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Abstract

This thesis presents an innovative approach developed by Bühler et al. ([1]), for hedging a
portfolio of derivatives in the presence of market frictions such as transaction costs, market
impact, liquidity constraints or risk limits. Recognizing the limitations of traditional risk
management models like Black-Scholes, which rely on assumptions of complete, friction-
less markets, this thesis introduces a hedging methodology based on deep reinforcement
learning. Unlike conventional models, this approach does not depend on predefined mar-
ket dynamics or the computation of Greeks. Instead, it employs neural networks to model
hedging strategies, adapting to various market conditions including those with market
frictions. This represents a significant shift from traditional derivative trading methods,
focusing on practical market dynamics rather than theoretical constructs.
Moreover, the thesis explores the subdiffusive Black-Scholes model, providing a more

comprehensive view of market dynamics and the valuation of assets. This model in par-
ticularly reflects market behaviors not adequately represented by the traditional Black-
Scholes model, such as long-range correlations, heavy-tailed distributions, and periods of
constant asset prices – characteristics especially prevalent in emerging markets.
The practical application of these methodologies is demonstrated through Python-

based implementations, showcasing the deep hedging method and the subdiffusive Black-
Scholes model. The effectiveness and accuracy of these models are highlighted, along with
a comparative analysis between the two approaches.
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1 Introduction

1.1 Reinforcement Learning and Risk Management

Risk management has always been an integral part of every financial institution. The
whole process of identifying, analyzing the risk in financial assets has nowadays become
even more important, because with the rapid globalization, new, more complex risks have
emerged. In order to prevent huge losses that are caused through that risks, a company
has to adapt different techniques to manage the risk. Traditionally, risks in derivatives
trading have been assessed using the computation of Greeks within the framework of
classical stochastic theory, relying on a frictionless and complete market model, known
as risk-neutral pricing. However, in practise complete markets do not exist. In real world
trading in any financial instrument is typically influenced by transaction costs, enduring
effects on market prices, and limitations related to the liquidity of the asset. Traditional
models like the Black-Scholes model, which assume complete markets, may not be fully
applicable or accurate in these scenarios. This has led to the development of more sophis-
ticated models and approaches, such as those incorporating deep reinforcement learning
to better manage risks in these more complex and realistic market environments.

This thesis introduces a novel hedging approach, that was established by Buehler [1],
which utilizes reinforcement learning where hedging strategies are modelled as neural
networks. This model is applicable across various markets including those with complex
market frictions, because it does not depend on a chosen market dynamics and does
not require the calculation of Greeks. Instead of calculating Greeks, the focus shifts
to modeling realistic market dynamics and evaluating the actual performance of the
hedging strategy in out-of-sample scenarios. This aspect marks a significant departure
from traditional derivative trading approaches, emphasizing practical market dynamics
over theoretical models.

Furthermore, this thesis delves into the subdiffusive Black-Scholes model, providing an
enhanced view of market dynamics and asset valuation. This is particularly crucial for
comprehending subdiffusive market behaviors, which are not effectively represented by
the traditional Black-Scholes model. Black Scholes Model is a well known and mostly used
model for pricing of European Options. Even though it is a very good model it doesn’t
take into account market properties like: long range correlation, heavy tailed and skewed
marginal distributions, lack of scale invariance and periods of constant values, ([12]).
Exactly the last point we would like to observe and take into consideration in our model.
Therefore, we present the so called subdiffusive Black Scholes model in which the prices
are modelled by subdiffusive geometric Brownian motion. Subdiffusive characteristics
describe price staleness effect that is particularly shown in emerging markets where the
number of participants and the number of transactions are low and so the price processes
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stay constant or have very low fluctuations,([11]).
Lastly, we delve into practical applications by showcasing some examples of the deep

hedging method and subdiffusive Black Scholes method, implemented using Python pro-
gramming. These examples serve to highlight the theoretical aspects of both methods
and to also demonstrate the effectiveness and accuracy of the deep hedging model. Fur-
thermore, we perform a comparative analysis between the deep hedging approach and
the subdiffusive Black Scholes model.

This thesis is structured as following:

• Chapter 2: in this chapter, we establish the mathematical foundation for pricing
and hedging with the deep hedging model. We focus on describing a model in an
incomplete market, one that encompasses various market frictions. We optimize
hedging of a portfolio of derivatives under convex risk measures.

• Chapter 3: Here, we explore the application of neural networks in the financial
hedging. We provide a basic knowledge on the training process of neural network
and explain why hedging strategies can be modeled by neural networks.

• Chapter 4: We delve into the mathematical concepts of subdiffusion and apply
them to the Black Scholes model in order to better reflect the realities of market
behavior.

• Chapter 5: The final chapter provides a practical application of the concepts dis-
cussed. We present an example in Python, demonstrating how the deep hedging
model can be applied in a real-world setting. Following this, we conduct a compar-
ative analysis, contrasting the results obtained from the deep hedging model with
those derived from the subdiffusive Black Scholes model. This comparison is aimed
at highlighting the practical differences between these two approaches in modeling
financial market dynamics and in developing hedging strategies

.
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2 Incomplete Market Model

In this chapter, we lay out a theoretical foundation for both pricing and hedging in
the context of discrete-time financial markets that are subject to various frictions. This
is achieved through the application of convex risk measures, a mathematical approach
that enables assessment of risk under these market conditions. This framework not
only provides a structured method for evaluating financial instruments in markets with
imperfections but also offers strategies for hedging against potential risks. By employing
convex risk measures, we can address the complexities and challenges posed by discrete-
time markets, where market dynamics evolve in distinct time intervals and frictions such
as transaction costs, liquidity constraints, and market impacts play a significant role.

2.1 Mathematical Finance Basics

First, we will provide some basic definitions from mathematical finance based on [28],
that will be needed for better understanding of our optimization problem.
Throughout this section, we consider a discrete time market model in which d+1 assets

are priced at times k = 0, ..., T .

Definition 2.1.1: A filtration F = (Fk)k∈T of F is defined as an increasing family
of sub-σ-algebras of F , meaning Fs ⊂ Fk ⊂ F for all s < k in T . The triple Ω,F ,F is
called measurable space. We assume that F0 = {0,Ω} and FT = F .

Let
(Sk) = (S0

k , ..., S
d
k) for k = 0, ..., n

denote mid prices given by an Rd+1-valued F-adapted stochastic process where Si
k repre-

sents the price of an i-th asset held in the portfolio at time k. The method used by the
deep hedging algorithm presented here does not require an equivalent martingale measure
under which S is martingale.

Definition 2.1.2: A stochastic process Y = (Yk)k=0,...,T is called adapted with respect to
the filtration (Ft)k=0,...,T if each Yk is Fk-measurable. A stochastic process Z = (Zk)k=1,...,T

is called predictable with respect to (Fk)k=0,...,T each Zk is Fk−1− measurable.

Definition 2.1.3: Trading strategy is a predictable Rd-valued stochastic process

(δk) = (δ0k, ..., δ
d
k) for k = 1, ..., T

where δik represents the amount of i-th asset held in the portfolio at time k.
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Definition 2.1.4: A strategy δ is self-financing (or replicating) if the relation

δkSk = δk+1 Sk

holds for every k = 1, ..., T − 1.
Note that:

δkSk :=
d∑

i=0

δikS
i
k for k = 1, . . . , T − 1

In other words, the self-financing strategy means, that at time tk the amount of wealth at
our disposal is δkSk and we decide to re-balance our portfolio with the following quantity
δk+1 in such way that the overall value of the portfolio does not get changed. The changes
in the portfolio value are solely resulting from the accumulated gains and losses arising
from fluctuations in the asset price

δk+1 Sk+1 − δk Sk = δk+1(Sk+1 − Sk) (2.1)

In fact, δ is self-financing if and only if 2.1 holds for k = 1, ..., T − 1. It follows through
summation over 2.1 that

δk Sk = δ1 S0 +
k∑

j=1

δk(Sk − Sk−1) for k = 1, ..., T.

Here, the constant δ1 S0 can be interpreted as the initial investment for the purchase of
the portfolio δ1.
Let us now assume that S0

0 is the numeraire, then the discounted price process is

X i
k :=

Si
k

S0
k

k = 0, ..., T, i = 0, ..., d, X0
k = 1.

Definition 2.1.5: The (discounted) value process V = (Vk)t=0,...,nassociated with a
trading strategy δ is given by

V0 := δ1X0 and Vk := δkXk for k = 1, ..., T.

Vk can be interpreted as the portfolio value at the end of the k-th trading period expressed
in units of the numéraire asset

Vk = δkXk =
δkSk

S0
k

.

Definition 2.1.6: A self-financing trading strategy is called an arbitrage opportunity if
its value process V satisfies

(1) V0 ≥ 0
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(2) Vn ≥ 0 P− a.s.

(3) P[Vn > 0] > 0

Theorem 2.1.7 (Fundamental Theorem of Asset Pricing): The market model is
arbitrage-free if and only if the set P of all equivalent martingale measures is non-empty.
In this case, there exists a P∗ ∈ P with bounded density dP∗/dP.

Definition 2.1.8: A non-negative random variable Z on (Ω,FT ,P) is called a European
contingent claim. A European contingent claim Z is called a derivative of the underlying
assets S0, S1, ..., Sd if Z is measurable with respect to the σ-algebra generated by the price
process (Sk)k=0,...,n.

Definition 2.1.9: We assume that the market is arbitrage free. Contingent claim Z is
attainable if there exists a self-financing strategy δ such that

Z = δT ST P− a.s. (2.2)

Such a trading strategy δ is called a replicating strategy for Z.
The discounted value of a contingent claim Z when using the numéraire S0 is given by

H :=
Z

S0
T

.

Clearly it follows from 2.2

H = δTXT = VT = V0 +
T∑

k=1

δk(Xk −Xk−1)

Theorem 2.1.10: Any attainable discounted claim H is integrable with respect to each
equivalent martingale measure, i.e.,

EP∗ [H] < ∞ ∀P∗ ∈ P .

Moreover, for each P∗ ∈ P the value process of any replicating strategy satisfies

Vk = EP∗ [H|Fk] P− a.s. for k = 0, ..., T. (2.3)

In particular, V is a non-negative P∗-martingale.

Remark 2.1.11: When applied to an attainable contingent claim Z prior to discounting,
upper Theorem states that

δkSk = S0
kEP∗ [

Z

S0
T

|Fk] k = 0, ..., T P− a.s. ∀P∗ ∈ P

for every replicating strategy δ. In particular, the initial investment which is needed for
a replication of Z is given by

δ1S0 = S0
0EP∗ [

Z

S0
T

].
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Let us now turn to the problem of pricing a contingent claim. Consider first a discounted
claim H which is attainable. Then the (discounted) initial investment

δ1X0 = V0 = EP∗ [H].

needed for the replication of H can be interpreted as the unique (discounted) “fair price”
of H. In fact, a different price for H would create an arbitrage opportunity.

Definition 2.1.12: A real number πH is called an arbitrage-free price of a discounted
claim H, if there exists an adapted stochastic process Xd+1 such that

(1) Xd+1
0 = πH

(2) Xd+1
k ≥ 0 k = 1, ..., T − 1

(3) Xd+1
T = H.

and such that the enlarged market model with price process (X0, X1, ..., Xd+1) is
arbitrage-free. The set of all arbitrage-free prices of H is denoted by Π(H).
Thus, an arbitrage-free price πH of a discounted claim H is by definition a price at which

H can be traded at time 0 without introducing arbitrage opportunities into the market
model: If H is sold for πH , then neither buyer nor seller can find an investment strat-
egy which both eliminates all the risk and yields an opportunity to make a positive profit.

Theorem 2.1.13: Let H be a discounted claim.

(a) If H is attainable, then the set Π(H) of arbitrage-free prices for H consists of the
single element V0, where V is the value process of any replicating strategy for H.

(b) If H is not attainable, then inf Π(H) < supΠ(H) and Π(H) = (inf Π(H), supΠ(H)).

Theorem 2.1.14 (2nd FTAP): An arbitrage-free market model is complete if and
only if there exists exactly one equivalent martingale measure.

Lemma 2.1.15: An arbitrage free market is complete if and only if every contingent
claim is attainable.

2.2 Incomplete Markets

In this section we will define the setting of the incomplete market that will be needed for
our deep hedging strategy. Let us define the model in a discrete time financial market
with finite time horizon T with trading times

0 = t0 < t1 < ... < tn = T.

12



Let (Ω,F) denote a measurable space where Ω = {w1, ..., wN} is a finite probability
space with a probability measure P such that P

[{wi}
]

> 0 for all i.
Let Ik ∈ Rr represent all important information such as mid prices, risk limits, news and
trading signals available at time tk. The process I = (Ik)k=0,...,n generates a filtration
F = (Fk)k=0,...,n, which means that Fk models the information available at time tk, which
is essential in mathematical finance, because trading strategies can’t use future informa-
tion, so that situations like insider trading can be avoided.

We define a market with d hedging instruments and let

(Sk) = (S1
k , ..., S

d
k) for k = 0, ..., n

denote mid prices given by an Rd-valued F-adapted stochastic process.
Si
k represents the price of an i-th asset held in the portfolio at time tk. The method used

by the deep hedging algorithm presented here does not require an equivalent martingale
measure under which S is martingale.
A contingent claim Z is FT -measurable random variable and in our case represents a
portfolio of liquid and OTC derivatives.

Furthermore, a predictable Rd-valued stochastic process

(δk) = (δ1k, ..., δ
d
k) for k = 0, ..., n− 1

represents trading strategy where δik denotes the amount of i-th asset held in the portfolio
at time tk. We fix δ−1 = δn =: 0.
Hu represents the set of all possible trading strategies without any constraints. However,
in real-world scenarios, there are constraints like liquidity, asset availability, or specific
trading restrictions. These constraints are represented by Hk, which is a set of allowed
strategies at time tk. The constraints can vary over time, so Hk is given as a image of a
continuous function

Hk : Rd(k+1) → Rd (2.4)

i.e. Hk := Hk(Rd(k+1)). We assume that the trading strategy δk is restricted to a set Hk.
Furthermore, for an unconstrained trading strategy δu ∈ Hu we inductively define with:

(H ◦ δu)k = Hk((H ◦ δu)0, ..., (H ◦ δu)k−1, (H ◦ δu)k)

its constrained projection into Hk as
Now, we can define H := (H ◦ Hu) ⊂ Hu which is the set of all constrained trading
strategies.
The value of the portfolio at maturity is given by

−Z + p0 + δT ST

where

δT ST =
n−1∑
k=0

δk(Sk+1 − Sk)

13



and p0 is the fair price. Furthermore, we would also like to take into consideration the costs
that occur through trading activity. We assume that the costs ck(n) arise while buying
a position n ∈ Rd in Sk at time tk. The total cost of trading a strategy δ = (δk)k=0,...,n−1

up to maturity

CT (δ) =
n∑

k=0

ck(δk − δk−1). (2.5)

We set ck(0) = 0 and we assume that ck is upper-semi continuous. This property is
needed for the proof of the proposition 3.3.5. Recall, the upper semi-continuity:

Definition 2.2.1, [30]: Let X be a topological space, x ∈ X and f : X → R be a
real valued function. The function f is called upper semi-continuous at a point x0 if for
every real y > f(x0) there exists a neighborhood U of x0 such that f(x) < y for all x ∈ U.
Equivalently, f is upper semi-continuous at x0 if and only if

lim
x→x0

sup f(x) ≥ f(x0).

Definition 2.2.2, [30]: A function f : X → R is called upper semi-continuous if it is
upper semi-continuous in every point of its domain.

The value of the portfolio at maturity can now be rewritten to

PLT := −Z + p0 + δT ST − CT (δ).

Lastly, for simplifications we set the risk free rate r = 0.

2.2.1 Hedging using convex risk measures

In a complete market with no frictions exists for every contingent claim Z unique repli-
cating strategy δ with fair price p0 so that

−Z + p0 + δT ST = 0.

But since we are working in a market with frictions, this does not hold and we face the
following problems, [2]:
1. The uniqueness of the price of the derivative: the arbitrage price should be independent
of the estimate of the probability measure and should only depend on the prices of the
underlying assets. In other words, the price described in the equation 2.1 is in the
incomplete market not unique anymore but rather depends on the choice of the equivalent
martingale measure.
2. Hedging techniques: in an incomplete market not every derivative can be replicated,
therefore an appropriate hedging strategy that lowers the risk of the portfolio needs to be
considered. In order to do so, we must specify an optimality criterion which will define
the minimal price of any financial position and give us the optimal hedge. This minimal
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price can also be interpreted as the minimal amount of capital we need to make this
position acceptable.
As optimaltity criterion we will take convex risk measure.

Our positions in the portfolio will be modeled as real-valued measurable functions X on
a measurable space (Ω,F) of possible scenarios. X will denote the linear space of all
measurable functions.
Definition 2.2.1.1: A functional ρ : X → R ∪ {∞} with ρ(0) ∈ R is called a risk
measure if it is:

1. Monotone decreasing

If X1, X2 ∈ X and X1 ≤ X2, then ρ(X1) ≥ ρ(X2).
Meaning, that a position which is valued more, needs less capital that will make it
acceptable.

2. Translation invariant or cash-invariant

If a ∈ R and X ∈ X , then ρ(X + a) = ρ(X)− a.
Adding cash to the position reduces the need for more cash by as much. We can
interpret ρ(X) as the minimal capital needed to make the position X acceptable.

Definition 2.2.1.2, [31]: A risk measure ρ : X → R is called convex if it fulfils the
following property:

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) ∀X, Y ∈ X , λ ∈ [0, 1].

Through this property it is assured that a diversification of a portfolio does not increase
risk.

Definition 2.2.1.3: A convex risk measure is called coherent if it is:

1. positively homogeneous:

ρ(λX) = λρ(X) ∀X ∈ X , λ ≥ 0

2. subadditive:
ρ(X + Y ) ≤ ρ(X) + ρ(Y ) ∀X, Y ∈ X .

Any coherent risk measure is also normalized, meaning ρ(0) = 0.

Definition 2.2.1.4: Let C be a convex subset of Rn. The function f : C → R is convex
if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∀x, y ∈ C, ∀α ∈ [0, 1].

Now we have all of the infrastructure needed to build a convex risk measure. Therefore
we define the following optimization problem:

π(X) := inf
δ∈H

ρ(X + δT ST − CT (δ))
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where ρ : X → R is a convex risk measure, CT (δ) are trading costs as defined in 2.5 and
X ∈ X .
The optimal trading strategy has been defined as a minimizer of π(X).

Proposition 2.2.1.5: π is monotone decreasing and cash-invariant. If CT (·) and H are
convex, then π is a convex risk measure.
Proof: see [1].
To remind again, π(−Z) is the minimal price, meaning, the minimal amount of capital
the trader needs to charge to make the liability −Z acceptable. But this minimal price
does not take into consideration the possibility that having no liabilities in the portfolio
could actually increase value. For that reason, we specify the indifference price p(Z)
which is the amount of capital the trader would charge to be indifferent between the
position −Z and not taking any action. Through cash invariance we get

π(−Z + p0) = π(−Z)− p0 = π(0)

we can set p0 := p(Z) where

p(Z) := π(−Z)− π(0). (2.6)

In a market without transaction costs p(Z) is the price of a replicating portfolio.

2.2.2 Utility indifference pricing

In complete markets, where all risks can be hedged, traditional pricing methods like risk-
neutral valuation work well. But in incomplete markets, not all risks can be hedged away.
This is where utility indifference pricing becomes important.It provides a way to value
derivatives and other instruments by considering the investor’s attitude towards risk and
the impact of adding or removing an instrument from their portfolio. In other words,
utility indifference pricing is a method to price financial instruments by determining the
price at which an investor is indifferent, in terms of their utility, to holding or not holding
the instrument.
We consider the exponential utility function:

U(x) = − exp(−λx), x ∈ R

where λ > 0 is the risk aversion parameter. The indifference price q(Z) ∈ R of Z is:

sup
δ∈H

E[U(q(Z)− Z + δT ST + CT (δ))] = sup
δ∈H

E[U(δT ST + CT (δ))]. (2.7)

The utility indifference price is the smallest price the investor is willing to accept in order
to sell Z.

Lemma 2.2.1: Let ρ define an entropic risk measure:

ρ(X) =
1

λ
logE[exp(−λX)]
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and let q(Z) be defined as in 2.7 and let p(Z) be defined as in 2.6. Then p(Z) = q(Z).
Proof: see [1].
This lemma proves that in the above presented framework, the exponential utility indif-
ference pricing is also included.
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3 Reinforcement learning

The primary aim of this chapter, and indeed the overarching goal of our paper, is to
present an innovative approach, developed in the paper from Buehler et al.[1], to portfolio
hedging, employing deep reinforcement learning to address challenges posed by market
frictions like transaction costs, liquidity constraints, and varying risk limits. This method
stands out because it utilizes neural networks for making trading decisions, a significant
shift from conventional hedging strategies. These neural networks are not limited to
using just the price data of hedging instruments. They also integrate additional data
types, such as trading signals, relevant news analytics, and historical hedging decisions.
This broad data integration mirrors the multifaceted information a human trader might
consider, aligning the approach more closely with real-world trading scenarios.
The goal of this chapter and of the whole paper is to approximate an optimal hedging

strategy using neural networks. We will describe the deep learning process and provide
a mathematical description of it and lastly approximate a hedging strategy using neural
networks.

3.1 Introduction to Reinforcement Learning

Machine learning can be divided into three main domains: supervised learning, unsuper-
visend learning and reinforcement learning. The latter will be the main focus of our paper.

Figure 3.1: Types of Machine Learning([3])
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Reinforcement learning is a type of machine learning that enables an agent to learn in a
complex environment through trials and errors, meaning in case of doing a desired action,
the agent gets positive reinforcement and in case of doing an undesired action, the agent
gets negative feedback, [3].

Let A define a set of actions, S the set of environments’ states and R the set of re-
wards. The environment is in this case a physical world that the agent interacts with and
St represents the situation of the agent at timepoint t. At every timestep t = 0, 1, 2, 3, . . .
the agent decides to take an action At ∈ A based on the state St ∈ S he is currently in,
[4]. As a consequence of its action, the agent receives a reward Rt+1 ∈ R and moves to
state St+1.

Figure 3.2: Representation of the learning process ([4])

Definition 3.1.1: A state-transition probability function p : S × S × A → [0, 1] is
specified as, [4]:

p(s′|s, a) = P[St = s′|St−1 = s, At−1 = a]. (3.1)

p therefore describes the probability of transitioning to state s′ from state s at time t
under action a.

Definition 3.1.2: A reward-probability function r : S ×A → R is defined as,[4]:

r(s, a, s′) = E[Rt−1|St−1 = s, At−1 = a, St = s]. (3.2)

r is the immediate reward after transitioning from state s to state s′.
The goal of reinforcement learning is for the agent to learn a policy π,

π : A× S → [0, 1] (3.3)

π(s, a) = P[At = a|St = s] (3.4)

that maximizes his expected cumulative rewards, [5].
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In case of the high dimensional states, the deep learning comes into play which transforms
the set of inputs to the set of outputs using deep neural networks. With deep reinforce-
ment learning the agent makes decisions based on the unstructured data without manual
engineering the space of states S, [6]. To recall, our goal is to find an optimal hedging
strategy with deep neural networks and in that case we can interpret market information
as states, trading strategies as actions and portfolio value as a reward.

3.2 Deep Neural Networks

In this section we will first go through some basics of neural networks and then apply
this architecture to our hedging problem. We will illustrate how neural networks can
be utilized to model and predict market dynamics, enabling the formulation of effective
hedging strategies that can adapt to complex, real-world financial scenarios. A mathe-
matical description of a neural network involves several key components: the architecture
of the network (layers and neurons), the activation functions, the process of forward prop-
agation (how data moves through the network), and backpropagation (how the network
learns).
Neural Network Architecture: A neural network consists of an input layer which is the

first layer of the network, where each node represents one feature of the input data, one
or more hidden layers that process the inputs from the previous layer, and an output
layer which is the final layer that produces the output of the network. Each layer is
made up of units or neurons. Neurons in one layer are connected to neurons in the next
layer through weights. Figure 3.5 depicts a neural network with one hidden layer. A feed
forward neural network is a neural network where input data are fed into each layer into
forward direction, meaning in each layer the values are calculated and passed on forward
to the next layer.
Simply speaking, the goal of a neural network is to approximate some function f with

the input x and output y. A feedforward network defines a mapping y = f(x;w) and
learns the value of the parameters w that result in the best function approximation. To
train the neural network would then mean finding the weights w, such that f(x,w) = y.
For that lets first recall that for very simple linear regression the following equation stands
y = f(x,w) = wTx. In the following steps we will present how the model is trained to
find the optimal weights.
Data enters the network at the input layer, then travels through each hidden layer, and

finally exits via the output layer. At each layer, the output of a neuron is calculated as
a weighted sum of its inputs, followed by an application of an activation function. This
process is called forward propagation. The output of a j-th neuron in the i-th layer is
calculated as a weighted sum of its inputs, plus a bias term bj

zij =
n∑

i=1

wijxi + bj for j = 1, ..., number of neurons

where xi are the inputs, wij are the weights and bj are biases. The bias allows the neuron
to shift the activation function to the left or right, which can be critical for successful
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Figure 3.3: Neural network with one hidden layer, ([7])

learning. Linear models possess a significant flaw which is that they are limited to
linear functions, which restricts their ability to capture interactions between any two
input variables. Consequently, these models are unable to comprehend or represent the
complexities that arise from the interactions of different input factors. To enable linear
models to represent nonlinear functions of the input x, we can adapt the approach by
applying the linear model to a transformed version of the input, denoted as σ(x), where σ
is a nonlinear function, for example sigmoid, RELU or leaky RELU, [26]. This alteration
allows the model to handle more complex relationships by first transforming the input
through a nonlinear mapping before applying the linear model. Finally, the result of the
weighted sum and bias is passed through an activation function. This function introduces
non-linearity, allowing the neuron to learn more complex patterns. The final output of
the j-th neuron in the i-th layer is

aij = σ(zij)

where σ is the activation function and zij is the output neuron. This result is passed
on to the next layer. The final layer produces the output of the network, which is the
network’s prediction based on the input data.

For example, let us take a look into the calculation of weights in the neural network
presented in the figure 3.5. Let x ∈ R2 define a vector of our input values. Let W ∈
R3 × R2 represent weights which gives us the information on how much does the given
input of a neuron affects its output and b1, b2 ∈ R biases. Let zij denote the value of j-th
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neuron in the i-th layer. The calculation is therefore, the following:[z11z12
z13

] =

[w11 w21

w12 w22

w13 w23

][
x1

x2

]
+

[b1b1
b1

]
In the next step we input z into activation function σ that can be defined arbitrary by
the user. Let aij denote the value of the activation function in the i-th layer of the j-th
neuron: [a11a12

a13

] =

[σ(z11)σ(z12)
σ(z13)

]
The output value a21 is then calculated through:

z21 =
[
w21 w22 w23

] [a11a12
a13

]+ b2

Then the activation function is applied a21 = σ(z21). In that way the network calculates
the output value. In the next step loss function (like mean squared error for regression
or cross-entropy for classification) can be calculated to evaluate how far the network’s
predictions are from the actual target values.
The training aims to minimize a loss function that measures the difference between the

network output and the actual target values. Our goal is, that the difference between
the target value and output value predicted by the neural network is minimal. In order
to reduce this difference an optimization algorithm like gradient descent or ADAM in
connection with backpropagation can be used. Backpropagation is a systematic method
that involves calculating and distributing errors back through the network, enabling the
adjustment of weights and biases to minimize the loss. In this case, the gradient descent
of the loss function is calculated for each layer, starting from the output layer and moving
backward through the hidden layers to the input layer. At each layer, the gradient tells
how much the weights and biases need to be adjusted to reduce the error. This is done
by calculating partial derivation of the loss function with respect to each parameter.
After computing the gradients, the weights and biases of the network are updated,

typically using an optimization algorithm like Gradient Descent or ADAM. Gradient
Descent optimization is done with a learning rate η that controls how much does the
weights and biases change, [8]:

wij = wij − η
∂C

∂wij

bi = bi − η
∂C

∂bi
.

This weight adjustment is needed because we want to get a predicted value that would
as little as possible differentiate from our target. Lastly, after the update of weights, the
output is calculated again with forward propagation. This whole process is repeated over
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many iterations (epochs), each time using either the entire dataset or batches of data
(stochastic or mini-batch gradient descent).

The learning process continues until the network’s performance converges, i.e., the loss
stops decreasing significantly, or a predetermined number of epochs is reached. Thus,
the learning rate η has to be chosen, so that the loss converges to the global minimum.
Starting with a too low learning rate would result in excessively slow convergence, whereas
initiating with an excessively high rate could lead to overshooting the minima, as seen in
the figure 3.5.

Figure 3.4: Learning curves of different learning rates η, ([27])

Gradient descent is working well for loss functions that are convex, but in other cases
the global minimum may never be reached, [27]. An improvement of the Gradient Descent
is ADAM-Adaptive Moment Estimation. This algorithm is updating the learning rate
for each parameter based on the calculation of exponential moving average of first and
second gradient descent. This approach makes Adam very efficient, especially for large
datasets and parameters with complex relationships. That was also one of the reasons
why we used ADAM in our deep hedging model presented in the chapter 5.

Besides the optimization method and learning rate, the choice of activation function
can also impact the network’s ability to learn complex patterns and converge during
training. Certain activation functions, like the sigmoid or tanh, are susceptible to the
vanishing gradient problem, where gradients become very small and the network stops
learning effectively. Newer functions like ReLU or leaky ReLU are less prone to this issue,
making the network’s training more efficient, [27]. In our deep hedging model presented
in the chapter 5 we have used the leaky ReLU activation function:

f(x) =

{
x for x ≥ 0

xα for x < 0

with α = 0.01.
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Figure 3.5: Leaky ReLU activation function ([27])

Finally, with a solid understanding of neural networks and deep learning established, we
can proceed now to a mathematical definition of the neural network.

Definition 3.2.1 (Feed forward neural network, [1]): Let L ∈ N≥2 denote the num-
ber of layers, d0 ∈ N define dimension of the input layer, dL ∈ N denote dimension of the
output layer and d1, . . . , dL−1 ∈ N define dimension of the hidden layers. Let σ : R → R
define the activation function. Lastly, let Wi : RNi−1 → RNi for any i = 1, . . . , L denote
an affine function. A feed forward neural network is a function F : Rd0 → RdL defined as

F (x) = WL ◦ FL−1 ◦ · · · ◦ F1

with Fi = σ ◦Wi for i = 1, . . . , L− 1.

For any i = 1, . . . , L the affine function W is structured as

Wi(x) = Aix+ bi

for some Ai ∈ Rdi×di−1 and bi ∈ Rdi . For any j = 1, . . . , di and k = 1, . . . , di−1 the number
Ai

jk can be interpreted as the weight connecting the node j of the i− 1 layer to the node
k of the i-th layer.
We have now defined the neural network architecture, so the next question that poses

itself is why did we chose neural network to approximate hedging strategies and not
some other parametric family of functions? The Universal Approximation Theorem is
a fundamental theorem in the field of neural networks which states that a feedforward
neural network with a single hidden layer containing a finite number of neurons can
approximate continuous functions on compact subsets of C(Rd0) to any desired degree
of accuracy, provided the activation function of the neurons is a non-constant, bounded,
and continuous function. In our setting, the prices of hedging instruments show some
dependencies, meaning we have a lower dimensional training data set which, proved by
Bölcskei ([10]), can also be efficiently approximated by neural network.

3.3 Deep Hedging Strategy

Our goal is to find an optimal hedging strategy in an infinite dimensional space. First,
we define NN∞,d0,d1 as the set of neural networks F : Rd0 → Rd1 .
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Definition 3.3.1, [9]: For 1 ≤ p < ∞ we write

∥ f ∥p,µ=
[∫

Rk

|f(x)|pdµ(x)
]1/p

so that ρp,µ(f, g) =∥ f−g ∥p,µ .Lp(µ) is the space of all functions f such that ∥ f ∥p,µ< ∞.
A subset S of Lp(µ) is dense in Lp(µ) if for arbitrary f ∈ Lp(µ) and ϵ > 0 there is a
function g ∈ S such that ρp,µ(f, g) < ϵ.

Definition 3.3.2,[9]: C(X) is the space of all continuous functions on a compact set X
in Rk. A subset S of C(X) is dense in C(X) if for arbitrary f ∈ C(X) and ϵ > 0 there
is a function g ∈ S such that supx∈X |f(x)− g(x)| < ϵ.

Theorem 3.3.3, [1]: Suppose σ is bounded and non-constant. The following state-
ments hold:

1. For any finite measure µ on (Rd0 ,B(Rd0)) and 1 < p < ∞, the set NN∞,d0,1 is
dense in Lp(Rd0 , µ).

2. If in addition σ ∈ C(R), then NN∞,d0,1 is dense in C(Rd0) for the topology of
uniform convergence on compact sets.

Note that Lp(Rd0 , µ) is the space of all functions on Rd0 such that

∫
Rd0

|f(x)|pdµ(x) < ϵ.

In simpler terms, this theorem asserts that such neural networks are capable of approx-
imating any continuous function, no matter how complex it is, given enough neurons in
the hidden layer and a suitable activation function.
Using this theorem we now show that the set of unconstrained trading strategies can

approximate well the constraint set of trading strategies.

Let {NNM,d0,d1} with M ∈ N denote a sequence of subsets of NN∞,d0,d1 and let our
activation function be bounded and non constant. {NNM,d0,d1} has the following prop-
erties:

• NNM,d0,d1 ⊂ NNM+1,d0,d1 for all M ∈ N

•
U

M∈N NNM,d0,d1 = NN∞,d0,d1

• for any M ∈ N one has NNM,d0,d1 = {F θ : θ ∈ ΘM,d0,d1} with ΘM,d0,d1 ⊂ Rq for
some q ∈ N. The function F θ is a neural network function parametrized by θ where
θ denotes the weights and biases of the layers in the network.

Lemma 3.3.4: The constrained problem

π(X) = inf
δ∈H

ρ(X + δT ST − CT ) (3.5)
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can be modified to the unconstrained problem:

π(X) = inf
δ∈Hu

ρ(X + (H ◦ δ · S)T − CT (H ◦ δ))

where H is defined as in 2.4. Recall that the information accessible in our market at time
tk is represented by the observed maximal feature set I0, ..., Ik where Ik has values in Rk.
Consequently, our trading strategies should be based on this information, as well as our
prior position in our tradable assets. So the set of unconstrained trading strategies can
be defined as

HM = {(δk)k=0,...,n−1 ∈ Hu : δk = Fk(I0, . . . , Ik, δk−1), Fk ∈ NNM,r(k+1)+d,d}
= {(δθk)k=0,...,n−1 ∈ Hu : δθk = F θk(I0, . . . , Ik, δk−1), θk ∈ ΘM,r(k+1)+d,d}

(3.6)

We replace the set of unconstrained trading strategies Hu in 3.3 by HM ⊂ Hu. Then the
optimization problem is

πM(X) = inf
θ∈HM

ρ(X + (H ◦ δ · S)T − CT (H ◦ δ))
= inf

θ∈ΘM

ρ(X + (H ◦ δθ · S)T − CT (H ◦ δθ)) (3.7)

where ΘM =
n−1π
k=0

ΘM,r(k+1)+d,d).

Therefore, the challenge of identifying an optimal hedging strategy, originally an infinite-
dimensional problem, is transformed into the more manageable task of determining the
optimal parameters for our neural network, which is a finite-dimensional constraint prob-
lem. Now we can show, that the neural network price πM(−Z)−πM(0) converges towards
exact price p(Z).

Proposition 3.3.5: Define HM as in 3.6 and πM as in 3.7. Then for any X ∈ X ,

lim
M→∞

πM(X) = π(X) (3.8)

Proof: see [1].

Having established a theoretical foundation for employing hedging strategies created from
neural networks through Proposition 4.9, let us take a look into an example on how to
find the optimal parameter numerically. The goal is to find an optimal or near-optimal
parameter θ ∈ ΘM . As an example, let us take a entropic risk measure. If we insert it
into 3.7 we get:

πM(−Z) =
1

λ
log inf

θ∈ΘM

J(θ)

where

J(θ) := E[exp(−λ(−Z + (δθ · S)T − CT (δ
θ))].

A close to optimal θ ∈ ΘM can be found numerically through gradient descent algorithm
and backpropagation.
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4 Subdiffusive Model

The classic Black-Scholes model assumes that asset prices follow a geometric Brown-
ian motion, meaning they have a constant volatility and drift rate. This model has
been foundational in the development of modern financial theory, particularly for pricing
European-style options.

However, the classic Black-Scholes model operates under certain assumptions that may
not always hold true in real financial markets. One of these assumptions is the nature
of the asset price movement, which in the standard model is typically modeled as a
diffusion process with continuous paths. The subdiffusive Black-Scholes model modifies
this assumption. It incorporates the concept of subdiffusion, a type of stochastic process
where the rate of diffusion is slower than in a standard Brownian motion. This can be
more representative of certain market conditions where volatility is not constant and
can vary over time, often observed in markets exhibiting periods of low liquidity or high
uncertainty. This can lead to more accurate pricing of financial derivatives in markets that
are not perfectly efficient or when the underlying assets exhibit non-standard movements.

In this chapter, first some basic mathematical concepts regarding subdiffusion will be
presented in order to get the foundational understanding necessary to derive the formula
for subdiffusive Black Scholes.

4.1 Mathematical Preliminaries

For the understanding of subdiffusion some knowledge in stochastic calculus is needed.
Therefore, we will present some basic concepts in stochastic theory that will be used later
on in the subdiffusive Black Scholes model.

4.1.1 Stochastic Fundamentals

Definition 4.1.1.1,[19]: Let (Ω,F ,P) be a probability space and let Ft. Wt = Wt(ω)
is a one-dimensional Brownian motion with respect to Ft and the probability measure P,
started at 0, if
(1) Wt is Ft measurable for each t ≥ 0.
(2) W0 = 0, a.s.
(3) Wt−Ws is a normal random variable with mean 0 and variance t− s whenever s < t.
(4) Wt −Ws is independent of Fs whenever s < t.
(5) Wt has continuous paths
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Definition 4.1.1.2:A stochastic process X = (Xt)t∈T is called cadlag if almost all paths
of X are right continuous for which the left-side limit exists.

Definition 4.1.1.3: A cadlag, adapted, real valued stochastic process (Ut)t≥0 on a filtered
probability space (Ω, (Ft)t≥0,P) with U0 = 0 a.s. is said to be a Lévy process if it satisfies
the following conditions, [14]:
(1) U has independent increments, i.e. Ut − Us is independent of Fs for any 0 ≤ s ≤ t.
(2) U has stationary increments, i.e. for any 0 ≤ s, t the distribution of Ut+s − Ut does
not depend on t.
(3) U is stochastically continuous, i.e. for every 0 ≤ t and ϵ ≥ 0:

lim
s→t

P(|Ut − Us| > ϵ) = 0.

Examples of Levy process are Brownian motion and compound Poisson process.

Definition 4.1.1.4: A Levy process {U(t)}t≥0 with nonnegative increments is called a
subordinator if and only if its cumulant function can be written as, ([24]):

ψ(u) = λu+

∫ ∞

0

(eux − 1)ν(dx)

where λ ≥ 0 is the drift and ν(dx) is the Levy measure that satisfies

ν(−∞, 0) = 0,

∫ ∞

0

(x ∧ 1)ν(dx) < ∞.

Definition 4.1.1.5: Given a subordinator {U(t)} , the first-passage time process defined
as

S(t) = inf{τ > 0 : U(τ) > t}
is called the inverse subordinator.

Definition: A stable process is a real-valued Levy process {U(t)}t≥0 with initial value
U(0) = 0 that satisfies the self-similarity property, [25]

U(t)

t1/α
d
= U(1) ∀t > 0.

The parameter α is called the exponent of the process.

Continuous-Time Random Walk
Unlike in the random walk model where the time interval between steps remain constant,
in the Continuous-Time Random Walk (CTRW) model the time interval between steps
and the steps size are both random variables. In this model, the walker starts at the
origin (point zero) at the initial time T0, which is set to 0. The walker remains stationary
until time T1, at which point a jump occurs. The size of this jump, R1, can be either
positive or negative. After this jump, the walker waits again until time T2 to make the
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next jump of size R2, and this pattern continues. Thus, the time intervals τi = Ti − Ti−1

i = 1, 2, ... which are called waiting times and the sizes of these jumps Ri are both treated
as independent and identically distributed variables, [23]. The time of the nth jump in
this sequence is denoted as Tn, [23]:

Tn = T0 +
n∑

i=1

τi for n = 1, 2, ... and T0 = 0

The position of the walker at time t is given by

W (t) =

N(t)∑
i=1

Ri

where N(t) is the counting process Nt = max{n ∈ N :
∑n

i=1 Ti ≤ t}.

4.1.2 Stochastic Calculus

A diffusion process is a fundamental concept in physics and mathematics, referring to the
way particles spread out over time. It describes the random movement of particles from
regions of higher concentration to regions of lower concentration, eventually leading to an
equilibrium distribution, [17]. Brownian motion is a key example of a diffusion process.
In mathematical finance, diffusion refers to a type of stochastic process that models the
evolution of financial variables, such as asset prices, interest rates, or indices, over time
under the influence of both deterministic and random factors. Financial diffusion pro-
cesses are often modeled using stochastic differential equations (SDEs). To analyze and
solve SDEs in finance, Itô calculus is used.

Definition 4.1.2.1 (Ito Diffusion): Let (Ω,F,P) denote a probability space with a
m-dimensional Brownian motion Wt = (W 1

t , ...,W
m
t )T with respect to the filtration F ,

which is right-continuous and complete. To go further in detail we need the stochastic
differential equation, defined as

dXt = b(t,Xt)dt+ σ(t,Xt)dWt t ∈ [0, T ]

with Borel-measurable functions b(·, ·) : R+×Rn → Rn and σ(·, ·) : R+×Rn → Rn×m for
t ∈ [0, T ]. Furthermore, the drift coefficient and the diffusion coefficient satisfy a uniform
Lipschitz condition: ∃K > 0 ∀X, Y ∈ Rn

∥ b(t,X)− b(t, Y ) ∥ + ∥ σ(t,X)− σ(t, Y ) ∥≤ K ∥ X − Y ∥
and the linear growth condition: ∃K > 0 ∀X ∈ Rn :

∥ b(t,X) ∥ + ∥ σ(t,X) ∥≤ K(1+ ∥ X ∥).
These conditions imply the existence of a unique strong solution Xt which is called Ito

diffusion. The corresponding matrix defined as

a(t, x) = σ(t, x)σ(t, x)T
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is called diffusion matrix of Xt.

Definition 4.1.2.2 (Time-homogeneous Ito Diffusion): A time-homogeneous Ito
diffusion is a stochastic process Xt(ω) = X(t, ω) : R+ × Ω → Rn, which is a solution of
the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt t ∈ [0, T ],

where the coefficients b(x), σ(x) fulfill the Lipschitz condition and the linear growth con-
dition, in which case they are simplified to

∥ b(X)− b(Y ) ∥ + ∥ σ(X)− σ(Y ) ∥≤ K ∥ X − Y ∥ X, Y ∈ Rn.

Definition 4.1.2.3 (Markov Property for time-homogeneous Ito Diffusion): Let
Xt be a time-homogeneous Ito diffusion, f : Rn → R be a bounded, Borel-measurable
function, τ < ∞ a stopping time and t, s ≥ 0. Then it holds that

1. Markov property: E[f(Xτ+s)|Ft] = EXt [f(Xs)]
2. Strong Markov property: E[f(Xτ+s)|Fτ ] = EXτ [f(Xs)]//
This means that the behavior of the process in the future depends only on the present

and not on the past.

4.1.3 Fractional Calculus

Fractional derivatives
We consider f(x) = xk, k ∈ N, then the nth derivative of f(x) is:

dnf

dxn
= Dnxk = k(k − 1)(k − 2)...(k − n− 1)xk−n

=
k!

(k − n)!
xk−n

=
Γ(k + 1)

Γ(k − n+ 1)
xk−n

where Γ(·) denotes the gamma function. We can replace n with some arbitrary number
α and get:

dαf

dxα
= Dαxk =

Γ(k + 1)

Γ(k − α + 1)
xk−α α > 0

Riemann-Liouville Fractional Derivative is defined as, [23]:

bD
−α
x f(x) = bI

α
x f(x) =

1

Γ(α)

∫ x

b

f(u)(x− u)α−1du

and for 0 < α < 1 we get:

bD
−α
x f(x) =

d

dt
bI

1−α
x f(x)

=
1

Γ(1− α)

∫ x

b

f(u)(x− u)−αdu
(4.1)
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Fractional Differential Equations of the Riemann-Liouville type is defined as, [23]:

Dαf(x) = u(x, f(x)) α > 0

with initial conditions:

Dα−kf(0) = bk k = 1, 2, ..., n− 1

In−αf(0) = bn

4.2 Fractional Diffusion

A distinctive feature of Brownian motion is that its path is continuous but lacks smooth-
ness; as a result, it is not differentiable at any point, [23]. This continuous nature implies
that a particle undergoing Brownian motion is unable to make instantaneous jumps from
one position to another. Anomalous or fractional diffusion refers to a type of diffusion
process that deviates from the classical Brownian motion observed in normal diffusion.
In normal diffusion, the variance is linearly proportional to time, meaning the variance
of the process after time t is proportional to t, reflecting the fundamental property that
the spread of the particle’s path grows linearly with time. This linear growth in variance
is a key feature distinguishing Brownian motion from other types of stochastic processes
where variance might evolve differently over time. In contrast, in anomalous diffusion,
the variance follows a non-linear time dependency, that is described by a power law

E[X(t)2] ∼ ctα as t → ∞ (4.2)

where K is the so-called generalized diffusion coefficient, [20].
Anomalous diffusions are classified into three main groups:, [20]:

• 0 < α < 1: subdiffusion

• α = 1: Brownian motion

• α > 1: superdiffusion

In subdiffusion, particles experience significantly longer travel times compared to classical
diffusion, primarily because they frequently pause between steps, leading to a slower
diffusion rate. On the other hand, superdiffusion is characterized by particles spreading
more rapidly than in regular diffusion. This phenomenon is often observed in biological
systems, whereas subdiffusion is typically found in transport processes, [23]. The focus
of this paper centers on the analysis of subdiffusion.
The universal formula for subdiffusion is the so called fractional Fokker Planck equation

that was derived from the continuous time random walk (CTRW) model. In mathematics,
a continuous-time random walk (CTRW) is a generalization of a random walk where the
wandering particle waits for a random time between jumps, see the definition in 4.1.1. It is
a stochastic jump process with arbitrary distributions of jump lengths and waiting times.
The subdiffusive nature of this process is directly linked to the heavy-tailed distributions
of the waiting times in the CTRW model. This heavy-tailed distribution means there’s a
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higher probability of encountering long waiting times compared to what is expected in a
normal distribution. Each time the particle jumps, it becomes temporarily immobilized,
waiting a comparatively long time before its next movement.
These prolonged waiting periods are what slow down the diffusion, leading to the incor-

poration of the fractional derivative in equation 4.3. In physics this particle transportation
occur under the influence of an external force field (drift in finance) F (x) ∈ C1([0,∞)).
To simulate subdiffusion when an external force is present, a generalized version of the
fractional Fokker–Planck equation is used, [13]:

∂w(x, t)

∂t
= 0D

1−α
t

[−∂

∂x
F (x) +K

∂2

∂x2

]
w(x, t) (4.3)

with the initial condition w(x, 0) = δ(x).
In principle, one can investigate subdiffusion processes by using two methods. The

first deterministic one is the fractional Fokker-Planck equation (FFPE) that we have
presented above, and the second one is based on the subordinated Langevin equation. In
this paper we focus on the latter approach, a stochastic subordination method, since it
permits to apply Monte Carlo methods, [11].

4.2.1 Stochastic Representation of Subdiffusion

The subdiffusive effects are modeled through the so called inverse α-stable subordinator
(see also 4.1.1, 4.1.1,4.1.1) which is defined as:

Sα(t) = inf{τ > 0 : Uα(τ) > t}

where {Uα(τ)}τ≥0 is the α-stable subordinator with Laplace transform:

E[e−uUα(τ)] = e−τuα

, 0 < α < 1.

Using 1/α self- similarity of {Uα(τ)}τ≥0 we obtain, [13]:

P[Sα(t) ≤ τ ] = P[Uα(τ) ≥ t]

= P[Uα(1)τ
1/α ≥ t]

= P
[( t

Uα(1)

)α

≤ τ
]
.

(4.4)

Therefore, the distribution of Sα(t) is equal to the distribution of the random variable(
t

Uα(1)

)α

which is an important characteristic that we will use later on. Since Uα(t) is a

pure-jump process with cadlag (right continuous with left limits) trajectories, the sample
paths of Uα(t) are continuous but singular in relation to the Lebesgue measure. Moreover,
each jump in Uα(t) aligns with the stationary period of its inverse. Importantly, these
extended stationary periods in Sα(t), marked by heavy tails, are suggesting a subdiffusive
dynamics. They symbolize prolonged waiting periods during which the particle remains
stationary.
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Furthermore, a subdiffusion process Zα(t) can be generated from standard diffusion pro-
cess by subordination, [11]

Zα(t) = Z(Sα(t)), t ≥ 0

where Sα(t) is independent from the diffusion process Z(τ). More precisely, Z(τ) denotes
here the diffusion i.e., corresponding Itô’s process given by some stochastic differential
equation w.r.t. the Brownian motion B(t).
Since the inverse subordinator Sα(t) is non-Markovian (see Defintion 4.1.2.3), this

property is inherited also by the subdiffusion Zα(t).

4.3 Subdiffusive Black Scholes Model

The subdiffusive Black-Scholes model, an extension of the classical Black-Scholes model,
incorporates the element of subdiffusion to better capture the complex behaviors ob-
served in financial markets. Subdiffusion, characterized by slower-than-normal diffusive
processes, aligns more closely with the actual movement of asset prices, especially in
markets experiencing low volatility or other anomalies not accounted for in traditional
models. By integrating this model, we were able to generate sample paths that reflect
a more exact view of market movements, thereby providing a robust foundation for our
hedging strategy.
In this section we will present a generalization of the Black Scholes model that takes into
consideration those subdiffusive characteristics of a financial market.

According to Black Scholes Model asset prices follow a geometric Brownian motion Z(t)
that satisfies the following stochastic differential equation, [15]:

dZ(t) = µZ(t)dt+ σZ(t)dB(t) (4.5)

where B(t) denotes the Brownian motion, µ ∈ R is the drift and σ > 0 is the volatility.
For an arbitrary initial value Z0 the above SDE has the analytic solution:

Z(t) = Z0 exp((µ− σ2

2
)t+ σB(t)).

Since we want to also consider periods of constant prices, the prices are modelled by the
subordinated geometric Brownian motion, defined as, [11]:

Zα(t) = Z(Sα(t)) = Zα(0) exp((µ− σ2

2
)Sα(t) + σB(Sα(t))). (4.6)

Sα(t) is assumed to be independent from B(t). This equation 4.6 can also be represented
as Langvin type stochastic differential equation of the form, [11]:

dZα(t) = µZα(t)dSα(t) + σZα(t)dB(Sα(t))
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Simulation of the trajectories of the subdiffusive geometric Brownian motion can be
performed using the following approximation {Sα,δ}t≥0 of the {Sα}t≥0

Sα,δ(t) = (min{n ∈ N : Uα(δn) > t} − 1)δ

where δ > 0 is the step length and Uα(τ) is the α-stable subordinator, [11]. The generation
of Uα(δn) is done by the Euler method of summing up the increments of the subordinator
Uα(τ)

Uα(0) = 0

Uα(δn) = Uα(δ(n− 1)) + δ1/αξn
(4.7)

where ξn, n ∈ N are the i.i.d. totally skewed positive α-stable random variables that are
generated like this:

ξn =
sin(α(V + c1))

(cos(V ))1/α

(cos(V − α(V + c1))

W

)(1−α)/α

where c1 = π/2, V is uniformly distributed on (−π/2, π/2) random variable and W has
the exponential distribution with mean one.

Figure 4.1: Trajectories of the subdiffusive
geometric Brownian motion with parameters
S0 = 100, σ = 0.2, µ = 0, α = 0.9, T = 1 and
α = 0.8

Figure 4.2: Trajectories of the geometric
Brownian motion with parameters S0 =
100, σ = 0.2, µ = 0, α = 0.9 and T = 1.

The comparison of trajectories between the traditional geometric Brownian motion (GBM)
4.2 and its subdiffusive alternative 4.1provides insightful contrasts. In the classical GBM,
the movement is continuous and smooth. However, in the subdiffusive version of GBM,
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there is a notable presence of constant, unchanging periods within the trajectory. In our
case, these stationary phases represent periods of constant price. Both Z(t) and Zα(t),
representing the classic and subdiffusive processes respectively, share the same spatial
characteristics, implying that their movements in space follow similar patterns. Despite
this spatial similarity, their temporal behavior sets them apart significantly. This differ-
ence in the time aspect is controlled by the subordinator Sα that introduces flat periods
in the trajectory. These flat periods, where there is an apparent lack of movement or
change, are a defining feature of the subdiffusive GBM.

In order to define a Black Scholes formula with subdiffusive dynamics, we first need to set
the conditions and requirements of the market model. Let (Ω,F ,P) denote a probability
space. Recall, the filtration (F(t))t∈[0,T ] contains all the information regarding the assets
available at the time t. Let (Zα(t))t∈[0,T ] denote the prices of the financial assets. One of
the first requirements of the asset pricing rules is that the market model is arbitrage free.
The first fundamental theorem of asset pricing (see Theorem 2.1.7) states that the

market model on a probability space (Ω,F ,P) is arbitrage free if and only if there exists
a risk neutral probability measure Q equivalent to P under which (Zα(t))t∈[0,T ] is a mar-
tingale with respect to Q. This implies, we have to define that risk neutral measure Q
under which all financial assets have the same expected rate of return.

Theorem 4.3.2: Let the probability measure Q be defined as, [12]:

Q(A) =

∫
A

exp(−γB(Sα(t))− γ2

2
Sα(t))dP (4.8)

where γ =
γ + σ2

2

σ
and A ∈ F .

Using the risk neutral measure Q as defined above we have now achieved that by the
first fundamental theorem of asset pricing, our market model is arbitrage free, [12]. The
second FTAP (see Theorem 2.1.14) states that the market is complete if and only if
there exists one equivalent martingale measure Q. But in this case that is does not hold,
since Q defined in 4.8 is not unique [12] so therefore our subdiffusive market is incomplete.

In the next part we will derive the Black Scholes formula for subdiffusive characteris-
tics, but before let us take a look into the classical Black Scholes formula for pricing
European options.

European call option is a contract between two parties, a buyer and a seller. A buyer of
the option has a right but not an obligation to buy the underlying Z at maturity T for
a specified price K, called strike price. The payoff is

C = max{(Z(T )−K), 0}

where Z(T ) is the spot price of the underlying asset at maturity. On the other hand,
European put option is a contract between a buyer and a seller, where the buyer of the
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option has a right, but not an obligation to sell the underlying Z at maturity T for a
strike price K. The value of the put option at maturity is

P = max{(K − Z(T )), 0}.

The fair price of the European call option calculated by the Black Scholes model is:

CBS(Z0, K, T, σ, r) = ϕ(d1)Z0 − ϕ(d2)Ke−r(T−t) (4.9)

where

d1 =
log(Z0

K
) + (r + σ2/2)(T − t)

σ
√
T − t

and

d2 = d1 − σ
√
T − t.

ϕ denotes the standard normal cumulative distribution defined as:

ϕ(x) =
1√
2π

∫ x

−∞
e−t2/2dt.

The fair price of a European put option is given by the put-call parity:

PBS(Z0, K, T, σ, r) = CBS(Z0, K, T, σ, r)− Z0 +Ke−r(T−t). (4.10)

Black Scholes Delta is the first derivative of the option price with respect to the underlying
price :

∂CBS

∂S
= ϕ(d1). (4.11)

Delta will be needed for our numerical experiments in the 5th Chapter.
Let us derive the subdiffusive Black Scholes formula for the price of European options.

Theorem 4.3.3, [12]: Let the martingale measure Q be given by 4.8 and let assume
that the asset prices follow a subdiffusive geometric Brownian motion Zα(t). Then, the
price of an European call option is defined as:

Csub
BS (Z0, K, T, σ, r, α) = E[CBS(Z0, K, Sα(T ), σ, r)]

=
1

T α

∫ ∞

0

CBS(Z0, K, x, σ, r)gα

( x

T α

)
dx

(4.12)

and respectively the price of an European put option:

P sub
BS (Z0, K, T, σ, r, α) = E[PBS(Z0, K, Sα(T ), σ, r)]

=
1

T α

∫ ∞

0

PBS(Z0, K, x, σ, r)gα

( x

T α

)
dx

(4.13)
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where CBS and PBS are given by 4.9, 4.10 respectively. Here, gα(z) is a probability density
function of Sα(1) and can be expressed as Fox-H-function, [12]:

gα(z) = H10
11

(
z|(1−α,α)

(0,1)

)
which can numerically be calculated for only some values of α, for example for α = 1/2,
[12], but it is more convenient to approximate the expected values in the above expressions
4.12, 4.13 using Monte Carlo methods by simulating trajectories of the inverse α-stable
subordinator Sα(t), [12]. This can be done by generating random samples from the
distribution of the inverse α-stable subordinator and using them to estimate the desired
expected values, [12]. With the help of the property

Sα(t) ∼
( t

Uα(1)

)α

mentioned in 4.4, we can express the estimator of the expected value defined in 4.12, 4.13
as, [11]:

Ĉsub
BS (Z0, K, T, σ, r, α) =

1

n

n∑
i=1

CBS(Z0, K, Sα
i (T ), σ, r)

and

P̂ sub
BS (Z0, K, T, σ, r, α) =

1

n

n∑
i=1

PBS(Z0, K, Sα
i (T ), σ, r)

where Sα
i (T ) ∼

(
T

Uα
i (1)

)α

and Uα
i (1) are independent and identically distributed (i.i.d.),

totally skewed positive α-stable random variables (therefore Sα
i (T ) are also the i.i.d.).

The realizations of Uα
i (1) are generated in the following way, [11]:

Uα
i (1) =

sin(α(V + c1))

(cos(V ))1/α

(cos(V − α(V + c1))

W

)(1−α)/α

where c1 = π/2, V is uniformly distributed on (−π/2, π/2) random variable and W has
the exponential distribution with mean one.

Using this approximation, we have calculated a subdiffusive Black Scholes price of Eu-
ropean option for different values of α ranging from 0.1 to 1 and with parameters
σ = S0 = 1, K = 2, T = 5. Those price paths are presented in the figure 4.3 where
α = 1 is following the classical Black Scholes price. It is clearly visible in the figure 4.3,
for small exercise times T the classical BS price is underestimated, while for larger T
it is overestimated in comparison to subdiffusive BS price. Figure 4.4 is more precisely
presenting the fact, that if α is set to 1 in the subdiffusive model, then the price exactly
follows the classical BS model.
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Figure 4.3: Subdiffusive Black Scholes prices with parameters σ = S0 = 1, K = 2, T = 5
years and for different values of α

Figure 4.4: Classical Black Scholes price compared to subdiffusive Black Scholes price
with σ = S0 = 1, K = 2, T = 5 and α = 1

In the next example we have chosen a time horizon of 30 days and parameters S0 =
K = 1, σ = 1, T = 30/365. In the figure 4.5 the effect of the subdiffusive parameter α is
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clearly visible, with lower α values resulting in a steeper initial increase in option price
relative to higher α values. The impact of α is evident even over this shorter time frame.

Figure 4.5: Prices of European call option using subdiffusive Black Scholes model with
different values of α.
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Figure 4.6: Prices of European call option using subdiffusive Black Scholes model with
different values of σ.

Different values of α are not the only thing that is influencing the option price. Choos-
ing the appropriate volatility to model the option price, also in the subdiffusive model,
is of a big importance. There is a clear distinction between each curve in the figure 4.6 ,
showing a progressive increase in option price with the increase in volatility. The differ-
ence between the curves suggests that even small changes in volatility can significantly
affect option pricing. That being said, to fit the subdiffusive BS model to the real data,
the calibration of the parameters α, σ and µ is very important.
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5 Numerical experiments

After introducing the optimal hedging problem in Section 2 and discussing the numerical
approximation of its solution using neural networks in Section 3, our focus now shifts to
conducting numerical experiments. These experiments aim to demonstrate the practical
viability of our approach to hedging financial instruments using a neural network-based
methodology. We start by presenting the details of our modeling choices.

5.1 Setting

Time horizon: We have used a time interval of 30 days with daily re-balancing, so
T = 30/365. This period is broken down into discrete trading dates, each denoted as
tk = k/365 for k = 0, ..., 30.

Subdiffusive parameters: Central to our analysis was the generation of sample paths
for asset prices, a task for which we employed a subdiffusive Black-Scholes model. This
choice was pivotal in creating a realistic, yet computationally manageable, framework for
simulating market dynamics. We have used this model as a benchmark, meaning we com-
pared the results of our deep hedging model with the prices generated by the subdiffusive
Black-Scholes model. We consider a European call option with payoff K = (S1

T − K)+

and strike K = S0 = 100. We have chosen a volatility σ = 0.2, risk free rate r and
dividend yield q are set to zero and for the subdiffusive parameter we took α = 0.9. In
our simulation we won’t consider the trading costs, so CT (δ) = 0.

Neural Network Design: As we discussed in the previous chapter, δk ∈ Rd is rep-
resenting the number of units of each asset that the investor is holding at time tk and is
modelled by semi-recurrent neural network. This network is composed of a feedforward
architecture with two hidden layers:

δθk = F θk(Ik, δ
θ
k−1)

where F θk is a feed forward neural network with two hidden layers so L = 3. The
network’s input is a function of the sequence of asset prices up to the current trading
date, providing a comprehensive view of market dynamics, but in order to compare the
neural network strategy to our benchmark, the network input is chosen as Ik = log(Sk).
Furthermore, the dimension of the input layer being N0 = 2d and dimension of the inner
layers, N1 = N2 = d + 15 and lastly N3 = d with d = 1. The activation function across
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the network is the leaky ReLU function, [16]:

f(x) =

{
x for x ≥ 0

xα for x < 0

where x is the input of the nonlinear activation f and α is a coefficient controlling the
slope of the negative part.
Lastly, the risk measure will be the entropic risk measure, i.e.

ρ(X) =
1

λ
logE[exp(−λX)]

with risk-aversion parameter λ = 1. Each layer’s weights and biases are dynamically
adjusted and optimized to refine the model. These parameters are crucial in determining
the network’s performance and are finely tuned during the model’s training phase. The
model was implemented in Python using TensorFlow for building and training the neural
networks. For training process Adam algorithm with learning rate of 0.01 and a batch
size of 256 has been used but we did not apply batch normalization technique. The
weights were initialized using the He uniform initializer which initializes the weights with
values drawn from a uniform distribution within a range, which is determined based on
the number of input units in the weight tensor [16]. The He uniform initializer was chosen
because it is particularly suited for layers with ReLU (Rectified Linear Unit) activations,
[16].It’s designed to keep the scale of the gradients roughly the same in all layers, [16].
In deep networks, this initializer helps in mitigating the problem of vanishing gradients,
leading to more effective training, [16].

Simulation of stock prices: We have simulated random paths of stock prices using the
subdiffusive geometric Brownian motion described in the section 2. The algorithm has
generated 120 000 paths that we have split into training and testing data. On the figure
5.1. those straight lines which that are significant for a subdiffusive model and represent
the times of constant prices, are clearly visible.
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Figure 5.1: Simulation of stock prices driven by the subdiffusive geometric Brownian
Motion

5.2 Results

After running the model we obtain the following prices presented in the figure 5.2. Note
that we have calculated the subdiffusive Black Scholes price based on the approximation
scheme defined in the section 4.3. Subdiffusive Black Scholes price is expectedly higher
as classical Black Scholes price which we have seen also in the figure 4.1. As you can
see that there is not much difference between the price calculated using simple neural
network structure and the price calculated using reccurent neural network.

Figure 5.2: Option prices at maturity T = 30/365 based on the following parameters:
S0 = K = 100, σ = 0.2, r = q = 0, α = 0.9

The risk-neutral price of an option is the expected discounted value of the option’s pay-
off under the risk-neutral probability measure. In our case the subdiffusive geometric
Brownian Motion is generating a bit higher future stock prices than the classical geomet-
ric Brownian motion. This variance accounts for the higher risk-neutral price observed.
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The basis for this higher risk-neutral price lies in the simulated stock prices at maturity,
which, as depicted in Figure 5.1, vary between 75 and 140.

Figure 5.3: Histogram of the terminal hedging error evaluated on the deep hedging
model and on the subdiffusive Black Scholes model

Figure 5.2.showcases a comparison of the profit and loss at maturity, expressed as p −
Z + (δ · S)T that was calculated once for deep hedging and once for the subdiffusive
Black Scholes model with the subdiffusive Black Scholes price p being charged on both.
As one can see, hedging performance of both strategies δH and δδ is very similar from
which we could imply that the deep hedging model is able to approximate the subdiffusive
Black Scholes model. The histogram in the figure further highlights several noteworthy
observations.

The Profit and Loss (PnL) distributions for both strategies are centered around zero,
indicating that, on average, the strategies are balanced and tend to break even. The
distribution of the Black-Scholes PnL appears to have a slightly wider spread than the
Deep Hedging PnL, indicating more significant losses and gains. The Deep Hedging
strategy seems to have a higher peak and a narrower distribution, suggesting that it
more consistently achieves a PnL close to zero, which could be interpreted as a more
risk-averse strategy or one that is better at minimizing the cost of hedging. Overall, the
histogram suggests that the Deep Hedging model might be offering a more stable and
less volatile hedging performance compared to the traditional Black-Scholes model.

Another important proof of the efficiency of deep hedging model is the comparison of
subdiffusive Black Scholes delta with deep hedging delta. In this case delta has been
calculated for three different time intervals, t = 1, 15, 29 and as illustrated in the figure
5.3. deep hedging delta is almost exact to the subdiffusive Black Scholes delta which
again proves that deep hedging model is able to effectively approximate subdiffusive
Black Scholes model.
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Figure 5.4: Comparison of subdiffusive
Black Scholes delta and deep hedging delta
for time interval t = 1 and α = 0.9.

Figure 5.5: Comparison of subdiffusive
Black Scholes delta and deep hedging delta
for time interval t = 15 and α = 0.9.

Figure 5.6: Comparison of subdiffusive Black Scholes delta and deep hedging delta for
time interval t = 29 and α = 0.9.
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PnL distribution of two different network models: a Simple Network and a Recurrent
Network is compared in the figure 5.7. Both distributions are centered around 0, which
might indicate that neither model has a significant bias towards profit or loss. They
appear normally distributed, suggesting that the results of both models on the trading
days are symmetrical around the mean. Simple Network PnL: The blue bars represent
the frequency of the PnL results for the Simple Network. It appears to have a narrower
distribution, suggesting less variance in the outcomes compared to the Recurrent Net-
work. This could mean that the Simple Network has a more consistent performance, but
not necessarily a better one. Recurrent Network PnL: The orange bars represent the
Recurrent Network. This network has a wider distribution, indicating a higher variance
in outcomes. It seems to have more frequent extreme results (both profits and losses),
which might suggest that the Recurrent Network takes on higher risk, potentially leading
to higher rewards but also higher losses. Overlap: There is significant overlap in the
middle of the distribution, but the tails (especially for losses of around -2 to -3 PnL and
profits of around 1 to 2 PnL) show some divergence. The Recurrent Network appears to
have a slightly longer tail on the profit side, which might mean it is capable of achieving
higher profits on some days compared to the Simple Network.

Figure 5.7: Comparison of PnL from the simple network model and from the recurrent
network model

Furthermore, we ran the model three times and calculated the delta and as seen in the
figure 5.6. the Deep Hedging Deltas for all three runs closely follow the subdiffusive
Black-Scholes Delta, indicating that the deep learning model is able to approximate the
Delta of the theoretical model quite well. There is a slight divergence in the behavior of
the Deep Hedging Delta and the Subdiffusive Black-Scholes Delta, especially at the lower
and higher ends of the underlying asset price spectrum. The consistency across the three
runs of the Deep Hedging model suggests that the model’s performance is stable and not
highly sensitive to different initializations or data samples, at least within the range of
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Figure 5.8: Comparison of delta values between the subdiffusive Black Scholes and
deep hedging models for the time interval at t = 1.

this experiment.
Lastly, we run our model again but this time incorporating the assumption that the actual
volatility is a multiple of the simulated volatility. We introduce a new parameter called
ζ = 1.1 which adjusts the real volatility to σreal = σ ∗ ζ. We simulate stock prices that
follow subdiffusive Brownian Motion and compute option price based on our trained deep
hedging model. The results, as depicted in the figure 5.9, show a PnL distribution that
aligns with that of the subdiffusive Black Scholes model, affirming the model’s accuracy.
The peak of the PnL distribution of both models is close to 0, but the tallest bar is slightly
in the negative PnL region, suggesting that the most common outcome was a small loss.
The fact that the tallest bars are on the negative side for both strategies may suggest that
under the current settings, and within the simulated environment, losses are slightly more
common than gains. However, it doesn’t necessarily indicate poor performance. The goal
of hedging is often to reduce risk, which might mean accepting small, frequent losses to
avoid large, infrequent losses. Still, both distributions are centered around zero, which is
typical for hedging strategies aimed at risk minimization rather than profit maximization.
The deltas calculated by both the Subdiffusive Black-Scholes model and the Deep Hedging
model are almost identical across the range of prices, as illustrated in the figure 5.10.
This close alignment suggests that, for this range of underlying asset prices and at this
particular time step, both the traditional model and the more complex Deep Hedging
model yield very similar hedging strategies.The similar delta values indicate that, in terms
of delta hedging, the simple network structure used in Deep Hedging does not significantly
diverge from the Subdiffusive Black-Scholes model under the conditions tested.
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Figure 5.9: Comparison of PnL distribution of subdiffusvie Black Scholes model and
deep hedging model for parameters:

T = 30/365, S0 = K = 100, r = q = 0, σreal = σ ∗ ζ, ζ = 1.1, α = 0.9.

Figure 5.10: Comparison of subdiffusive Black Scholes delta and deep hedging delta for
time interval t = 15.
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6 Conclusion

This thesis considers the problem of hedging a portfolio in incomplete markets. As a
solution to that it presents the deep hedging model implemented by Buehler, [1]. It
shows that this approach does not depend on specific market dynamics and does not
calculate Greeks based on the typical Black Scholes formula, meaning, it is independent
from any financial models. As optimality criteria a convex risk measure such as entropic
risk measure was taken.
Another core topic of this thesis was also subdiffusive Black Scholes model which is used

in incomplete markets where the prices have constant periods. We show that the price was
driven by the subdiffusive geometric Brownian motion and we provide an approximation
scheme on the simulation of those price paths that was introduced in [12]. We also present
the subdiffusive Black Scholes formula and provide a numerically possible estimation.
Lastly, after lying out the fundamentals and theoretical points of neural networks and

subdiffusive Black Scholes model, we demonstrate this theory on numerical examples per-
formed in Python. The goal was to calculate the option’s price of a short call option.
Our neural network was tasked with determining the optimal quantity of financial in-
struments to hold at each trading interval, based on the input of asset prices over time.
The model was trained based on the sample paths for asset prices, which were generated
through the subdiffusive Black-Scholes model. The neural network, designed with feed-
forward architecture and ReLU activation functions, was fine-tuned through a training
process involving the Adam optimization algorithm. This choice was pivotal in creating
a realistic, yet computationally manageable, framework for simulating market dynamics.
We compared the results of our deep hedging model with the prices generated by the
subdiffusive Black-Scholes model. This comparison was crucial in assessing the efficacy
of the deep hedging method. In our analysis, we observed that the deep hedging model,
with its capacity to learn and adapt from the input data, was able to approximate the
subdiffusive Black-Scholes price well.
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