user (diamond-shaped tiles) and resulting output
(grey rectangular tiles). The *STATIC step setting is to be specified in the input file (white)
and the UEL C3D8MP user variables are to be set within the UEL subroutine (grey), where TL

and UL denote total and updated Lagrangian descriptions, respectively. Vertical paths indicate
the default setting of the user variables.

The right hand-side vector as well as the consistent tangent matrix can either be determined by using

Eqs. (4.34) and (4.35) for the total Lagrangian formulation or by using Eqs. (4.46) and (4.47) for the updated

Lagrangian formulation. The total Lagrangian formulation does not require the transformation of the elas-

ticity tensors according to Eq. (2.77). To handle the transformations necessary for the updated Lagrangian

formulation, pullback operations on the Eulerian strain measures given in Eq. (2.23) are used to determine

PK2-like stress measures, which are then pushed forward via Piola transformations given in Eq. (2.49) to

obtain the Cauchy-like stress tensors. Which formulation is used depends on the choice of the internal UEL

user variable lagreul, cf. Figure 4.1. The default setting is the total Langrangian formulation. The linear

micropolar continuum can be directly obtained by using small instead of large strain measures. This is en-

abled by defining the step setting *STATIC in the input file accordingly, cf. Figure 4.1. Both strain measures

based on left and right gradients can be considered, cf. Eqs. (2.28) and (2.26), respectively. Consequently,

the output, i.e., the SDVs, of the micropolar continuum element depends on the choice of internal UEL user

variables as well as parameters provided by the input file, see Figure 4.1.

External body forces and moments can be considered as distributed loads and are accessible via the ABAQUS

keyword ∗DLOAD. For further information on the user element variables, see Appendix F, while in particular

for the element usage, see Appendix F.5.
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Figure 4.2: Trilinear hexahedral element with node and integration point numbering.

4.2 Linear micropolar continuum

A purely linear micropolar continuum in three as well as two dimensions is implemented using a vector-matrix

notation, which leads to a more familiar way of implementing finite element matrices within the framework

of ABAQUS. Following the implementation of 2D linear finite elements presented in [53], the starting point

for the finite element implementation is the principle of virtual work, cf. Eq. (4.1). For the linear micropolar

continuum, this reads∫
R0

σ~ : δε~+ κσ~ : δκ~ dV =

∫
R0

ρf · δu+ ρm · δϕ dV +

∫
∂R0

t∗ · δu+ κt∗ · δϕ dS , (4.65)∫
R0

σijδεij +
κσijδκij dV =

∫
R0

ρfiδui + ρmiδϕi dV +

∫
∂R0

tiδui +miδϕi dS ,

where σ~ , κσ~ and ε~,κ~ refer to linear stress and strain measures, respectively, t∗ denotes applied surface

tractions, κt∗ refers to applied surface moments, and ρ(= ρ0) is the density. Note that the stress measures

are based on LSD and the strain measures are based on applying the gradient from the left, cf. Eq. (2.28).

For the linear case, the volume, V , and surface, S, are to be integrated with respect to the undeformed or

reference configuration. Using Eqs. (2.28) and (2.29), Eq. (4.65) reads∫
R0

σijδuj,i − ϵijkσijδϕk + κσijδϕj,i dV =

∫
R0

ρfiδui + ρmiδϕi dV +

∫
∂R0

tiδui +miδϕi dS , (4.66)

where the separation of solution variables easily succeeds as these are neither multiplicatively coupled nor ar-

guments of nonlinear functions. The problem is discretized and set up to be solved on the basis of Eq. (4.13).

It serves as the basis for the derivation of the right-hand side vector and the stiffness matrix on the ele-

ment level required for the ABAQUS implementation. Again, the Neumann-type boundary conditions are

considered later in the global system of equations, cf. Eq. (4.63).

4.2.1 In 3D - ABAQUS implementation

Introducing the generalized vectors of linear stress and linear strain measure components as given in Eq. (2.61)

with components arranged as given in Eq. (2.62), a differential operator matrix for the 3D case can be defined

as

[d~] = (18× 6) , (4.67)

which is outlined in Eq. (F.13), with [ε~~] = [d~]y⃗, where y⃗ denotes the physical continuous displacement and

rotation field summarized as y⃗ = [u1, u2, u3, ϕ1, ϕ2, ϕ3]
T. Both kinematic fields as well as the geometry are
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approximated by interpolation functions within the element as done for the nonlinear element, cf. Eqs. (4.6),

(4.7), and (4.64). With Eq. (4.67) at hand, the matrix of derivatives of shape functions on the element level

is determined by

[B~ (e)
N ] = [d~][N~ (e)] , (4.68)

where [N~ (e)] denotes the matrix of shape functions corresponding to a particular element, cf. Eq. (F.2).

Using Eq. (4.68), Eq. (4.66) on the element level gives the sought local system of equations

[K~ (e)
T ][∆y(e)] = [r(e)] ⇒ [K~ (e)

0 ][y(e)] = [q
(e)
ext] . (4.69)

For the linear problem the stiffness matrix does not depend on the solution variable and the external forces

are in equilibrium with the internal forces, so that the right-hand side of this equation can be directly

introduced. Introducing the element parent domain, the element stiffness matrix and the right hand-side

vector are determined by using a Gaussian quadrature scheme, cf. Eq. (4.29). The element stiffness matrix

reads

[K~ (e)
0 ] =

∫
R0

[B~ (e)
N ]T [D~~ ] [B~ (e)

N ] dV (4.70)

=

∫ +1

−1

∫ +1

−1

∫ +1

−1

[B~ (e)
N ]T(ξ) [D~~ ] [B~ (e)

N ](ξ) dξ dη dζ (4.71)

≈
nint∑
p=1

[B~ (e)
N ]T(ξp) [D~~ ] [B~ (e)

N ](ξp)J
(e)
ξ (ξp)wp , (4.72)

as well as the element residual or right hand-side force and moment vector, which is comprised of external

minus internal force and moment vector, and is determined via

[r(e)] =

∫
R0

[N~ (e)]Tρ[f ,m]T − [B~ (e)
N ]T[σ~ ]dV (4.73)

=

∫ +1

−1

∫ +1

−1

∫ +1

−1

[N~ (e)]T(ξ)ρ[f ,m]T − [B~ (e)
N ]T(ξ)[σ~ ](ξ) dξ dη dζ (4.74)

≈
nint∑
p=1

(
[N~ (e)]T(ξp)ρ[f ,m]T − [B~ (e)

N ]T(ξp)[σ~ ](ξp)
)
J
(e)
ξ (ξp)wp , (4.75)

with ρ[f ,m]T = ρ[f1, f2, f3,m1,m2,m3]
T and [D~~ ] the elasticity matrix, cf. Eq. (2.61). Note that the residual

vector is given instead of the external force vector at this is point as this is required by ABAQUS. All

quantities are evaluated at the integration point with corresponding coordinates ξ = [ξp, ηp, ζp]
T, where p

describes the integration point number. The derivative matrix shows derivatives of the shape functions with

respect to the global coordinate system. To obtain the derivatives of the shape functions with respect to the

parent configuration, the mapping given in Eq. (4.28) needs to be considered, cf. Eq. (F.8). Note that the

equations above are valid for any type of element to be implemented.

A hexahedral element with linear shape functions is implemented, cf. Figure 4.2. The shape functions are

given in Eq. (F.1) and the matrix of shape functions is given in Eq. (F.2), which allows to form the matrix

of derivatives of shape functions, cf. Eq. (4.68). This matrix is of size (18x48), which is not explicitly

stated for the sake of brevity. The stiffness matrix and the right hand-side vector are determined according

to Eqs. (4.72) and (4.75), respectively, where a full Gaussian quadrature scheme is used, see Table F.1 in

Appendix F for the integration point data. The resulting 3D isoparametric finite element is further called

C3D8MPlin. Body forces and moments can be considered as distributed loads and are accessible via the

ABAQUS keyword ∗DLOAD.
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4.2.2 In 2D - ABAQUS implementation

To consider 2D linear BVPs considering plane strain assumptions, the finite element implementation is set up

analogously to the 3D case. Therefore, the 2D strain measures based on applying the gradient from the left

as given in Eq. (2.65) and stress measures based on LSD are taken into account. Introducing the generalized

vectors of linear stress and linear strain measure components as given in Eq. (2.63), a differential operator

matrix can be defined as

[d~] =
[

∂

∂x1
0 0

∂

∂x2
0 0

0
∂

∂x2

∂

∂x1
0 0 0

0 0 −1 1
∂

∂x1

∂

∂x2

]
T

. (4.76)

Accounting for 2D, the element stiffness matrix given in Eq. (4.70) reads

[K~ (e)
0 ] =

∫ +1

−1

∫ +1

−1

[B~ (e)
N ]T(ξ) [D~~ ] [B~ (e)

N ](ξ)h dξ dη (4.77)

≈
nint∑
p=1

[B~ (e)
N ]T(ξp) [D~~ ] [B~ (e)

N ](ξp)hJ
(e)
ξ (ξp)wp , (4.78)

and the element residual or right hand-side force and moment vector given in Eq. (4.73) follows as

[r(e)] =

∫ +1

−1

∫ +1

−1

[N~ (e)]T(ξ)[f1, f2,m3]
T − [B~ (e)

N ]T(ξ)[σ~ ](ξ)h dξ dη (4.79)

≈
nint∑
p=1

(
[N~ (e)]T(ξp)[f1, f2,m3]

T − [B~ (e)
N ]T(ξp)[σ~ ](ξp)

)
hJ

(e)
ξ (ξp)wp , (4.80)

where ξp = [ξp, ηp]
T represents the integration point coordinates with respect to the parent configuration of

the element, h represents the thickness of the element, and [B~ (e)
N ] denotes the matrix of derivatives of shape

functions on the element level, cf. Eq. (4.68).

A quadrilateral element with linear shape functions is implemented, see Figure 4.3. The shape functions are

given in Eq. (F.15) and the matrix of shape functions is given in Eq. (F.17), which allows to form the matrix

of derivatives of shape functions, cf. Eq. (4.68), possessing dimensions of (6x12). The stiffness matrix and

the right hand-side vector are determined according to Eqs. (4.78) and (4.80), respectively, where a Gaussian

quadrature scheme is used, see Table F.2 in the Appendix F for the integration point data. The resulting 2D

isoparametric finite element considers plane strain assumptions and is further called CPE4MP. The body forces

and moments can be considered as distributed loads and are accessible via the ABAQUS keyword ∗DLOAD.



4.2. LINEAR MICROPOLAR CONTINUUM 49

Figure 4.3: Linearly interpolated quadrilateral element with node and integration point numbering.

4.2.3 NGSolve implementation

For the numerical study on negative and positive constants in Chapter 5, the linear micropolar continuum is

further implemented using the open-source software NGSolve V6.2.2302. The Python interface of NGSolve

allows to directly change FEM features, such as the element size, he, and the interpolation order, pe, which

allows to easily perform parameter studies. Again, the implementation is based on [53] and has already been

outlined in Section 4.2.

The strong form of the governing micropolar elasticity equations given in Section 2.3 via Eqs. (2.42) and (2.43)

is turned into the weak form by multiplying with vector-valued test functions v and w and an integration

over the domain. Using integration by parts and considering plane strain problems as well as no body forces

and body moments, the weak form simplifies to∫
Ω

σijvj,i +mi3w,i + ϵ3ijσijw dΩ = 0 , (4.81)

where the vector-valued test function w is reduced to a scalar-valued one, w, for 2D problems. Note that

with vj,i = δuj,i and w = δϕ3 the virtual work can be obtained, cf. Eq. (4.66).

The introduction of a canonical notation for variational problems is handy and serves as the basis for the

implementation in NGSolve. It reads as follows: Find ui ∈ Ui with i = 1, 2 and ϕ ∈ Q such that

a((ui, ϕ), (vi, w)) = L((vi, w)), ∀vi ∈ Ûi and ∀w ∈ Q̂ , (4.82)

with trail (unknown solution) and test function spaces

Ui = {vi ∈ H1(Ω) : vi = u∗
i on ∂Rui

0 } , Ûi = {vi ∈ H1(Ω) : vi = 0 on ∂Rui
0 } ,

Q = {w ∈ H1(Ω) : w = ϕ∗ on ∂Rϕ
0} , Q̂ = {w ∈ H1(Ω) : w = 0 on ∂Rϕ

0} ,
(4.83)

respectively, where H1(Ω) denotes the first order Sobolev space, u∗
i and ϕ∗ are Dirichlet-type boundary

conditions on the corresponding boundary portion ∂R0, cf. Eq. (2.45). In the case of Eq. (4.81), it follows

a((ui, ϕ), (vi, w)) =

∫
Ω

σijvj,i +mi3w,i + ϵ3ijσijw dΩ ,

L((vi, w)) = 0 ,

(4.84)

with a((ui, ϕ), (vi, w)) and L((vi, w)) denoting the bilinear and linear form, respectively.
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The procedure for the implementation consists of (i) declaring finite element spaces, i.e., the finite dimensional

subspaces of Ui and Q, for each DOF, (ii) introducing test, trial, and grid functions, (iii) defining and

assembling the linear and bilinear forms, and (iv) solving the system of equations obtained, cf. documentation

NGSolve [1]. For the micropolar continuum, this reads

# (i)

U1 = H1(mesh, order=pe, dim=1, dirichlet="bottom|top")

U2 = H1(mesh, order=pe, dim=1, dirichlet="bottom|top")

Q = H1(mesh, order=pe, dim=1, dirichlet="bottom")

X = U1*U2*Q

# (ii)

u1,u2,phi = X.TrialFunction()

v1,v2,w = X.TestFunction()

# (iii)

a = BilinearForm(X)

a += InnerProduct(Sigma(Eps(u1,u2,phi),D), Gradv)*dx

a += InnerProduct(-Tt(Sigma(Eps(u1,u2,phi),D)), w)*dx

a += InnerProduct(Sigma_couple(Kap(phi),D), Gradw)*dx

gfu = GridFunction(X)

a.Assemble()

f = LinearForm(X)

f.Assemble()

# (iv)

r = f.vec.CreateVector()

r.data = f.vec - a.mat * gfu.vec

gfu.vec.data += a.mat.Inverse(freedofs=X.FreeDofs()) * r

where #(·) refers to the steps of the procedure given above. The finite element spaces use Legendre polyno-

mials as basis functions, where pe is associated with the order of the polynomials [1, 83]. The Dirichlet-type

boundary conditions are introduced via the argument "dirichlet=..." using region identifiers predefined

in the mesh object, e.g., bottom, with default setting u∗
i = ϕ∗ = 0. This only applies to the spaces of the trial

functions. Note that all the variables that are not introduced in the code segment above, such as Sigma etc.,

are so-called coefficient functions and must be defined accordingly. For the sake of brevity, these declarations

are not explicitly shown, which also applies to Dirichlet-boundary conditions differing from the default set-

ting. The gfu represents functions in the finite element space and provides memory to hold for coefficient

vectors, i.e., the nodal solution. For post-processing, values at any location X1, X2 inside the domain can

be obtained via interpolation using functions provided by NGSolve, e.g., gfu.components[DOF](mesh((X1,

X2))).
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Chapter 5

Competing length scales between

micropolar continuum modeling of 2D

periodic lattice materials and the

finite element method

The two different sets of MECs derived in [10, 53] describing the very same lattice are investigated based

on a numerical study. For this purpose, a micropolar continuum model is set up by means of the FEM

and numerical simulations are performed. For comparison, discrete lattice models serve as reference. The

types of lattices studied are the square, the triangular, and the 45◦ rotated square lattice. An extensive

study is performed based on the square lattice, since its sets of constants derived in [10, 53] are often

used for comparison with constants obtained by other homogenization approaches, e.g., [36, 46, 58, 86].

Various configurations of the lattices and different load cases are used to study the predictive capabilities

and limitations of the micropolar continuum model with respect to the set of MECs used.

Furthermore, the influence of the element size and the order of the interpolation functions on the predicted

mechanical response is studied. The mechanical response is evaluated on the basis of the strain energy and

the rotation field. The simulations of the discrete models are carried out with ABAQUS/Standard 2019

(Dassault Systèmes Simulia Corp., Providence, RI, USA), while the simulations of the continuum model are

performed either with ABAQUS/Standard 2019 or NGSolve V6.2.2302 based on the implementations given

in Section 4.2.2 and Section 4.2.3, respectively.

5.1 Lattice models and method

5.1.1 Geometry and material properties

The overall geometric dimensions of the lattices are given by L1 and L2 for the spatial 1- and 2-directions,

respectively. These dimensions are associated with the macroscopic domain, see Figure 5.1 (left, center left)

for square, (center right) for triangular, and (right) for 45◦ rotated square lattice. For the square lattice,

the macroscopic length is L (= L1 = L2). For this type of lattice, two possible base cell geometries are
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shown in Figure 5.1 (top left, top center left). The periodic arrangement of the two base cells in the two

spatial directions results either in a closed- or an open-boundary lattice for the closed-square or cross base

cell, respectively. The base cells for the triangular and 45◦ rotated square lattices are shown in Figure 5.1

(top center right) and (top right), respectively. Note that for these two types of lattice, no differentiation is

made between closed- and open-boundary configurations. The internal or characteristic length of the lattices

is defined as the length of its lattice members, namely, l (= l1 = l2), see Figure 5.1 (top). The macroscopic

dimensions of the lattices are directly related to the characteristic length via the number of base cells, N1xN2,

comprising the lattices, where N1 and N2 are the number of base cells in 1- and 2-direction, respectively. This

leads to Li = lNi for the square, L1 = L = lN1 and L2 = lN2 sin (π/3) for the triangular, and Li = lNi

√
2

for the 45◦ rotated square lattice, where i = {1, 2} for each spatial direction. For an equal arrangement in

both directions, i.e., N1 = N2 (= N), it follows N1xN2 = NxN . For the sake of simplicity, the out-of-plane

dimension is set to h = 1 for all lattices studied and the cross-section of each individual lattice member

is assumed to be rectangular, A□ = t · h, where t denotes the corresponding thickness. The geometrical

moment of inertia for each lattice member follows from I□ = (t3 · h)/12. For each lattice type studied, the

relative density, ρr = Vs/V , is independent of the number of base cells, where Vs and V denote the volume

of the parent material and the domain occupied by the lattice, respectively. For this purpose, a constant

ratio of thickness to length of the lattice members of t/l = 1/20 is considered for all types of lattices. For

the square and the 45◦ rotated square lattice, this gives ρr = 0.0975 with Vs = 4lth − t2 and V = (l
√
2)2h.

For the triangular lattice, the relative density follows as ρr ≈ (2
√
3t)/l =

√
3/10 ≈ 0.173 with Vs = 3tlh and

V = l2(
√
3/2)h, where no overlapping of the lattice members at the intersection points is considered.

The parent material of all the lattice structures, i.e., the material of the individual lattice members, is assumed

to be an isotropic linear elastic material with a Young’s modulus of Es = 120000 MPa and a Poisson ratio of

νs = 0.3. The shear modulus for the isotropic material follows as Gs = Es/(2(1 + νs)).

5.1.2 Discrete reference models

The influence of the number of base cells comprising a lattice alters the overall mechanical response in a

severe way, especially when the macroscopic size of the structure is closer to the base cell size l ̸≪ L, which is

known as size effect. The size effect of repetitive lattices mainly depends on the topology of the free surfaces

that is governed by the geometry of the base cell. For the square lattice, the free-surface shows either a

Figure 5.1: Closed-square, cross, triangular, and 45◦ rotated cross base cells (top) and corresponding closed-
boundary square, open-boundary square, triangular, and 45◦ rotated square lattices exemplified
for lattices consisting of NxN = 4x4 base cells (bottom), respectively.
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closed- or an open-boundary for the periodic arrangements of the closed-square or the cross shaped base

cells given in Figure 5.1 (left) and (center left), respectively. Therefore, two different discrete lattice models

serve as references for the continuum model to address this issue and are further be called closed - or L and

open-boundary or + discrete models. The elements representing the outer boundary of the closed-boundary

model are assigned half of the cross-section and half of the geometrical moment of inertia, resulting in A□/2
and I□/2, respectively. Both models show the same relative density. The discrete models for the triangular

and the 45◦ rotated square lattice are exemplified in the schematics given in Figure 5.1 (center right) and

(right), respectively. The members of these lattices show the same geometrical properties as the members of

the open-boundary square lattice. To account for the plane strain assumption as made for the micropolar

continuum model, the Young’s modulus Es → E and the shear modulus Gs → G are converted according to

Eq. (D.2).

All discrete lattice models are discretized by planar, linear Timoshenko beam elements accessible through the

ABAQUS element library. Thereby, each strut of the lattice is discretized by six elements resulting in 12, 24,

and 18 elements per base cell for the square, the 45◦ rotated square, and the triangular lattice, respectively.

This discretization is considered appropriate to adequately capture the deformation state.

5.1.3 Methodology

Five different load cases and various configurations of the different types of lattices are used to evaluate the

predictive capabilities and limitations of the micropolar continuum model with respect to the set of MECs

used. The sets of constants of the individual lattices are given in Appendix D, where positive and negative

MECs are denoted by Dpos
55 , Dpos

66 or + and Dneg
55 , Dneg

66 or −, respectively, since only these constants are

different. The basis for the assessment is the comparison with discrete models in terms of strain energy and

rotation field, ϕ3 (= ϕ). The rotations at the midpoints, i.e., the origin joints O, of the base cells are of

special interest for the comparison and are further denoted as MPBCs. The dimensions of the base cells

range from sizes close to the overall dimensions of the lattice to sizes where the separation of scale is satisfied.

Special focus is set on the influence of various FEM parameters of the continuum model on the predicted

overall mechanical response, namely, the finite element size, he, and the order of the interpolation functions,

or interpolation order, pe. The rectangular domains occupied by the lattices are discretized by M1xM2

quadrilateral elements, where M1 and M2 are the number of elements in 1- and 2-direction, respectively.

Considering the macroscopic dimensions, the side lengths of the elements with respect to the i-direction are

obtained as he;i = Li/Mi. This already indicates that the element size, he, is not unique, i.e., he;1 ̸= he;2. To

study the competing length scales, it is meaningful to define the element size proportional to the characteristic

length, i.e., he ∝ l, and, additionally, to keep the ratio between the number of base cells and the number of

elements the same for both spatial directions, i.e., N1/M1 = N2/M2. As both the microscopic dimensions of

the base cell, li, and the corresponding element side lengths, he;i are related to the macroscopic dimensions

through Li = liNi and Li = he;iMi, respectively, i.e., he;i/li = Ni/Mi (no summation rule), it follows that

he;1/l1 = he;2/l2 holds (no summation rule). The microscopic dimensions of the base cell in i-direction are

li = l for the square, l1 = l and l2 = l sin (π/3) for the triangular, and li = l
√
2 for the 45◦ rotated square

lattice. Even though for the triangular lattice two microscopic dimensions are obtained, i.e., l1 ̸= l2, the ratio

between he;i and li is independent of the spatial direction, i.e., he;i/li = Ni/Mi (no summation rule). Thus,

which side length, he;i, is defined as the element size, he, does not matter as long as N1/M1 = N2/M2 is used.

However, for the sake of clarity, the element size is defined with respect to 1-direction, i.e., he = L1/M1,

for all lattices. Note that the number of elements is directly related to the number of base cells, e.g., using

he = l or equivalently N1 = M1 and N2 = M2 means that one base cell is represented by one element. In

the following, he is used interchangeably with M1 for a certain macroscopic dimension L1. The same applies
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to l and N1. Furthermore, he will always be used in combination with l, since both are lengths. The same

applies to M1 and N1, since both are positive natural numbers.

To ensure the comparability of discrete and continuum models and to additionally invoke the rotation field,

two kinds of simple shear load cases, a compression, and a bending load case serve as the basis for the

comparison. Distributed loads are preferred over point loads, such as the indentation load used in [53], as the

length scale of the microstructure and the overall structure size are of the same order of magnitude for some

of the lattice configurations studied. Local effects may dominate the overall response of the discrete lattice

model due to the load application, which is hard to capture by continuum modeling. However, to support

this assumption, the indentation load case presented in [53] is revisited.

The largest study is conducted on the basis of the simple shear load cases, which are schematically depicted in

Figure 5.2. For both load cases, the displacements and rotations are fully clamped at the bottom boundary of

the lattice. At the top boundary of the lattice, a displacement in 1-direction is prescribed with U1 = 0.2mm,

whereas the displacement in 2-direction is fixed. The difference for the two load cases can be found for the

rotations at the top. These are left free for the more artificial simple shear load case to obtain a different

gradient evolving from each boundary and are fixed for the other load case, cf. Figure 5.2 (left) and (right),

respectively. The study mainly relies on different configurations of the square lattice. Additionally, a single

configuration of the triangular lattice is examined to support the findings.

The indentation load case is schematically depicted in Figure 5.3 (left). The whole setting follows [53], expect

that a prescribed displacement of U2 = 0.3mm is used instead of a point force. The displacement is applied

at X1 = X2 = 50mm. The bottom of the lattice is fully clamped and the lattice investigated is a square

lattice.

For the compression load case, the 45◦ rotated square lattice is used instead of the square lattice in order to

invoke the rotation field and to obtain a problem dominated by bending rather than stretching. The load

case is schematically depicted in Figure 5.3 (center), where the bottom and top are fully clamped except in

2-direction at the top. The prescribed displacement load is U2 = 0.1mm.

To study the predictive capabilities of the continuum model considering a more realistic engineering problem,

a bending load case on lattice beams is applied, see Figure 5.3 (right). The displacements and rotations are

fully clamped at the left side while a displacement in 2-direction is prescribed with U2 = 20mm at the right

side.

Figure 5.2: Schematics of the simple shear load cases with rotations free (left) and fixed (right) at the top.
Regions where no displacements are prescribed are traction-free.
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Figure 5.3: Schematic of the indentation (left), compression (center), and bending (right) load cases. Re-
gions where no displacements are prescribed are traction-free.

A model based on CET also serves as reference for some of the investigations. It can be obtained by either

using the corresponding classical equations in combination with classical elastic constants, which is done

in the present work, or using a limit case of the micropolar continuum. Classical elastic constants of the

square lattice can be found, e.g., in [34]. Note that these constants can also be obtained from the micropolar

continuum by using the same constants relating normal stresses to strains, i.e., DC
11 = D11, D

C
12 = D12, and

DC
22 = D22, as well as using the average of the MECs coupling both shear stresses, i.e., DC

33 = (D33+D34)/2,

see, e.g., [97]. The limit case is obtained by using classical elastic constants, e.g., D33 = D44 = DC
33 for the

square lattice, in combination with either suppressing all rotational DOFs or setting D55 → ∞ and D66 → ∞.

Alternatively, a very small characteristic length of the lattice, i.e., l → 0, can be used with the rotational

DOFs still present.
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5.2 Results and discussion

5.2.1 Simple shear

The configurations of the square lattice used for the simple shear load cases are summarized in Table 5.1.

Closed - and open-boundary discrete lattice models serve as references for comparison with the continuum

models. The configuration of the triangular lattice can be found in Table 5.2. For the continuum model, the

NGSolve implementation is used to facilitate the numerical study of the FEM parameters, cf. Section 4.2.3.

Investigation of the strain energy

The strain energy is investigated based on the results for the simple shear load case with rotations fixed at

the top. To study the influence of the FEM parameters of the continuum model on the strain energy, the

influence of the element size, he, is investigated in the first place. Second, the influence of the interpolation

order is studied. The strain energies obtained for the discrete models of the square lattice are summarized

in Table 5.3, except for NxN = 1000x1000, which needs to be considered computationally costly showing 12

million elements.

Table 5.1: Geometrical dimensions of the studied square lattices for the simple shear load cases.

NxN L h l t

(/) in mm in mm in mm in mm

4x4 1.0 1.0 0.25 0.0125

8x8 1.0 1.0 0.125 0.00625

16x16 1.0 1.0 0.0625 0.003125

32x32 1.0 1.0 0.0625 0.00078125

1000x1000 1.0 1.0 0.001 0.00005

Table 5.2: Geometrical dimensions of the studied triangular lattice for the simple shear load cases.

NxN L1 L2 h l t

(/) in mm in mm in mm in mm in mm

8x8 1.0 0.866 1.0 0.125 0.00625

Table 5.3: Strain energies of the closed- (L) and open-boundary (+) discrete models for various square
lattices.

NxN BTfixed Bfixed

L + L +

(/) in Nmm in Nmm in Nmm in Nmm

4x4 0.192928 0.180320 0.188140 0.155470

8x8 0.177621 0.170599 0.175566 0.160039

16x16 0.170458 0.167014 0.169506 0.162110

32x32 0.166572 0.165165 0.166116 0.162803
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The evolution of the strain energy over the element size of the continuum model, he, is studied for various

square lattices consisting of NxN = {4x4, 8x8, 16x16, 32x32, 1000x1000} base cells. Linear interpolation is

used, i.e., pe = 1. The results are shown in Figure 5.4 (top left) and (top right) for positive and negative MECs,

respectively. For positive constants, it is shown that for an increasing number of elements, M(= M1 = M2),

i.e., decreasing element sizes, he, the strain energy shows convergence behavior corresponding to a certain

lattice comprised of NxN base cells. Furthermore, for increasing N(= N1 = N2), i.e., decreasing microscopic

sizes, l, the strain energy converges towards a constant value of about 0.162Nmm. This is expected due

to the vanishing free-edge effect for increasing numbers of base cells. Information on the capability of the

model to capture size effects it is referred to [97]. Note that for the CET continuum approximately the same

results are obtained as for the micropolar continuum for NxN = 1000x1000, hence, the CET results are

not explicitly shown in Figure 5.4 (top left). For the negative constants, once the element size reaches the

characteristic length of the lattice, the strain energy starts to show oscillations, e.g., NxN = MxM = 4x4

or NxN = MxM = 8x8. Hence, using element sizes smaller than the characteristic length of the lattice is

questionable. This observation has already been outlined and discussed in [53], and is revisited in Section 3.2.

For different interpolation orders, pe = {1, 2, 3}, the evolution of the strain energy over the element size is

studied for square lattices consisting of NxN = 8x8 and NxN = 16x16 base cells, see Figure 5.4 (bottom left)
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Figure 5.4: Simple shear with rotations fixed at top - Evolution of strain energies over element size for
square lattices comprised of various base cells NxN with fixed interpolation order of pe = 1
for positive (top left) and negative MECs (top right). Evolution of strain energy over element
size of continuum model, he = 1/M , for lattices comprised of NxN = 8x8 (bottom left) and
NxN = 16x16 base cells (bottom right) using various interpolation orders considering positive
and negative constants.
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and (bottom right), respectively. Both sets of MECs are considered and directly compared. For the positive

constants, the strain energy converges faster to a constant value for higher interpolation orders. For negative

constants, the oscillations occur for smaller values of MxM , the higher the interpolation order is. For the

lattice NxN = 8x8, oscillation can be observed for the parameter sets composed of {pe = 1,MxM = 8x8},
{pe = 2,MxM = 4x4}, and {pe = 3,MxM = 2x2}. For the lattice NxN = 16x16, oscillations start to occur

for the parameter sets composed of {pe = 1,MxM = 16x16}, {pe = 2,MxM = 8x8}, and {pe = 3,MxM =

4x4}. These results can be used to set up a condition for the element size considering a certain interpolation

order. Considering interpolation orders up to pe = 3, it follows that the finite element size must be chosen

to satisfy

he > l · (pe +H(pe − 3)) , (5.1)

where H(x) is the Heaviside function, giving 0 for x < 0 and 1 for x ≥ 0. Alternatively, this can be expressed

in terms of the number of base cells and finite elements reading

N > M · (pe +H(pe − 3)) . (5.2)

For very small internal dimensions, l ≪ L, in combination with coarse element sizes compared to the char-

acteristic length of the lattice, i.e., l ≪ he or N ≫ M , the difference of the strain energy between positive

and negative constants vanishes, cf. lattice NxN = 1000x1000 in Figure 5.4 (top left) and (top right). This

is already indicated for l < L, cf. lattice NxN = 16x16 for pe = 1 and MxM ≈ 4x4, see Figure 5.4 (bottom

right). This is expected as the values for the MECs relating curvature and couple stress are becoming small

and the response is more dominated by the displacement based quantities. Note that the condition for the

element size specified must be satisfied.

For the triangular lattice comprised of NxN = 8x8 base cells, the evolution of the strain energy over the

element size of the continuum model is given in Figure 5.5. The interpolation order is varied using pe = {1, 2}
for both positive and negative constants. Both positive and negative constants show approximately the same

characteristics as was observed for the square lattice. Positive constants show convergence behavior for

decreasing element sizes, negative constants show oscillating convergence behavior once the condition given

in Eq. (5.1) defined for the square lattice is satisfied except for pe = 1. For pe = 1, the spike shows up for
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Figure 5.5: Simple shear with rotations fixed at top. Evolution of strain energies over element size for
triangular lattice comprised of NxN = 8x8 base cells using interpolation orders of pe = {1, 2}
for positive and negative MECs with detail (right).
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MxM = 16x16 and does not appear for MxM = 8x8 as expected based on Eq. (5.1). However, the rotation

field shows an oscillation pattern for MxM = 8x8, which will be discussed in the next Section. For very

small element sizes, he ≪ l, both positive and negative constants lead to approximately the same results.

Investigation of the rotation field

The rotation field is investigated on the basis of both simple shear load cases. Various FEM parameters

are varied to study their influence on the predicted rotation field with special focus set on positive and

negative MECs. A lattice comprised of NxN = 8x8 base cells is the basis for the investigations. Hence, the

separation of scales cannot be considered fully satisfied, which is intended in order to study the capabilities

of the micropolar continuum. For the square lattice, only the open-boundary discrete model is used for the

comparison. In the following, the square lattice is treated first and then the triangular lattice.

In the first place, the simple shear load case with rotations fixed at top is considered. For the positive

constants, the rotation fields are shown in Figure 5.6 for different parameter sets consisting of element size and

interpolation order. For the set {pe = 1,MxM = 4x4} (top left), the rotation field is not completely resolved,

whereas this is the case for the set {pe = 2,MxM = 4x4} (top right). For the set {pe = 1,MxM = 8x8}
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Figure 5.6: Positive constants - Rotation fields for square lattice comprised of NxN = 8x8 base cells
for varying element size and interpolation order. Contour plots are given for the sets {pe =
1,MxM = 4x4} (top left), {pe = 2,MxM = 4x4} (top right), and {pe = 1,MxM = 8x8}
(bottom left). Rotations over the height at X1 = 0.4375mm, where + markers represent the
solution of the discrete lattice at MPBCs (bottom right).
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(bottom left), the field can be considered converged as well. In Figure 5.6 (bottom right), the corresponding

rotations are given over the height at X1 = (NxN/2 − 1) · l + l/2 = 0.4375mm, which is associated with

the mid left lattice column. The + markers represent the rotation of the discrete model at the MPBCs.

The rotations of the continuum model agree well with the discrete model, especially for higher interpolation

orders and finer meshes. Furthermore, the gradients of the rotation fields are well captured as long as the

following condition for the element size,

he ⪅ l · (pe +H(pe − 3)) , (5.3)

is satisfied.

For negative constants, the rotation fields are shown in Figure 5.7. For the parameter set {pe = 1,MxM =

4x4} (top left), the rotation field is similar to its positive counterpart, cf. Figure 5.6 (top left), but already

indicates the oscillation pattern at X2 = L/2. This can be considered negligible. For the set {pe = 2,MxM =
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Figure 5.7: Negative constants - Rotation fields for square lattice comprised of NxN = 8x8 base cells
for varying element size and interpolation order. Contour plots are given for the sets
{pe = 1,MxM = 4x4} (top left), {pe = 2,MxM = 4x4} (top right), and {pe = 1,MxM = 8x8}
(bottom left). Rotations over the height at X1 = 0.4375mm (bottom right), where + markers
represent the solution of the discrete lattice at MPBCs and blue dashes indicate the correspond-
ing local rotation field along the fourth column of the lattice.



5.2. RESULTS AND DISCUSSION 61

4x4} (top right), the rotation field already shows a developing oscillation pattern. For the set {pe = 1,MxM =

8x8} (bottom left), the rotation field shows a pattern with short wavelength oscillations. In Figure 5.6 (bottom

right), the corresponding rotations are given over the height at X1 = (NxN/2−1) ·l+l/2 = 0.4375mm, where

the + markers represent the rotation of the discrete model at the MPBCs. The rotations of the continuum

model only agrees with the discrete model as long as the condition for the element size given in Eq. (5.1)

is satisfied. Otherwise, the rotation field shows a pattern with oscillations. This pattern converges for very

small element sizes MxM = 64x64, cf. Figure 5.8 for pe = 1 (top left) and pe = 2 (top right). This also holds

true for the lattice comprised of NxN = 16x16 base cells given in Figure 5.8 (bottom), where the oscillation

shows approximately half the wavelength obtained for the lattice with NxN = 8x8 base cells. Although the

wavelength seems to be directly linked to the characteristic length, the oscillations cannot be explained by the

local rotation field obtained for the open-boundary discrete lattice, where the wavelength of the oscillation

is too long to fit to the discrete counterpart, cf. Figure 5.7 (bottom right). To capture the gradient of

the rotation field, a proper discretization of the continuum model is necessary regarding the element size in

combination with the interpolation order. This necessity is in conflict with the condition necessary for the

element size. Hence, the gradients of the rotation fields can hardly be captured using negative constants.

It is worth noting that both sets of MECs give approximately the same rotation fields as long as the condition,

he > l · (pe +H(pe − 3)), is satisfied, cf. Figure 5.6 (top left) and Figure 5.7 (top left).
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Figure 5.8: Rotation fields for square lattices comprised of NxN = 8x8 (top) and NxN = 16x16 (bottom)
base cells. Contour plots are given for the sets {pe = 1,MxM = 64x64} (left), {pe = 2,MxM =
64x64} (right) using negative constants only.
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For the simple shear load case with rotations free at the top and various parameter sets, the rotation fields

and their corresponding line plots are presented in Figure 5.9. For positive constants (top left and right), the

rotation field is already resolved for the set {pe = 2,MxM = 4x4}. Furthermore, the gradient in the rotation

field is well captured for sufficiently fine mesh sizes, cf. {pe = 1,MxM = 8x8}, or coarse meshes using higher

interpolation orders, cf. {pe = 2,MxM = 4x4}. This meets the condition for the element size using positive

constants given in Eq. (5.3). For negative constants, the gradient cannot be resolved for the given parameter

sets.

For the triangular lattice, the simple shear load case with rotations fixed at top is used for the comparison

between continuum and discrete models, see Figure 5.10. The contour plots show the rotation fields obtained

for an interpolation order of pe = 1 and a number of elements of MxM8 (he = 0.125) for positive (top

left) and negative constants (bottom left). The rotation field shows the same characteristics as obtained for

the square lattice with respect to the constants used. Convergence behavior for decreasing element sizes is

obtained for the positive constants, whereas for negative constants, once the element size is equal or lower

than the characteristic length, the rotation field shows an oscillation pattern. The rotations are given over the

height at X1 = 0.0625mm (top right) and X1 = 0.4375mm (bottom right) for different FEM parameter sets

permuting {pe = 1,MxM = 8x8, 16x16} for both positive and negative constants. Good agreement between
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Figure 5.9: Simple shear with rotations free at top - Rotation fields for square lattice comprised of NxN =
8x8 base cells for the set {pe = 2,MxM = 4x4} considering positive (top left) and negative
constants (bottom left). Rotations over the height at X1 = 0.4375mm for different parameter
sets permuting {pe = 1, 2,MxM = 2, 4, 8} for positive (top right) and negative constants
(bottom right), where + markers represent the solution of the discrete lattice at MPBCs.
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the continuum and the discrete model is obtained for distances close to the boundary while even very good

agreement is achieved in the far-field region, i.e., the region with sufficient distance to the boundary, where

the influence of the boundary declines.
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Figure 5.10: Simple shear with rotations fixed at top - Rotation fields for the triangular lattice comprised
of NxN = 8x8 base cells for the set {pe = 1,MxM = 8x8} considering positive (top left)
and negative MECs (bottom left). Rotations over the height at X1 = 0.0625mm (top right)
and X1 = 0.4375mm (bottom right) for different parameter sets permuting {pe = 1,MxM =
8x8, 16x16} for both positive and negative constants, where + markers represent the solution
of the discrete lattice at MPBCs.
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5.2.2 Indentation

A single configuration of the square lattice is used for the indentation load case following [53]. The geometrical

properties are summarized in Table 5.4. An open-boundary discrete lattice model serves as reference for

comparison with the continuum models. Note that the exact load application for the discrete model is at

X1 = 50mm and X2 = 49mm, in contrast to the continuum model where the load is applied at X1 = 50mm

and X2 = 50mm. For the continuum model, the NGSolve implementation is used, cf. Section 4.2.3.

Investigation of the strain energy

The evolution of the strain energy over various element sizes and interpolation orders of the continuum

model is given in Figure 5.11. Independent of the chosen set of FEM parameters, the overall response is

much stiffer compared to the discrete reference model. With an increasing number of elements, the response

of the continuum model becomes more compliant. Nevertheless, the strain energy differs by about a factor

of two even for the smallest element size studied. This discrepancy is mainly driven by the fact that the

continuum model does not provide any information about the exact situation at the point of load application.

This information is crucial for this kind of load case. To account for this effect, information must be provided,

e.g., using hybrid forms of modeling, such as using beam elements to resolve the discrete lattice structure

in a region around the point of load application discrete elements to discretize the domain of the boundary

layer. This is beyond the scope of the present thesis.

Table 5.4: Geometrical dimensions of the studied square lattice for the indentation load case.

NxN L1 L2 h l t

(/) in mm in mm in mm in mm in mm
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Figure 5.11: Indentation - Evolution of strain energies over element sizes MxM =
{30x15, 50x25, 100x50, 200x100} for a square lattice comprised of NxN = 50x25 base
cells using interpolation orders of pe = {1, 2} for both positive and negative constants.
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Investigation of the rotation and stress fields

Following [53], the rotations along the top row of the lattice at X2 = 49mm are given for various element

sizes in Figure 5.12 (a) and (b) for positive and negative constants, respectively. For positive constants, the

rotations are too small in magnitude compared to the discrete model and the gradient cannot be completely

resolved even for the smallest element size, i.e., he = l/4 or M1 = 200. This is in accordance with the results

for the much stiffer response of the continuum model already indicated by the strain energy. For negative

constants, the rotations show an oscillation pattern once the element size is smaller than the characteristic

length of the lattice. For he > l or M1 > 50, the results are in agreement with those obtained for the

positive constants. For he ≤ l or M1 ≤ 50, the rotations at the load application point show the same order

of magnitude for continuum and discrete model. The magnitudes are also high in the far-field region for the

continuum model using negative constants, where no rotations are obtained for the discrete model. These

findings are in agreement with those presented in [53], which are solely based on using first order interpolation

functions. Based on the findings of the simple shear load cases, second order interpolation functions are used

as well to investigate their influence on the rotation field, which has not been presented in [53]. Figure 5.13

shows that the condition for the element size derived for the simple shear load cases given in Eq. (5.1) is

still valid. When the condition is fulfilled, as it is the case for the largest element sizes, almost no oscillation

within the rotation field occurs for negative constants. Once the condition is not satisfied anymore, the field

shows an oscillation pattern, which is the case for {pe = 2,M1xM2 = 30x15}, cf. Figure 5.13 (b).

Additionally, various stress fields of the continuum model are shown in Figure 5.12 for positive (c,e) and

negative constants (d,f) for {pe = 1,M1xM2 = 200x100}. The contours of the stress component σ22 given in

Figure 5.12 (c,d) are only slightly different for using positive (c) and negative constants (d). This is based

on the fact that this stress component is hardly affected by the different constants linking curvature and

couple stress. Contrary, the contours of the stress component κσ23 given in Figure 5.12 for positive (e) and

negative constants (f) show significant differences. For negative constants, an oscillation pattern of the stress

component κσ23 over the entire lattice can be observed. For positive constants, the gradients in the stress

field are limited to the region close to the indentation point.

Similar findings are obtained for {pe = 2,M1xM2 = 30x15}, see Figure 5.13 (c,d,e,f) for various stress fields.

Note that the condition on the element size given in Eq. (5.1) is intentionally chosen not to be satisfied. The

field of the stress component σ22 given in Figure 5.13 (c,d) shows a different pattern for using positive (c)

and negative constants (d). For negative constants, an oscillation pattern over the entire lattice domain can

be observed. In contrast, when linear interpolation with FEM parameter set {pe = 1,M1xM2 = 200x100}
was used, no oscillation pattern has been observed in such a distinct manner, cf. Figure 5.12 (d). For

{pe = 2,M1xM2 = 30x15}, the field of the stress component κσ23 is shown in Figure 5.13 for using positive

(e) and negative constants (f). Again, for negative constants, an oscillation pattern over the entire lattice

domain can be observed, which is similar to the one obtained for the linear interpolation with FEM parameter

set {pe = 1,M1xM2 = 200x100} shown in Figure 5.12 (f).

Summarizing, the results reveal that the condition for the element size given in Eq. (5.1) needs to be satisfied

when using negative constants to prevent the prediction of unfeasible oscillations not only in the rotation

field but also in the stress fields. This means that there is not only a restriction on the element size but also

on the interpolation order, which has not been considered in [53].
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Figure 5.12: Indentation - Rotations along the width at X2 = 49mm for interpolation order pe = 1 and
different numbers of elements for positive (a) and negative constants (b), where + markers
represent the solution of the discrete lattice at MPBCs. Stress fields σ22 (c,d) and κσ23 (e,f)
for the continuum model with a number of elements of M1xM2 = 200x100 (he = 0.5) using
an interpolation order of pe = 1 for positive (c,e) and negative constants (d,f).
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Figure 5.13: Indentation - Rotations along the width at X2 = 49mm for interpolation order pe = 2 and
different numbers of elements for positive (a) and negative constants (b), where + markers
represent the solution of the discrete lattice at MPBCs. Stress fields σ22 (c,d) and κσ23 (e,f)
for the continuum model with a number of elements of M1xM2 = 30x15 (he = 3+ 1/3) using
an interpolation order of pe = 2 for positive (c,e) and negative constants (d,f).
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5.2.3 Compression

A single configuration of the 45◦ rotated square lattice is used for the compression load case. The geometrical

properties are summarized in Table 5.5. For the continuum model, the NGSolve implementation is used, cf.

Section 4.2.3.

Investigation of the strain energy

The evolution of the strain energy over the element size of the continuum model using an interpolation order

of pe = 1 is shown in Figure 5.14 for both positive and negative constants. For positive constants, it is shown

that for an increasing number of elements, MxM , the strain energy shows convergence behavior. This also

holds true for using negative constants until MxM ≈ 36x36, where the strain energy starts to slightly deviate

from the overall decreasing tendency. In contrast to the results obtained for the square lattice in particular,

both positive and negative constants give approximately the same predictions across the element sizes studied

where the strain energies predicted by the continuum models are far lower than for the discrete model.

Investigation of the rotation field

The rotation fields for both positive (top left) and negative constants (bottom left) are given for parameter

sets {pe = 1,MxM = 8x8} and {pe = 1,MxM = 16x16} in Figures 5.15 and 5.16, respectively. For the

coarse mesh, i.e., {pe = 1,MxM = 8x8}, the rotation fields for both positive and negative constants show

Table 5.5: Geometrical dimensions of the studied 45◦ rotated square lattice for the compression load case.

NxN L h l t

(/) in mm in mm in mm in mm
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Figure 5.14: Compression load case - Evolution of strain energies over element size for the 45◦ rotated
square lattice comprised of NxN = 8 base cells using an interpolation order of pe = 1 for both
positive and negative constants.
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a similar pattern, but different magnitudes. Differences of about 60% are obtained. For the fine mesh, i.e.,

{pe = 1,MxM = 16x16} with he < l, the rotation field obtained for negative constants shows an oscillation

pattern with the rotations being almost twice as large as those of the corresponding coarse mesh. The rotation

field obtained for positive constants is clearly better resolved by the fine mesh. The rotations are comparable

to those obtained for the coarse mesh.

Additionally, the rotations are presented over the height of the lattice for two positions fixed at X1 =

0.0625mm (top right) andX1 = 0.4375mm (bottom right) for both parameter sets. For positive constants, the

rotation field shows convergence behavior under mesh refinement. The characteristics of the high gradients

that are present from the corners of the lattice to its center, forming a X-like pattern, are qualitatively

captured. Note that for this load case in combination with the current lattice, the gradients strongly depend

on the free surface conditions of the lattice. This cannot be properly captured by continuum modeling

as has already been observed for the indentation load case described in Section 5.2.2. This causes the

underestimation of the strain energy shown in Figure 5.14. For negative constants, the rotation field does not

show convergence behavior under mesh refinement. For he > l, i.e., {pe = 1,MxM = 8x8}, the results are

comparable to those obtained for positive constants and show the same order of magnitude, cf. Figure 5.15

(top left) and (bottom left), respectively. For he < l, i.e., {pe = 1,MxM = 16x16}, the rotation field shows

an oscillation pattern.
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Figure 5.15: Compression - Rotation fields for the 45◦ rotated square lattice comprised of NxN = 8x8
base cells for element sizes of MxM = 8x8 (he = 0.125) and an interpolation order pe =
1 for positive (top left) and negative MECs (bottom left). Rotations over the height at
X1 = 0.0625mm (top right) and X1 = 0.4375mm (bottom right) for a parameter set of
{pe = 1,MxM = 16} for positive and negative constants, where + markers represent the
solution of the discrete lattice at MPBCs.
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In Figure 5.17, the rotations at the MPBCs of the lattice are shown for the discrete (top left) as well as

continuum models for positive (top center) and negative constants (top right). For the continuum models,

a parameter set of {pe = 1,MxM = 16x16} is used. The rotations of the discrete models are extracted at

nodes located at the MPBCs while those of the continuum models are obtained by interpolation. Furthermore,

absolute error values with respect to the discrete model are given for positive (second row center) and negative

constants (second row right). For positive constants, the error values are of high magnitude along the gradients

of the rotation field. For the negative constants, the error values seems to be randomly distributed in terms

of magnitude, which is a consequence of the oscillation pattern of the rotation field. Furthermore, relative

error values with respect to the discrete model are given for positive (third row center) and negative constants

(third row right). For both positive and negative constants, the error values are of very high magnitudes

close to the boundaries. This indicates that the gradients in the rotation field forming the X-pattern decay

more slowly for the continuum model than for the discrete model. This leads to rotations of ϕ ≈ 0 for the

discrete models close to the boundaries, which cannot be properly captured by the continuum models, hence,

large relative error values are observed.
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Figure 5.16: Compression - Rotation fields for the 45◦ rotated square lattice comprised of NxN = 8x8
base cells for element sizes of MxM = 16x16 (he = 0.0625) and an interpolation order pe =
1 for positive (top left) and negative MECs (bottom left). Rotations over the height at
X1 = 0.0625mm (top right) and X1 = 0.4375mm (bottom right) for a parameter set of
{pe = 1,MxM = 16} for both positive and negative constants, where + markers represent
the solution of the discrete lattice at MPBCs.
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Figure 5.17: Compression - Rotations at MPBCs for the 45◦ rotated square lattice comprised ofNxN = 8x8
base cells for the discrete model (top left), continuum model using positive (top center), and
negative constants (top right) for {pe = 1,MxM = 16x16}. Absolute error values (second row)
and relative error values (third row) with respect to the discrete lattice for positive (center)
and negative constants (right).
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5.2.4 Bending

The configurations of the square lattice studied for the bending load case are summarized in Table 5.6. For

the continuum model, the user element implemented in ABAQUS, CPE4MP, is used, cf. Section 4.2.2. No

extensive numerical study is conducted, the element size is the only FEM parameter that is varied. The

interpolation order is set to pe = 1.

Investigation of the strain energy

The strain energies of closed - and open-boundary discrete lattice models comprising 50x5 and 100x10 base

cells are compared to the corresponding continuum counterparts, cf. Figure 5.18 for positive (left) and

negative constants (right) for different mesh sizes M1xM2. The closed - and open-boundary discrete lattice

represent the lower and upper estimate of the lattice, respectively. The strain energy of the continuum model

shows the same convergence behavior with respect to the MECs that is similar to the observations made

for the other load cases. For positive constants, the strain energies of the continuum models are in good

agreement with the corresponding discrete models. Furthermore, the strain energies are within the lower

and upper estimates for all levels of discretization M1xM2. For negative constants, this is not the case if the

element size is below the characteristic length, i.e., he < l. It is worth noting that both positive and negative

constants give similar strain energies for very coarse meshes, i.e., he ≫ l, cf. M1xM2 = 20x2.

Table 5.6: Geometrical dimensions of the square lattices for the bending load case.

N1xN2 L1 L2 h l t

(/) in mm in mm in mm in mm in mm

50x5 200.0 20.0 1.0 4.0 0.2

100x10 200.0 20.0 1.0 2.0 0.1
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Figure 5.18: Comparison of strain energies of closed - and open-boundary discrete lattice models comprising
50x5 and 100x10 base cells as well as corresponding continuum counterparts for various mesh
sizes M1xM2 using positive (left) and negative constants (right).
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Investigation of the rotation field

All further investigations are based on the lattice comprising N1xN2 = 100x10 base cells with the open-

boundary discrete model as reference. For the continuum model, two different mesh sizes are used, namely,

M1xM2 = 20x2 (he = 10 > l) and M1xM2 = 100x10 (he = 2 = l), to assess the behavior under mesh

refinement.

A direct comparison of the rotations between discrete and continuum model is given in Figure 5.19. The

rotations are evaluated along the first row below the neutral axis of the physical lattice at X2 = 9mm. For

the discrete model, nodal values are directly extracted. For the continuum model, interpolated values are

determined with respect to the MPBCs of the lattice. For positive constants, the rotations of the continuum

model are in good agreement with the discrete model for both discretizations as given in Figures 5.19 (top).

For he > l, there is a small offset in the rotations between the discrete and continuum models along the

entire length in 1-direction, cf. Figures 5.19 (a). Furthermore, the gradient of the rotations with respect

to the MPBCs cannot be accurately captured. For he = l, no offset is obtained and the gradient can be

accurately captured, cf. Figures 5.19 (b). For negative constants, the rotations are in acceptable agreement

with the discrete model only for the coarse mesh with he > l as given in Figure 5.19 (c). For he = l, the

rotations show an oscillation pattern, which is indicated by the nodal values taken at X2 = 9 + l/2mm.

However, the rotations at the MPBCs are in good agreement with those of the discrete ones, see Figure 5.19

(d). Element sizes smaller than the characteristic length are not considered based on the findings of the other

load cases. Note that the local variations of the rotation field obtained for the discrete model cannot be

captured independently of the set of constants used. For the sake of completeness, a contour of the rotation

field of the continuum model for a discretization using M1xM2 = 100x10 is given in Figure 5.20 for positive

(left) and negative constants (right). It is shown that the rotation field obtained for the negative constants

shows an oscillation pattern. The rotation field has similar characteristics to the one obtained for the simple

shear load case, resulting from similar boundary conditions and loads, cf. Figure 5.7. For positive constants,

the rotation field shows only negative rotations, which is to be expected for the load case considered.

Additionally, the rotations at the MPBCs are compared for discrete and continuum models along the rows of

the lattice at fixed positions X2 = 11, 13, 17, 19mm to study the influence of the free surface, see Figure 5.21.

The continuum model uses a discretization of M1xM2 = 100x10 and only positive constants are considered.

The rotations are captured fairly well by the continuum model when compared to the discrete model, except

for positions close to the free surface of the lattice at X1 = 19mm. This is expected since free edge effects

cannot be correctly captured using continuum modeling. However, the results are not far off and can be

considered acceptable.

In Figure 5.22, the displacements in 1-direction, U1, and rotations, ϕ, are studied at the rightmost column

of the lattice at X1 = 199mm for the discrete and continuum models, where the latter use a discretization of

M1xM2 = 100x10. The continuum model with positive constants captures the S-shaped macroscopic shear

deformation well as indicated by U1, see Figure 5.22 (top left). This also applies to the use of negative

constants, see Figure 5.22 (bottom left). The rotations are shown for positive and negative constants in

Figure 5.22 (top right) and (bottom right), respectively. For both positive and negative constants, the

rotations at the MPBCs are in good agreement with the discrete model. However, the oscillation of the

rotation field is already indicated by the offset between the markers + and • using negative constants as the

element size equals the characteristic length of the lattice, he = l, see Figure 5.22 (bottom right).
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Figure 5.19: Rotations ϕ of discrete model along neutral axis at X2 = 9mm indicated by the solid line and
of continuum model with positive (a,b) and negative constants (c,d) indicated by the markers.
The markers + and • correspond to MPBCs of the lattice at X2 = 9mm and to nodes at
X2 = 9 + l/2mm, respectively. Discretization of continuum model with M1xM2 = 20x2 (a,c)
and M1xM2 = 100x10 (b,d).
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Figure 5.20: Rotation field of continuum model for M1xM2 = 100x10 using positive (left) and negative
constants (right).
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Figure 5.21: Rotations ϕ at MPBCs of discrete model along the rows of the lattice at X2 = 11mm (top
left), 13mm (top right), 17mm (bottom left), and 19mm (bottom right) indicated by the blue
+ markers and of continuum model with M1xM2 = 100x10 using positive constants indicated
by the black + markers.
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Figure 5.22: Displacements U1 and rotations ϕ of discrete model along the column atX1 = 199mm indicated
by the solid line and of continuum counterpart with positive (top) and negative constants
(bottom) indicated by the markers. The markers + and • correspond to MPBCs of the lattice
at X1 = 199mm and to nodes at X1 = (199 + l/2)mm, respectively.
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5.3 Summary

The mechanical response predicted by using the positive and the negative set of MECs obtained in [10, 53] for

the very same lattice are studied based on numerical simulations by means of the Finite Element Method. The

micropolar continuum model used for the investigations is implemented within the frameworks of NGSolve

and ABAQUS. Various types of lattices showing different configurations are subjected to various load cases.

The predictive capabilities of the micropolar continuum model with respect to the mechanical response are

evaluated by comparisons with discrete models in terms of the strain energy and the rotation field. Special

focus is set on two FEM parameters of the continuum model, namely, the element size and the interpolation

order.

For negative constants, it is found that there is not only a constraint on the element size as given in [53], but

there is also a constraint on the order of the interpolation functions used in combination with the element

size. Converging strain energies are obtained only as long as the condition he/(pe+H(pe−3)) > l is fulfilled,

i.e., the finite element size must be chosen to satisfy he > l · (pe + H(pe − 3)), where interpolation orders

are considered up to pe = 3. Note that there are deviations from this condition either in terms of the lattice

type or with respect to the load case, e.g., for the triangular lattice the effect is not as pronounced as for the

square lattice. In contrast, no restriction on FEM parameters is observed for positive constants regarding

convergence of the strain energy. Note that the strain energies are approximately the same for both sets of

constants as long as the condition is satisfied.

The rotation fields obtained for both sets of constants are the same as long as the condition, he > l · (pe +
H(pe − 3)), is satisfied. For positive constants, the gradients of the rotation field regarding the midpoints of

base cells of the lattice can be captured for he ⪅ l · (pe +H(pe − 3)), for which also the rotation field can be

considered to be converged. This is observed for almost all the load cases with the corresponding lattice types

studied, except for the compression and the indentation load case. For the compression load case, the rotation

field is governed by local deformations, which cannot be quantitatively captured by the continuum model.

For the indentation load case, continuum modeling must be considered not to be best suited due to the load

application at the free surface and its point load character. Nevertheless, for both load cases the gradients can

be qualitatively captured. For negative constants, the gradients are hardly captured. On the one hand, the

gradients are not resolved properly as long as the condition is fulfilled. On the other hand, once the condition

he > l ·(pe+H(pe−3)) is no longer satisfied, the rotation field and the stress field start to show patterns with

oscillations. Although some kind of a converged field can be obtained for he ≪ l · (pe +H(pe − 3)), it is not

physically interpretable based on the current investigations. In addition, small geometrical deviations from

the perfect quadrilateral elements used for the discretization in this work can strongly affect the results once

the condition is no longer satisfied for every single element, e.g., quadrilateral in combination with triangular

continuum elements.

It is worth noting that the condition derived for he is not unique as it is based on the characteristic length,

l, of the lattice, which can be defined in different ways. Furthermore, the condition is based on quadrilateral

elements using full integration only. The condition may be relaxed for using reduced integration, see [82] for

investigations on the reduced integration and must be revisited for other element types, such as triangular

elements.

In a nutshell, the FEM parameters of the continuum model and the characteristic length of the lattice must

be considered as two competing length scales when using negative constants. Consequently, this must be

taken into account in the modeling. This is not the case for positive constants, which can be used without

any constraints as long as a proper discretization is ensured to resolve the kinematic fields, as also required

for classical continuum modeling.
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Chapter 6

Linear micropolar continuum

modeling in 3D

The MECs derived for the 3D lattices in Section 3.3 are evaluated on the basis of numerical simulations in

the linear regime. For this purpose, the corresponding micropolar continuum (MC) is set up by means of the

Finite Element Method. Discrete lattice models serve as reference for the comparison. Various configurations

of the lattices and different load cases are used to study the predictive capabilities and limitations of the

MC model. The simulations of the discrete and continuum models are carried out with ABAQUS/Standard

2019 (Dassault Systèmes Simulia Corp., Providence, RI, USA). Information on the implementation of the

continuum model can be found in Section 4.2.1.

6.1 Lattice models and method

6.1.1 Geometry and material properties

The lattice structures studied are the PC and BCC lattices with overall geometric dimensions L1, L2, and

L3 for all three spatial directions. The overall dimension is associated with the macroscopic domain, cf.

Figure 6.1. Each lattice is set up via periodic arrangements of its base cells in all three spatial directions.

The base cells of the PC and the BCC lattices are displayed in Figures 3.2 and 3.3 in Section 3.3, respectively.

The periodic arrangement of the base cell for the PC lattice leads to an open-boundary surface. Note that for

this type of lattice, no closed-boundary surface model is used. The internal or characteristic length of each

lattice is defined as the size of its base cell and is set to l (= l1 = l2 = l3) for all lattices studied, resulting

in a cubic material symmetry system for each lattice. Again, the macroscopic dimensions of the lattices are

directly related to the characteristic length via the number of base cells comprising the lattices, which are

further denoted as N1xN2xN3, where N1, N2, and N3 are the numbers of base cells in 1-,2-, and 3-directions,

respectively. This leads to Li = lNi for all lattices, where i = {1, 2, 3} for each spatial direction. For an equal

arrangement in all three directions, it follows N1xN2xN3 = NxNxN , cf. Figure 6.1 for lattices comprised of

4x4x4 base cells. Note that either l or Ni is used in the following. The cross-sections of the lattice members

are assumed to be circular, A = r2π, where r denotes the radius. The area moment of inertia is defined as

I = (r4/4)π(= Im = In) and the polar moment of inertia is given as It = Im + In. The relative density of

each type of lattice studied, ρr = Vs/V , is kept constant, where Vs and V denote the volume of the parent
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material and the domain occupied by the lattice, respectively. For this purpose, a constant ratio of radius to

length of the lattice members of r/lLT = 1/20 is considered with LT = PC, BCC. Neglecting overlapping

regions of the parent material, this results in ρr ≈ 3π/400 = 0.024 for the PC lattice with LPC = l and

ρr ≈ 3
√
3π/400 = 0.041 for the BCC lattice with lBCC =

√
3l/2. Note that for the BCC, the lengths of the

lattice members are different from the base cell lengths, l, and, therefore, is to be accounted for accordingly.

This is independent of the number of base cells involved.

The parent material of the lattice structures, i.e., the material of the individual lattice members, is an isotropic

linear elastic material with a Young’s modulus of Es = 120000 MPa and a Poisson ratio of νs = 0.3. The

shear modulus for the isotropic material follows as Gs = Es/(2(1 + νs)).

6.1.2 Discrete reference models

The discrete lattice models are discretized by linear Timoshenko beam elements accessible through the

ABAQUS element library, where each strut of the lattice is discretized by six elements. This leads to

18 elements for the PC and 48 elements for the BCC per base cell. This discretization allows the deformation

state to be adequately captured.

6.1.3 Methodology

Two different load cases are used to study the mechanical response of the lattices and to evaluate the predictive

capabilities and limitations of the MC model. The basis for the assessment is a comparison with discrete

models in terms of strain energy and kinematic fields. To obtain a single scalar value that provides a rough

estimate of the accuracy of the MC model predicting the kinematic fields, the following variable is introduced

χy =
1

N

N∑
i=1

||||ydiscretei − yMC
i

ydiscretei

|||| , (6.1)

where N is the number of MPBCs taken into account and yi represents a DOF at MPBC i. The greater the

value of χy, the poorer the predicitive capability of the MC model compared to the discrete reference model

with respect to DOF y. Note that the fraction term represents the relative error. If χ = 0, both MC and

discrete model will show the same results.

Figure 6.1: PC (left) and BCC (right) lattices comprised of 4x4x4 base cells.
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The microscopic dimensions of the lattices are chosen such that the separation of scales is not fully satisfied

in order to use micropolar modeling in a meaningful way. The cuboid domain is discretized by M1xM2xM3

elements showing a cubic shape, whereM1, M2, andM3 are the numbers of elements in 1-, 2-, and 3-directions,

respectively. Considering the macroscopic dimensions, the element size or side length of the elements with

respect to the i-direction are obtained as Li/Mi. For using cubic elements, the element size, he, or the side

lengths of the elements are chosen to be the same in all three spatial directions. With the cubic shape of the

base cells of the lattices studied, a ratio can be given that describes how many elements are used to discretize

a single base cell. It is defined as the ratio between the number of base cells and the number of elements

in each spatial direction, or, alternatively, using the element size and the characteristic length of the lattice,

and reads

Mi = Mi/Ni (= M/N = l/he) , (6.2)

respectively (no summation rule).

The load cases considered are a simple shear and a torsion load case, cf. Figure 6.2. For the simple shear, the

boundary conditions are applied in the planes parallel to the 1-3-plane at X2 = 0 and X2 = L2. The lattice

is fully clamped at X2 = 0 and a displacement in 1-direction is prescribed at X2 = L2 with U1 = 0.2mm

while all other DOFs are fixed. For the torsion load case, the boundary conditions are applied in the planes

parallel to the 1-2-plane at X3 = 0 and X3 = L3. The lattice is fully clamped at X3 = 0, while at X3 = L3

a reference node is introduced at X1 = L1/2 and X2 = L2/2 and tied to the nodes in this plane, i.e., the

ABAQUS *RIGID BODY, REF NODE= , TIE NSET= keyword is used. A rotation of ϕ3 = 1 rad is prescribed

at the reference node.

The FEM parameters of the continuum model are chosen based on the conditions specified for positive

constants to capture the expected gradients of the rotation fields shown for the 2D case in Chapter 5. For

an interpolation order of pe = 1, the element size needs to satisfy he ≤ l, or, i.e., M ≥ 1.

Figure 6.2: Schematics of the simple shear (left) and torsion load case (right) with free surfaces in white
and surfaces with boundary conditions applied in grey. The free surfaces are traction-free.
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6.2 Results and discussion

6.2.1 Simple shear

The configurations of the PC and the BCC lattices used for the simple shear load case are summarized in

Table 6.1.

Investigation of the strain energy

The strain energies obtained for discrete and continuum models are summarized in Table 6.2. Different

element sizes are used for the continuum model, namely, he = l, he = l/2, and he = l/4. As expected, the

continuum model shows a more compliant behavior for smaller element sizes than for larger ones. This is

more pronounced for the BCC than for the PC lattice. The relative error for the smallest element size studied

is about 10.9% for the PC and −1.0% for the BCC lattice.

Investigation of the kinematic fields

The continuum models with element sizes of he = l and he = l/2 are the basis for comparing the kinematic

fields with the corresponding discrete models. First, the PC lattice is analyzed, then the BCC lattice.

PC. The displacements and the rotations of the MPBCs of the PC lattice along the 2-axis are shown in

Figure 6.3 for two locations atX1 = X3 = l/2 = 0.5mm (first and second row) andX1 = X3 = 7l/2 = 3.5mm

(third and fourth row). Significant changes occur only in the rotations ϕ3 with respect to the studied locations

and this is the only DOF that will be investigated further. The larger the distance to the free surface of the

lattice, the continuum model is better able to capture these rotations, cf. Figure 6.4 for X1 = X3 = l/2 =

0.5mm (top left), X1 = X3 = 3l/2 = 1.5mm (top right), X1 = X3 = 5l/2 = 2.5mm (bottom left), and

X1 = X3 = 7l/2 = 3.5mm (bottom right). In the far-field regions, i.e., at X1 = X3 > l/2 = 0.5mm and

l/2 = 0.5mm < X2 < 15l/2 = 7.5mm, the rotations of the continuum model for both element sizes studied

are in good agreement with the discrete model. For the element size being smaller than the characteristic

Table 6.1: Geometrical dimensions of the PC and BCC lattices studied for the simple shear load case.

NxNxN L1 = L2 = L3 l r

(/) in mm in mm in mm

PC 8x8x8 8 1 l/20

BCC 8x8x8 8 1 l
√
3/2/20

Table 6.2: Simple shear - Strain energies of discrete and micropolar continuum models for the PC and BCC
lattices studied with relative error values for continuum models.

NxNxN discrete MC M = 1 rel. err. MC M = 2 rel. err. MC M = 4 rel. err.

(/) in Nmm in Nmm in % in Nmm in % in Nmm in %

PC 8x8x8 0.536652 0.611687 14.0 0.599748 11.8 0.595382 10.9

BCC 8x8x8 15.586239 25.284204 62.2 18.931805 21.3 15.429715 -1.0
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length of the lattice, i.e., he = l/2, even the evolution of the gradients from the boundaries at X2 = 0 and

X2 = 8mm is captured reasonably well in the far field.
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Figure 6.3: Simple shear - Displacements and rotations of MPBCs of the PC lattice, comprised of 8x8x8
base cells, along the 2-axis at locations X1 = X3 = l/2 = 0.5mm (first and second row) and
X1 = X3 = 7l/2 = 3.5mm (third and fourth row).
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Figure 6.4: Simple shear - Rotations ϕ3 of MPBCs of the PC lattice, comprised of 8x8x8 base cells, along
the 2-axis at four different locations.

To gain further insight, the rotations ϕ3 at the MPBCs are given with respect to three different planes in

Figure 6.5. The first plane is parallel to the 1-2-plane for the location X3 = 7l/2 = 3.5mm (top), i.e., the

surface normal is parallel to the 3-axis. The second and third planes are both parallel to the 2-3-plane for

locations X1 = l/2 (center) and X1 = 7l/2 = 3.5mm (bottom), i.e., the surface normals are parallel to the

1-axis. The discrete model (left column) and the continuum model with an element size of he = l/2 (center

column) are directly compared via relative error values (right column).

For the load cases studied, the rotations in the 1-2-plane do not significantly change over the location X3.

Consequently, only a single plane at the location X3 = 7l/2 = 3.5mm is considered. The error values of the

rotations in this plane are small in the far-field regions l/2 = 0.5mm < X1 < 15l/2 = 7.5mm and range

between−0.01 and−0.11. For being close to the free surface atX1 = l/2 = 0.5mm andX1 = 15l/2 = 7.5mm,

the relative errors range between −0.20 and −0.33.

For the planes parallel to the 2-3-planes, the error values of the rotations are significantly smaller in the

far-field region at X1 = 7l/2 = 3.5mm than close to the free surface at X1 = l/2 = 0.5mm. In numbers,

the error values range between −0.04 and −0.16 in the far-field region while those closer to the free surface

range between −0.24 and −0.33. In the far-field region, even the gradients evolving from the boundaries at

X2 = 0 and X2 = 8mm are captured reasonably well.

To further obtain a rough estimate on how well the MC model captures the rotations ϕ3 at the MPBCs with

respect to various planes, a representative relative error value, χϕ3, according to Eq. (6.1) is evaluated for

each plane showing a surface normal parallel to one of the three spatial dimensions. The relative error values

of the planes are shown in Figure 6.6, where values are given for parallel planes over the corresponding spatial

axis. For planes with surface normals parallel to the 3-axis, χϕ3 is the same for all planes, as expected. As
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Figure 6.5: Simple shear - Rotations fields ϕ3 of MPBCs of the PC lattice, comprised of 8x8x8 base cells, in
1-2-plane at locationX3 = 7l/2 = 3.5mm (top) and in 2-3-plane at locationsX1 = l/2 = 0.5mm
(center) and X1 = 7l/2 = 3.5mm (bottom).

the average of these values gives χϕ3 of the whole lattice, the same value is obtained for the whole lattice.

For planes with surface normals parallel to the 2-axis, χϕ3 decreases for increasing distance to the free

surface. The same holds true for planes with surface normals parallel to the 1-axis, except for the planes

at X1 = 3l/2 = 1.5mm and X1 = L − 3l/2 = 6.5mm, which show lower values of χϕ3 compared to those

obtained for planes with more distance to the free surface. Overall, the relative error values obtained for

all planes are within an acceptable range, considering that the influence of the free surface is present in all

planes. The results are almost exactly the same for using M = 4, which is not shown for the sake of clarity.

This indicates that the kinematic fields are already fully resolved for M = 2.
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Figure 6.6: Simple shear - Relative error values of the rotations χϕ3 on various planes with surface normals
parallel to the spatial directions i = 1, 2, 3 evaluated along the normals at locations of MPBCs
of the PC lattice (left) and sketch of such planes including their surface normals (right).

BCC. For the BCC lattice, the displacements and the rotations of the MPBCs along the 2-axis are shown in

Figure 6.7 for two locations atX1 = X3 = l/2 = 0.5mm (first and second row) andX1 = X3 = 7l/2 = 3.5mm

(third and fourth row). Overall, the kinematics are qualitatively captured by the continuum model. Closer

to the free surface at X1 = X3 = l/2 = 0.5mm (first and second row), the displacements U2 and U3 are

about an order of magnitude larger than in the far-field region at X1 = X3 = 7l/2 = 3.5mm (third and

fourth row). The same holds true for rotations ϕ1 and ϕ2. Contrarily, the rotations ϕ3 do not decay in

the far-field region and show the same order of magnitude at both locations. To study the evolution of the

rotations ϕ3 along the 2-axis from close to the free surface to the far-field region, four different locations are

analyzed and shown in Figure 6.8, namely, X1 = X3 = l/2 = 0.5mm (top left), X1 = X3 = 3l/2 = 1.5mm

(top right), X1 = X3 = 5l/2 = 2.5mm (bottom left), and X1 = X3 = 7l/2 = 3.5mm (bottom right).

The free surface strongly influences the evolution of the rotations ϕ3 over the 2-axis. Closer to the free

surface at locations X1 = X3 = l/2 = 0.5mm and X1 = X3 = 3l/2 = 1.5mm, completely different

patterns are obtained when compared to those in the far-field region at locations X1 = X3 = 5l/2 = 2.5mm

and X1 = X3 = 7l/2 = 3.5mm. This means that the influence of the free surface decays much more

slowly for the BCC than for the PC lattice, cf. Figure 6.4. The gradients evolving from the boundaries

X2 = 0 and X2 = 8mm are captured quite well by the continuum model in the far-field regions for both

locations. However, the model is not able to capture the peak in the rotations at the center of the lattice at

X2 = 7l/2 = 3.5mm and X2 = 9l/2 = 4.5mm.
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Figure 6.7: Simple shear - Displacements and rotations of MPBCs of the BCC lattice, comprised of 8x8x8
base cells, along the 2-axis at locations X1 = X3 = l/2 (first and second row) and X1 = X3 =
7l/2 (third and fourth row).
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Figure 6.8: Simple shear - Rotations ϕ3 of MPBCs of the BCC lattice, comprised of 8x8x8 base cells, along
the 2-axis at four different locations.

To gain further insight, the rotations ϕ3 at the MPBCs are given with respect to three different planes in

Figure 6.9. The first plane is parallel to the 1-2-plane for the location X3 = 7l/2 = 3.5mm (top), i.e., the

surface normal is parallel to the 3-axis. The second and third planes are both parallel to the 2-3-plane for

locations X1 = l/2 (center) and X1 = 7l/2 = 3.5mm (bottom), i.e., the surface normals are parallel to

the 1-axis. The discrete model (left column) and the continuum model with an element size of he = l/2

(center column) are directly compared via relative error values (right column). For all planes, the rotations

ϕ3 are qualitatively captured by the continuum model, but show quite large error values. For the first plane,

the error values are acceptable only in the far-field region with respect to both free surfaces, namely, for

3l/2 = 1.5mm < X1 and X2 < 13l/2 = 6.5mm. Closer to the free surface, some of the error values are even

larger than +1.0. For the plane parallel to the 2-3-plane at X1 = l/2 = 0.5mm, the error values are quite

large in the center, but small close to the free surface at X2 = l/2 = 0.5mm and X2 = 15l/2 = 7.5mm. This

may be a consequence of being quite close to the free surface at X1 = l/2 = 0.5mm. In contrast, for the

plane at X1 = 7l/2 = 3.5mm, the error values decrease for increasing distance to the free surfaces, i.e., for

3l/2 = 1.5mm < X2 < 13l/2 = 6.5mm.
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Figure 6.9: Simple shear - Rotation fields ϕ3 of MPBCs of the BCC lattice, comprised of 8x8x8 base cells, in
1-2-plane at locationX3 = 7l/2 = 3.5mm (top) and in 2-3-plane at locationsX1 = l/2 = 0.5mm
(center) and X1 = 7l/2 = 3.5mm (bottom).

To further obtain a rough estimate on the capability of the MC model to capture the rotations ϕ3 at the

MPBCs of the BCC lattice with respect to various planes, the relative error value, χϕ3, according to Eq. (6.1)

is evaluated for planes with normals parallel to one of the three spatial dimensions. The representative error

values are shown in Figure 6.10. For planes with surface normals parallel to the 3-axis, χϕ3 ranges between

≈ 0.35 and ≈ 0.85 and is not constant over X3 as was observed for the PC lattice. Interestingly, planes

with increasing distance to the free surface show larger error values. Similar results are obtained for planes

parallel to the 1- and 2-axes. The lowest error values are obtained for 3l/2 = 1.5mm ≤ Xi ≤ 5l/2 = 2.5mm.

As was indicated by the strain energies given in Table 6.2, the relative error values are significantly reduced

by using an element size of he = l/4 (M = 4) instead of he = l/2 (M = 2). The error values of rotation ϕ3

for the whole lattice are ≈ 0.55 for M = 2, and ≈ 0.29 for M = 4. This means that for the present load

case, the BCC lattice must be finer discretized than the PC lattice and that M = 4 may not be sufficient.
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Figure 6.10: Simple shear - Relative error values of the rotations χϕ3 on various planes with surface normals
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6.2.2 Torsion

The configurations of the PC and the BCC lattices used for the torsion load case are summarized in Table 6.3.

Investigation of the strain energy

The strain energies obtained for discrete and continuum models are summarized in Table 6.4. Different

element sizes are used for the continuum model, namely, he = l and he = l/2. As expected, the continuum

model shows a more compliant behavior for the smaller element size than for the larger one. The relative

error for the smallest element size studied is about 7.1% for the PC and 0.8% for the BCC lattice.

Investigation of the kinematic fields

The continuum models with element sizes of he = l and he = l/2 are the basis for comparing the kinematic

fields with the corresponding discrete models. First, the PC lattice is analyzed, then the BCC lattice.

PC. The displacements and the rotations of the MPBCs of the PC lattice along the 3-axis are shown in

Figure 6.11 for two locations at X1 = X2 = l/2 = 0.5mm (first and second rows) and X1 = X2 = 7l/2 =

3.5mm (third and fourth rows). There are only differences in the rotations ϕ1 and ϕ2 for the locations

studied. The larger the distance to the free surface of the lattice, the better the continuum model is able to

capture these rotations. In the far-field region, i.e. at X1 = X2 = 7l/2 = 3.5mm, the rotations ϕ1 and ϕ2

of the continuum model for both element sizes studied are in good agreement with the discrete model. This

also holds true for the gradients evolving from the boundaries at X3 = 0 and X3 = 24mm.

In Figure 6.12, the magnitudes of displacements (top) and rotations ϕ3 at the MPBCs of the PC lattice

(bottom) are given with respect to three different planes. All planes are parallel to the 1-2-plane and show

different locations over the 3-axis, namely, X3 = 3l/2 = 1.5mm (first row), X3 = 23l/2 = 11.5mm (second

row), and X3 = 45l/2 = 22.5mm (third row). The discrete model (left column) and the continuum model

with an element size of he = l/2 (center column) are directly compared via relative error values (right column).

The continuum model agrees well with its corresponding discrete model and shows small error values for both

displacement magnitudes and rotations ϕ3 in all three planes considered.

Table 6.3: Geometrical dimensions of the PC and BCC lattices studied for the torsion load case.

N1xN2xN3 L1 = L2 = L3/3 l r

(/) in mm in mm in mm

PC 8x8x24 8 1 l/20

BCC 8x8x24 8 1 l
√
3/2/20

Table 6.4: Torsion - Strain energies of discrete and continuum models for the PC and BCC lattices studied.

N1xN2xN3 discrete MC M = 1 rel. err. MC M = 2 rel. err.

(/) in Nmm in Nmm in % in Nmm in %

PC 8x8x24 46.201824 50.193474 8.6 49.481888 7.1

BCC 8x8x24 6550.92627 6679.807129 2.0 6602.644531 0.8
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Figure 6.11: Torsion - Displacements and rotations of MPBCs along the 3-axis at location X1 = X2 = l/2
(first and second row) and X1 = X2 = 7l/2 (third and fourth row) for the PC lattice comprised
of N1xN2xN3 = 8x8x24 base cells.
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Figure 6.12: Torsion - Magnitudes of displacements U (top) and rotation fields ϕ3 of MPBCs (bottom) in
the 1-2-plane at various locations X3 for the PC lattice comprised of N1xN2xN3 = 8x8x24
base cells.
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BCC. Similar results are obtained for the BCC lattice, cf. Figure 6.13 for displacements and rotations along

the 3-axis for two locations at X1 = X2 = l/2 = 0.5mm (first and second rows) and X1 = X2 = 7l/23.5mm

(third and fourth rows) and Figure 6.14 for displacement magnitudes (top) and rotations ϕ3 of MPBCs

(bottom) in three different planes parallel to the 1-2-plane.

Both PC and BCC. To further obtain a rough estimate on the capability of the MC model to capture

the rotations ϕ3 at the MPBCs with respect to various planes, the relative error value, χϕ3, according to

Eq. (6.1) is evaluated for planes with normals parallel to one of the three spatial dimensions, cf. Figure 6.15

for the PC (left) and BCC lattices (right). For planes with surface normals parallel to the 1- and 2-axis, the

representative error values χϕ3 are the same and are within an acceptable range between ≈ 0.045 and ≈ 0.05

for the PC and between ≈ 0.015 and ≈ 0.02 for the BCC lattice. For planes with surface normals parallel

to the 3-axis, the error values are high very close to the boundary at X3 = l/2 = 0.5mm. For increasing

distance to the boundary, the error values decrease significantly and become very small. The values increase

slightly closer to the boundary at X3 = 49l/2 = 24.5mm. This holds true for both the PC and BCC lattices.
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Figure 6.13: Torsion - Displacements and rotations of MPBCs along the 3-axis at location X1 = X2 = l/2
(first and second row) and X1 = X2 = 7l/2 (third and fourth row) for the BCC lattice
comprised of N1xN2xN3 = 8x8x24 base cells.
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Figure 6.14: Torsion - Magnitudes of displacements U (top) and rotation fields ϕ3 of MPBCs (bottom) in
the 1-2-plane at various locations X3 for the BCC lattice comprised of N1xN2xN3 = 8x8x24
base cells.
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Figure 6.15: Torsion - Relative error values of rotations χϕ3 on various planes with surface normals parallel
to the spatial directions i = 1, 2, 3 evaluated along the normals at locations of MPBCs of the
PC lattice (left) and BCC lattice (right).

6.3 Summary

The MECs derived for the PC and the BCC lattices are evaluated on the basis of numerical simulations by

comparison with discrete models. The implementation of the micropolar continuum model is performed in

ABAQUS as a user element. For comparison, the mechanical response of the models is studied in terms

of strain energy and kinematic fields. Therefore, different configurations of the PC and BCC lattices are

subjected to a simple shear and a torsion load case. The FEM parameters chosen for the continuum model

are based on the findings of Chapter 5.

The strain energy is captured quite well by the continuum models using element sizes smaller than the

characteristic length of the lattice, he < l. For larger element sizes, it strongly depends on the type of lattice

in combination with the load case studied, e.g., for the BCC lattice subjected to simple shear, the element

size has to be at least he < l/2 to properly capture the strain energy, whereas subjected to torsion, an element

size of he = l is sufficient.

The kinematic fields of the midpoints of base cells of the lattice are studied with respect to different locations

along various axes and planes and a direct comparison between continuum and discrete model is performed.

The free surface of the lattice strongly influences the evolution of those fields excited by the load case. Close

to the free surfaces, the continuum models are only able to qualitatively capture the kinematic fields. In the

far field region, these fields can be captured quite well by the continuum model. When using element sizes

smaller than the characteristic length of the lattice, e.g., he < l/2, even the gradients of the kinematic fields

evolving from the boundaries are qualitatively captured reasonably well for both, PC and BCC lattice.

In summary, the micropolar continuum is able to capture the mechanical response of both PC and BCC

lattices quite well when using element sizes smaller than the characteristic length of the lattice, i.e., he < l.

For larger element sizes, this strongly depends on the type of lattice in combination with the load case studied.

These findings coincide with those obtained for the 2D lattices presented in Chapter 5.
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Chapter 7

Geometrically nonlinear micropolar

continuum modeling in 3D

First, the geometrically nonlinear micropolar element presented in Section 4.1.2 is verified on the basis of

three test cases taken from literature, where linear isotropic material behavior is considered. Next, the

capabilities and limitations of the model are studied in terms of its ability to account for lattice materials in

large displacement and rotation problems in the small strain regime. Buckling of slender lattice beams can be

considered such a problem and serves as the basis for the evaluation. Different types and sizes of 3D periodic

lattice structures are considered and subjected to global compressive loadings to study the capabilities of the

model in estimating the critical loads as well as the postbuckling behavior.

7.1 Verification of UEL

The geometrically nonlinear micropolar element presented in Section 4.1.2 is verified by studying three specific

structures, a T-shape structure, a curved cantilever beam, and an elbow cantilever, cf. Figure 7.1 for their

schematics. Within the framework of nonlinear micropolar theory using the FEM, the T-shape structure

test case was applied first by [8] while the other cases were first used in [44]. Note that all test cases were

analyzed earlier in the context of classical elasticity, see [44] for more details. The T-shape structure is

used to separately test torsion and bending. The curved cantilever beam is used to excite all rotations at

once, which is realized by applying an out-of-plane load to the structure lying in-plane. For evaluating the

ability of the model to account for rigid body rotations, the elbow cantilever is used. The elbow cantilever is

subjected to torsion and bending while being additionally rotated. For the comparison with the literature,

only the solution variables, namely, displacements and rotations, are evaluated. The convergence rate of

the solution procedure is not of interest in the present work. For all test cases, the material behavior is

considered to be linear isotropic, where the corresponding isotropic material moduli are taken from [44]

and are summarized in Table 7.1. Details on the FEM models of the individual test cases can be found

in the corresponding section. It is worth noting that the present FEM implementation shows the so-called

non-invariance anomaly as observed in [44]. This anomaly describes the phenomenon that for interpolated

rotations between two configurations the relative Lagrangian stretch and wryness tensors are non-invariant

under rigid body rotations, even though their analytical expression is invariant as shown in [44]. The amount

of non-invariance can be reduced by increasing the number of load increments used for the Newton-Raphson
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Figure 7.1: Schematics of the curved cantilever beam (left), T-shape structure (center), and elbow cantilever
(right). The geometric dimensions are given in mm. (Taken and modified from [44])

procedure as well as a fine discretization of the domain [44]. The number of load increments and the

discretization of the domain for all simulations performed in this work are chosen such that this invariance

anomaly can be considered negligible. A solution to overcome this anomaly has been presented in [44], but

has neither been applied therein nor in the present thesis. Where possible, the same incrementation is used

as in [44] to ensure a proper comparison. All simulations are carried out with ABAQUS/Standard 2019

(Dassault Systèmes Simulia Corp., Providence, RI, USA) using its unsymmetric equation solution capability

for which slightly better convergence behavior was found. The perturbation parameter in Eq. (4.25) for

determining the tangential stiffness matrix is set to ϑ = 10−8 for all simulations performed. Note that for

smaller values of ϑ no influence on the results can be observed, which is not shown for the sake of brevity.

7.1.1 T-shape structure

The T-shape structure is analyzed based on the second load case presented in [8] to stay within the limit

of ||ϕ|| < 2π. In [8], the T-shape structure was used to determine the convergence behavior of their FEM

implementation. No results in terms of solution variables were presented. Therefore, the values of the very

same load case presented in [44] are used for comparison. The isotropic material moduli are taken from [44]

and can be found in Table 7.1. Note that slightly different material moduli have been used in [44] and in

Table 7.1: Isotropic micropolar material moduli for the various test cases, see Section 2.5 for their definition.

λ µ ν α β γ

T-bar 1.575E+04 1.05E+04 3.50000E+03 0.0E+00 5.25E+01 5.25E+01

Curv. Cant. (a) 5.000E+06 0.00E+00 5.05051E+04 0.0E+00 1.25E+04 3.75E+04

Curv. Cant. (b) 5.000E+06 0.00E+00 2.13158E+07 0.0E+00 1.25E+04 3.75E+04

Elbow Cant. 1.000E+04 0.00E+00 1.01010E+02 0.0E+00 2.50E+01 7.50E+01
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Table 7.2: T-shape structure - Results from [44] (top) indicated by an asterisk ∗ and the present FEM
implementation (bottom) are listed.

U1 U2 U3 ϕ1 ϕ2 ϕ3

mm in mm in mm in rad in rad in rad

∗1P +1.2182E+00 −3.6278E+00 −1.1277E−02 −1.4940E−02 −5.2237E−03 +1.7303E+00

∗2P −1.2182E+00 −3.6278E+00 −1.1277E−02 −1.4940E−02 +5.2237E−03 −1.7303E+00

∗3P +1.0335E+00 +2.7191E−03 −9.7484E−01 −4.5819E−02 +3.2176E+00 −4.5027E−02

∗4P −9.7484E−01 +2.7191E−03 −1.0335E+00 −4.5027E−02 +3.2176E+00 +4.5810E−02
1P +1.2182E+00 −3.6278E+00 −1.1277E−02 −1.6623E−02 −6.0958E−03 +1.7303E+00
2P −1.2182E+00 −3.6278E+00 −1.1277E−02 −1.6624E−02 +6.0993E−03 −1.7303E+00
3P +1.0336E+00 +2.7206E−03 −9.7479E−01 −1.1155E−01 +3.2135E+00 −1.1596E−01
4P −9.7479E−01 +2.7206E−03 −1.0336E+00 −1.1596E−01 +3.2135E+00 +1.1155E−01

[8]. The T-shape structure is fully clamped between rib and flange, i.e., the 1-3-plane at X2 = 1mm. The

loads are applied in two analysis steps. In the first step, the rib pointing in 2-direction is subjected to a

resultant torsion moment of M2 = 600Nmm at the free end at X2 = 11mm. In the second step, two resultant

bending moments each of M3 = 1125Nmm are applied at the free ends of the flange pointing in 1-direction

at X1 = 0mm and X1 = 11mm, respectively. Similar to [44], the load is applied in 20 equal increments in

both steps.

The element size for the discretization of the structure is he = 1, i.e., the structure is discretized by cube-

shaped elements, where ten elements are used for the rib and eleven elements are used for the flange. The

torsion and bending moments are applied in terms of concentrated nodal moments. Considering the dis-

cretization and the linearly interpolated elements, this results in iM2 = M2/4 and iM3 = M3/4 for each node

i at the corresponding free ends, respectively.

The solution variables are evaluated at the end of the analysis at four different nodes, iP = [X1, X2, X3],

namely, at 1P = [0, 1, 1], 2P = [11, 1, 1], 3P = [5, 11, 1], and 4P = [6, 11, 1]. The results are summarized in

Table 7.2, see (top) for those presented in [44] and (bottom) for the present work. The displacements are in

very good agreement with those presented in [44]. The same holds true for the rotations directly associated

with the corresponding torsion or bending moment, i.e., ϕ2 at 3P and 4P for the torsion moment and ϕ3

at 1P and 2P for the bending moment. The other rotations deviate from the results presented in [44] by a

factor of up to 3, cf. ϕ1 at 3P and 4P as well as ϕ3 at 3P and 4P . Interestingly, the deviations are the very

same for these rotations.

It is worth noting that for the first load case, the present FEM implementation gives the same results for the

displacements as given in [44]. However, the rotations do not sum up properly as ABAQUS does not allow

for rotations showing ||ϕ|| > 2π.

7.1.2 Curved Cantilever Beam

The curved cantilever beam presented in [44] is fully clamped at the end parallel to the 2-3-plane. At the

other end, a constant distributed surface load in 3-direction, p3 = 600N/mm2, is applied, which leads the

curved cantilever beam to deflect in such a way that all three rotational DOFs are excited and show large

magnitudes.
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The structure is discretized by 14 and 256 elements along the neutral axis while both directions tangential

to the cross-section of the beam are discretized by only one element. The surface load is applied through

consistent nodal forces, see Eqs. (4.1)-(4.13). For the linear interpolated element and the discretization used,

the force applied on each node, i, of the surface follows as iF3 = p3A/4 = 150N with the square cross-section

A = 1mm2. The isotropic material moduli can be found in Table 7.1, where two different sets (a) and (b)

are given. Set (a) represents a limit case of the micropolar theory to obtain results similar to those obtained

by the classical elasticity theory whereas set (b) also considers micropolar effects.

For the comparison, the solution variables are evaluated at the free end at four different nodes, iP =

[X1, X2, X3], namely, at 1P = [(R−a/2) cos 45◦, (R−a/2) sin 45◦, 0], 2P = [(R+a/2) cos 45◦, (R+a/2) sin 45◦,
0], 3P = [(R − a/2) cos 45◦, (R − a/2) sin 45◦, 1], and 4P = [(R + a/2) cos 45◦, (R + a/2) sin 45◦, 1], where R

denotes the radius of the structure and a is the side length of the square shaped cross-section. The val-

ues obtained for set (a) are summarized in Table 7.3, where two different discretizations are covered. The

displacements are in very good agreement with those presented in [44] for both discretizations. The same

holds true for the rotations ϕ1. In contrast, deviations ranging from about −15% for ϕ2 to about 15% for ϕ3

are observed for the coarse discretization. However, the deviations decrease for using a finer discretization,

where the highest deviation is about −5% for ϕ3. Note that for the coarse discretization two increments

instead of a single one as used in [44] are needed to obtain convergence considering the default settings of the

ABAQUS Newton-Raphson solver, i.e., default values of *CONTROLS, PARAMETERS=TIME INCREMENTATION.

For the fine discretization, 20 increments instead of ten as used in [44] are needed to achieve convergence.

For material moduli set (b), the solution variables are only evaluated at node 1P , cf. Table 7.4. A deviation

is only observed for the rotation ϕ3, where they are about 28%. Note that 20 increments instead of five as

used in [44] are needed to achieve convergence.

7.1.3 Elbow Cantilever

The elbow cantilever presented in [44] is fully clamped at the end parallel to the 1-3-plane. At the other

end, a constant distributed surface load in negative 3-direction, p3 = −5N/mm2, is applied. Additionally,

the whole structure is subjected to a rigid body rotation around the 1-axis of Φ = 2π. The analysis consists

of two steps. In the first step, the surface load is applied in a single increment. In the second step, the rigid

body rotation is applied using the minimum number of increments required for convergence.

The structure is discretized by 5 elements along each leg and a single element at the intersection of the two

legs, i.e., in total eleven elements are used. The surface load is applied through concentrated nodal forces at

each node, i, of the free end, which follows as iF3 = p3A/4 = 1.25N for the current FEM setting and with

the square cross-section being A = 1mm2. The isotropic material moduli can be found in Table 7.1.

For the comparison, the solution variables are evaluated at the node, 2P = [−10, 10.5, 0.5], and are summa-

rized in Table 7.5, where the displacements are evaluated after the first and second load step. This is done

in order to study the influence of the rigid body rotation on the response of the structure, where the first

step is referred to as reference solution. For both steps, the results are in acceptable agreement with those

presented in [44]. Considering the rigid body rotation, the results based on the FEM implementation in this

work show slightly more deviations from its reference solutions than those presented in [44]. The deviations

are associated with the non-invariance anomaly of strain measures of FEM implementations discussed in

[44]. However, the deviations are considered to be acceptable. Note that approximately 30 to 40 increments

are required for convergence with default settings of the ABAQUS Newton-Raphson solver instead of 20

increments as used in [44]. No rotations were presented in [44] and, hence, are not given.
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Table 7.3: Curved cantilever beam - Results from [44] indicated by an asterisk ∗ and the present FEM
implementation are listed for different element sizes and using material moduli set (a).

U1 U2 U3 ϕ1 ϕ2 ϕ3

mm in mm in mm in rad in rad in rad

14x1x1

∗1P −1.28E+00 +1.91E+00 +1.61E+01 −5.08E−01 −6.06E−02 −3.56E−02

∗2P −1.24E+00 +1.80E+00 +1.58E+01 −5.08E−01 −6.06E−02 −3.57E−02

∗3P −1.32E+00 +2.40E+00 +1.59E+01 −5.08E−01 −6.06E−02 −3.57E−02

∗4P −1.28E+00 +2.29E+00 +1.56E+01 −5.08E−01 −6.06E−02 −3.57E−02
1P −1.28E+00 +1.91E+00 +1.61E+01 −5.09E-01 −5.11E-02 −4.09E-02
2P −1.24E+00 +1.80E+00 +1.58E+01 −5.09E-01 −5.10E-02 −4.09E-02
3P −1.32E+00 +2.40E+00 +1.59E+01 −5.09E-01 −5.11E-02 −4.09E-02
4P −1.28E+00 +2.29E+00 +1.56E+01 −5.09E-01 −5.10E-02 −4.09E-02

256x1x1

∗1P −2.15E+01 +1.25E+01 +5.22E+01 −5.67E−01 −9.66E−02 +4.78E−02

∗2P −2.17E+01 +1.26E+01 +5.24E+01 −5.67E−01 −9.66E−02 +4.77E−02

∗3P −2.23E+01 +1.29E+01 +5.16E+01 −5.67E−01 −9.66E−02 +4.78E−02

∗4P −2.25E+01 +1.30E+01 +5.19E+01 −5.67E−01 −9.66E−02 +4.77E−02
1P −2.16E+01 +1.25E+01 +5.23E+01 −5.57E−01 −9.76E−01 +4.51E−02
2P −2.18E+01 +1.26E+01 +5.25E+01 −5.57E−01 −9.76E−01 +4.51E−02
3P −2.24E+01 +1.30E+01 +5.17E+01 −5.57E−01 −9.76E−01 +4.51E−02
4P −2.26E+01 +1.31E+01 +5.19E+01 −5.57E−01 −9.76E−01 +4.51E−02

Table 7.4: Curved cantilever beam - Results from [44] indicated by an asterisk ∗ and the present FEM
implementation for 256x1x1 elements and using the material moduli set (b).

U1 U2 U3 ϕ1 ϕ2 ϕ3

mm in mm in mm in rad in rad in rad

∗1P −1.874E+01 1.089E+01 4.927E+01 −5.60E−01 −8.82E−02 1.78E−02
1P −1.874E+01 1.089E+01 4.927E+01 −5.56E−01 −8.85E−02 1.28E−02

Table 7.5: Elbow cantilever - Results from [44] indicated by an asterisk ∗ and the present FEM implemen-
tation for 11 elements without (top) and with rotation around 1-direction (bottom).

U1 U2 U3

mm in mm in mm

∗2P 3.01094975−01 −8.04784620E−02 −3.32302580E+00
2P 3.0107594E−01 −8.0521193E−02 −3.3230089E+00

∗2P 3.01116332E−01 −8.04918162E−02 −3.32321916E+00
2P 3.0112722E−01 −8.0220205E−02 −3.3227509E+00
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7.1.4 Summary

The present FEM implementation is successfully verified by comparing the results obtained for three different

test cases to those presented in [44]. The displacements are in very good agreement for all cases studied.

For the rotations, deviations are observed in the range of about ±15% for very coarse discretizations. For

finer discretizations, the deviations decrease to about ±5% for the test cases studied. These deviations may

be based on the slightly different FEM implementations and frameworks used, with the present work using

ABAQUS instead of FEAP in [44]. The convergence criteria for the Newton-Raphson procedures may also

play a role. However, the deviations are assumed to be acceptable for the applications presented in the next

Section 7.2.
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7.2 Postbuckling of lattice beams

The capabilities of the geometrically nonlinear micropolar continuum (MC) to estimate critical loads and

to enter the postbuckling regime of lattice structures is studied by comparison with discrete models. Addi-

tionally, the continuum based on classical elasticity theory (CC) serves as reference to study advantages and

disadvantages of the micropolar modeling. For this purpose, buckling of lattice beams is studied as shown in

Figure 7.2. The boundary conditions are applied at the ends parallel to 1-2-plane. At X3 = 0mm the lattice

beam is fully clamped and at X3 = L3 it is only free to move in 3-direction. Various configurations of the

PC and BCC lattice serve as the basis for the comparison, where the geometrical properties and the parent

material used are the same as outlined in Section 6.1.1. The description of the discrete lattice models can

be found in Section 6.1.2, but to reduce the numerical effort a different discretization is used. For the BCC

lattice, each strut is discretized by three elements instead of six, i.e., 24 elements per base cell, while for the

PC lattice, four instead of six elements per strut are used, i.e., 12 elements per base cell. For the continuum

models, discretizations with M ≤ 1 are used, cf. Eq. (6.2) in Section 6.1.3. The MECs of the PC lattice are

based on Eq. (3.14) and for the BCC lattice on Eqs. (3.17) and (3.18). The classical elastic constants of the

CET continuum are obtained based on the micropolar ones and are determined in the same way as outlined

in Section 5.1.3 for 2D lattices. The elements used for the CET continuum are 8-node linearly interpolated,

fully integrated, solid elements accessible through the ABAQUS element library. All simulations are carried

out with ABAQUS/Standard 2019 (Dassault Systèmes Simulia Corp., Providence, RI, USA) with the mi-

cropolar continuum model using the implementation described in Section 4.1.2. Note that for the MC model,

ABAQUS is used with its unsymmetric equation solution capability.

7.2.1 Methodology

Buckling as a bifurcation problem requires methods for leaving the trivial equilibrium solution path in order to

access the postbuckling regime. This can be achieved by adding perturbations to the deformed configuration

of the solution at the bifurcation point in an appropriate way, known as path-switching, e.g., [35], or using

appropriate initial imperfections. In this thesis, initial imperfections are used to access the postbuckling

regime. The imperfections are based on scaled eigenmodes of the corresponding eigenvalue problem of the

discrete model. For the discrete model, the following analysis procedure is used, which consists of two

individual analyses, (i) a buckling and (ii) a postbuckling analysis, respectively. For the continuum models,

no buckling analysis is conducted as ABAQUS does not allow for this kind of analysis when user elements are

Figure 7.2: Schematic of the buckling load case with free surfaces in white and surfaces with boundary
conditions applied in grey. The free surfaces are traction-free.
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involved. The imperfections used are based on the results obtained from the buckling analysis of the discrete

models.

The buckling analysis, represents a linear eigenvalue analysis with respect to a base state. In this work,

the base state represents the undeformed configuration of the discrete model. The extracted eigenvalues

correspond to load proportionality factors of a reference load, F ref
3 . The reference load is set to F ref

3 = −1N

with respect to the 3-axis. The critical load in 3-direction corresponding to the ith eigenvalue, ηi, is estimated

via

F ∗i
3 = ηiF

ref
3 . (7.1)

In the postbuckling analysis, the postbuckling regime is accessed by imposing geometric imperfections onto

the initial configuration. For the discrete models, these imperfections are based on the eigenmodes corre-

sponding to the eigenvalues of the buckling analysis, further referred to as eigenmode-affine imperfections.

The imperfections are applied to the undeformed FEM mesh through linear superposition of the extracted

eigenmodes with the displacement

∆ =

M∑
i=1

ξiHi , (7.2)

where M is the number of eigenmodes taken into account, ξi corresponds to a proper scaling factor, and Hi

denotes the ith eigenmode, which is normalized so that the maximum displacement component is 1. The

scaling factors should be small enough such that the initial elastic response is not strongly influenced, but

large enough to ensure access to the postbuckling regime. Note that only the displacement fields are used for

the imperfection. Rotations are not taken into account.

For the continuum models, the eigenmodes of the discrete models serve as the basis for the imperfections, but

with reduced information. Different procedures are required for the BCC and the PC lattice to superimpose

the eigenmodes. For the BCC lattice, the displacement fields of all the base cell corner nodes are extracted

and mapped onto the domain of the continuum model, i.e., are applied at the nodes of the continuum model

showing the same coordinates. For meshes with element sizes smaller than the characteristic length of the

lattice, i.e., M < 1, linear interpolation is used. The procedure for the PC type lattice is different as there

are no nodes of the discrete models coinciding with nodes of the continuum models when using, e.g., M = 1.

Therefore, the displacement fields of the MPBCs of the discrete models are extracted and directly mapped to

the nodes of the continuum model associated with the corresponding base cell. For nodes that are associated

with more than a single base cell, the mean value of all corresponding base cells is taken. These fields are

then applied to the undeformed mesh of the continuum model, using linear interpolation if necessary, i.e., for

M < 1. Note that this procedure requires the boundary conditions to be enforced again, i.e., the displacement

fields for the corresponding nodes must be set to zero accordingly.

For lattice structures manufactured by additive manufacturing, the mechanical response may be strongly

influenced by imperfections based on the manufacturing process, such as deviations from the originally

intended geometry or the original properties of the parent material, see, e.g., [99]. For investigating the

capabilities of the model on capturing the mechanical response in the presence of such imperfections, geometric

imperfections based on random radius deviations of struts are used. The radius of the lattice members

corresponding to an individual base cell, j, of the lattice reads

rj = rξrj , (7.3)
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Table 7.6: Geometrical dimensions of the PC and BCC lattices studied for the postbuckling load case.

N1xN2xN3 L1 = L2 = L3/20 l r

(/) in mm in mm in mm

PC 4x4x80 4 1 l/20

PC 8x8x160 8 1 l/20

BCC 4x4x80 4 1 l
√
3/40

BCC 8x8x160 8 1 l
√
3/40

Table 7.7: Identifiers and descriptions of imperfections, where L1 is the overall length of the lattice in 1-
direction and r is the radius of the lattice members of the geometrically perfect structure.

description

Mi eigenmode-affine imperfection with ξ = i% of L1(= L2)

Ri random-based imperfection with ξ = i% of r

where r is the radius of the geometrically perfect lattice member, ξ is a scaling factor, and rj represents

a function giving uniformly distributed numbers in the interval [−1,+1]. These imperfections are further

referred to as random-based imperfections. The different radii used within individual base cells are directly

applied through the cross-section definitions of the individual beam elements of the discrete models, whereas

they are introduced on the level of the elasticity tensors for the continuum models, cf. Eq. (3.14) for PC and

Eqs. (3.17)-(3.18) for the BCC lattices.

Note that for all postbuckling analyses a displacement controlled Newton-Raphson scheme is used.

7.2.2 Results and discussion

The configurations of the PC and the BCC lattices studied are summarized in Table 7.6. Critical loads and

the corresponding eigenmodes are presented, which are estimated by buckling analyses of the discrete models.

The post-buckling responses of discrete and continuum models is then compared for different imperfection

types and amplitudes, see Table 7.7 for the notation used. The imperfection amplitudes used are given

in the individual sections and are chosen to be as small as possible, but large enough to enable access to

the post-buckling regime. Eigenmode-affine imperfections are used to study the postbuckling behavior of

all configurations given in Table 7.6. Random-based imperfections are only applied to investigate the BCC

lattice comprised of N1xN2xN3 = 4x4x80 base cells.

Critical loads and corresponding eigenmodes

The eigenvalues of the buckling analyses of the discrete models are summarized in Table 7.8 and their

corresponding eigenmodes are shown in Figures 7.3. The eigenvalues are equal to the critical loads except

for the sign, since a reference load of F ref
3 = −1N is used, cf. Eq. (7.1). The PC lattices show significantly

higher critical loads compared to the BCC counterparts. For both BCC and PC lattices, the critical loads

associated with the first and second as well as the third and fourth eigenvalues are the same, respectively.

This also holds true for the overall characteristics of the corresponding eigenmodes, such as the wavelength.

However, small differences in shape can be observed. As shown in Figures 7.3, the eigenmodes of the BCC

(top) and PC (bottom) lattices are not aligned with a single global direction. They show displacements in
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Figure 7.3: Displacements of MPBCs of discrete BCC (top) and PC lattices (bottom) comprised of
N1xN2xN3 = 4x4x80 (first and third row) and N1xN2xN3 = 8x8x160 (second and fourth
row) base cells representing the first (first column), second (second column), third (third col-
umn), and fourth eigenmode (fourth column). MPBCs are located at X1 = X2 = L/2− l/2.

both directions perpendicular to the loading direction as indicated by the different amplitudes of the MPBCs

displacements U1 and U2. For the BCC lattice, this is more pronounced for N1xN2xN3 = 4x4x80 than for

N1xN2xN3 = 8x8x160 base cells. The PC lattice shows displacements in both directions independent of the

number of base cells comprising the lattice. The deflection angle in the 1-2-plane is about −45◦ for the first

and 45◦ for the second eigenmode, i.e., U1 ≈ −U2 and U1 ≈ U2, respectively, cf. Figure 7.3 (bottom).

Table 7.8: The extracted eigenvalues ηi of the buckling analyses of the discrete model for a reference load
of F ref

3 = −1N.

N1xN2xN3 η1(= η2) η3(= η4)

BCC 4x4x80 2.72 5.62

BCC 8x8x160 10.76 22.23

PC 4x4x80 32.26 35.71

PC 8x8x160 134.67 149.91
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Postbuckling behavior of BCC lattices

For the eigenmode-affine imperfections only the first eigenmode is used with an amplitude of 2% of L1(= L2).

The force-displacement curves of the two configurations of the BCC lattice are given in Figure 7.4. Considering

the lattice comprised of N1xN2xN3 = 4x4x80 base cells (left), the critical load is clearly overestimated by

both the CC and the MC model and cannot even be captured for a discretization of M = 2. Nevertheless,

the continuum models are able to successfully enter the postbuckling regime and to qualitatively capture

the stable postbuckling behavior of the lattice. For a lattice consisting of more base cells (right), i.e.,

N1xN2xN3 = 8x8x160, the MC model using a discretization of M = 2 is at least able to roughly estimate

the critical load with a deviation of about 30% compared to the discrete model. The stable postbuckling

behavior can be captured qualitatively well. For both lattices, the predictions of the CC model are slightly

better than the ones of the MC model.

The displacement and rotation fields of the MPBCs of the BCC lattices are investigated for two different load

levels, cf. Figure 7.5 for the lattice comprised of N1xN2xN3 = 4x4x80 and Figure 7.6 for the lattice comprised

of N1xN2xN3 = 8x8x160 base cells. The load levels correspond to the critical load of each individual model

(top) and to a displacement within the stable postbuckling regime (bottom). For the lattice comprised of

N1xN2xN3 = 4x4x80 base cells, the fields of the discrete and the MC models are in good qualitative agreement

for both load levels. In the stable postbuckling regime, the discretization of M = 2 yields fields that are also

quantitatively in good agreement with those of the discrete models. When considering N1xN2xN3 = 8x8x160

base cells comprising the lattice, the fields obtained by the MC model with M = 2 are in very good agreement

with the discrete model, with the exception of the displacement U2. The CC model also shows similar results

as those obtained from the other models, except for the rotation field, which cannot be provided by this

model.
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Figure 7.4: Force-displacement curves of the postbuckling analysis of BCC lattices comprised of
N1xN2xN3 = 4x4x80 (left) and N1xN2xN3 = 8x8x160 base cells (right). The thin solid lines
represent the trivial equilibrium paths of the discrete models.
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Figure 7.5: Displacements Ui and rotations ϕi of MPBCs of the BCC lattice with N1xN2xN3 = 4x4x80 base
cells of the discrete and the continuum model using discretizations of M = 1 and M = 2 for
loads corresponding approximately to the critical load of each model (top), i.e., U3 ≈ −1.2mm
for the discrete model, U3 ≈ −3.4mm for MC M = 1, U3 ≈ −1.8mm for MC M = 2, and
U3 ≈ −1.4mm for CC M = 2. The displacements and rotations in the stable postbuckling
regime are evaluated at U3 ≈ 4.3mm for all models (bottom). Results for MPBCs located at
X1 = X2 = L/2− l/2 = 1.5mm are shown.
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Figure 7.6: Displacements Ui and rotations ϕi of MPBCs of the BCC lattice with N1xN2xN3 = 8x8x160
base cells of the discrete and the continuum model using discretizations ofM = 1 andM = 2 for
loads corresponding approximately to the critical load of each model (top), i.e., U3 ≈ −2.6mm
for the discrete model, U3 ≈ −3.4mm for MC M = 1, U3 ≈ −3mm for MC M = 2, and
U3 ≈ −3.2mm for CC M = 2. The displacements and rotations in the stable postbuckling
regime are evaluated at U3 ≈ 8.5mm for all models (bottom). Results for MPBCs located at
X1 = X2 = L/2− l/2 = 3.5mm are shown.
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For the random-based imperfections, three different imperfections are used, which are denoted by ID1, ID2,

and ID3. The imperfection amplitudes for ID1 and ID3 are up to 10% of the radius r whereas ID2 shows

amplitudes up to 20% of r. Before discussing the postbuckling behavior of the models, the critical loads of the

corresponding discrete models are estimated based on buckling analyses, which are summarized in Table 7.9.

Contrary to the geometrically perfect lattice, the first and second eigenvalue of each of the three geometrically

imperfect counterparts are not equal, which is also true for the third and fourth eigenvalue. However, these

differences are small in magnitude and the differences compared to those obtained for the geometrically perfect

counterpart are not significant. The corresponding eigenmodes are displayed in Figure 7.7 showing the same

overall characteristics as the geometrically perfect counterparts, cf. Figure 7.3, e.g., the same wavelength.

However, the angular deviations in the 1-2-plane are different for each imperfection studied, which already

indicates that the imperfections strongly influence the deformation state in the postbuckling regime.

The force-displacement curves of all three random-based imperfect lattices are shown in Figure 7.8. The

critical loads for all lattices correspond to the first or second critical load, which hardly differ from each

other, cf. Table 7.9. To further study the postbuckling response, all three random-based imperfect lattices

are evaluated along the 3-direction at X1 = X2 = L1/2 − l/2 in terms of displacements and rotations, see

Table 7.9: The extracted eigenvalues ηi of the buckling analyses of the discrete model for a reference load
of F ref

3 = −1N and using random-based imperfections with ID denoting its identifier.

η1 η2 η3 η4

ID1 2.721 2.755 5.567 5.636

ID2 2.722 2.735 5.735 5.772

ID3 2.736 2.766 5.627 5.684
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Figure 7.7: Displacements of MPBCs of discrete BCC lattices comprised of N1xN2xN3 = 4x4x80 base
cells for random-based imperfections ID1 (first row), ID2 (second row), and ID3 (third row)
representing the first (first column), second (second column), third (third column), and fourth
eigenmode (fourth column). Results for MPBCs located at X1 = X2 = L/2− l/2 = 1.5mm are
shown.
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Figure 7.8: Force-displacement curves of the postbuckling analysis of BCC lattices comprised of
N1xN2xN3 = 4x4x80 base cells for different random-based imperfections, namely, ID1 (left),
ID2 (center), and ID3 (right). The thin solid lines represent the trivial equilibrium paths of the
discrete models.

Figure 7.9 for ID1, Figure 7.10 for ID2, and Figure 7.11 for ID3. The displacements and rotations are given

for two different loading states, namely, approximately at the corresponding critical load as well as at a

displacement load within the stable postbuckling regime. Note that for random-based imperfections, the CC

model is not considered for comparison.

For ID1, the deformation of the MC model approximately coincides with the first eigenmode of the perfect

lattice, cf. Figures 7.3 (top) and 7.9 (top). The eigenmodes of the imperfect discrete model do not coincide

with any of the eigenmodes extracted for the perfect (Figure 7.3) or for the imperfect lattice (Figure 7.7). The

deformation state of the imperfect discrete model shows a deflection angle of about −115◦ with respect to

the 1-axis in the 1-2-plane. However, the overall characteristics are the same. The differences may be caused

by local effects that can only be captured by the discrete model. It is expected that if the buckling analysis

is carried out with the imperfect lattice being preloaded close to the critical load, the same deformation will

be predicted. The same deviations are observed for the rotations as expected. The postbuckling responses of

both discrete and MC models are stable as displacements and rotations keep their overall characteristics also

for the higher load level, which has already been indicated by the force-displacement curve given in Figure 7.8

(left).

For ID2, both the displacements and the rotations of the discrete and MC model show the same characteristics

for both load levels with some deviations regarding the deflection angle. For the higher loading, the deviations

decrease and the deformations are in good agreement, cf. Figure 7.10 (bottom). The deformation shapes of

both models do not coincide with any of the eigenmodes displayed in Figure 7.7 (center). The deformations

of the discrete model clearly show in the opposite direction of the first eigenmode of the imperfect lattice.

Since the discrete and MC models show similar deformation states, the MC model also seems to be able to

partially capture local geometric changes before reaching the critical load, resulting in a different deformation

shape than predicted by the linear eigenvalue analysis of the unloaded structure.

For ID3, both the displacements and the rotations of the discrete and MC model are in good agreement for

both load levels, cf. Figure 7.11. The displacement U2 and the rotation ϕ1 are small in magnitude compared

to their in-plane counterparts U1 and ϕ2 and, hence, the differences between discrete and MC model can be

considered acceptable. The deformation shapes of both discrete and MC model approximately coincide with

the first eigenmode of the imperfect lattice.
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Figure 7.9: Imperfection ID1 - Displacements Ui and rotations ϕi of MPBCs of BCC lattice with
N1xN2xN3 = 4x4x80 base cells of the discrete and the MC model using a discretization
M = 2 for loads corresponding approximately to the critical load of each model (top), i.e.,
U3 ≈ −0.9mm for the discrete and U3 ≈ −1.4mm for MC M = 2 model. The displacements
and rotations in the stable postbuckling regime are evaluated at U3 ≈ 4mm for all models
(bottom). Results for MPBCs located at X1 = X2 = L/2− l/2 = 1.5mm are shown.
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Figure 7.10: Imperfection ID2 - Displacements Ui and rotations ϕi of MPBCs of BCC lattice with
N1xN2xN3 = 4x4x80 base cells of the discrete and the MC model using a discretization
M = 2 for loads corresponding approximately to the critical load of each model (top), i.e.,
U3 ≈ −0.9mm for the discrete and U3 ≈ −1.4mm for MC M = 2 model. The displacements
and rotations in the stable postbuckling regime are evaluated at U3 ≈ 4mm for all models
(bottom). Results of MPBCs located at X1 = X2 = L/2− l/2 = 1.5mm are shown.
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Figure 7.11: Imperfection ID3 - Displacements Ui and rotations ϕi of MPBCs of BCC lattice with
N1xN2xN3 = 4x4x80 base cells of the discrete and the MC model using a discretization
M = 2 for loads corresponding approximately to the critical load of each model (top), i.e.,
U3 ≈ −0.8mm for the discrete and U3 ≈ −1.3mm for MC M = 2 model. The displacements
and rotations in the stable postbuckling regime are evaluated at U3 ≈ 4mm for all models
(bottom). Results for MPBCs located at X1 = X2 = L/2− l/2 = 1.5mm are shown.
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Figure 7.12: Normalized displacement vectors in the 1-2-plane at X1 = X2 = L/2 − l/2 = 1.5mm, X3 =
L3/2−l/2 = 39.5mm evaluated approximately at the corresponding critical load of each model
indicate the directions of the deformations of ID1 (left), ID2 (center), and ID3 (right) for both
discrete and continuum models. The grey thin lines indicate the directions of the eigenmodes
of the imperfect discrete models based on the linear eigenvalue analyses.
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Figure 7.13: Contour of displacement magnitudes for loads that correspond approximately to the critical
load of each model of ID1 (left), ID2 (center), and ID3 (right) for both discrete (top) and
continuum models (bottom) with deformation scale factors of five.

For a better overview on the directions of the deformations of all models, the normalized displacement vectors

in the 1-2-plane at X1 = X2 = L/2 − l/2 = 1.5mm, X3 = L3/2 − l/2 = 39.5mm are shown in Figure 7.12

for ID1 (left), ID2 (center), and ID3 (right) for both discrete and continuum models. The normalized

displacement vectors have been evaluated for loads that correspond approximately to the critical load of



116 CHAPTER 7. GEOMETRICALLY NONLINEAR MICROPOLAR CONTINUUM

each model. Additionally, the normalized displacements of the imperfect discrete models based on the linear

eigenvalue analyses are given for comparison. The corresponding contour plots are shown in Figure 7.13.

Postbuckling behavior of PC lattices

The eigenmode-affine imperfections used for the PC lattices are only based on the first eigenmode with an

amplitude of about 4% of L1(= L2) for the discrete model and of 10% for the continuum models. For the

continuum models, higher amplitudes were found to be necessary for entering the postbuckling regime. This

is caused by the missing or reduced information available for the imperfections, which are only based on the

displacements from the MPBCs of the discrete lattice model.

The force-displacement curves of the two configurations of the PC lattice are given in Figure 7.14. For

N1xN2xN3 = 4x4x80 base cells comprising the lattice (left), the MC models for both discretizations over-

estimate the critical load of the discrete model by about 25%. The response of the models is almost the

same for both discretizations M = 1 and M = 2. Interestingly, the MC models are not only able to en-

ter the postbuckling regime once the critical load is reached, but also to capture the unstable postbuckling

response of the lattice, which is indicated by the negative slope of the curve. It is worth noting that the

convergence behavior for obtaining a solution for the discrete models is very sensitive to the imperfection

amplitude used, e.g., no converged solution for an imperfection of exactly 4% of L1(= L2) is obtained while

for 3.8% it is. Unfortunately, no converged solution is found for the discrete model of the lattice comprised of

N1xN2xN3 = 8x8x160 base cells (right). In contrast, the MC models show very good convergence behavior.

Note that for M = 2, the solution has been stopped manually due to time constraints. The critical load is

estimated quite well by the MC models with deviations of about 10% compared to the last solution obtained

for the discrete model. Comparing the MC models to their CC counterparts, they show a more compliant

response and are in better agreement with the results of the discrete models. Furthermore, the CC models

show convergence issues in the unstable postbuckling regime. For the N1xN2xN3 = 8x8x160 lattice and

using a discretization of M = 2, the CC model is not able to enter the postbuckling regime for the same

imperfection amplitude as used for its MC counterpart.
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Figure 7.14: Force-displacement curves of the postbuckling analysis of PC lattices comprised of
N1xN2xN3 = 4x4x80 (left) and N1xN2xN3 = 8x8x160 base cells (right). The thin solid
lines represent the trivial equilibrium paths of the discrete models.
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To further study the postbuckling behavior of the PC lattices, the displacements and rotations of the MPBCs

of the PC lattices are given over the height in 3-direction and are investigated for different load levels, cf.

Figure 7.15 for the lattice comprised of N1xN2xN3 = 4x4x80 base cells and Figure 7.17 for N1xN2xN3 =

8x8x160. The MPBCs are located at one of the center columns of the lattice, namely, at X1 = X2 = L/2−l/2.

For the lattice N1xN2xN3 = 4x4x80, two load levels are shown corresponding to the critical load of each

individual model (top) and to a displacement of U3 ≈ 1.6mm (bottom), where the latter belongs to the

unstable postbuckling behavior. At the critical load (top), the fields obtained by the MC model are in

qualitative agreement with those of the discrete counterpart, except for the rotation ϕ3, which is related to

torsion. The deformation shapes of the models are in agreement with the first eigenmode, cf. Figure 7.3,

which indicates that the procedure for applying the eigenmode-affine imperfections to the continuum models

works. In the unstable postbuckling regime, the fields of the continuum model and the discrete model are

starting to diverge qualitatively from each other, which can especially be seen for the displacements U1 and

U2. This means that at some point the mechanisms driving the unstable postbuckling behavior cannot be

captured anymore. These mechanisms seems to be mainly based on local instabilities at X3 ≈ L3/2 and close

to the boundaries at X3 ≈ 5l and X3 ≈ L3 − 5l, cf. Figure 7.15 (bottom) for displacements U1 and U2. The

MC model cannot capture such instabilities in the current form. From a continuum point of view, this is

related to the finite strain regime, where a fully nonlinear MC continuum model is necessary to account for

such instabilities. For the lattice materials investigated in this work, these strains are related to the effective

response of the lattice structure and are governed by large displacements or finite rotations of the underlying

microstructure rather than to material nonlinearities of the parent material. Interestingly, the rotations ϕ1

and ϕ2 can be partly captured by the continuum model in a qualitative manner. Note that for higher load

levels, the fields diverge further while keeping their overall characteristics shown in Figure 7.15 (bottom). This

is not explicitly shown for the sake of brevity. For the lattice N1xN2xN3 = 8x8x160, the displacements and

rotations of the MPBCs are only evaluated at the critical loads due to the convergence issues of the discrete

model at higher load levels. The MC models are in qualitative agreement with the discrete counterpart,

except for the rotation ϕ3. However, these differences can be considered negligible compared to the other

rotations. Again, the fields are already fully resolved for the coarse discretization M = 1. Interestingly, the

CC model using a discretization of M = 2 shows a deformation shape neither corresponding to the first nor

to the second eigenmode. For a better overview on the deformations, contour plots of the displacement and

rotation magnitudes are shown in Figure 7.16.
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Figure 7.15: Displacements Ui and rotations ϕi of MPBCs of PC lattice withN1xN2xN3 = 4x4x80 base cells
of the discrete and the continuum model using discretizations of M = 1 and M = 2 for loads
corresponding approximately to the critical load of each model (top), i.e., U3 ≈ −0.35mm
for the discrete model, U3 ≈ −0.46mm for MC M = 1, U3 ≈ −0.44mm for MC M = 2,
U3 ≈ −0.74mm for CC M = 1, and U3 ≈ −0.5mm for CC M = 2. The displacements and
rotations in the postbuckling regime are evaluated at U3 ≈ 0.9mm for discrete and MC models
(bottom). Results for MPBCs located at X1 = X2 = L/2− l/2 = 1.5mm are shown.
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Figure 7.16: Contours of displacement magnitudes U (first and second row) and rotation magnitudes ϕ
(third and fourth row) of the PC lattice with N1xN2xN3 = 4x4x80 base cells. Results of the
discrete (left) and the MC models using discretizations of M = 1 (center) and M = 2 (right)
are shown. The displacement and rotation magnitudes are evaluated at U3 ≈ −0.9mm (first
and third row) and U3 ≈ −4mm (second and fourth row). Note that the rotation magnitudes
of the MC models are scaled to the rotation magnitude of the discrete models.
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Figure 7.17: Displacements Ui and rotations ϕi of MPBCs of PC lattice with N1xN2xN3 = 8x8x160 base
cells of the discrete and the continuum model using discretizations of M = 1 and M = 2
corresponding to the critical load of each model, i.e., U3 ≈ −0.57mm for the discrete model,
U3 ≈ −0.75mm for MC M = 1 and M = 1, and U3 ≈ −1mm for CC M = 1 and M = 2.
Results for MPBCs located at X1 = X2 = L/2− l/2 = 3.5mm are shown.

Computation time

The computational performance of all the models is of further interest and, therefore, the computation time

and the number of user defined nodes of each model are summarized in Table 7.10. For practical reasons,

the number of user defined nodes is given instead of the DOFs of the model, which provides a good estimate

of the number of DOFs anyway. In contrast to the six DOFs per node of the discrete and the MC models,

the CC model has only three DOFs per node. The basis for the evaluation are the postbuckling simulations

using eigenmode-affine imperfections of both BCC and PC lattices. All simulations are conducted on a single

core (1 CPU) of a standard workstation.

For the BCC lattice 4x4x80, the CC model shows a lower computation time than the corresponding discrete

model by a factor ≈ 2.8 while for the BCC lattice 8x8x160 it shows higher computation times by a factor

of ≈ 2. For the PC lattice, no convergence is achieved with the CC model. In contrast, the MC model

shows good convergence behavior for both lattice types. However, the MC models are outperformed by the

corresponding discrete models for all the lattices studied even though they show a smaller number of nodes,

i.e., fewer DOFs. For coarse discretizations of the MC model, i.e., MC M = 1, the differences are acceptable

while for fine discretizations, i.e., MC M = 2, the differences are significant, which is a result of the large

number of nodes used for the MC model.

Furthermore, the computation times of simulations in the prebuckling regime are studied using a predefined

number of increments. The basis for the evaluation is the BCC 8x8x160 lattice using the discrete, MC M = 1,

MC M = 2, and CC M = 2 models, where the number of nodes can be found in Table 7.10. Additionally,

the symmetric equation solution procedure is used for the MC models. Simulations are conducted using a
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Table 7.10: Number of user defined nodes and computation time of each model for the postbuckling simu-
lations based on the eigenmode-affine imperfections, where a single core (1 CPU) of a standard
workstation is used. The superscript ∗ denotes manually aborted jobs, / indicates that no
convergence of the job has been achieved, and - means that no job has been conducted.

discrete MC MC CC CC discrete MC MC CC CC

M = 1 M = 2 M = 1 M = 2 M = 1 M = 2 M = 1 M = 2

user defined nodes CPU time in s

PC 4x4x80 21137 2026 13042 2026 13042 580 783 7085 / /

PC 8x8x160 105025 13042 92770 13042 92770 / 7819 ∗141920 / /

BCC 4x4x80 23786 2026 13042 - 13041 470 531 5053 - 167

BCC 8x8x160 187122 13042 92770 - 92770 1510 5216 58304 - 2725

Table 7.11: Computation times in s based on BCC lattice comprised of 8x8x160 base cells in the prebuckling
regime. For the MC model, both the unsymmetric and symmetric equation solution techniques
of ABAQUS are used, with the latter denoted by sym.

discrete MC MC MC sym MC sym CC

M = 1 M = 2 M = 1 M = 2 M = 2

CPU time in total 218 398 5017 336 3834 443

number of iterations in total 8 6 6 6 6 11

CPU time per iteration ≈ 8 ≈ 11 ≈ 422 ≈ 5 ≈ 208 ≈ 28

CPU time - solver ≈ 64 ≈ 66 ≈ 2532 ≈ 30 ≈ 1248 ≈ 308

CPU time - not solver related ≈ 154 ≈ 332 ≈ 2485 ≈ 306 ≈ 2586 ≈ 135

displacement load of −0.5mm, which is applied in five equally large increments. The resulting total CPU

times, the total numbers of iterations required for convergence, and the CPU times needed for solving the

system of equations of the models are summarized in Table 7.11.

For the total CPU times, the discrete model outperforms the MC models by a factor of 2 to 23 depending

on the discretization and the CC model with M = 2 by a factor of 2. The comparison of the total numbers

of iterations required for convergence within the allowable (five) increments shows that the MC models show

the best convergence behavior. The CPU times per iteration needed to solve the system of equations are

similar for the discrete and the coarse MC models. Note that the symmetric solution procedure requires

about half the computation time of the unsymmetric one. With respect to the number of DOFs, the CPU

times per iteration of the discrete model for solving the system of equations is about 84 times lower than

that of the fine MC model (unsymmetric). Not only solving the system of equations is time-consuming,

but also the procedure for setting up this system, cf. fourth and fifth rows in Table 7.11. Note that this

time is independent of the solution procedure, since the full stiffness matrix is determined within the UEL

subroutine. This is particularly noticeable in the case of the coarse models. This is in contrast to the CC

model, where more time is required to solve the system of equations than to build the system.

Summarized, the advantage of the MC models is more in modeling, such as geometry preparation and

meshing, than in computation time. Since the MC models show smaller numbers of nodes compared to their

discrete counterparts even for the fine discretization and the time spent for setting up the system of equations
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is quite time-consuming, it is worth optimizing the FEM implementation presented in Section 4.1.2 to reduce

the overall computation time. This is beyond the scope of the present thesis.

7.2.3 Summary

Simulations of various lattice beams of PC and BCC type are conducted to investigate the capabilities

of the geometrically nonlinear micropolar continuum element in estimating critical loads and predicting the

postbuckling behavior. Discrete lattice models serve as reference while CET continuum (CC) models are used

to evaluate advantages and disadvantages of micropolar modeling. Linear eigenvalue analyses of the discrete

models serve as the basis for eigenmode-affine imperfections, which are used to access the postbuckling regime.

A strategy is presented for making use of these imperfections for the continuum models. Motivated by the

imperfections present in additively manufactured lattices, three random-based geometric imperfections are

further used to investigate the capabilities of the micropolar model to account for the postbuckling behavior

of BCC type lattices in the presence of such imperfections.

The critical loads of the BCC type lattices studied can only be roughly estimated by the micropolar model.

The predicted mechanical response is too stiff and shows deviations of about 30% compared to the discrete

reference model for using element sizes two times smaller than the characteristic length of the lattice, i.e.,

he = l/2. The CC model shows a slightly more compliant response than the MC model. The deviations

between micropolar and discrete model are smaller for the PC type lattices, which are about 10% for both

discretizations used, i.e., he = l and he = l/2. Contrary to the BCC type lattice, the CC model shows a

stiffer response than the MC model.

The presented strategy for applying eigenmode-affine imperfections to the continuum models is successfully

employed. All continuum models are able to access the postbuckling regime and show the expected deforma-

tions, which are governed by the first eigenmode. The stable postbuckling response of the BCC type lattices

is qualitatively captured by the micropolar models in terms of both displacement and rotation fields. This is

independent of the type of imperfection used. Interestingly, for two out of three random-based imperfections,

the deformations of discrete and micropolar models do not coincide with the corresponding eigenmodes pre-

dicted by the linear eigenvalue analyses of the discrete models. Comparing the deformations predicted by the

models of the imperfect lattice against each other it is found that for one random-based imperfection they

do not coincide except for the wavelength whereas for the other random-based imperfections approximately

the same deformations are obtained. The case where discrete and MC models show the same deformations

but do not coincide with the corresponding first eigenmode indicates that the MC model seems to be able

to partially capture local geometric changes before the critical load is reached, resulting in a different defor-

mation shape than predicted by the linear eigenvalue analysis of the unloaded structure. It is remarkable

that even the unstable postbuckling response of the PC type lattices can be captured to a certain extent. A

comparison of the deformations of the models shows that some of the crucial characteristics that cause the

unstable behavior can be captured. This is not the case for deformations far into the postbuckling regime,

which is indicated by diverging displacement and rotation fields between micropolar and discrete models. It

reveals that the micropolar continuum is not able to account for strong local instabilities. To capture these

instabilities, a nonlinear MC model allowing to account for the finite strain regime must be considered. For

the CET continuum, convergence issues occur at loads beyond the critical load, and it is not able to provide

information about the unstable postbuckling behavior of the PC type lattice. In terms of computational

performance, the current FEM implementation of the MC model is clearly outperformed by the discrete and

MC model, which gives rise for optimization in future work.
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In a nutshell, it is shown that the micropolar continuum can be successfully used to study the postbuckling

behavior of lattice structures. With improvements in the implementation, the costly computation times of the

MC models can be reduced, which makes the MC models advantageous over discrete models when considering

the simpler geometry preparation and meshing. While further studies are necessary to identify the limits for

their usage to ensure the reliability required for any engineering application, the current contribution provides

evidence that the micropolar continuum offers the possibility of replacing discrete models for post-buckling

prediction of lattice structures with improvements in future work.
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Chapter 8

Summary

Lattice materials are becoming increasingly important in lightweight design, as advancing additive manufac-

turing techniques offer the opportunity to manufacture them in such a way that they meet desired properties

while maintaining a low weight. To use them in engineering applications, reliable predictions of the mechani-

cal response are essential for saving costs and time. In particular, continuum modeling of lattice materials is

an ongoing trend towards numerical efficiency and time saving in model preparation. Reliability requires that

the deformation mechanisms are properly captured by the models. Among the numerous failure mechanisms

that may occur in lattice materials, this work focuses on buckling, which plays an important role in such

materials. The micropolar continuum theory is a promising modeling approach, which possesses an internal

length scale allowing to describe the required mechanisms, and is employed in this work to study 3D lattice

materials.

To study 3D lattices in the context of micropolar continuum modeling, the corresponding micropolar elastic

constants for the constitutive relations are determined based on the energy-based homogenization method

presented in [10, 53]. This method yields two different sets of micropolar elastic constants for the same

lattice type based on retaining (negative constants) or neglecting (positive constants) second order terms

in the Taylor series expansion of the kinematic fields during the derivation. This has caused an ongoing

debate in the literature about the validity of the method in general. Despite the controversy, it has been

applied in various works using one of the two sets of constants with no intention of contributing to the

discussion. To add some new flavor to the discussion and, additionally, to decide which set is used for the 3D

lattices, the mechanical response of 2D lattices predicted by using the positive and the negative constants

for the very same lattice are studied based on numerical simulations by means of the FEM. Various types of

lattices showing different configurations are subjected to various load cases. The predictive capabilities of the

models are evaluated by the comparison with discrete models in terms of strain energies and rotation fields.

Special focus is set on two FEM parameters of the continuum model, namely, the element size and the order

of interpolation function. The 2D linear micropolar continuum is implemented in NGSolve and as a user

element in ABAQUS. It is shown that the FEM parameters of the continuum model and the characteristic

length of the lattice must be considered as two competing length scales when negative constants are used.

Consequently, this must be taken into account in the modeling. Therefore, based on the evaluation of the

strain energies and the rotation fields, a condition is provided giving a rough estimate for the element size to

be used in conjunction with the order of the interpolation functions. In contrast, no constraints are observed

for positive constants as long as a proper discretization is ensured to resolve the kinematic fields, as is also

required for classical continuum modeling.
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Based on the findings of the numerical study carried out with 2D lattices, the positive micropolar elastic

constants of 3D lattices are derived, namely, of the PC, the BCC, and the BCCCP lattice. To the best of

the author’s knowledge, these constants have not been reported in the literature before. To evaluate these

constants, numerical simulations by means of the FEM are conducted, where the mechanical response of

the continuum models is compared with the corresponding discrete models in terms of strain energy and

kinematic fields. For this purpose, PC and BCC-type lattices subjected to simple shear and torsion serve

as basis. The 3D linear micropolar continuum model is implemented in ABAQUS as a user element. It is

shown that the model is able to capture the mechanical response of both PC and BCC lattices quite well for

using elements smaller than the corresponding characteristic length of the lattice. For larger elements, this

strongly depends on the type of lattice in combination with the load case studied.

For studying slender lattice beams undergoing large displacements and rotations under global compressive

loading, geometrically nonlinear micropolar continuum models are required to capture the deformations.

Therefore, the model presented in [8] is implemented in ABAQUS as a user element with some modifications

based on [44]. The implementation is successfully verified against benchmark examples taken from literature,

where linear isotropic material behavior is considered. Within the scope of the present thesis, it is investigated

to which extent the model is able to estimate critical loads and predict the postbuckling behavior of 3D lattice

materials remaining within the linear strain regime. To the best of the author’s knowledge, such investigations

have not yet been presented in the literature. The basis for evaluation are simulations of various lattice beams

of PC and BCC type. For the anisotropic material behavior of the lattice materials, the previously derived

micropolar constants are used. Discrete lattice models serve as reference while CET continuum models are

used to evaluate advantages and disadvantages of micropolar modeling. Linear eigenvalue analyses of the

discrete models serve as the basis for eigenmode-affine imperfections, which are used to access the postbuckling

regime. A strategy is presented for making use of these imperfections for the continuum models. Motivated

by the imperfections present in additive manufactured lattices, random-based geometric imperfections are

additionally used to investigate the capabilities of the micropolar model to account for the postbuckling

behavior of BCC type lattices in the presence of such imperfections. It is shown that the micropolar continuum

can be successfully employed to study the postbuckling behavior of lattice structures. The localization of the

deformation that determines the overall response can be captured to some extent as long as it is small. Even

though the computation time for the micropolar model in the present stage is higher than for the discrete

models, the time saved in model preparation may compensate for this drawback. While further studies are

necessary to identify the limits for the usage of micropolar models to ensure the reliability required for any

engineering application, the present contribution provides evidence that the micropolar continuum offers the

possibility of replacing discrete models for post-buckling predictions of lattice structures.
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Appendix A

Mathematical operators

The Levi-Civita symbol or the permutation tensor is defined as

ϵ~ = ϵijk =

����
1 i, j, k = 1, 2, 3; 2, 3, 1; 3, 1, 2

−1 i, j, k = 3, 2, 1; 1, 3, 2; 2, 1, 3

0 i = j, i = k, j = k

, (A.1)

with ϵijk = ϵjki = ϵkij , ϵkji = ϵjik = ϵikj , and ϵijk = −ϵkji.

The Kronecker-Delta symbol is defined as follows

δij = ei · ej =
 1 i = j

0 i ̸= j
. (A.2)

where the following holds true, δijδjk = δik.

The following mathematical operators between tensors of various order are given in tensor notation and the

corresponding index notation. The inner product between two first order tensors reads

a · b = c (= aTb) , (A.3)

aibi = c .

The cross or vector product between two first order tensors reads

a× b = c (= −b× a) , (A.4)

ϵijkaibj = ck ,[
a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

] =

[
c1

c2

c3

] .
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The dyadic product between two first order tensors reads

a⊗ b = C~ , (A.5)

aibj = Cij .

The product between second and first order tensors, i.e., matrix-vector multiplication, reads

A~b = c ̸= bTA~ , (A.6)

Aijbj = ci ,

aTB~ = cT , (A.7)

biAij = cj .

The product between two second order tensors, i.e., matrix-matrix multiplication, reads

A~B~ = C~ ̸= B~A~ , (A.8)

AikBkj = Cij .

The double contraction or double inner product between two second order tensors reads

A~ : B~ = c , (A.9)

AijBij = c .

The inner product of second and third order tensors reads

C~ = A~ ·B~ ≜ Cijk = AilBljk . (A.10)

The double contraction between third and second order tensors is defined as

c = A~ : B~ ≜ ci = AijkBjk . (A.11)

The double contraction between two third order tensors reads

C~ = A~ : B~ ≜ Cij = AilkBlkj . (A.12)

The double contraction between fourth and second order tensors reads

C~ = A~~ : B~ ≜ Cij = AijklBkl . (A.13)

In general, there exist a left and right cross or vector product between a second order tensor, A~ = a⊗b, and

a vector, c, which are commonly defined as

c×A~ = c× (a⊗ b) = (c× a)⊗ b = ckAijϵkilel ⊗ ej , (A.14)

A~ × c = (a⊗ b)× c = a⊗ (b× c) = ckAijϵjklei ⊗ el , (A.15)
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respectively, see [2]. The following properties hold

c×A~ = −(A~T × c)T , (A.16)

A~ × c = −(c×A~T)T , (A.17)

A~ × c ̸= c×A~ . (A.18)

The difference between left and right product is superseded when using the identity tensor, A~ = I~, which
results in the relation I~×c = c×I~, e.g., [80]. This also applies to the skew-symmetric matrix, W~ , of the axial

vector, ϕ, which can be expressed as W~ = ϕ × I~ = I~× ϕ. This also follows from the relation W~ = −W~ T

and equating the coefficients of Eqs. (A.16) and (A.17). It reads as follows

W~ = ϕ× I~= I~× ϕ = sk(ϕ) =

[
0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

] , (A.19)

Wij = −ϵijkϕk = ϵjikϕk ,

where sk(·) takes an axial vector and gives the corresponding skew-symmetric matrix. In order to obtain the

axial vector of a skew-symmetric tensor, the following mathematical operator is defined

w = axl(W~ ) = −1

2
ϵ~ : W~ , (A.20)

wi =
1

2
ϵijkWkj = −1

2
ϵijkWjk ,[

w1

w2

w3

] = axl(

[
0 −w3 w2

w3 0 −w1

−w2 w1 0

]) ,

where the double contraction is given in Eq. (A.11). In [28], a slightly different operator is defined, which

reads

a = (A~ )× = (Amnem ⊗ en)× ≜ Amnem × en , (A.21)

ai = ϵijkAjk .

It follows that the axial vector of a skew-symmetric second order tensor can be given optionally to Eq. (A.20)

as

w = −1

2
(W~ )× . (A.22)

Note that axl(W~ ) = −1/2(W~ )×. The skew-symmetric part of a second order tensor is obtained by introducing

the following function

skew(A~ ) = 1

2
(A~ −A~T) . (A.23)

The nabla operators with respect to the reference or current configuration are defined as

∇x =
∂

∂xi
ei = ∇iei = ,i ei , ∇X =

∂

∂XI
EI = ∇IEI = ,I EI , (A.24)
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respectively. For the transformation of the gradients with respect to the reference and current configurations,

e.g., [44], the transformation reads as follows

∇X = F~T∇x ↔ ∇x = F~−T∇X . (A.25)

The divergences of first order tensors read

DivR(a) = a ·∇X = ai∇i = c ,

divR(a) = a ·∇x = ai∇i = c ,

DivL(a) = ∇X · a = ai∇i = c (= DivR(a)) ,

divL(a) = ∇x · a = ai∇i = c (= divR(a)) .

(A.26)

The gradients of first order tensors read

GradR(a) = a⊗∇X = ai∇j = Cij ,

gradR(a) = a⊗∇x = ai∇j = Cij ,

GradL(a) = ∇X ⊗ a = ∇iaj = Cij (= GradR(a)
T) ,

gradL(a) = ∇x ⊗ a = ∇iaj = Cij (= gradR(a)
T) .

(A.27)

The divergences of second order tensors read

DivR(A~ ) = A~∇X = Aij∇j = bi ,

divR(A~ ) = A~∇x = Aij∇j = bi ,

DivL(A~ ) = ∇XA~ = Aij∇i = bj ( ̸= DivR(A~T)) ,

divL(A~ ) = ∇xA~ = Aij∇i = bj ( ̸= divR(A~T)) .

(A.28)

The gradients of second order tensors read

GradR(A~ ) = A~ ⊗∇X = Aij∇k = Cijk ,

gradR(A~ ) = A~ ⊗∇x = Aij∇k = Cijk ,

GradL(A~ ) = ∇X ⊗A~ = ∇iAjk = Cijk ,

gradL(A~ ) = ∇x ⊗A~ = ∇iAjk = Cijk ,

(A.29)
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e.g.

GradR(A~ ) = A~ ⊗∇X = Aij∇k = Cijk = C~ =

[

[∂A11

∂X1

∂A11

∂X2
∂A12

∂X1

∂A12

∂X2

]
[∂A21

∂X1

∂A21

∂X1
∂A22

∂X1

∂A22

∂X2

]

]
,

GradL(A~ ) = ∇X ⊗A~ = ∇iAjk = Cijk = C~ =

[

[∂A11

∂X1

∂A12

∂X1
∂A21

∂X1

∂A22

∂X1

]
[∂A11

∂X2

∂A12

∂X2
∂A21

∂X2

∂A22

∂X2

]

]
.

The divergence identity reads

divR(A~b) = divR(A~ )b+A~ : gradR(b) . (A.30)

The divergence theorem or Gaussian theorem given in [2] reads∫
V

divR(A~ ) dV =

∫
S

A~n dS ,

∫
V

Aij,j dV =

∫
S

Aijnj dS , (A.31)

where V is the volume of the integration domain, A~ a second order tensor, S a surface domain, and n the

corresponding surface normal.
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Appendix B

Vector-matrix representation

The vector-matrix representation of non-symmetric second and fourth order tensors follows the definition

used in [27], where the components are arranged in the order given in Eq. (2.62). Consequently, second order

tensors read

A~ = Aij ⇒ [A~ ] = [A11 A22 A33 A23 A31 A12 A32 A13 A21]
T

and fourth order tensors follow as

A~~ = Aijkl ⇒ [A~~ ] =

[

A1111 A1122 A1133 A1123 A1131 A1112 A1132 A1113 A1121

A2211 A2222 A2233 A2223 A2231 A2212 A2232 A2213 A2221

A3311 A3322 A3333 A3323 A3331 A3312 A3332 A3313 A3321

A2311 A2322 A2333 A2323 A2331 A2312 A2332 A2313 A2321

A3111 A3122 A3133 A3123 A3131 A3112 A3132 A3113 A3121

A1211 A1222 A1233 A1223 A1231 A1212 A1232 A1213 A1221

A3211 A3222 A3233 A3223 A3231 A3212 A3232 A3213 A3221

A1311 A1322 A1333 A1323 A1331 A1312 A1332 A1313 A1321

A2111 A2122 A2133 A2123 A2131 A2112 A2132 A2113 A2121

]

,

where the brackets indicate the vector-matrix representation of the corresponding tensor.

In [27], the following material symmetries of the fourth order elasticity tensors in vector-matrix representation

for the micropolar continuum are given. For the present thesis, the most important symmetries are outlined.
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A representative of the elasticity tensors of the orthotropic material, which shows 30 independent MECs,

reads

[A~~ ] =

[

A1111 A1122 A1133 0 0 0 0 0 0

A2222 A2233 0 0 0 0 0 0

A3333 0 0 0 0 0 0

A2323 0 0 A2332 0 0

A3131 0 0 A3113 0

A1212 0 A1221

sym A3232 0 0

A1313 0

A2121

]

. (B.1)

For materials showing cubic symmetry, eight independent MECs are left and the representative elasticity

tensor reads

[A~~ ] =

[

A1111 A1122 A1122 0 0 0 0 0 0

A1111 A1122 0 0 0 0 0 0

A1111 0 0 0 0 0 0

A1212 0 0 A1221 0 0

A1212 0 0 A1221 0

A1212 0 A1221

sym A1212 0 0

A1212 0

A1212

]

. (B.2)
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Appendix C

Local beam stiffness matrix

For the homogenization method in Chapter 3, the stiffness matrix of the beam element with respect to its

local coordinate system reads

[k~(e)
local] =

[

(EsA)
l 0 0 0 0 0

0 12(EsIm)
l3 0 0 0 6(EsIm)

l2

0 0 12(EsIn)
l3 0 −6(EsIn)

l2 0

0 0 0 (GsIt)
l 0 0

0 0 −6(EsIn)
l2 0 4(EsIn)

l 0

0 6(EsIm)
l2 0 0 0 4(EsIm)

l

−(EsA)
l 0 0 0 0 0

0 −12(EsIm)
l3 0 0 0 −6(EsIm)

l2

0 0 −12(EsIn)
l3 0 6(EsIn)

l2 0

0 0 0 −(GsIt)
l 0 0

0 0 −6(EsIn)
l2 0 2(EsIn)

l 0

0 6(EsIm)
l2 0 0 0 2(EsIm)

l
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−(EsA)
l 0 0 0 0 0

0 −12(EsIm)
l3 0 0 0 6(EsIm)

l2

0 0 −12(EsIn)
l3 0 −6(EsIn)

l2 0

0 0 0 −(GsIt)
l 0 0

0 0 6(EsIn)
l2 0 2(EsIn)

l 0

0 −6(EsIm)
l2 0 0 0 2(EsIm)

l

(EsA)
l 0 0 0 0 0

0 12(EsIm)
l3 0 0 0 −6(EsIm)

l2

0 0 12(EsIn)
l3 0 6(EsIn)

l2 0

0 0 0 (GsIt)
l 0 0

0 0 6(EsIn)
l2 0 4(EsIn)

l 0

0 −6(EsIm)
l2 0 0 0 4(EsIm)

l

]

. (C.1)

The corresponding vector of nodal kinematics with respect to the local coordinate system reads

[U
(e)
local] = [UIt, UIn, UIm,ΦIt,ΦIn,ΦIm, UJt, UJn, UJm,ΦJt,ΦJn,ΦJm]

T , (C.2)

where nodal displacements and rotations are denoted by UI and ΦI , respectively, with the local axes denoted

by t, n, and m, see Figure 3.1. The stiffness quantities of the beam for stretching along the t-axis, bending

about the m-axis and the n-axis, as well as torsion about the t-axis are referred to as, (EsA), (EsIm), (EsIn),

and (GsIt), respectively. The length of the beam is denoted by l, its cross-section is referred to as A, and its

parent material parameters Es and Gs denote the Young’s and shear modulus, respectively.

The transformation matrix (from local to global) for the lattice members, to be used in conjunction with

Eq. (3.6) or (3.7) in order to determine the strain energy density of the base cell given in Eq. (3.10), reads

[T~ (e)
r ] =

[

t1 n1 m1 0 0 0 0 0 0 0 0 0

t2 n2 m2 0 0 0 0 0 0 0 0 0

t3 n3 m3 0 0 0 0 0 0 0 0 0

0 0 0 t1 n1 m1 0 0 0 0 0 0

0 0 0 t2 n2 m2 0 0 0 0 0 0

0 0 0 t3 n3 m3 0 0 0 0 0 0

0 0 0 0 0 0 t1 n1 m1 0 0 0

0 0 0 0 0 0 t2 n2 m2 0 0 0

0 0 0 0 0 0 t3 n3 m3 0 0 0

0 0 0 0 0 0 0 0 0 t1 n1 m1

0 0 0 0 0 0 0 0 0 t2 n2 m2

0 0 0 0 0 0 0 0 0 t3 n3 m3

]

, (C.3)

where et = [t1, t2, t3]
T, en = [n1, n2, n3]

T, and em = et × en = [m1,m2,m3]
T, cf., e.g., Figure 3.2. As an

example, for the lattice member OB of the PO lattice, the local base vectors are et = [0, 1, 0]T, en = [0, 0, 1]T,

and em = et × en = [1, 0, 0]T, while for the lattice member OAtop of the BCC lattice, the local base vectors

are et = [
√
3/3,

√
3/3,

√
3/3]T, en = [−√

6/6,−√
6/6,

√
6/3]T, and em = et × en = [

√
2/2,−√

2/2, 0]T.
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Appendix D

Micropolar elastic constants of

rectangular, 45◦ rotated square, and

triangular lattices

For the sake of completeness, the MECs of the 2D rectangular and triangular lattice under the plane strain

assumption derived in [53] are outlined. Therein, the stress measures are based on LSD and the strain

measures are obtained by using gradients applied from the left resulting in elasticity tensors according to

LSD. Additionally, the MECs of the 45◦ rotated square lattice are determined based on the rectangular

lattice and an appropriate rotation. Note that two different sets of MECs are obtained depending on the

assumptions made during the derivation, cf. Chapter 3.

The rectangular lattice is composed of four lattice members OK with extremity nodes, K ∈ {A,B,C,D},
connected at the center, O, of the base cell as depicted in Figure D.1 (left). For the rectangular lattice, the

MECs read [53]

A1111 =
E1l1
l2

(= D11) , A2222 =
E2l2
l1

(= D22) ,

A1212 =
12k1
l1l2

(= D33) , A2121 =
12k2
l1l2

(= D44) ,

B1313 = −2k1l1
l2

or
4k1l1
l2, ,, ,

Dneg
55 or Dpos

55

(= D55) , B2323 = −2k2l2
l1

or
4k2l2
l1, ,, ,

Dneg
66 or Dpos

66

(= D66) ,

(D.1)

with Ei =
Et

li
, ki =

Et3

12li
for i = 1, 2, and

E =
Es

(1− ν2s )
, (D.2)

where Es and νs denote the Young’s modulus and the Poisson ratio of the parent material, respectively. The

length of each beam is denoted by li and the cell wall thickness is t, which is assumed to be the same for

all lattice members and constant along the length of each beam. The Dij denote the components of the

elasticity matrix given in Eq. (2.63). To obtain the MECs of the square lattice, the length of each beam is

set to l, i.e., l1 = l2 = l. Note that the out-of-plane thickness with respect to the plane strain assumption

has been defined as h = 1.
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The MECs of the 45◦ rotated square lattice can be obtained either via rotation of the elasticity tensors of

the corresponding square lattice with a length of l for the lattice members, cf. Eq. (2.76), or directly via

Eq. (3.3). To obtain the same MECs via the direct derivation as via the rotation, the same length, namely

l, must be used for the lattice members, the volume of the base cell must show Vbc = Abch = (l
√
2)2 with

h = 1, and the full energy contribution of each lattice member must be considered. Full energy contribution

means that no prefactor of 1/2 needs to be considered in Eq. (3.3) as required for the rectangular lattice

shown in [53], cf. Figure D.1 (center). The two different sets of MECs obtained read

A1111 =
El

2
+

6kl
l2

(= D11) , A1122 =
El

2
− 6kl

l2
(= D12) ,

A2211 =
El

2
− 6kl

l2
(= D21) , A2222 =

El

2
+

6kl
l2

(= D22) ,

A1212 =
El

2
+

6kl
l2

(= D33) , A1221 =
El

2
− 6kl

l2
(= D34) ,

A2112 =
El

2
− 6kl

l2
(= D43) , A2121 =

El

2
+

6kl
l2

(= D44) ,

B1313 = −2kl or 4kl, ,, ,
Dneg

55 or Dpos
55

(= D55) , B2323 = −2kl or 4kl, ,, ,
Dneg

66 or Dpos
66

(= D66) ,

(D.3)

where El =
Et

l
and kl =

Et3

12l
with E as given in Eq. (D.2).

The triangular lattice is composed of six lattice members OK with extremity nodes, K ∈ {A,B,C,D,E,F},
connected at the center, O, of the base cell as depicted in Figure D.1 (right). The two different sets of MECs

read [53]

A1111 =

√
3

4l2
(3Ell

2 + 12kl) (= D11) , A1122 =

√
3

4l2
(Ell

2 − 12kl) (= D12) ,

A2211 = A1122 (= D21) , A2222 = A1111 (= D22) ,

A1212 =

√
3

4l2
(Ell

2 + 36kl) (= D33) , A1221 = A1122 (= D34) ,

A2112 = A1122 (= D43) , A2121 = A1212 (= D44) ,

B1313 = −2
√
3kl or 4

√
3kl, ,, ,

Dneg
55 or Dpos

55

(= D55) , B2323 = −2
√
3kl or 4

√
3kl, ,, ,

Dneg
66 or Dpos

66

(= D66) ,

(D.4)

Figure D.1: Rectangular (left), 45◦ rotated square (center), and triangular lattice (right) with their corre-
sponding base cells.
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Appendix E

Comparison of micropolar elastic

constants of primitive orthorhombic

3D and rectangular 2D lattice

A comparison between the MECs derived for the primitive orthorhombic lattice and those derived for the 2D

rectangular lattice in [53] is aimed for. Therefore, various components of the fourth order elasticity tensors

with respect to the in-plane directions e1 and e2 are compared to each other.

For the comparison, the 2D lattice needs to be considered under plane stress assumption instead of plane

strain, i.e., E = Es, see [53]. The components A1111 of the 2D lattice considering the plane stress assumption

and the 3D lattice are given as

A2D
1111 =

Est

l2
, (E.1)

A3D
1111 =

A1Es

l2l3
, (E.2)

respectively. The comparison aims to show that

A3D
1111 → A2D

1111 , (E.3)

where the 3D lattice needs to be geometrically reduced. The cross-section A1 of the corresponding 3D lattice

member is determined by its thicknesses in 2- and 3-directions, i.e., A1 = t2t3. The out-of-plane thickness

for the 3D lattice with respect to the plane stress assumption follows from the geometrical dimensions in 3-

direction, t3 = l3 → h, which is considered to be 1, i.e., h = 1. Furthermore, considering constant thicknesses,

i.e., t2 = t3 = t, leads to

A3D
1111 = A2D

1111 =
Est

l2
. (E.4)
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The components A1212 and B1313 for the 2D and 3D lattice are given as

A2D
1212 =

Eh3

l21l2
and A3D

1212 =
12EIn1
l21l2l3

, (E.5)

B2D
1313 =

4Eh3

12l2
and B3D

1313 =
4EIn1
l2l3

, (E.6)

respectively, where the area moment of inertia is given as In1 = t32t3/12. Considering t2 = t as well as

t3 = l3 → h it follows that A3D
1212 = A2D

1212 and B3D
1313 = B2D

1313.

All the other components Aijkl for i, j, k, l = {1, 2} and Bijkl for i, k = {1, 2} and j, l = {3} can be compared

analogously.
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Appendix F

ABAQUS user elements

F.1 Geometrically nonlinear element in 3D

The interpolation or shape functions for the isoparametric hexahedral element (e) in the element parent space

are given as

N
(e)
1 =

1

8
(1− ξ)(1− η)(1− ζ) , N

(e)
2 =

1

8
(1 + ξ)(1− η)(1− ζ) ,

N
(e)
3 =

1

8
(1 + ξ)(1 + η)(1− ζ) , N

(e)
4 =

1

8
(1− ξ)(1 + η)(1− ζ) ,

N
(e)
5 =

1

8
(1− ξ)(1− η)(1 + ζ) , N

(e)
6 =

1

8
(1 + ξ)(1− η)(1 + ζ) ,

N
(e)
7 =

1

8
(1 + ξ)(1 + η)(1 + ζ) , N

(e)
8 =

1

8
(1− ξ)(1 + η)(1 + ζ) ,

where ξ, η, and ζ denote the coordinates in the element parent space. The resulting vector of shape functions

is

[N(e)] =
[
N1 N2 N3 N4 N5 N6 N7 N8

]T
(F.1)

and the corresponding matrix of shape functions is

[N~ (e)] =

[

. . . NI 0 0 0 0 0 . . .

. . . 0 NI 0 0 0 0 . . .

. . . 0 0 NI 0 0 0 . . .

. . . 0 0 0 NI 0 0 . . .

. . . 0 0 0 0 NI 0 . . .

. . . 0 0 0 0 0 NI . . .

]
, (F.2)

where I denotes nodes 1− 8.
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The resulting matrix of derivatives of shape functions reads

[N~ (e)
,ξ ] =

[
. . .

∂N
(e)
I

∂ξ
. . .

. . .
∂N

(e)
I

∂η
. . .

. . .
∂N

(e)
I

∂ζ
. . .

]
. (F.3)

The nodal displacements and rotations are stored in the displacement-rotation-vector of an element (e) in

the form

[y(e)] = [. . . , U
(e)
1I , U

(e)
2I , U

(e)
3I , ϕ

(e)
1I , ϕ

(e)
2I , ϕ

(e)
3I , . . .]

T . (F.4)

This vector is an input of the UEL. This vector is rearranged for further usage into a nodal displacement and

rotation matrix. The same is done for the vector containing the coordinates, which is also an input of the

UEL. These matrices read as follows

[U~ (e)] =

[
. . . U1I . . .

. . . U2I . . .

. . . U3I . . .

] , [Φ~ (e)] =

[
. . . ϕ1I . . .

. . . ϕ2I . . .

. . . ϕ3I . . .

] , [X~ (e)] =

[
. . . X1I . . .

. . . X2I . . .

. . . X3I . . .

] . (F.5)

Geometry, displacement, and rotation fields are then approximated by

u ≈ [U~ (e)][N(e)] , ϕ ≈ [Φ~ (e)][N(e)] , X ≈ [X~ (e)][N(e)] . (F.6)

The derivatives of the kinematic fields are needed with respect to the global coordinate system. Note that it

is necessary to distinguish between updated and total Lagrangian formulations to consider the map between

parent and reference configurations or between parent and current configurations, respectively. In the fol-

lowing, the map between parent and reference configuration is outlined. The following matrix, the so-called

bmatrix, is introduced

[B~ (e)] =

[
. . . B1

I . . .

. . . B2
I . . .

. . . B3
I . . .

] =

[
. . .

∂NI

∂X1
. . .

. . .
∂NI

∂X2
. . .

. . .
∂NI

∂X3
. . .

] , (F.7)

where the derivatives of the shape functions are given with respect to global coordinates in the reference or

material configurations X1, X2, and X3 reading

∂NI

∂X1
=

∂NI

∂ξ
J−1
11 +

∂NI

∂η
J−1
12 +

∂NI

∂ζ
J−1
13 ,

∂NI

∂X2
=

∂NI

∂ξ
J−1
21 +

∂NI

∂η
J−1
22 +

∂NI

∂ζ
J−1
23 ,

∂NI

∂X3
=

∂NI

∂ξ
J−1
31 +

∂NI

∂η
J−1
32 +

∂NI

∂ζ
J−1
33 ,

(F.8)
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with J−1
ij as the components of the inverse Jacobian matrix. The Jacobian is defined as[

∂

∂ξ
∂

∂η
∂

∂ζ

] =

[
∂X1

∂ξ

∂X2

∂ξ

∂X3

∂ξ
∂X1

∂η

∂X2

∂η

∂X3

∂η
∂X1

∂ζ

∂X2

∂ζ

∂X3

∂ζ

]
, ,, ,

[J~(e)
]

[
∂

∂X1
∂

∂X2
∂

∂X3

] , (F.9)

with

[J~(e)] =

[

∂N
(e)
I

∂ξ
X

(e)
1I

∂N
(e)
I

∂ξ
X

(e)
2I

∂N
(e)
I

∂ξ
X

(e)
3I

∂N
(e)
I

∂η
X

(e)
1I

∂N
(e)
I

∂η
X

(e)
2I

∂N
(e)
I

∂η
X

(e)
3I

∂N
(e)
I

∂ζ
X

(e)
1I

∂N
(e)
I

∂ζ
X

(e)
2I

∂N
(e)
I

∂ζ
X

(e)
3I

]
. (F.10)

With the above equations at hand, the update of the deformation gradient tensor given in Eq. (4.48) can be

given as follows

F~ = I~+GradR([U~ (e)][N(e)]) = I~+
nel∑
I=1

[
U1I

U2I

U3I

]⊗

[
∂NI

∂X1
∂NI

∂X2
∂NI

∂X3

] = I~+ [U~ (e)][B~ (e)]T . (F.11)

The derivative of the updated microrotation tensor based on Eq. (4.58) with respect to the reference config-

uration using Eq. (4.57) can be expressed as

∂R~ (i+1)

∂Xk
= (∇Xk

∆R~ )R~ (i) +∆R~ (∇Xk
R~ (i)) (F.12)

= (∇Xk
Nϕ

I (X) exp (Spn(∆ϕI)))R~ (i) +∆R~ (∇Xk
Nϕ

I (X) exp (Spn(ϕ
(i)
I )))

= (∇Xk
Nϕ

I (X)∆R~ I)R~ (i) +∆R~ (∇Xk
Nϕ

I (X)R~ (i)
I ) ,

with k = 1, 2, 3 for all three dimensions.
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Table F.1: Gaussian integration point coordinates and corresponding weights.

Full integration with number of integration points nint = 8.

p
√
3ξp

√
3ηp

√
3ζp wp

1 −1 −1 −1 1

2 +1 −1 −1 1

3 +1 +1 −1 1

4 −1 +1 −1 1

5 −1 −1 +1 1

6 +1 −1 +1 1

7 +1 +1 +1 1

8 −1 +1 +1 1

F.2 Linear element in 3D

For the linear element in 3D, the same FEM parameters are used as for the nonlinear element. For the sake
of completeness, the differential operator matrix with respect to LSD strain and stress measures is given as

[d~] =

[]]]]]]]]]]]]]]]]]]]]]]]

∂

∂X1

0 0 0 0
∂

∂X2

0
∂

∂X3

0 0 0 0 0 0 0 0 0 0

0
∂

∂X2

0
∂

∂X1

0 0 0 0
∂

∂X3

0 0 0 0 0 0 0 0 0

0 0
∂

∂X3

0
∂

∂X1

0
∂

∂X2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 1
∂

∂X1

0 0 0 0
∂

∂X2

0
∂

∂X3

0

0 0 0 0 1 0 0 −1 0 0
∂

∂X2

0
∂

∂X1

0 0 0 0
∂

∂X3

0 0 0 −1 0 1 0 0 0 0 0
∂

∂X3

0
∂

∂X1

0
∂

∂X2

0 0

]||||||||||||||||||||||]

T

,

(F.13)

where the derivatives are defined with respect to the reference configuration. Note that the arrangement of

components is different to the one defined in Eq. (2.62) and is given as

(·)ij with ij = {11, 22, 33, 12, 13, 21, 23, 31, 32} . (F.14)

F.3 Linear element in 2D

The shape functions for the quadrilateral element (e) in the element parent space are given as

N
(e)
1 =

1

4
(1− ξ) (1− η) , N

(e)
2 =

1

4
(1 + ξ) (1− η) ,

N
(e)
3 =

1

4
(1 + ξ) (1 + η) , N

(e)
4 =

1

4
(1− ξ) (1 + η) .

(F.15)

The nodal displacements and rotations of an element (e) are stored in a generalized vector of nodal displace-

ments and microrotations in the form

[y(e)] = [. . . , U
(e)
1I , U

(e)
2I , ϕ

(e)
3I , . . .]

T , (F.16)



F.4. POST-PROCESSING OF USER ELEMENTS 143

Table F.2: Gaussian integration point coordinates and corresponding weights.

Full integration with number of integration points nint = 4.

p
√
3ξp

√
3ηp wp

1 −1 −1 1.0

2 +1 −1 1.0

3 +1 +1 1.0

4 −1 +1 1.0

Reduced integration with number of integration points nint = 1.

p ξp ηp wp

1 0 0 4.0

where I denotes nodes 1− 4. The corresponding matrix of shape functions is

[N~ (e)] =

[
... NI 0 0 ...

... 0 NI 0 ...

... 0 0 NI ...

] . (F.17)

F.4 Post-processing of user elements

ABAQUS does not directly support post-processing of user elements and provides only rudimentary infor-

mation in the user manual on how to achieve this. A brief description of a workaround is outlined, which

makes post-processing possible by using an element overlay, see, e.g., [68].

For this purpose, an element from the ABAQUS element library is necessary, which is similar to the user

element, i.e., shows the same interpolation functions, such as C3D8 and C3D8MP. This element is further called

dummy element. Both elements need to share the same nodes. Furthermore, it is important that the dummy

elements should not influence the overall mechanical response. For this purpose, the dummy element must

show a very compliant response compared to the user element, e.g., an isotropic material with a very low

Young‘s modulus. This allows to visualize the DOFs of the user elements in the ABAQUS viewer. For the

user element C3D8MP, this also applies to the rotational DOFs, even though these DOFs do not exist for the

element C3D8.

If integration point values of the user element are also to be visualized, such as stresses and strains, the

dummy element needs to be used in combination with an ABAQUS user material (UMAT). The UMAT of

the dummy element must be implemented in the same environment as the user element so that the SDVs

of the user element can be passed to the SDVs of the UMAT of the corresponding dummy element via a

commonly shared module. Note that the integration point numbering for the C3D8 is different from the user

element C3D8MP given in Table F.1, which must be considered accordingly. In particular, p = 3 and p = 4

as well as p = 7 and p = 8 are interchanged. A constant offset in the element numbering between user and

dummy elements is required to ensure that information is passed between the correct pairs of elements, cf.

Appendix F.5. All further details can be found in the Fortran files of the implementation of the individual

user elements.
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F.5 User element usage

In the following, the usage of the user elements is outlined based on the user element C3D8MP. The type of

element is specified by

*USER ELEMENT, TYPE=Ui, NODES=8, COORDINATES=3, VAR=360, PROPERTIES=j, UNSYMM

1,2,3,4,5,6

in the input file, where i denotes an input variable passed to the UEL subroutine, which is associated with

a type of element defined by the user in the subroutine. For C3D8MP, i denotes the material subroutine and

takes the values i = 10 for isotropic materials, i = 11 for PO lattices, and i = 11 for BCC lattices. The

PROPERTIES flag must set to j = 6 for the isotropic materials and 21 for the lattices, respectively. The NODES

flag defines the number of nodes, the COORDINATES flag specifies the spatial dimension, and the VAR sets the

number of SDVs, i.e., for each integration point the stress measures, strain measures, and the microrotation

tensors are stored, which is nint · 45 = 360 for the C3D8MP. The entries in the line below indicate the active

DOFs of the element, where 1, 2, 3 are associated with displacement DOFs and 4, 5, 6 are associated with

rotation DOFs. Next, the element is defined by using

*ELEMENT, TYPE=Ui, ELSET=ELALL

1,1,2,3,4,5,6,7,8

The first entry is the element label, the following entries are the node labels defining the element. The number

of entries must coincide with the number specified in the NODES flag in the first expression. For isotropic

material behavior, i.e., i = 10, the following expression is to be specified

*UEL PROPERTY, ELSET=ELALL

λ, µ, ν, α, β, γ

where the material moduli correspond to Eq. (2.68). For the lattices, i.e., i = 11 for PO and i = 12 for BCC

type, the following expression needs to be specified

*UEL PROPERTY, ELSET=ELALL

E, ν, l1, l2, l3, A1, A2, A3, Im1,

Im2, Im3, In1, In2, In3, , It1, It2, It3, pnorm,

p1, p2, p3

where the input parameters correspond to the individual lattices, cf. Section 3.3. The last four entries,

namely, pnorm, p1, p2, and p3, denote an axial vector about which the elasticity tensors are to be rotated with

respect to their principal material axes by using Eq. (2.76).

If dummy elements of type C3D8 are used for visualization of the C3D8MP including stress and strain measures,

cf. Appendix F.4, the following expression needs to be added in the input file

ELEMENT, TYPE=C3D8, ELSET=ELALL_DUMMY

100001,1,2,3,4,5,6,7,8

*SOLID SECTION, ELSET=ELALL_DUMMY, MATERIAL=DUMMY_MATERIAL

1.0

*Material, name=DUMMY_MATERIAL

*Depvar

45,
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1, stress11

2, stress12

...

*User Material, constants=0

BLANK,

The dummy element is defined by the same nodes as the user element and shows an offset of 100000 in

the element label from the user element. Furthermore, a UMAT is defined using 45 SDVs indicated by the

entry in the first line after *Depvar. The following lines specify all SDVs, where the first entry denotes

the variable’s number and the second entry defines its identifier for the ABAQUS viewer. For the total

Lagrangian description, cf. Figure 4.1, the SDVs are the components (·)ij of T̆~ , κT̆~ , E~ , K~ , and R~ each given

in the following sequence

(·)ij with ij = {11, 12, 13, 21, 22, 23, 31, 32, 33} . (F.18)

This is exemplified in the second line, where the first entry specifies the SDV, i.e., the stress component T̆11,

while the second entry is the name of the SDV displayed in the ABAQUS viewer, i.e., ”stress11”. The third

line follows as T̆12 displayed as ”stress12” in the ABAQUS viewer. Additional lines are added until the last

SDV is reached, namely, R33. For the UMAT, no value is specified, i.e., is left blank, as this value is specified

in the UMAT subroutine of the dummy element.



146

Bibliography

[1] NGS-Py Finite Element Tool. URL https://docu.ngsolve.org/v6.2.2302/index.html.
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[10] Z. Bažant and M. Christensen. Analogy between micropolar continuum and grid frameworks under

initial stress. International Journal of Solids and Structures, 8(3):327–346, 1972.

[11] K. Bertoldi, P. M. Reis, S. Willshaw, and T. Mullin. Negative Poisson’s Ratio Behavior Induced by an

Elastic Instability. Advanced Materials , 22(3):361–366, 2010.

[12] M. Bici, S. Brischetto, F. Campana, C. G. Ferro, C. Secl̀ı, S. Varetti, P. Maggiore, and A. Mazza.

Development of a multifunctional panel for aerospace use through SLM additive manufacturing. Procedia

CIRP , 67:215–220, 2018.

[13] R. Biswas, L. Poh, and A. Shedbale. A micromorphic computational homogenization framework for

auxetic tetra-chiral structures. Journal of the Mechanics and Physics of Solids, 135:103801, 2020.

https://docu.ngsolve.org/v6.2.2302/index.html
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1007/978-3-662-57504-8
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.003
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1016/0045-7825(82)90069-X
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1098/rsta.2005.1678
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/0020-7225(68)90060-8
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1007/s00466-012-0679-9
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1016/0020-7683(72)90093-5
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1002/adma.200901956
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.procir.2017.12.202
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801
http://dx.doi.org/10.1016/j.jmps.2019.103801


BIBLIOGRAPHY 147

[14] P. Boggs, A. Althsuler, A. Larzelere, E. Walsh, R. Clay, and M. Hardwick. DART system analysis.

Technical Report SAND2005-4647, 876325, Sandia National Laboratories, 2005. URL https://www.

osti.gov/servlets/purl/876325/.

[15] J. Chen. Fracture analysis of cellular materials: A strain gradient model. Journal of the Mechanics and

Physics of Solids , 46(5):789–828, 1998.

[16] Z. Chi, J. Liu, and A. K. Soh. Micropolar modeling of a typical bending-dominant lattice comprising

zigzag beams. Mechanics of Materials , 160:103922, 2021.
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