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Abstract

Finite mixture models, i.e., mixture models with a fixed number of components, have a long

tradition in statistical modeling and are a well-established tool to explore structures in complex

data. In scenarios where the number of components is unknown, choosing an appropriate number

of components is a crucial modeling decision that can be challenging. In order to formalize this

modeling decision in a Bayesian fashion, we investigate the mixture of finite mixtures (MFM)

model. The MFM model extends the traditional finite mixture model to a Bayesian mixture

model with a random number of components. Using the MFM model, it is possible to group

data into meaningful subpopulations and estimate the model parameters without specifying

the number of components a priori. We discuss equivalent representations of the MFM model

such as the stick-breaking representation and relevant distributions such as the exchangeable

partition probability function. For Bayesian inference of the model parameters, we propose

a computationally efficient coordinate-ascent variational inference (CAVI) algorithm for MFM

models and provide detailed derivations of the corresponding update equations. Subsequently,

we focus on mixtures consisting of multivariate Gaussian component distributions with unknown

means and known covariance matrices, resulting in a novel CAVI algorithm for the static mixture

of finite Gaussian mixtures (MFGM) model. We evaluate the clustering performance of our CAVI

algorithm using synthetic data generated according to a finite Gaussian mixture and observe

high accuracy for suitably chosen hyperparameters. Furthermore, we apply an existing CAVI

algorithm for Dirichlet process mixture (DPM) models, which are frequently used in scenarios

with an unknown (but finite) number of components, to our data. A comparison reveals that

the proposed CAVI algorithm for static MFGMs outperforms the CAVI algorithm for DPMs,

especially for large datasets.
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Chapter 1

Introduction

1.1 Background

Mixture models, i.e., models based on a linear combination of distributions, find applications

in various fields such as model-based clustering and classification [1], density estimation [2],

image and signal processing [3], biology and bioinformatics [4], and text mining and natural

language processing [5]. Mixture models posit that the observed data arise from a mixture of

several subpopulations commonly called components, each characterized by its own probability

distribution. Traditionally, mixture models have assumed that the number of components is

fixed. The inception of finite mixture modeling, a landmark in statistical modeling, dates back

nearly 130 years to a first significant publication where the number of components was fixed to

two [6]. However, it soon became clear that choosing an appropriate number of components is

a critical modeling decision. The frequentist statistical viewpoint does not allow to infer the

number of components jointly with the model parameters [7] and requires a separate model

selection task using heuristic algorithms.

Bayesian mixture models (BMMs) extend the traditional concept of a mixture model by

incorporating Bayesian principles, i.e., the parameters of the mixture are modeled as random

unknown quantities that are distributed according to known prior distributions, and Bayes’

theorem is used to update beliefs about these parameters according to observed data. This

allows for the incorporation of prior knowledge and uncertainty into the modeling process.

Within the Bayesian framework, a natural way to deal with an unknown number of components

is to treat it as a random parameter with a (discrete) prior. In the literature, this type of BMM

is commonly referred to as the mixture of finite mixtures (MFM) model. The MFM model was

introduced in [8] and further studied in [9]–[11].

Unfortunately, practical statistical inference, in particular inference about the number of

components in the MFM model, is difficult analytically and computationally. A notable ad-
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vance was achieved in [9], where the reversible jump Markov chain Monte Carlo (RJMCMC)

method [12] was used for the MFM model. This method enables sampling all the model param-

eters including the number of components from the joint posterior distribution, i.e., the joint

distribution of the model parameters given the observed data. However, the RJMCMC method

is difficult to use since designing good reversible jump moves is often nontrivial, especially in

high-dimensional parameter spaces [13].

Due to these challenges, infinite mixture models, i.e., mixture models with an infinite number

of components such as the Dirichlet process mixture (DPM) model, have become popular. Since

the Dirichlet process has several computationally tractable representations, such as a represen-

tation using the partition distribution — which is a member of the family of Gibbs partition

distributions, cf. Section 3.2 — and the stick-breaking representation, a variety of efficient infer-

ence algorithms for DPM models have been proposed [14]–[16]. For DPMs, the expected number

of clusters, i.e., the number of components used in the process of generating the observed data,

grows logarithmically with the number of observations [17]. Thus, when the underlying distri-

bution of the observed data has a fixed and finite number of components, the usefulness of DPM

models for clustering is questionable. Indeed, in [18], the authors proved inconsistency of DPM

models when estimating the number of clusters in a dataset distributed according to a simple

univariate mixture with a fixed and finite number of Gaussian components. More specifically, it

was shown in [18] that when a DPM model is applied to data from a finite mixture, the posterior

distribution of the number of clusters does not concentrate at the true number of components.

1.2 State of the Art and Motivation

Despite the inconsistency issue with DPMs discussed in [18], inference algorithms for DPM

models play a major role in state-of-the-art inference algorithms for MFM models [19]. It

turned out that for a special case of MFM models (called static MFMs, see Section 3.1), there are

MFM counterparts for all the computationally tractable representations of the Dirichlet process

mentioned above. Exploiting the fact that static MFM models have a partition distribution of

Gibbs form as well, split-merge samplers for DPMs [14],[15] were adapted to static MFM models

in [19]. Partitions are sampled from the corresponding posterior distribution, and thereby the

number of clusters is inferred.

In [20], an algorithm of a somewhat different nature, called telescope sampling, was proposed.

Unlike the split-merge sampler in [19], the telescope sampler does not require knowledge of the

marginal likelihood, nor is it restricted to the static MFM model. Indeed, the telescope sampler

is known as one of the most generic and easily implemented inference algorithms for MFM
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models with arbitrary component distributions [20].

All state-of-the-art inference algorithms for the MFM model use Monte Carlo sampling tech-

niques — in particular, of the MCMC type — which are prone to be computationally expensive,

especially in scenarios with high-dimensional parameter spaces or a large number of observations.

This fact motivates the main contribution of this thesis, which is a computationally efficient ap-

proximate inference algorithm for the static MFM model based on variational inference (VI).

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we introduce the (finite) BMM.

We also present various equivalent representations and address the challenge of estimating the

model parameters in a BMM. In the first part of Chapter 3, we present the generalized MFM

model and two special cases, the static and dynamic MFM models. Next, we derive various

relevant distributions such as the exchangeable partition probability function (EPPF) and the

prior distribution of the number of clusters, and we discuss connections between static and

dynamic MFM models as well as the DPM model. The second part of Chapter 3 is focused

on the static MFM model and presents equivalent representations including the stick-breaking

representation.

In Chapter 4, we derive a novel coordinate-ascent variational inference (CAVI) algorithm for

the static MFM model using the stick-breaking representation. This algorithm is furthermore

specialized to Gaussian component distributions with unknown means and known covariance

matrices in Chapter 5. Subsequently, we evaluate the clustering performance of our algorithm

using synthetic data from a finite Gaussian mixture and the well-known Old Faithful geyser

dataset.

Finally, Chapter 6 provides a summary of the thesis, reviews the most important results of

our numerical simulation, and suggests potential areas for future research.

1.4 Notation

The notation used in this thesis is summarized in Table 1.1. Note that our notation does not

distinguish between a random quantity and its realization.
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N set of natural numbers
R set of real numbers
x scalar
x vector
X matrix
1K all-one vector of length K

IM identity matrix of size M × M

·T vector/matrix transpose
·−1 inverse

det(·) determinant of a matrix
trace(·) trace of a matrix

✶(·) indicator function; equals one if argument is true and zero else
δ(·) Dirac delta function

ln(·) natural logarithm
Γ(·) gamma function
Ψ(·) digamma function
f(·) probability density function (pdf)

f(·|·) conditional pdf
p(·) probability mass function (pmf)

p(·|·) conditional pmf
q(·) variational approximation of a (conditional) pdf/pmf

G(·) discrete mixing distribution
E(f(·)){·} expectation with respect to the pdf f(·)

D(·;β)
Dirichlet distribution with parameter vector β

E(·; α) exponential distribution with rate parameter α

G(·; ~α, α) gamma distribution with shape parameter ~α and rate parameter α

C(·;π) categorical distribution with event probabilities π

N (·;µ,Σ) multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ

x⊥⊥y random variables x and y are independent
x⊥⊥y | z random variables x and y are conditionally independent given random

variable z

x ∼ f(x) random variable x is distributed according to the pdf f(x)
x1, x2

i.i.d.∼ f(x) random variables x1 and x2 are independent and identically distributed
according to the pdf f(x)

Table 1.1: Summary of notation.
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Chapter 2

Bayesian Mixture Models

In this chapter, we introduce the (finite) Bayesian mixture model (BMM). Our aim is to famil-

iarize the reader with the notation and terminology surrounding the theory of BMMs and to

build a solid basis for the remainder of the thesis.

In the fields of statistical modeling and data analysis, the BMM is a powerful approach to

understanding complex data distributions and uncovering latent (i.e., not observed) structures

within them. The key concept of mixture models [21],[22] is that observations are assumed to

originate from multiple underlying components with each component characterized by its own

statistical distribution defined by parameters. The Bayesian variant of these models, i.e., BMM,

draws its distinction by treating the component parameters as random variables. By specifying

prior distributions over the component parameters, additional global parameters of the mixture

model (e.g., the mixture weights), and even the number of components, existing knowledge or

assumptions about the data can be incorporated in a Bayesian fashion. As new observations

become available, the posterior distributions are updated, refining the information about the

components and parameters of the model.

2.1 Basic Formulation

Let xn ∈ RM , for n = 1, . . . , N , be conditionally independent random vectors. The basic (finite)

mixture model assumes that observations xn arise from a density f(xn|π, θ∗) defined as a convex

combination of K ∈ N component distributions, each of specified parametric form f(xn|θ∗
k), i.e.,

f(xn|π, θ∗) =
K∑

k=1
πkf(xn|θ∗

k). (2.1)

We assume that the functional form of the component distributions f(xn|θ∗
k) is completely

known, but for the parameters θ∗
k. The vector θ∗ =

(
θ∗T

1 · · · θ∗T
K

)T
contains the random

component parameters θ∗
k ∈ Rp, for k = 1, . . . , K, often referred to as mixand parameters. We
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assume the component parameters to be i.i.d. according to the prior density f(θ∗
k). The vector

π is composed of K random weights πk ∈ [0, 1], which we call the mixture weights, and lies in

the (K − 1)-dimensional probability simplex

∆K :=
{
π ∈ [0, 1]K

|||||πk ≥ 0 and
K∑

k=1
πk = 1

}
. (2.2)

Because of the constraints on the mixture weights π specified by (2.2), it is guaranteed that (2.1)

is a valid probability distribution as long as every component distribution is also a valid probabil-

ity distribution. Mathematically, the conditional distribution f(xn|π, θ∗) given by (2.1), called

the mixture distribution, can be interpreted as a linear combination of its individual components

f(xn|θ∗
k), where the mixture weights πk, for k = 1, . . . , K, are the (random) coefficients. By

adjusting their respective values, one can control the influence of each component f(xn|θ∗
k) on

the mixture distribution f(xn|π, θ∗). Therefore, we put a prior on the mixture weights, i.e., we

assume that the random vector π is distributed according to the prior density f(π) with support

given by the simplex ∆K defined in (2.2). Furthermore, statistical independence between θ∗
k and

π is assumed, i.e., θ∗
k ⊥⊥ π for all k = 1, . . . , K. The BMM for N observations x1, . . . ,xN , as

described above, can be summarized as follows:

π ∼ f(π), (2.3a)

θ∗
1, . . . ,θ∗

K
i.i.d.∼ f(θ∗

k), (2.3b)

x1, . . . ,xN |π, θ∗ i.i.d.∼ f(xn|π, θ∗). (2.3c)

2.2 Likelihood Function

In the case of N conditionally independent observations from (2.1), the joint distribution of the

observations given π and θ∗ has the form

f(x|π, θ∗) =
NΠ

n=1
f(xn|π, θ∗) =

NΠ
n=1

K∑
k=1

πkf(xn|θ∗
k), (2.4)

where x1, . . . ,xN are arranged in the vector x according to x =
(
xT

1 · · · xT
N

)T
. The joint

distribution given by (2.4) is referred to as the likelihood function. Due to its product-of-

sums form, evaluating the likelihood function for the BMM can be computationally expensive;

particularly when dealing with a large number of observations or components. A full expansion

of the likelihood function involves a sum of KN terms and thus may require an infeasible amount

of computational resources to perform conventional Bayesian inference methods.
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2.3 Latent Indicator Variables

We next provide an alternative representation of the BMM defined in (2.3). Suppose we are

given N observations xn, independently drawn from the mixture distribution f(xn|π, θ∗) given

by (2.1). Furthermore, let z1, . . . , zN be discrete random variables, which are assumed to be

conditionally independent given the mixture weights π and take on values from {1, . . . , K} with

probability πk, i.e., P{zn = k} = πk. Thus, each zn given π is distributed according to the

categorical distribution

p(zn|π) = C(zn;π) =
KΠ

k=1
π
✶(zn=k)
k . (2.5)

We can characterize the generation procedure of an observation xn from the mixture distribution

f(xn|π, θ∗) in two steps: first, zn is drawn from (2.5) and secondly, given zn, xn is drawn from

the component distribution corresponding to zn, i.e.,

f(xn|θ∗, zn) = f
(
xn|θ∗

zn

)
. (2.6)

Therefore, each observation xn is assigned its own variable zn indicating the component of the

mixture distribution that is responsible for generating the observation. For this reason, we refer

to z1, . . . , zN as the indicator variables. We assume that the component parameter θ∗
k and the

indicator variable zn are conditionally independent given the mixture weights π, i.e., θ∗
k ⊥⊥zn |π

for all k = 1, . . . , K and n = 1, . . . , N . Including the indicator variables z1, . . . , zN in the BMM

given by (2.3) results in a hierarchical model, which is summarized by

π ∼ f(π), (2.7a)

z1, . . . , zN |π i.i.d.∼ p(zn|π) = C(zn;π), (2.7b)

θ∗
1, . . . ,θ∗

K
i.i.d.∼ f(θ∗

k), (2.7c)

xn|θ∗, zn ∼ f(xn|θ∗, zn) = f
(
xn|θ∗

zn

)
independently for n = 1, . . . , N, (2.7d)

where we summarize the independence/conditional independence assumptions by

θ∗
k ⊥⊥π for all k = 1, . . . , K, (2.8a)

θ∗
k ⊥⊥zn |π for all k = 1, . . . , K and n = 1, . . . , N, (2.8b)

xn ⊥⊥π,xn′ , zn′ , θ∗
k | zn, θ∗

zn
for all n′ ̸= n = 1, . . . , N and k ̸= zn. (2.8c)

A graphical model representation [23] of the BMM in (2.7) is shown in Figure 2.1. We note

that the mixture weights π and the component parameters θ∗ are global parameter vectors

influencing the entire observation vector x, whereas the vector z = (z1 · · · zN )T containing the
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xn

zn θ∗
k

π

N

K

Figure 2.1: Bayesian network representing the BMM with indicator variables in (2.7). White
nodes indicate the variables that are latent, while grey nodes indicate the ones that are observed.
Plates indicate the repetition of nodes or groups of nodes.

indicator variables is a local parameter vector since its nth element zn influences only the nth

observation xn. It can be shown [24] that marginalizing out the indicator variables from the

joint conditional distribution f(xn, zn|π, θ∗) yields

f(xn|π, θ∗) =
K∑

zn=1
πznf

(
xn|θ∗

zn

)
. (2.9)

Thus, the hierarchical model in (2.7) again gives a mixture distribution in the form of (2.1), but

with the indicator variable zn replacing k as the component index.

Indicator variables are particularly useful when the goal is to group observations into mean-

ingful subpopulations. This unsupervised learning task is commonly known as clustering. We

emphasize the fundamental distinction between the (known) number of components K in the

mixture distribution (2.1) and the number of clusters L ≤ K in the observations x, i.e., the

number of mixture components responsible for generating the observations x. Using the indi-

cator variables z, or more practically, estimates of the indicator variables, the number Nk of

observations xn generated by component k of the mixture distribution is given by

Nk =
N∑

n=1
✶(zn = k). (2.10)

With (2.10), the number of clusters L in the observations x given N1, . . . , NK and z, i.e., the

number of mixture components assigned at least one observation by z, can be determined by

L =
K∑

k=1
✶(Nk > 0). (2.11)

Furthermore, the number of observations N can be recovered from (2.10) via summation with

respect to the component index k, i.e.,

N =
K∑

k=1
Nk. (2.12)
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Obviously, the number of clusters L is upper bounded by the number of components K of the

mixture model. The number of clusters L may be smaller than K, due to, e.g., components

associated with small mixture weights πk, too few observations (i.e., N < K), or not well-

separated components.

2.4 Latent Mixing Distribution

We now consider an important representation [25, Chapter 1] of the BMM in (2.3) where we

can represent the unknown mixture weights π and component parameters θ∗ with a probability

distribution G(·). Let θn, for n = 1, . . . , N , be a random vector assigned to the nth observation

xn. The θn are random samples from a discrete probability distribution G(·) which places

probability mass πk at the support point θ∗
k, i.e.,

P{θn = θ∗
k} = G(θn) = πk.

Therefore, the mixture weights π and the component parameters θ∗
k are subsumed into the

discrete probability distribution G(·) consisting of K points of support θ∗
1, . . . ,θ∗

K and the cor-

responding probability masses πk, for k = 1, . . . , K, as follows:

G(θn) =
K∑

k=1
πkδ(θn − θ∗

k). (2.13)

In literature, (2.13) is referred to as the mixing distribution. Since π and θ∗
k are latent random

parameters, the mixing distribution G(·) is latent and random as well. Thus, a realization of

G(·) can be determined by sampling from the corresponding prior distributions f(π) and f(θ∗
k).

Note that the conditional distribution of an observation xn given a realization of the mixing

distribution G(·) according to (2.13) equals the mixture distribution defined in (2.1) [25], i.e.,

f(xn|G) = f(xn|π, θ∗) =
K∑

k=1
πkf(xn|θ∗

k). (2.14)

As in the previously considered representation (cf. (2.7)), including the mixing distribution G(·)
in the BMM in (2.3) also leads to a hierarchical model. Considering N conditionally independent

observations xn, it is summarized according to

π ∼ f(π), (2.15a)

θ∗
1, . . . ,θ∗

K
i.i.d.∼ f(θ∗

k), (2.15b)

G(θn) =
K∑

k=1
πkδ(θn − θ∗

k), (2.15c)

θ1, . . . ,θN |G i.i.d.∼ G(θn), (2.15d)

xn|θn ∼ f(xn|θn) independently for n = 1, . . . , N. (2.15e)
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xn

θn

G

θ∗
kπ

N

K

Figure 2.2: Bayesian network representing the BMM with the mixing distribution in (2.15).

A graphical model representation of the BMM in (2.15) is shown in Figure 2.2.

We note that the BMM using latent indicator variables (2.7) or the BMM using the latent

mixing distribution (2.15) can be used interchangeably, since we arrive at the same conditional

distribution f(xn|π, θ∗) for the observations xn (cf. (2.9) and (2.14)). The choice between the two

hierarchical models is motivated by the use case. When only the clustering results are required,

i.e., the cluster assignment for each observation, it is preferable to use the latent indicator variable

model since the cluster assignment for each observation xn is directly given by the estimate of

the corresponding indicator variable zn. When estimates of the local parameters θ1, . . . ,θN

are required, the latent mixing distribution representation is preferable. This representation

provides us with the cluster parameters, or more precisely, the component parameters θ∗
k of

the non-empty components, directly. Hence, each parameter θn, for n = 1, . . . , N , takes on

values from {θ∗
1, . . . ,θ∗

L}, where L ≤ K. Clustering the observations x using this representation

requires an additional post processing step in which we assign the observations xn and xn′ to

the same cluster, if and only if θn = θn′ . The number of observations generated by component

k of the BMM in (2.15) is given by

Nk =
N∑

n=1
✶(θn = θ∗

k). (2.16)

The number of clusters L in the observations x is again determined according to (2.11).

Choosing an appropriate number of components K in advance can be quite challenging.

There are several strategies to tackle this problem from a modeling perspective. One is to fix

K at +∞, which leads to Bayesian nonparametric (BNP) mixture models, i.e., BMMs using

an infinite-dimensional parameter space and with an infinite number of components. The most
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prominent example of a BNP mixture model is the Dirichlet process mixture (DPM) model [26,

Chapter 3]. A second, and maybe the most intuitive approach from a Bayesian perspective, is

to treat the number of components K as an unknown and random parameter with (a discrete)

prior p(K). In consequence, K must now be inferred jointly with the other parameters θ∗, π

and z. In literature, such kinds of BMM are referred to as mixtures of finite mixtures (MFMs)

[20],[19]. The MFM model will be discussed in detail in Chapter 3.

2.5 Bayesian Estimation in Mixture Models

In this section, we address the challenge of estimating the latent parameters π and θ∗ in a

BMM using the basic formulation in (2.3). We arrange the latent parameters in the vector

w ∈ RP according to w =
(
πT θ∗T)T

where P = K + Kp is the number of scalar parameters in

the BMM. In Bayesian estimation, the conditional distribution of the latent parameters given

the observations f(w|x) is of special importance. It is referred to as the posterior pdf or the

posterior. Let ŵ(x) be an estimator, i.e., a (vector) function of the observations x and let the

cost function C(e) be a scalar-valued, nonnegative function of the P-dimensional estimation

error e = ŵ − w. An estimator ŵB(x) is said to be a Bayesian estimator, if it minimizes the

mean cost [27] of the posterior distribution f(w|x), i.e.,

ŵB(x) = arg min
ŵ

∫
RP

C(ŵ − w)f(w|x) dw = arg min
ŵ

E(f(w|x)){C(ŵ − w)}. (2.17)

Various Bayesian estimators can be obtained from (2.17) by choosing different cost functions.

In what follows, we will consider two special Bayesian estimators that will be used later on to

estimate the parameters of a BMM.

2.5.1 Minimum Mean Square Error (MMSE) Estimator

The MMSE estimator is one of the most important Bayesian estimators. It is obtained when the

cost function in (2.17) is specified as the squared estimation error, i.e., C(ŵ − w) = ∥ŵ−w∥2
2 =

∥e∥2
2. Working out (2.17) using the squared estimation error as cost function yields

ŵMMSE(x) =
∫
RP

wf(w|x) dw = E(f(w|x)){w}. (2.18)

Hence, the MMSE estimator equals the conditional expectation of w with respect to the posterior

pdf f(w|x), also known as the posterior expectation or the posterior mean.
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2.5.2 Maximum A-Posteriori (MAP) Estimator

A cost function which assigns zero cost to the case where ŵ = w and evaluates to one otherwise

leads to the MAP estimator. It is given by

ŵMAP(x) = arg max
w

f(w|x). (2.19)

Hence, the MAP estimator equals the global maximum of the posterior f(w|x). Using Bayes’

law, the posterior can be expressed as

f(w|x) = f(x|w)f(w)
f(x) . (2.20)

Therefore, the MAP estimator can alternatively be expressed as

ŵMAP(x) = arg max
w

f(x|w)f(w), (2.21)

where the evidence f(x) in (2.20) is a constant with respect to the maximization in (2.19) and

thus has been omitted. Equation (2.21) shows that both the observations x (via the likelihood

function f(x|w)) and the prior f(w) influence the estimation result. If a weak-informative prior

(e.g., f(w) is a flat function) is chosen, it will weakly (if at all) influence the position of the

maximum in (2.21), hence [27]

ŵMAP(x) ≈ arg max
w

f(x|w). (2.22)

We conclude that the posterior f(w|x) is a key component of Bayesian estimation. For the

BMM in (2.3), we obtain an expression for the posterior from (2.20):

f(w|x) = f(π, θ∗|x) = f(x|π, θ∗)f(π, θ∗)
f(x) . (2.23)

Due to the statistical independence of the latent parameters (cf. Section 2.1), the joint distribu-

tion of the latent model parameters can be factorized as

f(π, θ∗) = f(π)
KΠ

k=1
f(θ∗

k). (2.24)

Inserting the likelihood function (2.4) and the joint prior pdf (2.24) into (2.23) yields

f(π, θ∗|x) =

(ΠN
n=1

∑K
k=1 πkf(xn|θ∗

k)
)
f(π)

ΠK
k=1 f(θ∗

k)
f(x) . (2.25)

This expression shows that the calculation of the corresponding posterior is generally associated

with a high computational cost since the likelihood function (2.4) is involved. In order to apply

Bayesian estimators efficiently in the BMM framework, approximation methods are used to
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obtain a tractable approximation of the posterior f(w|x). One prominent example is variational

inference (VI) [28] — in particular, coordinate-ascent variational inference (CAVI) — where the

posterior f(w|x) is approximated by a computationally more tractable distribution q(w) which

is referred to as a variational distribution. Once it has been determined, an approximation of

the MMSE and MAP estimator is given by exchanging f(w|x) with q(w) in (2.18) and (2.19),

respectively. CAVI for BMMs— in particular, CAVI for MFMs— will be discussed in Chapter 4.

Note that a well-established alternative to VI is given by Monte Carlo (MC) sampling methods

which are not addressed in this thesis.
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Chapter 3

Mixture of Finite Mixtures Model

In this chapter, we provide an introduction to the mixture of finite mixtures (MFM) model,

which is a BMM with an unknown number of components K that is distributed according to

some specified prior pmf p(K). The first four sections of this chapter are based on [20] where

different approaches to the MFM model regarding the specification of the prior on the number

of components and the mixture weights are combined to construct a generalized MFM model.

In Section 3.5, we present representations for the special case of static MFMs based on [19].

3.1 Model Formulation

The generalized MFM model for N conditionally independent observations x =
(
xT

1 · · · xT
N

)T

builds on the BMM using the latent indicator variables discussed in Section 2.3 and is therefore

defined in a hierarchical way:

K ∼ p(K), (3.1a)

π|K; β(·) ∼ f(π|K; β(·)) = D(
π = (π1 · · · πK)T;β = β(K)1K

)
, (3.1b)

z1, . . . , zN |π i.i.d.∼ p(zn|π) = C(zn;π), (3.1c)

θ∗
1, . . . ,θ∗

K |K i.i.d.∼ f(θ∗
k), (3.1d)

xn|θ∗, zn ∼ f(xn|θ∗, zn) = f
(
xn|θ∗

zn

)
independently for n = 1, . . . , N, (3.1e)

with conditional independence assumptions summarized by

θ∗
k ⊥⊥π | K for all k = 1, . . . , K, (3.2a)

θ∗
k ⊥⊥zn |π, K for all k = 1, . . . , K and n = 1, . . . , N, (3.2b)

zn ⊥⊥K |π for all n = 1, . . . , N, (3.2c)

xn ⊥⊥π,xn′ , zn′ , θ∗
k | zn, θ∗

zn
for all n′ ̸= n = 1, . . . , N and k ̸= zn, (3.2d)

xn ⊥⊥K |θ∗, zn. (3.2e)



16 3. Mixture of Finite Mixtures Model

xn
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π
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θ∗
k

N

K

Figure 3.1: Bayesian network representing the generalized MFM model given in (3.1).

The corresponding Bayesian network is shown in Figure 3.1.

To have consistency for the number of components, it is necessary that the prior pmf p(K)

satisfies p(K) > 0 for all K ∈ N [10]. Furthermore, p(K) has to exclude zero in order to be

a proper prior in a mixture context, which is not fulfilled by most of the discrete probability

distributions. A convenient way to achieve this condition for many discrete distributions is to

define a translated prior K − 1 ∼ pt(·). The prior p(K) is then obtained by evaluating the

translated prior at K − 1, i.e., p(K) = pt(K − 1). Recall the crucial distinction between the

number of components K and the number of clusters L. For a given K, the number of clusters

is determined according to (2.10) and (2.11). For cluster labeling purposes, l ∈ {1, . . . , L} is

used as a subscript later on. We note that due to the prior p(K) on the number of components

K, the number of clusters L is a priori random as well.

The meaning of the term mixture of finite mixtures becomes clear when one examines the

corresponding joint conditional distribution f(x|π′, θ∗′). It can be expressed as

f(x|π′, θ∗′) =
∞∑

K=1
p(K)

NΠ
n=1

f(xn|θ∗,π, K), (3.3)

which is a countably infinite mixture of finite mixtures with K components. The parameter vec-

tors π′ and θ∗′ are super vectors, which contain the mixture weights π and component parame-

ters θ∗ of each finite mixture combined in (3.3). The finite mixture distribution f(xn|θ∗,π, K)

depends on the random number of components K through

f(xn|θ∗,π, K) =
K∑

zn=1
πznf(xn|θ∗, zn, K). (3.4)

Because of the conditional independence assumptions given by (3.2e) and (3.2d) we have

f(xn|θ∗, zn, K) = f(xn|θ∗, zn) = f
(
xn

||θ∗
zn

)
.
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Therefore, the mixture distribution in (3.4) can be expressed as

f(xn|θ∗,π, K) =
K∑

zn=1
πznf

(
xn

||θ∗
zn

)
. (3.5)

By inserting (3.5) into (3.3) we obtain

f(x|π′, θ∗′) =
∞∑

K=1
p(K)

NΠ
n=1

K∑
zn=1

πznf
(
xn|θ∗

zn

)
, (3.6)

i.e., a weighted sum of finite mixtures with different numbers of components, each represented

by its likelihood
ΠN

n=1
∑K

zn=1 πznf
(
xn|θ∗

zn

)
. The corresponding weights are given by the prior

pmf on the number of components p(K) evaluated at K ∈ {1, 2, . . .}.
In the generalized MFM model in (3.1), a symmetric Dirichlet prior on the mixture weights

π is assumed (cf. (3.1b)). It is defined for each K ∈ N according to the corresponding hyper-

parameter β = β(K)1K , where 1K is the all-one vector of length K and the scalar β(K) ≥ 0 is

given by some deterministic function of K. This includes the special cases where β(K) = κ/K

referred to as the dynamic MFM model [11] and β(K) = β referred to as the static MFM model

[19],[9]. A priori, for both cases the mean of the mixture weights given K is given by

E(f(π|K;β(·))){π} = 1
K

1K (3.7)

and the variance for each individual weight πk, for k = 1, . . . , K, is given by

var{πk} = K − 1
Kβ(K) + 1 . (3.8)

From (3.8) it can be concluded, that the variance decreases with increasing β(K) which leads

to more balanced mixture weights, i.e., mixture weights taking on similar values, and vice

versa. Hence, the types of finite mixtures which are combined in (3.6) vary with β(K) since

the dependency of the hyperparameter β(K) on K leads to a combination of finite mixtures

favouring different distributions of the component sizes (cf. (2.10)) N1, . . . , NK .

For a dynamic MFM with β(K) = κ/K, finite mixtures with balanced component sizes for

small K are mixed with sparse finite mixture (SFM) models [29] for moderate K and, as K goes

to infinity, with DPMs where the component sizes are extremely unbalanced. As stated in [29],

the concept of SFM modeling is based on specifying an overfitting finite mixture model with

too many components K and assuming heterogeneity for all available variables a priori. Sparse

solutions with regard to the number of mixture components and with regard to heterogeneity

of component locations are induced by specifying suitable shrinkage priors on, respectively, the

mixture weights and the component parameters.

In contrast to the dynamic MFM model, finite mixtures of a similar type are combined for

static MFMs, where β(K) = β which obviously limits the MFM model in its flexibility.
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3.2 Exchangeable Partition Probability Function and Distribution of

the Cluster Sizes

Let C = {C1, · · · , CL} be a random partition of the N observations x =
(
xT

1 · · · xT
N

)T
induced

by the MFM model in (3.1) through the indicator variables z = (z1 · · · zN )T, where Cl =

{n : zn = l}, for l = 1, . . . , L. In other words, cluster Cl contains all observations generated

by the component f(xn|θ∗
l ). Further, we denote the corresponding cluster sizes by N ′

l , i.e.,

N ′
l = card(Cl), for l = 1, . . . , L. Here, card(Cl) denotes the number of observations assigned to

cluster Cl. Note that all proofs in this section are based on [20]. For the sake of comprehensibility,

intermediate steps have been added where it made sense.

Theorem 3.1: For a generalized MFM with π|K; β(·) ∼ D(
π; β(K)1K

)
and prior pmf p(K),

the set partition C = {C1, . . . , CL} is distributed according to

p(C; N, β(·)) =
∞∑

K=L

p(K)p(C|K; N, β(·)), (3.9)

where

p(C|K; N, β(·)) =
V

(K,β(K))
N,L

Γ(β(K))L

LΠ
l=1

Γ(N ′
l + β(K)) (3.10)

and

V
(K,β(K))

N,L = Γ(Kβ(K))K!
Γ(Kβ(K) + N)(K − L)! . (3.11)

Proof: Let us first consider the conditional pmf p(z|K; β(·)) for a fixed number of components

K. It can be obtained by marginalizing out the mixture weights π from the joint conditional

distribution f(z,π|K; N, β(·)), i.e.,

p(z|K; N, β(·)) =
∫
RK

f(z,π|K; N, β(·)) dπ =
∫
RK

p(z|π)f(π|K; β(·)) dπ, (3.12)

where we used the conditional independence assumption (3.2c) in the last step. It follows from

(3.1c) that the indicator variables z given the mixture weights π are i.i.d. categoricals and

therefore

p(z|π) =
NΠ

n=1
p(zn|π) =

NΠ
n=1

KΠ
k=1

π
✶(zn=k)
k =

KΠ
k=1

π

∑N

n=1 ✶(zn=k)
k =

KΠ
k=1

πNk

k , (3.13)

where we used (2.10) in the last step. Since a symmetric Dirichlet prior is assumed for the

mixture weights π (cf. (3.1b)), f(π|K; β(·)) is given by

f(π|K; β(·)) = c(β)
KΠ

k=1
π

β(K)−1
k , (3.14)
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where

c(β) =
Γ

( ∑K
k=1 β(K)

)ΠK
k=1 Γ(β(K))

(3.15)

is the normalization constant. Multiplying (3.13) by (3.14) yields

p(z|π)f(π|K; β(·)) = c(β)
KΠ

k=1
π

β(K)+Nk−1
k = c(β)

c(β̃)
c(β̃)

KΠ
k=1

π
β̃(k)−1
k = c(β)

c(β̃)
D(

π; β̃(K)1K

)
.

(3.16)

Note that the product of p(z|π) and the prior f(π|K; β(·)) in (3.16) takes on, up to a pro-

portionality constant, the same functional form as f(π|K, β(K)), although with a different

hyperparameter β̃(K) = β(K)+Nk. This is a consequence of choosing the Dirichlet distribution

as the prior f(π|K; β(·)) for the mixture weights, which is conjugate to the categorical distribu-

tion p(zn|π) of the indicator variables. Due to the specific form of (3.16), the integral in (3.12)

simplifies to an integral over a Dirichlet distribution, which equals one because the Dirichlet

distribution is a valid pdf. We therefore obtain

p(z|K; N, β(·)) = c(β) 1
c(β̃)

∫
RK

D(
π; β̃(K)1K

)
dπ = c(β) 1

c(β̃)
. (3.17)

Inserting (3.15) and substituting back β̃(K) = β(K) + Nk leads to

p(z|K; N, β(·)) =
Γ

( ∑K
k=1 β(K)

)ΠK
k=1 Γ(β(K))

ΠK
k=1 Γ(β(K) + Nk)

Γ
( ∑K

k=1(β(K) + Nk)
) = Γ(Kβ(K))

Γ(Kβ(K) + N)

KΠ
k=1

Γ(β(K) + Nk)
Γ(β(K)) ,

(3.18)

where we used (2.12) in the last step. We next reorder the components such that the L ≤ K

occupied components appear first. Then, the indicator variables z = (z1 · · · zN )T define a set

partition C = {C1, . . . , CL} of the observation indices n ∈ {1, . . . , N}. The number of assignment

vectors z that lead to the same partition C is given by(
K

L

)
L! = K!

(K − L)! . (3.19)

Here,
(K

L

)
denotes the number of possibilities to choose L clusters labeled by l ∈ {1, . . . , L}

among K components, and L factorial accounts for the possibilities to relabel these L clusters.

Note that the product in (3.18) can be reduced to L factors since Γ(β(K)+Nk)
Γ(β(K)) = 1 for Nk = 0.

Thus, (3.18) can be reformulated according to

p(z|K; N, β(·)) = Γ(Kβ(K))
Γ(Kβ(K) + N)

LΠ
l=1

Γ(β(K) + N ′
l )

Γ(β(K)) (3.20)

We assume that each of the assignment vectors z leading to the same partition C is equally

likely, i.e., we assume a uniform distribution over the number of outcomes given in (3.19):

p(z|C,K) = (K − L)!
K! . (3.21)
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Using Bayes’ law, the pmf of the set partition C given the number of components K can be

expressed as

p(C|K; N, β(·)) = p(C|z,K)p(z|K; N, β(·))
p(z|C,K) . (3.22)

Let C(z) be a function which obtains the partition C defined by z. Thus, the conditional pmf

p(C|z,K) in (3.22) is given by p(C|z,K) = ✶(C = C(z)). We assume that C obeys z, i.e., C = C(z),

which leads to

p(C|z,K) = 1. (3.23)

Inserting (3.20), (3.21), and (3.23) into (3.22) yields

p(C|K; N, β(·)) = Γ(Kβ(K))K!
Γ(Kβ(K) + N)(K − L)!

LΠ
l=1

Γ(β(K) + N ′
l )

Γ(β(K)) =
V

(K,β(K))
N,L

Γ(β(K))L

LΠ
l=1

Γ(β(K) + N ′
l ).

(3.24)

The pmf p(C; N, β(·)) of the set partition C = {C1, . . . , CL} given by (3.9) is obtained from (3.24)

by marginalizing out K:

p(C; N, β(·)) =
∞∑

K=L

p(K)p(C|K; N, β(·)).

Here, the summation starts at K = L since p(C|K; N, β(·)) = 0 for K < L due to the binomial

coefficient
(K

L

)
being involved. □

Theorem 3.2: For a generalized MFM with π|K; β(·) ∼ D(
π; β(K)1K

)
and prior pmf p(K),

the labeled cluster sizes N ′
1, . . . , N ′

L are jointly distributed according to

p(N ′
1, . . . , N ′

L; N, β(·)) = N !
L!

∞∑
K=L

p(K)
V

(K,β(k))
N,L

Γ(β(K))L

LΠ
l=1

Γ(Nl + β(K))
Γ(Nl + 1) , (3.25)

where the factor V
(K,β(k))

N,L is given by (3.11).

We note that the pmfs p(C; N, β(·)) and p(N ′
1, . . . , N ′

L; N, β(·)) are commonly referred to as prior

distributions in the sense that they are available before the values of xn are observed as long as

the number of observations N is known.

Proof: We now consider the sizes N ′
1, . . . , N ′

L, N ′
l ∈ N, of the L ≤ K clusters, i.e., non-empty

components, labeled according to l ∈ {1, . . . , L}. Recall that the number of possibilities to

choose L clusters from K components is given by(
K

L

)
= K!

L!(K − L)! . (3.26)

Furthermore, there are
N !

N ′
1!N ′

2! · · · N ′
L! = N !ΠL

l=1 N ′
l !

(3.27)
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different ways to partition N observations into L clusters with sizes N ′
1, . . . , N ′

L. Thus, the

number of assignment vectors z that lead to the same cluster sizes N ′
1, . . . , N ′

L is given by the

product of (3.26) and (3.27). Assuming that each of those vectors is equally likely leads to

p(z|N ′
1, . . . , N ′

L, K) = L!(K − L)!
ΠL

l=1 N ′
l !

K!N ! . (3.28)

Since Γ(y + 1) = yΓ(y) = y(y − 1)! = y! for y ∈ N, (3.28) can be further developed as

p(z|N ′
1, . . . , N ′

L, K) = L!(K − L)!
ΠL

l=1 Γ(N ′
l + 1)

K!N ! . (3.29)

Using Bayes’ law, the joint pmf of the labeled cluster sizes N ′
1, . . . , N ′

L given the number of

components K can be expressed as

p(N ′
1, . . . , N ′

L|K; N, β(·)) = p(N ′
1, . . . , N ′

L|z,K)p(z|K; N, β(·))
p(z|N ′

1, . . . , N ′
L, K) , (3.30)

Let the cluster sizes N ′
1, . . . , N ′

L be arranged in the vector n′ = (N ′
1 · · · N ′

L)T and let n′(z)

be a vector function which obtains the cluster sizes n′ defined by z. Thus, the conditional pmf

p(N ′
1, . . . , N ′

L|z,K) in (3.30) is given by p(N ′
1, . . . , N ′

L|z,K) = ✶(n′ = n′(z)). We assume that n′

obeys z, i.e., n′ = n′(z), which leads to

p(N ′
1, . . . , N ′

L|z,K) = 1. (3.31)

Inserting (3.20), (3.29), and (3.31) into (3.30) yields

p(N ′
1, . . . , N ′

L|K; N, β(·)) = N !
L!

ΠL
l=1 Γ(N ′

l + 1)
Γ(Kβ(K))K!

Γ(Kβ(K) + N)(K − L)!

LΠ
l=1

Γ(β(K) + N ′
l )

Γ(β(K))

= N !
L!

V
(K,β(K))

N,L

Γ(β(K))L

LΠ
l=1

Γ(β(K) + N ′
l )

Γ(N ′
l + 1) . (3.32)

Finally, by marginalizing out K from (3.32) we obtain

p(N ′
1, . . . , N ′

L; N, β(·)) = N !
L!

∞∑
K=L

p(K)
V

(K,β(k))
N,L

Γ(β(K))L

LΠ
l=1

Γ(N ′
l + β(K))

Γ(N ′
l + 1) ,

which is the joint distribution of the labeled cluster sizes in (3.25). Note that the summation

starts at K = L since the binomial coefficient
(K

L

)
is involved in (3.32). □

The pmf p(C; N, β(·)) in (3.9) is symmetric in its arguments, i.e., it remains the same for every

permutation of its arguments — the cluster sizes N ′
1, . . . , N ′

L. It defines an exchangeable random

partition C of the N observations x1, . . . ,xN under the generalized MFM model in (3.1). In other

words, the distribution of the partition C is invariant under permutations of {1, . . . , N}. Due

to the symmetry with respect to the cluster sizes N ′
1, . . . , N ′

L, the distribution p(C; N, β(·)) is an
exchangeable partition probability function (EPPF) [30].
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For a static MFM, where β(K) = β, the EPPF is given by

pstat(C; N, β) = V
(β)

N,L

LΠ
l=1

Γ(N ′
l + β)

Γ(β) , (3.33)

where

V
(β)

N,L =
∞∑

K=L

p(K) Γ(Kβ)K!
Γ(Kβ + N)(K − L)! . (3.34)

Proposition 3.3: The coefficients V
(β)

N,L in (3.34) satisfy the recursion

V
(β)

N,L = (N + Lβ)V (β)
N+1,L + βV

(β)
N+1,L+1 (3.35)

for L = 1, . . . , N − 1.

Proof: As in [20], we use the identity Γ(z) = Γ(z + 1)/z, and obtain

Γ(Kβ + N) = Γ(Kβ + N + 1)
Kβ + N

= Γ(Kβ + N + 1)
(N + Lβ) + β(K − L) . (3.36)

Inserting (3.36) into (3.34) yields

V
(β)

N,L = (N + Lβ)
∞∑

K=L

p(K) Γ(Kβ)K!
Γ(Kβ + N + 1)(K − L)! + β

∞∑
K=L

p(K) Γ(Kβ)K!
Γ(Kβ + N + 1)(K − L − 1)!

= (N + Lβ)V (β)
N+1,L + βV

(β)
N+1,L+1,

which is the recursion given in (3.35). □

Due to the special product form of pstat(C|N, β) in (3.33) and the recursion given by (3.35), the

exchangeable random partition C for the static MFM model is of Gibbs form, i.e., the EPPF

pstat(C; N, β) is a member of the family of Gibbs partition distributions. An exchangeable random

partition C is said to be of Gibbs form if for some sets of nonnegative weights {Wl} and {VN,L}
the EPPF of C satisfies

p(C) = VN,L

LΠ
l=1

WN ′
l

for all 1 ≤ L ≤ N and for all compositions {N ′
1, . . . , N ′

L} of N [31].

This fact is exploited in [19], where the proposed MCMC algorithms for doing posterior infer-

ence of static MFM models are based on sampling techniques for the class of BNP mixtures with

exchangeable random partitions of Gibbs form. In particular, the direct application of inference

algorithms for DPMs to static MFMs is shown. For a DPM with concentration parameter κ,

the EPPF is given by the Ewens distribution, which is of Gibbs form as well:

pDPM(C; N, κ) = κLΓ(κ)
Γ(κ + N)

LΠ
l=1

Γ(N ′
l ). (3.37)
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We note that for a generalized MFM, where the hyperparameter β(K) depends on K, an EPPF

beyond the family of Gibbs partition distributions is obtained. The EPPF pdyn(C; N, κ) of

dynamic MFM models can be expressed explicitly in relation to (3.37).

Theorem 3.4: For a dynamic MFM with β(K) = κ/K, the corresponding EPPF pdyn(C; N, κ)

can be expressed as

pdyn(C; N, κ) = pDPM(C; N, κ)
∞∑

K=L

p(K)R(K,κ)
n′,L , (3.38)

where

R
(K,κ)
n′,L =

LΠ
l=1

Γ
(
N ′

l + κ
K

)
(K − l + 1)

Γ
(
1 + κ

K

)
Γ(N ′

l )K
. (3.39)

In (3.38), pDPM(C; N, κ) is the EPPF for a DPM given by (3.37) and n′ is the vector of induced

cluster sizes, i.e., n′ = (N ′
1 · · · N ′

L)T.

Proof: Inserting β(K) = κ/K in (3.10) and (3.11), we obtain

pdyn(C|K; N, κ) =
V

(K,κ)
N,L

Γ
(

κ
K

)L

LΠ
l=1

Γ
)

N ′
l + κ

K

(
and

V
(K,κ)

N,L = Γ(κ)K!
Γ(κ + N)(K − L)! . (3.40)

Therefore, the EPPF (cf. (3.9)) for a dynamic MFM is given by

pdyn(C; N, κ) = Γ(κ)
Γ(κ + N)

∞∑
K=L

p(K) K!
(K − L)!

LΠ
l=1

Γ
(
N ′

l + κ
K

)
Γ

(
κ
K

) (3.41)

Using Γ
(

κ
K

)
= K

κ Γ
(
1 + κ

K

)
, the factor K!

(K−L)!
ΠL

l=1
Γ(N ′

l + κ
K )

Γ( κ
K ) in (3.41) can be reformulated as

K!
(K − L)!

LΠ
l=1

Γ
(
N ′

l + κ
K

)
Γ

(
κ
K

) = κL K!
KL(K − L)!

LΠ
l=1

Γ
(
N ′

l + κ
K

)
Γ

(
1 + κ

K

)
= κL

LΠ
l=1

K − l + 1
K

LΠ
l=1

Γ
(
N ′

l + κ
K

)
Γ

(
1 + κ

K

)
= κL

LΠ
l=1

Γ(N ′
l )

LΠ
l=1

Γ
(
N ′

l + κ
K

)
(K − l + 1)

Γ
(
1 + κ

K

)
Γ(N ′

l )K
, (3.42)

where we multiplied by
ΠL

l=1
Γ(N ′

l)
Γ(N ′

l)
in the last step. Inserting (3.42) into (3.41) leads to

pdyn(C; N, κ) = κLΓ(κ)
Γ(κ + N)

LΠ
l=1

Γ(N ′
l )

∞∑
K=L

p(K)
LΠ

l=1

Γ
(
N ′

l + κ
K

)
(K − l + 1)

Γ
(
1 + κ

K

)
Γ(N ′

l )K

= pDPM(C; N, κ)
∞∑

K=L

p(K)
LΠ

l=1

Γ
(
N ′

l + κ
K

)
(K − l + 1)

Γ
(
1 + κ

K

)
Γ(N ′

l )K
,

which proves the expression in (3.38). □
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The joint distribution pdyn(N ′
1, . . . , N ′

L; N, κ) can be derived as follows. From (3.32) with β(K) =

κ/K and (3.40) we obtain the conditional joint pmf of the labeled cluster sizes for a fixed K,

which is given by

pdyn(N ′
1, . . . , N ′

L|K; N, κ) = N !
L!

κLΓ(κ)
Γ(κ + N)

LΠ
l=1

Γ
(
N ′

l + κ
K

)
(K − l + 1)

Γ
(
1 + κ

K

)
Γ(N ′

l + 1)K . (3.43)

Marginalizing out K yields

pdyn(N ′
1, . . . , N ′

L; N, κ) = N !
L!

κLΓ(κ)
Γ(κ + N)

∞∑
K=L

p(K)
LΠ

l=1

Γ
(
N ′

l + κ
K

)
(K − l + 1)

Γ
(
1 + κ

K

)
Γ(N ′

l + 1)K , (3.44)

which is the joint pmf of the labeled cluster sizes for a dynamic MFM model.

We conclude from Theorem 3.4 that dynamic MFMs can be viewed as a generalization of the

Dirichlet process prior beyond the class of Gibbs-type priors. It can easily be seen from (3.39)

that limK→∞ R
(K,κ)
n′,L = 1. Furthermore, specifying a prior pmf which places all probability mass

on K = ∞ leads to p(K = ∞) = 1. Therefore, we obtain pdyn(C; N, κ) = pDPM(C; N, κ) from

(3.38).

3.3 Prior Distribution of the Number of Clusters

In this section, we derive the prior pmf p(L; N, β(·)) of the number of clusters L, exploiting the

distributions introduced in the previous section. Recall that due to the number of components

being random with prior p(K), the number of clusters L is a priori random as well. Although

both priors are closely related to each other, p(L; N, β(·)) does not necessarily match p(K) for

a finite number of observations, i.e., p(L; N, β(·)) ̸= p(K) for 1 ≤ N < ∞.

Theorem 3.5: For a generalized MFM with π|K; β(·) ∼ D(
π; β(K)1K

)
and prior p(K), the

prior pmf of the number of clusters L parametrized by the number of observations N and the

hyperparameter β(·) is given by

p(L; N, β(·)) = N !
L!

∞∑
K=L

p(K)
V

(K,β(K))
N,L

Γ(β(K))L
C

(K,β(K))
N,L , (3.45)

where V
(K,β(K))

N,L is given by (3.11) for each K and C
(K,β(K))
N,L is obtained via summation over the

labeled cluster sizes N ′
1, . . . , N ′

L:

C
(K,β(K))
N,L =

∑
N ′

L

LΠ
l=1

Γ(N ′
l + β(K))

Γ(N ′
l + 1) , (3.46)

where

N ′
L := {N ′

1, . . . , N ′
L : N ′

1, . . . , N ′
L > 0 and N ′

1 + · · · + N ′
L = N}. (3.47)
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Proof: This proof is based on [20]. Recall the joint conditional distribution of the cluster sizes

p(N ′
1, . . . , N ′

L|K; N, β(·)) for a fixed K given by (3.32). By aggregating p(N ′
1, . . . , N ′

L|K; N, β(·))
over N ′

L given in (3.47), we obtain the prior pmf of the number of clusters p(L|K; N, β(·)) given

K:

p(L|K; N, β(·)) =
∑
N ′

L

p(N ′
1, . . . , N ′

L|K; N, β(·))

= N !
L!

V
(K,β(K))

N,L

Γ(β(K))L

∑
N ′

L

LΠ
l=1

Γ(β(K) + N ′
l )

Γ(N ′
l + 1)

= N !
L!

V
(K,β(K))

N,L

Γ(β(K))L
C

(K,β(K))
N,L . (3.48)

By marginalizing out K from (3.48), we obtain

p(L; N, β(K)) = N !
L!

∞∑
K=L

p(K)
V

(K,β(K))
N,L

Γ(β(K))L
C

(K,β(K))
N,L ,

which is the prior pmf of the number of clusters given in (3.45). □

We note that C
(K,β(K))
N,L can be computed recursively with relatively low computational cost; see

Algorithm 1 in [20] for further details.

For static MFM models, where β(K) = β, the prior on the number of clusters pstat(L; N, β)

can directly be derived from Theorem 3.5 and is given by

pstat(L; N, β) = N !
L!

V
(β)

N,L

Γ(β)L
C

(β)
N,L, (3.49)

where V
(β)

N,L is given by (3.34) and C
(K,β(K))
N,L becomes C

(β)
N,L which is independent of K due to

β(K) = β (cf. (3.46)).

Finally, for a dynamic MFM model with β(K) = κ/K, the prior pmf of the number of clusters

pdyn(L|N, κ) is given by

pdyn(L; N, κ) = N !
L!

κLΓ(κ)
Γ(κ + N)

∞∑
K=L

p(K)C(K,κ)
N,L

LΠ
l=1

K − l + 1
Γ

(
1 + κ

K

)
K

, (3.50)

where C
(K,κ)
N,L is obtained from (3.46) by inserting β(K) = κ/K. Starting with the joint pmf of

the labeled cluster sizes for a dynamic MFM given by (3.43), (3.50) can be proved in a similar

manner as Theorem 3.5.

In Section 3.2 we derived the EPPF of the DPM model from the EPPF of the dynamic MFM

model by placing all probability mass of p(K) on infinity. With limK→∞
ΠL

l=1
K−l+1

Γ(1+ κ
K )K

= 1 and

p(K = ∞) = 1, we obtain from (3.50) the prior pmf of the number of clusters for a DPM, i.e.,

pDPM(L; N, κ) = N !
L!

κLΓ(κ)
Γ(κ + N)C

(∞)
N,L . (3.51)
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Figure 3.2: Prior pmfs p(K) of the number of components K (blue) and induced prior pmfs
pstat(L; N, β) with β = 1 (top) and pdyn(L; N, κ) with κ = 1 (bottom) of the number of clusters
L (red) for N = 82. (Adapted from [20].)

Note that C
(K,κ)
N,L becomes C

(∞)
N,L which is independent of the concentration parameter κ, since

limK→∞ κ/K = 0.

The prior pmfs p(L; N, β(K)) of the number of clusters L for a static MFM (cf. (3.49)) with

β = 1 and for a dynamic MFM (cf. (3.50)) with κ = 1 are shown in Figure 3.2. In the figure,

three different distributions are considered as priors p(K) of the number of components K: the

translated (cf. section 3.1) beta-negative-binomial (BNB) distribution K −1 ∼ BNB(1, 3, 4) with

E(p(K)){K} = 2 suggested in [20], the translated geometric distribution K − 1 ∼ Geo(0.1) with

E(p(K)){K} = 10 suggested in [19], and the uniform distribution K ∼ U(1, 30) with E(p(K)){K} =

15.5 suggested in [9]. In the case of the static MFMmodel, the priors of K and L roughly coincide

for all three choices of p(K) for values of K and L between one and ten. On the other hand, for

the dynamic MFM this only holds for the BNB prior, which has a small mean value. For the

prior pmfs p(K) with larger mean values, a substantial difference between p(K) and pdyn(L; N, κ)

can be observed as probability mass is shifted towards smaller values of L.

3.4 Comparing Static and Dynamic MFMs and DPMs

In this section, we provide a more in-depth comparison of the prior pmf of the number of clusters

L and the joint pmf of the cluster sizes N ′
1, . . . , N ′

L for static and dynamic MFM models as well

as the DPM model.

First, we discuss the influence of the hyperparameters β and κ. Therefore, Figure 3.3 shows



3.4. Comparing Static and Dynamic MFMs and DPMs 27

Figure 3.3: Prior expectations of the number of clusters for a static MFM (left) and a dynamic
MFM in comparison to a DPM (right) as a function of β or κ under the priors on the number
of components K − 1 ∼ BNB(1, 4, 3), K − 1 ∼ Poisson(4), K − 1 ∼ Geo(0.1) for N = 100. The
corresponding prior expectations of K are illustrated as dashed horizontal lines. (Adapted from
[20].)

the prior expectations of the number of clusters E(pstat(L;N,β)){L} for a static MFM model as

a function of β using several different priors p(K) and N = 100 observations. Additionally,

Figure 3.3 shows the expectiation E(pdyn(L;N,κ)){L} for a dynamic MFM model as a function of

κ using several different priors p(K), including the p(K) which results in the DPM model, and

N = 100 observations. For comparison, the corresponding prior expectations of the number of

components E(p(K)){K} are shown in Figure 3.3 as well. We observe that the gap between the

prior expectation of K and L decreases with increasing hyperparameter β or κ for both types

of MFMs. While E(pstat(L;N,β)){L} approaches E(p(K)){K} rather quickly, there is a substantial

gap left between E(pdyn(L;N,κ)){L} and E(p(K)){K}, even for larger values of κ. This is a direct

consequence of choosing β(K) = κ/K, which prevents a quick growth of the number of clusters

as the number of components increases. We conclude that for a static MFM, the prior p(K) has

a strong influence on the prior on the number of clusters for nearly all values of β. In contrast,

for the dynamic MFM, the influence of p(K) is reduced over an extended range of κ values.

For drawing comparisons between mixture models, the joint pmf p(N ′
1, . . . , N ′

L|L; N, β(·)) of

the labeled cluster sizes for a given number of clusters, also referred to as conditional EPPF, is

very useful [32]. It can be expressed through the joint distribution of the labeled cluster sizes

p(N ′
1, . . . , N ′

L|N, β(K)) and the prior distribution of the number of clusters p(L; N, β(·)):

p(N ′
1, . . . , N ′

L|L; N, β(·)) = p(N ′
1, . . . , N ′

L; N, β(·))
p(L; N, β(·)) . (3.52)

For a DPM, p(N ′
1, . . . , N ′

L; N, β(·)) can be obtained from (3.44) by placing all prior mass at
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K = ∞:

pDPM(N ′
1, . . . , N ′

L; N, κ) = N !
L!

κLΓ(κ)
Γ(κ + N)

LΠ
l=1

Γ(N ′
l )

Γ(N ′
l + 1) = N !

L!
κLΓ(κ)

Γ(κ + N)

LΠ
l=1

1
N ′

l

. (3.53)

Inserting (3.53) and (3.51) into (3.52) obtains the conditional EPPF for a DPM, i.e.,

pDPM(N ′
1, . . . , N ′

L|L; N) =

N !
L!

κLΓ(κ)
Γ(κ + N)

LΠ
l=1

1
N ′

l

N !
L!

κLΓ(κ)
Γ(κ + N)C

(∞)
N,L

= 1
C

(∞)
N,L

LΠ
l=1

1
N ′

l

, (3.54)

which is inversely proportional to the cluster sizes N ′
1, . . . , N ′

L and thus favouring a partition

structure with many small clusters and a few large ones. Furthermore, the conditional EPPF in

(3.54) is independent of the concentration parameter κ. Hence, it can not be made more flexible.

For a static MFM, p(N ′
1, . . . , N ′

L; N, β(·)) is obtained from (3.25) with β(K) = β:

pstat(N ′
1, . . . , N ′

L; N, β) = N !
L!

V
(β)

N,L

Γ(β)L

LΠ
l=1

Γ(N ′
l + β)

Γ(N ′
l + 1) , (3.55)

where V
(β)

N,L is given by (3.34). Inserting (3.55) and (3.49) into (3.52) obtains the conditional

EPPF for a static MFM, i.e.,

pstat(N ′
1, . . . , N ′

L|L; N, β) = 1
C

(β)
N,L

LΠ
l=1

Γ(N ′
l + β)

Γ(N ′
l + 1) . (3.56)

In contrast to the DPM, the conditional EPPF of a static MFM depends on the hyperparameter

(in this case, β), which leads to a more flexible partitioning structure: For β = 1, the uniform

distribution over all partitions of N observations into L clusters is obtained. For values of β > 1

partitions where the clusters are of generally equal size are favored, whereas values of β < 1

favor partitions consisting of only a few large clusters and many small ones. We note that this

behaviour is directly related to the symmetric Dirichlet prior on the mixture weights π (cf.

Section 3.1).

Finally, the conditional EPPF for a dynamic MFM is obtained by inserting (3.44) and (3.50)

into (3.52), i.e.,

pdyn(N ′
1, . . . , N ′

L|L; N, κ) =

∞∑
K=L

p(K)
LΠ

l=1

Γ
(
N ′

l + κ
K

)
(K − l + 1)

Γ
(
1 + κ

K

)
Γ(N ′

l + 1)K
∞∑

K=L

p(K)C(K,κ)
N,L

LΠ
l=1

K − l + 1
Γ

(
1 + κ

K

)
K

. (3.57)

We conclude that, of the three conditional EPPFs (3.54), (3.56), and (3.57), the one for the dy-

namic MFM model (i.e., (3.57)) is the most flexible since it depends on both the hyperparameter

κ and the prior pmf p(K).



3.5. Equivalent Representations of Static MFMs 29

3.5 Equivalent Representations of Static MFMs

In this section, we present several equivalent representations of the static MFM model based on

[19]. One of these representations, namely the stick-breaking representation, is investigated in

more depth since it builds the basis of our VI algorithm developed in Chapter 4.

3.5.1 Representation Using Latent Indicator Variables

We start with the representation using latent indicator variables which can directly be derived

from the generalized MFM model given in (3.1) by using a fixed value for the hyperparameter

β(K), i.e., β(K) = β. The static MFM model using latent indicator variables is defined as

follows:

K ∼ p(K), (3.58a)

π|K; β ∼ f(π|K; β) = D(
π = (π1 · · · πK)T;β = β1K

)
, (3.58b)

z1, . . . , zN |π i.i.d.∼ p(zn|π) = C(zn;π), (3.58c)

θ∗
1, . . . ,θ∗

K |K i.i.d.∼ f(θ∗
k), (3.58d)

xn|θ∗, zn ∼ f(xn|θ∗, zn) = f
(
xn|θ∗

zn

)
independently for n = 1, . . . , N, (3.58e)

with conditional independence assumptions as in (3.2).

3.5.2 Representation Using the EPPF

Recall the random partition C = {C1, . . . , CL} of the N observations x1, . . . ,xN induced by an

MFM model through the latent indicator variables z = (z1 · · · zN )T. Exploiting the corre-

sponding EPPF pstat(C; N, β) for a static MFM given by (3.33), we find the following equivalent

representation to the model given in (3.58):

C ∼ pstat(C; N, β),

θ∗
1, . . . ,θ∗

L|C i.i.d.∼ f(θ∗
l ), (3.59)

xn|θ∗, C ∼ f(xn|θ∗
l ) for n ∈ Cl and n = 1 . . . , N,

where the L cluster parameters θ∗
l are arranged according to θ∗ =

(
θ∗T

l · · · θ∗T
L

)T
. Once a

partition C is determined, one does not have to deal with component labels or empty components,

which makes this representation of the static MFM particularly useful for doing inference.

The representation of the static MFM in (3.59) enables the formulation of a restaurant pro-

cess, which falls under the general category of urn schemes considered in [33]. Given the partition

C = {C1, . . . , CL} of N observations, a new observation is placed in an existing cluster Cl, for
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l = 1, . . . , L, with probability proportional to N ′
l + β or is placed in a new cluster CL+1 with

probability proportional to βV
(β)

N+1,L+1/V
(β)

N+1,L. The corresponding partition generating process

can be formulated as follows:

• Assign the first observation x1 to cluster one.

• For n = 2, 3, . . . , assign observation xn to

– an existing cluster Cl ∈ {C1, . . . , CL} with probability proportional to N ′
l + β

– a new cluster CL+1 /∈ {C1, . . . , CL} with probability proportional to
V

(β)
n,L+1

V
(β)

n,L

β.

This process is closely related to the Chinese restaurant process for DPMs [34], where the nth

observation is either placed in an existing cluster with probability proportional to N ′
l or is placed

in a new cluster with probability proportional to the corresponding concentration parameter κ.

3.5.3 Latent Mixing Distribution

Recall the latent mixing distribution G(·) introduced in Section 2.4. With K, π and θ∗
1, . . . ,θ∗

K

as in (3.58), we define realizations of G(·) to be of the form (cf. (2.13))

G(θn) =
K∑

k=1
πkδ(θn − θ∗

k). (3.60)

Furthermore, we denote the distribution of G(·) by M(G; p(K), f(θ∗
k), β). As already mentioned,

BMMs with latent indicator variables and the latent mixing distribution can be used interchange-

ably. Since the static MFM model defined in (3.58) includes latent indicator variables, we have

the following equivalent representation:

G(·) ∼ M(G; p(K), f(θ∗
k), β),

θ1, . . . ,θN |G i.i.d.∼ G(θn),

xn|θn ∼ f(xn|θn) independently for n = 1, . . . , N.

According to (3.60), θn is equal to θ∗
k with probability πk. Hence, we observe L ≤ N distinct

values θ∗
1, . . . ,θ∗

L for N samples θ1, . . . ,θN from G(·). The next sample θN+1 either belongs

to the set of existing cluster parameters θn ∈ {θ∗
1, . . . ,θ∗

L} or takes on a new value from a

new cluster parameter θ∗
L+1 sampled from the prior pdf f(θ∗

k). The corresponding conditional

distribution of θN+1 given θ1, . . . ,θN , i.e., the predictive distribution, can be formulated as

follows:

f(θN+1|θ1, . . . ,θN ) ∝ V
(β)

N+1,L+1

V
(β)

N+1,L

βf(θN+1) +
L∑

l=1
(N ′

l + β)δ(θN+1 − θ∗
l ), (3.61)
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where N ′
l is given by

N ′
l =

N∑
n=1

✶(θn = θ∗
l ).

Note the close relation of (3.61) to the partition generating process in Section 3.5.2.

For comparison, the predictive distribution for a DPM [16] can be expressed as

f(θN+1|θ1, . . . ,θN ) ∝ κf(θN+1) +
L∑

l=1
(N ′

l + β)δ(θN+1 − θ∗
l ),

where the mixing distribution G(·) is distributed according to the Dirichlet process with the prior

distribution of the component parameters f(θ∗
k) and concentration parameter κ, i.e., G(·) ∼

DP(G; f(θ∗
k), κ).

3.5.4 Stick-Breaking Representation

Recall that the mixture weights π = (π1 · · · πK)T exist in the (K − 1)-dimensional probability

simplex ∆K defined in (2.2). Due to the constraint that
∑K

k=1 πk = 1, a realization of π can

conceptually be generated by breaking off random portions from a unit-length stick. This so-

called stick-breaking analogy is commonly used to represent various kinds of priors for mixture

models, such as the Dirichlet process [35] or the beta process [36] and enables the development

of efficient inference algorithms.

In a certain special case — namely, when p(K) = Poisson(K − 1; α) and β = 1 — the static

MFM model given in (3.58) also has an interesting representation that can be described using

the stick-breaking analogy [19], which permits the development of efficient inference algorithms

for static MFM models. The underlying procedure can be described as follows: Take a unit-

length stick and break off pieces whose sizes are i.i.d. according to an exponential distribution

with rate parameter α > 0 until the stick is entirely depleted, i.e., all the pieces sum up to one.

We summarize the MFM model for N conditionally independent observations x1, . . . ,xN using

the stick-breaking analogy as

v1, v2, . . .
i.i.d.∼ E(vk; α) (3.62a)

~K = min
j

{
j :

j∑
k=1

vk ≥ 1
}

, (3.62b)

~πk = vk for k = 1, . . . , ~K − 1, (3.62c)

~π~K = 1 −
~K−1∑
k=1

~πk, (3.62d)

θ∗
1, . . . ,θ∗~K | ~K i.i.d.∼ f(θ∗

k), (3.62e)
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z1, . . . , zN |~π i.i.d.∼ C(zn; ~π), (3.62f)

xn ∼ f
(
xn|θ∗

zn

)
independently for n = 1, . . . , N, (3.62g)

where ~π =
(~π1 · · · ~π~K)T

. Note that the random variables vk, for k = 1, . . . , ~K − 1, in this

model definition should not be confused with the coefficients V introduced in Section 3.2.

Proposition 3.6: The stick lengths ~π and the mixture weights π in the static MFM model

(3.58) have the same distribution, i.e., the symmetric Dirichlet distribution with hyperparameter

β = β1K , when p(K) = Poisson(K − 1; α) and β = 1.

Since the stick-breaking representation restricts the prior pmf p(K) to the Poisson family of

distributions and the hyperparameter β = 1K , it in turn may restrict the static MFM model

in terms of flexibility. However, the induced priors on the number of components K and the

mixture weights π are still commonly used or are favorable in certain scenarios. For example,

the choice of a Poisson prior on the number of components K with rate parameter α = 1, i.e.,

p(K) = Poisson(K − 1; α = 1), is proposed and justified in [37]. To investigate the influence of

the parameter α on the stick-breaking process, let us first consider the distribution of the stick

lengths vk, for k = 1, . . . , ~K − 1, given by E(vk; α) (cf. (3.62a)). In contrast to the beta distribu-

tion, which is used in the stick-breaking representation of DPMs, the exponential distribution

is supported on the interval [0, ∞). Depending on the parameter α, a considerable amount of

probability mass can lie in the interval (1, ∞) and therefore, the MFM model may a priori be

restricted to a single or small number of components. From Figure 3.4, it is demonstrated that

the probability of observing a larger number of components grows with growing rate parameter

α. Since K − 1 ∼ Poisson (K − 1; α), we have E{K − 1} = α. Therefore, the expected value of

the total number of components K is given by E{K} = α + 1.

According to the static MFM model in (3.58), we assume a symmetric Dirichlet prior for the

mixture weights π, i.e.,

f(π|K; β) = D(
π; β1K

)
. (3.63)

The Dirichlet distribution in (3.63) is given by

f(π|K; β) = D(
π; β1K

)
=

Γ
( ∑K

k=1 β
)ΠK

k=1 Γ(β)

KΠ
k=1

πβ−1
k , (3.64)

where the random vector π = (π1 · · · πK)T with mean vector

E(f(π|K;β)){π} = β1K∑K
k=1 β

= 1
K

1K (3.65)

exists in the (K − 1)-dimensional probability simplex ∆K given by (2.2). As stated in Propo-

sition 3.6, the stick-breaking representation of the static MFM model restricts the prior on
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Figure 3.4: (a) Exponential distribution for four different rate parameters α. The smaller α,
the more probability mass lies in the interval (1, ∞). (b)-(d) Visualization of the stick-breaking
process. In each plot, four realizations of the mixture weights ~π according to (3.62a)–(3.62d)
are shown. Larger values of α means that more components are expected.

the mixture weights to the case where β = 1. Figure 3.5 shows realizations of the symmetric

Dirichlet distribution for the case where K = 3 and β ∈ {1, 10}. We observe that none of the

individual mixture weights is dominating, meaning that the symmetric Dirichlet prior favors

the components of the mixture model equally without introducing any additional bias towards

specific components. This gives rise to the exchangeability property of the symmetric Dirich-

let distribution. With growing β, the probability mass is more and more concentrated at the

center of the support region, i.e., the mean of the symmetric Dirichlet distribution given by

(3.65), resulting in a single peak at the center for β → ∞. For the special case where β = 1,

the Dirichlet distribution is uniform over its support, which is also known as the flat Dirichlet

distribution. Therefore, the static MFM model obtained using the stick-breaking representation
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Figure 3.5: Visualization of realizations of the symmetric Dirichlet distribution D(
π; β1K

)
for

K = 3. Top: 2000 realizations of the random vector π = (π1 π2 π3)T per plot illustrated
as blue dots existing in the (K − 1)-dimensional probability simplex ∆K indicated by the red
triangle. Bottom: Four realizations of π per plot illustrated as breaking a unit-length stick into
K = 3 pieces.

(3.62) uses a weakly-informative prior on the mixture weights π. Choosing this particular prior

is especially useful in scenarios where there is only weak prior information about the mixture

weights available.
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Chapter 4

Variational Inference for Static
Mixtures of Finite Mixtures

4.1 Introduction

Consider a model with latent random variables w = (w1 · · · wP )T ∈ RP and observations

x =
(
xT

1 · · · xT
N

)T
with xn ∈ RM . The posterior pdf f(w|x) is of special importance for

Bayesian estimation, since it summarizes all the information that x contains about w. Thus,

various estimators can be obtained from it. The posterior pdf can be written as

f(w|x) = f(w,x)
f(x) , (4.1)

where f(w,x) is the joint pdf of w and x and f(x) is called the evidence. The evidence can be

calculated by marginalizing out all of the latent variables from the joint density f(w,x), i.e.,

f(x) =
∫
w∈RP

f(w,x) dw. (4.2)

For many models, this evidence integral is unavailable in closed form or requires exponential

time to compute [28]. One way to circumvent this problem is to use sampling techniques such

as Markov chain Monte Carlo (MCMC) to approximate the posterior pdf. An alternative to

sampling techniques is given by variational inference (VI). VI methods are computationally

efficient and thus usually much faster than sampling techniques. Although the accuracy of VI

methods is lower compared with sampling techniques, they can be favorable in high-dimensional

scenarios, settings with large datasets or very complex models. When approximating a posterior

density using VI, the resulting methodology is called variational Bayes (VB).

The objective of VB is to find the best approximation to the posterior distribution from a

computationally more tractable class of distributions of the latent variables. The best approx-

imation is selected from the class of approximating distributions by minimizing a discrepancy

called a divergence between the posterior distribution of interest and the member of this class of
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approximating distributions. The most popular choices for the discrepancy and the approximat-

ing class of distributions are the Kullback–Leibler divergence (KLD) and the class of product

distributions called the mean-field family of distributions, respectively. This combination is pop-

ularly known as mean-field VI, originating from mean-field theory in physics [38]. Mean-field

VI has percolated through a wide variety of disciplines, including statistical mechanics, electri-

cal engineering, information theory, neuroscience, cognitive sciences, and deep neural networks.

While computing the KLD is intractable for a large class of distributions, reframing the mini-

mization problem for maximizing the evidence lower bound (ELBO) leads to efficient algorithms.

In particular, for (conditionally) conjugate exponential family models, the optimal distribution

for mean-field VI can be computed by the iteration of closed-form updates. These updates form

a coordinate-ascent algorithm known as coordinate-ascent variational inference (CAVI) [39].

Let F denote the mean-field family of distributions over the latent variables, i.e.,

F :=
{

q(w) =
PΠ

j=1
qj(wj),with qj(wj) ∈ Fj

}
. (4.3)

Here, Fj is a subset of all possible probability distributions for a random variable wj . Each

distribution q(w) ∈ F is called a variational distribution, which approximates the posterior

f(w|x), and the marginal pdf qj(wj) ∈ Fj is referred to as variational factor distribution. We

search for the optimal q(w), which maximizes the ELBO, i.e.,

q∗(w) = arg max
q(w)∈F

L(q;x). (4.4)

The ELBO is defined as

L(q;x) = E(q(w))
{

ln f(w,x)
q(w)

}
=

∫
w∈RP

q(w) ln f(w,x)
q(w) dw, (4.5)

i.e., the expected value obtained by taking the expectation with respect to the variational dis-

tribution q(w) of the logarithm of the joint pdf f(w,x) divided by the variational distribution

q(w) itself. To solve the optimization problem (4.4), the CAVI algorithm iteratively optimizes

each qj(wj) while keeping qi(wi) for i ̸= j fixed. Thus, in the ℓth iteration step of the itera-

tive algorithm, the jth substep (with j ∈ {1, . . . , P}) updates the previous iterate q
(ℓ−1)
j (wj) by

solving the optimization problem

q
(ℓ)
j (wj) = arg max

qj(wj)∈Fj

L(q;x). (4.6)

Here, the variational distribution q(ℓ,j)(w) used in L(
q(ℓ,j);x

)
is, according to (4.3), given by

q(ℓ,j)(w) =
(

jΠ
i=1

q
(ℓ)
i (wi)

)
PΠ

i=j+1
q

(ℓ−1)
i (wi),
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where all currently fixed variational factor distributions qi(wi) (for i ̸= j) are equal to the results

of the most recent respective updates either calculated in the previous iteration step ℓ − 1 or in

a substep of the current iteration step ℓ [40]. As stated in [28], the solution of the optimization

problem (4.6) is proportional to the exponentiated expected log of the complete conditional of

wj , i.e.,

q
(ℓ)
j (wj) ∝ exp

(
E(q∼j(w∼j)){ln f(wj |w∼j ,x)})

, (4.7)

where ∝ denotes equality up to a constant normalization factor and we denote by w∼j the vector

of latent variables w with the jth variable removed, i.e., w∼j = (w1 · · · wj−1 wj+1 · · · wP )T.

The expectation in (4.7) is with respect to the currently fixed variational density q∼j(w∼j) =Π
i ̸=j qi(wi). With q∗

j (wj) given by (4.7) for each substep j = 1, . . . , P of the very last iteration

step, i.e., when the ELBO converges, the resulting optimal variational distribution q∗(w) can

be written as

q∗(w) =
PΠ

j=1
q∗

j (wj), (4.8)

and thus is a member of F . In summary, the CAVI algorithm described above is presented as

Algorithm 1.

Algorithm 1: General formulation of CAVI
Input: Observations x and number of factor distributions P
Output: Variational factor distributions q∗

j (wj), for j = 1, . . . , P

1 Initialize: Variational factor distributions q
(0)
j (wj), for j = 1, . . . , P ;

2 while the ELBO has not converged do
3 ℓ = ℓ + 1
4 for j from 1 to P do
5 update q

(ℓ)
j (wj) according to (4.7)

6 Compute the ELBO L(
q(ℓ);x

)
according to (4.5)

7 return q∗(w) = ΠP
j=1 q∗

j (wj)

4.2 Conjugate Exponential Family Model for Static Mixtures of Finite

Mixtures

For the remainder of the thesis, we will consider the static MFM model in its stick-breaking

representation given in (3.62). We restrict ourselves to the case where the components are ex-

ponential family distributions and f(η∗
k;λ) is the corresponding conjugate prior. For N condi-

tionally independent observations x1, . . . ,xN given η∗
zn
, the conjugate exponential family MFM

model can be summarized as

v1, v2, . . .
i.i.d.∼ E(vk; α) (4.9a)
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K = min
j

{
j :

j∑
k=1

vk ≥ 1
}

, (4.9b)

πk = vk for k = 1, . . . , K − 1, (4.9c)

πK = 1 −
K−1∑
k=1

πk, (4.9d)

η∗
1 , . . . ,η∗

K |K i.i.d.∼ f(η∗
k;λ), (4.9e)

z1, . . . , zN |π i.i.d.∼ C(zn;π), (4.9f)

xn ∼ f
(
xn|η∗

zn

)
independently for n = 1, . . . , N. (4.9g)

The corresponding (conditional) independence relations are given by

vk ⊥⊥vk′ for all k ̸= k′ = 1, 2, . . . , (4.10a)

η∗
k ⊥⊥η∗

k′ | K for all k ̸= k′ = 1, . . . , K, (4.10b)

η∗
k ⊥⊥v | K for all k = 1, . . . , K, (4.10c)

η∗
k ⊥⊥zn | K,v for all k = 1, . . . , K and n = 1, . . . , N, (4.10d)

zn ⊥⊥K |v for all n = 1, . . . , N, (4.10e)

xn ⊥⊥v,xn′ , zn′ ,η∗
k′ | zn,η∗

zn
n ̸= n′ = 1, . . . , N and k ̸= zn, (4.10f)

xn ⊥⊥K |η∗,v, (4.10g)

where v = (v1 · · · vK)T and η∗ =
(
η∗T

1 · · · η∗T
K

)T
.

In the conjugate exponential family MFM model given in (4.9), the component distributions

f
(
xn|η∗

zn

)
are of natural exponential family form, i.e.,

f
(
xn|η∗

zn

)
= f(xn|zn,η∗) =

KΠ
k=1

(
h(xn) exp

(
η∗

k
Txn − a(η∗

k)
))✶(zn=k)

, (4.11)

where a(·) is the log-partition function, and we assume for simplicity that xn is the sufficient

statistic for the natural component parameter η∗
k. The prior distribution of the natural compo-

nent parameters f(η∗
k;λ) is a member of the corresponding conjugate family

f(η∗
k;λ) = b(λ) exp

(
λT

1 η
∗
k − λ2a(η∗

k)
)
, (4.12)

where λ =
(
λT

1 λ2
)T

is the hyperparameter. It consists of a vector λ1 ∈ RM and a scalar

λ2 ∈ R. The normalization constant b(λ) is given by

b(λ) =
(∫

η∗
k
∈RM

exp
(
λT

1 η
∗
k − λ2a(η∗

k)
)

dη∗
k

)−1

(4.13)

and depends on the hyperparameter λ [40]. Furthermore, we assume λ as well as α to be

deterministic. A graphical summary of the considered model is presented in Figure 4.1.
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k

vk α
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Figure 4.1: Bayesian network representing the conjugate exponential family MFM model given
in (4.9).

4.3 CAVI Algorithm

In this section, we derive the CAVI algorithm for static MFMs being represented via the stick-

breaking analogy (4.9). Although the VI framework has been applied to various kinds of mixture

models such as finite mixtures or DPMs for example, there is, at least to our best knowlege,

no literature about VI in context to MFMs. Due to the close relation to the stick-breaking

representation of DPMs, our algorithm is inspired by the VB method derived for DPMs in [16].

4.3.1 Truncated Mean-Field Approximation

We now define the mean-field variational family F for approximating the posterior distribu-

tion f(v,η∗, z|x). In the considered representation (4.9), the latent variables are the auxiliary

variables v = (v1 · · · vK)T, the natural component parameters η∗ =
(
η∗T

1 · · · η∗T
K

)T
with

η∗
k ∈ RM and the indicator variables z = (z1 · · · zN )T and thus, w =

(
vT η∗T zT)T

. Hence,

the variational distribution under the mean-field assumption (cf. (4.3)) is given by

q(v,η∗, z) = qγ(v)qτ (η∗)qϕ(z) =
(

KΠ
k=1

qγk
(vk)

)(
KΠ

k=1
qτk

(η∗
k)

)(
NΠ

n=1
qϕn(zn)

)
. (4.14)

Due to the random number of components K involved in the first two products in (4.14), we

heavily doubt the existence of a closed-form solution for the corresponding CAVI updates. To

circumvent this problem, K is exchanged with a deterministic parameter T , which can be freely

set. In the context of DPMs, T is referred to as truncation parameter. This leads to the truncated

mean-field approximation for the static MFM model:

q(v,η∗, z) = qγ(v)qτ (η∗)qϕ(z) =
(

TΠ
t=1

qγt(vt)
)(

TΠ
t=1

qτt(η∗
t )

)(
NΠ

n=1
qϕn(zn)

)
, (4.15)

where v = (v1 · · · vT )T and η∗ =
(
η∗T

1 · · · η∗T
T

)T
. Note that the subscripts in (4.15) depict the

variational parameters, i.e., the hyperparameters of the corresponding variational distributions

q(·).
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We will show that the iterative optimization process (4.7) leads to closed-form updates of the

variational parameters vectors γt = (γt,1 γt,2)T, τt =
(
τT

t,1 τt,2
)T

and ϕn = (ϕn,1 · · · ϕn,T )T of

the corresponding variational factor distributions. Note that applying the truncation parameter

T is a major simplification. However, we only consider the variational distribution q(v,η∗, z) to

be truncated; there is no such constraint on the full model. Thus, the algorithm will still obtain

an approximation of the full stick-breaking representation described by (4.9). The approximating

model can be summarized as

vt
i.i.d.∼ E(vt; α) for t = 1, . . . , T, (4.16a)

πt = vt for t = 1, . . . , T, (4.16b)

η∗
1 , . . . ,η∗

T
i.i.d.∼ f(η∗

t ;λ), (4.16c)

z1, . . . , zN |π i.i.d.∼ C(zn;π), (4.16d)

xn ∼ f (T )(xn|η∗
zn

)
independently for n = 1, . . . , N, (4.16e)

with

f (T )(xn|η∗
zn

)
=

TΠ
t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

(4.17)

and

f(η∗
t ;λ) = b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
)
. (4.18)

Here, we denote by f (T )(·) the truncated version of the corresponding pdf f(·) in (4.9). Model

(4.16) implies (conditional) independencies which we summarize by

vt ⊥⊥vt′ for all t ̸= t′ = 1, . . . , T, (4.19a)

η∗
t ⊥⊥η∗

t′ for all t ̸= t′ = 1, . . . , T, (4.19b)

η∗
t ⊥⊥v for all t = 1, . . . , T, (4.19c)

η∗
t ⊥⊥zn |v for all t = 1, . . . , T and n = 1, . . . , N, (4.19d)

xn ⊥⊥v,xn′ , zn′ ,η∗
t | zn,η∗

zn
n ̸= n′ = 1, . . . , N and t ̸= zn. (4.19e)

4.3.2 Derivation of the CAVI Updates

We next formulate the CAVI algorithm for static MFMs by deriving the updates for the varia-

tional factor distributions qγt(vt), qτt(η∗
t ) and qϕn(zn) in (4.15) using the approximating model

given in (4.16). For the sake of brevity, the iteration index ℓ as well as the superscript (T ) is

omitted throughout the derivations.

As a preparatory step, we work out the expectation E(qϕn (zn)){✶(zn = t)} which will show up

frequently throughout the derivation of the CAVI updates and the ELBO. Since the indicator
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variable zn is a discrete random variable and, according to (4.17), zn ∈ {1, . . . , T}, we have

E(qϕn (zn)){✶(zn = t)} =
T∑

zn=1
✶(zn = t)qϕn(zn). (4.20)

Because of the indicator function, the sum in (4.20) reduces to a single term, namely the one

where zn = t. With ϕn,t := qϕn(zn = t), we obtain

E(qϕn (zn)){✶(zn = t)} = qϕn(zn = t) = ϕn,t. (4.21)

CAVI Update for qγt(vt)

Applying (4.7) to qγt(vt), the updated variational factor pdfs of the auxiliary variables are given

by

qγt(vt) ∝ exp
(
E(q(v∼t,η∗,z)){ln f(vt|v∼t ,η

∗, z,x)}
)
. (4.22)

For convenience, we work with the log of (4.22), i.e.,

ln qγt(vt)
c= E(q(v∼t,η∗,z)){ln f(vt|v∼t ,η

∗, z,x)}, (4.23)

where the symbol
c= denotes equality up to an additive constant. Due to the statistical in-

dependence of the auxiliary variables (cf. (4.19a)), the complete conditional can be written as

f(vt|v∼t ,η
∗, z,x) = f(vt|η∗, z,x). (4.24)

First, let us consider the joint conditional pdf f(v|η∗, z,x). Applying Bayes’ law yields

f(v|η∗, z,x) = f(x|v,η∗, z)f(v|η∗, z)
f(x|η∗, z) . (4.25)

To simplify this expression, we exploit independencies among the variables under the model

(4.16). As implied in (4.19e), the observations x are conditionally independent of v given η∗

and z, so

f(x|v,η∗, z) = f(x|η∗, z). (4.26)

The auxiliary variables v are statistically independent of η∗ (cf. (4.19c)) and thus, we have

f(v|η∗, z) = f(v|z). (4.27)

Inserting (4.26) and (4.27) into (4.25) leads to

f(v|η∗, z,x) = f(x|η∗, z)f(v|z)
f(x|η∗, z) = f(v|z). (4.28)

Since we do not know f(v|z), we apply Bayes’ law and obtain for (4.28)

f(v|η∗, z,x) = f(v|z) = p(z|v)f(v; α)
p(z) . (4.29)
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Keeping in mind that we search for the variational factor pdf qγt(vt), the denominator p(z) in

(4.29) is a normalization constant, since it does not depend on vt. Thus, p(z) can be omitted in

the optimization process and (4.29) becomes

f(v|η∗, z,x) ∝ p(z|v)f(v; α). (4.30)

In our model (cf. (4.16a)) the auxiliary variables v1, . . . , vT are i.i.d. according to the exponential

distribution

f(vt; α) = αe−αvt . (4.31)

Thus, the random vector v is distributed according to the joint pdf

f(v; α) =
TΠ

t=1
f(vt; α) =

TΠ
t=1

αe−αvt (4.32)

According to (4.16d), the indicator variables zn, for n = 1, . . . , N , given v, are independent and

identically distributed according to the categorical distribution

p(zn|v) =
TΠ

t=1
v
✶(zn=t)
t . (4.33)

Thus, the random vector z is distributed according to the joint pmf

p(z|v) =
NΠ

n=1
p(zn|v) (4.34)

=
NΠ

n=1

TΠ
t=1

v
✶(zn=t)
t . (4.35)

Inserting (4.32) and (4.35) into (4.30) yields

f(v|η∗, z,x) ∝
(

NΠ
n=1

TΠ
t=1

v
✶(zn=t)
t

)
TΠ

t=1
αe−αvt =

TΠ
t=1

αe−αvt

NΠ
n=1

v
✶(zn=t)
t . (4.36)

According to (4.24), the complete conditional of vt is the marginal pdf of f(v|η∗, z,x). Using

the statistical independence of the auxiliary variables v once again, it can easily be retrieved

from (4.36) by omitting the product with respect to t:

f(vt|v∼t ,η
∗, z,x) ∝ αe−αvt

NΠ
n=1

v
✶(zn=t)
t . (4.37)

Next, we apply the log to (4.37), which yields

ln f(vt|v∼t ,η
∗, z,x) c= ln

(
αe−αvt

NΠ
n=1

v
✶(zn=t)
t

)
= ln α + ln e−αvt +

N∑
n=1

ln v
✶(zn=t)
t

= ln α − αvt +
N∑

n=1
✶(zn = t) ln vt. (4.38)



4.3. CAVI Algorithm 43

Inserting (4.38) into (4.23) leads to

ln qγt(vt)
c= E(q(v∼t,η∗,z))

{
ln α − αvt +

N∑
n=1

✶(zn = t) ln vt

}

= E(q(v∼t,η∗,z)){ln α − αvt} + E(q(v∼t,η∗,z))
{

N∑
n=1

✶(zn = t) ln vt

}

= ln α − αvt + E(q(v∼t,η∗,z))
{

N∑
n=1

✶(zn = t) ln vt

}
. (4.39)

In the last step, we used the fact that ln α and αvt are constants with respect to the expectation,

i.e.,

E(q(v∼t,η∗,z)){ln α − αvt} =
∑

z∈NN

∫
η∗∈RT M

∫
v∼t∈RT −1

q(v∼t)q(η∗)q(z)(ln α − αvt) dv∼t dη∗

= (ln α − αvt)
∑

z∈NN

∫
η∗∈RT M

)∫
v∼t∈RT −1

q(v∼t) dv∼t

(
. .. .

1

q(η∗)q(z) dη∗

= (ln α − αvt)
∑

z∈NN

)∫
η∗∈RT M

q(η∗) dη∗
(

. .. .
1

q(z)

= (ln α − αvt)
∑

z∈NN

q(z)

= ln α − αvt.

It remains to work out the last term in (4.39), i.e., E(q(v∼t,η∗,z))
{∑N

n=1 ✶(zn = t) ln vt

}
. Since

v∼t and η∗ are not present in the sum, the expectation is only with respect to q(z). Thus, we

obtain

E(q(v∼t,η∗,z))
{

N∑
n=1

✶(zn = t) ln vt

}
= E(q(z))

{
N∑

n=1
✶(zn = t) ln vt

}

=
N∑

n=1
E(qϕn (zn)){✶(zn = t)} ln vt

=
N∑

n=1
ϕn,t ln vt, (4.40)

where we used (4.21) in the last step. Inserting (4.40) into (4.39) yields

ln qγt(vt)
c= ln α − αvt +

N∑
n=1

ϕn,t ln vt. (4.41)

To find the updated variational factor pdf qγt(vt), we omit the additive constant ln α and develop

(4.41) further as

qγt(vt) ∝ exp
(

−αvt +
N∑

n=1
ϕn,t ln vt

)



44 4. Variational Inference for Static Mixtures of Finite Mixtures

= exp(−αvt) exp(ln vt)
∑N

n=1 ϕn,t

= e−αvtv

∑N

n=1 ϕn,t

t . (4.42)

Let us consider a gamma distribution with shape parameter γ̃t,1 and rate parameter γt,2, i.e.,

f(vt; γ̃t,1, γt,2) = G(vt; γ̃t,1, γt,2) = 1
Γ(γ̃t,1)γ

γ̃t,1
t,2 v

γ̃t,1−1
t e−γt,2vt , (4.43)

where Γ(·) is the gamma function. Omitting the constant factor 1
Γ(γ̃t,1)γ

γ̃t,1
t,2 in (4.43) leads to

f(vt; γ̃t,1, γt,2) ∝ e−γt,2vtv
γ̃t,1−1
t . (4.44)

A comparison of (4.44) and (4.42) results in

γ̃t,1 = 1 +
N∑

n=1
ϕn,t (4.45)

and

γt,2 = α. (4.46)

We conclude that the variational factor pdf qγt(vt) is a gamma distribution with variational

parameters γ̃t,1 and γt,2, i.e.,

qγt(vt) = 1
Γ(γ̃t,1)γ

γ̃t,1
t,2 v

γ̃t,1−1
t e−γt,2vt . (4.47)

At first glance, it seems that the variational factor pdf qγt(vt), i.e., the approximated marginal

posterior, does not have the exact same functional form as the corresponding prior f(vt; α) given

by (4.31). In fact, the exponential distribution is a special case of the gamma distribution, i.e.,

E(vt; α) = G(vt; α̃ = 1, α). This relation can easily verified by setting γ̃t,1 = 1 and γt,2 = α in

(4.47) and comparing the result with (4.31). Thus, we can equivalently use the gamma prior

G(vt; α̃ = 1, α) instead of the exponential distribution E(vt; α) in (4.16a). Note that, according to

(4.45) and (4.46), the CAVI algorithm updates the shape parameter (α̃ = 1) of the corresponding

prior pdf only, while the rate parameter α is fixed.

In the approximating model (4.16), we did not explicitly restrict the mixture weight πT to

be of the remaining portion of a unit-length stick (cf. (4.16b)), whereas in the full model (4.9)

we have πK = 1 − ∑K−1
k=1 πk. We therefore normalize the variational factor pdfs qγt(vt), for

t = 1, . . . , T , such that the auxiliary variables vt — and thus the mixture weights πt as well —

sum up to one with respect to their posterior mean, i.e.,

T∑
t=1

E(qγt (vt)){vt} =
T∑

t=1

γt,1
γt,2

= 1.

Here, the normalized variational parameter γt,1, for t = 1, . . . , T is given by

γt,1 = γ̃t,1∑T
t=1

γ̃t,1
γt,2

(4.48)

with γ̃t,1 according to (4.45).
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CAVI Update for qτt(η∗
t )

Applying the log of (4.7) to qτt(η∗
t ), the CAVI solution is given by

ln qτt(η∗
t ) c= E(q(v,η∗

∼t,z)){ln f
(
η∗

t |η∗
∼t

,v, z,x, α,λ
)}

= E(q(v,η∗
∼t,z)){ln f(η∗

t |v, z,x, α,λ)}, (4.49)

where (4.19b) has been exploited in the last step. To find an expression for the complete

conditional f(η∗
t |v, z,x), our starting point is the joint conditional pdf f(η∗|v, z,x). By means

of Bayes’ law, we have

f(η∗|v, z,x) = f(x|v,η∗, z)f(η∗|v, z)
f(x|v, z) . (4.50)

Next, we exploit independencies among the variables under the approximating model (4.16):

According to (4.16c), the component parameters η∗ follow the family of distributions f(η∗
t ;λ)

given by (4.18). They are independent of the auxiliary variables v (cf. (4.19c)) and conditionally

independent of the indicator variables z given v (cf. (4.19d)). Thus, we have

f(η∗|v, z) = f(η∗;λ). (4.51)

Inserting (4.51) and (4.26) into (4.50) and omitting the normalization constant f(x|v, z) yields

f(η∗|v, z,x) ∝ f(x|η∗, z)f(η∗;λ). (4.52)

In our truncated model the component parameters η∗
t , for t = 1, . . . , T , are independent and

identically distributed according to the family of distributions

f(η∗
t ;λ) = b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
)
. (4.53)

Thus, the random vector η∗ is distributed according to the joint pdf

f(η∗;λ) =
TΠ

t=1
f(η∗

t ;λ) =
TΠ

t=1
b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
)
. (4.54)

The vector z is a local parameter vector in the sense that its nth element zn influences the nth

observation xn only, i.e.,

f(xn|η∗, z) = f(xn|η∗, zn). (4.55)

Furthermore, we assume that, given the component parameters η∗ and the indicator variable

zn, an observation xn is conditionally independent of an observation xn′ and, due to locality

of z, as well conditionally independent of an indicator variable zn′ for n ̸= n′ = 1, . . . , N , see

(4.19e). Thus, the joint conditional density f(x|η∗, z) factorizes as

f(x|η∗, z) =
NΠ

n=1
f(xn|η∗, zn) (4.56)

=
NΠ

n=1

TΠ
t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

, (4.57)
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where we used (4.17) in the last step. Next, we insert (4.54) and (4.57) into (4.52) which leads

to

f(η∗|v, z,x, α,λ) ∝
(

NΠ
n=1

TΠ
t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

)
TΠ

t=1
b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
)

=
TΠ

t=1
b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
) NΠ

n=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

.

(4.58)

The desired complete conditional f(η∗
t |v, z,x) can be obtained from the joint density f(η∗|v, z,x)

by marginalizing out all of the component parameters η∗
∼t. Due to the statistical independence,

this marginalization is done by omitting the product with respect to t in (4.58), i.e.,

f(η∗
t |v, z,x) ∝ b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
) NΠ

n=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

. (4.59)

To solve the update equation (4.49), we next apply the log to the complete conditional given by

(4.59):

ln f(η∗
t |v, z,x) c= ln

(
b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
))

+ ln
(

NΠ
n=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

)

= ln b(λ) + λT
1 η

∗
t − λ2a(η∗

t ) +
N∑

n=1
✶(zn = t)

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
)
. (4.60)

Inserting (4.60) into (4.49) gives

ln q∗
τt

(η∗
t ) c= E(q(v,η∗

∼t,z))
{

ln b(λ) + λT
1 η

∗
t − λ2a(η∗

t ) +
N∑

n=1
✶(zn = t)

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
)}

= E(q(v,η∗
∼t,z))

{
ln b(λ) + λT

1 η
∗
t − λ2a(η∗

t )
}

. .. .
A

+ E(q(v,η∗
∼t,z))

{
N∑

n=1
✶(zn = t)

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
)}

. .. .
B

. (4.61)

We will now develop A and B. For A, we have

A =
∑

z∈NN

∫
η∗

∼t∈R(T −1)M

∫
v∈RT

q(v)q(η∗
∼t)q(z)

(
ln b(λ) + λT

1 η
∗
t − λ2a(η∗

t )
)

dv dη∗
∼t

=
(

ln b(λ) + λT
1 η

∗
t − λ2a(η∗

t )
) ∑
z∈NN

∫
η∗

∼t∈R(T −1)M

)∫
v∈RT

q(v) dv

(
. .. .

1

q(η∗
∼t)q(z) dη∗

∼t

=
(

ln b(λ) + λT
1 η

∗
t − λ2a(η∗

t )
) ∑
z∈NN

) ∫
η∗

∼t∈R(T −1)M
q(η∗

∼t) dη∗
∼t

(
. .. .

1

q(z)

=
(

ln b(λ) + λT
1 η

∗
t − λ2a(η∗

t )
) ∑
z∈NN

q(z)
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= ln b(λ) + λT
1 η

∗
t − λ2a(η∗

t ). (4.62)

With (4.21), we obtain for B

B =
N∑

n=1
E(qϕn (zn)){✶(zn = t)}(

ln h(xn) + η∗
t

Txn − a(η∗
t )

)
=

N∑
n=1

ϕn,t

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
)
. (4.63)

Inserting the expressions for A and B into (4.61) leads to

ln qτt(η∗
t ) c= ln b(λ) + λT

1 η
∗
t − λ2a(η∗

t ) +
N∑

n=1
ϕn,t

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
)
, (4.64)

or equivalently

qτt(η∗
t ) ∝ exp

(
ln b(λ) + λT

1 η
∗
t − λ2a(η∗

t ) +
N∑

n=1
ϕn,t

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
))

= b(λ)exp
(

N∑
n=1

ϕn,th(xn)
)

exp
((

λT
1 +

N∑
n=1

ϕn,txn
T

)
η∗

t −
(

λ2 +
N∑

n=1
ϕn,t

)
a(η∗

t )
)

∝ exp
((

λT
1 +

N∑
n=1

ϕn,txn
T

)
η∗

t −
(

λ2 +
N∑

n=1
ϕn,t

)
a(η∗

t )
)

, (4.65)

where the constant factor b(λ)exp
(∑N

n=1 ϕn,th(xn)
)
has been omitted in the last step. Via com-

paring (4.65) and (4.53), we conclude that the variational factor pdf qτt(η∗
t ) takes the same func-

tional form as the prior pdf f(η∗
t ;λ) given by (4.53) with variational parameter τt =

(
τT

t,1 τt,2
)T

,

i.e.,

qτt(η∗
t ) = bt(τt)exp

(
τT

t,1η
∗
t − τt,2a(η∗

t )
)
, (4.66)

where bt(τt) = 1/
∫
η∗

t ∈RM exp
(
τT

t,1η
∗
t − τt,2a(η∗

t )
)

dη∗
t . The CAVI update for the variational pa-

rameters is given by

τt,1 = λ1 +
N∑

n=1
ϕn,txn, (4.67)

τt,2 = λ2 +
N∑

n=1
ϕn,t. (4.68)

CAVI Update for qϕn(zn)

Finally, applying (4.7) to qϕn(zn), the updated variational factor distributions of the indicator

variables zn are given by

qϕn(zn) ∝ exp
(
E(q(v,η∗,z∼n)){ln f(zn|z∼n,η∗,v,x)}

)
. (4.69)
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Since it is more convenient to work with the log of (4.69), we consider

ln qϕn(zn) c= E(q(v,η∗,z∼n)){ln f(zn|z∼n,v,η∗,x)}. (4.70)

Our first task is to find an expression for the complete conditional f(zn|z∼n,v,η∗,x). We start

with a simplification of the complete conditional, namely

f(zn|z∼n,v,η∗,x) = f(zn|v,η∗,x), (4.71)

which is due to the conditional independence of the indicator variables z1, . . . , zN given v

(or equivalently given π) assumed in (4.16d). Next, we consider the joint conditional pdf

f(z|v,η∗,x) and use Bayes’ law, which leads to

f(z|v,η∗,x) = f(x|v,η∗, z)p(z|v,η∗)
f(x|v,η∗) . (4.72)

The indicator variables z are conditionally independent of η∗ given v (cf. (4.19d)). Thus, we

obtain

p(z|v,η∗) = p(z|v). (4.73)

Inserting (4.26) and (4.73) into (4.72) yields

f(z|v,η∗,x) ∝ f(x|η∗, z)p(z|v), (4.74)

where we omitted the constant f(x|v,η∗) since it does not affect the optimization process.

According to (4.35) and (4.57), the joint conditional pdf f(z|v,η∗) in (4.74) can be further

developed as

f(z|v,η∗,x) ∝
(

NΠ
n=1

TΠ
t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

)
NΠ

n=1

TΠ
t=1

v
✶(zn=t)
t

=
NΠ

n=1

TΠ
t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
)
vt

)✶(zn=t)
. (4.75)

The desired complete conditional f(zn|v,η∗,x) can be obtained from the joint conditional pdf

f(z|v,η∗,x) by marginalizing out all of the indicator variables except the nth, i.e., marginalizing

out z∼n. Due to the conditional independence of the indicator variables z1, . . . , zN given v, this

is simply done by omitting the product with respect to n in (4.75):

f(zn|v,η∗,x) ∝
TΠ

t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
)
vt

)✶(zn=t)
. (4.76)

Applying the log to (4.76) yields

ln f(zn|v,η∗,x) c= ln
(

TΠ
t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
)
vt

)✶(zn=t)
)

=
T∑

t=1
✶(zn = t)

(
ln h(xn) + ln vt + η∗

t
Txn − a(η∗

t )
)
. (4.77)
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Next, we insert (4.77) into the update equation (4.70), which leads to

ln qϕn(zn) c= E(q(v,η∗,z∼n))
{

T∑
t=1

✶(zn = t)
(

ln h(xn) + ln vt + η∗
t

Txn − a(η∗
t )

)}

=
T∑

t=1
✶(zn = t)

(
ln h(xn) + E(qγt (vt)){ln vt} + E(qτt (η∗

t )){
η∗

t
T}

xn − E(qτt (η∗
t )){a(η∗

t )})
.

(4.78)

Furthermore, exponentiating (4.78), we obtain the desired variational factor pmf qϕn(zn):

qϕn(zn) ∝ exp
(

T∑
t=1

✶(zn = t)
(

ln h(xn) + E(qγt){ln vt} + E(qτt (η∗
t )){

η∗
t

T}
xn − E(qτt){a(η∗

t )}))

=
TΠ

t=1

(
h(xn)exp

(
E(qγt (vt)){ln vt} + E(qτt (η∗

t )){
η∗

t
T}

xn − E(qτt (η∗
t )){a(η∗

t )}
))✶(zn=t)

.

(4.79)

Equation (4.79) already indicates, that qϕn(zn) takes the same functional form as the prior pdf

f(zn|v). Thus, let us consider the categorical distribution

p(zn;ϕn) =
TΠ

t=1
ϕ
✶(zn=t)
n,t , (4.80)

where ϕn = (ϕn,1 · · · ϕn,T )T is the updated variational parameter vector of interest. For

convenience, we introduce the shorthand notation

Sn,t := E(qγt (vt)){ln vt} + E(qτt (η∗
t )){

η∗
t

T}
xn − E(qτt (η∗

t )){a(η∗
t )}. (4.81)

Inserting (4.81) into (4.79) gives us

qϕn(zn) ∝
TΠ

t=1
(h(xn)exp(Sn,t))✶(zn=t) ∝

TΠ
t=1

exp(Sn,t)✶(zn=t), (4.82)

where the factor h(xn) has been omitted, since it constant with respect to t and thus will

cancel out in the normalization step which will be mentioned shortly. Comparing (4.82) with

the categorical distribution given by (4.80), we conclude that the updated variational parameter

ϕn,t is proportional to exp(Sn,t). To turn (4.82) into a valid categorical distribution, we normalize

exp(Sn,t), for all t = 1, . . . , T , to have
∑T

t=1 exp(Sn,t) = 1. Thus, the CAVI solution is given by

qϕn(zn) = C(zn;ϕn) =
TΠ

t=1
ϕ
✶(zn=t)
n,t , (4.83)

where the updated variational parameter is the (posterior) probability of an observation xn

being assigned to the tth mixture component, i.e.,

ϕn,t = exp(Sn,t)∑T
i=1 exp(Sn,i)

, (4.84)

which is often referred to as the responsibility of component t for observation xn.
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4.3.3 Derivation of the Evidence Lower Bound

In terms of assessing convergence, the ELBO is a common choice since it can easily be computed

and stored throughout the CAVI algorithm. Typically, the algorithm is terminated once the

change in the ELBO has fallen below some small threshold.

According to (4.5), the ELBO is defined as

L(q;x) = E(q(w))
{

ln f (T )(w,x)
}

− E(q(w)){ln q(w)}

= E(q(v,η∗,z))
{

ln f (T )(v,η∗, z,x)
}

− E(q(v,η∗,z)){ln q(v,η∗, z)}. (4.85)

For convenience only, we will use E(q){·} instead of E(q(v,η∗,z)){·} below. Let us first con-

sider the joint distribution f (T )(v,η∗, z,x). Applying the chain rule to the joint distribution

f (T )(v,η∗, z,x) leads to

f (T )(v,η∗, z,x) = f (T )(z,x|v,η∗)f (T )(v,η∗)

= f (T )(x|z,v,η∗)p(T )(z|v,η∗)f (T )(v|η∗)f (T )(η∗)

= f (T )(x|η∗, z)p(T )(z|v)f (T )(v; α)f (T )(η∗;λ), (4.86)

where we used (4.26), (4.73) and, due to the statistical independence of v and η∗, f (T )(v|η∗) =

f (T )(v; α) in the last step. Furthermore, we appended the hyperparameter λ to the argument

of f (T )(η∗) for the sake of completeness. Using (4.56) and (4.34), we can rewrite (4.86) as

f (T )(v,η∗, z,x) = f (T )(v; α)f (T )(η∗;λ)
NΠ

n=1
p(T )(zn|v)f (T )(xn|η∗, zn). (4.87)

Note that, given zn, xn is independent of η∗
t′ for t′ ̸= zn (cf. (4.19e)) and therefore

f (T )(xn|η∗, zn) = f (T )(xn

||η∗
zn

)
.

Inserting (4.87) into (4.85) gives us

L(q;x) = E(q)
{

ln f (T )(v; α) + ln f (T )(η∗;λ) +
N∑

n=1

(
ln p(T )(zn|v) + ln f (T )(xn|η∗, zn)

)}

− E(q){ln q(v,η∗, z)}

= E(q)
{

ln f (T )(v; α) + ln f (T )(η∗;λ) +
N∑

n=1

(
ln p(T )(zn|v) + ln f (T )(xn

||η∗
zn

))}

− E(q)
{

T∑
t=1

(ln qγt(vt) + ln qτt(η∗
t )) +

N∑
n=1

ln qϕn(zn)
}

, (4.88)

where we used (4.15) in the last step. Exploiting the linearity of the expectation, we can rewrite
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(4.88) as

L(q;x) = E(q){ln f (T )(v; α)
}. .. .

A

+ E(q){ln f (T )(η∗;λ)
}. .. .

B

+
N∑

n=1

(
E(q){ln p(T )(zn|v)

}. .. .
C

+ E(q){ln f (T )(xn

||η∗
zn

)}. .. .
D

)

−
T∑

t=1

(
E(q){ln qγt(vt)}. .. .

E

+ E(q){ln qτt(η∗
t )}. .. .

F

)
−

N∑
n=1

E(q){ln qϕn(zn)}. .. .
G

. (4.89)

We will now develop the individual expectations in (4.89) denoted by letter A to letter G. With

(4.32), we obtain for A

A = E(q(v,η∗,z)){ln f (T )(v; α)
}

= E(q(v,η∗,z))
{

T∑
t=1

−αvt ln α

}
= −

T∑
t=1

E(qγt (vt)){vt}α ln α. (4.90)

Since the variational factor pdf qγt(vt) is a gamma distribution with shape parameter γt,1 and

rate parameter γt,2 the expectation E(qγt (vt)){vt} in (4.90) is given by

E(qγt (vt)){vt} = γt,1
γt,2

. (4.91)

Because of (4.54), B can be expressed as

B = E(q(v,η∗,z)){ln f (T )(η∗;λ)
}

= E(q(v,η∗,z))
{

T∑
t=1

(
ln b(λ) + λ1

Tη∗
t + λ2a(η∗

t )
)}

= T ln b(λ) +
T∑

t=1

(
λ1

TE(qτt (η∗
t )){η∗

t } + λ2E(qτt (η∗
t )){a(η∗

t )}
)
. (4.92)

Although we know the functional form of the prior pdf f(η∗
t ;λ) and derived the variational

factor pdf qτt(η∗
t ) to take the same form as well, we can not further develop (4.92), since we

have not chosen a specific distribution for the corresponding likelihood f
(
xn|η∗

zn

)
.

For C, we obtain

C = E(q(v,η∗,z)){ln p(T )(zn|v)
}

= E(q(v,η∗,z))
{

T∑
t=1

✶(zn = t) ln vt

}

=
T∑

t=1
E(q(vt,zn)){✶(zn = t) ln vt}, (4.93)

where (4.33) has been applied in the first step. Note that the indicator variables z1, . . . , zN and

the auxiliary variables v1, . . . , vT are statistically independent under the mean-field assumption
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(4.15) due to the fully factorized form. Thus, the expectation of the product in (4.93) is equal

to the product of expectations and C can be further developed as

C =
T∑

t=1
E(qϕn (zn)){✶(zn = t)}E(qγt (vt)){ln vt} =

T∑
t=1

ϕn,tE(qγt (vt)){ln vt}, (4.94)

where (4.21) has been applied.

Using (4.17), we obtain for D

D = E(q(v,η∗,z)){ln f (T )(xn

||η∗
zn

)}
= E(q(v,η∗,z))

{
T∑

t=1
✶(zn = t)

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
)}

=
T∑

t=1
E(q(η∗

t ,zn))
{
✶(zn = t)

(
ln h(xn) + η∗

t
Txn − a(η∗

t )
)}

=
T∑

t=1
E(qϕn (zn)){✶(zn = t)}E(qτt (η∗

t )){
ln h(xn) + η∗

t
Txn − a(η∗

t )
}

=
T∑

t=1
ϕn,t

(
ln h(xn) + E(qτt (η∗

t )){
η∗

t
T}

xn − E(qτt (η∗
t )){a(η∗

t )})
, (4.95)

where the last step is due to (4.21). For similar reasons as mentioned after the derivation of B,

we can not further develop (4.95) at the moment and refer to Chapter 5.

According to (4.99), the expectation denoted by the letter E is given by

E = E(q(v,η∗,z)){ln qγt(vt)}
= E(qγt (vt)){(γt,1 − 1) ln vt − γt,2vt − (ln Γ(γt,1) − γt,1 ln γt,2)}
= (γt,1 − 1)E(qγt (vt)){ln vt} − γt,2E(qγt (vt)){vt} − ln Γ(γt,1) + γt,1 ln γt,2. (4.96)

With (4.66), we obtain for F

F = E(q(v,η∗,z)){ln qτt(η∗
t )}

= E(qτt (η∗
t )){

ln bt(τt) + τT
t,1η

∗
t − τt,2a(η∗

t )
}

= ln bt(τt) + τT
t,1E(qτt (η∗

t )){η∗
t } − τt,2E(qτt (η∗

t )){a(η∗
t )}. (4.97)

Finally, for G we have

G = E(q(v,η∗,z)){ln qϕn(zn)}

= E(q(v,η∗,z))
{

T∑
t=1

✶(zn = t) ln ϕn,t

}

=
T∑

t=1
E(qϕn (zn)){✶(zn = t)} ln ϕn,t
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=
T∑

t=1
ϕn,t ln ϕn,t

= ϕT
n lnϕn, (4.98)

where we used (4.83) and (4.21).

Let us now consider the expectation E(qγt (vt)){ln vt}, which has shown up several times. As

shown previously, the variational factor pdf qγt(vt) is given by

qγt(vt) = 1
Γ(γt,1)γ

γt,1
t,2 v

γt,1−1
t e−γt,2vt . (4.99)

We next express the gamma distribution (4.99) using its exponential family representation, i.e.,

qγt(vt) = h̆(vt)exp
(
η̆Tt̆(vt) − ă(η̆)

)
. (4.100)

Exponentiating the log of (4.99) leads to

qγt(vt) = exp
)

ln
) 1

Γ(γt,1)γ
γt,1
t,2 v

γt,1−1
t e−γt,2vt

((
= exp(− ln Γ(γt,1) + γt,1 ln γt,2 + (γt,1 − 1) ln vt − γt,2vt)

= exp((γt,1 − 1) ln vt − γt,2vt − (ln Γ(γt,1) − γt,1 ln γt,2)). (4.101)

Comparing (4.101) with (4.100), we can see that the base measure h̆(vt) is given by

h̆(vt) = 1

and the natural parameter η̆ is

η̆ = (η̆1 η̆2)T = (γt,1 − 1 − γt,2)T, (4.102)

where the reverse substitution is given by

γt = (γt,1 γt,2)T = (η̆1 + 1 − η̆2)T. (4.103)

Furthermore, for the sufficient statistic t̆(vt) we obtain

t̆(vt) = (ln vt vt)T (4.104)

and the log-partition function ă(η̆) is given by

ă(η̆) = ln Γ(γt,1) − γt,1 ln γt,2

= ln Γ(η̆1 + 1) − (η̆1 + 1) ln(−η̆2), (4.105)

where we used (4.103) in the last step. Note that ln vt is part of the sufficient statistic given by

(4.104). To obtain the desired expression for E(qγt (vt)){ln vt}, we use the well known fact (see [40]
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for a detailed proof) that the expectation of the sufficient statistic t̆(vt) is given by the gradient

of the log-partition function ă(η̆), i.e., E(qγt (vt)){
t̆(vt)

}
= ∇ă(η̆), where ∇ = (∂/∂η̆1 ∂/∂η̆2)T.

Thus, we have

E(qγt (vt)){ln vt} = ∂

∂η̆1
ă(η̆)

= ∂

∂η̆1
(ln Γ(η̆1 + 1) − (η̆1 + 1) ln(−η̆2))

= Γ′(η̆1 + 1)
Γ(η̆1 + 1) − ln(−η̆2)

= Ψ(η̆1 + 1) − ln(−η̆2), (4.106)

where we used (4.105) in the second step and Ψ(·) is the digamma function. Inserting (4.103)

into (4.106) gives

E(qγt (vt)){ln vt} = Ψ(γt,1) − ln γt,2. (4.107)

4.3.4 Summary

In summary, according to (4.45), (4.46), (4.67), (4.68), and (4.84), the CAVI algorithm for static

MFMs being described via the stick-breaking analogy (4.9) leads to the following update rules

for the variational parameters:

γt,1 = γ̃t,1∑T
t=1

γ̃t,1
γt,2

, (4.108a)

γt,2 = α, (4.108b)

τt,1 = λ1 +
N∑

n=1
ϕn,txn, (4.108c)

τt,2 = λ2 +
N∑

n=1
ϕn,t, (4.108d)

ϕn,t = exp(Sn,t)∑T
i=1 exp(Sn,i)

, (4.108e)

where

γ̃t,1 = 1 +
N∑

n=1
ϕn,t, (4.108f)

Sn,t := E(qγt (vt)){ln vt} + E(qτt (η∗
t )){

η∗
t

T}
xn − E(qτt (η∗

t )){a(η∗
t )}, (4.108g)

for t = 1, . . . , T and n = 1, . . . , N .

We assess convergence of the ELBO to terminate the algorithm. The ELBO is given by

L(q;x) = E(q){ln f (T )(v; α)
}

+ E(q){ln f (T )(η∗;λ)
}

+
N∑

n=1

(
E(q){ln f (T )(zn|v)

}
+ E(q){ln f (T )(xn

||η∗
zn

)})
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−
T∑

t=1

(
E(q){ln qγt(vt)} + E(q){ln qτt(η∗

t )}
)

−
N∑

n=1
E(q){ln qϕn(zn)}. (4.109)

Recalling (4.90), (4.92), (4.94), (4.95), (4.96), (4.97), and (4.98), the individual expectations in

(4.109) are

E(q){ln f (T )(v; α)
}

= −
T∑

t=1
E(qγt (vt)){vt}α ln α, (4.110a)

E(q){ln f (T )(η∗;λ)
}

= T ln b(λ) +
T∑

t=1

(
λ1

TE(qτt (η∗
t )){η∗

t } + λ2E(qτt (η∗
t )){a(η∗

t )}
)
, (4.110b)

E(q){ln p(T )(zn|v)
}

=
T∑

t=1
ϕn,tE(qγt (vt)){ln vt}, (4.110c)

E(q){ln f (T )(xn

||η∗
zn

)}
=

T∑
t=1

ϕn,t

(
ln h(xn) + E(qτt (η∗

t )){
η∗

t
T}

xn − E(qτt (η∗
t )){a(η∗

t )})
, (4.110d)

E(q){ln qγt(vt)} = (γt,1 − 1)E(qγt (vt)){ln vt} − γt,2E(qγt (vt)){vt} − ln Γ(γt,1) + γt,1 ln γt,2, (4.110e)

E(q){ln qτt(η∗
t )} = ln bt(τt) + τT

t,1E(qτt (η∗
t )){η∗

t } − τt,2E(qτt (η∗
t )){a(η∗

t )}, (4.110f)

E(q){ln qϕn(zn)} = ϕT
n lnϕn, (4.110g)

and, according to (4.91) and (4.107), we have

E(qγt (vt)){vt} = γt,1
γt,2

,

E(qγt (vt)){ln vt} = Ψ(γt,1) − ln γt,2.

Finally, in Algorithm 2 we present all the necessary steps for our CAVI algorithm for static

MFMs.
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Algorithm 2: CAVI for static MFM models
Input: Observations x, truncation level T , hyperparameters α and λ
Output: Variational factor distributions q∗

γt
(vt), q∗

τt
(η∗

t ), for t = 1, . . . , T and q∗
ϕn

(zn),
for n = 1, . . . , N

1 Initialize: Variational parameters γ
(0)
t , τ

(0)
t , for t = 1, . . . T and ϕ

(0)
n , for n = 1, . . . , N

2 while the ELBO has not converged do
3 ℓ = ℓ + 1
4 for n from 1 to N do
5 for t from 1 to T do
6 compute Sn,t according to (4.108g)

7 for t from 1 to T do
8 set ϕ

(ℓ)
n,t according to (4.108e)

9 for t from 1 to T do
10 compute γ̃t,1 and γt,2 according to (4.108f) and (4.108b)

11 for t from 1 to T do
12 set γ

(ℓ)
t according to (4.108a) and (4.108b)

13 set τ
(ℓ)
t according to (4.108c) and (4.108d)

14 Compute the ELBO L(q(ℓ);x) according to (4.109)–(4.110g)

15 return q∗(v,η∗, z) =
(ΠT

t=1 q∗
γt

(vt)
)(ΠT

t=1 q∗
τt

(η∗
t )

)(ΠN
n=1 q∗

ϕn
(zn)

)
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Chapter 5

Variational Inference for Static
Mixtures of Finite Gaussian
Mixtures

In this chapter, we test the clustering capability of the CAVI algorithm from Section 4.3. In

order to be able to apply our proposed algorithm to any given set of observations, we need to

specify the explicit functional form of the component distributions f (T )(xn|θ∗
zn

)
.

5.1 Conjugate Exponential Family Model for Static Mixtures of Finite

Gaussian Mixtures

We now describe the static mixture of finite Gaussian mixtures (MFGM) model which arises by

specifying the component distributions f (T )(xn|θ∗
zn

)
as Gaussians with unknown mean θ∗

zn
and

known covariance matrix Σ = σ2IM , i.e.,

f (T )(xn

||θ∗
zn

)
= N (

xn

||θ∗
zn

,Σ
)

= 1√
(2π)M det(Σ)

exp
)

−1
2

(
xn − θ∗

zn

)T
Σ−1(

xn − θ∗
zn

)(
(5.1)

with xn ∈ RM , θ∗
zn

∈ RM , and IM denoting the identity matrix of size M × M . Recall that

our CAVI algorithm is based on component distributions of canonical exponential family form.

According to (4.17), we have

f (T )(xn|η∗
zn

)
= h(xn)exp

(
η∗T

zn
xn − a

(
η∗

zn

))
. (5.2)

We will next show that the multivariate Gaussian distribution in (5.1) is a member of the

exponential family and determine h(xn), the natural parameter η∗
zn
, and the log-partition a

(
η∗

zn

)
.

Expression (5.1) can be further developed as

f (T )(xn|θ∗
zn

)
= 1√

(2π)N det(Σ)
exp

)
−1

2x
T
nΣ

−1xn

(
exp

)
θ∗T

zn
Σ−1xn − 1

2θ
∗T
zn
Σ−1θ∗

zn

(
.
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By comparing with (5.2), we find that this expression is of exponential family form with

h(xn) = 1√
(2π)N det(Σ)

exp
)

−1
2x

T
nΣ

−1xn

(
, (5.3)

η∗
zn

= η∗(
θ∗

zn

)
= Σ−1θ∗

zn
, (5.4)

a
(
η∗(

θ∗
zn

))
= 1

2θ
∗T
zn
Σ−1θ∗

zn
. (5.5)

Note that the component parameters θ∗
zn
, i.e., the means of the Gaussian component distribu-

tions, can be obtained from the natural component parameters η∗
zn

by inverting the function

η∗(·) given in (5.4):

θ∗
zn

= Ση∗
zn

. (5.6)

Inserting (5.6) into (5.5) yields

a
(
η∗

zn

)
= 1

2η
∗T
zn
ΣΣ−1Ση∗

zn
= 1

2η
∗T
zn
Ση∗

zn
. (5.7)

With (5.3) and (5.7) the desired canonical exponential family form of the Gaussian components

f (T )(xn

||η∗
zn

)
is given by

f (T )(xn

||η∗
zn

)
= 1√

(2π)N det(Σ)
exp

)
−1

2x
T
nΣ

−1xn

(
exp

)
η∗T

zn
xn − 1

2η
∗T
zn
Ση∗

zn

(
. (5.8)

The complete specification of the component distributions in terms of their exponential family

representation in canonical form now enables the complete specification of the corresponding

conjugate prior.

5.1.1 Conjugate Prior

According to (4.18), a conjugate prior to the likelihood of the form in (5.2) is given by

f(η∗
t ;λ) = b(λ)exp

(
λT

1 η
∗
t − λ2a(η∗

t )
)
, (5.9)

where b(λ) ∈ R+ is a normalization constant and the hyperparameters λ1 ∈ RM and λ2 ∈ R are

arranged in the vector λ according to λ =
(
λT

1 λ2
)T

. Inserting (5.7) with zn = t ∈ {1, . . . , T}
(cf. (4.16)) into (5.9) leads to

f(η∗
t ;λ) = b(λ)exp

)
λT

1 η
∗
t − λ2

2 η∗T
t Ση∗

t

(
. (5.10)

Equivalently, we have

f(θ∗
t ;λ) = c(λ)exp

)
λT

1 Σ
−1θ∗

t − λ2
2 θ∗T

t Σ−1θ∗
t

(
, (5.11)

which is obtained from (5.10) by inserting (5.4). Since the likelihood is Gaussian with known

covariance matrix (cf. (5.1)), the conjugate prior is Gaussian as well. Therefore, we choose the
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prior distribution of the component parameters θ∗
t , i.e., the component means, to be Gaussian

with mean µθ∗ and covariance matrix Σθ∗ according to

f(θ∗
t ) = N (θ∗

t ;µθ∗ ,Σθ∗) = 1√
(2π)M det(Σθ∗)

exp
)

−1
2(θ∗

t − µθ∗)TΣ−1
θ∗ (θ∗

t − µθ∗)
(

. (5.12)

Note that the hyperparameters µθ∗ and Σθ∗ do not contain the subscript t because of the

component means θ∗
t being identically distributed a priori. Working out the exponent in (5.12)

and comparing the result with (5.11), we find the following important relationships [40]:

µθ∗ = 1
λ2

λ1, (5.13a)

Σθ∗ = 1
λ2

Σ. (5.13b)

By applying the linear transformation η∗
t = Σ−1θ∗

t (cf. (5.4)) to the Gaussian pdf in (5.12) we

obtain that η∗
t ∼ N (η∗

t ;µη∗ ,Ση∗), where

µη∗ = Σ−1µθ∗ = 1
λ2

Σ−1λ1, (5.14a)

Ση∗ = Σ−1Σθ∗Σ−1 = 1
λ2

Σ−1. (5.14b)

Note that the prior covariance matrixΣθ∗ is, due to the EF framework, restricted to be a multiple

of the covariance matrix Σ of the corresponding likelihood function f (T )(xn

||θ∗
zn

)
and thus can

not be chosen arbitrarily (cf. (5.13b)). Furthermore, we emphasize that the hyperparameter

vector λ is the same for both representations (5.10) and (5.11), whereas the normalization

constants b(λ) and c(λ) are different.

Having the same hyperparameters λ for both, the representation using the component param-

eters θ∗
t and the natural component parameters η∗

t leads to a convenient way of determining the

conjugate prior f(η∗
t ;λ) in its desired representation given in (5.10): First, the hyperparameters

µθ∗ and Σθ∗ of f(θ∗
t ) = N (θ∗

t ;µθ∗ ,Σθ∗) are specified. Given µθ∗ , Σθ∗ = σ2
θ∗IM and Σ = σ2IM ,

the hyperparameters λ1 and λ2 of the equivalent representation (5.11) can be obtained from

(5.13a) and (5.13b) according to

λ2 = σ2

σ2
θ∗

, (5.15)

λ1 = λ2µθ∗ . (5.16)

Once λ1 and λ2 have been determined, they can directly be applied to f(η∗
t ;λ) given in (5.10).

Regarding its complete specification, it remains to elaborate the normalization constant b(λ).

As mentioned above, the prior distribution of the natural component parameters η∗
t is Gaussian
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and thus given by

f(η∗
t ) = N (η∗

t ;µη∗ ,Ση∗) = 1√
(2π)M det(Ση∗)

exp
)

−1
2(η∗

t − µη∗)TΣη∗ −1(η∗
t − µη∗)

(
. (5.17)

Inserting the expressions (5.14a) and (5.14b) leads to

f(η∗
t ;λ) = 1√

(2π)M det
( 1

λ2
Σ−1)exp

(
−1

2

)
η∗

t − 1
λ2

Σ−1λ1

(T) 1
λ2

Σ−1
(−1)

η∗
t − 1

λ2
Σ−1λ1

()
,

which can be further developed as

f(η∗
t ;λ) = 1√(

2π
λ2

)M
det(Σ−1)

exp
)

−λ2
2 η∗T

t Ση∗
t + λT

1 η
∗
t − 1

2λ2
λT

1 Σ
−1λ1

(

= 1√(
2π
λ2

)M
det(Σ−1)

exp
)

− 1
2λ2

λT
1 Σ

−1λ1

(
exp

)
λT

1 η
∗
t − λ2

2 η∗T
t Ση∗

t

(
. (5.18)

A comparison of (5.18) and (5.10) yields that

b(λ) = 1√(
2π
λ2

)M
det(Σ−1)

exp
)

− 1
2λ2

λT
1 Σ

−1λ1

(
. (5.19)

We conclude that the normalization constant b(λ) can be calculated in closed form. Thus,

we do not rely on numerical integration according to (4.13). Consequently, the computational

complexity of the CAVI algorithm is massively reduced, overall leading to shorter runtimes.

5.1.2 Truncated MFGM Model

Recall the approximating model given in (4.16). The results for the Gaussian case just obtained

enable a more precise specification:

vt
i.i.d.∼ E(vt; α) for t = 1, . . . , T, (5.20a)

πt = vt for t = 1, . . . , T, (5.20b)

η∗
1 , . . . ,η∗

T
i.i.d.∼ f(η∗

t ;λ), (5.20c)

z1, . . . , zN |π i.i.d.∼ C(zn;π), (5.20d)

xn ∼ f (T )(xn|η∗
zn

)
independently for n = 1, . . . , N. (5.20e)

Here, the components f (T )(xn|η∗
zn

)
are canonical exponential family distributions, i.e.,

f (T )(xn|η∗
zn

)
=

TΠ
t=1

(
h(xn)exp

(
η∗

t
Txn − a(η∗

t )
))✶(zn=t)

,

where, according to (5.3) and (5.7),

h(xn) = 1√
(2π)N det (Σ)

exp
)

−1
2x

T
nΣ

−1xn

(
,
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a(η∗
t ) = 1

2η
∗T
t Ση∗

t . (5.21)

The corresponding conjugate prior pdf f(η∗
t ;λ) is given by

f(η∗
t ;λ) = b(λ)exp

)
λT

1 η
∗
t − λ2

2 η∗T
t Ση∗

t

(
(5.22)

with

b(λ) = 1√(
2π
λ2

)M
det(Σ−1)

exp
)

− 1
2λ2

λT
1 Σ

−1λ1

(
, (5.23)

λ2 = σ2

σ2
θ∗

, (5.24)

λ1 = λ2µθ∗ , (5.25)

and σ2, σ2
θ∗ and µθ∗ as in Section 5.1.1. Note that the full model given in (4.9) can specified in

a similar manner.

5.2 CAVI Algorithm

In this section, we adapt the general CAVI algorithm for static MFMs in the conjugate EF

framework (described in Section 4.3.4 and summarized by Algorithm 2) to the Gaussian case

considered in Section 5.1.

5.2.1 Expectations and Quantities Involved in the CAVI Algorithm

The CAVI algorithm for static MFGMs provides us with an approximation q∗(v,η∗, z) of the pos-

terior pdf f(v,η∗, z|x), where v = (v1 · · · vT )T, η∗ =
(
η∗T

1 · · · η∗T
T

)T
and z =

(
z1 · · · zN

)T

are the latent model parameters. Due to the truncated mean-field approximation, the variational

distribution q∗(v,η∗, z) is factorized according to (4.15), where the truncation parameter T ∈ N

can in general be freely set and acts as an input parameter for the CAVI algorithm. Further

inputs are the observations x =
(
xT

1 · · · xT
N

)T
, the hyperparameter α of the prior distribution

of the auxiliary variables vt (cf. (5.20a)) and the hyperparameters µθ∗ and Σθ∗ of the prior pdf

f(θ∗
t ).

According to (4.66), the variational factor pdf qτt(η∗
t ) is given by

qτt(η∗
t ) = bt(τt)exp

(
τT

t,1η
∗
t − τt,2a(η∗

t )
)
,

and thus has the same functional form as the corresponding prior pdf f(η∗
t ;λ) given in (5.22),

but with hyperparameters τt,1 and τt,2 instead of λ1 and λ2. In consequence, the normalization
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constant bt(τt) can directly be obtained from (5.23) by exchanging λ with τt =
(
τT

t,1 τt,2
)T

:

bt(τt) = 1√(
2π
τt,2

)M
det(Σ−1)

exp
)

− 1
2τt,2

τT
t,1Σ

−1τt,1

(
. (5.26)

Similarly, from (5.14) we obtain

~µη∗
t

= 1
τt,2

Σ−1τt,1, (5.27a)

~Ση∗
t

= 1
τt,2

Σ−1. (5.27b)

Note that ~µη∗
t
and ~Ση∗ are referred to as approximated posterior mean and approximated

posterior covariance matrix of the tth natural component parameter η∗
t , since the variational

factor pdf qτt(η∗
t ) approximates the true marginal posterior f(η∗

t |x). Furthermore, ~µη∗
t
is equal

to the approximated MMSE estimate η̂∗
t of η∗

t (cf. Section 2.5).

We next work out the expectations E(qτt (η∗
t )){η∗

t } and E(qτt (η∗
t )){a(η∗

t )}, which we have not

been able to further develop in Section 4.3. Obviously, E(qτt (η∗
t )){η∗

t } is the approximated

posterior mean of η∗
t and thus given by (5.27a), i.e.,

E(qτt (η∗
t )){η∗

t } = 1
τt,2

Σ−1τt,1. (5.28)

Applying expression (5.21) to the approximated posterior expectation E(qτt (η∗
t )){a(η∗

t )} of the

log-partition function a(η∗
t ) leads to

E(qτt (η∗
t )){a(η∗

t )} = 1
2E(qτt (η∗

t )){
η∗T

t Ση∗
t

}
. (5.29)

It can be shown [41] that the expectation of the quadratic form η∗T
t Ση∗

t with respect to the

variational factor pdf qτt(η∗
t ) is given by

E(qτt (η∗
t )){

η∗T
t Ση∗

t

}
= ~µT

η∗
t
Σ~µη∗

t
+ trace

(
Σ ~Ση∗

t

)
. (5.30)

With (5.27a) and (5.27b), (5.30) can further be developed as

E(qτt (η∗
t )){

η∗T
t Ση∗

t

}
= 1

τ 2
t,2

τT
t,1Σ

−1ΣΣ−1τt,1 + trace
) 1

τt,2
ΣΣ−1

(
,

= 1
τ 2

t,2
τT

t,1Σ
−1τt,1 + trace

) 1
τt,2

IM

(
,

= 1
τ 2

t,2

(
τT

t,1Σ
−1τt,1 + τt,2M

)
.

Inserting this expression into (5.29) yields the final result for the approximate posterior expec-

tation of the log-partition function a(η∗
t )

E(qτt (η∗
t )){a(η∗

t )} = 1
2τ 2

t,2

(
τT

t,1Σ
−1τt,1 + τt,2M

)
. (5.31)
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5.2.2 Summary

Due to the results obtained above, we are now ready to adapt the general CAVI algorithm

for static MFMs described in Section 4.3.4 to the special case of static MFGMs. Inserting

the two missing expectations (5.28) and (5.31), the updates of the variational parameters

γt, τt and ϕn of the corresponding variational factor pdfs qγt(vt) = G(vt; γt,1, γt,2), qτt(η∗
t ) =

bt(τt)exp
(
τT

t,1η
∗
t − τt,2a(η∗

t )
)
and the variational factor pmf qϕn(zn) = C(zn;ϕn), for t = 1, . . . , T

and n = 1, . . . , N are given by

γt,1 = γ̃t,1∑T
t=1

γ̃t,1
γt,2

, (5.32a)

γt,2 = α, (5.32b)

τt,1 = λ1 +
N∑

n=1
ϕn,txn, (5.32c)

τt,2 = λ2 +
N∑

n=1
ϕn,t, (5.32d)

ϕn,t = exp(Sn,t)∑T
i=1 exp(Sn,i)

, (5.32e)

where

γ̃t,1 = 1 +
N∑

n=1
ϕn,t, (5.32f)

Sn,t = Ψ(γt,1) − ln γt,2 + 1
τt,2

τT
t,1Σ

−1xn − 1
2τ 2

t,2

(
τT

t,1Σ
−1τt,1 + τt,2M

)
. (5.32g)

It remains to adapt the ELBO, which is used to assess the convergence of the CAVI algorithm

for static MFGMs. According to (4.109), it is given by

L(q;x) = E(q){ln f (T )(v; α)
}

+ E(q){ln f (T )(η∗;λ)
}

+
N∑

n=1

(
E(q){ln p(T )(zn|v)

}
+ E(q){ln f (T )(xn

||η∗
zn

)})

−
T∑

t=1

(
E(q){ln qγt(vt)} + E(q){ln qτt(η∗

t )}
)

−
N∑

n=1
E(q){ln qϕn(zn)}. (5.33a)

Using the base measure (5.3), the missing normalization constants (5.23) and (5.26), and the

missing expectations (5.28) and (5.31), the individual terms in (5.33a) can be expressed as

E(q){ln f (T )(v; α)
}

= −
T∑

t=1

γt,1
γt,2

α ln α, (5.33b)

E(q){ln f (T )(η∗;λ)
}

= T ln 1√(
2π
λ2

)M
det(Σ−1)

− 1
2λ2

λT
1 Σ

−1λ1

+
T∑

t=1

) 1
τt,2

λT
1 Σ

−1τt,1 + λ2
2τ 2

t,2

(
τT

t,1Σ
−1τt,1 + τt,2M

)(
, (5.33c)
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E(q){ln p(T )(zn|v)
}

=
T∑

t=1
ϕn,t(Ψ(γt,1) − ln γt,2), (5.33d)

E(q){ln f (T )(xn

||η∗
zn

)}
=

T∑
t=1

ϕn,t

(
ln

exp
(−1

2x
T
nΣ

−1xn

)√
(2π)N det (Σ)

+ 1
τt,2

τT
t,1Σ

−1xn − 1
2τ 2

t,2

(
τT

t,1Σ
−1τt,1 + τt,2M

))
, (5.33e)

E(q){ln qγt(vt)} = (γt,1 − 1)(Ψ(γt,1) − ln γt,2) − γt,2
γt,1
γt,2

− ln Γ(γt,1) + γt,1 ln γt,2, (5.33f)

E(q){ln qτt(η∗
t )} = ln 1√(

2π
τt,2

)M
det(Σ−1)

− 1
2τt,2

τT
t,1Σ

−1τt,1

+ 1
τt,2

τT
t,1Σ

−1τt,1 − 1
2τt,2

(
τT

t,1Σ
−1τt,1 + τt,2M

)
, (5.33g)

E(q){ln qϕn(zn)} = ϕT
n lnϕn. (5.33h)

Finally, in Algorithm 3 we present all the necessary steps for the CAVI algorithm for static

MFGMs. At the end of each iteration, the ELBO is evaluated and the algorithm is terminated,

if the relative change of the ELBO with respect to the previous iteration falls below some small

threshold ε, i.e., if
|L(q(ℓ);x) − L(q(ℓ−1);x)|||L(q(ℓ−1);x)

|| < ε. (5.34)

The output of the algorithm is further processed to estimate the latent model parameters v =

(v1 · · · vT )T, η∗ =
(
η∗T

1 · · · η∗T
T

)T
and z = (z1 · · · zN )T.

5.2.3 Initialization

Taking a closer look at the update equations given by (5.32), we see that the update procedure

cycles through two coupled stages. In the first stage, we use the current global hyperparameters

γt and τt of the corresponding variational factor pdfs qγt(vt) and qτt(η∗
t ) to evaluate (5.32g)

and hence update the responsibilities E(qϕn (zn)){✶(zn = t)} = ϕn,t using (5.32e). In the following

stage, we keep the responsibilities fixed and use them to implicitly update qγt(vt) and qτt(η∗
t )

by updating the corresponding variational parameters γt and τt according to (5.32a)–(5.32d).

Based on this two-stage update procedure, we suggest two different ways to initialize our

CAVI algorithm. First, one could initialize the variational parameters γt and τt and use them

to calculate the responsibilities ϕn,t using the respective update equation. Obviously, we use the

hyperparameters of the corresponding prior pdfs as initial values for the variational parameters,

i.e., γ
(0)
t = (1 α)T and τ

(0)
t =

(
λT

1 λ2
)T

, for t = 1, . . . , T . Since vt and η∗
t are global model

parameters, this initialization type will be referred to as global.

The second option is to invert this procedure, i.e., initializing the responsibilities ϕn,t and

calculating the variational parameters γt and τt according to their respective update equations.
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Algorithm 3: CAVI for static MFGM models
Input: Observations x, truncation level T , threshold ε, hyperparameters{

α,Σ = σ2IM ,µθ∗ ,Σθ∗ = σ2
θ∗IM

}
Output: Variational factor distributions q∗

γt
(vt), q∗

τt
(η∗

t ), for t = 1, . . . , T and q∗
ϕn

(zn),
for n = 1, . . . , N

1 compute λ according to (5.24) and (5.25)
2 Initialize: Variational parameters γ

(0)
t , τ

(0)
t , for t = 1, . . . T and ϕ

(0)
n , for n = 1, . . . , N

3 while the ELBO has not converged do
4 ℓ = ℓ + 1
5 for n from 1 to N do
6 for t from 1 to T do
7 compute Sn,t according to (5.32g)

8 for t from 1 to T do
9 set ϕ

(ℓ)
n,t according to (5.32e)

10 for t from 1 to T do
11 compute γ̃t,1 and γt,2 according to (5.32f) and (5.32b)

12 for t from 1 to T do
13 set γ

(ℓ)
t according to (5.32a) and (5.32b)

14 set τ
(ℓ)
t according to (5.32c) and (5.32d)

15 Compute the ELBO L(q(ℓ);x) according to (5.33) and check convergence according
to (5.34)

16 return q∗(v,η∗, z) =
(ΠT

t=1 q∗
γt

(vt)
)(ΠT

t=1 q∗
τt

(η∗
t )

)(ΠN
n=1 q∗

ϕn
(zn)

)

In what follows, we describe two approaches of initializing the responsibilities ϕn,t that are used

for the simulations in Section 5.4.

The first one is to assign each observation x1, . . . ,xN to a separate component. In conse-

quence, the truncation level T can not be chosen freely since it has to be equal to the number

of observations N . The initial responsibilities are given by

ϕ
(0)
n,t =

����
1 t = n,

0 else.

(5.35)

Thus, each initial variational parameter vector ϕ
(0)
n =

(
ϕ

(0)
n,1 · · · ϕ

(0)
n,t · · · ϕ

(0)
n,T

)T
, for n =

1, . . . , N , contains N − 1 elements which are equal to zero and one element (for index t = n)

which is equal to one. This initialization type will be referred to as unique.

In the second approach, we preset the truncation level T and assign each observation xn, for

n = 1, . . . , N , randomly to one of the T components. Thus, each initial variational parameter

vector ϕ
(0)
n =

(
ϕ

(0)
n,1 · · · ϕ

(0)
n,t′ · · · ϕ

(0)
n,T

)T
, for n = 1, . . . , N , contains T − 1 elements which are
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equal to zero and one element (with randomly chosen index t′ ∈ {1, 2, . . . , T}) which is equal to

one. As stated in [28], CAVI only guarantees convergence to a local maximum of the ELBO,

which can be sensitive to initialization. In other words, poor initializations can lead to low

local maxima. Therefore, we run the CAVI algorithm multiple times, i.e., we perform multiple

permutations, each time with a new realization of the random component assignment described

above. As a final result, we take the output of the run (permutation) with the highest ELBO.

This initialization type will be referred to as permute.

5.3 Estimation of the Latent Model Parameters

In this section we describe the estimation of the auxiliary variables v (or equivalently the mix-

ture weights π), the component parameters θ∗, and the indicator variables z using the output

q∗(v,η∗, z) of Algorithm 3. Recall that the variational distribution q∗(v,η∗, z) is an approxi-

mation of the posterior distribution f(v,η∗, z|x) and is factorized according to

q∗(v,η∗, z) =
(

TΠ
t=1

q∗
γt

(vt)
)(

TΠ
t=1

q∗
τt

(η∗
t )

)(
NΠ

n=1
q∗
ϕn

(zn)
)

.

Therefore, the variational factor distributions q∗
γt

(vt), q∗
τt

(η∗
t ) and q∗

ϕn
(zn) approximate the corre-

sponding marginal posterior distributions f(vt|x), f(η∗
t |x) and f(zn|x). Hence, they can directly

be applied to the Bayesian estimators introduced in Section 2.5.

We start with the approximate MMSE estimate θ̂∗
t of the tth component parameter θ∗

t , i.e.,

the mean of the tth component. According to (5.28), the approximate posterior mean of the tth

natural component parameter η∗
t is given by

η̂∗
t = E(qτt (η∗

t )){η∗
t } = 1

τt,2
Σ−1τt,1.

Applying the deterministic transformation θ∗
t = Ση∗

t (cf. (5.6)) yields the desired approximate

MMSE estimate

θ̂∗
t = 1

τt,2
τt,1 (5.36)

of the tth component parameter θ∗
t .

Due to the relation πt = vt, for t = 1, . . . , T (cf. (4.16b)), the approximate MMSE estimate

π̂t of the tth mixture weight πt is equal to the approximate posterior mean of the tth auxiliary

variable vt. According to (4.91), it is given by

π̂t = E(qγt (vt)){vt} = γt,1
γt,2

. (5.37)

Finally, we estimate the indicator variables z1, . . . , zN . According to (4.83), the variational

factor pmf qϕn(zn) is a categorical distribution with variational parameter ϕn = (ϕn,1 · · · ϕn,T )T.
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Recall that the ϕn,t are responsibilities, i.e., the probabilities that an observation xn is assigned

to the tth mixture component. Hence, we choose the estimate ẑn of the nth indicator variable

zn to be the component with the largest responsibility. In other words, the estimate ẑn is equal

to the mode of the approximated posterior pdf qϕn(zn), i.e., the approximate MAP estimate of

zn:

ẑn = arg max
t

ϕn,t. (5.38)

Using the estimates ẑ1, . . . , ẑn, the number of clusters in the observations x (cf. (2.11)) can be

estimated according to

L̂ =
T∑

t=1
✶

(
N̂t > 0

)
, (5.39)

where N̂t =
∑N

n=1 ✶(ẑn = t) is the (estimated) number of observations assigned to the tth mixture

component.

5.4 Performance Evaluation

5.4.1 Data Generative Model

Until further notice, we consider the observations x1, . . . ,xN ∈ RM to be drawn from a finite

mixture of multivariate Gaussian distributions with K = 8 equally sized components [20] of

dimension M = 2. The data generative model for N conditionally independent observations

x =
(
xT

1 · · · xT
N

)T
can be summarized as follows:

π = 1
818, (5.40a)

z1, . . . , zN
i.i.d.∼ C(zn;π), (5.40b)

xn|θ∗, zn ∼ f
(
xn

||θ∗
zn

)
independently for n = 1, . . . , N. (5.40c)

Here, the component distributions f
(
xn

||θ∗
zn

)
are Gaussians, i.e., f

(
xn

||θ∗
zn

)
= N (

xn

||θ∗
zn

,Σ
)
with

covariance matrix Σ = I2 and component means

θ∗
zn

∈
{)−6.0

−2.5

(
,

)−6.0
2.5

(
,

)
6.0

−2.5

(
,

)
6.0
2.5

(
,

)−2.0
−2.5

(
,

)−2.0
2.5

(
,

)
2.0

−2.5

(
,

)
2.0
2.5

(}
. (5.41)

In what follows, a realization x =
(
xT

1 · · · xT
N

)T
of (5.40) will be referred to as synthetic

dataset. For illustration, an example dataset with N = 300 is shown in Figure 5.1.

We emphasize that the true component assignments z1, . . . , zN ∈ {1, . . . , 8} (cf.(5.40b)) and

the corresponding component means θ∗
zn

as in (5.41) are used for performance evaluation pur-

poses, but the CAVI algorithm itself is provided with the raw synthetic dataset, see Figure 5.1.

In a post processing step, the cluster (i.e., the non-empty components) assignments and the
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Figure 5.1: Synthetic dataset x with eight clusters generated according to (5.40) for N = 300.
Left: Labeled observations xn = (xn,1 xn,2)T for n = 1, . . . , 300, illustrated as colored dots
and cluster means illustrated as large colored dots. Right: Raw synthetic dataset x as seen at
the input of the CAVI algorithm.

corresponding cluster means are estimated according to (5.38) and (5.36). Note that empty

components, i.e., components for which N̂t = 0, are thrown away.

5.4.2 Simulation Results

We next perform simulations to evaluate the clustering performance and estimation accuracy

of the number of clusters of our CAVI algorithm for static MFGMs, which is summarized in

Algorithm 3. The presented results are averaged over 200 MC runs of the algorithm and the

corresponding post processing step, where in each MC run a new synthetic dataset x is drawn

from (5.40). The maximum number of iterations is set to 50, i.e., ℓmax = 50 and the algorithm is

terminated according to (5.34) with ε = 10−10. Regarding the specification of the hyperparam-

eters µθ∗ and Σθ∗ of the Gaussian prior pdf f(θ∗
t ) (cf. (5.12)), we take a data driven approach

inspired by [29]. The mean µθ∗ is set to be the median of the observations, i.e.,

µθ∗ = median(x1, . . . ,xN ), (5.42)

and the diagonal elements of the covariance matrix Σθ∗ = σ2
θ∗I2 are chosen according to

σ2
θ∗ = max(var(x1,1, . . . , xN,1), var(x1,2, . . . , xN,2)). (5.43)

With Σ = I2 chosen to be the same as in the data generative model, there are only two input

parameters of the CAVI algorithm, which we are in control of, namely the truncation parameter

T and the hyperparameter α.

Influence of the Hyperparemater α

We now investigate the influence of the hyperparameter α on the clustering performance of the

CAVI algorithm using the three initialization types unique, permute, and global described in
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(a) Initialization type: unique
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(b) Initialization type: permute
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(c) Initialization type: global

Figure 5.2: Clustering performance of the CAVI algorithm for static MFGMs. Estimated num-
ber of clusters (first column) and accuracy score (second column) for N = 50, 100, 150, . . . , 1000
and different choices of the hyperparameter α. Each subfigure corresponds to a different initial-
ization approach of the CAVI algorithm according to Section 5.2.3.

Section 5.2.3. In case of initialization type permute, the number of permutations is set to 10

and the truncation parameter T is set to 20 for both, permute and global. For a rough overview

of the performance, the estimated number of clusters L̂ and the accuracy score are shown in

Figure 5.2. With ẑn according to (5.38), the accuracy score is given by

1
N

N∑
n=1

✶(ẑn = zn).
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The accuracy score indicates the number of correctly assigned observations in relation to the total

number of observations. From Figure 5.2c, it follows that initializing the variational parameters

of the CAVI algorithm according to the global procedure leads to a very poor performance.

Therefore, the initialization type global is not considered further in our discussions.

In general, we observe an increasing estimated number of clusters with increasing hyperparam-

eter α. Recall that the prior on the number of components is given by p(K) = Poisson(K −1; α).

Thus, the a priori expected number of components is given by α + 1. Since the ground truth

regarding the number of components is known to be equal to eight, an obvious choice for the

hyperparameter α is given by α = 7. But for both initialization types, unique and permute,

we find the values of α leading to the best overall clustering performance to be larger than 7,

namely α = 30 for initialization type unique and α = 15 for initialization type permute. Al-

though the number of clusters is overestimated for N < 150, the estimated number of clusters

tends towards the true number of clusters as the size of the synthetic dataset grows, i.e., with

increasing number of observations N . The corresponding accuracy scores are no smaller than

0.9, i.e., at least 90 % of the observations are assigned to the correct cluster. For smaller values

of α, the initialization types demonstrate significantly different behaviour from one another.

Whereas the estimated number of clusters grows with an increasing number of observations in

the case of permute, it decreases in the case of unique.

Comparison of Initialization Types Unique and Permute

Figure 5.3 shows a comparison of initialization type unique with α = 30 and permute with α =

15, i.e., the hyperparameter for which the CAVI algorithm performs best for each initialization

type. Again, the estimated number of clusters and the accuracy score are used to quantify the

clustering performance. For a lower number of observations N , permute outperforms unique,

which is indicated by a slightly lower estimated number of clusters and a slightly higher accuracy

score. As soon as N reaches 200, the performance difference is negligible. Note that in both

cases, the 95 % confidence interval decreases with increasing N , suggesting an increasing level

of information content in the observations.

The average computation times of a CAVI run and the corresponding post processing step

for a Python implementation (single core) executed on a system with an Intel Core i9-13900H

CPU and 16 GB RAM are shown in Table 5.1. Recall that the truncation parameter T is set

to be equal to the number of observations N in case of initialization type unique and thus, the

number of variational parameter vectors γt and τt to be computed and the dimension of the

variational parameter vectors ϕn ∈ RT , for n = 1, . . . , N , grow linearly with N . For permute on
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Figure 5.3: Estimated number of clusters and accuracy score with 95 % confidence interval for
initialization type unique with α = 30 and initialization type permute with α = 15.

N 50 150 200 350 500 1000
Unique 13.68 40.23 64.45 150.50 357.11 1226.15

Permute 77.80 98.61 102.29 173.62 200.37 300.80

Table 5.1: Joint computation time of the CAVI algorithm and the post processing step (in
ms) for initialization type permute with T = 20, α = 15, and 10 permutations per MC run and
initialization type unique with α = 30 averaged over 200 MC runs.

the other hand, the truncation parameter T is fixed at some predefined number but the CAVI

algorithm is repeated several times (number of permutations) in each MC run. This results in

a larger computation time for a small to moderate number of observations N compared with

unique. As soon as N gets large, the computational complexity using initialization type unique

grows significantly and we observe smaller overall runtimes of permute compared with unique.

Finally, some specific clustering results for N = 50 and N = 300 using the CAVI algorithm

for static MFGMs with initialization type permute are shown in Figure 5.4. Here, the presented

results arise from a single MC run, i.e., from a specific synthetic dataset depicted as ground truth.

For N = 50, the level of information in the observations tends to be low, since the population

of each cluster in the corresponding artificial dataset is rather sparse. This may lead to the

number of clusters being estimated incorrectly. As an example, let us consider the artificial

dataset shown in Figure 5.4a. The upper lightblue observation and the most right orange

observation are located far from their corresponding cluster means. Furthermore, the distances

to observations assigned to different clusters are large as well. In consequence, the estimator

assigns each observation to a new cluster and therefore the number of clusters is overestimated.

The opposite behaviour can be observed in Figure 5.4b. Consisting of a single observation

located far from the corresponding cluster mean but nearby the red cluster, the orange cluster

is not present in the estimation result. Figure 5.4c shows a specific case with higher information
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content in the observations in the sense that the number of clusters is estimated correctly. For

datasets with a larger number of observations and thus a higher level of information content,

we over all observe a higher estimation accuracy. A specific example for N = 300 is presented

in Figure 5.4d.

Influence of the Truncation Parameter T

We now investigate the influence of the truncation parameter T on the clustering performance

of the CAVI algorithm for static MFGMs with initialization type permute. Recall that the

truncation parameter T depicts the number of components in the approximating model given in

(4.16). Since our data generative model given in (5.40) consists of K = 8 components with equal

mixture weights πk = 1
8 , for k = 1, . . . , 8, it is very likely that, for N ≥ 50, each synthetic dataset

drawn from (5.40) has eight clusters. Therefore, we do not consider the truncation parameter

to be smaller than eight in our discussion.

Figure 5.5 shows the estimated number of clusters and the accuracy score averaged over 200

MC runs of the CAVI algorithm and the corresponding post processing step using initialization

type permute with 10 permutations. In general, we observe an increasing estimated number of

clusters with increasing truncation parameter T . If the number of observations is small, the

number of clusters is overestimated for T = 15 and T = 20. Interestingly, this is not the case

for T = 50. However, if large enough, the particular choice of T does not change the estimated

number of clusters for N ≥ 200. In other words, the influence of T is suppressed for a higher

level of information content in the observations. Qualitatively, the same statement holds for the

accuracy score.

We emphasize that choosing appropriate values for α and T when using initialization type

permute should be viewed as a joint problem. Since the computational complexity increases with

increasing truncation parameter T , keeping T as small as possible is desirable. The associated

decrease in clustering performance can — at least partly — be compensated for by increasing

the hyperparameter α. For illustration, we consider the cases where T = 9 and T = 20 for

α = 15, which have already been shown in Figure 5.5. By increasing α from 15 to 27 for T = 9,

the clustering performance can be raised close to the level of T = 20, see Figure 5.6.

Evidence Lower Bound

Figure 5.7 shows the ELBO computed at each iteration of the CAVI algorithm using initialization

types unique and permute for N = 50 and N = 500 observations. The specific iteration at which

the algorithm is terminated, i.e., the condition (5.34) is fulfilled, is indicated by vertical dashed

lines. In order to enable a fair comparison, the hyperparameter α is set to 30 in both cases,
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(c) N = 50, L̂ = 8
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Figure 5.4: Clustering performance using initialization type permute, T = 20, α = 15, and
10 permutations. Left: Synthetic datasets for N = 50 and N = 300 generated according to
(5.40) and labeled according to the ground truth. Right: MMSE estimated cluster means θ̂∗

l ,
for l = 1, . . . , L̂ and observations xn = (xn,1 xn,2)T labeled using the MAP estimated indicator
variables ẑn.
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Figure 5.5: Clustering performance of the CAVI algorithm for static MFGMs with initialization
type permute and α = 15. Estimated number of clusters (left) and accuracy score (right) for
N = 50, 100, 150, . . . , 1000 and different choices of the truncation parameter T .
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Figure 5.6: Improvement of the clustering performance for the specific choice of T = 9 by
increasing the hyperparameter α.
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Figure 5.7: Evolution of the ELBO for initialization type permute with T = 20 and 10 permu-
tations and initialization type unique. Dashed lines indicate the termination of the algorithm
according to (5.34) with ε = 10−10.
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Figure 5.8: Evolution of the ELBO for initialization type permute with T = 20 and 10
permutations for different choices of the hyperparameter α.

N = 50 N = 500
number of clusters accuracy score number of clusters accuracy score

α = 15 8.34 0.909 8.00 0.958
α = 30 8.93 0.892 8.01 0.958
α = 40 9.13 0.883 8.07 0.956

Table 5.2: Estimated number of clusters and accuracy score for initialization type permute
with T = 20 and 10 permutations for different choices of the hyperparameter α.

unique and permute. For both initialization types, the CAVI algorithm converges faster for

N = 500, which is again related to the higher level of information content in the observations.

Furthermore, the ELBO using initialization type permute is larger for both cases, N = 50 and

N = 500. Especially for N = 500, a significant gap between unique and permute is evident, even

though the clustering performance is basically the same. Thus, it can not be inferred from the

ELBO which initialization type is most suitable.

In Figure 5.8, we present ELBO curves for N = 50 and N = 500 using initialization type

permute only, but with different choices of the hyperparameter α. The corresponding clustering

results, i.e., the evaluated performance metrics, are given in Table 5.2. Note that these results

are part of those already presented in Figure 5.2b. We observe that the particular choice of

α = 15 leads to the best clustering performance in both cases, N = 50 and N = 500, whereas

α = 40 performs worst. Since, for N = 50, the choice of α = 15 results in the largest ELBO as

well, one might tend to use the ELBO as decision basis for hyperparameter tuning. However,

for N = 500, it is evident from Figure 5.8 that α = 15 has the smallest ELBO. From this,

we conclude that the ELBO, in general, cannot be used as a sole basis for hyperparameter

tuning. This statement becomes even more evident by investigating the ELBO curves shown

in Figure 5.9 and the corresponding clustering results given in Table 5.3 for initialization type

unique. Here, for N = 50, the choice of the hyperparameter α = 15 for the best clustering
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Figure 5.9: Evolution of the ELBO for initialization type unique for different choices of the
hyperparameter α.

N = 50 N = 500
number of clusters accuracy score number of clusters accuracy score

α = 15 8.03 0.912 7.88 0.944
α = 30 8.72 0.903 8.00 0.957
α = 40 8.92 0.898 8.00 0.957

Table 5.3: Estimated number of clusters and accuracy score for initialization type unique for
different choices of the hyperparameter α.

performance does not coincide with that for the largest ELBO, i.e., α = 30.

Comparison with the CAVI Algorithm for DPMs

We now compare the clustering performance of our CAVI algorithm for static MFGMs with the

CAVI algorithm for DPMs from [16] specialized to the case of Gaussian component distributions

with unknown means. Recall that, for a DPM model, the expected number of clusters grows

logarithmically with the number of observations. More specifically, it is given by [17]

L̄ ≈ κ ln
)

1 + N

κ

(
.

Thus, we expect the estimated number of clusters to grow with the number of observations when

the CAVI algorithm for DPMs is applied to synthetic data from the finite Gaussian mixture

model in (5.40). For simulation, the value of the concentration parameter κ is chosen such that

L̄ = 8 for N = 300, i.e., κ = 1.51. For our CAVI algorithm, we use initialization type permute

with 10 permutations, α = 15 and T = 20. From Figure 5.10 it is demonstrated that the

number of clusters in the observations is not reliably inferred by the CAVI algorithm for DPMs

since, as expected, L̂ grows with an increasing number of observations N . Correspondingly, the

accuracy score goes down. More generally, the DPM model is not able to exploit the increasing

information content in the data as the number of observations grows which can be inferred from

the growing confidence intervals. On the other hand, we observe decreasing and even vanishing
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Figure 5.10: Comparison of the clustering performance of the CAVI algorithm for the DPM
of Gaussians and the CAVI algorithm for the static MFGM. Estimated number of clusters (left)
and accuracy score (right) with 95 % confidence intervals.

confidence intervals when our CAVI algorithm for static MFGMs is applied. We can conclude

that, at least within the specified finite Gaussian mixture scenario, our novel CAVI algorithm

for static MFGMs effectively resolves the inconsistency issue related to the inferred number of

clusters associated with DPMs.

5.4.3 Old Faithful Geyser Dataset

Finally, we apply our CAVI algorithm for static MFGMs to the Old Faithful geyser dataset1. It

consists of N = 272 observations x1, . . . ,xN , where each observation xn = (xn,1 xn,2)T ∈ R2

contains the duration of a single eruption and the waiting time until the next eruption of the

Old Faithful geyser, which is located in Yellowstone National Park, Wyoming, USA.

Note that the waiting times are roughly an order of magnitudes larger than the eruption

durations. To avoid bias towards the waiting times in the estimation result, the CAVI algorithm

is fed with standardized data. Standardization means that both, the eruption durations and the

waiting times have zero mean and a standard deviation of one, i.e.,

µ1 = 1
N

N∑
n=1

xn,1 = 0, σ1 =

┌||√ 1
N

N∑
n=1

(xn,1 − µ1)2 = 1,

µ2 = 1
N

N∑
n=1

xn,2 = 0, σ2 =

┌||√ 1
N

N∑
n=1

(xn,2 − µ2)2 = 1.

The raw Old Faithful geyser dataset and the corresponding standardized version are shown in

Figure 5.11.

Figure 5.12 presents the clustering result for the Old Faithful geyser dataset using the CAVI

1Source: https://www.stat.cmu.edu/˜larry/all-of-statistics/=data/faithful.dat

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
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Figure 5.11: Raw Old Faithful geyser dataset (left) with eruption duration and waiting time
until the next eruption in minutes and standardized Old Faithful geyser dataset (right).
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Figure 5.12: Clustered data from Old Faithful geyser using the CAVI algorithm for static
MFGMs (left) and the K-means algorithm (right). Cluster means are indicated by black crosses.

algorithm for static MFGMs with initialization type permute, α = 8, T = 10, and 10 permuta-

tions. The hyperparameters µθ∗ and Σθ∗ are chosen according to (5.42) and (5.43). In addition,

a clustering result using the K-means algorithm kmeans22 with k = 2 and random initialization

of the centroids is shown for comparison. We see that the clustering results of both algorithms

are the same, except the assignment of a single observation.

We note that the CAVI algorithm for static MFGMs forms two clusters regardless of the

particular choice of α, as soon as α > 2. Each of the clusters can be interpreted as a separate

series of eruptions. The red cluster contains short eruptions lasting no longer than three minutes

and is associated with shorter waiting times between these eruptions. The green cluster contains

long lasting eruptions associated with longer waiting times. Both, the eruption duration and

the time interval between eruptions have bimodal distributions. For example, the mean waiting

times are given by 55 minutes following a short eruption and 80 minutes following a long eruption.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html
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Chapter 6

Conclusion

In this work, we investigated the mixture of finite mixtures (MFM) model based on [19] and [20].

The MFM model is a Bayesian mixture model in which the number of components is modeled as

a random parameter with a specified prior. This model is therefore particularly useful in mixture

scenarios with an unknown but finite number of components. We presented a generalized MFM

model together with two special cases, the static and dynamic MFM models. For both cases, we

derived relevant probability distributions such as the exchangeable partition probability function

(EPPF), the distribution of the cluster sizes, and the prior distribution of the number of clusters.

These distributions were used to compare the clustering behavior between the static and the

dynamic MFM models as well as the Dirichlet process mixture (DPM) model. We furthermore

discussed equivalent representations for the static MFM model, including the representation

using the EPPF and the stick-breaking representation.

Next, we proposed a novel coordinate-ascent variational inference (CAVI) algorithm for es-

timating the parameters of the static MFM model using the stick-breaking representation. Our

CAVI algorithm is suited to component distributions belonging to the exponential family of

distributions and the corresponding conjugate prior distribution of the component parameters.

Subsequently, we restricted the component distributions to be Gaussians with unknown means

and known covariance matrices, resulting in a novel CAVI algorithm for the static mixture of

finite Gaussian mixtures (MFGM) model. Finally, we evaluated the clustering performance of

our CAVI algorithm using various hyperparameters and initializations for synthetic data cor-

responding to a mixture of eight equally weighted Gaussian components. We observed that,

for suitable choices of the hyperparameter α and the truncation parameter T , at least 90 % of

the observations are assigned to the correct cluster. Furthermore, the number of clusters in the

observed data is correctly inferred if the number of observations is sufficiently large. In addition,

to compare the clustering performance of our proposed MFGM-based CAVI algorithm with that

of an established baseline method, we also performed simulations using the CAVI algorithm for
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DPM models from [16] specialized to Gaussian components. This comparison revealed that our

MFGM-based CAVI algorithm estimates the number of clusters and the cluster assignments

more accurately than the DPM-based CAVI algorithm when applied to our synthetic dataset.

The clustering results for static MFGM models summarized above are based on the assump-

tion that the component distributions are perfectly specified, i.e., the component distributions in

the MFM model match the component distributions that generated the data. In many practical

applications, this assumption does not hold since the component distributions for real-world

data do not conform to a convenient parametric form. In such cases, it seems that, at least for

static MFMs, the posterior distribution of the number of components does not concentrate at

the true number of components. In particular, it was shown in [42] that the posterior distri-

bution of the number of components converges to zero, i.e., p(K|x) → 0, for any finite number

of components K ∈ N, as the number of observations N approaches infinity. This result was

also demonstrated in [42] by simulations using the split-merge sampler for static MFM models

from [19]. This issue does not seem to be of practical relevance in clustering tasks since the

number of components K is typically not of interest and thus not inferred. For example, the

application of our CAVI algorithm for static MFGMs to the Old Faithful geyser dataset resulted

in an estimated number of clusters L̂ = 2, which is a reasonable result. However, in future

work, it could still be interesting to investigate whether our CAVI algorithm for static MFGMs

exhibits a similar behavior regarding the posterior distribution of the number of components as

that described in [42].

The proposed CAVI algorithm is based on the assumption that the variational distribution

is a member of the truncated mean-field family of distributions. The truncation parameter T

is a hyperparameter that restricts the underlying static MFM model to at most T components.

Our CAVI algorithm could be improved by removing the truncation assumption. In [43], a

truncation-free stochastic variational inference (VI) algorithm for Bayesian nonparametric mod-

els was proposed, which, slightly adapted, might be applicable to static MFM models as well.

Finally, to exploit the full flexibility of the MFM model, advanced VI methods [44] could

be used in future work. This involves developing VI algorithms that do not rely on the stick-

breaking representation of the static MFM. More generally, such VI algorithms could serve as a

basis for developing efficient inference methods for dynamic MFMs.
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Appendix

Proof of Proposition 3.6: Derivations and verifications in this proof are based on [45, Chapter 5].

Let us consider a time dependent counting process, where the random number N(t) counts the

total number of arrivals up to the time t ∈ [0, ∞). In the context of the stick-breaking analogy,

N(t) counts the number of pieces broken off from the stick and thus, breaking off a stick is

referred to as arrival. Instead of time, t indicates the location on the stick. We denote the

interarrival time, i.e., the time elapsed between two consecutive arrivals indexed by k − 1 and

k, k ∈ N, by the i.i.d. exponential random variable Yk with rate parameter α > 0, i.e.,

fYk
(t) = αe−αt for k = 1, 2, . . . (A.1)

The corresponding cdf is given by

P{Yk ≤ t} = FYk
(t) =

����
1 − e−αt t ≥ 0,

0 else.

(A.2)

As it can be seen from Figure A.1, it follows that the arrival times Tk, for k = 1, 2, . . . , i.e., the

locations of the breakpoints on the stick, are given by

Tk =
k∑

i=1
Yi. (A.3)

More specifically, Tk is a sum of k random variables Y1, . . . , Yk i.i.d. according to (A.1). Thus,

Tk is distributed according to a gamma distribution with shape parameter k and rate parameter

α, i.e.,

fTk
(t) = 1

(k − 1)!α
ktk−1e−αt, (A.4)

where (k − 1)! = Γ(k) since k ∈ N. We next verify (A.4) by using mathematical induction. For

the case where k = 1 it is trivial to show that (A.1) and (A.4) are the same and, thus, T1 = Y1.

According to (A.3), the time of the next arrival Tk+1 is given by Tk+1 = Tk + Yk+1. Since Tk

and Yk+1 are statistically independent, the density fTk+1(t) can be calculated by convolving the

products of the respective pdfs fTk
(t) and fYk+1(t):
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Figure A.1: A graphical depiction of the counting process N(t) with arrival times Tk and
interarrival times Yk for three arrivals.

fTk+1(t) =
∫ ∞

0
fYk+1(t − s)fTk

(s) ds.

Inserting (A.1) and (A.4) yields

fTk+1(t) =
∫ t

0
αe−α(t−s) 1

(k − 1)!α
ksk−1e−αs ds = 1

(k − 1)!α
k+1e−αt

∫ t

0
sk−1 ds = 1

k!α
k+1tke−αt.

(A.5)

Now by replacing k + 1 with k in (A.5), the resulting expression is the same as (A.4) which

proves that Tk =
∑k

i=1 Yi has a gamma distribution.

We next derive the probability that the total number of arrivals up to time t is equal to k,

i.e., P{N(t) = k}. A convenient way to compute P{N(t) = k} is to condition on the time of the

kth arrival Tk. As shown previously, Tk has a gamma distribution and therefore is a continuous

random variable. Applying the law of total probability to our problem yields

P{N(t) = k} =
∫ ∞

0
P{N(t) = k|Tk = s}fTk

(s) ds =
∫ t

0
P{N(t) = k|Tk = s}fTk

(s) ds, (A.6)

where the second step is due to P{N(t) = k|Tk = s} = 0 for s > t. An example of this particular

case is illustrated in Figure A.2a. Let us now focus on P{N(t) = k|Tk = s} for 0 < s < t: a total

number of k arrivals up to time t given that the time of the kth arrival equals s implies that

there is no arrival observed in the interval t − s. In other words, the next interarrival time Yk+1

has to be larger than t − s (an example of such case is shown in Figure A.2b). Thus, we have

P{N(t) = k|Tk = s} = P{Yk+1 > t − s|Tk = s}.

Since Tk and Yk+1 are statistically independent, the events Yk+1 > t − s and Tk = s are inde-

pendent as well. Hence,

P{N(t) = k|Tk = s} = P{Yk+1 > t − s} = 1 − FYk+1(t − s) = e−α(t−s), (A.7)
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Figure A.2: A graphical depiction of the event {N(t′) = 2|T2 = s}. (a) The case where s > t′.
The probability P{N(t′) = 2|T2 = s} is zero since the time of the second arrival T2 is always
larger than t′. (b) The case where s < t′. The event {N(t′) = 2|T2 = s} is the same as the event
{Y3 > t′ − s|T2 = s}.

where (A.2) is used. Inserting (A.7) and (A.4) into (A.6) yields

P{N(t) = k} =
∫ t

0
e−α(t−s) 1

(k − 1)!α
ksk−1e−αs ds = 1

(k − 1)!α
ke−αt

∫ t

0
sk−1 ds = (αt)k

k! e−αt.

(A.8)

We conclude that N(t) is a Poisson random variable with rate αt. The underlying counting

process is a Poisson process with rate α.

Recall the stick-breaking representation of the static MFM model given in (3.62). It follows

from (3.62a)–(3.62d), that we break off ~K − 1 i.i.d. exponential pieces from a unit-length stick,

i.e., N(t = 1) = ~K −1, while the remaining portion of the original unit-length stick is considered

the ~Kth piece. An example for ~K = 4 pieces is shown in Figure A.3.

According to (A.8), the probability of breaking off ~K − 1 i.i.d. exponential pieces from the

stick up to length t = 1 is given by

P
{
N(t = 1) = ~K − 1

}
= α ~K−1( ~K − 1

)
!
e−α. (A.9)

Therefore, the stick-breaking representation (3.62) induces through (A.9) the translated (cf.



84 Appendix

v1 = Y1 v2 = Y2 v3 = Y3 v4 = 1 − Y1 − Y2 − Y3

t = 0 t = T1

k = 1

t = T2
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t = T3

k = 3

t = 1

Figure A.3: Breaking a unit-length stick into ~K = 4 pieces. From the perspective of the
counting process, we have N(t = 1) = ~K − 1 = 3, since the length of the last piece v4 occurs
outside of the counting process and is deterministically set according to v1, v2 and v3.
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Figure A.4: Illustration of the translated Poisson prior on the number of components induced
by the stick-breaking representation of the static MFM for rate parameters α = 1 in (a) and
α = 4 in (b). The histogram in blue is based on realizations of ~K−1 according to (3.62a)–(3.62b).
The corresponding Poisson pmf (A.10) is shown in red.

Section 3.1) Poisson prior K − 1 ∼ pt(·) = Poisson(·; α) on the number of components K in the

static MFM model given in (3.58). The prior pmf p(K) is obtained by evaluating the translated

prior pmf at K − 1, i.e.,

p(K) = pt(K − 1) = Poisson(K − 1; α). (A.10)

In addition, we provide experimental evidence using Monte Carlo approximation, which is illus-

trated in Figure A.4. The histogram in blue is based on 10000 realizations of ~K − 1 according

to (3.62a)–(3.62b). It can be observed, that the histogram matches the corresponding Poisson

distribution pretty well.

It remains to show that the stick-breaking representation of the static MFM model induces

a symmetric Dirichlet prior with hyperparameter β = 1K on the mixture weights π in the

”original” representation of the static MFM model given in (3.58). Based on [46], we start

by deriving the Dirichlet distribution from scratch. Let xk, for k = 1, . . . , K and K ≥ 2, be
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independent random variables each distributed according to the gamma distribution G(xk; βk, α)

with shape and rate parameters βk and α, respectively. Thus, the joint pdf f(x1, . . . , xK) is given

by

f(x1, . . . , xK) =
KΠ

k=1
f(xk) =

KΠ
k=1

1
Γ(βk)αβkxβk−1

k e−αxk , (A.11)

where we inserted the expression for the gamma distribution for f(xk). We next perform a mul-

tivariate variable transformation and compute the resulting joint pdf f(y1, . . . , yK−1). Therefore,

let

yk = xk

x1 + x2 + · · · + xK
for k = 1, . . . , K − 1, (A.12)

yK = x1 + x2 + · · · + xK . (A.13)

The inverse transformation is given by

xk = ykyK for k = 1, . . . , K − 1, (A.14)

xK = yK

(
1 −

K−1∑
k=1

yk

)
, (A.15)

and for the corresponding Jacobian we obtain

J =

(����
∂x1/∂y1 . . . ∂x1/∂yK

...
. . .

...

∂xK/∂y1 . . . ∂xK/∂yK

)"""" =

(�����������

yK 0 . . . 0 y1

0 yK . . . 0 y2
...

...
. . .

...
...

0 0 . . . yK yK−1

−yK −yK . . . −yK 1 − y1 − · · · − yK−1

)"""""""""""
.

Inserting (A.14) and (A.15) into (A.11) and multiplying with det(J) = yK−1
K , we obtain the joint

pdf f(y1, . . . , yK)

f(y1, . . . , yK) = det(J)
KΠ

k=1

1
Γ(βk)αβkxβk−1

k e−αxk

= yK−1
K

(
K−1Π
k=1

αβk

Γ(βk)(ykyK)βk−1e−αykyK

)

× αβK

Γ(βK)

(
yK

(
1 −

K−1∑
k=1

yk

))βK−1

e−αyK

(
1−

∑K−1
k=1 yk

)

= 1ΠK
k=1 Γ(βk)

(
K−1Π
k=1

yβk−1
k

)(
1 −

K−1∑
k=1

yk

)βK−1

. .. .
C

αbyb−1
K e−αyK , (A.16)

where

b =
K∑

k=1
βk. (A.17)
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Marginalizing out yK from (A.16) yields

f(y1, . . . , yK−1) = C

∫ ∞

0
αbyb−1

K e−αyK dyK = C Γ(b)
∫ ∞

0

1
Γ(b)αbyb−1

K e−αyK. .. .
A(yK ;b,α)

dyK , (A.18)

where we multiplied by Γ(b)/Γ(b) in the second step. We note that A(yK ; b, α) is again a gamma

distribution. Hence,
∫ ∞

0 A(yK ; b, α) dyK = 1 and (A.18) becomes

f(y1, . . . , yK−1) = C Γ(b). (A.19)

Substituting back for b (see (A.17)) and C (see (A.16)) into (A.19), we obtain

f(y1, . . . , yK−1) =
Γ

(∑K
k=1 βk

)
ΠK

k=1 Γ(βk)

(
K−1Π
k=1

yβk−1
k

)(
1 −

K−1∑
k=1

yk

)βK−1

, (A.20)

which is a Dirichlet distribution with parameter vector β = (β1 · · · βK)T ∈ RK , where βk > 0,

yk ≥ 0 and
∑K−1

k=1 yk < 1. Alternatively, the Dirichlet pdf is commonly defined as

D(
y;β

)
=

Γ
(∑K

k=1 βk

)
ΠK

k=1 Γ(βk)

KΠ
k=1

yβk−1
k , (A.21)

where βk > 0, yk ≥ 0 and
∑K

k=1 yk = 1. This implies that yK = 1 − ∑K−1
k=1 yk and therefore,

(A.20) and (A.21) can be used interchangeably. We emphasize that, although each individual

yk, for k = 1, . . . , K −1, clearly depends on yK (cf. (A.12)–(A.13)), the joint pdf f(y1, . . . , yK−1)

given by (A.20) is independent of yK . In other words, a Dirichlet distribution can be constructed

using K − 1 properly normalized random variables y1, . . . , yK−1 such that
∑K−1

k=1 yk < 1 and the

shape parameters β1, . . . , βK of the K underlying independent gamma distributions.

It follows from (3.62b)–(3.62d) that
∑ ~K−1

k=1 ~πk < 1 and ~π~K = 1−∑ ~K−1
k=1 ~πk. Since the exponen-

tial distribution is a special case of the gamma distribution, i.e., E(·; α) = G(·; 1, α), it follows

from (3.62a) and (3.62b) that the construction of the mixture weights ~π is based on i.i.d. gamma

variables vk
i.i.d.∼ G(vk; 1, α), for k = 1, . . . , ~K. Therefore, the joint distribution of the mixture

weights f
(~π1, . . . , ~π~K−1

)
is given by (A.20) with βk = 1 for k = 1, . . . , ~K, yk = ~πk and K = ~K.

We conclude that the stick-breaking representation of the static MFM model (3.62) induces a

symmetric Dirichlet prior with hyperparameter β = 1K on the mixture weights in the ”original”

static MFM model given in (3.58).
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