Analysis of Non-Tidal Loading Deformation at VLBI Sites
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Abstract Very Long Baseline Interferometry (VLBI) is
one of the geodetic techniques used to establish the
International Terrestrial Reference Frame (ITRF). It
relies on data collected from multiple antennas situ-
ated at various locations across the Earth’s surface.
However, the accuracy of VLBl measurements can be
compromised by Earth’s crust deformation caused by a
range of geophysical factors, including plate tectonics,
solid Earth tide-induced loading, atmospheric pres-
sure variations, and redistribution of water masses,
both over land and in the oceans. Among these
factors, non-tidal loading (NTL) deformations can also
lead to positional shifts in VLBI sites, thus affecting
measurement accuracy. To address these NTL effects
in VLBI analysis, geophysical models are employed
to correct the displacement of VLBI stations. The
objective of this study is to compare the NTL products
obtained from different loading services, such as the
VieAPL, ESMGFZ, IMLS, and EOST. The evaluation of
how these NTL products impact VLBI analysis is carried
out using the VieVS software. This assessment entails
the computation of baseline length repeatability and
station height standard deviation, both before and
after applying the loading corrections.
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1 Introduction

The establishment and maintenance of the ITRF and
International Terrestrial Reference System (ITRS)
represent essential endeavours in modern geodesy.
These efforts are pivotal because they provide the
foundation for measuring and interpreting geophysical
phenomena and their impact on Earth’s shape and
orientation. Geophysical factors, such as post-glacial
rebound, seismic events, and variations in Earth’s
rotation, induce deformations in the Earth’s surface.
Consequently, accurate correction models are re-
quired to maintain the stability and accuracy of the
reference frame, as they can introduce significant
discrepancies in geodetic measurements (Altamimi
et al., 2016). Calculating the displacements due to
various geophysical effects allows us to reduce them
from the station coordinates, obtaining the long-term
linear station motion. Unlike other geophysical mod-
els, NTL models are not accurate enough. Therefore,
it is advised not to adjust station positions for these
effects, as per the International Earth Rotation and
Reference Systems Service (IERS) Convention 2010. In
recent years, numerous studies have been conducted
on specific space geodetic techniques aimed at re-
ducing non-tidal loading effects (Schuh et al., 2004;
Petrov and Boy , 2004; Eriksson and MacMillan , 2014;
Roggenbuck et al., 2015; Glomsda et al., 2020).

Non-tidal loading effects displace geodetic stations by
a few centimetres on an annual to sub-daily basis (Wi-
jaya et al., 2013). Also, the Global Geodetic Observing
System (GGOS) was established with the ambitious
objective of achieving 1mm accuracy in determining
Earth’s geometric parameters, as outlined in its strate-
gic plan. Pursuing such unprecedented accuracy has
revitalized the focus on correcting NTL effects, given

151



Singh et al.

their substantial impact on geodetic measurements
and the realization of GGOS'’s objectives.

2 NTL components and loading services

In this section, we will elucidate the NTL components
employed in our investigation, the sources from which
this data is extracted and the process of standardizing
data from various services to ensure uniform format-
ting for comparison. In geodesy, NTL data refers to
the utilization of diverse geophysical models aimed
at correcting the theoretical signal delay encountered
during VLBI observations. These models encompass
non-tidal atmospheric loading (NTAL), non-tidal
oceanic loading (NTOL), and hydrological loading
(HYDL), which can be employed either independently
or in combination to address the cumulative loading
effects. NTAL is specifically designed to consider the
impact of atmospheric pressure fluctuations on the
Earth’s surface, arising from dynamic changes in
atmospheric pressure driven by meteorological events
and factors unrelated to tidal forces. HYDL, on the
other hand, addresses the deformation of the Earth’s
crust resulting from shifts in continental water storage.
Lastly, NTOL is concerned with the deformation of
the Earth’s crust caused by the redistribution of mass
within the oceans.

The displacement data resulting from these three
loading factors is obtained from four distinct sources,
which are as follows:

1. VieAPL (Vienna Atmospheric Pressure Loading)
(https://vmf.geo.tuwien.ac.at/products.html)

2. ESMGFZ (Earth-System-Modelling group at
GFZ)(http://rz-vm115.gfz-potsdam.de:8080/repository)
3. IMLS (International Mass Loading Ser-
vice)(http://massloading.net/)

4. EOST (Ecole & observatoire des sciences de la
Terre)(http://loading.u-strasbg.fr/index.php)

VieAPL, IMLS, and EOST provide users with both
pre-calculated global Grid-based mass loading time
series and pre-calculated time series customized for
particular space geodesy stations. Furthermore, IMLS
enhances its offerings by delivering an on-demand
Internet service, granting users the capability to
request data for specific stations and specify their

desired time intervals. In parallel, ESMGFZ delivers
pre-computed global Grid-based mass loading time
series and also allows users the option to retrieve
data for particular stations while tailoring the time
ranges according to their requirements. Within each
loading category, numerous models are available for
generating the associated loading products. In our
study, the choice of models for different loading cate-
gories and services depends on factors such as data
availability, time steps, update frequency, and spatial
resolution level. Table 1 presents the characteristics
of the chosen models. VieAPL and ESMGFZ data is
updated daily, while IMLS data is updated monthly.
EOST data undergoes updates every few months.

After selecting models for each loading category
and service, we acquired center-of-mass frame NTL
data for the year 2020 for this study. We identified
a total of 163 VLBI stations, which remained consis-
tent across all services and were categorized as ITRF
sites. Following the data extraction process, the next
pivotal step involves data formatting. It's important to
note that data obtained from different services come
in various formats. To facilitate meaningful compar-
isons within VieVS, we formatted the data obtained
from the models selected from EOST, IMLS, and ES-
MGFZ into the VieAPL format of the loading correc-
tions.

3 Data comparison

To compare the NTL products from four different ser-
vices, we initiate the process by generating a time se-
ries graph illustrating NTAL displacement. This initial
step is crucial because VieAPL exclusively offers NTAL
data. It’s worth highlighting that the NTAL products de-
rived from all four services display a substantial level
of concurrence among them (see Figure 1). This align-
ment can be ascribed to the fact that all services utilize
the ECMWEF model for extracting loading data.

In addition to the NTAL displacement graph, we
generate another time series graph to evaluate the
cumulative sum of all NTL components. It is evident
that most services demonstrate a high degree of
agreement among themselves in the cumulative NTL
trend (see Figure 2). However, it's worth highlighting
that there is a significant deviation observed, particu-
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Table 1 Attributes of the selected non-tidal loading models corresponding to different loading components of various services.

Service Loading Model Spatial Resolution Time-steps Data Availability
VieAPL NTAL ECMWF 1°x1° 6h 1994-present
IMLS NTAL MERRA2 2'x2' 6h 1980-present
IMLS NTOL  MPIOMo6 2'x2' 3h 1980-present
IMLS HYDL MERRA2 2'x 2’ 3h 1980-present
EOST NTAL ECMWF 0.5° X 0.5° 3h 2000-present
EOST NTOL ECCO1 1°x1° 12h 1993-2021
EOST HYDL GLDAS2 0.25° X 0.25° 3h 2000-2022
ESMGFZ  NTAL ECMWF 0.5° X 0.5° 3h 1976-present
ESMGFZ  NTOL MPIOM 1°%x1° 3h 1976-present
ESMGFZ  HYDL LSDM 0.5° %X 0.5° 24h 1976-present
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Fig. 2 Site displacement time series due to all NTL components
in CM-frame at AGGO station.

larly in the up component of ESMGFZ.

To gain insight into the variations in data related
to each NTL component of different services, we've
plotted Root Mean Square (RMS) values of the differ-
ence in site displacement due to NTL between two ser-

vices in the CM-frame and for 163 VLBI stations (refer
to Figures 3,4,5). The RMS values are organized based
on the latitude of each respective VLBI station. No-
tably, we observe significant RMS values of more than
8 mm, mainly occurring within the latitude range of
30°N to 65°N, particularly in the Up direction. Among
the different loading components, the NTAL compo-
nent shows the least variation between the two ser-
vices, while the HYDL component exhibits the most
substantial differences. This discrepancy is especially
pronounced in the case of HYDL component of ES-
MGFZ vs. EOST, with an average RMS value of 6.7 mm
and a maximum RMS value of 18.5 mm for the up di-
rection. These disparities can be attributed to the use
of distinct models with varying resolutions by differ-
ent services. Additionally, the separate treatment of
Sea Level Loading (SLEL) in order to achieve global
mass conservation, as undertaken by ESMGFZ, may
contribute to this observed variation. In contrast, other
services incorporate partial mass conservation in both
NTOL and HYDL, which could influence the level of
agreement in these components.

4 Data processing in VieVS

We investigated the influence of non-tidal loading
displacement models within VLBI analysis. These
displacements resulting from non-tidal loading were
incorporated as adjustments to the station coordi-
nates at the observation level. The entire processing
was conducted using VieVS, utilizing a one-year
process list of R1/R4 sessions and OPT files for the year
2020. Notably, the VieVS graphical user interface (GUI)
initially featured the option for loading displacement
due to NTAL data, and subsequently, options for NTOL
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Fig. 3 RMS values of difference of site displacement due to
different NTL components between ESMGFZ and EOST in CM-
frame. The RMS values of stations are organized latitude-wise.
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Fig. 4 RMS values of difference of site displacement due to
different NTL components between ESMGFZ and IMLS in CM-
frame. The RMS values of stations are organized latitude-wise.
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Fig. 5 RMS values of difference of site displacement due to
different NTL components between IMLS and EOST in CM-frame.
The RMS values of stations are organized latitude-wise.
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Fig. 6 Percentage change in BLR before and after applying all
NTL models in CM-frame for 142 baseline.

and HYDL were introduced later in the process.

In VLBI analysis, the term "baseline length repeata-
bility” (BLR) denotes the degree of precision in mea-
suring the length of a baseline connecting two VLBI sta-
tions over a period of time. BLR holds significant impor-
tance in VLBI because it directly influences the accu-
racy of both geodetic and astrometric measurements.
By assessing BLR before and after applying NTL dis-
placement products, we can determine whether there
is an improvement in BLR as a result of using NTL mod-
els. In Figure 6, we present the percentage change in
BLR before and after incorporating all NTL data, focus-
ing on a total of 29 stations. The results reveal that
71.83% of baselines demonstrate improvement or re-
main unchanged when using EOST data, while 70.4%
of baselines show improvement or stability with IMLS
data. In contrast, only 48.59% of baselines exhibit im-
provement or stability when utilizing ESMGFZ data.
Likewise, we've computed the standard deviation of
station heights both before and after the application
of NTL models for a total of 142 baselines (see Figure
7). The result revealed that a total of 67% of station
height standard deviation improves after the applica-
tion of NTL in the case of EOST and IMLS. However, in
the case of ESMGFZ, the improvement is only 52.38%.

5 Conclusions and outlook

The application of NTL displacement corrections to
VLBI station coordinates is essential for achieving
high-precision BLR. It helps reduce systematic errors,
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Fig. 7 Difference in the standard deviation of station heights
both before and after the application of NTL models in CM-frame
for 21 stations.

improve station coordinate accuracy, and enhance the
long-term stability of VLBI measurements. Variation in
the improvement of BLR among services (see Figure
6) is primarily due to HYDL and NTOL. The standard
deviation difference of the time series of station height
with and without NTL shows that the estimation of
station coordinates improves upon the application of
NTL models (see Figure 7). Also, results from different
services are consistent with each other except in
the case of ESMGFZ. The distinct approach taken
by ESMGFZ in addressing Sea Level Loading (SLEL)
with a focus on global mass conservation might be a
contributing factor to the observed variation. In order
to enhance our understanding, we will incorporate
a broader range of data spanning approximately 20
years. We expect that this extended timeframe will
provide valuable insights and contribute to a more
comprehensive analysis.
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