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Kurzfassung

Die Merkmalsauswahl ist zu einem wichtigen Vorverarbeitungsschritt in der Welt des ma-
schinellen Lernens und der Datenanalyse geworden, insbesondere wenn es um Daten geht,
die eine erhebliche Menge an Attributen aufweisen. Dieser Prozess ist wichtig, da er (a)
die Leistung von Prädiktoren verbessert, (b) den Rechenaufwand reduziert und (c) dabei
hilft, den zugrunde liegenden Prozess hinter den Daten zu verstehen. Darüber hinaus
sind viele aktuelle Anwendungen binäre Klassifizierungsprobleme mit unausgeglichenen
Klassen in den Datensätzen; zum Beispiel Betrugserkennung, medizinische Diagnose
und Cybersicherheit. Der Einfluss des Klassenungleichgewichts auf die Merkmalsauswahl
wurde in der wissenschaftlichen Literatur jedoch bisher nicht ausreichend berücksichtigt.

In dieser Studie analysieren wir Methoden zur Merkmalsauswahl, die für das
Problem der Merkmalsauswahl in unausgeglichenen Daten entwickelt wurden. Ziel ist
es, nicht nur die zuverlässigste Methode, sondern auch die Bedeutung der Ergebnisse
der Merkmalsauswahl und deren Interpretation offen zu legen. Unsere Studie umfasst
Ensembles als Kernalgorithmen (Random Forest, XGBoost), Datenausgleichstechniken
(Random Undersampling (RUS), Synthetic Minority Oversampling Technique (SMOTE),
kostensensitives Lernen), Alternativen zur Merkmalsbewertung (Mean Decrease in Im-
purity (MDI), Permutation Feature Importance (PI), SHapley Additive exPlanations
(SHAP)) und Korrekturen basierend auf Bewertungen der Multikollinearität mithilfe von
Variance Inflation Factor (VIF). Experimente werden mit unausgeglichenen Datensätzen
aus verschiedenen Bereichen durchgeführt.

Wir bewerten die Leistung der ausgewählten Attribute mit dem ROC AUC Wert.
Die Versuchsergebnisse zeigen, dass mehrere Kombinationen durchweg hohe ROC AUC
Werte aufweisen, insbesondere XGBoost in Kombination mit SMOTE und SHAP sowie
Random Forest in Kombination mit RUS und SHAP. Insbesondere sticht PI als eine
außergewöhnlich diskriminierende Technik zur Merkmalsbewertung hervor. Allerdings
verbessert die VIF Korrektur die ROC AUC Leistung oder Zuverlässigkeit getesteter
Kombinationen nicht durchgängig.

Diese Forschung bietet eine umfassende Analyse verschiedener Strategien, um
das Problem der Merkmalsauswahl in unausgeglichenen Daten anzugehen. Durch die
Identifizierung leistungsstarker, zuverlässiger und diskriminierender Merkmalsauswahl-
kombinationen bietet diese Studie wertvolle Erkenntnisse zur Verbesserung der Anomalie-
erkennung in kritischen Bereichen wie der Netzwerksicherheit. Unter der Annahme, dass
die getesteten Kombinationen zeitlich realisierbar sind, können ein geringerer Rechen-
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aufwand und die Auswahl von Merkmalen, die zu präzisen Vorhersagen beitragen, die
Sicherheitsmaßnahmen in der Praxis erheblich verbessern. Zukünftige Forschungsarbeiten
können auf unseren Ergebnissen aufbauen, um bessere Anomalieerkennungssysteme zu
entwickeln.



Abstract

Feature selection has become an important pre-processing step in the world of machine
learning and data analysis, particularly when dealing with data that has a substantial
amount of attributes. This process is essential as it (a) improves the performance of pre-
dictors, (b) reduces computational requirements, and (c) helps understand the underlying
process behind the data. Moreover, many current applications are binary classification
problems with imbalanced classes in the datasets; for instance, fraud detection, medical
diagnosis, and cybersecurity. However, the impact of class imbalance on the feature
selection has not received proper attention in the scientific literature so far.

In this study, we analyze feature selection methods designed for the problem of
feature selection in imbalanced data. The goal is to disclose not only the most reliable
method, but also the meaning of the feature selection scores and how to interpret them.
Our study covers ensembles as core algorithms (Random Forest, XGBoost), data bal-
ancing techniques (Random Undersampling (RUS), Synthetic Minority Oversampling
Technique (SMOTE), cost-sensitive learning), feature scoring alternatives (Mean Decrease
in Impurity (MDI), Permutation Feature Importance (PI), SHapley Additive exPlana-
tions (SHAP)), and corrections based on evaluations of multicollinearity using Variance
Inflation Factor (VIF). Experiments are performed on imbalanced datasets from various
domains.

We assess the performance of the selected feature subsets with ROC AUC scores.
Experiment results show that several combinations demonstrate consistently high ROC
AUC scores, especially XGBoost combined with SMOTE and SHAP, as well as Random
Forest united with RUS and SHAP. Notably, PI stands out as an exceptionally discrimi-
native feature scoring technique. However, VIF correction does not consistently improve
the ROC AUC performance or stability of tested combinations.

This research provides a comprehensive analysis of various methods to address the
problem of feature selection in imbalanced data. By identifying high-performing, stable,
and discriminative feature selection combinations, this study offers valuable insights for
improving anomaly detection in critical domains like network security. Assuming the
time viability of tested combinations, reduced computational demands and selection
of the features that help generate accurate predictions can significantly improve secu-
rity measures in practice. Future research can build upon our results to develop more
sophisticated anomaly detection systems.
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CHAPTER 1
Introduction

In this chapter, we provide the background of our research. We will discuss the motivation
and need for this study and outline the targeted goals and methodology. Finally, we give
a brief overview of the thesis structure.

1.1 Background
The rapid development in information technology and communication networks has
immersed humanity in the world of data. The importance of data has been steadily
growing with the rise of machine and deep learning, which have garnered attention in
both research and industry. The data is now a valuable asset in various domains, such as
healthcare, bioinformatics, computer vision, and network security. However, the nature of
this data is high-dimensional, obscuring an analysis that would result in valuable insights
and domain knowledge.

It is of great importance to find strategies to reduce the data dimensionality, without
dropping any important information. Well-established approaches involve feature selection
and feature extraction. Feature selection performs the selection of the most relevant
features in a dataset. The main objective is to reduce the information redundancy and
complexity within the chosen subset of features. This process introduces several benefits;
(a) improved performance of predictors, (b) reduced computational requirements, and
(c) simplified understanding of the underlying process behind the data [1]. The high
dimensional data causes many problems to machine learning algorithms and one of
them is known as the curse of dimensionality. This term was originally introduced
by Bellman [2], who described that the number of data samples needed to estimate a
function exponentially grows with the number of the input variables in that function.
The dimensional sparsity has a detrimental impact on most machine learning algorithms,
which are typically designed for lower-dimensional spaces. The model that has access to
a large number of features, becomes capable of generating mathematically more complex
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1. Introduction

functions. As a result, this enlarged complexity can potentially lead to overfitting and
cause performance deterioration on unseen data. High-dimensional data introduces
further limitations such as increased memory storage requirements and computation
costs. Therefore, it is crucial to find a strategy to reduce the data dimensionality. In
addition to feature selection, feature extraction is a widely used approach. This process
generates completely new features which are linear or non-linear combinations of the
existing ones.

Feature selection is of utmost importance in numerous real-life scenarios and applications,
especially those that exemplify imbalanced binary classification; for instance, anomaly
detection, fraud detection, medical diagnosis, and others. However, how imbalanced
classes affect the feature selection process and the dynamics of the scores have not been
adequately studied despite their importance. Additionally, the classification of network
traffic data with an imbalanced class distribution has been a great difficulty for many well-
known classifiers, which mainly assume that the underlying data is balanced. Numerous
researchers have shown the potential benefits of employing data sampling techniques to
mitigate the model’s bias towards the majority class and improve classification accuracy
[3, 4, 5, 6]. Moreover, several researchers have attempted to answer whether it is more
effective to apply the data sampling before or after feature selection in imbalanced wide
datasets [7]. The authors in [8] also investigated the effect of the sampling ratio on
classification accuracy and concluded that the exact ratio mainly depends on the dataset,
sampling method, and used performance metric. An extensive review of methods for
imbalanced data is provided in [9].

In addition to building a model with high predictive performance, it is important to
comprehend the process of decision making. Artificial intelligence has experienced
tremendous growth over the last decade, securing a firm place in the industry, where
machine learning systems consistently outperform human capabilities. However, to
improve the system’s performance, it is necessary to increase its internal complexity. In
the end, it is challenging to understand the operation of these models and therefore, they
are labeled as “black boxes”. The systems that are not interpretable are also difficult
to be trusted, especially in critical areas such as healthcare or self-driving cars. This
need for trustworthiness led to a new field in machine learning research - eXplainable
Artificial Intelligence (XAI) [10], which became essential for system verification, regulatory
compliance, elucidation of ethical concerns, trustworthiness, and system diagnostics [11].
There are many open-source libraries for machine learning interpretability, which can be
used to better understand the inference of the models [12, 13, 14].

Therefore, in the era of deep learning and big data, feature selection is more important
than ever, as it not only reduces the effort in computational and analytical terms, but –
and this is its major purpose – it discloses the real value and contribution of each original
feature for the aimed classification task, therefore helping us to understand how and why
a problem is solved in addition to solving a problem.
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1.2. Motivation

1.2 Motivation

We currently live in an era dominated by computer technology and worldwide com-
munication networks. Only a few decades ago, it was unimaginable to communicate
seamlessly with a device or a person located on the opposite side of the world, but over
time, almost instantaneous global communication has become a reality. With the devel-
opment of communication networks, primarily the Internet, an immeasurable amount of
network traffic is transmitted every day, significantly easing various spheres of our lives
such as automation of tasks, remote controlling, digital storage of information, financial
transactions, entertainment, education, and others. However, despite these technological
advancements, many challenges emerged as well. Systems are increasingly burdened and
vulnerable to sophisticated malicious attacks that have become harder to distinguish from
normal traffic. Therefore, the security of networks and information along with the ability
to detect such threats is becoming more and more important. Despite the prevalence
of network traffic, harmful attacks are considerably less frequent compared to normal
activities. Therefore, this issue is closely related to the problem of imbalanced data in
binary classification, where attacks are in the minority class. This highlights the need
to address this area and our attention has been attracted by the interesting approach
employed in the previous work [15]. While this prior research provides valuable insights,
it leaves space for further investigation and discussion.

This work builds upon the master thesis: Comparison of Ensemble-Based Feature Selection
Methods for Binary Classification of Imbalanced Data Sets written by Erjola Zeraliu [15].
The author conducted a series of experiments, demonstrating that the combination of
ensemble trees with stability selection [16] and Permutation Feature Importance (PI) [17]
is a promising approach for feature selection. The remarkable results in performance were
particularly obtained with Gradient Boosting [18]. However, our research expands upon
this groundwork by incorporating a broader list of imbalanced datasets, diverse feature
scoring methods, and the addressing of imbalanced class distributions. In addition, we
aim to address the potential issue of having correlated features, a phenomenon known
as multicollinearity [19]. It will be analyzed to what extent the process of feature
selection using ensemble trees is impacted by multicollinearity. However, it is important
to emphasize that multicollinearity does not affect the predictive performance of such
models [20, 21].

To the best of our knowledge, there is no comprehensive research that offers a systematic
and in-depth analysis of the ensemble trees in combination with sampling techniques and
diverse feature selection methods in the context of imbalanced binary classification.

1.3 Goals

Assuming the imbalanced binary classification problem, this thesis tackles the following
research questions:

3



1. Introduction

• R1: Accuracy
Which feature selection methods are best suited for generating feature sets that
lead to a good classification performance?

• R2: Stability
How reliable are approaches for feature selection in terms of correlation between
the cumulative importance of the selected subset and its accuracy?

• R3: Discriminant power
How discriminant are scores in feature selection approaches to clearly differentiate
between relevant and irrelevant features?

• R4: Particular impacts
What are the implications associated with particular elements of the feature selec-
tion pipeline, namely: classification algorithms, data-balancing techniques, multi-
collinearity removal, and scoring methods?

1.4 Methodology
To achieve our goals we did the following:

1. Dataset preparation: We prepared 17 distinct imbalanced datasets for binary
classification. Each input dataset was divided into train and test sets with a split
ratio of 70/30.

2. Multicollinearity elimination: We used the Variance Inflation Factor (VIF) to
investigate the effects of multicollinearity measures on the feature selection process.
Features with V IF > 5 were identified as multicollinear and removed from both
the training and test datasets.

3. Data balancing techniques: We applied Random Undersampling (RUS) and
Synthetic Minority Oversampling Technique (SMOTE) sampling techniques to
balance the training data, achieving a ratio between minor and major classes of 1:1.

4. Classifier training: We trained and fine-tuned the core classifier that was the
backbone of tested feature selection combinations. Employed classifiers were
Random Forest (RF), XGBoost (XGB), and their cost-sensitive versions (Random
Forest Balanced Cost-Sensitive Version (RF_bal), XGBoost Balanced Cost-Sensitive
Version (XGB_bal)). The cost-sensitive versions were not combined with data
sampling techniques from the previous step.

5. Feature importance evaluation: Core classifiers were combined with feature
attribution methods (internal Mean Decrease in Impurity (MDI), PI, or SHapley
Additive exPlanations (SHAP)) to compute feature importance scores based on the
training data.
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6. Feature subsets selection: Based on the feature scores, three distinct feature
subsets were generated: a subset including the half of the most important features
and subsets containing features that contribute to at least 50% or 80% of the total
feature importance.

7. Feature subsets performance: The quality of the selected subsets was assessed
using core classifiers of the corresponding feature selection combination. Receiver
Operating Characteristic Area Under the Curve (ROC AUC) scores were recorded
as performance metrics.

8. Comparative results analysis: Finally, we compared the tested feature selection
combinations by examining:

• Mean ROC AUC and ranking scores of feature selection combinations.
• Wilcoxon signed-rank test, which showed if there was a significant performance

difference between a pair of combinations.
• Pearson and Spearman correlation analysis between ROC AUC test scores

and cumulative feature importance of the feature subset under test (best half,
50% or 80% subset).

• Mean Coefficient of Variation of feature importance scores to determine the
discriminatory power of a feature selection combination.

1.5 Arrangement of the Thesis
The rest of the thesis is arranged in four chapters:

• In chapter 2, we introduce background knowledge on feature selection, data bal-
ance strategies and machine learning, with a special focus on aspects related to
interpretability.

• In chapter 3, we present the work methodology and the conducted experiments.
The concept of multicollinearity and its measurements is additionally introduced.
We describe the feature selection combinations and datasets used for evaluation, as
well as performance metrics.

• In chapter 4, we show and discuss the results of the conducted experiments. We
compare employed feature selection combinations from the various aspects relevant
to the stated goals.

• Finally, we conclude in chapter 5 and summarize the findings that emerged from the
exploration of the topic and the careful revision of experiments. We also comment
on possible future research lines that could continue our work.
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CHAPTER 2
Background Knowledge

In this section, the background knowledge for this thesis is provided. Firstly, feature
selection and its methods are explained, followed by a brief overview of machine learning
focusing on ensemble learning techniques and algorithms. Lastly, data balance strategies
and interpretability techniques are discussed.

Note that these topics cover the theoretical framework assumed in this thesis, namely:
evaluating ensemble machine learning scores for feature selection in imbalanced binary
classification.

2.1 Feature Selection
Feature selection is the process of selecting the informative features from a dataset. The
selected subset should represent the initial data without substantial information loss. The
discarded features are either irrelevant, having no influence on the output, or redundant,
meaning that two or more features share the same information [22]. Feature selection
provides many benefits such as improved prediction performance of predictors, increased
computation efficiency, decreased memory storage, and better generalization of models
[23].

Generally, the feature selection process involves 4 basic steps [24]:

1. Subset generation

2. Evaluation of the subset

3. Stopping criterion

4. Result validation

7



2. Background Knowledge

Subset generation is a search process where a subset of features represents the state
to be evaluated in the search space. Two important factors are successor generation and
search organization. Successor generation defines the direction of the search strategy at
each state and it includes several options [24]:

• Forward selection begins with an empty subset of features and selects one feature
at a time from those not yet included. An evaluation criterion determines which
one of the unselected features should be added to the current subset. The feature
causing the least error is included only if the newly created subset outperforms
the current one. Otherwise, the process can terminate, as the inclusion of any
unselected features does not improve the performance. Additionally, a predefined
maximum number of features in the subset can be used as a stopping criterion.
The great limitation of this approach is the neglect of feature interactions [24].

• The backward selection is the opposite of forward generation. Rather than
starting with an empty feature subset, it begins with a subset containing all
features and iteratively removes one feature at a time, selecting the one whose
elimination causes the least error. This process results in a reduced subset with
enhanced performance. Stopping criteria can be used in the same way as for the
forward approach [24].

• Another approach is compound generation, which combines M consecutive
forward steps with N backward steps, where M ̸= N . Using evaluation criteria,
either forward or backward steps are selected, and the process should conclude
when M = N [24].

• The random method incorporates all the previously described strategies, generating
a random feature subset in a single step [24].

• Finally, the weighting approach assigns different weights to features in each step
based on sampled data instances, indicating their importance [24].

On the other hand, search organization determines the process of feature selection. The
task of generating subsequent candidate subsets is a great challenge since the number of
possible subsets increases exponentially with the number of features, 2n. Consequently,
an exhaustive search is not a feasible option. Researchers proposed various strategies to
address this issue, including [24]:

• Sequential search: The well-known sequential methods are sequential forward
selection, sequential backward elimination, and bi-directional selection [25]. This
process is iterative, involving the addition, removal, or both, of one or more features
at a time. While it is a simple algorithm to implement, the optimal subset may
not be found [24].

8



2.1. Feature Selection

• Exponential search: The exhaustive search is computationally extremely in-
tensive, and often, infeasible process. However, it is possible to employ heuristic
functions to shrink the search space without jeopardizing the potential loss of the
most optimal feature subset. Algorithms such as BRANCH AND BOUND [26] and
Beam Search [27] utilize this approach.

• Random search: This search method starts with a random subset of features and
continues to generate the subsequent subsets in a completely random manner (e.g.,
the Las Vegas method [28]). Another approach is to introduce randomness into
the sequential approach when selecting the feature to be added or removed. The
inclusion of randomness aims to decrease the likelihood of becoming stuck at local
minima in the search space [24].

To identify the most optimal subset of features, it is necessary to assess the quality
of the selected subset. If the currently chosen feature subset performs better than its
best predecessor, it becomes the new best subset and serves as the starting point for
subsequent subsets. Two distinct evaluation criteria, based on their dependency on the
mining algorithm, can be defined for this purpose: independent and dependent criteria
[24].

Independent criteria do not rely on the mining algorithm and evaluate the relevance of
the features using only the intrinsic characteristics of the data. Examples of independent
measures include [24]:

• Distance or divergence measures [29] calculate the probabilistic distance
between the class-conditional probability distributions [24]. A feature is favored if
it leads to greater dissimilarity between the observed class probability distributions.
Some distance measures are Kullback-Liebler [30], Bhattacharya [31], and Matusita.

• Information or uncertainty measures are derived from the information gain of
features that represent “the difference between the prior uncertainty and expected
posterior uncertainty” [24]. Shannon entropy is a well-known information measure
[32].

• Dependency measures [33, 34], also known as correlation measures, identify
features strongly correlated with the target as more important in feature selection
process[24].

• Consistency measures [25] search for the minimum number of features that
effectively split the classes as well as all features [24].

On the other hand, dependent criteria select the best features based on their performance
with a mining algorithm. Typically, independent criteria are employed by filter methods,
while wrapper models utilize dependent criteria.
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The previous steps (subset generation and evaluation) are repeated until the predefined
stopping criteria are met, indicating the conclusion of the entire process. The feature
selection process usually ends when reaching the maximum number of iterations, the
minimum or maximum number of features in the subset, the minimum classification
error rate, or when the addition or removal of features no longer improves performance.
Depending on the algorithms employed, the output can be an optimal subset of features
(performing the best in terms of accuracy) or weighted features.

Finally, the quality of the selected feature subset is evaluated in the validation phase,
often using new, unseen data.

Generally, all feature selection methods can be categorized into three classes [1, 35]:

• Filter methods

• Wrapper methods

• Embedded methods

A brief introduction to these methods is provided in the following sections. Additionally,
an overview of feature selection methods is presented in Table 2.1.

Search Strategies
Exponential Sequential Random

E
va

lu
at

io
n

C
ri

te
ri

a

F
ilt

er

Distance
B&B[26], BFF[36],

BOBRO[37],
OBLIVIIN[38]

Relief[39], RelifS[40],
SFS[41], Segen’s[42],

SBS[43]

Information MDLM[44],
CARDIE[45]

DTM[45], Koller’s[46],
FG[25], FCBF[47], BSE[48]

Dependency Bobrowski’s[44] CFS[34], RRESET[49],
POE+ACC[50], DVMM[51]

Consistency
FOCUS[52], ABB[53],

MIFESI[54],
Schlimmer’s[55]

Set Cover[56],
WINNOW[57]

LIV[25], QBB[25],
LVF[58]

W
ra

pp
er

Predictive
accuracy

BS[27], AMB&B[59],
FSLC[60], FSBC[61],

CARDIE[45],
OBLIVIIN[57]

SBS-SLASH[48], WSFG[62],
WSBG[62], BDS[27],

PQSS[27], RC[63], SS[64],
Querios’[48], BSE[48],
K2-AS[65], RACE[64],

SBS-W[62]

SA[27], RGSS[27],
LVW[66], RMHC-PF[67],

GA[68], RVE[69]

E
m

be
dd

ed

Filter + Wrapper BBHFS[70], Xing’s[71]

Table 2.1: Classification of feature selection methods according to search strategy and
evaluation criteria [24]
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2.1.1 Filter Methods

Filter methods represent the fastest and simplest approach for feature selection. They
operate independently of the learning algorithm and are exclusively used as a pre-
processing step. These methods use an independent measure and intrinsic characteristics
of features to evaluate their importance. Importantly, there is no feedback from the
classification algorithm as in wrapper or embedded methods [35].

The main drawback of filter methods arises when a measure of statistical significance
evaluates the importance of features, causing a discrepancy between the objective of
the filter methods (e.g., significance based on p-values) and the model’s requirements
(predictive performance) [72]. Consequentially, this inconsistency can have a detrimental
impact on a feature subset quality and decrease the predictive performance of classification
algorithms in later analysis [72].

Filter methods can be further classified into two groups [35]:

• Attribute evaluation methods

• Subset evaluation methods

Attribute evaluation methods evaluate the importance of each feature separately. The
final feature subset is determined by feature ranking according to chosen criteria. In
contrast, subset evaluation methods evaluate all features simultaneously, applying criteria
such as information gain [35].

There are various attribute evaluation methods that can be summarized based on the type
of features and outcome. When evaluating individual categorical features, the following
methods can be used based on the type of outcome [72]:

• When the target is categorical, then odds ratio or chi-squared test can be used to
measure the relationship with the target.

• On the other hand, when the target is numerical, the possible tests are basic t-Tests
and Analysis of Variance (ANOVA). The same tests can be used if the target is
categorical and features numerical.

When both features and target are numerical, a simple Pearson or Spearman pairwise
correlation can be calculated. However, when the relationship is nonlinear, then the
Maximal Information Coefficient (MIC) may be a better choice [72].

Other well-known filter methods are FOCUS [52], Automatic Branch and Bound (ABB)
[53], and relief [39].
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2.1.2 Wrapper Methods
In contrast to filters, wrapper methods incorporate the classifiers directly into the feature
selection process. The performance of the classification algorithm (e.g., error rate) is
used to evaluate the quality of the selected subset. Examples of this approach would be
backward or stepwise selection as well as Genetic Algorithms (GA) [35, 72].

Wrapper methods follow an iterative search procedure that provides the model with the
subset of features and uses its performance as a guiding factor for selecting the subsequent
subset. The ultimate goal is to iteratively converge to a smaller, optimized feature subset
that increases the classifier’s performance. In general, there is a greedy approach where
a subset of features is chosen, if it currently gives the largest performance improvement.
However, the predictive performance can be trapped at local minima. On the other hand,
a non-greedy approach re-evaluates previous feature combinations and iterates in the
direction that at the moment maybe is not favorable, but in the subsequent iterations
can be highly beneficial [72].

Backward selection, also known as Recursive Feature Elimination (RFE), is a greedy
wrapper method [72]. This method begins by ranking the features based on a chosen
importance measure, and the ranking serves as the basis for the RFE search direction.
An initial model is created using all features and its performance is obtained. Then the
least important feature is removed and the model is rebuilt on the new feature subset.
This is repeated until a low number of features are in the model, or until a significant
performance decrease. It is important to note, that this method is greedy because the
feature importance is assessed only at the beginning. Therefore, it can have a negative
impact, since some features may be more important in the presence of others [72].

Non-greedy wrapper methods, such as GA and Simulated Annealing (SA), offer an
alternative approach to feature selection. The SA method does not make the feature
selection process greedy due to the integration of some randomness. There is a higher
probability that these methods find the globally best features subset. However, searching
for an optimal subset can take a lot of time and this is its main limitation. Additionally,
wrappers use training data to select the best features and therefore there is a risk of
overfitting [72].

2.1.3 Embedded Methods
The potential limitations of the previous strategies are solved by embedded methods.
These methods create feature subsets as an integral part of the classifier, bridging the
gap between filter methods that lack classifier dependence and computationally expensive
wrapper methods [35, 72].

The well-known embedded methods are [72]:

• Tree- and rule-based methods: These methods find the best features by splitting
the points to maximize the homogeneity of target samples in resulting divisions.
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If a feature is not used in any split, it can be seen as less important and can be
removed from the dataset.

• Regularization models: The regularization methods introduce feature coefficients
as a penalty term to the loss function. The lasso regression or L1 regularization
may force some of the coefficients to zero, making them completely unimportant.
Consequentially, these features can be also removed from the model.

Another notable embedded method is Multivariate Adaptive Regression Spline (MARS)
model, which uses piecewise linear functions in aggregation to make predictions. When
a feature is absent from all MARS features, it is not considered important and will be
eliminated. This behavior is similar to trees [72].

Embedded methods offer distinct advantages over wrapper and filter methods. They are
relatively fast and eliminate the need for an external feature selection method since it is
integrated into the model fitting process. Additionally, the feature selection is directly
associated with the objective function of a fitted model (e.g., impurity in tree-based
methods). However, its model dependency represents a limitation [35, 72].

2.1.4 Feature Selection Challenges
Feature selection comes with several challenges that need to be addressed [73]:

• Scalability: The increasing size of datasets is a great difficulty for classification
and feature selection algorithms. Modern datasets can contain thousands of features
and instances, making it demanding for feature selection algorithms to precisely
calculate the feature importance scores. These algorithms often need to consider all
dataset instances to make accurate estimations. Therefore, it is essential to develop
methods that can handle large datasets, ensuring their practical use in real-world
applications [73].

• Linked data: Many feature selection and classification algorithms assume data
independence and an equal data distribution. However, this is not a real-world
scenario where data points may be interconnected. Some examples of connected
data include protein networks in the bioinformatics field, text analysis, and social
networks. It is a great challenge to use the relations between linked data for feature
selection and some approaches were proposed in [74, 75, 76].

• Stability: Expanding upon the selection of a feature subset that yields superior
classification performance, another important aspect of a feature selection method
is its stability. Feature selection stability represents the sensitivity or robustness of
a method to small perturbations in the training data. Ideally, a reliable feature
selection method should consistently select the same or very similar subsets of
important features across different subsets of data. However, the stability can be
greatly affected by the dataset properties such as the number of features, number
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of instances, and data distribution [73].
Stability selection was proposed by Meinshauen et al. [16] to improve feature
selection stability. This approach can increase the quality and stability of any base
feature selection method, where they used Lasso as an example. It involves dividing
the training data into many smaller subsamples where the final importance of a
feature is calculated based on the proportion of subsamples where the feature is
assigned a high importance score. In this way, only the consistently important
features across all subsamples will be included in the final feature subset. Neverthe-
less, stability selection may face difficulties when dealing with correlated features
[77, 78].

2.1.5 Feature Selection versus Feature Extraction

Although beyond the scope of this work, it is important to highlight another approach
for dimensionality reduction known as feature extraction. While the ultimate goal of
both feature selection and feature extraction is partly similar (dimensionality reduction),
these two processes differ significantly and should be used with caution.

Feature selection removes the irrelevant or redundant features that are unnecessary
for later analysis and classification. On the other hand, the feature extraction process
combines existing features into entirely new features and therefore transfers the data into
new space with the reduced linear dependence between the features. This means that two
or more features can be replaced with a single feature derived from their combination.
Methods like Principal Component Analysis (PCA), Independent Component Analysis
(ICA), or Singular Value Decomposition (SVD) can produce feature weights that could
potentially be used to select the most important features. However, this is not advisable
since all initial features are used to create the new space. Additionally, these methods
capture only the linear relationships between features [79].

It is noteworthy that both approaches can be used in a supplementary way, where feature
selection is used to remove the irrelevant features before the employment of feature
extraction [79]. For further discussion on the feature extraction topic, please refer to [80,
81].

2.2 Machine Learning Fundamentals

Machine learning is a subfield of computer science that focuses on developing statistical
models that use data to create an inference function and solve a practical problem. The
type of learning depends on the input data and there are supervised, unsupervised,
semi-supervised, and reinforcement learning [82].
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2.2.1 Types of Learning
2.2.1.1 Supervised Learning

Supervised learning is a process in machine learning where a model is trained using a
dataset consisting of labeled examples. Each example is represented as a high-dimensional
feature vector, where each dimension corresponds to a single feature. The label can be
an element from a finite set of classes, a real number, or have a more complex structure,
such as a vector, or a matrix [82].

Depending on the nature of the label, there are two problems in supervised learning,
classification and regression. The model’s objective in classification is to separate data
samples into different predefined categories, predicting strictly discrete values as labels.
A special form of classification where the label can take only two possible values is
called binary classification. Binary classification is often in scenarios where there are two
distinct values representing a normal and abnormal state, such as {spam, non-spam} in
email filtering. Otherwise, when there are more than two possible labels, it is defined
as multiclass classification. An example of multiclass classification is a classification of
different network attacks. On the other hand, a regression model learns a function that
fits the data and predicts continuous values. For instance, regression might be used to
predict a continuous variable like the price of a house [82].

There are many classification and regression algorithms including linear regression, logistic
regression, decision trees, Naive Bayes, K-Nearest Neighbors, Suppor Vector Machine
(SVM), or techniques based on neural networks such as diverse deep learning approaches
[82].

2.2.1.2 Unsupervised Learning

In contrast to supervised learning, in unsupervised learning data samples are not labeled
and there are only feature vectors. Labeling data is a resource-intensive and time-
consuming process, which requires supervisors, that are often represented by humans.
However, even in the absence of labels, data can still yield valuable insights relevant
to problem-solving and pattern recognition. The most common form of unsupervised
learning is clustering, where data points are grouped into clusters. Data points inside a
cluster are somehow more similar to one another than to datapoints in other clusters.
Additionally, unsupervised learning can be used for dimensionality reduction, where the
output is a feature vector with reduced dimensionality. K-Means and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) are famous clustering algorithms
[82].

Anomaly or outlier detection is another important unsupervised learning technique
that detects abnormal data in a dataset [83]. Hawkins defines an outlier as “an observation
which deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism” [84]. This definition aligns with the traditional
approach to outlier detection, where the determination of whether a data point is an
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outlier is based on its relative distance to other data points that are close in both time
and space [85]. This approach is entirely unsupervised, as the algorithm uses intrinsic
data properties to calculate distances and densities, and thereby to determine what is a
normal point and what is an outlier [86]. However, this strategy may be inappropriate in
certain scenarios, such as the detection of collective anomalies [85]. In response, Iglesias
et al. define an anomaly as “something that diverges from what has been previously
defined as normal data points” [85]. It is noteworthy that such a definition renders this
technique rather semi-supervised, and it is also often referred to as one-class classification.
Furthermore, even though the semantic meaning of anomalies and outliers might not be
the same [87], the terms anomaly detection, outlier detection, and one-class classification
are often used interchangeably in the literature. This interchangeability comes from the
fact that the methods used for their detection are essentially the same [85, 83]. Hence,
the exact definition and approach to anomaly detection (unsupervised, semi-supervised)
depends largely on the application [85].

The unsupervised anomaly detection algorithms can be categorized into the following
groups [88]:

• Nearest-neighbor-based: These techniques assume that normal data points
are located in dense areas, whereas anomalies can be found far from their closest
neighbors [88]. Distance or similarity measures, such as Euclidian distance for
continuous attributes or matching coefficients for categorical attributes, are used to
calculate the outlierness of data points. Some prominent algorithms are k-Nearest
Neighbors (k-NN), k-th Nearest Neighbor (kth-NN), Local Outlier Factor (LOF),
Connectivity-Based Outlier Factor (COF), and others [86, 88].

• Clustering-based: Many clustering-based anomaly detection methods are based
on distinct assumptions. For instance, algorithms like DBSCAN, Robust Clustering
using Links (ROCK), Shared Nearest Neighbor (SNN), and Find Outliers (FindOut)
assume that normal data points are located in clusters, while anomalies are not
associated with any specific cluster [88]. However, these algorithms are optimized
more for cluster identification than anomaly detection. Other methods (e.g., Self
Organizing Maps (SOM), K-means Clustering, and Expectation Maximization
(EM)) categorize data points as anomalies if they are far from their closest cluster
centroid. These clustering-based methods may also leverage labeled training data
and therefore learn in a semi-supervised manner [88].
A limitation of the first two groups of clustering-based methods arises when anomaly
data points create clusters by themselves. In such scenarios, they will be most
probably misclassified as normal points. In response, some methods assume that
normal data points create large and dense clusters, while the anomaly points form
smaller, sparser clusters [88]. Typically, these techniques establish thresholds for
the size and density of clusters, below which all clusters are classified as anomalous.
An example of an algorithm in this category is FindCBLOF (Find Cluster-Based
Local Outlier Factor) [88].
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• Statistical algorithms: These algorithms are based on the premise that normal
data points are situated in “high-probability areas of a stochastic model”, whereas
anomalies are placed in the low-probability areas of such a model [88]. They
include a statistical model that fits on the given data that represents the normal
behavior. New, unseen data instances are then tested if they belong to the model
or not. Well-known methods are Gaussian Model-Based such as the simple box plot
rule technique, Grubb’s test, and the student’s t-test. Additionally, the regression-
model-based techniques are used for time-series data (e.g., Autoregressive Integrated
Moving Average (ARIMA), Autoregressive Moving Average (ARMA)). Another
set of techniques includes histogram-based methods, also known as frequency- or
count-based methods. These non-parametric techniques use histograms to establish
the borders of normal behavior [88].

• Subspace techniques: As previously discussed, PCA is a feature extraction
technique that projects data from one space to another with reduced dimensionality.
It is used for anomaly detection in the way that anomalous data points deviate
from the normal subspaces. However, this approach may not be optimal since the
anomalies negatively impact the covariance matrix, leading to imprecise density
estimation. An improved version, Robust Principal Component Analysis (rPCA),
is proposed in [89].

Nonetheless, anomaly detection holds great importance in numerous fields, particularly in
network security, where rare events such as unusual traffic patterns are often a sign of a
critical situation like network attacks. Indeed, the authors in [90] have demonstrated that
network attacks exhibit higher global outlierness compared to normal traffic. Given that
the anomalies are typically in the minority, the link to imbalanced binary classification is
evident.

For a further discussion of the individual algorithms and their comparison, please refer
to [86, 88].

2.2.1.3 Semi-Supervised Learning

A combination of supervised and unsupervised learning is known as Semi-Supervised
Learning (SSL). In this type of learning, there is a dataset that contains labeled, but
also unlabeled examples. It is particularly often in domains where labeling data is
extremely time- and money-consuming, such as speech analysis or article classification.
The primary objective of SSL is to improve the prediction power of the model by
incorporating unlabeled data alongside labeled data. By doing so, the model can gain a
deeper understanding of the underlying data distribution [82].

For instance, there is a task where numerous articles need to be classified into different
topic categories like robotics, cybersecurity, etc. A possible approach is to use the words
that occur in these articles to train a supervised classifier [91]. From the training data, the
classifier may learn that the articles containing the phrase “hash function” often belong to
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the cybersecurity category. However, a great challenge arises when a cybersecurity article
does not include this word but another one, e.g., “cryptography” that was not available in
the training data. That article is most likely to be misclassified by the trained supervised
classifier. In this scenario, unlabeled data may be useful. There might be articles in the
unlabeled data that link “cryptography” to “hash function”. For example, there are two
unlabeled articles where the first one contains the “hash function” and “SHA-1” phrases,
while the second includes “SHA-1” and “cryptography” terms. Leveraging this unlabeled
data, the classifier may recognize the article containing the unseen word “cryptography”
as belonging to the cybersecurity category [91].

There are three important assumptions important for SSL [91]:

• Smoothness assumption: “If two data instances are close in the feature space,
they should have the same labels” [91].

• Low-density assumption: “The decision boundary should not pass through
high-density regions in the feature space” [91].

• Manifold assumption: “Data instances belonging to the same low-dimensional
manifold should have the same labels” [91]. For instance, there are data points in a
3-dimensional feature space that belong to the same 2-dimension manifold such as
a sphere surface and therefore they should have the same labels [91].

The smoothness assumption can also be used in a transitive manner to label unlabeled
data. For instance, there is a labeled instance x1, and two unlabeled instances x2 and x3.
If x1 is close to x2 while x2 is close to x3, yet x1 and x3 are not close, then according
to the smoothness assumption, x3 can be expected to have the same label as x1. The
second assumption is also very intuitive and supports the smoothness assumption. The
decision boundary “should pass through the low-density areas” [91] because in this way
the close data points will not receive different labels, which would happen if the boundary
traversed high-density areas. Since the smoothness assumption only considers similar
and close data points – typically not found in low-density areas – it is not violated in
this scenario [91].

Additionally, it is crucial to emphasize that SSL is only valuable if the unlabeled data
delivers information that is not already provided by labeled samples [91]. However, this
information must be also useful for the labeling process.

The semi-supervised methods can be grouped as follows [91]:

1. Inductive methods generate similarly to supervised techniques a model capable
of predicting the label of any data instance. Given sets of labeled and unlabeled
instances, XL, XU ⊆ X, with YL representing the labels of labeled data XL, these
methods produce the models f : X → Y [91].
Inductive methods include [91]:
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• Wrapper methods include models that are trained using the labeled points
and then these models are utilized to generate labels for unlabeled instances.
Subsequently, the model is re-trained using pseudo-labeled data along with
the originally labeled instances. Essentially, any supervised algorithm can be
adapted for this purpose. Specific techniques designed for this approach are
ASSEMBLE, SemiBoost, and others [91].

• Unsupervised preprocessing involves both unsupervised and supervised
stages. In the unsupervised stage, methods either extract useful features
from unlabeled data (feature extraction), cluster data (cluster-then-label) or
initialize parameters of the learning procedure (pre-training). They can also be
implemented using supervised classifiers. Semi-supervised autoencoders, deep
belief networks, and stacked autoencoders belong to this group of methods
[91].

• Intrinsically semi-supervised methods directly incorporate information
from both labeled and unlabeled instances into the objective function. For
instance, semi-supervised maximum-margin methods (SVM3, SVM4) are ex-
tensions of SVM where the margin is maximized by also considering unlabeled
data along with labeled data [91].

2. Transductive methods do not offer a model, but instead directly provide predic-
tions for the available unlabeled instances in XU , YU . Therefore, they are strictly
limited to instances from the training space. Since there are no models, data is
forwarded from one point to another via connections, making graph-based methods
a natural fit for this task [4].

Additionally, it is worth nothing that anomaly detection can be conducted in a semi-
supervised manner, as previously discussed. In this approach, an algorithm learns only
the normal state from the training data (no training instances that represent anomalies).
Subsequently, anomalies are recognized as deviations from the learned normal profile [86].
This method is commonly known as one-class classification [92], and famous algorithms
include one-class SVM (SVM3, SVM4) and autoencoders.

For further explanations of SSL and its methods, the interested reader is referred to [91].

2.2.1.4 Reinforcement Learning

In Reinforcement Learning (RL), there is a learner called agent that exists in an environ-
ment. The agent takes actions based on a policy and an input feature vector known as a
state. Similar to the learning function of a model in supervised learning, the policy serves
as a decision-making function. It evolves and is refined based on the reward received
after each performed action [82, 93].

The agent gathers valuable experiences to optimize its behavior within the environment.
At each state, the agent must select a proper action, and this decision-making problem can
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be modeled by Markov Decision Process (MDP). MDP defines several critical parameters
for modeling, including a finite set of states S, a finite set of actions A, a reward function
R, and a state transition function Φ. The goal is defined by the reward function (R),
which maps each possible state-pair pair to a score that indicates the desirability of that
state. On the other hand, the transition function Φ estimates the probability of reaching
the state s2 when an action is performed in the state s1. The agent can only take specific
actions at each state, and therefore the set of possible actions for each state is different.
The other important elements are the policy π and value function (Vπ, Qπ). The agent
behaves according to the policy that maps the states to actions. On the other hand, the
value function estimates the quality of a state by defining the maximum possible reward
that the agent could claim transitioning into that state. Similarly, the policy incorporates
the Q-function, which assesses the quality of executing an action in a state s ∈ S [94, 95].

It is also important to distinguish between episodic and non-episodic RL. An episode
is defined as a subsequence of interactions within the environment. In episodic RL, the
agent is reset to the initial state when an episode concludes. Episode terminations are
denoted by the absorbing states, from which no further states and rewards are possible,
regardless of the action taken. On the other hand, in non-episodic RL, there are no state
resets [94].

The MDPs could be addressed through the following procedures [95, 96]:

1. Dynamic Programming (DP) approach is model-based, requiring a model that
is used by the agent to estimate the environment’s responses to its actions [96]. DP
can calculate the optimal policy by leveraging the environment’s model that is given
in the form of MDP. Firstly, DP estimates the transition and reward functions, and
using these estimations, it evaluates the value function. This process of estimating
values based on the estimations of other values is known as bootstrapping [95].
DP is computationally expensive and impractical for large RL problems since the
complete environment dynamics are needed [96].

2. Monte Carlo (MC) represents a model-free approach where the policy is learned
through the agent’s trial-and-error exploration, rather than relying on complete
modeling of transition and reward functions in the environment. In this approach,
experience samples (one experience sample includes: state, action, reward, and
the following state) are required to train the agent. The reward and subsequent
state are obtained from the environment that is usually represented by a model.
However, the knowledge of the model is not utilized to optimize the policy and
value functions of states. At the end of each episode, the returned samples from
the environment are averaged, and the policy and value functions are updated. It
is noteworthy that for a single state in an episode, either all visits or only the first
one may be considered when averaging the returned samples. After a sufficient
number of episodes, the policy should be optimized based on the agent’s experience
and received rewards. MC methods have a great advantage over DP methods as
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they are model-free, and also the computational requirements are lower since the
value functions in an episode are calculated only for the visited states [96].

3. Temporal Differences (TD) is one of the most widely used RL concepts. It
is similar to DP due to the use of bootstrapping and previous value estimates.
However, reward and transition functions are unknown and therefore it is like MC a
model-free approach. Well-known algorithms are State-Action-Reward-State-Action
(SARSA), Expected SARSA, and Q-learning.

The main objective of RL is to learn an optimal policy with an optimal value function.
However, the recent development of deep RL introduces Goal-Conditional Reinforcement
Learning (GCRL), where the policy is not only dependent on states but also on the
goal being optimized. This goal may vary under different conditions [94]. A practical
application of GCRL can be found in maze navigation tasks, where goals are represented
by different maze locations [94].

The field of RL has improved greatly with the rise of deep neural networks. Neural
networks help the agent to learn from images, leading to many practical applications
such as autonomous driving and gaming. The pioneering algorithm that successfully
combined RL with deep neural networks was Deep Q-Network (DQN). It was initially
trained to play the Atari games demonstrating remarkable performance. Additionally,
the fact that the deep reinforcement model AlphaGo defeated the world champion in Go,
shows the significant progress and immense potential of this field [95, 94, 96].

2.2.2 Ensemble Learning

Ensemble learning is a type of supervised classification. It is a powerful learning paradigm
in machine learning rooted in the divide-and-conquer principle. The fundamental concept
is to combine predictions from multiple individual models to create a more robust and
predictive model.
Figure 2.1 represents the fundamental structure of an ensemble learning model. The
structure comprises base learners, which may be represented by identical models, such as
decision trees, resulting in a homogeneous ensemble. In contrast, when the learners are
structurally different, the ensemble is heterogeneous. Nevertheless, independent of their
internal structure, all learners contribute to the same classification or regression task.
Base learners are also known as weak learners because they are slightly better than
random guessing. However, their true power emerges when they are combined. One
of the most important characteristics of base learners is diversity. Employed learners
must differ in their approaches, otherwise, combining them will not result in substantial
performance improvement. The three main classes of ensemble learning methods are
bagging, boosting, and stacking [97].
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Figure 2.1: Basic ensemble structure (based on [97]). Each learner makes a prediction for
a data instance x, and the final output y is determined by combining their predictions.

2.2.2.1 Bagging

Bootstrap Aggregating or Bagging, is an ensemble paradigm where the base learners are
generated in parallel. Usually, the used weak learners are shallow decision trees. These
trees are constructed to stop their splitting process after a few iterations, achieving a
predictive performance slightly better than random guessing. The main idea is that by
aggregation of many such trees, it is feasible to get a potent final learner that surpasses
the predictive capabilities of these individual trees [82].

To ensure diversity and less correlation among the learners, one approach is to use
different subsets of the original datasets for training each decision tree. However, many
times real-world datasets might not be large enough to support this strategy. This
emphasizes the significance of bagging as it offers a practical solution to this limitation
[97].

The bagging process is illustrated in Figure 2.2. Firstly, multiple subsets are created
from the original training dataset. Each of the subsets is used to train an individual
model within the ensemble. The selection of samples is performed randomly and with
replacement, meaning that a sample chosen from the training dataset remains available for
selection in subsequent rounds. Therefore, a subset may contain duplicate samples. The
final prediction for a data sample can be made by averaging predictions of all predictors
in case of regression or taking a majority vote in the case of classification tasks [82].

An algorithm that builds upon the bagging, with a slight modification, is RF. In a dataset,
if two features emerge as highly important, each decision tree within the ensemble may
exclusively rely on these features for splitting. This could lead to high correlation among
the trees and such correlated trees with the same incorrect predictions could prevail in
the majority voting. To mitigate this negative effect, each decision tree in the RF at each
splitting “sees” only a random subset of features.
This modification together with sampling with replacement, is the reason for the low
variance of the final model and reduced overfitting effect[82].
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Figure 2.2: Training dataset sampling and training of base models in bagging (based on
[98])

2.2.2.2 Boosting

Boosting is a sequential ensemble learning technique that employs a chain of weak
learners, where each learner is supposed to correct the prediction errors made by its
predecessor. The boosting model assigns greater importance to false predictions and the
learning process is more devoted to those training samples. The well-known boosting
algorithms are AdaBoost and the optimized variant of gradient boosting - XGB [82, 98].
In AdaBoost, a new model in sequence corrects the errors of its predecessor by assigning
larger weights to misclassified training samples. The procedure begins with the initial
model being fitted to the training data and generating predictions. Subsequently, the
sample weights are adjusted based on the disparity between the predictions and the
ground truth data labels. The subsequent classifier in the sequence is trained using the
updated weights and, once again, it generates predictions and updates the weights. This
iterative procedure continues until a predetermined number of models are constructed.
The final prediction is generated by combining the weighted predictions from all trained
predictors, wherein the more accurate predictors have larger weights. Weak models in
AdaBoost can be selected freely, although decision trees are a commonly preferred choice
[98].

On the other hand, there is a variant of boosting known as gradient boosting. This process
uses the gradient descent technique to minimize the loss function concerning residuals.
Residuals are calculated based on the current model’s predictions and the ground truth
labels. They will be passed as new data labels to the next model in sequence, which is
supposed to correct the predictions of its predecessor. This procedure shifts the model
in the right direction and addresses misclassified samples. It is necessary whenever a
new learner is introduced to the boosting model. To mitigate the correlation between
sequential learners, it is possible to perform subsampling similar to RF. This approach
is known as stochastic gradient boosting and its well-known optimized version is XGB.
Boosting compared to bagging tends to reduce the bias instead of variance since the
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learning is devoted to fitting the underfitted samples from the previous learners [82].

2.2.2.3 Stacking

Stacking or stacked generalization [99] combines predictions of diverse models, going
beyond trivial aggregation functions like hard voting or averaging. Instead, it employs a
more complex meta-learner or blender, which learns to combine the decisions of first-level
learners in the most optimal way. While it is not atypical to have more layers in stacked
models, the most common approach includes two layers: the first-level learners and a
meta-learner. Any model can be used as a meta-learner, such as linear regression, logistic
regression, or RF. The stacking inference process for a regression task is represented in
Figure 2.3. First-level learners generate predictions, which are used by blender to bring
the final prediction (3.0) [100, 98].

New instance 

Predictor 1 Predictor 2 Predictor 3

2.73.1 2.9

Blending

3.0

Predict

Figure 2.3: Combining predictions with a blender (based on [98])

During the training of a stacked ensemble, it is crucial to avoid any data leakage and
potential biases. To achieve this, the training dataset should be divided into two distinct
hold-out sets. The first hold-out set is used to train exclusively the first-level learners.
Subsequently, the second hold-out set is used to train a meta-learner. The first-level
learners generate predictions for the samples from a second hold-out set and they will
be used as input training data vectors to the meta-learner. This dataset separation is
important because utilizing the same dataset for both the training first-level learners
and generating input data for meta-learners can induce significant bias in the training
process, making overfitting inevitable [98].
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2.3 Imbalanced Learning

An imbalanced dataset is a dataset with an unequal data distribution across different
classes. This means that the number of data samples in a class is much lower than in
other classes. It is an often issue in both binary and multiclass classification. In binary
classification, the minor class is commonly termed the positive class, while the majority is
the negative class. Class imbalance is frequent in various domains, such as fault detection,
fraud detection, or medical diagnosis [101].

2.3.1 Problem of an Imbalanced Dataset

An illustration of an imbalanced dataset is shown in Figure 2.4, where it is evident that
the number of samples belonging to the class “×” is significantly lower than those in
class “·”. Typically, the minority class contains the samples of interest. For instance, this
dataset can be imagined as a data representation containing two tumor types, benign or
malignant, where the malignant tumor is less common and therefore there are fewer data
instances. However, the prediction of malignancy is of utmost importance in the medical
field [102].

Observing the figure, it is very challenging to establish a decision boundary that would
separate minor samples perfectly, and even very complex and accurate models have the
similar problem. Usually, the established decision boundary results in over- or underfitting.
The reason is that most classifiers tend to ignore minority samples, achieving high
accuracy primarily for the majority class. During the learning process, they perform an
optimization of the cost function focusing only on majority samples, consequently deeming
minority samples as less important and misclassifying them. Therefore, it is necessary to
address the class imbalance through a learning process where the classifier will be able to
distinguish between majority and minority classes [102]. It is also important to emphasize
that the ratio between minority and majority classes does not always adequately represent
the real issue of class imbalance. In fact, the ratio itself does not significantly impact
the learning process of the classifier. The greatest challenge arises when the number
of samples in the minority class is insufficient to capture data patterns. This can be
illustrated with an example: in a dataset there are 100 samples in the minority class
and 10,000 in the majority class, resulting in a ratio of 1 to 100. On the other hand,
in the second dataset, there are only 10 samples in the positive and 1,000 samples in
the negative class. Despite the fact, that both datasets have the same ratio, it is highly
unlikely that the algorithm will effectively learn to predict the positive class in the second
dataset. Therefore, the sample size may be a more critical measure in an imbalanced
dataset [102].

Additionally, the distribution of data instances in the feature space is extremely important.
In some datasets, a linear decision boundary may exist that separates the classes perfectly.
However, when samples from different classes are highly mixed and overlapping, finding
an optimal decision boundary without under- or overfitting becomes a great difficulty.
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Figure 2.4: Example of an imbalanced dataset in binary classification (based on [102])

Another noteworthy challenge is dealing with small disjuncts within the data. Both
phenomena can be seen in Figure 2.5 [102].

The final issue that has to be discussed and is particularly significant for Intrusion
Detection System (IDS) is the base-rate fallacy. There are numerous demands for
an IDS including efficiency, transparency, ease of use, interoperability, and more [103].
However, the primary demand for an IDS is its effectiveness, which involves a high
detection rate of the intrusions while keeping the False Alarm Rate (FAR) at an acceptable
level. Regrettably, this balance is not easily achievable and FAR might be the greatest
limitation that an IDS may face. Difficulties are mainly caused by a phenomenon known
as the base-rate fallacy, which requires such a low (often practically unreachable) FAR in
order to achieve a high Bayesian detection rate, P (Intrusion|Alarm). The probability
that an alarm is triggered by an actual attack known as the Bayesian detection rate is
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(a) (b)

Figure 2.5: Possible challenges in an imbalanced dataset (a) Class overlapping, (b)
Disjuncts (based on [102])

defined as [103]:

P (I | A) = P (I) · P (A | I)
P (I) · P (A | I) + P (¬I) · P (A | ¬I) (2.1)

where I and ¬I represent the presence or absence of an intrusion/attack, A and ¬A
denote the presence or absence of an intrusion alarm and P (A | I) is detection or true
positive rate. The FAR is the probability P (A | ¬I), while P (I) and P (¬I) represent the
prior probabilities of an attack or normal traffic [103].

To illustrate this phenomenon, consider the following example. There is a dataset
containing network traffic and a model achieves an accuracy rate of 99% in attack
detection and the accuracy rate for classifying normal traffic as normal is also 99%. While
these accuracy rates appear to be very high for both classes, they might be misleading
when considering other data characteristics, such as the number of instances belonging
to attacks and normal traffic. Imagine there are 100 attack instances and 100,000 normal
instances. This means that the model accurately predicts 99 out of 100 attacks, but
990,000 out of 1,000,000 normal instances are detected as normal. This results in 10,000
of them being misclassified as attacks. Consequently, if the model classifies an instance
as an attack, there is only a 99/(99 + 10, 000) ≈ 0.0098 = 0.98% chance that it is truly
an attack. This indicates that the model does not perform that well despite having a
high detection rate for attacks. The main cause for this discrepancy is that the amount
of normal traffic is far larger than the number of attacks, and therefore preliminarily
low FAR (1%) has an enormous impact on the effectiveness of the model, even when its
detection rate is very high.

The base-rate fallacy is an issue that is often missed when evaluating models on strongly
imbalanced datasets. The author in [103] suggests that the FAR should be measured
relative to the number of expected intrusions rather than concerning the maximal possible
number of false alarms. Otherwise, the probability that a predicted attack is genuinely an
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attack will be very low. The impact of higher FAR could be mitigated through increased
percentage of attacks in the entire traffic and improved detection rate.

When Axelsson [103] first indicated the problem of the base-rate fallacy in the context
of IDSs, data mining methods were able to achieve a minimal FAR of 10−3 [104, 105].
However, almost three decades ago, the existing research proposed methods that only
marginally improved the FAR by a factor of 101 [106, 105]. Considering the amount of
network traffic at that time and now, this FAR improvement is negligible. The author in
[105] illustrated an intrusion detection example at the packet level considering the volume
of data of 2.5TB inbound per day (amount from 2011 based on [107]). With an average
packet size of 870.607 bytes per packet [108], this results in approximately 119,648,296.15
packets per hour. Even if an optimistic FAR of 0.37% is taken [109], it would lead to
442,698.695 false alarms per hour. This problem becomes even greater with the fact that
false positives must be examined by an analyst [105]. According to [110], an analyst can
examine 12 alarms per hour, which results in a total of 36,892 analysts approximately.
Anticipating that network traffic will continue to be composed largely of normal data in
the future, IDS must persist in addressing this issue. The only feasible trade-off is to set
an acceptable FAR as low as possible, nearly as low as prior probabilities of attacks P (I)
[103, 111].

Therefore, it is of great importance to address the problem of imbalanced data and the
used techniques can be categorized into four groups [102]:

• Algorithm level is an internal approach that corrects data imbalance by altering
the learning process of a classifier.

• Data level is an external approach that is suitable when the modifying of the
internal structure and learning process of a classifier becomes too intricate. This
approach involves various data resampling techniques, which either generate addi-
tional minority samples or remove the majority samples from a dataset. In the end,
a completely balanced dataset or a predefined class ratio is achieved.

• Cost-sensitive learning combines algorithm and data level approaches to address
imbalanced datasets. The larger weights are assigned to instances of minor classes,
emphasizing their importance. The learning process is also adjusted to be more
devoted to minor samples.

• Ensemble based methods address imbalanced classes by combining an ensemble
algorithm with either a data level or cost-sensitive learning approach.

2.3.2 Data Level Balancing Techniques
A common approach to balance data includes data sampling techniques. It is an
external approach that eliminates the need to alter the learning algorithms of classifiers.
Resampling techniques can be classified into the following groups [102]:
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• Undersampling methods: These methods remove data instances and create a
subset of the original dataset.

• Oversampling methods: On the other hand, oversampling methods create a
superset of the original dataset by replicating the existing or creating new data
instances.

• Hybrid methods: Represent a combination of both undersampling and oversam-
pling techniques. They perform oversampling of the minor class and undersampling
of the major to achieve a defined class ratio.

2.3.2.1 Undersampling Techniques

Methods that eliminate samples from the major class in order to balance the class ratio
are known as undersampling methods. The simplest, yet sometimes the most effective
undersampling method is RUS. RUS is a non-heuristic method that can be used to
achieve a specific balance ratio by random elimination of instances from the major class.
However, the main drawback of this method is the potential removal of useful data from
a dataset. To mitigate this issue, there is a need for a more sophisticated approach, that
removes the major instances which potentially do not bring any useful information to
the classifier [102].

Many heuristic undersampling methods are based on specific rules for instance removal.
Examples include Tomek Links, Condensed Nearest Neighbor Rule (CNN), One-Sided
Selection (OSS), and Neighborhood Cleaning Rule (NCR). Furthermore, there are more
advanced data sampling techniques, which incorporate ensembles and clustering in their
mechanism such as Instance Reduction by Undersampling Synthesis (IRUS), Cluster-
based Oversampling and Undersampling (Cluster OSS), and Density-based-Safe-level
Undersampling (DSUS) [102].

2.3.2.2 Oversampling Techniques

Random Oversampling (ROS) is another non-heuristic method used to achieve a defined
balance ratio by randomly replicating samples from the minor class. ROS is as RUS
straightforward to implement, but it has also a notable drawback including an increased
risk of overfitting as the dataset contains duplicated instances [102].

Another heuristic technique of oversampling is SMOTE. In contrast to ROS which merely
replicates original samples, SMOTE generates synthetic examples through interpolation
between the existing samples in minor class. The underlying procedure of SMOTE is
represented in Figure 2.6. Firstly, a minor sample xi is randomly chosen as a starting
point for generating new synthetic samples. Based on a distance metric, several neighbors
from the same class are found - xi1, xi2, xi3, and xi4. Then, using random interpolation
new synthetic examples are generated between the starting sample and the neighbors:
r1, r2, r3, and r4 [102].
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Figure 2.6: Generating synthetic data points with SMOTE (based on [102])

This procedure served as a basic concept to many other oversampling techniques, but it
does come with certain limitations. One notable drawback is the potential introduction of
noisy data instances and SMOTE does not consider the major samples or overlapping with
the other class. In response, numerous researchers tried to improve the SMOTE algorithm
and some of the famous SMOTE extensions are Borderline-SMOTE and Adaptive
Synthetic Sampling Approach (ADASYN). In comparison to SMOTE, Borderline-SMOTE
generates synthetic examples only based on the limit or border samples, where most of
their neighbors are samples from the majority class. Consequently, these samples are more
likely to be misclassified. On the other hand, ADASYN is based on adaptively generating
minority examples, where more synthetic data is generated in the areas with a lower
density of minor samples [112]. This approach reduces the likelihood of misclassification
in those sparser regions [102].

2.3.3 Cost-Sensitive Learning
Cost-sensitive learning is another class imbalance strategy that introduces a cost to bias
the learning process to minority samples. Instances that are misclassified receive higher
costs or penalty terms, contributing to an increase in the overall total loss function that
should be minimized by the classifier. Thus, the classifier will prioritize the minority
class. Typically, classifiers use a 0-1 loss function where a wrongly classified sample
is assigned a value of 1 and a correctly classified one is assigned a value of 0. When
an algorithm predicts only the major samples correctly, it is sufficient for minimizing
greatly the loss function. This assigning of the same costs to all classes is not objective in
imbalanced data. Therefore, the primary objective of cost-sensitive learning is to assign
different misclassification costs to different classes. This means that misclassifying a
minor sample could result in, for instance, a tenfold increase in the loss function compared
to misclassifying a major sample [102].

Cost-sensitive learning is incorporated in many classifiers such as decision trees. In
decision trees, the two most important aspects of cost-sensitive learning are splitting
criterion modification and instance weighting. The first approach is connected with the
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feature cost known also as test cost, while the second is the misclassification cost of an
instance, where higher weights are assigned to instances from classes that are more likely
to be wrongly classified. Prominent algorithms that offer cost-sensitive learning are XGB
and RF [102].

2.4 Machine Learning Interpretability
Machine learning algorithms are incredibly powerful for solving complex tasks and gener-
ating accurate predictions. However, they come with some limitations such as a lack of
transparency [113]. This means that the internal structure and workings of these models
are difficult to understand, leading to so-called black-box models. For instance, deep
neural networks or random forests with thousands of decision trees are examples of non-
transparent models [114, 115]. When models are not understandable, it leads to trust and
verification issues, underlying the need for interpretability in machine learning. However,
it is important to recognize a trade-off between model flexibility and interpretability.
With increasing task complexity, it is necessary to use complex models to achieve high
accuracy at the cost of reduced interpretability. Examples of such tasks include predicting
the sentiment of a sentence or detecting various objects [116, 115]. Briefly, Miller defines
in [117] interpretability “as the degree to which a human can comprehend the cause of a
decision” [114].
Authors in [118] have defined several factors that can be optimized through interpretabil-
ity:

• Fairness: Ensuring that predictions are not biased (e.g., racial biased).

• Privacy: Protecting sensitive information within the model.

• Reliability/Robustness: Small input alteration does not cause a great change in
the output.

• Causality: Understanding causal relationships within data

• Trust: Interpretable models are more likely to be trusted

In some scenarios, interpretability may not be as important as predictive performance.
For instance, in low-risk systems such as product recommenders and advertisement
systems [114, 119], there is no need to understand the reason behind predictions as long
as they are accurate. However, in fields such as finance, cybersecurity and medicine, a
prediction must be completely comprehended and well-trusted. The consequences in
these domains can result in large financial losses or even life-threatening situations.

The primary objective of interpretable methods is to explain a model based on explanations
(Figure 2.7). Miller defines an explanation as an answer to why-question [114, 117].

Methods used to interpret machine learning models can be model-specific or model-
agnostic [114]. Model-specific methods are restricted to specific models and they rely on
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Figure 2.7: Explanation pipeline for a machine learning model (based on [114])

the model’s internal structure to produce explanations (e.g., weights of a linear model).
On the other hand, model-agnostic methods are more flexible and can be applied to any
trained machine learning model [114, 119]. Some of these methods will be discussed in
the following sections.

2.4.1 Model-Specific Methods
2.4.1.1 Tree’s Feature Importance from Mean Decrease in Impurity

The concept of feature importance in decision trees was introduced by Breiman in [120].
The importance of a feature Xj can be measured as follows [121]:

Imp (Xj) =


t∈φ

∆I

s̃j

t, t


. (2.2)

The introduction of a surrogate split s̃j
t, that represents the closest split to the actual split

st at the node t, is essential to combat the masking effects. Masking effects occur when a
variable Xj1 is never chosen for splitting at a node because it performs slightly worse
than another variable Xj2 . In such scenarios, Xj1 might wrongly appear as completely
unimportant. If variable Xj2 is removed, a new tree may choose variable Xj1 for splitting,
resulting in almost similar performance as the original tree. Therefore, when a variable
Xj1 is masked by Xj2 , and s̃j2

t is similar to st, then ∆I

s̃j2

t , t


will be close to ∆I (st, t)
and this measure shows the actual importance of the Xj2 [121].
On the contrary, when multiple randomized trees are built in a random forest, masking
effects are mitigated due to the random selection of variables for constructing each tree.
Even when Xj1 is masked by Xj2 , Xj1 could still be chosen if Xj2 is not in the randomly
selected subset. Furthermore, the bootstrap samples introduce more diversity among
trees, decreasing the likelihood that Xj2 will consistently outperform Xj1 [121].
Breiman proposed in [17, 122] a novel measure for assessing the importance of Xj by
adding up the weighted impurity decreases for all nodes t where Xj2 is used. The total
sum is then averaged over all trees in the random forest [121]:

Imp (Xj) = 1
M

M

m=1



t∈φm

1 (jt = j) [p(t)∆i (st, t)] , (2.3)
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where p(t) represents the proportion of samples reaching t node, and jt signifies the
variable utilized to split node t [121].

For classification trees, various impurity measures i(t) can be used such as misclassification
error, Gini index, and cross-entropy or deviance. However, the Gini index and cross-
entropy are generally preferred over misclassification error due to their differentiability
and heightened sensitivity to the changes in node probabilities [43].

The variable importance in gradient boosting can be constructed in the same way as for
random forests, except that trees are built differently. The iterative boosting process
could result in ignoring some variables completely which is less likely in the random
forest due to the underlying bagging technique [43].

2.4.2 Model-Agnostic Methods
2.4.2.1 Permutation Feature Importance

PI is a model-agnostic approach used to assess a model’s behavior. The importance of a
feature is determined by measuring the decrease in a model’s performance score when the
feature values are randomly shuffled. This process disrupts the relationship between a
feature and outcome and its importance can be seen directly in an increase of prediction
error [119]. The term permutation importance was introduced by Breiman in [17].

Similar to Breiman’s random forest permutation importance, the authors in [123] refined
it to be the model-agnostic approach. The procedure for PI, as defined and described in
[119, 123] is as follows:

Input: trained model f̂ , feature matrix X, target vector y, error measure L(y, f̂).

1. Compute the original error eorig = L

Y, f̂ (X)


(e.g., log loss function for classifi-

cation or mean square loss for regression)

2. For each feature j ∈ {1, . . . , n} do:

• Create the feature matrix Xperm, where values of feature Xj are randomly
permuted. This process destroys the relationship between the feature and
outcome y.

• Estimate the error when data matrix with permuted feature Xperm is used for
prediction eperm = L


Y, f̂ (Xperm )


.

• The importance of feature Xj is defined as FIj = eperm - eorig, where permu-
tation that caused higher prediction error is associated with more importance.

There is a question of whether it is a better way to assess feature importance using
the training data used for the model training or unseen, validation data. According to
Molnar in [119], both approaches have their limitations. However, the use of validation
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data may be a better approach to achieve more generalizable feature importance that is
not biased to the training process. When the same training data is used for prediction
and error measurement in permutation importance, it may result in inaccurate feature
attributions. This is particularly critical when the model is overfitting. However, the use
of training data will reveal which features the model relies on. On the other hand, in
practice, it is desirable to use as much training data as possible and it can be a good
reason to avoid the use of validation data for permutation importance. Moreover, when
the model is not overfitting, the importance of features should remain similar for both
the training and validation data [119].

PI offers numerous benefits, including an easy interpretation, a global insight into the
model’s behavior, and it does not require model retraining [119]. Another significant
advantage is that PI considers all interactions between permuted features and other
features. When feature values are permuted, it not only destroys the relationship with
the outcome but also all relationships with the other features. Consequently, feature
importance does not contain only the importance of itself, but also the importance
of its relationships with the other features. This explains why the importance of all
features does not add up to the total performance drop. However, this effect could also
be considered as a disadvantage [119].

The greatest drawback of PI is the creation of unrealistic data instances as a result
of the random permutation of feature values [119]. This issue becomes evident when
dealing with correlated features. To illustrate, consider the scenario where features X1
and X2 are positively correlated, meaning that there are no data instances where a large
X1 value occurs with a small value of X2, or vice versa. However, when employing PI,
this unnatural values pairing may occur, although it is completely unrealistic and does
not reflect the true data distribution. This phenomenon is commonly known as model
extrapolation because the model must predict data that is positioned outside the range
of the used training data [124]. Furthermore, the authors in [124] demonstrated that
PI assigns large weights to these extrapolated predictions, leading to inaccurate feature
importance.
Another limitation of PI is that the correlated features split the importance since they
provide similar information. When permuting one of the correlated features, the model
can still access the same information through the other features. Consequently, this can
demote important features from their initially high to the lower levels of importance,
greatly impacting the results of feature selection process [119].

2.4.2.2 Shapley Values

The Shapley values, named after their creator L. Shapley, represent a method from a
collational game theory [125]. They can be conceptualized as a scenario where a team of
players cooperate to contribute to a payout. The problem of a fair payout distribution
among the players is solved by Shapley values [119].

This concept is also used in the field of machine learning to clarify how the predictions
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are made. The game is represented by a prediction task for a data instance, where the
feature values are equivalent to the players and the prediction itself is the payout. The
players - feature values collaborate to receive the gain that in the end should be fairly
distributed among them. The gain is “the difference between an actual prediction and
the average prediction across all instances” [119]. For each feature value, there is a single
Shapley value, that is calculated as an “average marginal contribution of the feature
value across all possible coalitions” (combinations of features) [119]. The final goal is to
explain the gain and show how each feature contributed to prediction [119].
The following illustrative example shows the calculation of a Shapley value for a specific
feature value. There is a regression task where it is needed to predict apartment prices.
Each apartment has three features such as size, floor, and a categorical feature indicating
whether pets are allowed or not. Consider a particular apartment with a size of 50 square
meters, located on the first floor, and pets are allowed. To determine the Shapley value
for the “pets are allowed” feature, it is needed to simulate a coalition. This coalition
includes only the feature that represents the size of the apartment and the “pets are
allowed” feature. The feature related to the floor level should be excluded from this
coalition. To avoid completely removing this feature and thereby altering the input
function, it is possible to simulate its removal. Firstly, a new apartment data instance is
randomly selected from the dataset and its floor value is donated to the observed initially
observed instance. By doing so, a simulated coalition is created where the floor feature is
absent, as it does not retain its original value but instead has been assigned a random
one. Therefore, instead of completely excluding the feature from the coalition, it gets
a random value. Finally, the prediction is made using the values from the simulated
coalition. The next step simulates the omission of the “pets are allowed” feature by
replacing its original value with a value from the previously drawn apartment instance.
Now, both the floor and pet features are selected randomly from the other instances.
The prediction is made again and a contribution of feature value “pets are allowed” can
be calculated as the difference between these two predictions. For greater accuracy, it is
possible to perform apartment random sampling several times and calculate the average
contribution. This entire process is repeated for all possible coalitions and the average
contribution yields the Shapley value. In the end, the calculated Shapley shows how
much the feature value “pets are allowed” contributed to the prediction of the observed
apartment instance, compared to the average prediction of all instances in the dataset
[119].
The mathematical representation of Shapley value is defined as follows [119]:

ϕj(val) =



S⊆{1,...,n}\{j}

|S|!(n − |S| − 1)!
n! (val(S ∪ {j}) − val(S)), (2.4)

where S represents the features used in the model, x is the data instance that needs to be
explained, and n is the number of features. valx(S) is “the prediction of feature values in
the subset S, that are marginalized over the features that are not included in S” [119]:

valx(S) =
�

f̂ (x1, . . . , xn) dNx/∈S − EX(f̂(X)). (2.5)
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Additionally, Shapley value is the only attribution method with the following properties
[119]:

1. Efficiency: The sum of feature attributions is equal to the difference between the
prediction for an instance x and the average prediction

n

j=1

ϕj = f̂(x) − EX(f̂(X)). (2.6)

2. Symmetry: If two feature values j and k contribute the same to all possible
coalitions, then they have the equal Shapley values.
If

val(S ∪ {j}) = val(S ∪ {k}) (2.7)

for all
S ⊆ {1, . . . , n}\{j, k} (2.8)

then
ϕj = ϕk (2.9)

3. Dummy: Feature j that does not contribute to the prediction of any of possible
coalitions have the Shapley value of 0:

val(S ∪ {j}) = val(S) (2.10)

for all
S ⊆ {1, . . . , n} (2.11)

then
ϕj = 0 (2.12)

4. Additivity: If there is a game with combined payouts val + val+ then the
corresponding Shapley value is

ϕj + ϕ+
j (2.13)

The additivity property holds great importance, especially for the models like ensemble
trees. In the context of a RF, the Shapley value for a feature can be calculated by taking
the average of the Shapley values computed for individual trees.

The greatest disadvantage of Shapley values is extensive computational demand due to a
large number of possible coalitions. The number of coalitions grows exponentially with
the number of features 2n. Therefore, the authors proposed in [126] an approximation
with Monte-Carlo Sampling:

ϕ̂j = 1
M

M

m=1


f̂


xm

+j


− f̂


xm

−j


(2.14)
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where f̂(xm
+j) is the prediction for a data sample x, where the random number of feature

values are replaced with the values from the randomly sampled instance z, but without
replacing feature j value. The xm−j term is identical to xm

+j , only the feature value xm
j is

also replaced with the corresponding value from z.
Within the coalitions, a feature exclusion is simulated by random assigning of the feature
value from a drawn instance. However, this is not executed for all possible coalitions,
but rather for a defined number of iterations M . In each iteration, a random subset of
feature values is substituted with their corresponding values from the drawn instance z.
The selection of which feature values to replace is determined by a randomly generated
permutation of the feature values. Specifically, for all features that are left in permuted
vector to the obtained feature, the original values are retained, while to the right, the
values are taken from the instance z. In the end, the marginal contribution is calculated
for each iteration and after M iterations, all contributions are averaged [119].

Another limitation of Shapley values share similarities to PI. When simulating the
omission of a feature from a coalition, the replacement of the feature with a value from a
random instance may also lead to the creation of unrealistic instances. This is especially
relevant for correlated features [119].

2.4.2.3 Shapley Additive Explanations (SHAP)

SHAP is a Shapley-based explanation method introduced by Lundberg et al. [12]. This
method integrates the principles of local surrogate models (LIME) with Shapley values.
The novelty is that Shapley values are expressed as a linear model. The explanation for
an instance x is defined as [119]:

g
�
z′� = ϕ0 +

M

j=1

ϕjz′
j (2.15)

where g represent the explanation model, z′ ∈ {0, 1}M is the coalition vector, M is the
maximum coalition size and ϕj ∈ R is the Shapley value for the feature j. The coalition
vector z′ consists only of zeros and ones, where 0 represents the absence and 1 the
presence of a feature [119].

SHAP has three important properties [119]:

1. Local accuracy:

f̂(x) = g
�
x′� = ϕ0 +

M

j=1

ϕjx′
j (2.16)

This property is similar to efficiency from Shapley values.

2. Missingness:
xj ′ = 0 =⇒ ϕj = 0 (2.17)
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A missing feature in the coalition gets the attribution of zero because it is represented
as 0 in the coalition vector. This is not an inherent property of Shapley values.
Ensuring missingness, the local accuracy principle cannot be hurt.

3. Consistency: If a model changes and the marginal contribution of a feature value
increases or stays the same, the corresponding Shapley values will also increase or
stay the same.

Lundberg et al. proposed two different Shapley values estimation approaches, Ker-
nelSHAP and TreeSHAP [12, 127].

KernelSHAP includes the following steps [119]:

• Sample coalitions zk′ ∈ {0, 1}M , k ∈ {1, . . . , K}, where the present features are
represented by ones and absent by zeros.

• Convert each coalition zk′ to original data space and get a prediction f̂ : f̂(hx(zk′)),
where hx : {0, 1}M → Rn. This means that hx maps ones to original values from
data instance x which is the one to be explained, while zeros are selected from
another randomly sampled data instance.

• Compute the weight for each zk′.
• Fit weighted linear model: where the instances are assigned weights according to

weights attributed to coalition vectors. The largest weights are assigned to the
coalitions with either few ones (small coalitions) or many ones (large coalitions).
This weighting strategy allows learning of isolation effects of a feature. Additionally,
when a single feature is absent from the coalition, it enables examination of its
primary impact and interactions with the other features.

• Return Shapley values ϕk, the coefficients of the linear model.

To optimize computational resources during the coalition vector sampling process, a
strong strategy is to start with sampling all combinations where only one feature is
included or excluded. This process would then progressively continue with combinations
involving two features being included or excluded, and so forth [119].

Given that the absence of a feature is again represented by a randomly drawn value,
the KernelSHAP encounters the same issue of generating unrealistic instances as PI
and Shapley values. One potential solution could involve conditional sampling, but this
approach changes the game and may result in non-zero Shapley values for features that
are not used by a model [119].

On the other hand, TreeSHAP is a SHAP estimation approach proposed in [127] specifi-
cally designed for decision trees, random forests, and gradient boosting trees. Its primary
distinction to KernelSHAP is the use of conditional expectation instead of marginal.
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However, a challenge arises when the features are correlated. Authors in [128] demon-
strated that a feature not used by the model can still receive a non-zero Shapley value
when it is correlated with another feature that the model does use. However, TreeSHAP
enhanced significantly the computation efficiency. Computation complexity is reduced
from O(TL2M ) to O(TLD2), where T represents the number of trees, L denotes the
number of leaves, and D is the maximal tree depth [119]. The conditional expectation is
described extensively in the original paper [127].

SHAP can be also used to calculate the global feature importance [119]:

Ij = 1
m

m

i=1

���ϕ(i)
j

��� . (2.18)

For a given feature j, the mean value of all absolute Shapley values is calculated to
determine the global feature importance.

In summary, the greatest limitations of KernelSHAP are its slow computational per-
formance, and neglect of the feature dependencies, that lead to extrapolation of data
instances. On the other hand, TreeSHAP is faster but it may produce incorrect feature
attributions because it changes the value function and the game by using conditional
explanations [119].
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CHAPTER 3
Methodology & Experiments

In this chapter, we present the procedure followed in the conducted experiments. The
schematic description of performed experiments is visible in Figure 3.1. All experiments
were implemented in Python programming language.
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Figure 3.1: Schematic description of the conducted experiments

The schematic contains the following building blocks:
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1. Input data: In our experiments, we used diverse imbalanced datasets for binary
classification. Each dataset includes the input feature matrix X and class labels
y ∈ {0, 1}. The instances that belong to the positive class are in the minority and
the negative instances are in the majority.

2. Data preparation: The first step in our methodology is data preparation. We
started by eliminating categorical and constant features from the feature matrix X.
We also standardized the features and divided the input dataset into two sets: a
training dataset X_train, y_train and a test dataset X_test, y_test. The split
ratio between training and test data was 70/30.

3. VIF feature selection: In this step, which was optional for some feature selection
combinations, we identified and removed multicollinear features based on VIF
calculations performed on the training data, X_train. The same multicollinear
features were also eliminated from the test dataset, X_test. In the end, there are
two datasets without multicollinear features, X_train_vif and X_test_vif .

4. Data sampling: We applied RUS or SMOTE sampling techniques to address the
issue of imbalanced data. The goal was to balance data distribution between the
minor and major classes, achieving a ratio of 1:1. Data sampling was exclusively
performed on the training dataset to prevent contamination of the test set and
potential bias in the testing phase. This step was also optional for some of the
tested feature selection combinations.

5. Classifier training: Since our feature selection relied on models, we selected,
trained, and fine-tuned the core classifier for each feature selection combination.
Possible core classifiers were RF, XGB, and their cost-sensitive variants - RF_bal
and XGB_bal. It is noteworthy that the cost-sensitive versions were not combined
with data sampling techniques from the previous step 4 since they internally address
class imbalance through their learning algorithms.

6. Feature importance evaluation: In this phase we performed feature scoring on
the training dataset using the previously trained classifiers and feature attributions
methods. Feature attribution was performed using an internal method such as a
tree’s MDI, or by wrapping the classifier with model-agnostic methods like PI or
SHAP. Each feature in the dataset received an importance score and the scores were
sum-normalized to ensure consistent scaling across different attribution methods.

7. Feature subset selector With feature scores available, we sorted them by their
importance and proceeded to select three distinct feature subsets: the first half of
most important features and subsets containing features that contribute to at least
50% or 80% of the total feature importance.

8. Feature subsets quality assessment In the final step, we evaluated the quality
of the selected subsets using the same core classifier chosen and utilized in steps 5
and 6. The classifier was trained and tested on each of the selected subsets from
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step 7 and ROC AUC scores were recorded as performance metrics. We used the
same classifier hyperparameters found in step 5.

In our experiments, we built various feature selection combinations selecting different
methods within steps 3, 4, 5, and 6. All tested combinations are represented in Table
3.1. The notations used to describe each tested feature selection combination include the
following parts:

• The core classier (RF, RF_bal, XGB, XGB_bal) which was used in step 5.

• The data sampling technique (RUS, SMOTE, none) which was applied to training
data in step 4.

• The feature attribution method (MDI, PI, SHAP) which evaluated feature impor-
tance scores in step 6.

• The VIF feature selection if it was performed in step 3 to remove multicollinear
features.

3.1 Dataset Preprocessing
To effectively address practical problems using machine learning, the two pivotal factors
are the selection of a proper algorithm and obtaining quality data. Nowadays, there
are many algorithms suitable for various problems. However, it is a great challenge to
find proper datasets that accurately represent a problem and enable the algorithms to
learn from it. The performance of many algorithms, regarding their complexity, can
heavily depend on the quality and amount of input data, as it is shown in [129]. We can
confidently say that sometimes data holds more importance than the choice of algorithm,
as emphasized by Peter Norvig et al. in [130]. How to ensure the data quality is described
in [131].

For this reason, we invested considerable effort in carefully selecting the diverse datasets
from various domains. These datasets served as a solid representation of imbalanced
binary classification tasks. The 17 datasets utilized in our experiments are visible in
Table 3.2.

The versions without duplicates and normalization were used for the datasets from [133].
We performed feature selection with 36 different feature selection combinations across all
17 datasets, resulting in a total of 612 evaluations.

3.1.1 Scaling
One of the first steps in data preprocessing and feature engineering is bringing the data to
a shape, that is more suitable for the learning process of a classifier. These techniques are
commonly referred to as data normalization and standardization. Bringing the features
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Feat. sel. comb. Classifier Data sampling Feat. imp. method VIF applied
RF_RUS_FeatImp RF RUS MDI No
RF_RUS_PI RF RUS PI No
RF_RUS_SHAP RF RUS SHAP No
RF_SMOTE_FeatImp RF SMOTE MDI No
RF_SMOTE_PI RF SMOTE PI No
RF_SMOTE_SHAP RF SMOTE SHAP No
RF_bal_FeatImp RF_bal None MDI No
RF_bal_PI RF_bal None PI No
RF_bal_SHAP RF_bal None SHAP No
RF_RUS_FeatImp_VIF RF RUS MDI Yes
RF_RUS_PI_VIF RF RUS PI Yes
RF_RUS_SHAP_VIF RF RUS SHAP Yes
RF_SMOTE_FeatImp_VIF RF SMOTE MDI Yes
RF_SMOTE_PI_VIF RF SMOTE PI Yes
RF_SMOTE_SHAP_VIF RF SMOTE SHAP Yes
RF_bal_FeatImp_VIF RF_bal None MDI Yes
RF_bal_PI_VIF RF_bal None PI Yes
RF_bal_SHAP_VIF RF_bal None SHAP Yes
XGB_RUS_FeatImp XGB RUS MDI No
XGB_RUS_PI XGB RUS PI No
XGB_RUS_SHAP XGB RUS SHAP No
XGB_SMOTE_FeatImp XGB SMOTE MDI No
XGB_SMOTE_PI XGB SMOTE PI No
XGB_SMOTE_SHAP XGB SMOTE SHAP No
XGB_bal_FeatImp XGB_bal None MDI No
XGB_bal_PI XGB_bal None PI No
XGB_bal_SHAP XGB_bal None SHAP No
XGB_RUS_FeatImp_VIF XGB RUS MDI Yes
XGB_RUS_PI_VIF XGB RUS PI Yes
XGB_RUS_SHAP_VIF XGB RUS SHAP Yes
XGB_SMOTE_FeatImp_VIF XGB SMOTE MDI Yes
XGB_SMOTE_PI_VIF XGB SMOTE PI Yes
XGB_SMOTE_SHAP_VIF XGB SMOTE SHAP Yes
XGB_bal_FeatImp_VIF XGB_bal None MDI Yes
XGB_bal_PI_VIF XGB_bal None PI Yes
XGB_bal_SHAP_VIF XGB_bal None SHAP Yes

Table 3.1: Description of feature selection combinations

to a similar scale accelerates the convergence of optimization techniques such as gradient
descent, and reduces the impact of features with large values [134]. We standardized our
data according to the formula:

Xj_stand = Xj − µj

σj
, (3.1)

where Xj is a feature j, µj represents the mean and σj is the standard deviation of
the feature values. Standardization brings the data centered around the mean with a
standard deviation of 1, ensuring that all features share the same magnitude. However,
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Dataset #points #features #major #minor (%)
BreastW 683 9 444 239 (35%)
Cardiotocography 2114 21 1648 466 (22%)
Heartdisease 270 13 150 120 (44.4%)
Ionosphere 351 33 225 126 (35.9%)
Letter Recognition 1600 32 1500 100 (6.2%)
Mammography 11183 6 10923 260 (2.3%)
Mnist 7603 100 6903 700 (9.2%)
PageBlocks 5393 10 4883 510 (9.5%)
Pima 768 8 500 268 (34.9%)
Pendigits 6870 16 6714 156 (2.3%)
Satellite 6435 36 4399 2036 (31.6%)
Seismic 2584 14 2414 170 (6.6%)
SpamBase 4207 57 2528 1679 (39.9%)
Satimage-2 5803 36 5732 71 (1.2%)
Vertebral 240 6 210 30 (12.5%)
Vowels 1456 12 1406 50 (3.4%)
Waveform 3443 21 3343 100 (2.9%)

Table 3.2: Description of used datasets [132, 133]

data standardization may not be strictly requested when using classifiers like RF and
XGB, which consist of decision trees that are invariant to data scaling [135, 136].

3.1.2 Train-Test Splitting

After training an algorithm, it is essential to evaluate its performance using test data.
We split the data into training and test datasets. Typically, 80% of the dataset is used for
training and the rest 20% for the test phase. However, our analysis is heavily dependent
on the outcomes from the test data, and we wanted to achieve as variant results as
possible. Therefore, we reduced the proportion of training data to 70% and increased
the proportion for the test phase to 30%, making the training and test phase more
challenging. Nevertheless, ensuring enough data for the training process is also very
important, otherwise, the employed algorithms will not be able to learn effectively [98].

Another important aspect when dividing an imbalanced dataset is to ensure the same
class ratio in the training and test sets as in the initial data. This is crucial when splitting
data because due to random sampling, very few instances might be in the training or test
set, and therefore model will not be able either to learn or to be tested effectively. This
is also known as stratified sampling and it is usually preferred over random sampling.
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3.1.3 Sampling
We used data sampling techniques such as RUS and SMOTE to achieve a 1:1 ratio
between the majority and minority classes. Employing RUS, we eliminated random
instances from the majority class to balance the data. On the other hand, with SMOTE
we created new data instances based on the existing ones in the minority class. This
enabled our classifiers to learn and distinguish the classes more effectively. To avoid any
potential data bias between the test and training datasets, we applied these techniques
exclusively to the training data.

The second approach for addressing the imbalanced datasets involved cost-sensitive
versions of RF and XGB. Instead of altering the data distribution, we adapted the
learning algorithms of our classifiers to be devoted more to the positive class. We
configured the cost-sensitive version of RF classifier setting its class_weight parameter
to balanced in scikit-learn package [137]. This setting automatically adjusts the weights
assigned to positive and negative classes, making them inversely proportional to their
frequencies in the training dataset. Similarly, we used the pos_scale_weight parameter
in XGB to assign different weights to classes, enabling us to bias the learning process
towards the minority class [138].

3.2 Multicollinearity
A multiple regression model is defined as:

y = β1x1 + β2x2 + . . . + βnxn + e (3.2)

where y represents a dependent variable, x1, . . . , xn are independent variables or predictors,
and the weights or regression coefficients of predictors are β1, . . . , βn. e is an error
term representing the difference between the estimated and actual value [139]. Several
assumptions are vital for multiple regression models including a linear relationship between
the outcome and the predictors and the absence of linear dependency or correlation
between the independent variables [140]. Nevertheless, there is a condition where two or
more predictors are linearly dependent and it is known as multicollinearity [141]. This
phenomenon poses significant limitations in regression analysis, as it leads to an increase
in the standard errors of coefficients. The regression coefficients are interpreted as the
change in the dependent variable, y, resulting from one unit of change in the observed
predictor while holding all others constant [142, 143]. However, this interpretation is
impossible when predictors are correlated since changing one of the predictors leads to
a change of others as well. This interplay may not only increase the standard errors in
coefficients, but also their sign can be opposite to their true effect [139]. Consequentially,
unreliable standard errors will lead to unstable p-values which are used to determine the
significant difference of predictors [143]. In the end, certain predictors that should be
statistically significant due to their strong correlation with the outcome may appear as
insignificant [141, 144]. It is important to note, that although multicollinearity introduces
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the issues regarding the estimation of the impact of a variable on the outcome [145], it
may not impair the predictive performance of models [142].

In this work, we used tree-based methods such as RF and XGB which are non-parametric
models and therefore, their predictive performance remains unaffected by multicollinearity
[136]. However, when they are used to evaluate feature importance (for instance based
on MDI), multicollinearity may adversely impact its stability. The independent effects
of features that share the same information are hard to estimate. In a decision tree,
the feature’s importance may be reduced due to its correlation with other features. For
instance, there are two correlated features A and B. If feature A is chosen as the feature
that most effectively removes impurity at the observed node in a tree, the importance of
feature B will be reduced, since the impurity it could remove is already eliminated by
feature A. However, since RF performs bagging and uses different subsamples of data
instances and features to construct each tree, it is less likely for correlated features to be
included in the same subsample. However, the feature importance coefficients can still
be impacted, and thus, the effect is not entirely eliminated.

For these reasons, the existing literature recommends addressing multicollinearity, and
there are several possibilities [146]:

1. Multicollinearity often occurs due to a lack of information within a dataset to
precisely investigate the underlying effects of features [143]. Therefore, since it is
more the problem related to data rather than the model itself, the first option is
to increase the sample size. However, this is sometimes impossible to do, or at
very high costs [139]. Increasing the number of data instances introduces more
data and feature variety, potentially leading to strengthened differences among the
features. This diversity enables an easier and more precise estimation of the feature
importance when dealing with ensemble trees such as RF. In linear regression, the
benefits of a larger sample size are more pronounced since the standard errors are
inversely proportional to the sample size. Therefore, an increase in the sample
size will ultimately result in decreased standard errors and more precise and stable
coefficient estimates. It is noteworthy that increasing the data sample size may
only mitigate but not completely remove multicollinearity and its effects.

2. A more practical way is to remove the correlated predictors. This approach was
used in our work.

3. Creating new variables by combining the existing variables is the last approach. For
instance, we can create a new variable as a ratio between two correlated predictors
and subsequently remove them.

4. Data standardization can also help to reduce the multicollinearity effects. However,
this approach may only be beneficial for multiple linear regression models as
discussed in [147, 146].
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Generally, methods employed to mitigate multicollinearity can be classified into two
groups [139]:

• Variable selection methods: A widely known dimension reduction technique,
that is also a potential solution to multicollinearity is Principal Component Analysis
(PCA) [148]. This statistical method creates uncorrelated principal components
using two or more variables. A more robust method was proposed in [149], known
as Partial Least Squares (PLS). PLS captures the characteristics of both dependent
and independent variables, whereas PCA operates exclusively on the predictors.

• Modified estimators: These methods include ridge regression [150] or L2 regular-
ization and lasso regression [151], known also as L1 regularization. They introduce
regression coefficients along with a parameter λ as a penalty term to the loss func-
tion. The main difference between L1 and L2 regularization is that in L1 regression
coefficients can be forced down to zero, making the interpretation and variable
selection more approachable. However, the ridge regularization is considered more
stable when dealing with the multicollinearity, since the effects are spread across all
coefficients, while L1 seeks to eliminate some variables by forcing their coefficients
to zero.

As previously discussed in 2.4.2, collinear features can adversely affect the feature
attribution methods, such as MDI tree importance, PI, and SHAP importance. Therefore,
we want to determine the degree to which multicollinearity impacts the tested feature
selection combinations.

3.2.1 Variance Inflation Factor (VIF)
There are various methods to quantify collinearity among the features. One common
approach is to measure pairwise correlations using a correlation matrix [139]. Usually, a
correlation coefficient exceeding 0.8 is a sign of high correlation [152]. However, pairwise
correlation coefficients are not practical, since they assess the correlation between only
two features.

A more robust measure of multicollinearity is the VIF [142], calculated as follows:

VIF = 1
1 − R2

j

, (3.3)

where R2
j is the coefficient of determination for the regression of a feature Xj on the

remaining variables. The square root of VIF shows how much larger the standard error
for the coefficients for a feature is, compared to a scenario in which that feature would not
be correlated with the other features [141]. There is no strict threshold that confidently
indicates the presence of multicollinearity, but the common thresholds are 5 or 10 [141,
153]. VIF is also known as a reciprocal value of Tolerance (TOL) [139]. Other common
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methods to confirm the presence of multicollinearity are eigenvalues from the PCA and
the Condition Index (CI) [139].

In our study, we used the VIF measure to eliminate the multicollinear features from
the training and test datasets and the implemented algorithm is visible in Algorithm 1.
Firstly, we calculate the VIF for each feature i in the training dataset X_train. Then,
we find the feature with the maximal VIF and if its value exceeds the predetermined
multicollinearity threshold, we remove that feature from both X_train and X_test
datasets. After each elimination, we recalculate the VIF scores for the remaining features
and iterate through the previous steps. The algorithm terminates when no feature in
X_train has a VIF higher than the selected threshold. It is important to note, that VIF
calculations were performed only on the training data.

Algorithm 1: VIF-based feature selection
Data: X_train, X_test
Result: X_train and X_test without multicollinear features
n ← number of features in X_train or X_test
vif_threshold ← 5
while True do

vifs ← an empty list with n length
for i ← 0 to n − 1 do

vifs[i] ← variance_inflation_factor(X_train, i)
end
vifs_max ← maximal VIF in vifs
feat_max ← feature name with the highest VIF in vifs
if vif_max ≥ vif_threshold then

remove feat_max from X_train, X_test
end
else

break
end

end
return X_train, X_test

3.3 Supervised Analysis
3.3.1 Hyperparameter Tuning
In machine learning, a learning algorithm comes with various parameters known as
hyperparameters that need to be configured before model training. One of the essential
steps in the training process is hyperparameter optimization or tuning. Hyperparameters
are highly dependent on the input data and proper optimization is required to avoid
issues like over- and underfitting. Overfitting is a problem where an algorithm performs
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well on the training data, but poorly on unseen, test data. This means that the algorithm
does not generalize well. Generally, the complex models are more prone to overfitting,
while simple models are not powerful enough to catch the underlying data patterns and
therefore they usually underfit.
It is advisable to train the model using the training data and determine the most optimal
hyperparameters based on the performance of the model on a separate validation dataset.
Using the test dataset for hyperparameter tuning can introduce a bias in the testing
phase since the test set was part of the training process [98].

One of the greatest limitations of imbalanced datasets is the limited number of instances
in the minority class. Thus, we divided our datasets into training and test datasets,
where test datasets were also used for hyperparameter tuning of the core classifiers within
the employed feature selection combinations. It is important to note that this approach
does not significantly impact our analysis, since all combinations went under the same
conditions through training and testing phases, enabling us to perform a fair comparative
analysis.

There are various techniques to fine-tune a model, but the most used are grid search,
random search, and Bayesian hyperparameter optimization.

Grid search is a suitable approach when the search space and the number of hyperpa-
rameters are relatively small. Otherwise, it can become excessively time-consuming as
the search space and hyperparameters grow. In a scenario with only 3 hyperparameters,
each with a search space of only 5 values, there would be a total of 125 combinations
to evaluate. This means that we must train 125 distinct models. It becomes even more
demanding when using cross-validation to train and assess the performance of each model
[82].

To address this issue, more efficient techniques such as random search, or Bayesian
hyperparameter optimization are used. In random search, rather than specifying
discrete values for each hyperparameter, a statistical distribution is defined from which
values are randomly sampled. It is also needed to determine the total number of iterations
that indicate how many hyperparameter combinations will be evaluated [82].

The Bayesian technique takes the hyperparameter optimization step further. Instead of
randomly sampling hyperparameter values from the search space, it uses past evaluation
results and hyperparameter values to make better selections for future hyperparameter
values. If a particular hyperparameter value has performed well in previous iterations, it
is more likely to be chosen again in the following iterations. In this way, the objective
function is optimized much faster [82].

In our work, we used Optuna, an automatic hyperparameter optimization software [154].
Optuna creates a study that optimizes an objective function within a specified number of
trials. We specifically used the Tree-structured Parzen Estimator (TPE) that operates
based on Bayesian optimization principles. It offers several benefits, including a define-by-
run API (Application Programming Interface) that allows users to dynamically construct
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the parameter search space, efficient implementation of both searching and pruning
strategies, as well as easy-to-setup architecture [154].

Let H represent the hyperparameter space for a given core classifier in step 5. The
hyperparameters for each classifier can be described as follows:

• RF:

HRF =

����������

class_weight : None
max_depth : 10
n_estimators : [50, 500] (integer)
max_features : [0.1, 0.9] (float)
Other parameters : Default from scikit-learn 1.0.2 [137]

• RF_bal:

HRF_bal =

����������

class_weight : balanced
max_depth : 10
n_estimators : [50, 500] (integer)
max_features : [0.1, 0.9] (float)
Other parameters : Default from scikit-learn 1.0.2 [137]

• XGB:

HXGB =

��������������������

subsample : [0.5, 1.0] (float)
max_depth : {5, 6, . . . , 18}
min_child_weight : {1, 2, . . . , 20}
learning_rate : [0.01, 0.05] (logarithmic scale)
n_estimators : [50, 500] (integer)
scale_pos_weight : None
Other parameters : Default from xgboost 1.5.0 [138]

• XGB_bal:

HXGB_bal =

��������������������

subsample : [0.5, 1.0] (float)
max_depth : {5, 6, . . . , 18}
min_child_weight : {1, 2, . . . , 20}
learning_rate : [0.01, 0.05] (logarithmic scale)
n_estimators : [50, 500] (integer)
scale_pos_weight : [1, 200] (integer)
Other parameters : Default from xgboost 1.5.0 [138]

3.4 Feature Scoring
The importance of features was evaluated using the training dataset. In this way, we
prevented potential bias and retained the test data only for performance assessment.

We assessed the importance of features using three different attribution methods:
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• MDI: RF and XGB provide feature importance based on the MDI that is defined
as the total decrease in node impurity averaged across all trees in the tree ensemble.
This is an efficient approach since feature importance is calculated during the
training process and no additional steps are required.

• PI: The second approach is PI which requires several parameters to generate robust
feature importance scores. The importance of a feature is determined by measuring
the decrease in performance when the feature values are randomly permuted. This
method needs a trained classifier to assess the impact of feature permutations, a
performance metric, and data. In our experiments, we used the ROC AUC score
to measure the importance of permuted features. To ensure stability, we performed
10 permutations for each feature and then averaged their importance.

• SHAP: SHAP is rooted in a method from the game theory known as Shapley
values. Since we used RF and XGB as core classifiers, we calculated efficiently the
Shapley values using TreeSHAP implementation. We calculated the global feature
importance by averaging the absolute Shapley values for each feature independently.

It is noteworthy that multicollinear features removed during the VIF selection process
in step 3 of the described methodology did not receive any importance score. In other
words, their importance score was automatically set to 0 and they were not included in
any of the reduced feature subsets in step 7.

3.5 Feature Selection
After calculating the importance scores, we reduced dataset dimensionality by selecting
the most significant features. We used three distinct criteria, each leading to the selection
of a subset:

• Best half features subset: The best half subset includes at most the top
n/2 features, where n represents the number of features in either X_train or
X_train_vif depending on the feature selection combination being tested. It
is noteworthy that a feature selection combination may evaluate less than half
of the features with a score different from 0. In this scenario, we include only
the features that have non-zero importance scores, but ensure that the total
number of included features does not exceed n/2. For instance, a feature selection
combination is applied to X_train with 6 features and the sum-normalized scores
are {0.6, 0.4, 0.0, 0.0, 0.0, 0.0}. In this context, the half subset allows the selection
of a maximum of 3 features. However, we include only the first two, since all other
features are considered unimportant, and we cannot prioritize any of them for
inclusion in the best half subset.

• 50% subset: This subset contains the best features that collectively contribute
to at least 50% of the overall feature importance. For instance, if a combination
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evaluates 6 features with importance scores of {0.35, 0.30, 0.20, 0.15, 0.0, 0.0}, the
subset would include the first two features, resulting in the cumulative importance
of 65% of the total feature importance.

• 80% subset: The 80% subset consists of features that combined contribute to
at least 80% of total feature importance. The features are selected in the same
manner as for 50% subsets with the difference of setting the minimal cumulative
importance threshold to 80%.

3.6 Performance Evaluation
3.6.1 Metrics
A widely used metric for evaluating the performance of a classifier is accuracy. However,
accuracy is not suitable when dealing with imbalanced datasets. Consider a dataset
with 90 major samples and 10 samples in the minority class. If a model predicts all
samples as negative (major class), it would achieve an accuracy of 90%. At first glance,
this accuracy appears impressive, but it conceals the model’s poor performance in
distinguishing between the two classes. The accuracy metric only counts the number of
total correctly classified, without considering the performance of each class individually.
This limitation becomes evident in imbalanced learning, highlighting a need for more
appropriate performance metrics [102].

A convenient way to evaluate the performance of a classifier is with the use of a confusion
matrix. The columns of the matrix represent the predicted instances, while the rows
represent the actual instances. The confusion matrix for the binary classification problem
is shown in Figure 3.2.

Predicted class
Positive Negative

Actual class Positive TP FN
Negative FP TN

Figure 3.2: Confusion matrix for binary classification (based on [102])

Typically, in binary classification, the positive class corresponds to the minor class, and
the negative to the major class. True Positives (TP) and True Negatives (TN) indicate
correctly classified positive and negative instances, while False Positives (FP) and False
Negatives (FN) indicate the negative/positive instances misclassified as positive/negative,
respectively [102].

The following metrics can be defined using the confusion matrix [102]:

• Accuracy is defined as the percentage of correctly classified instances:

Acc = TP + TN

TP + TN + FP + FN
. (3.4)
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However, accuracy is not a proper metric for the imbalanced data, as it can yield a
high score if the model simply predicts the majority class all the time. Moreover, it
assumes that the misclassification cost of positive and negative instances are equal,
which is often unrealistic in real-world scenarios, such as e.g., predicting an attack
in the network or that a patient has cancer. In these cases, we may tolerate more
FP than FN.

• Precision or Positive Predictive Value (PPV) is a fraction of correctly
classified positive predictions among all positive predictions:

PPV = TP

TP + FP
. (3.5)

• Recall or True Positive Rate (TPR) is defined as the fraction of correctly
classified positive samples among all actual positive samples in the test set:

TPR = TP

TP + FN
. (3.6)

• Specificity or True Negative Rate (TNR) is a fraction of correctly classified
negative samples among all actual negative samples in the test set:

TNR = TN

TN + FP
. (3.7)

• False Positive Rate (FPR) represents the fraction of misclassified negative
samples, among all negative samples in the test set:

FPR = FP

FP + TN
(3.8)

• F-measure is a metric that combines precision and recall, where the focus is more
on the positive class. There is an option to assign higher importance to one of the
terms, using the parameter β:

Fβ = (1 + β2) precision · recall

(β2 · precision) + recall
(3.9)

Typically, β is set to 1, treating false negatives and false positives equally costly. If
false positives are more costly, β could be set to 0.5 or if greater emphasis should
be set on false negatives then β could be set to 2.

• G-mean is a metric that treats both classes as equally important. G-mean is
defined as the geometric mean of the TPR and TNR:

G-mean =
√

TPR · TNR (3.10)
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Figure 3.3: Example of a ROC graph (based on [102])

Compared to previous metrics, the ROC AUC operates with scoring predictions rather
than discrete class labels. Many classifiers provide a numerical score for an instance
indicating the likelihood that the instance belongs to the positive class. To obtain the
class labels, a threshold must be defined and if the instance score is above the threshold
it would be labeled as positive, otherwise as negative class. Adjusting this threshold can
lead to different class labels, impacting performance [102].
ROC AUC is a graph performance evaluation method, where the x-axis represents FPR
and y-axis the TPR. FPR quantifies the probability of a false alarm, meaning that a
negative instance will be classified as a positive. By increasing the threshold for the
class labeling, the FPR decreases, since only very few negative labels surpass the high
threshold. On the other hand, TPR is a probability that a positive instance will be
classified as a positive. Decreasing the threshold maximizes this metric but increases
false positive rates. The ROC AUC considers both metrics and represents the probability
that a randomly chosen positive instance will receive a higher score for belonging to the
positive class than a randomly chosen negative instance. A classifier is expected to have
ROC AUC score higher than 0.5 since it is the ROC AUC of a random classifier [102].

The ROC AUC’s ability to work with scoring predictions introduces a level of granularity,
that previous measures lack. An example of the ROC AUC score is represented in Figure
3.3. Each point in the figure represents a different value of the threshold, for which the
FPR and TPR are calculated. The linear line represents the ROC curve for a random
classifier and the goal for a good classifier is to have all plotted points above that curve.
A larger area under the curve (the area in the blue color) indicates a better classifier. In
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the ROC space, the lower left corner or origin represents the scenario where the classifier
predicts always the negative class, while the top right corner represents a classifier that
predicts only the positive class [102].

In this work, we used the ROC AUC measure to assess the performance of different
feature selection combinations, since it is widely used in literature due to its robustness
and effectiveness [155].

In our experiments, we tested various feature selection combinations that were constructed
by combining 2 classifiers (RF, XGB), 3 data balancing techniques (RUS, SMOTE, and
cost-sensitive learning), 3 feature importance methods (MDI, PI, and SHAP) and 2
variants (with or without VIF-based removal). This resulted in a total of 36 distinct
feature selection combinations, which were evaluated on 17 imbalanced datasets. Each
combination performed the selection of 3 distinct feature subsets (50%, 80%, and half) per
dataset. The quality of each feature subset was assessed using the ROC AUC scores and
therefore our analysis generated a total of 1,836 ROC AUC values (36 combinations × 3
feature subsets × 17 datasets). The results are presented and discussed in the following
section.
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CHAPTER 4
Results & Discussion

4.1 Comparative Analysis of Feature Selection Methods
via ROC AUC score

In this section, we assess the quality of feature subsets selected by tested feature selection
combinations. Each combination performs the selection of three distinct feature subsets -
the best half features and subsets containing features that contribute at least 50% or
80% of the total feature importance. The core classifier (RF, XGB, RF_bal, XGB_bal)
of each combination is used to evaluate the performance of the selected subsets. Our
analysis involves 36 different feature selection combinations tested across 17 datasets and
the goal is to identify a superior feature selection combination in terms of ROC AUC
performance. All ROC AUC scores can be found in section 6.1.
We begin our analysis with 50% feature subsets. Firstly, we will describe the process
behind the results represented in Table 4.1, which is also visually shown in Figures 4.1 and
4.2. It is important to emphasize that we computed mean ROC AUC scores separately
for each subset selector (50%, 80%, and half subsets). Figure 4.1 illustrates exclusively
the computation of the mean ROC AUC score for a specific combination (feat_sel_c1 )
when utilizing 50% feature subsets. The combination is applied across all 17 datasets,
resulting in 17 distinct ROC AUC scores for 50% feature subsets. Averaging these scores
yields the mean ROC AUC score for that combination. The same procedure is conducted
for all other combinations (36 in total).
The computation underlying the mean ranks is somewhat more complicated and it is
presented in Figure 4.2. Again, we observe only 50% feature subsets. For the first dataset
(Data_1 ), we calculate the ROC AUC scores for each combination when 50% subsets are
used. Subsequently, ranks are assigned to each combination based on their performance,
with the lowest rank (0) given to the combination with the highest ROC AUC score.
This ranking procedure is conducted across all datasets (17 in total) and we compute the
average rank for each method. For instance, if there were 3 datasets a method could be
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Figure 4.1: Computation of the mean ROC AUC for a feature selection combination
across 17 datasets while considering 50% feature subsets. *This block represents the
methodology presented in 3.1.
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Figure 4.2: Computation of the mean ranks for all feature selection combinations across 17
datasets while considering 50% feature subsets. *This block represents the methodology
presented in 3.1.
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feat. sel. comb. mean ROC AUC mean rank ↓
XGB_SMOTE_SHAP 0.853 7.618
RF_RUS_FeatImp_VIF 0.847 9.676
XGB_SMOTE_SHAP_VIF 0.839 11.0
XGB_RUS_SHAP 0.839 11.088
XGB_bal_SHAP 0.846 11.147
XGB_bal_SHAP_VIF 0.848 11.265
RF_RUS_SHAP 0.841 11.382
RF_RUS_FeatImp 0.841 12.235
XGB_SMOTE_FeatImp 0.84 12.529
XGB_RUS_SHAP_VIF 0.836 12.618
RF_SMOTE_SHAP 0.823 13.353
XGB_bal_FeatImp 0.828 13.353
RF_RUS_SHAP_VIF 0.835 13.382
RF_SMOTE_FeatImp 0.822 13.412
XGB_RUS_FeatImp 0.827 14.588
RF_SMOTE_SHAP_VIF 0.82 16.382
XGB_RUS_FeatImp_VIF 0.814 16.824
XGB_SMOTE_FeatImp_VIF 0.813 17.235
RF_SMOTE_FeatImp_VIF 0.81 17.382
RF_bal_SHAP 0.786 17.912
XGB_bal_FeatImp_VIF 0.802 19.147
RF_bal_FeatImp 0.767 20.824
XGB_RUS_PI_VIF 0.79 20.941
XGB_RUS_PI 0.791 22.0
XGB_SMOTE_PI 0.782 22.471
RF_bal_SHAP_VIF 0.754 23.147
XGB_SMOTE_PI_VIF 0.777 23.206
RF_bal_FeatImp_VIF 0.739 24.794
XGB_bal_PI_VIF 0.725 26.059
RF_RUS_PI_VIF 0.772 26.088
RF_RUS_PI 0.77 26.235
XGB_bal_PI 0.704 26.588
RF_SMOTE_PI 0.731 29.118
RF_bal_PI_VIF 0.711 30.176
RF_bal_PI 0.716 30.382
RF_SMOTE_PI_VIF 0.729 30.441

Table 4.1: Summary of feature selection combinations for 50% feature subsets. Mean ROC
AUC scores and ranks across datasets. A lower rank implicates a better performance.
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ranked in the following way: in the first dataset, it had the best performance (rank 0), in
the second dataset, it performed the worst (rank 35, if we were comparing 36 different
methods), and in the third dataset, it exhibited the second-best performance (rank 1).
Therefore, the average rank would be (0 + 35 + 1)/3 = 12. At the end, each combination
receives a single mean rank. Almost an identical approach was applied to generate Tables
4.2 and 4.3, where instead of the 50% subsets, 80% or half feature subsets were used.
Table 4.1 reveals that the combination of XGB, SMOTE resampling, and SHAP feature
importance method demonstrates the best results in terms of both mean ROC AUC
scores and ranks. However, the mean rank of 7.618 indicates that this combination was
not consistently the best in each dataset. In the second position, we find RF combined
with RUS and its built-in feature importance estimation - MDI. For this combination
a preliminary VIF multicollinearity correction was executed, to reduce potential issues
that can introduce instability in feature coefficients. In the third place, we once again
find XGB with SMOTE and SHAP, but now VIF multicollinearity correction has been
also conducted before feature scoring.
In summary, XGB displays the best results, united with SHAP across all used class
imbalance techniques: SMOTE, RUS, and cost-sensitive learning. On the other hand, RF
performs the best with MDI importance, followed closely by SHAP. On the contrary, the
least effective combinations are those using PI for feature attribution. Regarding class
imbalance techniques, we can infer that XGB performs the best with SMOTE, followed
by RUS. However, RF demonstrates the opposite trend. Both core algorithms perform
worst with the balanced class weights. An interesting observation is that combinations
incorporating VIF correction do not manage to select the most important features as
well as non-VIF combinations.
In addition to the scores presented in Table 4.1, we want to analyze statistical differences
between employed combinations. Hence, we perform the Wilcoxon signed-rank test
analysis, which shows if there is a significant difference between a pair of combinations.
The resulting statistical difference matrix is shown in Figure 4.3. Unfortunately, our
examination did not reveal any combination that significantly differs from the others.
We continue our analysis with 80% feature subsets (Table 4.2). As expected, we ob-
serve a performance improvement due to an increased amount of feature importance
within the subsets. This time, RF_RUS_SHAP emerges as the most effective combina-
tion, followed by balanced versions of XGB: XGB_bal_SHAP, XGB_bal_SHAP_VIF,
XGB_bal_FeatImp. The SHAP method shows consistent efficiency and retains its
position at the top. Unlike in 50% subsets, our current winner is even more convincing,
with an average ranking of 6.706. XGB once again shows the most desirable results
(independently of the used balancing technique) when combined with SHAP, followed by
MDI importance. However, this time RF performs the best with SHAP, closely followed
by MDI feature importance. PI is still the feature evaluation method with the worst
performance. If we look closely at class imbalance techniques, XGB achieves the best
results when combined with class weight balancing, followed closely by SMOTE and RUS.
On the other hand, RF achieves its finest performance with RUS, followed by SMOTE
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sampling. Finally, we can again confirm that VIF correction does not result in significant
performance improvement.

Figure 4.3: Pairwise statistical differences in ROC AUC scores for 50% feature subsets.
A difference is marked by a circle. The color of the circle marks better-performing
combination according to mean ranking across datasets.

The resulting statistical difference matrix for 80% subsets is shown in Figure 4.4. For
a second time, our examination failed to reveal a combination that significantly differs
from the rest. Nevertheless, compared to the analysis of 50% subsets, there is a stronger
difference between the current winner and the remaining combinations.

Finally, we conclude our comparative analysis with the results of half feature subsets
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feat. sel. comb. mean ROC AUC mean rank ↓
RF_RUS_SHAP 0.893 6.706
XGB_bal_SHAP 0.888 9.353
XGB_bal_SHAP_VIF 0.882 9.647
XGB_bal_FeatImp 0.882 9.647
RF_RUS_FeatImp 0.886 10.206
XGB_SMOTE_SHAP 0.876 10.235
RF_RUS_SHAP_VIF 0.88 10.265
RF_RUS_FeatImp_VIF 0.88 11.5
XGB_RUS_SHAP 0.875 11.676
XGB_SMOTE_FeatImp 0.878 11.706
XGB_bal_FeatImp_VIF 0.874 13.647
XGB_RUS_FeatImp 0.867 13.853
XGB_RUS_SHAP_VIF 0.873 14.382
RF_SMOTE_SHAP 0.854 15.147
RF_SMOTE_FeatImp 0.849 15.794
XGB_SMOTE_SHAP_VIF 0.872 15.794
RF_SMOTE_FeatImp_VIF 0.853 16.324
XGB_RUS_FeatImp_VIF 0.857 16.706
RF_SMOTE_SHAP_VIF 0.849 17.294
XGB_SMOTE_FeatImp_VIF 0.856 17.882
XGB_RUS_PI 0.831 21.735
RF_bal_SHAP 0.805 21.971
XGB_SMOTE_PI 0.836 22.5
RF_bal_FeatImp 0.804 23.5
XGB_RUS_PI_VIF 0.826 23.559
XGB_bal_PI_VIF 0.83 24.088
XGB_SMOTE_PI_VIF 0.821 24.853
RF_bal_FeatImp_VIF 0.799 25.441
RF_bal_SHAP_VIF 0.8 25.529
RF_RUS_PI_VIF 0.811 25.588
RF_SMOTE_PI_VIF 0.818 25.853
XGB_bal_PI 0.811 26.794
RF_RUS_PI 0.805 27.676
RF_SMOTE_PI 0.786 28.206
RF_bal_PI_VIF 0.764 30.147
RF_bal_PI 0.763 30.794

Table 4.2: Summary of feature selection combinations for 80% feature subsets. Mean
ROC AUC scores and rank across datasets.
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(Table 4.3). This time, there seems to be less variance in ROC AUC scores and ranks
compared to previous subsets. To verify this, we use the mean and standard deviation
of ROC AUC scores across all employed feature selection combinations for each dataset
(Figure 4.5).

Figure 4.4: Pairwise statistical differences in ROC AUC scores for 80% feature subsets.
A difference is marked by a circle. The color of the circle marks better-performing
combination according to mean ranking across datasets.

It is evident that certain datasets such as Vertebral, Letter Recognition, and Seismic are
more challenging, and therefore feature selection combinations exhibit weaker performance.
However, the standard deviation is at its lowest for half subsets, indicating the smallest
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Figure 4.5: Mean ROC AUC score with standard deviation across all feature selection
combinations for different datasets. Computation is performed separately for each feature
subset (50%, 80%, half).

diversity in the performance across different feature selection combinations. Usually,
the selected half feature subsets include the largest number of features (an example
will be discussed later on). The expanded feature space increases the complexity of a
model and enables the capture of more complex data patterns. It potentially leads to
higher similarity in results across tested combinations. Moreover, the chance of selecting
truly informative features using a method increases with the size of the selected subset.
Ultimately, the similarity between the selected feature subsets increases.

To quantify the similarity between the selected feature subsets by distinct combinations,
we followed the procedure demonstrated in Figure 4.6. We observe only the 50% feature
subsets and a single dataset (Data_1 ). Each combination selects the 50% feature subset
for the given dataset, resulting in 36 distinct feature sets. To assess the similarity between
these subsets, we use Jaccard Similarity which is defined as the number of the shared
elements that can be found in two sets (intersection) divided by the total number of
unique elements in both sets (union).

Since Jaccard similarity applies only to two sets, we compare all selected subsets pairwise,
considering all possible combinations. This results in a total of

�36
2

�
= 630 combinations

per dataset. Finally, we compute the average of these 630 Jaccard similarity coefficients
to get a single value that represents the average similarity between selected subsets by
feature selection combinations for the given dataset and selector. The same procedure
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Figure 4.6: Computation of the Jaccard similarity among the selected 50% feature subsets
by different feature selection combinations for a dataset. *This block represents the
methodology presented in 3.1.

Figure 4.7: Average Jaccard similarity among the selected feature subsets by different
feature selection combinations for different datasets
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is done for 80% and half subsets, and results are presented in 4.7. It is visible that the
Jaccard similarity is the highest for the half selection, indicating that the half feature
subsets selected by different combinations are the most similar (compared to 50% and
80% selection). Furthermore, when observing only the half subsets, it is evident that
the mean Jaccard coefficient varies across datasets, generally demonstrating moderate
or low similarity (below 0.7 or 0.5). However, an interesting observation occurs when
considering the standard deviation of ROC AUC scores (Figure 4.5) along with similarity
results. Notably, low variance in the performance of different combinations for the half
selection does not directly correlate with the high subsets similarity. For instance, the
half similarity coefficient for the Satimage dataset is only about 0.33. However, the
standard deviation of ROC AUC scores for the same dataset is very low. On the other
hand, the half similarity for the Vowels dataset is more than double that of the Satimage
dataset, but the variance of performance is much larger (normally, we would expect
lower variance). This implies that we cannot establish a direct connection between the
high subset similarity and the low variance in performance. Consequently, there may
be another reason (e.g., characteristics of the used datasets) for the similar performance
and the minimal differences in the Wilcoxon rank test, as presented in Figure 4.8.

We continue with the analysis of ROC AUC performance (Table 4.3). Similar to previous
observations, RF_RUS_SHAP and XGB_SMOTE_SHAP continue to perform well.
Intriguingly, the previously underperforming XGB_SMOTE_PI now shows the best
results. We see similar trends regarding balancing techniques and VIF correction. The
tested combinations lead to similar results when selecting the best half features and
none of them is significantly superior to others (Figure 4.8). The overall variety of the
presented ROC AUC scores was relatively low (Figure 4.5) and therefore we did not
observe significant differences when conducting Wilcoxon rank tests. Since we were
limited by the number of useful imbalanced datasets, we were not able to increase the
statistical power of the performed analysis. However, RF balanced versions might not be
the most appropriate choice for this task.
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feat. sel. comb. mean ROC AUC mean rank ↓
XGB_SMOTE_PI 0.879 10.176
RF_RUS_SHAP 0.884 10.265
XGB_SMOTE_SHAP 0.878 10.412
RF_RUS_FeatImp 0.881 11.0
XGB_SMOTE_FeatImp 0.883 12.588
XGB_bal_SHAP 0.885 12.765
XGB_bal_PI 0.881 12.941
RF_RUS_FeatImp_VIF 0.871 13.353
XGB_RUS_SHAP 0.872 13.941
XGB_bal_FeatImp 0.873 14.412
RF_RUS_SHAP_VIF 0.869 14.765
RF_RUS_PI 0.874 14.912
RF_RUS_PI_VIF 0.869 15.176
XGB_RUS_PI 0.864 15.706
XGB_RUS_SHAP_VIF 0.869 17.471
XGB_RUS_FeatImp 0.865 18.412
XGB_RUS_PI_VIF 0.863 18.794
XGB_SMOTE_SHAP_VIF 0.871 19.0
RF_SMOTE_FeatImp 0.85 19.294
RF_SMOTE_SHAP 0.84 19.382
XGB_SMOTE_PI_VIF 0.868 19.5
RF_SMOTE_PI 0.844 19.559
XGB_bal_PI_VIF 0.865 19.912
XGB_bal_SHAP_VIF 0.868 19.912
XGB_bal_FeatImp_VIF 0.861 20.235
XGB_RUS_FeatImp_VIF 0.866 20.676
RF_SMOTE_PI_VIF 0.854 21.147
RF_SMOTE_SHAP_VIF 0.847 21.471
RF_SMOTE_FeatImp_VIF 0.847 21.706
XGB_SMOTE_FeatImp_VIF 0.859 22.529
RF_bal_FeatImp 0.799 25.941
RF_bal_PI_VIF 0.805 26.118
RF_bal_SHAP 0.805 26.294
RF_bal_PI 0.809 26.824
RF_bal_SHAP_VIF 0.794 27.265
RF_bal_FeatImp_VIF 0.788 32.147

Table 4.3: Summary of feature selection combinations for half feature subsets. Mean
ROC AUC scores and ranks across datasets.
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Figure 4.8: Pairwise statistical differences in ROC AUC scores for half feature subsets.
A difference is marked by a circle. The color of the circle marks better-performing
combination according to mean ranking across datasets.
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4.2 Stability and Variance of Feature Scores
In this section, we analyze the stability of feature coefficients scored by different com-
binations. We expect from a stable and reliable combination that if a subset of chosen
features weighs more in terms of accumulated feature importance, it will lead to better
ROC AUC performance. Therefore, the 50% subsets should never outperform the 80%
subsets scored by the same combination. For this analysis, we will observe results in
Table 4.4.
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Figure 4.9: Computation of the mean correlation coefficient between accumulated feature
scores and ROC AUC performance for a feature selection combination across all datasets.
Additionally, we counted the number of negative correlation coefficients across all datasets.

To calculate the results presented in the table, we followed the procedure illustrated
in Figure 4.9. We focus only on a single combination (feat_sel_c1 ) to explain the
computation for a single row of Table 4.4. When applied to a dataset (Data_1 ), the
combination selects three distinct feature subsets (50%, 80%, and half subset) and their
quality is reflected by the corresponding ROC AUC scores. Additionally, each selected
subset carries some weight in terms of the accumulated feature importance. Therefore,
there are 3 ROC AUC scores and 3 accumulated feature importance scores and we
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4. Results & Discussion

mean corr. coeff. negative corr. instances
feat. sel. comb. Pearson Spearman ↑ Pearson Spearman
RF_SMOTE_PI_VIF 0.978 0.971 0 0
RF_RUS_PI_VIF 0.937 0.971 0 0
RF_RUS_PI 0.932 0.963 0 0
XGB_RUS__SHAP 0.827 0.861 1 1
XGB_bal_PI_VF 0.827 0.853 1 1
XGB_bal_SHAP_VIF 0.815 0.853 1 1
XGB_RUS_Featlmp 0.829 0.845 1 0
RF_RUS_SHAP 0.894 0.837 0 0
XGB_bal_SHAP 0.864 0.829 1 1
XGB_bal_PI 0.839 0.824 1 1
XGB_RUS_PI 0.804 0.824 1 1
XGB_bal_Featlmp 0.879 0.816 0 1
XGB_SMOTE_PI 0.761 0.794 1 1
RF_RUS_Featlmp 0.85 0.786 1 1
XGB_SMOTE_Featlmp 0.849 0.786 1 1
XGB_RUS_FeatImp_VIF 0.813 0.781 1 1
RF_SMOTE_PI 0.809 0.765 2 2
RF_bal_SHAP_VIF 0.767 0.765 2 2
RF bal PI VIF 0.715 0.757 1 1
RF_RUS_SHAP_VIF 0.752 0.735 2 1
RF_bal_PI 0.73 0.735 1 1
RF_RUS_Featlmp_VIF 0.785 0.727 1 1
XGB_RUS_SHAP_VIF 0.725 0.706 2 2
XGB_bal_Featlmp_VIF 0.66 0.698 3 2
XGB_SMOTE_Featlmp_VIF 0.741 0.676 2 2
XGB_SMOTE_PI_VIF 0.738 0.676 1 2
XGB_SMOTE_SHAP 0.71 0.661 2 2
XGB_RUS_PI_VIF 0.618 0.618 3 3
RF_bal_Featlmp_VIF 0.631 0.61 3 3
RF_SMOTE_Featlmp_VIF 0.711 0.602 2 3
RF_SMOTE_SHAP_VF 0.62 0.594 3 3
RF_bal_Featlmp 0.597 0.588 3 3
RF_SMOTE_Featlmp 0.644 0.572 3 3
RF_SMOTE_SHAP 0.616 0.551 3 3
RF_bal_SHAP 0.529 0.522 4 4
XGB_SMOTE_SHAP_VIF 0.489 0.484 4 4

Table 4.4: Correlation analysis between accumulated feature scores and ROC AUC
performance. Pearson and Spearman coefficients, along with the number of negative
correlation coefficients.

calculate the correlation between them. This process is carried out across all datasets
and the mean correlation coefficient is calculated. Additionally, we count the number of
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4.2. Stability and Variance of Feature Scores

negative correlation coefficients for a single combination across all datasets. Negative
correlation coefficients imply that there were subsets where higher accumulated feature
importance is associated with lower ROC AUC performance. The entire procedure is
repeated for all feature selection combinations (36 in total) and results are documented
in Table 4.4. Both Pearson and Spearman correlation coefficients were computed.

From the results we can derive that only RF shows consistently the expected be-
havior across all datasets: RF_SMOTE_PI_VIF, RF_RUS_PI_VIF, RF_RUS_PI,
RF_RUS_SHAP. The first three methods have higher correlation coefficients meaning
that there is a stronger ROC AUC increase when we use a subset with the larger impor-
tance. XGB balanced and RUS versions also show higher mean correlation coefficients,
but these combinations tend to break the expected behavior.

Additionally, we present the mean correlation coefficients with standard deviation for
each dataset in Figure 4.10. Simply, we averaged all correlation coefficients across the
tested combinations for each dataset individually. Notably, there is a large discrepancy
in stability among the tested combinations for certain datasets such as Heartdisease,
Mammography, Seismic, Letter Recognition and others. Moreover, we observe lower
mean correlation coefficients for these datasets, implicating overall poor stability in their
feature coefficients. On the other hand, for SpamBase, Satellite, Pima, and others, all
tested combinations demonstrate very high stability.

Figure 4.10: Mean correlation coefficients with standard deviation for different datasets.
The procedure presented in Figure 4.9 is repeated for all 36 feature selection combinations,
resulting in 36 different correlation coefficients per dataset and the mean is taken.
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4. Results & Discussion

To assess a method’s ability to distinguish between highly and less significant features,
we use the Coefficient of Variation across a set of feature scores attributed by the method.
The average value across all datasets is calculated and results are presented in Table 4.5.
A higher coefficient of variation implies greater variability in feature scores.
Clearly, PI is the most discriminatory method when compared to the other two - SHAP
and MDI importance, which show rather similar ability in distinguishing highly important
features. In our experiments, we used a decrease in ROC AUC score resulting from feature
permutation as an indicator of its importance. This evaluation method assigns high
importance strictly to those features, that have a direct impact on the ROC AUC score. It
appears that the number of such features per dataset is low. Figures 4.11, 4.12, and 4.13
show why PI combinations exhibited poor performance on 50% and 80% datasets, as a
large amount of feature importance was attributed to a small set of features. We consider
the Ionosphere dataset and XGB_SMOTE combinations as an example. Notably, SHAP
and MDI importance manifest smooth feature scoring, resulting in much larger 50%,
80%, and half subsets. However, we see from our results in 4.1, that this has a great
impact on PI combinations on 50% and 80% subsets but not on the half subsets. The half
feature subsets include the highest number of features and this is a trend observed across
multiple datasets and combinations. Thereby, we do not only have the best results for PI
combinations on the half subsets in previous sections, but also for the other combinations.
Although selected half subsets are much smaller for XGB_SMOTE_PI it still manages
to have excellent results, in this example, XGB_SMOTE_PI achieves 0.901 ROC AUC
score compared to 0.906 and 0.921 achieved by MDI and SHAP, respectively.

Figure 4.11: Feature importance scores by XGB_SMOTE_FeatImp on Ionosphere.
Please note that this feature selection combination does not incorporate VIF feature
selection and therefore the graph does not show any VIF-removed features.
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4.2. Stability and Variance of Feature Scores

feat. sel. comb. mean coeff. of variation ↑
RF_RUS_PI 3.253
RF_bal_PI 2.977
RF_SMOTE_PI 2.664
XGB_RUS_PI 2.601
XGB_bal_PI 2.578
XGB_SMOTE_PI 2.571
RF_RUS_PI_VIF 2.398
RF_SMOTE_PI_VIF 2.218
XGB_SMOTE_PI_VIF 2.21
RF_bal_PI_VIF 2.188
XGB_bal_PI_VIF 2.111
XGB_RUS_PI_VIF 2.093
XGB_SMOTE_FeatImp_VIF 1.458
XGB_SMOTE_FeatImp 1.43
RF_bal_FeatImp 1.371
XGB_RUS_FeatImp_VIF 1.259
XGB_RUS_FeatImp 1.243
XGB_SMOTE_SHAP 1.188
RF_bal_FeatImp_VIF 1.17
XGB_RUS_SHAP 1.131
RF_bal_SHAP 1.126
XGB_SMOTE_SHAP_VIF 1.069
RF_RUS_SHAP 1.065
RF_RUS_FeatImp 1.057
RF_SMOTE_FeatImp 1.028
XGB_bal_SHAP 0.997
XGB_RUS_SHAP_VIF 0.978
RF_SMOTE_FeatImp_VIF 0.975
RF_SMOTE_SHAP 0.975
RF_bal_SHAP_VIF 0.965
XGB_bal_FeatImp 0.947
RF_SMOTE_SHAP_VIF 0.928
RF_RUS_SHAP_VIF 0.901
XGB_bal_SHAP_VIF 0.883
XGB_bal_FeatImp_VIF 0.841
RF_RUS_FeatImp_VIF 0.781

Table 4.5: Mean Coefficient of Variation of feature importance scores
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4. Results & Discussion

Figure 4.12: Feature importance scores by XGB_SMOTE_PI on Ionosphere. In our
experiments, we specifically include features in a subset if they hold an importance higher
than 0. As a result, in this scenario, the number of features in the half subset is reduced
to 14 instead of the initial 16.

Figure 4.13: Feature importance scores by XGB_SMOTE_SHAP on Ionosphere. Please
note that this feature selection combination does not incorporate VIF feature selection
and therefore the graph does not show any VIF-removed features.
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4.3 Implications of Various Factors on Feature Selection
At this point, we will investigate the individual impacts of the core classifier, sampling
techniques, VIF correction, and feature evaluation methods - SHAP, PI, and MDI
importance. Our focus is to analyze how the introduction of these factors influences ROC
AUC performance and stability of feature scores.

mean corr. coeff.
Pearson Spearman Coeff. of Var.

feat. sel. comb. RF XGB RF XGB RF XGB
RF_RUS_Featlmp XGB_RUS_Featlmp 0.85 0.83 0.79 0.84 1.06 1.24
RF_RUS_Featlmp_VIF XGB_RUS_Featlmp_VIF 0.78 0.81 0.73 0.78 0.78 1.26
RF_RUS_PI XGB_RUS_PI 0.93 0.8 0.96 0.82 3.25 2.6
RF_RUS_PI_VIF XGB_RUS_PI_VIF 0.94 0.62 0.97 0.62 2.4 2.09
RF_RUS_SHAP XGB_RUS_SHAP 0.89 0.83 0.84 0.86 1.06 1.13
RF_RUS_SHAP_VIF XGB_RUS_SHAP_VIF 0.75 0.72 0.74 0.71 0.9 0.98
RF_SMOTE_Featlmp XGB_SMOTE_Featlmp 0.64 0.85 0.57 0.79 1.03 1.43
RF_SMOTE_Featlmp_VIF XGB_SMOTE_Featlmp_VIF 0.71 0.74 0.6 0.68 0.98 1.46
RF_SMOTE_PI XGB_SMOTE_PI 0.81 0.76 0.76 0.79 2.66 2.57
RF_SMOTE_PI_VIF XGB_SMOTE_PI_VIF 0.98 0.74 0.97 0.68 2.22 2.21
RF_SMOTE_SHAP XGB_SMOTE_SHAP 0.62 0.71 0.55 0.66 0.98 1.19
RF_SMOTE_SHAP_VIF XGB_SMOTE_SHAP_VIF 0.62 0.49 0.59 0.48 0.93 1.07
RF_bal_Featlmp XGB_bal_Featlmp 0.6 0.88 0.59 0.82 1.37 0.95
RF_bal_Featlmp_VIF XGB_bal_FeatImp_VIF 0.63 0.66 0.61 0.7 1.17 0.84
RF_bal_PI XGB_bal_PI 0.73 0.84 0.74 0.82 2.98 2.58
RF_bal_PI_VIF XGB_bal_PI_VIF 0.72 0.83 0.76 0.85 2.19 2.11
RF_bal_SHAP XGB_bal_SHAP 0.53 0.86 0.52 0.83 1.13 1.0
RF_bal_SHAP_VIF XGB_bal_SHAP_VIF 0.77 0.82 0.76 0.85 0.96 0.88

Table 4.6: Comparison of XGB and RF combinations using correlation and variation
coefficients. The larger of the two scores is marked.
4.3.1 Ensemble Model
We summarize results from sections 4.1 and 4.2 into Tables 4.6 and 4.8 for an easier com-
parison between RF and XGB. To ensure a fair assessment, we analyze each combination
side by side by changing only the core classifier as the part that we are interested in.

We observe in Table 4.8 a potential advantage of RF over XGB when combined with the
RUS. However, in combination with SMOTE and particularly for cost-sensitive versions,
XGB demonstrates superior performance. It is a similar trend if we observe the stability
of these combinations using correlation coefficients in Table 4.6. Therefore, RF is more
stable than XGB in union with the RUS technique, while this does not hold for the
cost-sensitive versions, as XGB is clearly more reliable.

In terms of feature discrimination, a significant difference exists only for the cost-sensitive
versions, where the RF_bal is more discriminant than XGB_bal.

4.3.2 Balancing Technique
As previously discussed, XGB consistently performs best with SMOTE and cost-sensitive
versions, whereas RF is more effective when combined with the RUS sampling technique
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4. Results & Discussion

mean corr. coeff.
Pearson Spearman Coeff. of Var.

feat. sel. comb. VIF NO VIF NO VIF NO
RF_RUS_FeatImp_VIF RF_RUS_FeatImp 0.78 0.85 0.73 0.79 0.78 1.06
RF_RUS_PI_VIF RF_RUS_PI 0.94 0.93 0.97 0.96 2.4 3.25
RF_RUS_SHAP_VIF RF_RUS_SHAP 0.75 0.89 0.74 0.84 0.9 1.06
RF_SMOTE_Featlmp_VIF RF_SMOTE_FeatImp 0.71 0.64 0.6 0.57 0.98 1.03
RF_SMOTE_PI_VIF RF_SMOTE_PI 0.98 0.81 0.97 0.76 2.22 2.66
RF_SMOTE SHAP_VIF RF_SMOTE_SHAP 0.62 0.62 0.59 0.55 0.93 0.98
RF_bal_FeatImp_VIF RF_bal_FeatImp 0.63 0.6 0.61 0.59 1.17 1.37
RF_bal_PI_VIF RF_bal_PI 0.72 0.73 0.76 0.74 2.19 2.98
RF_bal_SHAP_VIF RF_bal_SHAP 0.77 0.53 0.76 0.52 0.96 1.13
XGB_RUS_FeatImp_VIF XGB_RUS_FeatImp 0.81 0.83 0.78 0.84 1.26 1.24
XGB_RUS_PI_VIF XGB_RUS_PI 0.62 0.8 0.62 0.82 2.09 2.6
XGB_RUS_SHAP_VIF XGB_RUS_SHAP 0.72 0.83 0.71 0.86 0.98 1.13
XGB_SMOTE_Featlmp_VIF XGB_SMOTE_Featlmp 0.74 0.85 0.68 0.79 1.46 1.43
XGB_SMOTE_PI_VIF XGB_SMOTE_PI 0.74 0.76 0.68 0.79 2.21 2.57
XGB_SMOTE_SHAP_VIF XGB_SMOTE_SHAP 0.49 0.71 0.48 0.66 1.07 1.19
XGB_bal_FeatImp_VIF XGB_bal_Featlmp 0.66 0.88 0.7 0.82 0.84 0.95
XGB_bal_PI_VIF XGB_bal_Pl 0.83 0.84 0.85 0.82 2.11 2.58
XGB_bal_SHAP_VIF XGB_bal_SHAP 0.82 0.86 0.85 0.83 0.88 1.0

Table 4.7: Comparison of combinations with and without VIF using correlation and
variation coefficients

(Tables 4.8 and 4.6).

4.3.3 Variance Inflation Factor (VIF)
Tables 4.9 and 4.7 show that the implemented VIF method does not consistently lead
to better ROC AUC scores nor higher stability in feature scores. According to the
coefficient of variation, the combinations without VIF seem to be more discriminant.
The only combination that benefits from VIF in all segments is RF_SMOTE_PI_VIF.
Nevertheless, the two best combinations involve VIF corrections and demonstrate high
stability.

Since the incorporation of VIF-based removal into the tested combinations did not improve
performance, there is a question of whether the features removed by VIF-based combina-
tions are also eliminated by the corresponding non-VIF combinations, resulting in equal (or
nearly equal) feature subsets. For instance, does XGB_SMOTE_SHAP select the equal
(or nearly equal) feature subsets as its VIF-based version - XGB_SMOTE_SHAP_VIF?
To address this question, we use a process similar to the one presented in Figure 4.6.
However, this time, we do not compute Jaccard similarity coefficients between all possible
pairs, but only between VIF combinations and their corresponding non-VIF versions
(e.g., XGB_SMOTE_SHAP vs XGB_SMOTE_SHAP_VIF, RF_SMOTE_SHAP vs
RF_SMOTE_SHAP_VIF and so forth). Consequently, rather than evaluating 630 pairs,
we compute the similarity coefficients for only 18 and take the mean value. This analysis
is conducted across all datasets and results are presented in Figure 4.14.
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4.3. Implications of Various Factors on Feature Selection

Figure 4.14: Average Jaccard similarity among the selected feature subsets by different
feature selection combinations for different datasets - VIF comparison. Similarity coeffi-
cients are computed pairwise between feature subsets selected by VIF and corresponding
non-VIF feature selection combinations.

It is evident that similarity is now more pronounced compared to the scenario where all
possible combinations were considered. We observe perfect similarity (selected feature
subsets are identical for all 18 pairs) for Mammography, Pima, Waveform, and Heartdisease
datasets. However, these results are not relevant since these datasets had no multicollinear
features, and therefore VIF selection could not remove any of them. For other datasets,
results differ. Notably, there is a high similarity (over 0.7) for datasets Cardiotocography,
Mnist, PageBlocks, SpamBase, and Vertebral. On the other hand, we observe moderate
similarity (between 0.5 and 0.7) for BreastW, Ionosphere, and Seismic. However, Vowels,
Satellite, Satimage-2, and Pendigits datasets demonstrate lower similarity (below 0.5)
between the selected subsets. Based on these observations, we cannot claim that VIF
and non-VIF combinations consistently select equal or nearly equal feature subsets, at
least in our experiments.

Considering that VIF-based combinations did not consistently lead to performance
improvements or more stable feature coefficients, it is not necessary to explicitly address
the multicollinear features when using the tested combinations (at least for the investigated
datasets). Explicit removal of multicollinear features may discard some useful information
and therefore our recommendation is to allow the models alone to handle multicollinearity.
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4. Results & Discussion

4.3.4 Feature Scoring Technique
From our previous sections, it is clear that XGB performs the best with SHAP, closely
followed by MDI importance for 50% and 80% datasets. The same trend holds for the RF
algorithm. However, we notice some deviation from this pattern in half subsets, where
PI can also have strong results. Finally, PI, followed by SHAP is a more stable choice for
RF combinations. If we consider the discriminatory power of tested combinations, PI is
the most discriminant feature attribution method.
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4. Results & Discussion
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CHAPTER 5
Conclusion

5.1 Conclusions
In this work, we tested various feature selection combinations to address the problem
of feature selection in imbalanced datasets for binary classification. To accomplish
this, we used tree ensembles (RF and XGB) combined with data balancing techniques
(RUS, SMOTE, cost-sensitive learning) and feature attribution methods (MDI, PI, and
SHAP). Our experiments include 36 distinct feature selection combinations, which were
evaluated on 17 imbalanced datasets. We used ROC AUC scores - a metric widely used
in literature for the imbalanced data, to evaluate the performance of tested combinations.
We also conducted a stability analysis where we compared the performance of three
selected feature subsets (best half features, 50% subset, and 80% subset) relative to their
cumulative feature importance. Lastly, we explored the discriminatory power of the
employed feature selection combinations and the impact of multicollinear features using
VIF.
The following conclusions emerged from the conducted experiments:

• XGB and RF in combination with a data balancing technique are promising
methods for an effective feature selection across diverse imbalanced datasets. The
combinations XGB_SMOTE_SHAP, XGB_bal_SHAP and RF_RUS_SHAP
consistently demonstrate a strong ROC AUC performance across all evaluated
feature subsets.

• RF_SMOTE_PI_VIF stands out as the most stable combination, manifesting
the strongest correlation between feature importance scores and ROC AUC per-
formance. Other stable RF combinations are RF_RUS_PI_VIF, RF_RUS_PI,
and RF_RUS_SHAP. On the other hand, the most reliable XGB combinations are
XGB_RUS_FeatImp, XGB_bal_FeatImp, and XGB_SMOTE_PI. Combining
RUS or SMOTE with PI results in stable feature importance scores.
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5. Conclusion

• RF_RUS_PI is the most powerful combination in distinguishing between highly
and less important features. Similarly, the most discriminant XGB method is
XGB_RUS_PI. In general, PI combinations are more discriminant compared to
those relying on SHAP and MDI feature importance.

• The RF classifier leads to better performance and is more stable than XGB, when
combined with the RUS technique. On the other hand, the cost-sensitive version of
XGB, along with the combination involving SMOTE, shows better performance
and stability compared to RF combinations. We do not advise RF_bal for the
feature selection. Therefore, the selection of a balancing technique depends strongly
on the core classifier.

• The VIF measure does not consistently improve ROC AUC performance, nor feature
scoring stability. On the contrary, most of the combinations show better results
without the VIF. The only combination that benefits from VIF in all segments is
RF_SMOTE_PI_VIF.

• PI is the most discriminant feature attribution method. SHAP and MDI feature
importance display smooth feature scoring. Regarding stability, PI and SHAP are
the best choices for RF. On the other hand, MDI feature importance can also show
strong reliability when used with XGB. Every feature scoring technique can yield
high ROC AUC scores depending on the used combination and subset selection
criteria. We do not advise 50% and 80% cut-off criteria for PI combinations, because
of poor performance.

In our experiments, we used a variety of different data sets and feature selections. However,
all statements provided here can be only made about the analyzed data sets with the
feature selections and may be different if data sets or features differ.

We summarize our observations, suggestions, and recommendations considering the
initially stated research questions and goals:

• R1: Accuracy
XGB_SMOTE_SHAP, XGB_bal_SHAP, and RF_RUS_SHAP are the preferred
and most prominent combinations.

• R2: Stability
To maximize stability and performance, RF should be used with RUS, while XGB
should be used in its cost-sensitive version (XGB_bal) together with SMOTE.

• R3: Discriminant power
PI shows the most discriminant scores, i.e., it is the approach that most clearly
separates the most important features from the less relevant ones.

• R4: Particular impacts
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5.2. Future Work

– Both RF and XGB can perform equally well, depending on the other elements
employed in the feature selection pipeline.

– All data-balancing techniques can perform equally well when combined with
the right elements in the feature selection pipeline. RUS performs best when
combined with RF and SHAP, SMOTE is effective with XGB and SHAP, and
the recommendation is to use only the XGB cost-sensitive version - XGB_bal
and also with SHAP.

– There are no significant advantages obtained by the use of VIF-based feature
selection. It is not necessary to explicitly address multicollinearity when using
ensemble trees (RF, XGB) in combination with data balancing techniques
(RUS, SMOTE, cost-sensitive learning) and feature attribution methods (MDI,
PI, and SHAP) to generate high-performing and stable feature subsets.

– PI shows the most discriminant feature importance scores, while SHAP and
MDI feature importance display smooth feature scoring. Every feature scor-
ing technique can yield high ROC AUC scores, depending on the specific
combination and subset selection criteria.

5.2 Future Work
In this work we addressed the problem of imbalanced data in binary classification; however,
there is still much research to be done on the topic of imbalanced data, for instance, in
multiclass classification, which commonly includes several minority and majority classes
with strongly divergent cardinalities [156].

Nevertheless, the natural continuance of this work would involve an analysis of the feature
selection combinations regarding the characteristics of the used datasets, such as dataset
geometry, dimensions, class types and overlapping [157]. Although we attempted to collect
a wide range of imbalanced datasets, our results could be more significant by increasing
the number of proper imbalanced datasets. Additionally, valuable insights could be
gained by testing novel combinations to address the problems related to multicollinearity
and imbalanced data. For instance, many extensions of standard SMOTE oversampling
technique could be examined and compared to our results: Borderline-SMOTE, Adjusting
the Direction of the Synthetic Minority ClasS Examples (ADOMS), ADASYN, Safe-
Level SMOTE, Density-Based SMOTE (DBSMOTE), and many others. In our work,
we used the non-heuristic RUS technique, however, there are many other heuristic
techniques such as Tomek Links (TL), CNN, OSS, Class Purity Maximization (CPM),
and even more advanced undersampling techniques like Evolutionary Undersampling,
ACOSampling, Cluster-Based Evolutionary Undersampling (CBEUS), and others [102].
An extensive comparison of various over- and undersampling techniques is conducted in
[158, 159, 160]. The class imbalance problem could be also addressed by combining over-
and undersampling techniques, as Estabrooks et al. [161] and Barandela et al. [162]
suggested.
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5. Conclusion

Moreover, an ensemble approach can be employed to select the most important features.
An interesting approach is proposed in [163], where the imbalanced binary problem
is broken into multiple balanced binary problems without altering the original data
distribution. The major instances are divided into several data non-overlapping subsets,
with minor instances added to each dataset to achieve a ratio of 1:1. Subsequently,
multiple classifiers are used to learn from these diverse balanced datasets and perform
feature scoring. Finally, the feature coefficients obtained from multiple models for a single
feature can be merged into one score in an ensemble manner. Another similar technique
is EM1vs1 [164], where the imbalanced binary dataset is transformed into a balanced
multi-class problem. Additionally, alternative measures such as the Condition Index –
a function of eigenvalues (λ) that represent the variance of the linear combination of
variables [165] – can be used to detect multicollinearity.

Furthermore, it may be beneficial to investigate the impact of stability measures on the
tested feature selection combinations proposed in [166]. It would be interesting to explore
the potential impact of stability selection proposed by Meinshausen et al. [16], where
the training data is divided into smaller subsamples and only the consistently important
features across all subsamples are included in the final feature subset. The question
remains whether the outcomes obtained through this method would be different from
ours.
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CHAPTER 6
Appendix

6.1 ROC AUC Performance of Feature Selection
Combinations

ROC AUC scores achieved by the core classifiers of each feature selection combination,
on the full set of features and the selected 50%, 80%, and half feature subsets are shown
in the Tables 6.1 - 6.17.
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6.1. ROC AUC Performance of Feature Selection Combinations
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6.1. ROC AUC Performance of Feature Selection Combinations
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6.1. ROC AUC Performance of Feature Selection Combinations
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6.1. ROC AUC Performance of Feature Selection Combinations
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6.1. ROC AUC Performance of Feature Selection Combinations
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6.1. ROC AUC Performance of Feature Selection Combinations
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6.1. ROC AUC Performance of Feature Selection Combinations
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6.1. ROC AUC Performance of Feature Selection Combinations
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