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Abstract
Wave energy is among the largest untapped resources of renewable energy. As waves
have the highest energy density of all renewable energy sources, wave energy converters
(WECs) have considerable potential to contribute to the global energy mix. However,
for WECs to become a cost-effective alternative, effective control strategies are essential.
Advanced control techniques rely on the excitation force of the wave as an input, which
is not measurable. Therefore, accurate and reliable estimates are essential. Using the
Euler-Lagrange equations, a simplified nonlinear dynamic model for a point absorber
WEC is derived in this thesis. Numerical simulations demonstrate that the model captures
the relevant dynamics of the WEC in three degrees of freedom. Based on this model, a
state observer is designed that is able to provide estimates for the excitation force and the
wave elevation. To increase the robustness of the estimation, several sensors are used. The
performance of the observer is evaluated across various sea states using a comprehensive
six-degree-of-freedom model. Various sensor failures are also simulated to determine the
reliability of the observer. Further, the significance of using a three-degree-of-freedom
model for estimation is shown.
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Kurzzusammenfassung
Wellenenergie gilt als eine der größten ungenutzten erneuerbarer Energiequellen. Durch
die hohe Energiedichte der Wellen haben Wellenenergiekonverter (WEC) ein erhebliches
Potenzial einen bedeutenden Teil zum globalen Energiemix beizutragen. Damit WECs
jedoch zu einer kosteneffizienten Alternative werden, sind effektive Regelungsstrategien
unerlässlich. Fortgeschrittene Regelungsmethoden benötigen die Erregungskraft der Welle
als Eingang, die aber nicht messbar ist. Daher sind akkurate und zuverlässige Schätzungen
entscheidend. Unter Verwendung der Euler-Lagrange-Gleichungen wird in dieser Arbeit
ein vereinfachtes nichtlineares dynamisches Modell für ein Punktabsorber-WEC herge-
leitet. Anhand numerischer Simulationen wird gezeigt, dass das Modell die relevanten
Dynamiken des WECs unter der Verwendung von drei Freiheitsgraden abbildet. Auf der
Grundlage dieses Modells wird ein Zustandsbeobachter entworfen, der in der Lage ist,
Schätzungen für die Erregungskraft und die Wellenhöhe zu liefern. Um die Robustheit
der Schätzung zu erhöhen, werden mehrere Sensoren mit dem Zustandsbeobachter kom-
biniert. Die Performance des Beobachters wird anhand eines detaillierten Modells mit
sechs Freiheitsgraden unter Berücksichtigung verschiedener Seegänge ermittelt. Außerdem
werden verschiedene Sensorausfälle simuliert, um die Zuverlässigkeit des Beobachters zu
bewerten. Die Bedeutung der Verwendung eines Modells im Beobachter, basierend auf
drei Freiheitsgraden, wird zudem gezeigt.
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1 Introduction
The first attempts to harness energy from ocean waves date back to 1799 [1], but the
increasing effects of global warming and technological progress, for example, have reignited
interest in wave energy. Its high energy density, availability, and predictability make it a
powerful and attractive renewable energy source [2]. Although there are multiple ways
of harnessing wave energy, the main idea relies on capturing the movement of sea waves
and converting it into other forms of energy, mostly electricity. However, the irregular
behavior of ocean waves poses a challenge for the optimal control of such devices, called
wave energy converters (WECs). Usually, the estimation and prediction of significant
quantities, such as the wave elevation of the incident wave or the force caused by it on the
WEC (known as the excitation force) are required [3]. Before the motivation and goals of
this thesis are discussed in more detail, a description of the WEC considered in this work
is provided, followed by a literature review.

1.1 Point Absorber Wave Energy Converter
The WEC considered in this work is the C4 wave energy converter from CorPower Ocean
[4]. The C4 operates as a point absorber wave energy converter, meaning that the wave’s
energy is harnessed through the relative motion between a moving body and a stationary
structure. In Figure 1.1, the moving body is represented by the buoy, oscillating in
response to waves. The WEC is attached to the seabed by the mooring rod and the
anchor, providing the stationary reference. The mooring rod and anchor are linked
through a universal joint, allowing the WEC to be deflected laterally by incoming waves.
Furthermore, the mooring rod contains the tidal regulator, enabling the WEC to adapt to
changing tides. The buoy can move along the ocean rods that connect the mooring rod to
the stationary part inside the buoy. The most relevant components inside the buoy are
shown in Figure 1.1. The pretension cylinder and the so-called WaveSpring [4, 5], are both
pressure cylinders. The pretension cylinder is used to set the initial position of the buoy,
while the WaveSpring acts as a negative spring that amplifies the motion of the buoy
and increases the power absorption of the system [5]. The rack, which moves together
with the buoy, enters the gearbox, where the linear motion transforms into rotary motion,
subsequently captured by the generators and convertered into electrical energy. This
conversion from mechanical to electrical energy via the generators is commonly referred
to in the literature as the power take-Off (PTO) system [6].

The main control objective is to maximize energy absorption by the PTO. As shown in
[8], the optimal control problem is in general non-causal, which either requires forecasting
techniques, usually for the excitation force, or a causal approximation. In addition,
physical constraints on position, velocity and control inputs must commonly be respected

1
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Figure 1.1: CorPower Ocean C4 wave energy converter [7].

by the controller. Due to these requirements, the use of model predictive control (MPC)
for WECs has gained popularity as an alternative to conventional control strategies [8].
MPC-based control algorithms still require future knowledge of the excitation force. As
this quantity is immeasurable, it needs to be estimated in first place, which makes its
estimation become a crucial part in optimal control.

1.2 Literature Survey
In recent years, considerable research has focused on estimating the excitation force and
different estimation strategies have been proposed in the literature. In the strategies
presented in [9, 10], the excitation force is simply calculated from wave elevation measure-
ments or obtained from multiple pressure sensors distributed over the wetted surface of
the WEC. In addition to the challenge of obtaining reliable wave elevation measurements
in real sea-scenarios [11], a major drawback of these estimators is that they are not able
to consider measurement or model uncertainties. The quality of the estimation therefore
depends on the quality of the measurement signals and the accuracy of the used models
[10]. As a result, model-based closed-loop estimators are usually preferred.
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1.2.1 Estimation based on 1DoF models
Most strategies proposed for point absorbers rely on models that represent the dynamics
of the WEC by a single degree of freedom (1DoF). The most commonly used approach
is the implementation of Kalman filters based on linearized dynamics, see, e.g., [12–
14]. Measurements of position and velocity are usually taken. The dynamics of the
excitation force is represented using either a random walk model or a harmonic oscillator
model, often incorporating multiple oscillators of different frequencies. Although the
use of multiple oscillators increases the complexity of the estimation problem, it is often
preferred as it provides a more accurate representation of the behavior of ocean waves, see
[15]. Nonetheless, the accuracy of the estimation still depends on the number of oscillators
and the selected frequencies. To address this issue, estimators have been proposed in the
literature that treat the excitation force as an unknown input without considering any
dynamics [16–18]. A detailed comparison between these estimators and Kalman filter
approaches is provided in [15]. The results show that there is no significant difference in
either computational effort or accuracy. Another estimator that considers the excitation
force as an unknown input is the receding horizon estimator, presented in [14], where
the excitation force is estimated by solving a quadratic programming problem. In an
experimental setup, Nguyen and Tona [14] show that the receding horizon approach
provides slightly better results compared to the Kalman filter, which uses a random
walk model for the excitation force. However, this improvement comes at the expense of
increased computational effort. A commonly used approach in the numerical modelling
of WECs is to consider nonlinear viscous drag terms [19]. For this reason, the Kalman
filter-based strategies were adapted in [20] to incorporate these nonlinearities, resulting in
the design of extended Kalman filters. According to Davis and Fabien [20], good estimates
are obtained using wave tank data. The extended Kalman filter based on a harmonic
oscillator model for the excitation force demonstrated enhanced accuracy compared to
the filter based on a random walk model [20]. It should be noted, that the tank tests were
conducted under uncontrolled conditions of the floating body and without a comparison to
a linear Kalman filter. A different extended Kalman filter approach is proposed in [21]. In
addition to position measurements, this approach incorporates pressure measurements at
specific points on the buoy, which should increase the estimation accuracy for the excitation
force. However, as shown in [15], this method does not provide any improvements over
other strategies, at least under linear wave conditions. In various studies, the estimation
strategies presented have only been validated using 1DoF simulation models. While in
[14], a 1DoF estimation model appears to be applicable due to the restricted kinematics of
the WEC, the suitability of 1DoF estimators for real WECs with more complex dynamics
is questionable.

1.2.2 Estimation based on multi-DoF models
Despite the importance of estimating the excitation force, the existing literature on
estimation models considering multiple degrees of freedom (multi-DoF) is still limited.
The use of Kalman filters based on 3DoF WEC models is demonstrated in [22–24]. In
[22, 23], the Kalman filters rely on linear dynamics of the WEC, while in [24], nonlinear
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couplings between the degrees of freedom are considered. In addition to the Kalman filter,
an artificial neural network approach for estimating the excitation force is proposed in
[23]. A comparison shows that the accuracy for both the artificial neural network and
Kalman filter are similar [23]. It should be noted, that the estimation strategies [22–24]
have all been validated using 3DoF simulation models, which differ only slightly from
the estimation models used. Probably the most comprehensive approach in the literature
currently is the use of a cubature Kalman filter based on a linearized 6DoF WEC model
in [25]. Similar to the unscented Kalman filter, the cubature Kalman filter estimates
the state of a dynamic system based on a set of sample points that follow the cubature
rule derived by Arasaratnam and Haykin [26]. The presented approach in [25] is able to
estimate a 6-dimensional excitation force vector and shows promising results in terms of
multidirectional wave simulations. However, it comes with the burden of using a dynamic
system of order 72.

1.3 Goals of this Thesis
To the best of the author’s knowledge, there is currently no estimation strategy that
accounts for non-linearities resulting from the variable submergence of the buoy, caused by
the changing wave elevation and buoy position. As shown in [27, 28], such non-linearities
can have a significant impact on hydrodynamic forces and thus on the model accuracy for
semi-submerged WECs. The instantaneous wave elevation is also considered in the C4
control model in order to account for certain non-linearities. Hence, the objective is to
develop an estimation strategy that is capable of estimating not only the excitation force
but also the wave elevation. Furthermore, the reliability of the estimation is important
for the optimal operation of the WEC. Thus, potential sensors should be included in the
estimation process to achieve fault tolerance in case of sensor failures. An investigation of
the estimation accuracy and robustness against sensor failures should be conducted.

1.4 Content and Structure
The structure of this thesis is as follows. Chapter 2 gives a brief overview of the relevant
hydrodynamic theories together with the simulation setup used for the validation. In
addition, the sensors used for the estimation are briefly presented. Chapter 3 covers
the mathematical modeling. This involves deriving a model that represents the relevant
dynamics of the WEC, which is subsequently simplified and verified with numerical
simulations. A harmonic oscillator model is introduced to describe the wave process,
providing approximations for the wave elevation and excitation force. Furthermore, the
relevant sensor models are derived. Chapter 4 covers the observer design based on the
derived models. The estimation performance of the observer is then evaluated using a
comprehensive simulation model. The results include an evaluation of the estimation
performance across various sea states, as well as a comparison with the estimation strategy
currently used by the company CorPower Ocean. In addition, the robustness of the
observer in case of different sensor failures is investigated and discussed. In a further
analysis, the influence of the degrees of freedom considered in the estimation model on
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the estimation errors are analyzed. Chapter 5 provides a conclusion and outlook of this
thesis with possible ideas for future work.



2 Theory and Simulation Setup
In this chapter, the fundamental theory and simulation setup are outlined. Firstly, the
principles of linear wave theory are introduced. Linear wave theory serves as the basis for
the simulation setup and is essential for modeling the wave process and the hydrodynamic
pressure, both of which are relevant for the estimation task. Next, a brief explanation of
the relevant hydrodynamic and hydrostatic forces is provided, which are relevant for the
derivation of the WEC model. Additionally, key aspects of the simulation setup and a
brief overview of the sensors used for the estimation are presented.

2.1 Linear Wave Theory
Linear wave theory is used to model the wave process in the ocean, which covers the vast
majority of waves in power production of WECs [29]. Additional research on the validity
and constraints of analytical wave theories can be found in [30] and [31]. Linear wave
theory relies on a mass balance equation and a momentum balance equation, both of
which can be expressed in terms of a velocity potential function Φ [32]. Assuming the
fluid to be incompressible and irrotational, one obtains the Laplace equation from the
mass balance equation

ΔΦ = 0 . (2.1)
Neglecting quadratic velocity terms in the momentum balance equation yields the linearized
Bernoulli equation for unsteady flow [32]

ˆ

ˆt
Φ + p

fl
+ gz = 0 , (2.2)

where p is the pressure, fl is the water density, g is the gravitational acceleration, and z is
the vertical distance to the water surface. The positive z-axis is opposite to the direction of
gravity, the x- and y-axes are parallel to the earth’s surface. Solving the Laplace equation
considering linearized kinematic and dynamic boundary conditions for the seabed and the
water surface (see [32]), an analytical solution for the boundary condition of the water
surface can be found. One solution is characterized by a monochromatic wave with the
amplitude A and angular frequency Ê, propagating in the positive x-direction [32]

÷(x, t) = A sin (Êt ≠ kx) , (2.3)

where ÷ is the free surface elevation or wave elevation of the harmonic wave and k is the
spatial frequency, the so-called wave number. The corresponding solution for the velocity
potential function provides information on the wave-induced motion beneath the water
surface and is expressed as [32]

Φ(x, z, t) = AÊ

k

cosh (k(d + z))
sinh (kd) cos (Êt ≠ kx) , (2.4)

6
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where d is the water depth. The relation between the wave number k and the angular
frequency Ê is determined by the dispersion relationship [32]

Ê2 = gk tanh (kd) . (2.5)

Each wave number therefore has its own angular frequency, i.e. the speed at which a wave
propagates depends on the wavelength.

Besides the simplicity of linear wave theory in describing the wave-induced behavior, a
further important advantage is that linear superposition holds. This allows an irregular
wave, as it occurs in the ocean, to be expressed as a sum of regular wave components [33].
Thus, the wave elevation of an irregular wave, denoted as ’, at the chosen location x = 0
can be expressed using (2.3) as

’(t) =
Nÿ

i=1
÷i with ÷i = Ai sin (Êit + –i) . (2.6)

The phase components –i are typically uniformly distributed between 0 and 2fi, so that
the phase spectrum may be ignored [34]. The amplitude components Ai can be determined
using an energy density spectrum, which is a function of the angular frequency components
Êi, characterizing the sea state. The spectrum is usually defined with several parameters,
where the most important ones are the significant wave height and the peak wave period
or energy period [6].

2.2 Hydrodynamic and Hydrostatic Forces
As discussed in the study [35], various techniques exist for calculating the hydrodynamic
forces experienced by a body undergoing oscillations in water. In the context of wave
energy converters, a common approach is to use linear wave theory and linear potential
flow theory to represent the overall hydrodynamic force Fhyd. This force is composed of
four distinct forces and expressed as

Fhyd = Fe + Fr + Fb + Fd , (2.7)

where Fe denotes the excitation force, Fr the radiation force, Fb the buoyancy force due
to the hydrostatic pressure, and Fd the nonlinear drag force commonly used in WEC
modeling.

2.2.1 Excitation Force
The excitation force describes the force induced by both the undisturbed incident wave
and the wave scattered through the body. These two components are also known as the
dynamic Froude-Krylov force and diffraction force [36]. Utilizing linear wave theory, the
excitation force is calculated by the convolution product between the excitation impulse
response function fe,t and the wave elevation ’ [36], resulting in

Fe =
⁄ Œ

≠Œ
fe,t(t ≠ ·)’(·)d· . (2.8)
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It is worth mentioning that the impulse response function is not necessarily causal [36],
which would require future wave elevation values to calculate the instantaneous excitation
force. However, the magnitude and phase responses of the excitation force at a given
frequency of a regular wave can be obtained using a boundary element method (BEM), e.g.
WAMIT [37]. Consequently, the jth component of the excitation force vector resulting
from an irregular wave can also be expressed using the definition from (2.6), without using
future wave elevation values. With Fe,j representing the jth component of the excitation
force vector, this leads to

Fe,j =
Nÿ

i=1
Ae,j(Êi)Ai sin (Êit + –i + –e,j(Êi)) , (2.9)

where Ae,j(Êi) and –e,j(Êi) denote the corresponding magnitude and phase response of
the excitation force as a function of the wave frequency. Note that (2.9) is unaffected by
the WEC’s motion.

2.2.2 Radiation Force
The radiation force is expressed according to Cummins’ equation [38] as

Fr = ≠MŒ›̈ ≠
⁄ Œ

≠Œ
Kr(t ≠ ·)›̇(·)d· , (2.10)

with › being a six-dimensional vector containing the position and orientation of the WEC
with respect to a reference frame. This force originates from the body’s oscillation in
water and is decomposed into two components: The first component is proportional to
the body’s acceleration ›̈, computed using the infinitely added mass matrix MŒ, which
characterizes the mass of water entrained by the body’s movement. The second component
describes the damping force proportional to the velocity of the body ›̇, calculated by
the convolution product with the radiation impulse response matrix Kr. For efficient
computation, the convolution term is commonly approximated with a state space model
[39, 40]

ẋr = Arxr + Br›̇ (2.11)
Fr,l = cT

r xr . (2.12)

The output Fr,l is from now on referred to as the radiation force with

Fr ¥ ≠MŒ›̈ + Fr,l . (2.13)

The coefficients for the state space model and the added mass matrix used in the WEC
model in Section 3.1, are obtained from pre-calculated data by WAMIT.

2.2.3 Nonlinear Extension and Buoyancy Force
As demonstrated in [27, 28], considering non-linearities in both buoyancy and dynamic
Froude-Krylov force can significantly improve the model accuracy, especially given their
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dominance over the radiation and diffraction force for heaving point absorbers. In this
thesis, nonlinear extensions for the buoyancy force and the excitation force are used. These
extensions account for the instantaneous submergence of the WEC Vsub(t). The buoyancy
force follows to [41]

Fb = flgVsub(t)ez with eT
z = [0 0 1] , (2.14)

and the modified excitation force F̆e is expressed as [41]

F̆e = fe(’, Vsub(t), Fe). (2.15)

Based on the small-body approximation [36], the formulation of the excitation force Fe

in (2.15) is corrected based on the instantaneous submerged volume. As a result, the
modified force F̆e is not only dependent on the wave elevation (cf. (2.9)), but also on the
position of the WEC. This also allows the effects of mean drift forces to be captured [6].
For reasons of confidentiality, the modified force is not described in more detail.

2.2.4 Drag Force
Nonlinear viscous drag forces are modeled according to the Morison equation [42, 43]. Let
¶ and ¶ 1

2 denote the Hadamard product (element-wise product) and Hadamard square
root (element-wise square root) [44]. Under the assumption of neglecting the fluid particle
velocity, the drag force vector can be approximated as

Fd = ≠1
2flAdCd

1
›̇ ¶ ›̇

2¶ 1
2 ¶ ›̇ , (2.16)

where matrix Cd contains the drag coefficients, and the matrix Ad the submerged surfaces
of the body projected on the plane perpendicular to the direction of motion.

2.3 Wave-to-Wire Model
The term wave-to-wire (W2W) refers to numerical tools capable of modeling the entire
chain of energy conversion from the hydrodynamic wave/device interaction to feeding
into the electrical grid [6]. CorPowe Oceans’s W2W model is a 6-degree-of-freedom
model implemented in Matlab/Simulink and is the most comprehensive simulation
model of the WEC available within the company. Therefore, it will be used to validate
the performance of the estimation. The exogenous inputs to the W2W model include
the wave elevation based on linear wave theory and the pre-calculated excitation force
as described in Section 2.2.1. Thus, the estimation is evaluated by comparing these
inputs with the corresponding estimates of these quantities. The simulation model can be
executed using regular waves or irregular waves. As CorPower’s testing site is situated
in Agucadoura, Portugal, the predominant energy density spectra at this location are
used for characterizing the sea states and simulating irregular waves. The JONSWAP
(Joint North Sea Wave Project) spectrum [45] serves as a mathematical representation of
the energy density spectrum, parameterized by the significant wave height Hs and the
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energy period Te. Figure 2.1 shows the probability of occurence of the resulting sea states
for Agucadoura. Sea states covered by the dashed border indicate the region in which
the WEC is in tuned mode. Thus, these sea states are considered for validation of the
estimation.
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Figure 2.1: Probability of sea states for Agucadoura (%) [46]

2.4 Sensors
The following sensors are available for the estimation task: two inertial measurement units
(IMUs), one encoder and one pressure sensor. Figure 2.2 gives an overview of the location
of these sensors. One IMU is attached to the buoy, capturing its oscillating behaviour.
The second IMU is fixed to the stationary part inside the buoy, capturing only the lateral
movements of the WEC. The IMUs provide measurements of acceleration and angular
rates as well as estimates of the sensor attitude. The absolute encoder is mounted on a
circular gear (pinion) of the gearbox that engages with the rack and provides feedback
on the absolute position of the rack. The pressure sensor is a piezoresistive pressure
transmitter with a total measurement range of 0-3bar and a maximum error of ±0.01% of
the total measurement range. As indicated in Figure 2.2, the sensor is installed below
the ocean rods on the so-called ocean plate, where it captures the hydrodynamic pressure
induced by the ocean waves. The sensor characteristics based on the data sheets and
measurements are added to the simulated sensor signals for a more realistic evaluation of
the estimators. The characteristics of the sensors are discussed in more detail in Section
3.3.
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encoder

pressure
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Figure 2.2: Location of the sensors [7]



3 Mathematical Modeling
This chapter deals with the mathematical models required for the estimation task. A non-
linear dynamic model of the WEC is derived on the basis of the relevant kinematics. This
model is then simplified and verified by numerical simulations. In addition, a harmonic
oscillator model is introduced, which is necessary for the description of the wave process
and from which the wave elevation and the excitation force are obtained. Finally, sensor
models for the sensors are derived.

3.1 WEC Model
In preparation for deriving the kinematics and dynamics of the wave energy converter,
an overview of the mechanical and hydromechanical properties, along with relevant
assumptions and notations is presented first.

3.1.1 Assumptions and Notations
Assuming that the flexibility of the mooring rod can be neglected, the wave energy
converter can be modeled using two rigid bodies - one oscillating and one stationary,
which is only deflected laterally due to the incoming waves, see Figure 3.1. It is worth
mentioning that the effects due to the flexibility of the mooring rod are included in
CorPower Ocean´s W2W model. To demonstrate the negligible impact of the mooring
rod, as shown in Section 3.1.5, it is treated as a separate rigid body. To do so, the
stationary body is split into the slide and the rod. The oscillating body, referred to
as the buoy, is characterized by a mass mB. The slide, which comprises all stationary
components inside the hull, including the ocean rods, has a mass of mS. The moment
of inertia of the buoy and slide are neglected due to two reasons. Firstly, the WECs
movement around the symmetry axis is irrelevant when describing its motion. This degree
of freedom will also be disregarded in the following description of the kinematics in Section
3.1.2. Secondly, due to the length of the rod, the effect of the inertia is relatively small
compared to the impact of the masses. This is confirmed when applying Steiner’s theorem
about the axes of the universal joint [47]. Only for the rod, the inertia matrix IR is
taken into account in addition to its mass mR. Furthermore, the inertia of the trans-
mission to the rack within the gearbox is considered and denoted as Itrans. With dmwl,
the distance from the space-fixed inertial frame [0I, xI, yI, zI] to the mean water level is
defined. The mean water level refers to the average height of water in the absence of waves.

To fully describe the dynamics of the WEC in the ocean, additional hydromechanical
properties are relevant. It is essential to account for added mass effects resulting from
the radiation force outlined in Section 2.2.2. Due to the low angular velocities of the

12
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WEC, only the radiation force components that arise due to its linear accelerations and
velocities are taken into account. Hence, the infinitely added mass matrix MŒ as a result
of the linear accelerations is assigned to the buoy. Due to the small volume of the slide
and rod compared to the buoy, they are assumed to have a negligible radiation force and,
consequently, negligible added mass effects. The center of buoyancy is defined as the center
of gravity of the displaced fluid [48] and is used as the point of attack for the buoyancy
forces. The center of buoyancy, denoted as cb, for the buoy (B), the slide (S), and the
rod (R) is illustrated in Figure 3.1. The hydrodynamic forces are also assumed to act at
the center of buoyancy, which is a common assumption in the small body approximation
[36]. While the center of buoyancy of the rod is constant with respect to its body-fixed
coordinate frame, it will change for the slide and the buoy due to the variable submergence.
However, it is assumed that the relative change in the center of buoyancy of the slide and
buoy in relation to the total length of the rod (30m) is comparable small. Hence, they are
considered to be constant with respect to their body-fixed coordinate frame. As often
used in the context of maritime and naval engineering and as indicated in Figure 3.1, the
linear motion of the WEC in x-, y- and z-direction are referred to as the surge, sway and
heave direction [6].

oscillating

stationary

mB

Itrans

mR, IR

Sl
id

e
R

od

mean water level

mS

S, cb

B, cb

R, cb

dmwl

yI

zI

xI

zI

symmetry axis

MŒ

(heave)

(sway) (surge)

Buoy

Figure 3.1: Schematic representation of the WEC
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3.1.2 Kinematics
Degrees of Freedom

As mentioned in the previous section, the flexibility of the rod and motion of the WEC
around the symmetry axis are disregarded. As a result, the remaining motion of the WEC
can be characterized with three degrees of freedom and are expressed using the vector of
generalized coordinates

q =

SWUsrack

Ï
◊

TXV . (3.1)

The first degree of freedom describes the buoy’s movement relative to the slide, representing
the rack’s position, and is denoted as srack. The other two degrees of freedom are associated
with the universal joint, labeled as Ï and ◊. These angles correspond to the WEC’s roll
and pitch angles, respectively. In Figure 3.2, the kinematic model of the WEC illustrates
these degrees of freedom.

Coordinate Frames and Transformations

To describe the kinematics of the WEC, three local coordinate frames are used, as shown in
Figure 3.2 b). The coordinate frame attached to the buoy is represented by [0B, xB, yB, zB];
the frame used to describe the slide is denoted by [0S, xS, yS, zS]. Since the slide and rod
could be treated as a single rigid body, the coordinate frame of the slide can be used to
describe the kinematics of the rod. However, in order to determine external torques on
the rod, e.g. due to drag, a third local coordinate frame for the rod ([0R, xR, yR, zR]) is
introduced. The kinematic relations between the coordinate frames are derived using the
Denavit-Hartenberg (DH) convention. The DH parameters as defined in [49] are listed in
Table 3.1. Their corresponding coordinate frames are shown in Figure 3.2 a).

Link ai –i di Ëi

1 0 fi
2 0 ◊

2 0 fi
2 dS

fi
2 ≠ Ï

3 0 0 srack ≠fi
2

Table 3.1: Denavit-Hartenberg parameters

Applying the DH convention, the homogeneous transformation matrices H1
0(Ï, ◊), H2

0(Ï, ◊)
and H3

0(q) are derived to establish a relation between the local coordinate frames
[01, x1, y1, z1], [02, x2, y2, z2], and [03, x3, y3, z3] with the space-fixed coordinate frame
[00, x0, y0, z0]. Since the coordinate frames shown in Figure 3.2 b) are to be used for the
WEC model, the homogeneous transformation matrices HB

I (q), HS
I (Ï, ◊) and HR

I (Ï, ◊)
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Figure 3.2: Kinematic model of WEC: a) coordinate frames according to DH convention
b) used coordinate frames for model

can be computed as

HB
I (q) = H3

0(q)H0
I , (3.2a)

HS
I (Ï, ◊) = HS

2H2
0(Ï, ◊)H0

I , (3.2b)
HR

I (Ï, ◊) = HR
1 H1

0(Ï, ◊)H0
I , (3.2c)

with H0
I , HS

2 and HR
1 being constant homogeneous transformation matrices.

Positions and Linear Velocities

To obtain the position vectors and linear velocities of the center of gravity´s (cg) in the
space-fixed inertial frame, first the homogeneous representation of the constant position
vector pi,cg

i œ R3◊1 in the body-fixed coordinate frame i is defined as

p̃i,cg
i =

C
pi,cg

i

1

D
, i œ B , (3.3)

with the set of bodies B = {B, S, R}. Using the transformation matrices from (3.2), these
vectors are transformed into the space-fixed inertial frame with

p̃i,cg
I =

C
pi,cg

I
1

D
= Hi

Ip̃
i,cg
i , i œ B , (3.4)
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where pi,cg
I is the position vector of the center of gravity of body i, expressed in the inertial

frame. Taking the time derivative of this vectors gives the velocity in the inertial frame as

vi,cg
I = d

dt
pi,cg

I , i œ B (3.5)

Analogously, equations (3.3) to (3.5) are used to derive the position vectors and linear
velocities of the center of buoyancy’s expressed in the inertial frame with pi,cb

I and vi,cb
I

respectively.

Rotations and Angular Velocities

The rotation matrix Ri
I œ SO(3) of the coordinate frame i with respect to the inertial

frame can be extracted from the homogeneous transformation matrices defined in (3.2),
which can be written as

Hi
I =

C
Ri

I di
I

0T 1

D
, i œ B , (3.6)

with the vector di
I œ R3◊1 describing the origin of frame i expressed in the inertial frame.

The angular velocities Êi
I of the coordinate frame i described in the inertial frame are

obtained using the skew-symmetric matrix S(Ê) [50]. The elements of

S(Êi
I) = Ṙi

I(Ri
I)T =

SWWU
0 ≠Êi

I,z Êi
I,y

Êi
I,z 0 ≠Êi

I,x

≠Êi
I,y Êi

I,x 0

TXXV, i œ B , (3.7)

can be used to form the angular velocity vector

Êi
I =

SWUÊi
I,x

Êi
I,y

Êi
I,z

TXV, i œ B . (3.8)

Geometric Jacobian

To compute the corresponding generalized forces from the external forces and moments,
the geometric Jacobian matrices are used [50]. The geometric Jacobian of linear velocities
of the center of gravity and center of buoyancy follow as

(Jv)i,cg
I = ˆpi,cg

I
ˆq , i œ B . (3.9a)

(Jv)i,cb
I = ˆpi,cb

I
ˆq , i œ B . (3.9b)

Similarly, the geometric Jacobian of angular velocities can be calculated by

(JÊ)i
I = ˆÊi

I
ˆq̇ , i œ B . (3.10)

Note that the following applies

(JÊ)B
I = (JÊ)S

I = (JÊ)R
I . (3.11)
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3.1.3 Dynamics
Utilizing the results from the previous section, the equations of motion for the WEC
can be derived using the Euler-Lagrange formalism [49]. When all forces are regarded as
external generalized forces, the Euler-Lagrange equations can be formulated as

d
dt

ˆ

ˆṙ
T ≠ ˆ

ˆr
T = fr , (3.12a)

d
dt

ˆ

ˆÏ̇
T ≠ ˆ

ˆÏ
T = fÏ , (3.12b)

d
dt

ˆ

ˆ◊̇
T ≠ ˆ

ˆ◊
T = f◊ , (3.12c)

with the total kinetic energy T and the external generalized forces fr, fÏ, and f◊. Taking
into account the assumptions made in Section 3.1.1, the total kinetic energy of the system
can be expressed as

T = 1
2

1
vB,cg

I

2T
MB,ŒvB,cg

I¸ ˚˙ ˝
TB

+ 1
2mS

1
vS,cg

I

2T
vS,cg

I¸ ˚˙ ˝
TS

+ 1
2mR

1
vR,cg

I

2T
vR,cg

I + 1
2

1
ÊR

I

2T
RR

I IR

1
RR

I

2T
ÊR

I¸ ˚˙ ˝
TR

+ 1
2ItransÊgen

2¸ ˚˙ ˝
Ttrans

.
(3.13)

In (3.13), TB denotes the kinetic energy of the buoy with the matrix

MB,Œ = mB + MŒ =

SWWU
mB + mŒ,xy 0 0

0 mB + mŒ,xy 0
0 0 mB + mŒ,z

TXXV , (3.14)

comprising the mechanical mass and the added mass in surge, sway, and heave direction.
Due to the symmetry of the buoy, the added mass for surge and sway (mŒ,xy) are equal.
TS and TR represent the kinetic energy of the slide and the rod, respectively. The kinetic
energy of the transmission is labeled as Ttrans, wherein Êgen describes the angular velocity
of the generators. Its relation with the rack position is given as

Êgen = ugbx

rpin
ṡrack , (3.15)

where ugbx refers to the transmission ratio of the gearbox, and rpin describes the radius of
the pinion that engages the rack. Substituting equation (3.13) into (3.12) leads to the
equations of motion, which can be represented in the compact way

D(q)q̈ + C(q, q̇)q̇ = fq with fq =

SWUfr

fÏ

f◊

TXV . (3.16)

In (3.16), D(q) represents the mass matrix of the system, while the matrix C(q, q̇)
contains the centrifugal and Coriolis terms. To calculate the vector of generalized forces
fq, the external forces need to be derived.
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3.1.4 External Forces
Gravitational and Buoyancy Force

First, the forces due to gravity in the inertial frame are calculated. The force, which arises
from the weight of the bodies, is given as

Fg,i = mi

SWU 0
0

≠g

TXV , i œ B . (3.17)

The buoyancy force, as defined in (2.14), follows to

Fb,i = Vsub,i

SWU 0
0
flg

TXV , i œ B . (3.18)

Since the rod is fully submerged, its submerged volume Vsub,R remains constant and is
equal to the volume of the rod. The submerged volume of the slide denoted as Vsub,S,
is calculated in the equilibrium position of the WEC and assumed to be constant. The
reason for this is that the volume of the slide is relatively small compared to the volume
of the buoy and thus has little influence.
Next, an approximation of the instantaneous submerged volume of the buoy is derived.
As the primary buoy motion occurs in the heave direction, a suitable approximation for
the submerged volume can be obtained by considering only the z-position of the buoy
zB

I and the wave elevation (’). Assuming a constant wave elevation above the buoy, the
volume is approximated by a polynomial function of order N in the form

Vsub,B =
Nÿ

i=0
pi

1
’ ≠ (eT

z dB
I¸ ˚˙ ˝

zB
I

≠dmwl)
2i

. (3.19)

Drag Force

Drag forces are considered as described in Section 2.2.4. Due to the relatively small
deflections of the buoy in roll and pitch direction, the drag forces of the buoy are
approximated using the linear velocities. Hence, according to (2.16), the drag force vector
in Cartesian coordinates of the buoy calculates to

Fd,B = ≠1
2flAd,BCd,B

1
vB,cb

I ¶ vB,cb
I

2¶ 1
2 ¶ vB,cb

I , (3.20)

with matrices of the projected surface and drag coefficient defined as

Ad,B =

SWUAB,xy 0 0
0 AB,xy 0
0 0 AB,z

TXV and Cd,B =

SWUCB,xy 0 0
0 CB,xy 0
0 0 CB,z

TXV . (3.21)
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The elements of the matrix Ad,B are calculated in the equilibrium position of the WEC
and are assumed to be constant. The drag of the slide in the heave direction is negligible.
The resulting drag force of the slide is calculated similar to (3.20) as

Fd,S = ≠1
2flAd,SCd,S

1
vS,cb

I ¶ vS,cb
I

2¶ 1
2 ¶ vS,cb

I , (3.22)

with the constant projected surface Ad,S for surge and sway direction, and the matrix of
drag coefficients

Cd,S =

SWUCS,xy 0 0
0 CS,xy 0
0 0 0

TXV . (3.23)

For the rod, drag forces are considered by assigning drag torques around the rod’s x- and
y-axes. As shown in [51], viscous damping effects due to angular motion can be considered
by integrating the forces over the entire surface. Assuming the constant cross-section area
A for the rod, (2.16) is used to define the force acting on the surface area dA at length l
with

dFd,R(l) = ≠1
2flCd,R

1
vR

R(l) ¶ vR
R(l)

2¶ 1
2 ¶ vR

R(l) dA . (3.24)

The linear velocity of the rod as a function of the length l is defined by the cross product
(◊) of the angular velocity and the distance vector lR as

vR
R(l) =

31
RR

I

2T
ÊR

I

4
◊ lR with lR =

SWU0
0
l

TXV . (3.25)

Since a constant cross-section area is assumed, the following substitution applies

dA = DR dl , (3.26)

where DR denotes the diameter of the rod. Substituting (3.26) and (3.25) into (3.24) the
drag torque of the rod can be found by integrating

· d,R =
⁄ LR

0
lR ◊ dFd,R (3.27)

over the total length of the rod LR. Solving (3.27) leads to the drag torque defined in the
coordinate frame of the rod as

· d,R = 1
2fl Cd,R DR

(LR)4

4

SWU |Ï̇|Ï̇
| cos (Ï)◊̇| cos (Ï)◊̇

0

TXV . (3.28)
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Radiation Force

The radiation force of the buoy is taken into account using the radiation model outlined
in Section 2.2.2. The continuous state space model of the radiation force due to the linear
velocities of the buoy follows to

ẋr = Arxr + BrvB,cb
I (3.29a)

Fr,B = Crxr , (3.29b)

with the state vector

xr =

SWUxr,x

xr,y

xr,z

TXV , (3.30)

and the matrices of the state space model

Ar =

SWUAr,x 0 0
0 Ar,y 0
0 0 Ar,z

TXV , Br =

SWUBr,x 0 0
0 Br,y 0
0 0 Br,z

TXV ,

Cr =

SWUcT
r,x 0 0
0 cT

r,y 0
0 0 cT

r,z

TXV .

(3.31)

Excitation Force

For the excitation force of the buoy, unidirectional waves are assumed and the direction of
the incoming wave is considered to be known. The force acting on the buoy is generated
by waves traveling in the positive x-direction (surge). Using (2.15), the modified force of
the buoy in the inertial frame is given as

F̆e,B = fe(’, Vsub,B, Fe) with Fe =

SWUFe,x

0
Fe,z

TXV , (3.32)

and the nonlinear correction fe(·).

Machinery Force

The forces inside the buoy are referred to as the machinery force and comprise the force
of the WaveSpring Fwsp, the force of the pretension cylinder Fptc, and the transmission
force Ftrans, originating from the torque of the generator. In addition, for modeling the
latching mechanism of the WEC, which locks and unlocks the motion of the buoy, the
latching force Flatch is introduced. The forces add up to the machinery force

Fm = Fwsp ≠ (Fptc + Fptc,0) + Ftrans ≠ Flatch , (3.33)
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Fwsp

Flatch

Fptc + Fptc,0

Ftrans

Figure 3.3: Machinery force components acting on the buoy

with Fptc,0 being the constant pretension force. Figure 3.3 shows the machinery force
components acting along the generalized coordinate srack. The behavior of the WaveSpring
and pretension cylinder are modeled together using a nonlinear spring and nonlinear
damping force. The forces can be written as

Fwsp ≠ Fptc = ks(srack)srack + Ff (ṡrack, srack) , (3.34)

where ks(·) is the nonlinear stiffness and Ff (·) is the nonlinear friction of the system. Both
functions are described by a polynomial. With the generator torque denoted as ·gen, the
transmission force calculates to

Ftrans = ugbx

rpin
·gen . (3.35)

The force during latching is modeled with the linear damper

Fc = cṡrack , (3.36)

where c is the damping constant. The constant c is approximated using W2W simulations.
The latching mechanism is initiated by the binary latching state xlatch. To avoid applying
a step in the input signal, the latching sate is filtered by a second order system. The
filtered latching state ulatch will be used as input for the WEC model. Thus, the latching
force results in

Flatch = ulatch Fc . (3.37)

With the constant pretension cylinder force Fptc,0, the equilibrium position of the WEC is
defined as

Fptc,0 = VB,0flg ≠ mBg , (3.38)
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where VB,0 is calculated using (3.19) with ’ = 0 and zB
I = dmwl. Using the geometric

Jacobians (3.9) and (3.10), the generalized forces are calculated as

fq =
ÿ
iœB

1
(Jv)i,cg

I

2T
Fg,i +

1
(Jv)i,cb

I

2T
Fb,i

+
1
(Jv)S,cb

I

2T
(Fd,S) +

1
(JÊ)i

I

2T1
RR

I · d,R

2
+

1
(Jv)B,cb

I

2T
(Fd,B + Fr,B + F̆e,B) +

SWUFm

0
0

TXV .

(3.39)

By substituting (3.39) into (3.16) and rearranging the equations of motion, the rigid-body
system can now be expressed as a set of first-order differential equations with

d
dt

C
q
q̇

D
=

C
q̇

D(q)≠1(≠C(q, q̇)q̇ + fq)

D
. (3.40)

Combining (3.40) with the radiation model (3.29) yields the overall WEC model resulting
in

d
dt

SWU q
q̇
xr

TXV =

SWU q̇
D(q)≠1(≠C(q, q̇)q̇ + fq(q, q̇, xr, u, ’, Fe))

Arxr + BrvB,cb
I

TXV , (3.41)

with the control input
u =

Ë
·gen ulatch

ÈT
. (3.42)

The wave elevation ’ and the excitation force Fe are treated as exogenous inputs in this
formulation.

3.1.5 Model Simplification
The derived WEC model is used in the subsequent chapter to design a state observer.
Hence, it makes sense to further simplify it in order to reduce the computational effort
without significantly limiting the accuracy. In the following, approximations are made to
simplify the nonlinear model (3.40). Due to the small deflection of the WEC, trigonometric
functions are approximated using the small-angle approximation. Consequently, the cosine
of a value is approximated as one, and the sine is approximated as the value itself.
Furthermore, the angular velocities in roll and pitch are small enough that some quadratic
coupling terms, which are present in the matrix C(q, q̇), can be neglected. Analyzing the
product C(q, q̇)q̇ under irregular sea states, it is found that the coupling terms with the
rack velocity ṡrack are dominant, so that Coriolis and centrifugal terms for roll and pitch
are neglected. The reduced matrix results in

C(q, q̇) ¥
SWU 0 0 0

c21(q, Ï̇) c22(q, ṡrack) 0
c31(q, ◊̇) 0 c32(q, ṡrack)

TXV . (3.43)
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Recall that the rod is treated as a separate rigid body. Due to its low center of buoyancy
and gravity, and its small cross-section area, it is assumed that it has little influence. The
rod is therefore also neglected in the simplified model. To verify the derived 3-degree-
of-freedom (3DoF) model (3.40) and the simplified model with the approximations just
mentioned, they are compared with W2W simulations. Thereby, the states of both models
are initialized with the states of the W2W model. The models are then simulated in
an open loop alongside the W2W model for a period of time under irregular sea states.
Figure 3.4 shows such a simulation result for the sea state with the highest probability of
occurrence. The initial time was set to 540 seconds to capture the period when the roll
and pitch angles have significant magnitudes. The 3DoF model follows the W2W model
covering the relevant properties in the states. In addition, the reduced model differs only
slightly from the 3DoF model, which shows the validity of the approximations made.
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Figure 3.4: Open loop model comparison under irregular sea state (Hs = 1.75m, Te = 7s).
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3.2 Oscillator Model
The current approach of the company for estimating the wave elevation of an irregular wave
is based on an oscillator model using no harmonic oscillators with constant frequencies.
This model is adopted and briefly presented in the following. Using (2.6), the state space
representation of the oscillator model using the no constant frequencies follows to

ẋ÷ = A÷x÷ , (3.44)

with the state vector

x÷ =

SWWWWWWWWWU

÷1
...

÷no

÷̇1
...

÷̇no

TXXXXXXXXXV
, (3.45)

and the dynamic matrix

A÷ =
C

0 I
Ω 0

D
, with Ω =

SWWWWU
≠Ê2

1 0 . . . 0
0 ≠Ê2

2 . . . 0
...

... . . . ...
0 0 . . . ≠Ê2

no

TXXXXV . (3.46)

An approximation for wave elevation of an irregular wave is defined by

’ =
noÿ
i=1

÷i = cT
÷ x÷ . (3.47)

Next, the relation between the excitation force and the oscillator model is determined.
Considering that the formulation in (2.9) for the jth component of the excitation force
vector can be approximated using the oscillator states with

Fe,j ¥
noÿ
i=1

Ë
ai,j bi,j

ÈC
÷i

÷̇i

D
, (3.48)

the coefficients ai,j and bi,j can be determined through a coefficient comparison between
(2.9) and (3.48). Hence, the excitation force can be written as

Fe =

SWUFe,x

0
Fe,z

TXV ¥
SWUcT

e,x

0
cT

e,z

TXV
¸ ˚˙ ˝

Ce

x÷ , (3.49)

with
cT

e,j =
Ë
a1,j . . . ano,j b1,j . . . bno,j

È
, j œ {x, z} . (3.50)
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3.3 Sensor Models
In the following, the sensor models for the sensors presented in Section 2.4 are derived.

3.3.1 Encoder
The encoder is mounted at the pinion and can measure N discrete positions per revolution.
Consequently, the model for the encoder position senc with the pre-set value senc,0 of the
encoder can simply be formulated as

senc = N

2firpin
srack + senc,0 . (3.51)

Note that (3.51) does not yet consider the quantization of the encoder. In the simulated
sensor signal, the quantization error of the encoder is taken into account by rounding senc

to the nearest integer.

3.3.2 Pressure Sensor
The pressure sensor measures the hydrostatic and hydrodynamic pressure at the depth
zp. As the WEC model is considered a rigid body system, the sensor’s position in the
water remains constant relative to the slide’s coordinate frame. It can be defined as
pS,P

S = [0 0 zS,P
S ]T. The position with respect to the inertial frame, denoted as pS,P

I , can
be obtained as demonstrated in Section 3.1.2. The z-position relative to the mean water
level follows to

zp = eT
z pS,P

I ≠ dmwl . (3.52)
The pressure at this position can be determined using the Bernoulli equation (2.2). Adding
the constant atmospheric pressure patm, the overall pressure obtained at the position zp

results in
p = ≠fl

ˆ

ˆt
Φ¸ ˚˙ ˝

phyd

≠ flgzp¸ ˚˙ ˝
phys

+patm , (3.53)

with the hydrodynamic pressure phyd and the hydrostatic pressure phys. By using the
solution for the velocity potential function Φ (2.4) together with the dispersion relationship
(2.5), the hydrodynamic pressure can be expressed as a linear combination of regular
wave components. To be able to use the sensor model in the estimation process, the
hydrodynamic pressure is approximated using the wave components of the harmonic
oscillator model. This results in

≠fl
ˆ

ˆt
Φ ¥ flg

noÿ
i=1

cosh (k(Êi)(d + zp,0))
cosh (k(Êi)d) ÷i = cT

p x÷ , (3.54)

where zp is replaced with the sensor position in the equilibrium of the WEC

zp,0 = dS + zS,P
S ≠ dmwl . (3.55)

The constant dS refers to the distance from the universal joint to the origin of the slide
coordinate frame (see Figure 3.2). Since (3.54) is insensitive to changes in the sensor
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position, the resulting error due to the use of a constant sensor position remains within
the measurement uncertainty of the sensor. This was also confirmed by simulations.
Additionally, this approximation results in the constant output vector cT

p , which also
considerably simplifies the calculation of its linearization later on. The model for the
measured pressure p can be written as

p = cT
p x÷ ≠ flg

1
eT

z pS,P
I ≠ dmwl

2
+ patm (3.56)

3.3.3 Inertial Measurement Unit
The measurements utilized from the IMUs include acceleration, as well as the estimates
of angular velocity and attitude, obtained through their internal extended Kalman filter.
The IMU fixed to the slide will be denoted as S, IMU and the IMU mounted on the buoy
as B, IMU. Furthermore, their position in the body-fixed coordinate frame is determined
by the constant position vector pi,IMU

i and the constant rotation matrix Ri,IMU
i with

i œ I = {S, B}.

The measured acceleration comprises both the acceleration due to gravity and the sensor’s
acceleration. To derive the acceleration of the IMUs, the position vectors are first trans-
formed into the inertial frame, where the second time derivative of the position yields
the acceleration in the inertial frame p̈i,IMU

I . The gravitational acceleration in the inertial
frame is given as gI = [0 0 ≠ g]T. Since the measured acceleration ai,IMU is given in the
coordinate frame of the IMUs, the transformation of p̈i,IMU

I and gI is obtained by using
the rotation matrix

RI
i,IMU =

1
Ri

IR
i,IMU
i

2T
, i œ I . (3.57)

The model for the measured acceleration follows to

ai,IMU = RI
i,IMU

1
p̈i,IMU

I + gI

2
, i œ I . (3.58)

The angular velocities Êi,IMU of the IMUs are obtained by using the angular velocities of
the slide and buoy from (3.8) and rotating them with RI

i,IMU into the IMUs coordinate
frame. As the internal extended Kalman filters already compensate for the gyro bias, it
can be assumed that the remaining uncertainty can later be modeled by adding zero-mean
measurement noise. The model for the angular velocities results in

Êi,IMU = RI
i,IMUÊi

I , i œ I . (3.59)

Because of the alignment of the IMUs’ coordinate axes with those of the buoy and slide, in
addition to the disregard of the yaw angle as a degree of freedom in the WEC model, the
yaw rate in Êi,IMU remains close to zero. However, the simulated yaw rate of the W2W
model is significant, which leads to a large error between the two models. Consequently,
the yaw rate will be disregarded as measurement. The same applies to the model of
the attitude Θi,IMU, where only the roll and pitch angles (Ïi,IMU and ◊i,IMU) are used.
The attitude estimates of the IMUs are given with reference to the North East Down
(NED) frame. Assuming that the rotation between the inertial frame and the NED frame,
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denoted as RI
NED, is known, the orientation of the IMUs coordinate frames with respect

to the NED frame is given as

Ri,IMU
NED = RI

NEDRi
IR

i,IMU
i , i œ I . (3.60)

According to the datasheet of the IMUs, the attitude is given as a 3,2,1 Euler angle
sequence. Hence, the roll and pitch angles of the IMUs can be extracted from (3.60) [52],
resulting in

Ïi,IMU = arctan
A

Ri,IMU
NED (3, 2)

Ri,IMU
NED (3, 3)

B
, (3.61a)

◊i,IMU = arcsin
1
≠Ri,IMU

NED (3, 1)
2

, (3.61b)

with i œ I. The model for the attitude follows to

Θi,IMU =
C
Ïi,IMU
◊i,IMU

D
, i œ I . (3.62)



4 Estimation
In this chapter, an observer for the estimation task is designed on the basis of the derived
mathematical models. The basics of the Extended Kalman Filter and the associated
estimation algorithm are briefly presented. After tuning the observer, the quality of the
estimation is studied and compared with the current estimation approach. Further, the
robustness against sensor failures is evaluated and the significance of using a 3DoF WEC
model is investigated.

4.1 Dynamic System
Before designing an observer, the derived models are used to formulate a nonlinear
continuous-time dynamic system, comprising a state equation and an output equation.
This dynamic system forms the basis for the observer which is used to estimate the wave
elevation and the excitation force in the surge and heave direction. The state equation is
obtained by combining the WEC model (3.41), along with the approximations detailed in
Section 3.1.5, and the harmonic oscillator model (3.44). The state equation is formulated
as

d
dt

x = f(x, u) = d
dt

SWWWU
q
q̇
xr

x÷

TXXXV =

SWWWU
q̇

D(q)≠1(≠C(q, q̇)q̇ + fq(x, u))
Arxr + BrvB,cb

I
A÷x÷

TXXXV , (4.1)

where the wave elevation and excitation force, which were exogenous inputs to the WEC
model, can now be calculated from the states of the harmonic oscillator model. The
output equation can be easily derived from the sensor models organized in the output
vector y with

y = h(x, u) =

SWWWWWWWWWWWWWWWWWWWU

senc(srack)
p(x÷, Ï, ◊)

ΘS,IMU(Ï, ◊)

ÊS,IMU

1
Ï, Ï̇, ◊̇

2
aS,IMU(x, u)
ΘB,IMU(Ï, ◊)

ÊB,IMU

1
Ï, Ï̇, ◊̇

2
aB,IMU(x, u)

TXXXXXXXXXXXXXXXXXXXV

(4.2)

28
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4.2 Extended Kalman Filter
A common approach for observing the state of dynamic systems is the application of the
Kalman filter (KF) [53]. The dynamic system described in Section 4.1 is non-linear but
given as continuously differentiable functions. As a first choice, it is therefore reasonable
to use the extended Kalman filter (EKF) as observer. To implement the EKF on a
real-time computing unit, it is necessary to discretize the dynamic system. In this work,
the discrete-time dynamics are obtained by integrating the state equation (4.1) in time
using the explicit Euler method. The corresponding discretized state equation results in

xk+1 = xk + f(xk, uk)Ts = Fk(xk, uk) , (4.3)

with k = 1, 2, ... and the constant sampling time Ts. The output equation of the discrete
system reads as

yk = h(xk, uk) . (4.4)
For the observer design, the process noise wk and the measurement noise vk need to be
considered and are chosen additive to the above formulations, i.e.

xk+1 = Fk(xk, uk) + wk , (4.5a)
yk = h(xk, uk) + vk , (4.5b)

with properties for the stochastic variables [53]

E(vk) = 0 E
1
vkvT

j

2
= R”kj (4.6a)

E(wk) = 0 E
1
wkwT

j

2
= Q”kj (4.6b)

E
1
wkvT

j

2
= 0 (4.6c)

where E(·) denotes the expected value and ”kj is the Kronecker delta function with ”kj = 1
if k = j and ”kj = 0 if k ”= j. Furthermore, Q and R denote the constant positive
definite covariance matrices of the process noise and measurement noise, respectively. The
choice of these two matrices is discussed in the subsequent section. In the following, the
estimation procedure of the EKF is briefly outlined.

Let x̂≠
k and x̂+

k denote the estimates of the state before and after considering the mea-
surement yk, respectively. They are also referred to as a priori and a posteriori estimate.
The state estimation update then follows to [53]

x̂+
k = x̂≠

k + L̂k

1
yk ≠ hk

1
x̂≠

k , uk

22
, (4.7)

with the Kalman gain
L̂k = PkCT

k

1
CkPkCT

k + R
2≠1

. (4.8)

In (4.8), Ck is the linearized output equation given as

Ck = ˆ

ˆxk
hk(xk, uk)

----
xk=x̂≠

k
,uk=uk

, (4.9)



4 Estimation 4.3 Tuning 30

and Pk is the covariance matrix of the estimation error with P0 being the covariance of
the initial estimate x̂≠

0 . Its iteration is calculated as [53]

Pk+1 = ΦkPkΦT
k + Q + ΦkL̂kCkPkΦT

k , (4.10)

in which Φk denotes the dynamic matrix of the system resulting in

Φk = ˆ

ˆxk
Fk(xk, uk)

----
xk=x̂+

k
,uk=uk

, (4.11)

with
ˆ

ˆxk
Fk(xk, uk) = I + ˆ

ˆxk
f(xk, uk)Ts . (4.12)

In (4.12), I refers to the identity matrix. The time prediction step of the state vector
gives the a priori estimate with

x̂≠
k+1 = Fk(x̂+

k , uk) . (4.13)

The estimated wave elevation ’̂k and excitation force F̂e,k are extracted from the state
estimation update (4.7) using the relations (3.47) and (3.49)

’̂k = cT
÷ x̂+

÷,k (4.14a)

F̂e,k = Cex̂+
÷,k =

SWUF̂e,x,k

0
F̂e,z,k

TXV (4.14b)

4.3 Tuning
The covariance matrices R and Q account for uncertainties in the measurements and
un-modeled disturbances. The choice and ratio between the two matrices determine which
and how much the measurements are trusted compared to the model. Thus, a desired
behavior in the state estimation can be achieved. The purpose in this case is to tune the
two matrices to achieve a certain performance in estimating wave elevation and excitation
force. Since it is assumed that the sensors and the process noise are uncorrelated, both
covariance matrices are taken as diagonal matrices.

4.3.1 Measurement Noise
The entries of R are chosen based on the sensor properties derived from the data sheets
or taken from measurements. However, according to W2W simulations, oscillations of the
buoy and slide can occur due to the flexibility of the mooring rod, which are not captured
by the 3DoF model. Yet, these oscillations are accurately detected by the IMUs in the
simulations. As a result, this would negatively affect the estimation accuracy of the wave
elevation and excitation force. To address this issue, the corresponding entries in the main
diagonal of the covariance matrix R are increased for the IMU measurements, i.e., the
measurements are considered less reliable to reject these oscillations. The corresponding
entries refer to the third to eighth row of the output vector (4.2).
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4.3.2 Process Noise
The covariance matrix of the process noise read as

Q = E
1
wkwT

k

2
= diag

Ë
‡2

q , ‡2
v, ‡2

r , ‡2
÷

È
, (4.15)

where ‡2
q are the variances of the position states q, ‡2

v are the variances of the velocity
states q̇, ‡2

r are the variances of the radiation model, and ‡2
÷ are the variances of the

oscillator states x÷. The variances of the velocity states are identified by simulating the
3DoF model in open loop next to the W2W model. The process noise is assumed to
quantify the error between the states of the 3DoF model and the states of the W2W model.
Therefore, the variances of the errors are calculated and used as variances in the Q matrix.
With the process noise of the position states, discretization errors caused by the integration
method are considered. The values of ‡2

q can therefore be assumed to be relatively small
and are tuned based on simulations. Regarding the radiation model, a common approach
is to exclude the radiation states from having a process noise variance. Instead un-modeled
disturbances in the radiation force are accounted for in the velocity states [54]. In this
case, ‡2

r is used to account for discretization errors in the radiation model. Errors due to
the radiation force are already considered in ‡2

v due to the identification process. The
variances of the oscillator states are chosen to be equal with

‡2
÷ = ‡2

÷

Ë
1, . . . , 1

È
, (4.16)

since individual tuning goes beyond the scope of this work. The variances ‡2
÷ should

be tuned so that the harmonic oscillators are capable of modeling the wave process as
accurately as possible. For this purpose, an objective function is used, which quantifies
the quality of the estimated wave elevation and excitation force. A common method for
determining the quality of an estimated signal is to use the normalized root-mean-square
accuracy (NRMSA) [15]. The NRMSA of a discrete-time signal xk with the corresponding
estimate x̂k is represented by

NRMSA = 1 ≠
ı̂ıÙqn

k=1(xk ≠ x̂k)2qn
k=1 x2

k

, (4.17)

with NRMSA = 1 being the highest achievable accuracy. Since the goal of the EKF is
to provide an accurate estimate of both the wave elevation and the excitation force, the
objective function based on (4.17) for a specific sea state s is written as

Js = 1 ≠
ı̂ııÙqLs

k=Ns

1
Xk ≠ X̂k

2T1
Xk ≠ X̂k

2
qLs

k=Ns
XT

k Xk

, Xk =
C

’k

Fe,k

D
, (4.18)

where Ls denotes the entire samples in the simulation and Ns denotes the first sample for
which the objective function is evaluated. Ns is used to avoid the time in which the EKF
converges. The EKF is expected to perform properly across different sea states, thus the
objective function is weighted with

J = 1q
sœS

P(s)
ÿ
sœS

P(s)Js , (4.19)
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where P(s) is the probability of occurrence for a certain sea state (see Figure 2.1), and
S denotes the set of sea states in tuned mode. Figure 4.1 shows the simulation result
where the objective function (4.19) is evaluated over a range of process noise values ‡2

÷. A
suitable value is defined by the local maximum of the objective function.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
◊10≠3

0.84

0.86

0.88

0.9

‡2
÷

J

Figure 4.1: Tuning of process noise variance for the harmonic oscillator states

4.3.3 Initial Error Covariance
Another design decision of the EKF are its initial values P0 and x̂≠

0 . If the initial state is
not known, one usually sets

x̂≠
0 = 0 (4.20a)

P0 = –I , (4.20b)

with – ∫ 1 [53]. In this work, the measured states can be initialized with the sensor
values. The corresponding entries in P0 are set to the variances of the sensor noise. The
remaining values are tuned according to (4.20).

4.4 Results
The performance of the presented EKF is validated through W2W simulations. The
estimated wave elevation and excitation force are compared with the corresponding values
from the W2W model, which, as previously mentioned, are inputs to the simulation and
serve as reference. In addition, the EKF is compared with the already existing observer:
a linear Kalman filter that uses the pressure sensor signal and the harmonic oscillator
model (3.44) to estimate the wave elevation and calculate the excitation force in surge
and heave from it. Its dynamic system is given as

ẋ÷ = A÷x÷ , (4.21a)
y = phyd = cT

p x÷ . (4.21b)
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Since the oscillator model only represents the hydrodynamic pressure phyd, the pressure
sensor signal must be additionally manipulated with this method. This includes a
correction of the sensor position using the IMUs and a high-pass filter to eliminate
hydrostatic pressure. It should also be noted that the W2W model assumes unidirectional
waves. For the evaluation, it is assumed that the direction of the incoming wave is known.
Consequently, only waves traveling in positive x-direction (surge) are considered. The
evaluation is conducted under the sea states in tuned mode (see Figure 2.1), each with a
simulation time of 1000s. Values from 100s on are used to avoid the transient behavior of
the observers.

4.4.1 Assessment of EKF and Bias Compensation
During the evaluation of the EKF, it became evident that neglecting the pressure sensor as
measurement leads to a significant mean value error in the estimates of the wave elevation
and excitation force. Figure 4.2 shows this mean µ’̂ in the estimated wave elevation of the
EKF ’̂. The presence of the non-zero mean in this context can be attributed primarily
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Figure 4.2: Estimated wave elevation of EKF without pressure measurement (Hs = 1.75m,
Te = 10s).

to non-zero means in the states like rack position or roll and pitch angle. To address
this issue and reduce the bias in the estimates, the dynamic system (4.1) is augmented
by the state ÷0, which represents a mean wave elevation. Its dynamic is characterized
by a random walk model, suitable for capturing slowly changing quantities. Hence, the
dynamic equation can be expressed as

d
dt

C
x
÷0

D
= ẋa =

C
f(xa, u)

0

D
. (4.22)
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Since the state variable ÷0 is intended to represent a mean wave elevation, it is necessary
to include it in the expressions for both the wave elevation (3.47) and the excitation force
(3.49). The wave elevation of the irregular wave is redefined as

’̄ = cT
÷ x÷¸ ˚˙ ˝
’

+÷0 , (4.23)

The excitation force including the state ÷0 reads as

F̄e = Cex÷¸ ˚˙ ˝
Fe

+

SWU 0
0

flgAwp

TXV÷0 , (4.24)

where Awp is the water plane area of the buoy in the equilibrium position of the WEC, and
the product flgAwp is the magnitude response of the excitation force in heave direction
at zero frequency. As can be seen in (4.24), a mean wave elevation does not affect the
excitation force in the surge direction. This is not surprising, as a constant sea level
cannot cause lateral movement of the WEC. The variables ’ and Fe from (4.23) and (4.24)
describe the bias-free components of the wave elevation and excitation force, respectively,
and are replaced by ’̄ and F̄e in the mechanical model (3.41). With this approach, the
mean values of the estimated wave elevation and excitation force according to (4.14)
should be reduced. It may be recalled that the oscillator states x÷ are also used in the
pressure sensor model (3.56). One might anticipate that ÷0 is likewise incorporated into
the output equation for the pressure sensor. However, as the state should represent a
fictitious mean water level, the pressure sensor is not affected by this. Thus, it is not
considered in the pressure sensor model.

In order to investigate the influence of the state ÷0, the distribution of the estimation
errors is evaluated by means of their mean values and standard deviations. To enhance
the comparability of the estimated quantities, the estimation errors are normalized. This
involves dividing the estimation errors for each sea state by the difference between the
maximum and minimum values of the corresponding reference variable. In addition, this
normalization makes it possible to concatenate the normalized error signals across all
considered sea states. Thus, an overall distribution of the estimation errors across the
examined sea states is determined to quantify the effect of ÷0. Figure 4.3 shows the
normalized distribution of estimation errors for both the EKF incorporating the state ÷0,
and the EKF without the augmented state vector x, cf. (4.22). The standard deviations
and mean values for the estimated quantities are indicated with ‡ and µ. As can be
observed, the mean value of the wave elevation and excitation force error in heave is
reduced by a factor of approximately ten if ÷0 is considered in the observer design. The
associated standard deviations are marginally positively influenced as well. The changes
in the standard deviation and the mean value for the error of the excitation force in
the surge, on the other hand, are insignificant. Figure 4.3 illustrates the distribution of
estimation errors when the pressure sensor is excluded as measurement in the EKFs, as
significant mean value errors were observed in this scenario.
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Figure 4.4 shows a similar comparison. In this case, however, the pressure sensor is
included as measurement in order to determine the effects of ÷0 again. When comparing
the standard deviations and the mean values, it can be seen that the incorporation of
÷0 also has a slightly positive influence on the overall quality of the estimates. As ÷0
represents a fictitious mean wave elevation, these comparisons cannot be used to determine
which mean values of the states are compensated for and to what extent. However, since
considering ÷0 has a positive influence on the estimates, it is used in the EKF design for
further comparisons.
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4.4.2 Comparison of EKF and Linear KF
It was verified with simulation that the linear KF based on (4.21) using no harmonic
oscillators is able to accurately estimate the hydrodynamic pressure. Therefore, the
accuracy of the wave elevation estimate primarily depends on the transfer behavior
between the hydrodynamic pressure and wave elevation. Based on (3.54)

Hp(Ê) = flg
cosh (k(Ê)(d + zp,0))

cosh (k(Ê)d) . (4.25)

holds. Figure 4.5 shows its magnitude response, indicating a low-pass characteristic at
higher wave frequencies. Wave periods between 20s and 4s are particularly present in the
sea states with a high probability of occurrence. However, the magnitudes in this range
are already decreased by approximately ≠20dB, i.e. reduced to approx. 10%. Waves
below 4s are hardly detected by the pressure sensor, but are of little importance for energy
generation anyway. As a result, this low-pass characteristic is a main limiting factor for
the estimation accuracy based on pressure measurements.
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Figure 4.5: Magnitude response of Hp(Ê)

Time Series Comparison

Figure 4.6 shows a comparison for the estimated wave elevation and excitation force in
both surge and heave of the linear KF and EKF. The corresponding input signals of the
W2W model are shown as reference. Observing the estimation of the wave elevation, it
is noticeable that higher frequency components are missing in the estimation, especially
for the linear KF, resulting in underestimated amplitudes. This can be attributed to the
low-pass characteristics described above. Although the EKF use the same no frequencies
in the oscillator model as the linear KF, its amplitudes of the wave elevation are estimated
more accurately. This could be explained by the error covariances of the higher frequency
oscillator states being significantly reduced by the use of several independent measurements.
A notable difference in estimates is also evident for the excitation force in the surge. In the
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Figure 4.6: Time series comparison (Hs = 1.75m, Te = 7s).
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case of the linear KF, this force is computed from the estimated wave elevation. However,
the accuracy is notably restricted which can be attributed to the transfer behavior of
the wave elevation to the excitation force in surge. In the EKF, the mechanical model
provides direct feedback on the excitation force in the surge leading to an improvement in
the estimate. Figure 4.6 also shows that the estimation of the excitation force in heave
with both the linear KF and the EKF appears to be more accurate compared to the other
estimates. This can again be related to the transfer behavior. Similar to the pressure,
the behavior of the wave elevation to the excitation force in heave exhibits a low-pass
characteristic. Consequently, the pressure sensor signal represents the excitation force in
heave more accurately than the wave elevation, resulting in a more precise estimation.

NRMSA Comparison

To evaluate the performance of the observers for each sea state in tuned mode, the
NRMSA approach can be applied again. The NRMSA, as specified in (4.17), is used to
calculate the quality of the estimated wave elevation and excitation force in surge and
heave. Table 4.1 shows the results of the linear KF and EKF across the individual sea
states. It is noticeable that with the linear Kalman filter, the NRMSA increases with
increasing wave period Te for the wave elevation estimate and the excitation force estimate
in heave. However, this tendency barely exists for the excitation force estimation in the
surge. As already indicated, this can be attributed to the transfer behavior between the
wave elevation and excitation force in the surge. In the range of the oscillator frequencies,
it exhibits a high-pass characteristic. Consequently, due to the low-pass characteristic
of the estimated wave elevation of the linear KF, the excitation force in the surge can
therefore only be calculated poorly. Low-pass characteristics have less influence with
increasing wave period, thus improving the NRMSA of the wave elevation and excitation
force in heave for the linear KF. A comparison of the NRMSA of the linear KF and the
EKF for sea states with a high probability of occurrence (Te = 7s and Te = 10s) shows
that the EKF exceeds the linear KF for all three estimated quantities. However, as the
wave period or significant wave height increases, the advantage of the EKF over the linear
KF reduces. This discrepancy might arise from the simplifications made in the 3DoF
model. It is particularly striking that the NRMSA of the EKF for the excitation force
in surge is significantly reduced for Te = 16s. However, due to the negligible probability
of occurrence of these sea states, no further investigations were conducted to determine
which effects are responsible for this loss of accuracy.

Estimation Error Distribution

When determining the quality of the estimation using the NRMSA, an error due to a
possible non-zero mean is included in the assessment. As in Section 4.4.1, the mean value
and the distribution of the estimation errors are therefore examined separately. Figure 4.7
shows the distribution of the normalized estimation errors for the linear KF and EKF,
accumulated over the sea states in tuned mode. The mean values and standard deviations
are given with µ and ‡. The majority of the estimation errors of the EKF are distributed
over a considerably smaller range with a standard deviation that is reduced significantly
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Te (s) Hs (m) Wave elevation Ex. force surge Ex. force heave
Linear KF EKF Linear KF EKF Linear KF EKF

4 1 0.24 0.64 0.30 0.86 0.42 0.86
1.75 0.23 0.63 0.30 0.82 0.42 0.84

7

1 0.62 0.87 0.51 0.87 0.78 0.94
1.75 0.62 0.86 0.50 0.84 0.77 0.93
2.5 0.61 0.85 0.50 0.82 0.77 0.91
3.75 0.61 0.82 0.49 0.79 0.77 0.89

4 0.62 0.79 0.51 0.76 0.77 0.88

10

1 0.76 0.90 0.54 0.84 0.87 0.96
1.75 0.76 0.90 0.54 0.80 0.87 0.95
2.5 0.75 0.89 0.53 0.78 0.86 0.94
3.25 0.75 0.87 0.52 0.75 0.86 0.93

13

1 0.81 0.92 0.55 0.76 0.89 0.96
1.75 0.81 0.92 0.54 0.76 0.88 0.96
2.5 0.80 0.91 0.52 0.72 0.88 0.94
3.25 0.80 0.90 0.52 0.70 0.88 0.94

16
1 0.85 0.89 0.56 0.58 0.90 0.95

1.75 0.84 0.89 0.54 0.57 0.90 0.95
2.5 0.84 0.88 0.55 0.55 0.89 0.94

<1% 1-4% 4-9% 10-13% 14-17%

Table 4.1: NRMSA comparison of observers for sea states in tuned mode
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for the three estimates compared to the linear KF. However, this is at the cost of a
larger mean error, mainly due to the non-zero means in the states. In order to take into
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Figure 4.7: Comparison of the distribution of the estimation errors

account the minimum and maximum estimation errors into the evaluation, the observers
are compared using a boxplot diagram. Figure 4.8 shows the box plots for the normalized
wave elevation and excitation force errors across all sea states of the EKF and linear KF.
The box corresponds to the area in which 99% of the estimation errors are located with
the median indicated as line in the box. The whiskers, represented by the horizontal lines
outside the box, correspond to the minimum and maximum estimation errors. As can be
seen, the minimum and maximum estimation errors for the wave elevation and excitation
force in heave are visibly reduced for the EKF, but not for the excitation force in surge.
The reason for this is mainly due to the sea states with Te = 16s where the accuracy of the
EKF decreases significantly for the excitation force estimation in surge (see Table 4.1).
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Figure 4.8: Boxplot comparison of the accuracy of the linear KF and the EKF

4.4.3 Robustness against Sensor Failures
One major limitation of the linear KF is the case of a pressure sensor failure, where no
estimation of the wave elevation and consequently the excitation force in surge and heave
is possible. In contrast, the EKF combines several sensors for the estimation process,
allowing to assess its robustness and quality of the estimation in case of single and multiple
sensor failures. For this analysis, sensor failures are simply simulated by neglecting the
corresponding measurements in the output vector of the EKF. The robustness of the
estimation is again determined using box plots diagrams of the normalized estimation
errors across all sea states in tuned mode. Figure 4.9 shows the box plots for the wave
elevation and excitation force in surge and heave of the EKF with respect to single sensor
failures. Recall that the box corresponds to the area in which 99% of the estimation
errors are located and the whiskers represent the minimum and maximum estimation
errors. The most interesting case is probably that of a pressure sensor failure. Figure 4.9
demonstrates a notable increase in the wave elevation and excitation force error in heave,
which emphasizes the relevance of the pressure sensor. When comparing the boxplots in
this case with those of the linear KF in Figure 4.8, it is evident that the range where
99% of the error is concentrated is slightly smaller for the EKF (less than 20% error)
than for the linear KF. However, the minimum and maximum errors are larger. It should
be recalled, though, that in this case, the linear KF would not be able to provide any
estimates. When examining the three remaining single sensor failures in Figure 4.9, it
is apparent that the EKF remains robust against these errors. This is expected in the
case of IMU errors, given the redundancy in the measurements. However, in some cases
of sensor failures, the estimation of the excitation force in the surge seems to improve.
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Figure 4.9: Robustness of EKF against single sensor failures
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This effect could be attributed to changes in the weighting of measurements in the EKF,
influenced by the entries in the covariance matrix of the measurement noise. Figure 4.10
shows further box plots for selected multiple sensor failures. As can be seen, the EKF
provides reasonable results in the first two cases of sensor failures. Only in the event of a
pressure sensor failure in combination with an IMU failure, there is a noticeable increase
in the estimation errors. Nevertheless, 99% of the estimation errors in these cases are
distributed in the range of 20% percent of the normalized error, which is again comparable
to the values of the linear KF (see Figure 4.8).
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Figure 4.10: Robustness of EKF against multiple sensor failures

4.4.4 Impact of Degrees of Freedom
The estimation of the EKF is based on the 3DoF model derived in Section 3.1. To confirm
the legitimacy of the 3DoF model, the estimation was also performed using an EKF based
on a 1DoF model that considers only the rack position srack and a 2DoF model that
considers the rack position and the pitch angle srack and ◊, respectively. To investigate
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the impact of the considered degrees of freedom on the estimation, the errors are plotted
alongside the inclination angle. The inclination angle Â characterizes the angle that the
WEC encloses with the z-axis of the inertial frame and calculates to

Â = arccos(cos (Ï) cos (◊)) . (4.26)

Figure 4.11 shows the time series for the estimation error of the wave elevation of the EKFs
depending on the degrees of freedom considered, and the inclination angle. The estimation
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Figure 4.11: Impact of degrees of freedom considered in estimation (Hs = 1.75m, Te = 7s).

error of the EKF based on 1DoF shows a clear correlation with the inclination angle as
neither the roll nor pitch angle are considered in the model. On the other hand, the
estimation error of the EKF based on 3DoFs remains unaffected by the lateral deflection
of the WEC. With the 2DoF EKF, the estimation error is just slightly reduced compared
to the 1DoF EKF. According to Figure 4.11, the incorporation of the roll and pitch angle
into the model shows a decisive advantage with regard to the estimation error. This shows
the significance of using a 3DoF model for estimation.

As already discussed in detail, the 3DoF EKF offers a significant advantage over the
linear KF in terms of estimation accuracy. However, the EKF is associated with a higher
computational effort, which is another crucial factor to consider when selecting a suitable
algorithm for the estimation task. Simulations indicate that the computational effort for
the EKF increases by a factor of approximately 50 compared to the linear KF. Despite
this significant difference in complexity, an online implementation should still be feasible.



5 Conclusion and Outlook
In this work, an estimation strategy for a point absorber WEC was developed that is
capable of estimating the wave elevation and the excitation force in the surge and heave
direction. An EKF based on a non-linear but simplified dynamic model of the WEC was
used. The model was verified using a comprehensive 6DoF W2W model showing that the
simplified model is capable of capturing the relevant movements of the WEC within three
degrees of freedom. As the simplified model is able to account for non-linearities due to
the variable submergence of the buoy, the model could be coupled with an oscillator model
for the wave elevation, which also approximates the dynamics of the excitation force in the
surge and heave directions. In order to obtain reliable estimates, multiple and redundant
sensors were included in the estimation process. The performance of the EKF was evalu-
ated using W2W simulations for various sea states. A comparison between the EKF and
the linear KF shows that the EKF provides better results in terms of estimation accuracy,
especially for sea states with a high probability of occurrence. However, for some sea states
with a lower probability of occurrence, the estimation accuracy of the EKF decreases
significantly. This is particularly apparent in the estimation of the excitation force in surge.
Further investigations are necessary to examine the underlying causes in more detail. In
addition, the robustness of the EKF was demonstrated by simulating different sensor
failures. In the case of pressure sensor failures, the accuracy of the estimate is most affected.
Yet, the EKF is able to provide reliable estimates under various sensor failures. Although
the predominant motion of the WEC is the heave motion, an EKF relying on a 3DoF model
was shown to be crucial for obtaining accurate estimation results. Despite the improved
estimation accuracy of the EKF compared to the linear KF, the impact of these results on
the prediction algorithms and consequently on the power output remains to be investigated.

With regard to the results, it should be noted once again that only unidirectional waves
traveling in positive surge direction were considered in the evaluation. As the EKF design
only considers excitation forces in surge and heave, the results represent a best-case
scenario. Future work could, for example, focus on including a parameter for a mean
wave direction to account for an excitation force in the sway direction. An attempt could
then also be made to estimate this parameter within the EKF. Consequently, it would
be interesting to investigate the performance of the EKF under different scenarios for
unidirectional and multidirectional wave conditions. In addition, the dynamic system used
in the EKF has a high model order due to the oscillator model. Future work could there-
fore also focus on the proper choice of oscillator frequencies to reduce the computational
complexity of the EKF.
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