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Kurzfassung

Autonome, auf maschinellem Lernen basierte KI-Agenten haben begonnen, Teil unseres
Alltags zu werden, von selbstfahrenden Autos bis hin zu Chatbots als persönliche As-
sistenten. Viele dieser Agenten werden mit Hilfe von Reinforcement Learning trainiert,
wobei ein System von Belohnungen oder Bestrafungen eingesetzt wird, um bestimmte Ver-
haltensweisen zu fördern oder zu unterbinden. In jüngster Zeit hat der rasche Fortschritt
in diesen Bereichen Sicherheitsbedenken aufgeworfen, sodass manche Experten sogar
einen vorübergehenden Entwicklungsstopp forderten. Wenn wir KI-Agenten in unsere
Gesellschaft integrieren wollen, sollten wir sicherstellen, dass sie ethischen, rechtlichen
und sozialen Normen unterliegen, ähnlich wie Menschen.

Diese Arbeit befasst sich mit der Frage, wie wir sicherstellen können, dass Agenten, die mit
Reinforcement Learning trainiert wurden, Normen einhalten, ohne an Nutzen zu verlieren.
Unser Ansatz erweitert bestehende Techniken mit Algorithmen für lexikographische
Mehrzielprobleme. Bei diesen sind die Ziele nach Priorität geordnet und werden unter der
Bedingung optimiert, dass vorherige Ziele bereits optimiert wurden. Mit einem externen
Theorembeweiser für deontische Logik - die Logik der Verpflichtungen und Erlaubnisse
- bestrafen wir den Agenten für die Verletzung von Normen. Indem er zunächst diese
normativen Strafen minimiert und dann seine anderen Ziele optimiert, lernt der Agent,
sein Ziel zu erreichen und dabei eine Vielzahl von Normen einzuhalten.

Wir evaluieren diesen Ansatz experimentell, indem wir ihn mit verschiedenen Agenten
testen, die das Arcade-Spiel Pac-Man spielen. In einer vereinfachten Version des Spiels
lernten die Agenten, die Normen nicht zu verletzen und gewannen die meisten ihrer
Testspiele. Sie waren jedoch nicht in der Lage, das gleiche Leistungsniveau in einer
komplexeren Umgebung zu erreichen.
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Abstract

Autonomous AI agents based on machine learning have started to commonly aid us in our
everyday lives, from self-driving cars to personal assistant chatbots. Many of these agents
are trained using reinforcement learning, utilizing a system of rewards or punishments to
encourage or discourage certain behaviors. Recently, the rapid progress in these fields
raised safety concerns, with some experts even calling for a temporary development stop.
If we want to integrate AI agents into our society they should be subjected to ethical,
legal and social norms, just like humans.

This thesis is concerned with the question of how to ensure normative compliance in
reinforcement learning agents while conserving their usefulness. Our approach extends
existing techniques from normative reinforcement learning with algorithms for lexico-
graphic multi-objective problems, where objectives are ordered by priority and optimized
subject to the constraint that prior objectives have already been optimized. Using an
external reasoning module for Deontic logic - the logic of obligations and permissions - we
penalize the agent for violating norms. By first minimizing these normative penalties and
then optimizing its other objectives the agent learns to reach its goal while complying
with a variety of norms.

We evaluate this approach experimentally by testing it with various agents playing the
arcade game Pac-Man. The agents won most of their test games while complying with
the normative system in a simplified version of the game. However, they were unable to
reach the same level of performance in a more complex environment.
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CHAPTER 1
Introduction

1.1 Motivation

“In an age characterized by the relentless march of technological progress, artificial
intelligence (AI) has become an inseparable companion in our daily lives, reshaping
the way we live, work, and interact. From personalized recommendations on streaming
platforms to the predictive text on our smartphones, AI’s influence is ubiquitous, often
operating seamlessly in the background. Take, for instance, the algorithms powering
social media platforms, curating content tailored to individual preferences. While these
advancements offer unprecedented convenience and efficiency, they also raise profound
ethical concerns. The impact of AI extends beyond mere convenience; it can significantly
affect individuals and communities. For example, in the realm of hiring processes,
AI-driven algorithms may inadvertently perpetuate biases present in historical data,
potentially leading to discriminatory outcomes. As we witness AI’s pervasive integration
into daily affairs, the imperative to establish robust AI ethics becomes increasingly
evident.“ This is the response that ChatGPT 3.5 gave to the following prompt: “Write
an introduction where you first describe the impact of artificial intelligence in daily life
and then go on to argue the importance of AI ethics. Give specific examples to illustrate
your point.“

It is clear that large language models (LLMs) like OpenAI’s GPT series are now available
to use for everyone with an internet connection. This creates several ethical, legal and
safety challenges as LLMs can be used to generate a variety of harmful content. In their
GPT-4 technical report [Ope23] OpenAI state that in the early stages of development,
GPT-4 could “generate instances of hate speech, discriminatory language, incitements to
violence, or content that is then used to either spread false narratives or to exploit an
individual.“ Moreover, while some high-level theoretical guidelines for trustworthy AI
already exist (e.g. [int19]), the question of how to enforce these guidelines is unsolved.
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1. Introduction

This explains why establishing techniques for safe and ethical AI agents is currently
widely viewed as one of the world’s most pressing problems.

Rapid progress in the field of machine learning is one of the reasons why AI is nowadays
used for numerous applications. Reinforcement Learning (RL) is a paradigm of machine
learning capable of training autonomous agents to take intelligent actions in a dynamic
environment. Past successes of RL include superhuman performance in games such as
Chess, Go, Shogi [Sil+17] and Dota 2 [Ope+19], as well as potential applications for
autonomous driving [Sal+17]. These state of the art algorithms belong to the area of Deep
Reinforcement Learning because they harness the power of artificial neural networks.

1.2 Problem statement and research questions
Constrained RL is an established research field concerned with developing techniques for
limiting the actions of a RL agent. Much of the literature in constrained RL focuses on
simple safety constraints and neglects scenarios where the constraints conflict with each
other and complying with the safety specification is not possible. The goal of this thesis
is to overcome these challenges with a more general approach: We want to design RL
agents capable of complying with a normative system, regardless if the normative system
contains ethical, legal or social norms.

While normative compliance is the primary goal we must not forget about the original
objective that we wanted the RL agent to attain. After all, an autonomous vehicle that
does not move will surely not violate any norms by colliding with other traffic participants,
but it will also be unable to reach its destination. That leads us to the following research
question: How can we ensure that RL agents fulfill the objective they were
trained for, while also complying with a normative system as much as possible?
Training RL agents for this purpose is a tight balancing act because we need to teach
the agent normative compliance while not completely avoiding situations where norm
violations are possible in order to retain the usefulness of the agent.

Our attempt at answering the above research question utilizes the normative RL technique
of norm-guided RL (NGRL) [Neu22], which relies on automated normative reasoning
with deontic logic, the branch of formal logic concerned with obligation and related
notions. NGRL is able to train certain types of RL agents to comply with certain types
of normative systems. However, it suffers from scaling issues as it is too computationally
expensive for practical application in complex RL environments. Combining NGRL
with deep RL would greatly expand its applicability but currently these two techniques
are incompatible with each other. Thus, a second, more specific research question
of the present thesis is: How can we extend NGRL with deep RL methods?
Our proposed solution uses algorithms for lexicographic multi-objective RL (LMORL)
problems [Ska+22], which are problems involving multiple objectives where the goal is
to optimize for the first objective, and subject to this constraint also optimize for the
second objective, and so on.
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1.3. Outline

1.3 Outline
The main part of the thesis consists of chapters 2, 3, 4 and 5. Chapter 2 gives a brief
introduction to value-based RL, multi-objective RL, normative reasoning and deontic logic.
In chapter 3 we review existing approaches to safe and normative RL and explain the
unique contributions of the present work. Chapter 4 introduces norm-guided lexicographic
multi-objective RL (NGLMORL) and the setting of its experimental evaluation. The
results of the experiments are presented in chapter 5. Finally, chapter 6 concludes with a
summary and points out directions for future research.
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CHAPTER 2
Preliminaries

In this chapter, we will cover the essential foundational knowledge required to grasp the
subsequent content of this thesis. Firstly, an introduction to reinforcement learning is
given, with a special focus on value-based reinforcement learning and multi-objective
reinforcement learning. Secondly, we explore the main types of norms and unique
challenges in normative reasoning. Thirdly, the formal logic of normative reasoning used
for this thesis is defined.

2.1 Reinforcement Learning
The field of machine learning is often divided into three broad categories which mainly
differ in the type of feedback given to the learning algorithm:

• In supervised learning, each training example is manually labelled with the desired
output. By computing an error function from model predictions and the labels, the
algorithm adjusts its parameters so that future predictions match the labels better.

• Unsupervised learning comprises several machine learning techniques that take
unlabelled data as input. A common goal for such algorithms is finding hidden
patterns in the input.

• A reinforcement learning (RL) algorithm teaches agents to achieve a certain goal
by rewarding or punishing them for their interactions with an environment. If the
inner workings of the environment are unknown to the agent, it discovers through
trial and error which actions should be taken in a certain environment state to
maximize its rewards.

Formally, a reinforcement learning environment is described by Markov decision process
(MDP):

5



2. Preliminaries

Figure 2.1: The agent-environment interaction in a Markov decision process ([SB18],
Chapter 3.1). Based on the state St and reward Rt the agent selects an action At, which
induces a state transition in the environment.

Definition 2.1.1 A Markov Decision Process is a 4-tuple

⟨S, A, P, R⟩
where S is a set of states, A is a function A: S → 2Act from states to sets of possible
actions (where Act is the set of actions available to the agent), R : S ×Act → R is a scalar
reward function over states and actions and P : S × Act × S → [0, 1] is a function that
gives the probability P(s, a, s’) of transitioning from state s to state s’ after performing
action a.

A reinforcement learning algorithm seeks to find an optimal policy π∗ : S → Act such
that

vπ∗(s) = max
π∈Π

vπ(s)

where Π is the set of all policies over the MDP and

vπ(s) = E
∞

t=0
γtrt+i | si = s

The function vπ takes as input a state s and outputs the expected discounted cumulative
reward rt = R(st, π(st)) obtained from following the policy π from s. The discount
factor γ ∈ (0, 1) ensures that the infinite sum converges and that immediate rewards are
weighted higher than rewards in the far future.

We also define the action-value function qπ:

qπ(s, a) = E
∞

t=0
γtrt+i | si = s, ai = a

qπ(s, a) gives the expected discounted cumulative reward when following policy π from
state s and taking action a.

6



2.1. Reinforcement Learning

Model-based RL algorithms need access to (or learn) a model of the environment, i.e. a
function that predicts state transitions and rewards. For most applications of RL, a full
description of the underlying MDP is not available, therefore a model has to be learned
from exploration of the environment, which can be challenging. The benefits of this
approach are that once a model is available, the optimal policy can be efficiently computed
through dynamic programming methods like value iteration and policy iteration ([SB18],
Chapter 4). A potential downside is that any bias in the learned model can result in
an agent that performs well with respect to the learned model, but poorly in the real
environment. This thesis will focus purely on model-free methods.

2.1.1 Value-based reinforcement learning
In value-based reinforcement learning, the algorithm finds the optimal policy π∗ by
learning an action-value function Q such that π∗(s) ∈ argmaxa∈AQ(s, a) for all s ∈ S.
This is most often accomplished using temporal difference (TD) learning techniques.
Assuming a model-free setting, the algorithm starts off by picking random actions to
explore the environment, building a sequence of states and actions called trajectories
or episodes. A Monte Carlo method would wait until the end of the episode to update
its policy. In contrast, TD methods “update estimates based in part on other learned
estimates, without waiting for a final outcome (they bootstrap)“ ([SB18], Chapter 6).
This means that TD methods can update the value function whenever a state transition
(s, a, s′) occurs. For example, the TD algorithm Sarsa uses the following rule to update
its Q-function:

Q(s, a) ← Q(s, a) + α[R(s, a) + γQ(s′, a′) − Q(s, a)]

where α is the learning rate, γ is the discount factor, s′ is the state resulting from s when
choosing action a and a′ is the action chosen in state s′.

An alternative to value-based RL are policy-based methods (also called policy gradient
methods), where the policy depends on and is differentiable with respect to some
parameters θ. The parameters can then be updated such that the policy is optimal
according to some objective.

Tabular Q-learning

The Sarsa update rule is called on-policy because it estimates the future return assuming
that the current policy continues to be followed. However, an early breakthrough in
reinforcement learning involved the discovery of an off-policy TD-algorithm known as
Q-learning [Wat89], given by algorithm 2.1. It updates its value estimations based on the
rule

Q(s, a) ← Q(s, a) + α[R(s, a) + γ max
a′∈A(s)

Q(s′, a′) − Q(s, a)] (2.1)

This rule estimates future returns based on the greedy policy despite the fact that the
current policy might not be the greedy policy.

7



2. Preliminaries

Algorithm 2.1: Tabular Q-learning
Input: learning rate α ∈ (0, 1], small ϵ > 0, discount γ ∈ (0, 1)

1 foreach episode do
2 Initialize s
3 while s is not terminal do
4 Choose a from s using policy derived from Q (e.g. ϵ-greedy)
5 Take action a, observe R(s, a) and s′

6 Q(s, a) ← Q(s, a) + α[R(s, a) + γ maxa′∈A(s) Q(s′, a′) − Q(s, a)]
7 s ← s′

8 end
9 end

The action-value function Q learned by algorithm 2.1 has been shown to converge to the
optimal action-value function qπ∗ in the limit under certain conditions. One of these
conditions is that each state-action pair must be visited infinitely often. Therefore we
cannot simply use a greedy policy that selects argmaxa∈AQ(s, a) in all states s, otherwise
we risk getting stuck in a suboptimal policy. A popular solution in value-based RL is
the epsilon-greedy strategy, that in each state selects a random action with probability ϵ
(exploration) and the greedy action with probabilty 1 − ϵ (exploitation).

Deep Q-Networks

Algorithm 2.1 and similar methods are called tabular, because they store Q-values
explicitly in a look-up table, where neighboring entries do not necessarily have to be
correlated. This quickly becomes infeasible in use cases with complex environments that
might be continuous or inhabited by multiple agents. For such applications, function
approximation has become indispensible. Using function approximation, we no longer
update only one Q-value at a time, but updating one Q-value also affects the values at
similar states. This gain in efficiency makes RL in complex environments possible.

One possible approach is linear function approximation, where the Q-function is approxi-
mated as a weighted sum of environment features fi(s, a) : S × Act → R that tell the
agent something useful (e.g. how far away it is from the goal). However, this introduces
the problem of feature engineering: Choosing or learning features that are computable
from state descriptions and helpful for approximating Q-values.

Deep reinforcement learning is another approach that leverages the ability of artificial
neural networks (ANNs) to approximate arbitrary functions. Policy gradient methods use
ANNs to directly approximate the optimal policy, while value-based deep RL algorithms
use them to approximate the Q-function. In the following we will not go into further detail
regarding policy gradient methods. Instead, we will focus on Deep Q-Networks (DQN), a
value-based deep RL algorithm. Deep Q-Networks are trained using algorithm 2.2. Its
basic structure is identical to algorithm 2.1, but we have to make some adjustments to

8



2.1. Reinforcement Learning

Algorithm 2.2: Deep Q-Network
Input: learning rate α ∈ (0, 1], small ϵ > 0, discount γ ∈ (0, 1), target net update

rate τ , buffer size N , batch size n, neural network hyperparameters
1 foreach episode do
2 Initialize s, policy network, target network, replay buffer
3 while s is not terminal do
4 Choose a from s using policy derived from Q (e.g. ϵ-greedy)
5 Take action a, observe R(s, a) and s′

6 d ← 1 if s′ is terminal else 0
7 Add (s, a, R(s, a), s′, d) to replay buffer
8 Sample minibatch of transitions (s⃗, a⃗, r⃗, s⃗′, d⃗) =

((s1, ..., sn)T , (a1, ..., an)T , (R(s1, a1), ..., R(sn, an))T , (s′
1, ..., s′

n)T , (d1, ..., dn)T )
from replay buffer

9 Compute Q(s⃗, a⃗) = (Q(s1, a1), ..., Q(sn, an))T from policy network
10 Compute max

a⃗′∈A(s⃗′) Q(s⃗′, a⃗′) from target network
11 y⃗ ← r⃗ + γ max

a⃗′∈A(s⃗′) Q(s⃗′, a⃗′) · (⃗1 − d⃗)
12 Compute loss(Q(s⃗, a⃗), y⃗)
13 Perform a gradient descent step on the policy network
14 foreach network parameter p do
15 pt ← p in target network
16 pp ← p in policy network
17 pt ← τ · pp + (1 − τ) · pt

18 end
19 s ← s′

20 end
21 end

accommodate the function approximation with ANNs.

The biggest advantage of function approximation is also one of its biggest drawbacks:
When the value at one state is updated, there is a risk of inappropriately updating the
values of other states, for instance the state whose value estimate is used in the target of
the Q-learning update (rule 2.1). This has negligible effects when the values used for
these bootstrapping updates are updated as often as they are used [SMW15]. However, if
the learning algorithm is off-policy, this is not guaranteed, possibly leading to unwanted
feedback loops, convergence to a poor local minimum or even divergence of the parameters
[TV97]. For this reason, the combination of function approximation, bootstrapping and
off-policy training has been dubbed “the deadly triad“ ([SB18], Chapter 11.3). As the
DQN algorithm includes all three components of the deadly triad, it was extended
with techniques to minimize the danger of harmful learning dynamics arising, namely
experience replay and a target network [Mni+15].

9



2. Preliminaries

The experience replay (also called replay buffer) is a data structure Dt = {e1, ..., et}
storing state transitions et = (st, at, R(st, at), st+1) for each time step t. In practice it is
mainly implemented as a fixed-size queue, so once it is full, the oldest entry gets replaced
by a new entry. In the inner loop of algorithm 2.2 a fixed number of experiences (a
minibatch) is sampled from the replay buffer and used for Q-learning updates. This has
several advantages:

• A state transition can be used in multiple updates, increasing data efficiency.

• Learning from state transitions in a randomized order breaks up the strong correla-
tions between consecutive samples, reducing the variance of the updates.

• Local maxima can more easily be avoided because the policy updates are averaged
over many previous states and the current policy does not influence the future
training samples as much.

In addition to the policy network that is used for approximating the Q-function and
selecting actions, we also use a separate target network for generating the targets y⃗ of
the Q-learning update. This target network is an “outdated“ copy of the policy network
designed to add stability to the update targets. Without a target network, an update
to Q(st, at) would immediately also change Q(st+1, a) for all a and therefore the target
which was just used for the update, potentially leading to oscillations and divergence of
the policy. To update the target network it can be set equal to the policy network after
a certain amount of time steps, or target network weights can be slowly moved in the
direction of the policy network weights after every policy update (like in algorithm 2.2).

2.1.2 Multi-Objective Reinforcement Learning
In Multi-Objective Reinforcement Learning (MORL) the goal is to compute an optimal
policy with respect to multiple, possibly competing objectives. This setting is formalised
by a multi-objective MDP (MOMDP):

Definition 2.1.2 A multi-objective Markov Decision Process is a 4-tuple ⟨S, A, P, R⃗⟩
where S, A and P are defined as in regular MDPs and R⃗ = (R1, ..., Rm)T , Ri : S × Act →
R, 1 ≤ i ≤ n is a vector of m reward functions.

Each of the m rewards returned by R⃗ in a MOMDP corresponds to one objective.
Analogously to regular MDPs we can therefore define a vector of action-value functions
q⃗π = (qπ

1 , ..., qπ
m)T in a MOMDP, where each qπ

i (s, a), 1 ≤ i ≤ m gives the expected
discounted cumulative reward from Ri given that the agent takes action a in state s and
then continues with policy π. The update rules

Qi(s, a) ← Qi(s, a) + αi[Ri(s, a) + γi max
a′∈A(s)

Qi(s′, a′) − Qi(s, a)]

can be used to learn the optimal action-value function for each objective.

10



2.2. Normative Reasoning

2.2 Normative Reasoning
Norms are rules describing how agents (human or artificial) should act. Reasoning over
norms sets itself apart from classical logical reasoning by not solely assigning truth values
to atomic propositions, but by also applying deontic modalities like obligation, permission,
and prohibition to them. This introduces complex dynamics that classical logic cannot
adequately encompass, like the inherent violability of norms. In normative reasoning,
norms are often divided into regulative and constitutive norms [BV04].

2.2.1 Regulative norms
Regulative norms are used to describe what ideally should be the case. Formally,

Definition 2.2.1 A regulative norm is of the form ∗(A|B) where ∗ ∈ {O, F, P} is a
deontic modality.

Regarding the deontic modalities, O refers to obligation, F refers to prohibition and
P refers to strong permission. The expression O(A|B) can be read as “A is obligatory
given that B holds true“. Prohibition can be derived as an obligation of a negative
statement, i.e. F(A|B) := O(¬A|B). Strong permission acts as an exception to an
obligation or prohibition of the opposite, whereas weak permission just states the absence
of a prohibition.

For our purposes we will only deal with maintenance obligations [Gov+07], where the
target is obliged whenever the trigger holds. We leave out other notions of obligation
that require the ability to reason with time, which is not available in our formalism.

2.2.2 Constitutive norms
In normative reasoning, constitutive norms elucidate what is actually the case. To be
exact, they associate a more concrete proposition to a more abstract one. This is generally
realized as “counts-as“ rules:

Definition 2.2.2 A constitutive norm is of the form C(A, B|C), with the intended
meaning of “in context C, A counts as B“.

For example, a constitutive norm could be used in a normative system that forbids
speeding to define speeding as “driving more than 10 km/h over the speed limit“.

2.2.3 Normative systems
Normative systems are the formalism we will use to specify the desired behavior for a
RL agent:

11



2. Preliminaries

Definition 2.2.3 A normative system is a triple N = ⟨C, R, >⟩ where C is a set of
constitutive norms, R is a set of regulative norms and > is a priority relation for
resolving conflicting norms.

Norms can conflict directly or indirectly. An example pair of directly conflicting norms
would be O(A|B) and F(A|B) = O(¬A|B). Indirectly conflicting norms take the form
O(A|B) and O(C|D), where B and D can both simultaneously hold in the environment
we are reasoning about, but A and C cannot.

From a state-action pair s̄ = (s, a) in a RL episode and a normative system N a logical
theory Th(s̄, N ) can be constructed for some logic of normative reasoning, e.g. defeasible
deontic logic. This theory contains facts derivable from the state s, the fact that a is the
action chosen in s and the norms from N to facilitate drawing conclusions. We can now
define the violation of a normative system:

Definition 2.2.4 Given a state-action pair s̄ = (s, a) and a normative system N , a
violation of N is a formula φ such that Th(s̄, N ) ⊢L O(φ) ∧ ¬φ, where Th(s̄, N ) is a
logical theory for some logic of normative reasoning L.

We say s̄ is a violating state-action pair for N if |viol(s̄, N )| > 0 where viol(s̄, N ) is the
set of violations of N for s̄.

2.2.4 Contrary-to-duty reasoning
Contrary-to-duty (CTD) obligations come into force when another obligation has been
violated. A well-known example is Forrester’s (or the Gentle Murder) paradox, which
says [For84]:

1. You should not murder.

2. If you murder, you should murder gently.

3. You murder.

Here, the contrary-to-duty (obligation 2) is triggered by the violation of the primary
obligation 1. We distinguish between compensatory CTDs and sub-ideal CTDs. If we
interpret the above CTD scenario as compensatory, we are allowed to murder as much
as we like, as long as we do it gently, because the compliance with the CTD obligation
completely compensates for the violation of the primary obligation. However, in a
sub-ideal CTD scenario murdering gently would still be condemned, but even more so if
the CTD obligation was also violated.

Dealing with CTDs is a particularly characteristic challenge of normative reasoning. It is
important that autonomous agents treat CTDs as sub-ideal, because otherwise the agent
might violate norms more than necessary to maximise its other goals.
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Norm DDL rule
C(x, y|z) z, x →C y
F(x|y) y ⇒O ¬x
P(x|z) z ⇝O x

Table 2.1: Three example norms and their equivalent rules in DDL. The defeater acts as
a strong permission in context z, since it provides evidence for x, thereby preventing the
conclusion of ¬x from a defeasible rule and disabling any defeasible prohibitions of x.

2.3 Defeasible Deontic Logic
Deontic Logic is a branch of logic concerned with formalising normative reasoning and
related notions. In this work, we will make use of a special kind of deontic logic, defeasible
deontic logic (DDL) [Gov18]. It is defined formally in the following.

Definition 2.3.1 Let AP be a set of propositional atoms. The base language of defeasible
deontic logic (DDL) is a set of literals L = Lit ∪ ModLit partitioned into plain literals
Lit = AP ∪ {¬p | p ∈ AP} and deontic literals ModLit, obtained by placing a plain literal
in the scope of a deontic operator or a negated deontic operator from the set of deontic
operators Mod = {O}.

To model statements of normative reasoning, DDL uses the concept of rules:

Definition 2.3.2 DDL rules take the form:

r : A(r) →∗ C(r)

where r is the rule label, A(r) = {a1, . . . , an} ⊆ 2L is the antecedent, C(r) is the
consequent, ∗ ∈ Mod for regulative rules, ∗ = C for constitutive rules and →∗∈ {→∗, ⇒∗
,⇝∗} (strict rules, defeasible rules and defeaters). For constitutive rules, the consequent
C(r) consists of plain literals l ∈ Lit. For regulative rules, C(r) ⊆ ModLit.

For strict rules, the consequent is invariably directly derived from the antecedent. With
defeasible rules on the other hand, the consequent usually follows from the antecedent,
unless there is evidence suggesting otherwise. This evidence may take the form of
conflicting rules or defeaters, which do not serve to derive conclusions but rather act
as barriers preventing a defeasible rule from arriving at a conclusion. Some example
formalisations of norms in DDL are shown in table 2.1.

Analogously to the logical theories of normative reasoning Th(s̄, N ) from last section we
define defeasible theories for DDL:

Definition 2.3.3 A defeasible theory is a tuple ⟨F, N , >⟩, where F is a set of facts
represented as plain literals, N = ⟨RO, RC⟩ is a normative system expressed in DDL,
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RO is a set of regulative rules, RC is a set of constitutive rules and > is a superiority
relation over conflicting rules.

Conclusions from defeasible theories are given by the literals contained in them annotated
with proof tags:

• A definitely provable literal is tagged with +∆∗ and either a fact, or derived only
from strict rules and facts.

• A definitely refutable literal is tagged with −∆∗ and neither a fact nor derived
from only strict rules and facts.

• A defeasibly provable literal is tagged with +∂∗, not refuted by any facts or
conflicting rules and is implied by some undefeated rule.

• A defeasibly refutable literal tagged with −∂∗ is one where its complemented literal
is defeasibly provable or an exhaustive search for a constructive proof for the literal
fails.

For factual conclusions, ∗ := C and ∗ := O for deontic conclusions. In practise, we will
compute a set of conclusions from a defeasible theory using a theorem prover for DDL,
SPINdle [LG09].
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CHAPTER 3
State of the art

This chapter gives a brief overview regarding related work in constrained reinforcement
learning. One the one hand, this will help in gaining a picture of the current state of the
art in this field. On the other hand the main contributions of this thesis heavily build on
past work introduced in this chapter, thus its contents are vital for understanding the
following chapters.

3.1 Safe Reinforcement Learning
The field of Safe RL is concerned with learning policies that obey safety constraints
stating that certain undesirable states never occur. This problem can be seen as a special
case of learning norm-compliant policies, as it is certainly possible to specify safety
properties in a normative system, but it is unclear if the opposite holds true. It has been
argued (e.g. in [WR19]) that developing norm-compliant agents is unnecessary and safe
agents are sufficient. However, there are clear advantages to be gained from being able
to develop autonomous agents that obey general normative systems. On the one hand,
exhaustively specifying the relevant safety constraints in a complex environment will be
a cumbersome and error-prone, if not outright impossible task. Having access to the
expressive capabilities of normative systems including constitutive norms will reduce the
risk of a crucial constraint missing from the safety specification. On the other hand, in
complex environments it will be inevitable that the agent finds itself in an unforeseen
state where no normative compliance is possible (normative deadlock). In the following
we briefly introduce current safe RL frameworks based on Linear Temporal Logic (LTL)
specifications and show that they lack the ability to enforce sub-ideal CTD norms in
such situations.

[HAK20] converts a LTL formula expressing the safety properties into an automaton.
The automaton is then used to modify the reward function of the MDP in which the RL
agent is trained, such that the obtained policy maximizes the probability of obeying the
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safety properties. Shielding [Als+18] [Jan+19] is another approach, which synthesizes a
shield using a value function that gives the probability of the agent violating the safety
specification for each state. This shield is able to provide safe actions to the agent or
prevent it from taking unsafe actions.
These techniques of safe reinforcement learning are well established and efficient, but
limited by what can be expressed in LTL. In [NBC22], the authors argue that LTL
is not suited to express all the intricacies of normative reasoning. They prove that
the construction of a LTL operator that directly represents the proposition O(A|B) is
impossible. Furthermore, they demonstrate the limits of compliance specifications for
normative systems, which are LTL formulas that evaluate to True on a sequence of RL
states if and only if no norms in the normative systems are violated. These compliance
specifications suffer from inaccuracies introduced by the necessity of identifying actions
in LTL with the state transitions they induce. The LTL compliance specification cannot
distinguish between two actions that share a state transition, even if one is prohibited
and the other is permitted. Moreover, compliance specifications can only produce policies
that fully comply with a normative system or interpret CTDs as compensatory. As
explained in section 2.2.4, interpreting CTDs as compensatory is troublesome, as the
agent might exploit this and violate more norms than necessary. Full compliance with the
normative system can also be undesirable since it might render the agent unable to act
when confronted with normative deadlock. We might also want the agent to intentionally
violate norms in order to avoid further violations in the future.

3.2 The Normative Supervisor
The normative supervisor, as introduced in [Neu+21], is an external reasoning module
designed to interact with a reinforcement learning agent. It primarily consists of a
normative system, front- and back-end translators and a theorem prover for a logic of
normative reasoning. For our purposes, the theorem prover and its associated logic
are SPINdle and DDL, respectively. The front-end translator constantly processes new
state-action pairs from the RL episode, converting them into a set of facts about the agent
or the environment. These facts are combined with the output of the back-end translator
- a set of DDL rules representing the normative system - and a set of non-concurrence
rules into a defeasible theory. The non-concurrence rules are of the form

a∈A(s)
{C(a, ¬a′ | ⊤) | a′ ∈ A(s) \ {a}}

and express that only one action can be taken per time step. The conclusions drawn
from a defeasible theory that was generated like this can be used in multiple ways.
The original application of the normative supervisor in [Neu+21] was online compliance
checking (OCC) (see figure 3.1). Here the defeasible theory conclusions are converted
into a set of actions that violate the fewest number of norms possible and can be returned
to the agent, effectively filtering out non-compliant actions from the agent’s repertoire.
Another use case of the normative supervisor will be detailed in the following section.
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Figure 3.1: The process of online compliance checking [Neu23].

3.3 Norm-Guided Reinforcement Learning
Previous approaches to the problem of designing an ethical RL agent (e.g. [RLR21])
focused on rewarding or punishing the agent based on its actions, although they often
lacked clear reasoning on when to give rewards and the magnitude of those rewards.
Emery A. Neufeld addressed these challenges with the novel technique of Norm-Guided
Reinforcement Learning (NGRL) [Neu22], using the normative supervisor and MORL to
learn norm-compliant policies. In addition to the reward function Rx(s, a) corresponding
to an objective x of the agent, NGRL defines a second reward function called non-
compliance function that punishes agents for violating a normative system N :

Definition 3.3.1 A non-compliance function for the normative system N is a function
of the form:

RN ,p(s, a) = p if Th(s, N ) ⊢ +∂O¬a

0 otherwise

where the penalty p ∈ R− and Th(s, N ) is a defeasible theory built from N and a state s
from a MDP.

In other words, RN ,p(s, a) returns a fixed punishment if and only if action a violates N
in state s.

NGRL seeks to learn an optimal-ethical policy over the MOMDP MN ,p = ⟨S, A, (Rx, RN ,p)T , P ⟩,
where the term optimal-ethical is adapted from [RLR21] as:

Definition 3.3.2 Let Π be the set of all policies over MN ,p. Then a policy π∗ ∈ Π is
ethical for MN ,p if and only if

vπ∗
N ,p(s) = max

π∈Π
vπ

N ,p(s)
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for all states s. Furthermore, let ΠN be the set of all ethical policies over MN ,p. Then
π∗ ∈ ΠN is ethical-optimal for MN ,p if and only if

vπ∗
x (s) = max

π∈ΠN
vπ

x (s)

for all states s.

Neufeld goes on to prove that NGRL learns ethical policies over MN ,q for any q ∈ R−,
thus rendering the exact magnitude of the penalty in the non-compliance function
irrelevant. In his experiments regarding the effectiveness of NGRL Neufeld employs two
different MORL techniques for learning optimal solutions over MOMDPs that will be
reiterated in the following.

Linear Scalarization

With this approach, the goal is to maximize the inner product vscalar(s) = w⃗ · v⃗(s)
where v⃗(s) = (vx(s), vN ,p(s))T is a vector of value functions associated with the reward
functions Rx and RN ,p and w⃗ ∈ R+

2 is a weight vector. This is done by learning
Q⃗(s, a) = (Qx(s, a), QN ,p(s, a))T and selecting actions using Qscalar(s, a) = w⃗ · Q⃗(s, a).

Thresholded Lexicographic Q-Learning

Thresholded Lexicographic Q-Learning (TLQL) is a technique particularly suitable for
MORL problems where a single objective must be maximized whereas the other objectives
only need to meet a certain threshold. Over MN ,p we want to maximize the reward from
Rx but prioritize the reward from RN ,p. TLQ-Learning considers CQ-values instead of
Q-values for action selection defined as:

CQi(s, a) = min(Qi(s, a), Ci)

However, QN ,p(s, a) ≤ 0 since RN ,p(s, a) ≤ 0 for all state-action pairs. Therefore if
we set the thresholds Cx = +∞ and CN ,p = 0 then CQi(s, a) = Qi(s, a). If we then
select actions lexicographically by only considering actions maximal for QN ,p and of
those actions taking one with maximal Qx value we can learn an ethical-optimal policy
according to definition 3.3.2.

Neufeld tested NGRL in the environments described in section 4.2 using both tabular
Q-learning and Q-learning with linear function approximation. He noted that the TLQL
approach was incompatible with function approximation: Since the ethical objective is
strictly prioritized the agent stayed still in its initial position as taking any other action
carried a risk of violating the normative system.

3.3.1 NGRL with Violation Counting
NGRL with the non-compliance function from definition 3.3.1 fails to learn policies that
respect sub-ideal CTD obligations. The reason is simple: The agent is assigned a fixed
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penalty when it violates an obligation, no matter how many obligations are violated and
how important the obligation is. As a remedy, Neufeld introduced NGRL with violation
counting in his dissertation ([Neu23], Chapter 6.3). This variant of NGRL extends our
MOMDP with an objective to minimize a violation counting function defined as:

Definition 3.3.3 A violation counting function for a normative system N is a function
of the form

V CN (s, a) = |viol(s̄, N )|

Given a state-action pair s̄ = (s, a) this function returns the number of violations of N
associated with s̄ according to definition 2.2.4.

NGRL with violation counting now selects actions based on the following extended TLQ
procedure:

1. From the set of available actions in state s, select the ones with the highest
CQN ,p-values and add them to a set norm(s).

2. From the actions in norm(s) select the ones with the lowest V CN -values for state
s and add them to a set viol(s).

3. From the actions in viol(s) select one with the highest CQx-value.

The objective associated with RN ,p is prioritized over minimization of the violation
counting function to preserve the ability of the agent to violate more norms than
currently necessary in order to minimize violations in the long term.

The above procedure is able to produce policies that account for sub-ideal CTD obligations.
However, as it relies on the TLQL technique, it too is incompatible with function
approximation.

3.4 Lexicographic Multi-Objective Reinforcement
Learning

In [Ska+22], the authors introduce algorithm schemes for solving lexicographic multi-
objective reinforcement learning (LMORL) problems, where the m reward signals of a
MOMDP are ordered with respect to some priority. The goal is to learn a policy that
maximizes the later reward signals subject to the constraint that the earlier reward
signals have already been maximized. Both value- and policy-based algorithms schemes
are presented and proved to converge to lexicographically optimal policies in the limit.

For the value-based lexicographic algorithms the authors devise a lexicographic version
of the ϵ-greedy algorithm for action selection (see algorithm 3.1). This algorithm takes a
state s together with a sequence Q1, ..., Qm of m state-action functions. With ϵ decaying
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Algorithm 3.1: Lexicographic ϵ-greedy
Input: Q1, ..., Qm, state s, small ϵ > 0, tolerance τ

1 return an action available in s uniformly at random with probability ϵ
2 else
3 ∆ ← A(s)
4 foreach i ∈ {1, ..., m} do
5 x ← maxa′∈∆ Qi(s, a′)
6 ∆ ← {a ∈ ∆ | Qi(s, a) ≥ x − τ}
7 end
8 return an action from ∆ uniformly at random
9 end

over time the algorithm will in the limit select an action a such that a maximises Q1
(with tolerance τ), and among all such actions, a also maximises Q2 (with tolerance τ),
and so on. The tolerance parameter τ ∈ R>0 enables the agent to choose an action with
a suboptimal Qi-value as long as this value is close to the current maximum value. This
grants the agent higher flexibility and ensures that later objectives are not completely
disregarded in favor of prior objectives. τ can be a constant or a proportion, in which
case τ is of the form σ · maxa′∈∆ Qi(s, a′) with σ ∈ (0, 1).

Algorithm 3.2: Value-Based Lexicographic RL
Input: learning rate α ∈ (0, 1], small ϵ > 0, discount γ ∈ (0, 1)

1 foreach episode do
2 Initialize s
3 while s is not terminal do
4 Choose a from s using lexicographic ϵ-greedy
5 Take action a, observe Ri(s, a) and s′

6 foreach i ∈ {1, ..., m} do
7 update Qi

8 end
9 s ← s′

10 end
11 end

Algorithm 3.2 is the main algorithm for learning Q1, ..., Qm. The update rule on line 7
can be varied, but we will use the lexicographic Q-Learning update rule:

Qi(s, a) ← (1 − α) · Qi(s, a) + α · (Ri(s, a) + γ max
a′∈∆τ

s,i

Qi(s′, a′))

where ∆τ
s,0 = A(s) and ∆τ

s,i+1 := {a ∈ ∆τ
s,i | Qi(s, a) ≥ maxa′∈∆τ

s,i
Qi(s, a′) − τ}.
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The main difference to the regular Q-learning update (rule 2.1) is that the max-operator
ranges only over actions that approximately lexicographically maximise all higher pri-
ority rewards. The Q-functions in this update rule can be represented by a table or
approximated.

Skalse et al. also implement and experimentally evaluate some instantiations of their
lexicographic algorithm schemes, demonstrating that the paradigm can be used to learn
optimal policies under safety constraints.
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CHAPTER 4
Methodology

In this chapter we suggest a new method of training norm-compliant agents that avoids the
drawbacks of the approaches discussed before. Moreover, the setting for our experimental
evaluation is detailed, the results of which are presented in the next chapter.

4.1 Norm-Guided Lexicographic Multi-Objective
Reinforcement Learning

The previous chapter elucidated how regular NGRL falls short regarding sub-ideal
CTD reasoning and that NGRL with violation counting is incompatible with function
approximation. In this section we attempt to remedy these shortcomings by combining
NGRL with LMORL, creating an algorithm able to use function approximation and learn
norm-compliant policies that can deal with sub-ideal CTDs. To this end, we define a
normative reward function of the form:

RN (s, a) = −|viol(s̄, N )|

where s̄ = (s, a) and N is a normative system. Norm-Guided Lexicographic Multi-
Objective RL (NGLMORL) now uses an algorithm for LMORL to learn a lexicographically
optimal policy over the MOMDP MN = ⟨S, A, (RN , Rx)T , P ⟩. Such a policy will seek to
minimize the expected discounted cumulative penalties from RN first, choosing actions
that lead to the fewest number of violations in the long run. As a secondary priority,
the algorithm maximizes the rewards from Rx. Using the tolerance parameter τ we can
control how much leeway we want to give to the agent in action selection, letting it
prioritize Rx in exceptional cases. For the experiments the reward RN will be provided
by the normative supervisor.
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Figure 4.1: The miniature Pac-Man environment.

4.2 Case Studies

4.2.1 Environments

In accordance with previous studies on ethical/normative RL (e.g. [Noo+19], [Neu22]) we
evaluate NGLMORL by employing it for the Atari video game Pac-Man. The environment
of the Pac-Man agent is a maze-like gridworld, populated by “food pellets“, “power
pellets“ and “ghosts“. The goal of the agent is to win the game by eating all of the food
pellets. Pac-Man is rewarded for increasing its game score, which can be done by eating
a food pellet (10 points), winning (500 points) or eating a ghost (200 points). Ghosts can
only be eaten when they are in a special “scared“ state. Pac-Man can make all ghosts
scared for 40 time steps when he eats a power pellet. If Pac-Man collides with a ghost
that is not scared he loses the game and receives a penalty of -500 points. Additionally,
there is a time penalty of -1 at every time step to encourage Pac-Man to finish the game
quickly. At each time step, Pac-Man can choose to move north, south, east or west or to
not move at all. Ghosts are unable to stop and continue in the same direction until they
reach a dead end or an intersection. At dead ends they turn around and at intersections
they can randomly choose to turn 90 degrees.

We use several different maze layouts according to the objective of the experiment. For
most investigations, the miniature Pac-Man environment from [Neu22] will be used
(see figure 4.1). This is a simplified version of the Pac-Man game on a 7 × 5 grid that
significantly speeds up the training time. A single blue ghost and a power pellet are
located in opposite corners. A total of 11 food pellets are contained in the maze, therefore
the maximum attainable score without eating the ghost is 599.

The regular Pac-Man environment from [Noo+19], [Neu+21] and [NBC22] is a 20 × 11
grid containing 97 food pellets, a blue ghost, an orange ghost and 2 power pellets. The
maximum attainable score in this environment is 2170 or 1370 when Pac-Man eats no
ghosts.

We additionally use a 7 × 3 Pac-Man environment containing two ghosts, two power
pellets and no food pellets to test the behaviour of the agent when it encounters normative
deadlock. Winning the game is not possible in this environment. Instead, we monitor
whether the agent chooses to eat any ghosts and if so, which of the two. We will refer to
this environment as the unfair Pac-Man environment.
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Figure 4.2: The regular Pac-Man environment.

Figure 4.3: A Pac-Man environment with normative deadlock.

4.2.2 Normative systems
In order to evaluate the normative compliance of NGLMORL agents we need suitable
normative systems to which the agents should adhere. We employ here two normative
systems from[Neu23] that regulate the ability of Pac-Man to eat ghosts. In the following
the emphasis will be on the regulative norms from these systems, but they also contain
constitutive norms to define important concepts for the regulative norms, such as being
next to another environment object or eating a ghost.

Benevolent Pac-Man

This normative system contains a single regulative norm O(benevolent | ⊤) obliging
Pac-Man to be benevolent. A defeasible rule ensures that any action counts as benevolent
unless there is evidence to the contrary. Through a constitutive norm hierarchy of the
form C(eatperson, ¬benevolent | ⊤), C(eatghost, eatperson | ⊤) we define non-benevolence
as “eating a person“ and “eating a person“ as eating a ghost.

Unfair benevolent Pac-Man

This is the normative system that will be used in tandem with the unfair Pac-Man
environment. It is identical to the “benevolent Pac-Man“ normative system except
that we add an additional CTD obligation O(eatorangeGhost | ¬benevolent) specifying
that eating an orange ghost is preferable to eating a blue ghost in case Pac-Man is not
benevolent.
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4.3 Experiments and Evaluation Criteria
This section documents the experiments used to evaluate NGLMORL agents. We will
assess the agents based on the following criteria:

1. Normative compliance: To which degree is the agent able to comply with a normative
system?

2. Game performance: Is the agent able to achieve above-average game scores and
how often will it win the game?

3. Computational efficiency: How long does it take to train the agent?

For the miniature Pac-Man environment a tabular Q-learning NGLMORL agent (LTQ), a
deep Q-network NGLMORL agent (LDQN), a regular tabular Q-learning agent (TQ) and
a regular DQN were trained. The lexicographic agents were trained to obey the benevolent
Pac-Man normative system, while the non-lexicographic agents were trained purely for
winning the game, providing a suitable baseline for the evaluation. Implementation
details such as hyperparameters and neural network architecture are documented in
appendix A. Each of these agents were trained for 19000 episodes and tested over 1000.
Furthermore, five copies of each agent were trained to obtain more robust and accurate
results.

To judge the scaling of NGLMORL agents in larger environments, a LDQN agent was
trained for 9000 episodes and evaluated over 1000 in the regular Pac-Man environment
with the benevolent normative system. As a point of comparison a DQN agent was
trained in the same manner for this environment. We refrain from training tabular agents
in this environment as they are not suitable for environments of this size.

Finally, we trained a LTQ agent for 9000 episodes in the unfair Pac-Man environment
with the unfair benevolent Pac-Man normative system to test the behaviour of the agent
in a normative deadlock CTD scenario.

Tests were executed with a Intel i7-7700K CPU (4 cores, 4.20 GHz), a NVIDIA GeForce
GTX 1080 GPU and 32 GB RAM on a Windows 10 PC. The code for reproducing the
experiments is located at https://github.com/bschiehl/NGLMORL.
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CHAPTER 5
Experimental Results

In this chapter we will present and discuss the results of the experimental evaluation of
NGLMORL agents, according to the evaluation criteria laid down in section 4.3.

5.1 Miniature Pac-Man Experiments
In the following the results of the experiments in the miniature Pac-Man environment
will be presented separately for each agent. See table 5.1 for a summary of the results.

Agent Avg win rate (%) Avg score Avg ghosts eaten Avg evaluation time (s)
TQ 81.84 525.70 586.2 214.05

DQN 94.50 734.62 993.2 2391.60
LTQ 95.46 556.00 37.4 971.02

LDQN 94.98 545.49 1.2 28071.00

Table 5.1: Summary of the experimental results in the miniature Pac-Man environment.

5.1.1 Tabular Q-Learning
On average, the tabular Q-learning agent won 81.84% of its games in the miniature
Pac-Man environment. As can be seen in table 5.2, the minimum win rate from all
5 tabular Q-learning agents is 68%, the maximum win rate is 90% and the standard
deviation is 7.75%. The average game score achieved by the tabular Q-learning agent is
525.70, the minimum is 436.29, the maximum is 593.82 and the standard deviation is
54.43. However, the agent with the highest win rate did not have the highest game score.
This is because the highest win rate agent (agent 4) only ate 380 ghosts, while the agent
with the highest game score (agent 1) had a comparable win rate (85%) but learned to
eat a lot more ghosts (771).
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Figure 5.1: Average game score of highest scoring agents in steps of 200 episodes during
training in the miniature Pac-Man environment versus the number of training episodes.

Remember that the goal for regular RL agents in the Pac-Man environment is to maximize
the game score, therefore the optimal policy should be able to both win most games and
also eat a lot of ghosts. Despite the small environment, this seems to be a challenging
task for the tabular agent, as evidenced by the fact that agent 3 had the lowest win rate
and game score but also ate the most ghosts (846). The average amount of ghosts eaten
by all tabular Q-learning agents is 586.2, the minimum is 290 and the standard deviation
is 216.90, so this varied quite a lot between the agents. Some agents focused on ghosts to
increase their score, others focused on winning the game but few managed to achieve
both consistently.

Figure 5.1 shows that even agent 1 is very unstable during training as the average game
score quickly oscillates by hundreds of points multiple times.

In the experiments from [Neu22], the tabular Q-learning agent was trained for 9000
games and achieved a win rate of 68.5%, an average game score of 441.71 and ate 851
ghosts. These numbers are very comparable to agent 3 but can be improved by additional

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Avg game score 593.82 519.90 436.29 568.98 509.28
Win rate (%) 84.9 87.0 68.0 90.0 79.3
Ghosts eaten 771 290 846 380 644

Table 5.2: Average game scores, win rates and number of ghosts eaten of the five tabular
Q-learning agents in the miniature Pac-Man environment.
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Figure 5.2: Value of the highest scoring DQN agent loss function versus number of
training episodes.

training as is apparent from the other agents. Nevertheless, we note that none of the
tabular agents was able to learn a policy that is close to optimality.

5.1.2 Deep Q-Network

The results for the DQN agent in the miniature Pac-Man environment are shown in table
5.3. Its minimum and maximum average scores are 684.29 and 787.05, respectively. On
average, the achieved game score is 734.62, with a standard deviation of 38.59. The DQN
agent won 94.5% of its test games on average, with a standard deviation of 3.5%. DQN
agent 4 had the lowest win rate (89.6%), while DQN agent 1 had the highest (99.3%).
The agent learned to almost always eat the ghost for extra points, with agents 1,2 and 3
eating the ghost in every single test game. Agents 4 and 5 ate the ghost in 983/1000 test
games. Most importantly, the DQN agent improved on the tabular agents by learning to
eat the ghost while still winning the game.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Avg game score 787.05 760.01 744.73 684.29 697.00
Win rate (%) 99.3 96.9 95.3 89.6 91.4
Ghosts eaten 1000 1000 1000 983 983

Table 5.3: Average game scores, win rates and number of ghosts eaten of the five DQN
agents in the miniature Pac-Man environment.
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Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Avg game score 567.43 545.13 563.90 582.64 521.03
Win rate (%) 96.8 94.3 96.4 98.5 91.3
Ghosts eaten 17 52 30 8 80

Table 5.4: Avg game scores, win rates and number of ghosts eaten of the five lexicographic
tabular Q-learning agents in the miniature Pac-Man environment.

Figure 5.2 shows a lineplot of DQN agent 1’s loss function value during training. We can
see it decreasing almost monotonically, with only a slight upwards trend around 5000
training episodes. After about 7500 training games it reaches a plateau, not significantly
decreasing further. A similar observation can be made in figure 5.1. Here we see that the
average game score of the DQN agent reaches its highest point after about 7500 training
episodes and then oscillates around the same values. We can conclude that at the 7500
episode mark this agent already found a nearly optimal policy. However, other agents
like DQN 4 might need the full 19000 training episodes or even more to get to this point.

From figure 5.1 we see that the DQN consistently scores higher than the tabular Q-
learning agent during training - a fact that is reflected in the test results as well - and that
the DQN’s game scores do not oscillate as heavily. The advantage of tabular Q-learning
lies in its computational efficiency, as training the DQN for 19000 training episodes took
about 11 times longer than training the simple tabular agent.

5.1.3 Lexicographic Tabular Q-Learning
Table 5.4 contains the results of the experiments involving the lexicographic tabular
Q-learning (LTQ) agents. On average, the LTQ agents achieved a game score of 556.00
with a standard deviation of 21.18. The average win rate of the LTQ agent is 95.46%
with a standard deviation of 2.5%. In the 1000 test games the LTQ agent ate 37.4 ghosts
on average (25.9 standard deviation). Agent 4 achieved the highest average game score
(582.64), highest win rate (98.5%) and fewest ghosts eaten (8) while agent 5 achieved the
lowest average game score (521.03), lowest win rate (91.3%) and most ghosts eaten (80).

Since the regular tabular Q-learning agents only have the goal of maximizing game score
we might have expected them to achieve a higher win rate than the LTQ agents, but
actually the opposite is the case. The normative penalty for eating ghosts made the
LTQ agent try to avoid ghosts altogether, making it more likely to win the game. This
increased win rate is also the reason why the LTQ agent achieved a higher average game
score than the regular Q-learning agents, despite eating way fewer ghosts. Although the
amount of ghosts eaten is significantly reduced, the LTQ agent still violated norms in up
to 8% of its test games, which might be unacceptable for some applications.

Interestingly, for the LTQ agent the average game score and the amount of ghosts eaten
are negatively correlated with a Pearson correlation coefficient of -0.4. When the agent
ate a ghost, it only achieved a mean score of 151.26. Otherwise, it reached a mean score
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5.1. Miniature Pac-Man Experiments

Figure 5.3: Number of norm violations returned by the normative supervisor in steps of
100 during training of the highest scoring lexicographic agents versus number of training
episodes.

of 571.75. This result is counter-intuitive because the game rewards a bonus of +200
points for eating a ghost, but it can be explained by the fact that the agent tends to lose
the game shortly after violating the norm. In fact, the LTQ agent only won 38% of the
games in which it ate a ghost. The reason could be that the agent found itself in an
unexpected situation which it did not sufficiently encounter in its training games and
therefore chose suboptimal actions.

Figure 5.3 shows the number of normative violations incurred during the training of LTQ
agent 4 versus the number of training episodes. The number starts out low and decreases
only slightly over the course of training. The agent quickly learns that eating ghosts
leads to penalties, so it never tries to increase its game score by eating more ghosts. In
figure 5.1 we can see that the average game score of the LTQ agent still increases with
more training games, therefore the agent is learning to win the game without eating more
ghosts. The average game score during training of the LTQ agent does not oscillate quite
as much as that of the tabular Q-learning agent, but we still observe some instabilities
resulting from the tabular Q-function representation.

Training and testing the LTQ agent took about 4.5 times longer than the evaluation of
the tabular Q-learning agent. This is mainly because of the costly calls to the normative
supervisor to get the normative penalty after every action of the agent.
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Figure 5.4: Value of the highest scoring LDQN agent loss function versus number of
training episodes.

5.1.4 Lexicographic Deep Q-Network

In table 5.5 the experimental results for the five LDQN agents are displayed. The clear
standout is agent 1, which won all of the test games, achieved an average game score of
597.05 and did not eat a single ghost. Agent 2 performed considerably worse, as it only
achieved an average game score of 467.27 and won 87.4% of its games, but it was still
perfectly compliant with the normative system. The overall average game score of the
LDQN agent is 545.49 and the mean win rate is 95%, with standard deviations of 49.78
and 4.8%, respectively. The only agent that violated the normative system is agent 5, as
it ate 6 ghosts. In terms of the non-normative objective it also performed below average,
being second-to-last regarding average game score and win rate.

Clearly, the LDQN is able to outperform the LTQ agent in learning a lexicographically
optimal policy. The average game score of agent 1 is only 2 points below the maximum
possible score without eating ghosts. However, the game performance of the LDQN
agent is a bit more inconsistent. Still, when it comes to normative compliance the LDQN
agent is unmatched. Over the course of 5 test executions the LDQN agent only ate 6
ghosts, while the LTQ ate 187. We can conclude that the LDQN was able to learn a
norm-compliant policy without sacrificing much of the excellent game performance of the
regular DQN agent.

Figure 5.4 shows the value of the loss function of agent 1 during training. Similar to
figure 5.2 the curve decreases monotonically except for a local maximum at about 4000
training episodes. At around 6000 training episodes the curve reaches an approximate
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Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Avg game score 597.05 467.27 574.12 581.84 507.14
Win rate (%) 100.0 87.4 97.7 98.5 91.3
Ghosts eaten 0 0 0 0 6

Table 5.5: Average game scores, win rates and number of ghosts eaten of the five
lexicographic DQN agents in the miniature Pac-Man environment.

equilibrium. This once again coincides with the highest point of the LDQN agent’s
training score in figure 5.1, after which the score does not significantly decrease anymore.

The plot of the number of norm violations by LDQN agent 1 over the course of training
in figure 5.3 is very distinct from what we observed with the LTQ agent. The value starts
out on a comparable level to that of the LTQ agent but then quickly rises, peaking at
about 2000 training episodes. The curve then falls steeply before reaching the level of the
LTQ agent again at around 3750 training episodes. After roughly 5000 training episodes
the agent has learned to avoid violating norms and it violates even fewer norms than the
LTQ agent. The sharp increase in violations at the beginning of training is likely related
to the concrete implementation of the agent, especially the dynamic tolerance parameter
(details can be found in appendix A).

Computationally, training the LDQN agent is very expensive, because it involves both
training a neural network and numerous calls to the normative supervisor. This is why
evaluating the LDQN agent took about 12 times longer than evaluating the DQN agent
and 132 times longer than evaluating the tabular Q-learning agent.

5.1.5 Discussion and Comparison to NGRL

This section will briefly review and discuss the results of the lexicographic agents in the
miniature Pac-Man environment. Moreover, we will compare the different agents to the
state of the art in normative RL: Norm-guided RL agents. An overview is given by table
5.6. Since the agents from [Neu22] were only trained for 9000 episodes we show the test
results of the lexicographic agents after the same amount of training games to enable a

Agent Win rate (%) Avg score Ghosts eaten
NGRL 82.00 433.74 142

TQ (OCC) 46.60 25.22 0
NGRL (OCC) 86.30 448.23 1

LTQ 82.9 441.147 118
LDQN 98.7 583.54 0

Table 5.6: Summary of the experimental results involving lexicographic and NGRL agents
after training for 9000 games in the miniature Pac-Man environment. The first three
rows are taken from [Neu22].
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fair comparison. We use the evaluation criteria from section 4.3 as a framework for our
comparison:

• Normative compliance: The clear winner in terms of normative compliance is the
LDQN agent. Without online compliance checking (OCC) the NGRL agents ate
142 ghosts in 1000 test games [Neu22]. With OCC, this number was reduced to 1
for NGRL agents1 and 0 for tabular Q-learning. The LTQ agent ate 118 ghosts
in its test games. While this is a slight improvement over NGRL without OCC,
we may want to completely eliminate norm violating behavior if possible. The
LDQN agent was able to accomplish this without the help of OCC. For especially
safety-critical applications, we may even want to deploy a LDQN agent with OCC,
effectively guaranteeing that the agent will violate the minimum number of norms
possible.

• Game performance: The win rate and average game score of the LTQ agent were
slightly better compared to NGRL without OCC and slightly worse compared
to NGRL with OCC, but overall these agents performed on a similar level. The
tabular Q-learning agent with OCC performed way worse than all the other agents.
This is to be expected, as the optimal policy of the MDP it was trained in differs
greatly from the optimal policy of the MDP it is deployed in. The best agent in
terms of win rate and average game score is once again the LDQN agent, as it won
almost all of its test games.

• Computational efficiency: During training, the computationally most efficient agent
is the tabular Q-learning agent with OCC, as OCC only comes into effect during
execution time. The NGRL and LTQ agents take longer to train due to the requests
to the normative supervisor. However, as we saw in table 5.1, training a neural
network leads to even larger computational demand. In the above experiments,
the time needed for training and evaluating the LDQN agent was about 30 times
longer than the time needed for the LTQ agent. With that being said, at execution
time the LDQN agent is more efficient than the methods involving OCC as the
LDQN agent is able to operate without further calls to the normative supervisor.

To summarize, for the miniature Pac-Man environment the LDQN agent is the best
choice if normative compliance has priority. The LTQ agent can nevertheless be a suitable
alternative if training a LDQN agent is too expensive and rare norm violations can be
tolerated.

1This single consumed ghost results from an edge case in the Pac-Man environment described in
figure 2(c) from [Neu+21]. In this situation the agent collides with a ghost and a power pellet in the
same time step, consuming both instantly. This is not properly recognized as a norm violation by the
normative supervisor.
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Figure 5.5: Value of the DQN and LDQN agent loss function in the regular Pac-Man
environment versus number of training episodes.

5.2 Regular Pac-Man Experiments
In the following the experimental results from the regular Pac-Man environment will be
discussed. A summary is shown in table 5.7. Note that in this environment, the agent
can eat a maximum of 4 ghosts, as there are 2 power pellets and the agent can eat 2
ghosts after consuming a power pellet.

The DQN agent did not do well in this complex environment. About 17% of the DQN
agent’s test games were won. The average score was 437.33 and the agent ate 1080 ghosts
in total. As can be seen in figure 5.5 the value of the DQN agent’s loss function varies
greatly over the course of training and no clear decrease is visible, suggesting that the
agent is not able to learn a policy that consistently increases reward. However, it is worth
noting that despite the low win rate, the DQN agent was able to maintain a positive
average game score. The agent achieved a mean game score of 193.79 in games that it
lost. Taking into consideration that the agent ate about 1 ghost per game, it must have
scored about 500 points by eating food pellets to offset the -500 score penalty for losing.

Agent Win rate (%) Avg score Blue g. e. Orange g. e. Evaluation time (s)
DQN 17.1% 437.33 535 545 6929.88

LDQN 3.0% 300.49 600 588 88358.80

Table 5.7: Summary of the experimental results in the regular Pac-Man environment
(“ghosts eaten“ is abbreviated as “g. e.“).
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Figure 5.6: Number of norm violations returned by the normative supervisor in steps of
100 during training of the LDQN agent in the regular Pac-Man environment versus the
number of training episodes.

Since eating a food pellet grants the agent 9 points (with the -1 score penalty per time
step) about 55 food pellets must have been consumed by the agent on average. Hence,
the agent was mostly able to survive for an extended amount of time, but rarely able to
successfully close out the game.

In other experiments where we trained a DQN agent in the regular Pac-Man environment
for 54000 games the agent was able to win 68.2% of its test games with an average game
score of 1194.30, but even more training games did not significantly improve performance.
Therefore, while the performance can be improved with more training, no amount of
training games is able to elevate the DQN agent’s performance in the regular Pac-Man
environment to the level that we have come to expect from it in the miniature Pac-Man
environment.

Unfortunately, experiments with the LDQN agent did not yield better results in this
environment. The LDQN won 30 of its 1000 test games and achieved an average game
score of 300.49. Similarly to the DQN agent the value of the LDQN loss function shows
no clear trend of converging in figure 5.5. Nevertheless, the LDQN agent also achieved
high scores despite its low win rate, as it scored 261.66 points on average in its losses.

The LDQN agent also failed in its normative objective by eating more total ghosts than
the DQN agent (1188). In figure 5.6 we see that the number of ghosts eaten by the LDQN
agent increased over time instead of decreasing. After about 7000 training episodes the
number begins to heavily oscillate, as if the agent was undecided whether it should obey
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the normative system or increase its game score.

The reasons for these failures could be manifold. The universal approximation theorems
for neural networks tell us that for any function, a sufficiently deep or wide neural network
can be constructed to approximate this function to an arbitrary degree. Therefore, it is
certain that a combination of network architecture and hyperparameter configuration
exists that can better approximate a lexicographically optimal policy. However, any
specific neural network architecture will be unable to learn all functions and we were
unable to explore a large number of alternative configurations due to the extensive
computational resources required.

5.3 Unfair Pac-Man Experiments
The final set of experiments involves observing how the lexicographic agent acts in a
state of normative deadlock. Recall the layout of the unfair Pac-Man environment: A
blue and a red ghost are stationed at the far ends of a small 5 × 1 corridor. There are
two power pellets, one to the east of the blue ghost and one to the west of the orange
ghost. Pac-Man’s starting position is between the power pellets.

When Pac-Man eats a food pellet and there are no additional food pellets left, it wins
the game. Since there are no food pellets in the unfair Pac-Man environment, winning
the game is not possible. Therefore we disregard game performance in our evaluation.
Instead, we focus on whether the agent chooses to eat ghosts and if so, which ones.

If Pac-Man has access to its full set of actions (including stopping and moving in any
direction) there are two types of game outcomes:

1. If the agent chooses to move either east or west as its first action, it consumes a
power pellet. Furthermore, a ghost will move into Pac-Man at the following time
step, ensuring that Pac-Man eats the ghost. The consumed ghost will subsequently
reappear in its starting position and the other ghost will have moved to the
remaining power pellet. Thus, Pac-Man will be stuck between ghosts and lose the
game after eating a ghost.

2. If the agent chooses to stop as its first action (either explicitly or by moving against
a wall) then the ghosts will advance onto the power pellets. With no way to escape
and no access to power pellets the agent will then lose the game without eating a
ghost.

We conducted two sets of experiments with a LTQ agent and the unfair Pac-Man
normative system, where eating ghosts is a norm violation but consuming the orange
ghost is less bad than eating the blue ghost. In the first set, Pac-Man could take any of
its five actions. This resulted in the agent choosing to stay in place in every test game,
leading to the second of the outcomes described above. In the second set, Pac-Man was
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forced to pick between moving east or west. It chose to move east in all test games,
thereby eating the orange ghost.

These results provide evidence that the lexicographic agents are able to obey sub-ideal
contrary-to-duty obligations. If the agent interpreted O(eatorangeGhost | ¬benevolent) as
a compensatory CTD obligation then it would have eaten the orange ghost in the first set
of experiments to increase its score. Instead, the agent chose to forgo the score increase
to not violate any norms. Moreover, when we forced the agent to violate a norm, it chose
to violate only one norm instead of two.
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CHAPTER 6
Conclusion

In summary, we initially covered the basics of value-based RL, multi-objective RL,
normative reasoning and deontic logic. We then examined existing approaches for
constrained RL, noting the advantages of normative RL over safe RL. The novel technique
of norm-guided RL was presented and we saw that regular NGRL cannot teach agents
to obey CTD obligations. NGRL with violation counting was designed to alleviate this
shortcoming but instead it is incompatible with function approximation, an indispensable
part of modern deep RL algorithms. As a solution we proposed norm-guided lexicographic
multi-objective RL (NGLMORL), combining norm-guided RL with lexicographic multi-
objective RL. With this method, agents learn normative compliance by learning a
lexicographically optimal policy that first tries to minimize normative penalties given to
the agent by a normative supervisor and maximizes non-normative rewards as a second
priority. We tested the capabilities of these agents in several layouts of the Pac-Man
arcade game. In a miniature version of the game the agents did very well, winning
more games than their non-lexicographic counterparts and mostly complying with the
normative system. With regards to NGRL, the lexicographic tabular Q-learning agent
scored comparably, while the lexicographic DQN vastly outperformed it in terms of game
score and normative compliance. However, in a larger environment the agents were
unable to learn a good policy. Finally, we showed experimentally that NGLMORL agents
obey sub-ideal CTD obligations in states of normative deadlock.
The experiments have revealed the following limitations of NGLMORL:

• Hyperparameters and neural network architecture needs to be tuned in every
new environment. We saw that without a proper configuration the agents may
fail to learn a good policy and comply with the normative system. Moreover,
hyperparameter optimization is a lengthy and computationally costly process.

• NGLMORL inherits the scaling issues of NGRL because it must still call a theorem
prover after action selection during training. For widespread application of the
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technique it is desirable to develop more efficient ways of calculating the normative
penalty. However, these issues do not affect the agent during operation.

• The agent must be retrained from scratch whenever we want it to follow a different
normative system. Since ethical, legal and social norms change over time a seamless
way to integrate normative system change into the agent’s policy is crucial.

• During operation, NGLMORL agents suffer from transparency issues because all
information that the agent receives about the normative system is collapsed into
opaque value functions. Without online compliance checking by the normative
supervisor we lose the ability to record events that constitute a norm violation and
to generate an explanation for why the violation occurred.

This leads us to the following possibilities for future research:

• By finding a suitable hyperparameter configuration in the regular Pac-Man and
other environments we can deepen our understanding of how each individual
hyperparameter affects the behavior of the agent, facilitating the deployment of
the technique in more complex environments.

• In this work we have applied NGLMORL only with value-based RL algorithms, but
much of the recent success in deep RL rests on the shoulders of policy-based RL.
Exploring the challenges of using NGLMORL with a policy-based lexicographic
algorithm would be an interesting research direction.

• The DDL theorem prover SPINdle used by the normative supervisor sufficed for
our purposes but could be replaced by a more efficient solution, e.g. answer set
programming (ASP). Even better would be a theorem prover able to reason with
the temporal dimension of norms, i.e. achievement obligations (which require a
proposition to eventually be fulfilled) and norms with deadlines. However, that
would require a computationally feasible temporal deontic logic as a prerequisite.

• When designing the normative reward function RN of NGLMORL we assumed that
each violated norm in N contributes the same amount to the overall normative
penalty. However, in actuality the violation of some norms may be punished more
severely than the violation of others. Therefore the normative supervisor should
be augmented with the ability to assign weights to norms depending on their
significance.
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APPENDIX A
Technical details

This section documents the hyperparameters and neural network architecture used for
the experiments described in section 4.3.

A.1 Tabular agents
The tabular Q-learning agent was trained with a learning rate α = 0.2, a constant ϵ = 0.05
and a discount factor of γ = 0.8.

The lexicographic tabular Q-learning agent (LTQ) was trained with the same learning rate
and ϵ-value, but had a discount factor of γ = 0.99. Additionally, it used a proportional
lexicographic tolerance parameter τ = 0.001.

A.2 Deep agents
The neural network approximating the Q-function for the DQN and LDQN agents
consists of two 2D convolutional layers and two fully connected linear layers. The first
convolutional layer has 6 input channels, 32 output channels and a 3 × 3 kernel with
stride 1. The second convolutional layer has 32 input and 64 output channels. In the
miniature Pac-Man environment, the second convolutional layer uses a 2 × 2 kernel with
stride 1. When training in the regular Pac-Man environment, the second convolutional
layer uses a 3 × 3 kernel with stride 1. The first linear layer scales the output of the
second convolutional layer down to 256 hidden units and the second linear layer scales it
down to 4m output units where m is the number of reward functions in the MOMDP
we are training in. The deep agents do not have the ability to choose the “Stop“ action,
they have to choose a direction to move at every time step.

The input to the neural network is a tensor of dimension (6 × h × w) where h and w are
the height and width of the environment, respectively. This tensor contains 6 binary
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matrices encoding the positions of walls, the agent, ghosts, scared ghosts, food and power
pellets.

The loss function used by the deep agents is the smooth L1 loss. For two vectors x⃗, y⃗ of
dimension n, the smooth L1 loss is defined as L(x⃗, y⃗) = {l1, ..., ln}T with

li =
(xi−yi)2

2 if |xi − yi| < 1
|xi − yi| − 0.5 otherwise

for 1 ≤ i ≤ n. The AdamW algorithm [LH19] is used for optimization.

The deep agents use an exponentially decaying ϵ-value. It is calculated as

ϵend + (ϵstart − ϵend) ∗ e
−t
d

where t is the current time step, d is a constant controlling the decay rate, ϵstart is the
starting value and ϵend is the value of ϵ as t → ∞. In miniature Pac-Man, ϵstart = 0.9,
ϵend = 0.05 and d = 2x where x is the number of training episodes. In regular Pac-Man
the values of ϵstart and ϵend are the same, but d = 10x.

The tolerance parameter τ for LDQN is also variable throughout training. It is calculated
as

τstart + (τend − τstart) ∗ i

x

where i is the number of the current episode, x is the total number of training episodes,
τstart is the starting value and τend is the value at the end of training. In contrast to the
LTQ agent, the LDQN agent uses the tolerance as a constant instead of a proportion. In
the experiments, the values of τstart and τend are different depending on whether they
are used with the normative reward function RN or the environment reward Rx. For
RN , τstart = 0.1 and τend = 1. For Rx, τstart = 0.5 and τend = 0.1.

The other hyperparameters for DQN and LDQN in the miniature Pac-Man environment
are as follows: A learning rate α = 0.001, a discount factor γ = 0.99, a target net update
rate τ ′ = 0.005, a replay buffer size N = 10000 and a minibatch size n = 64. The values
for the regular Pac-Man environment are the same, except α = 0.0001.
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