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Abstract

Permanent quality control directly in the production line is of high interest in today’s
manufacturing facilities to increase throughput and reduce production rejects. As
optical sensor systems enable contactless, fast, and precise measurements of surface
topologies, they are frequently used for in-line measurements on moving samples.
Edges are often defining elements of spatial features on 3D structures, e.g. two edges
may define the critical width of a trench structure. Thus, to detect deviations from
the feature’s dimensional specifications, the lateral position of its edges must be
determined accurately. As optical sensors have finite exposure times, the motion of
the sample during the exposure induces lateral uncertainty. This thesis aims to reduce
the lateral position uncertainty of edge features in laser triangulation measurements
on moving samples.
An experimental laser triangulation sensor is developed, which allows access and
adjustment of relevant parameters such as exposure time and laser intensity and
the readout of its imaging sensor’s raw pixel data. Combining 1D Gaussian most-
likelihood estimation, matched filtering, and Gaussian-mixture-model fitting, the
intensity distribution on the imaging sensor is described and analyzed. Using a model
of the laser intensity distribution on the moving sample, the lateral position of edge
features is estimated by comparing the peak power ratio on the imaging sensor and
the power distribution on the sample.
Experimental performance evaluation shows a significant reduction of the lateral
edge position uncertainty. The performance of the proposed method is determined by
comparing statically and dynamically measured feature widths of a 3D printed sample.
The results show a significant reduction of the mean absolute error in the corrected
measurements of more than 60% compared to uncorrected measurements. Moreover,
features that are missed due to motion blur in the uncorrected measurements are
detected with high lateral accuracy by the proposed method.
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Kurzfassung

Um den Durchsatz in industriellen Fertigungsanlagen zu erhöhen und Produkt-
ausschüsse zu reduzerien, ist eine permanente Qualtitätskontrolle direkt in der
Fertigungslinie essenziell. Da optische Sensorsysteme berührungslose, schnelle und
präzise Messungen von Oberflächentopologien und -strukturen ermöglichen, werden
sie häufig für Inline-Messungen an bewegten Objekten eingesetzt. Kanten sind oft
kennzeichnenede Merkmale von Oberfächenstrukturen. Um Abweichungen von den
Dimensionsspezifikationen zu erkennen, muss daher die laterale Position von Kanten
genau bestimmt werden. Da optische Sensoren endliche Belichtungszeiten haben,
führt die Bewegung des Objekts während der Belichtung zu einer lateralen Unsi-
cherheit. Ziel dieser Arbeit ist es, die laterale Positionsunsicherheit von Kanten bei
Lasertriangulationsmessungen an bewegten Objekten zu reduzieren.
Es wird ein experimenteller Lasertriangulationssensor entwickelt, der die Anpassung
essenzieller Messparameter und das Auslesen von Pixel-Rohdatan ermöglicht. Durch
statistische Methoden wird die Intensitätsverteilung am Bildsensor beschrieben
und analysiert. Unter Verwendung eines Modells der Laserintensitätsverteilung auf
dem bewegten Objekt wird die laterale Position von Kanten durch Vergleich der
Intensitätsverteilung auf dem Bildsensor und der Leistungsverteilung auf dem Objekt
geschätzt.
Die experimentelle Evaluierung zeigt eine signifikante Verringerung der Unsicherheit
der lateralen Kantenposition. Die Leistungsfähigkeit des Korrekturalgorithmus wird
durch den Vergleich statisch und dynamisch gemessener Featurebreiten einer 3D-
gedruckten Probe ermittelt. Die Ergebnisse zeigen eine signifikante Verringerung des
mittleren absoluten Fehlers bei den korrigierten Messungen um mehr als 60% im
Vergleich zu den unkorrigierten Messungen. Darüber hinaus werden Merkmale, die bei
den unkorrigierten Messungen aufgrund von Bewegungsunschärfe übersehen werden,
durch den Korrekturalgorithmus mit hoher lateraler Genauigkeit erkannt.
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CHAPTER 1

Introduction

In the last decades, the demand for throughput and product quality in industrial
manufacturing, especially in the high-tech sector, has been constantly increasing [1].
With the growing demand for precision, high-performance measurement systems are
ever more sought-after [2]. To keep up with the increasing requirements of today’s
manufacturing processes, measurement systems are required to be fast, precise,
robust, and integrable into the production line [3].

1.1 Motivation
The integration of measurement systems in the production line allows permanent
quality inspection of the produced goods. Thus, manufacturing parameters can be
dynamically adapted, and production rejects are reduced [4]. Surface structure and
condition frequently serve as a quality criterion [5, 6]. Detection of dimensional
deviations from the desired specifications is a frequently performed task in quality
inspection. Edges are often defining elements of spatial features on 3D structures, e.g.
two edges may define the critical width of a trench structure. Thus, to detect such
feature width deviations, the lateral edge positions have to be determined accurately.
[7].
Due to the required throughput and high production speed, quality inspection has
to be performed on the moving products to maintain the production flow. Thus,
systems that combine fast measurements with high lateral resolution are required [8].
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2 1.1. Motivation

With their contactless measurement principle and high measurement rates, optical
sensor systems are of great interest in this field of application [9].
As optical sensor systems use imaging sensors with finite exposure times, their
measurement results are affected by motion blur when the object is moving during
the exposure [10]. This effect is similar to the often experienced motion blur in
photography. When taking an image of a moving object, or the imaging system itself
is moving, the obtained image appears blurred. Both, an increase of the exposure
time and an increase of the relative speed between the object and the imaging system
enhance the motion blur effect [11]. Thus, optical measurement systems with high
measurement rates and short exposure times are less prone to blurring. However,
short exposure times require a high intensity of the incoming light. In the case of
laser triangulation sensors (LTSs), short exposure times require high laser intensities
which require inconvenient and costly laser-safety precautions in the production line
[12].
Moreover, the finite exposure time of optical sensors limits their sampling rate.
Hence, measurement values are only obtained at discrete sampling points in time.
As the sample is moving laterally during the exposure, the sampling time of the
sensor system causes spatial sampling on the object. Therefore, the detectable
minimum lateral feature size increases with increasing sample speed and exposure
time, reducing the lateral resolution of the optical sensor system.

Figure 1.1: Exemplary illustration of an in-line measurement application. Laser line
triangulation sensors measure the surface structure of objects moving on
a conveyor belt [13].
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1.2 Challenges and Goals
Considering the industrial demands for minimal lateral accuracy in detecting edge
features on moving samples, a sensor system with high lateral resolution is required.
Their contactless and fast measurement principle makes optical sensor systems
suitable for in-line measurement applications. Escpecially LTSs are frequently used,
since they combine high axial resolution with an extensive measurement range [14].
Their finite exposure time induces lateral uncertainty when detecting the location of
edge features on moving samples. Therefore, a novel method to reduce the lateral
uncertainty of laser triangulation measurements on moving samples is required. Since
the minimum exposure time is frequently limited by the intensity of the incoming light
due to laser-safety regulations, a method that either compensates for the relative
motion between the sample and the sensor system, or computationally corrects
the lateral error is required. Hence, the project goals of this thesis are defined as
follows:

• Reduction of lateral edge position uncertainty
• Mitigation of motion blur effects
• Performance evaluation by performing dynamic measurements on moving

samples

1.3 Thesis Outline
The thesis is structured as follows. Chapter 2 provides an overview of state-of-the-art
measurement systems for in-line quality inspection applications. Furthermore, motion
compensation and correction approaches are presented. Based on the literature review,
research questions are formulated. The causes of lateral feature uncertainty in laser
triangulation measurements are discussed in Chapter 3. Considering the project
goals, design guidelines for LTSs are formulated in Chapter 4. Moreover, considering
the derived guidelines, the design of an experimental LTS is described. Using the
developed experimental LTS, effects of measurements on edges are analyzed, and
methods for modeling intensity distributions on the imaging sensor and the sample
are proposed in Chapter 5. Using the derived models a lateral feature location
correction algorithm is developed in Chapter 6. The performance of the proposed
correction algorithm is experimentally validated in Chapter 7. Chapter 8 concludes
the thesis and provides an outlook of possible future work in uncertainty reduction
for measurements on moving samples.





CHAPTER 2

State of the art

This chapter provides a literature overview of state-of-the-art in-line measurement
systems for measurements on moving objects. First, frequently used optical measure-
ment systems are discussed and compared. Subsequently, an overview of the most
used imaging sensors for optical measurements is given. Moreover, active sample
motion compensation strategies are presented, as well as motion-induced error cor-
rection approaches, by deblurring algorithms. Finally, the presented methods are
compared, and research questions are formulated.

2.1 Industrial displacement sensors
As surface condition and shape are of great interest in quality inspection applica-
tions , high precision and high-resolution measurement systems suitable for in-line
applications are required [9]. In the domain of nano-metrology, white light inter-
ferometers are frequently used due to their high resolution in the nanometer scale
[15, 16]. However, their measurement results are sensitive to ambient vibrations [17].
Hence, they are unsuitable for implementation in the vibration-prone environment
of industrial manufacturing lines [18].
Inductive displacement sensors achieve fast measurements with a resolution in the
nanometer scale [19]. However, their applicability is limited to conductive materials,
which decreases their flexibility [20]. Capacitive displacement sensors overcome
this drawback since they can be used on conductive materials and insulators [21].
While achieving nanometer-scale resolution, their measurement range is limited to

5



6 2.1. Industrial displacement sensors

a few millimeters [22, 23]. Furthermore, the lateral resolution of both inductive
and capacitive displacement sensors is determined and limited by the magnetic and
electric field distribution [24].
Optical displacement sensors such as confocal chromatic sensors (CCSs) and LTSs
offer high axial and lateral resolution while achieving an extensive measurement
range compared to the previously mentioned systems [25, 26]. Therefore, they are
among the most frequently used optical measurement systems for in-line measurement
applications and are thus discussed in more detail [27].

2.1.1 Confocal chromatic sensors
CCSs measure the distance to a target through spectral analysis. The essential
components of a CCS are illustrated in the schematic structure shown in Fig. 2.1.
White light is coupled to an optical fiber and guided to the sensor head. The sensor
head contains a lens stack, which induces chromatic aberration. Thereby, the spectral
components of the white light are focussed at different distances from the sensor head
depending on their wavelength, as shown in Fig. 2.1. The same optical fiber transmits
white light to the sensor head and guides the reflected light back to the controller.
As the fiber acts as a pinhole, only the light focused on the target gets transmitted
back to the controller. Thus, due to the chromatic aberration, the wavelength of the
reflected light depends on the distance between the sensor head and the target. The
wavelength is determined by a spectrometer, where the wavelengths are separated
on a grating and directed to a linear detector array [25, 28].

Figure 2.1: Basic components of a confocal chromatic sensor. The distance to the
target is determined by analyzing the wavelength of the reflected light
[28].
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As only the focussed reflected wavelength passes the pinhole of the optical fiber, this
measurement system does not suffer from out-of-focus errors. Therefore, thickness
measurements can be conducted using a single sensor head when measuring on a
transparent target. Since both the upper and lower surfaces of the target reflect
light at the respective wavelength, the distance to the target and the thickness can
be determined if the refractive index of the target material is known. Industrially
available CCSs achieve a resolution in the nanometer scale with a measurement range
of single centimeters [25, 28].

2.1.2 Laser triangulation sensors

In contrast to the CCS principle, LTSs use monochromatic laser light to determine the
distance to the target by triangulation [26]. The measurement principle is depicted
in Fig. 2.2. A laser beam, either collimated or focussed, is directed onto the target.
The diffusely reflected spot is focussed on the detector by the lens. The detector,
the lens, and the laser are aligned to satisfy the Scheimpflug condition. According
to the Scheimpflug condition, a point on the focal plane will be detected sharply if
the plane of focus, image, and lens plane intersect in a single line [29]. Thereby, the
plane of focus is not parallel to the image plane, as in standard imaging applications,
but it is congruent with the plane on which the laser beam propagates from the
laser to the target. Thus, the size of the reflected spot on the detector is constant,
regardless of the distance to the target.
The displacement d� of the reflected spot, or more precisely it’s center of gravity
(COG), on the detector concerning the target’s displacement d is given as [26,
30]

d�(d) = mLf

�
1 +

�
mL − u0

f

�2

�
d�

1+m2
L

�
�

d�
1+m2

L

+ u0

mL
− f

��
mL − u0

f

� , (2.1)

with the triangulation angle Θ, the lens’ focal length f , and the distance u0 from
the lens’ center to the intersection line, where

mL = tan(Θ). (2.2)

As one can see in Eq. (2.1), the relation between the target displacement d and
the spot displacement d� is nonlinear. The sensitivity and the measurement range
can be adjusted by the parameters Θ and u0. Industrial precision LTSs achieve
measurement ranges of up to 500mm with a resolution of 0.1 µm [31].
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Figure 2.2: Basic geometric arrangement of a laser triangulation sensor. Depending
on the geometric parameters, the reflected spot on the detector moves
the distance d� for a target displacement d [26].

The principle of a point LTS can also be extended to a line sensor by adding a
cylindrical lens in the path of the laser beam and using a 2D imaging sensor as a
detector. Thereby, a laser line is projected on the target and reflected on the detector,
enabling 3D surface inspections [32].

2.2 Imaging sensors

Both of the considered optical measurement systems typically use imaging sensors to
either detect the reflected wavelength in case of a CCS or the COG of the reflected
spot in case of the LTS. As the imaging sensor’s pixel size and fill factor limit
the measurement system’s resolution and the framerate limits the measurement
rate, these imaging sensors are a critical contributor to the measurement system’s
performance. Charge-coupled device (CCD) and CMOS imaging sensors are widely
used in such measurement systems and, therefore, briefly presented in the following
[25, 26].
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2.2.1 Charge-Coupled Device imaging sensors

CCD imaging sensors were introduced by W. Boyle and E. Smith in 1969 [33] as
analog shift registers. Subsequently, Tompsett et al. [34] were the first who tried to
capture images using this technology. Since then, the CCD imaging technology has
rapidly evolved, making it the most common high-performance imaging detector for
scientific and industrial imaging applications since the 1980s [35].
Imaging with silicon detectors is based on the photoelectric effect [36]. If the
condition

Eλ =
hc

λ
> Ebandgap (2.3)

is satisfied, meaning that the photon energy Eλ exceeds the bandgap energy Ebandgap,
an electron is excited from the silicon valence band to the conduction band. Where h
is Planck’s constant, c is the speed of light, and λ is the light’s wavelength.
The pixels of CCD imaging sensors form potential wells that store charges. The
charges result from the photoelectric effect given in Eq. (2.3). Gate structures on
the surface, which define the pixels, are used to physically shift the charges from
one potential well to the adjacent potential well by applying a clocking voltage to
the gates. Thus, the entire image data is read out by shifting charges from one row
to the next. The last row is read out serially. Converting the obtained charges to
a voltage finally yields the image data. If the whole sensor area is used for active
pixels, resulting in the highest fill factor, the pixels get exposed to the incident light
during the charge transfer, leading to smearing effects. Thus, a shutter is required
to block light from pixels that are currently storing charges generated in a previous
row of pixels. As the charges are shifted row by row, a rolling shutter, which only
exposes one row at a time, is required. However, when imaging moving objects, the
rolling shutter causes unwanted artifacts in the resulting image [37].
To overcome the drawback of rolling shutter, there exist CCD architectures that do
not require a shutter. Two of the most commonly used are schematically illustrated
in Fig. 2.3. A frame transfer architecture is shown in Fig. 2.3a. The sensor is divided
into light-sensitive and light-shielded areas of the same size. Thereby, the whole
frame can be stored in the shielded area. Since the charge transfer can be performed
very fast (10−6 − 10−4 s), smearing effects are significantly reduced, and a shutter is
obsolete [37].
The interline transfer architecture uses shielded areas to store the charges directly
adjacent to the respective active pixel areas. Thus, charges from all pixels can
simultaneously be shifted to the shielded areas and subsequently read in a CCD
shift-register manner. While this architecture facilitates global shutter-like operation,
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(a) Frame transfer sensor (b) Interline transfer sensor

Figure 2.3: Readout methods of CCD arrays. (a) shows a frame transfer sensor,
where the charge of each pixel is shifted to the next row until it reaches
the readout row, while (b) shows an interline transfer sensor, where the
charge of each pixel first gets shifted to a shielded area, facilitating global
shutter operation [37].

the fill factor of the sensor is immensely reduced due to the shielded areas between
the active pixels [37].
Today’s CCD imaging sensors still outperform the CMOS technology regarding noise
and fill factor. Furthermore, they show a higher sensitivity than CMOS sensors,
which makes them more applicable in low-light conditions. However, region of interest
(ROI) readouts are not feasible due to the CCD shift register structure [38].

2.2.2 CMOS imaging sensors

While CMOS imaging sensors were proposed before CCD imaging sensors in 1967
by Weckler et al. [39], they could not compete with the rapidly evolving CCD
imaging sensors regarding noise, sensitivity, and fill factor [40]. However, due to
significant advancements in CMOS technology in the last decades, especially in terms
of miniaturization of semiconductor transistor structures, CMOS imaging sensors
slowly replace CCD imaging sensors [41]. Especially the development of active pixel
sensors (APSs) [42] significantly improved the SNR, compared to the older passive
pixel sensor (PPS) technology [43].
A schematic diagram of an APS pixel using three transistors is illustrated in Fig. 2.4.
The pinned photodiode, operated in reverse direction, serves as the sensing element
of the pixel. Before the exposure, T1 is turned on, resetting the photodiode by
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Figure 2.4: Schematic diagram of a 3-Transistor (3T) APS pixel. The APS architec-
ture allows signal amplification at the pixel level [40].

charging its junction capacitance to the initial voltage

U0 = V dd− UDS,T1, (2.4)

with the supply voltage V dd and the drain-source voltage of T1 UDS,T1. At the
beginning of the exposure, T1 is turned off. During the exposure time Texp, the
incident light causes a photocurrent Iphoto due to the photoelectric effect as described
in Eq. (2.3). The photocurrent discharges the junction capacitance Cjunciton, yielding
a voltage of

UD =
QD

Cjunction

= (V dd− UDS,T1)� �� �
U0

− 1

Cjunction

� t0+Texp

t0

Iphoto(t)dt, (2.5)

after the exposure. This voltage is amplified by the transistor T2 and finally read out
by activating T3. As all rows of each column of the pixel array are connected via the
column bus, T3 acts as a row select. Thus, each pixel can be read out separately by
choosing the respective row and column, similar to a random access memory (RAM)
[40].
Adding a fourth transistor T4 to the circuit leads to the architecture shown in
Fig. 2.5. Acting as a transfer gate, the additional transistor shifts the charge from
the photodiodes junction capacitance to an n+ doped floating diffusion (FD) where it
is intermediately stored. As the transfer action is performed simultaneously on each
pixel, the 4T architecture enables global shutter operation, which allows imaging
of moving objects without the artifacts caused by the rolling shutter. Same as in
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Figure 2.5: Schematic diagram of a 4-transistor (4T) APS pixel. Adding a fourth
transistor as a transfer gate allows global shutter operation [40].

the 3T architecture given in Fig. 2.4, the voltage at the FD node is amplified and
subsequently read out by the row select transistor [40].
Since each pixel’s junction capacitance voltage is amplified directly on the pixel
level, an analog digital converter (ADC) for each pixel can be integrated, resulting
in a digital pixel sensor (DPS) architecture. Thus, CMOS imaging sensors combine
sensing with analog and digital processing on the pixel level, which is a significant
advantage over CCD imaging sensors. Using parallel conversion, today’s CMOS
imaging sensors can operate in the Gigapixel per second scale [44, 45]. Furthermore,
CMOS sensors facilitate the readout of a ROI, further speeding up the readout
process, as only the desired data has to be transmitted [45].

2.3 Deblurring algorithms

As the presented imaging sensors are used on moving objects, motion blur inevitably
corrupts the obtained image [46]. As shown in Eq. (2.5), the voltage of a pixel is
proportional to the integrated photocurrent over the exposure time. Thus, when the
object is moving during the exposure, the image information that would be present
on a single pixel for a static object gets blurred over several pixels. This effect can be
modeled as a convolution of the original image f(a, b) and the point spread function
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(PSF) h(a, b), resulting in the obtained image [47]

g(a, b) = f(a, b) ∗ h(a, b) + n(a, b). (2.6)

Additionally to the blurring, the obtained image g(a, b) is corrupted by noise n(a, b).
The PSF describes the blur’s direction and length. Assuming a linearly moving
object with constant speed, the PSF can be modeled as a moving average filter
[47]

h(a, b) =
1

L
ΠL(a cos(Θ) + b sin(Θ)), (2.7)

with the blur length L, the direction of the blur Θ and the rectangle function

ΠL(u) =

�
1 |u| ≤ L

2

0 |u| > L
2

. (2.8)

An example of the effects of motion blur is depicted in Fig. 2.6. The original image
in Fig. 2.6a is blurred with a motion blur PSF as given in Eq. (2.7) with a length of
L = 40 and a blur direction of Θ = 45◦.

(a) (b)

Figure 2.6: Effects of motion blur. The original image in (a) is blurred with a
rectangular PSF with a length of 40 px and an angle of 45◦. (b) illustrates
the resulting blurred image. Own image, cf. [47].

The goal of deblurring algorithms is to estimate the unblurred image f(a, b), given
the obtained blurred image g(a, b). Blind deconvolution [48] aims to estimate f(a, b)
without knowing the PSF h(a, b), while non-blind deconvolution [49] uses a model of
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the PSF. Non-blind convolution is computationally cheaper than blind deconvolution
since the PSF is estimated after each iteration in the blind deconvolution approach.
Furthermore, since the object’s speed, direction, and the imaging sensor’s exposure
time are typically known in industrial manufacturing lines, the PSF can be modeled,
and the parameters can be estimated [49].
For non-uniform motion blur, convolutional neural networks (CNNs) are successfully
used to estimate the unblurred image [50]. For constant, linear motion blur, the
Wiener Filter [51] and the Richardson-Lucy algorithm [52] are commonly used and
thus briefly presented in the following.

2.3.1 Wiener Filter
The Wiener Filter is based on the least-squares image restoration problem and acts as
an inverse of the PSF. Deconvolution is performed in the Fourier domain. Hence, in a
first step, the blurred image is transformed into Fourier space, yielding [51]

G(α, β) = F (α, β)H(α, β) +N(α, β), (2.9)

with the Fourier transforms of the unblurred image F (α, β), the PSF H(α, β) and
the noise N(α, β). As the convolution transforms into a multiplication in the Fourier
space, the unblurred image can now be estimated as

F (α, β) = W (α, β)G(α, β), (2.10)

with the Wiener Filter [53]

W (α, β) =
H∗(α, β)

|H(α, β)|2 + 1
SNR(α,β)

. (2.11)

The SNR of the unblurred image is typically unknown and has to be estimated
separately. Back-transforming the resulting Fourier transform of the unblurred
image F (α, β) yields the estimated unblurred image f(a, b). The performance highly
depends on the accuracy of the PSF model and the estimate of the SNR. Furthermore,
ringing artifacts appear after deblurring the image, which have to be removed in a
post-processing step [53].

2.3.2 Richardson-Lucy Algorithm
The Richardson-Lucy algorithm iteratively restores the unblurred image directly in
the image domain. Given the PSF and the blurred image, it maximizes the likelihood
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of the unblurred image using Bayes-theorem [52]. Neglecting the noise, Eq. (2.6) can
be written as a discrete convolution

gi =
�
j

fjhij, (2.12)

with the pixel indices i, j. The maximum likelihood solution of gi is found when the
iteration

f
(t+1)
j = f

(t)
j

�
i

gi
ci
hij, (2.13a)

ci =
�
j

f
(t)
j hij (2.13b)

converges [54]. While the performance increases with the number of iterations,
ringing artifacts must be removed in a post-processing step.
Compared to the Wiener Filter, no information about the noise is required. Further-
more, no Fourier transforms must be calculated, as the deconvolution is performed
directly in the image space. However, both the Wiener Filter and the Richardson-
Lucy algorithm require an accurate model of the PSF. Hence, a PSF parameter
estimation approach is presented in the following.

2.3.3 Point spread function estimation
As the parameters of the PSF not only depend on known parameters such as exposure
time, sample speed, and direction of movement but also on parameters of the used
optics and component alignment, precise estimation of the blur parameters is needed
[55]. The assumed PSF given in Eq. (2.7) is a rectangle function with the length L
and direction Θ. Looking at the Fourier transform of the rectangle function

F {ΠL(u)} =
2

ω
sin

�
Lω

2

�
=

4

L
sinc

�
Lω

2

�
, (2.14)

one can see that the zeros of the Fourier transform are located at

ω =
k2π

L
, k ∈ N. (2.15)

As the Fourier transform of the PSF appears multiplicatively in the Fourier transform
of the blurred image (see Eq. (2.9)), the zeros of Eq. (2.14) are zeros of Eq. (2.9) as
well, neglecting the noise. Thus, the parameters of the PSF can be determined by
analyzing the Fourier transform of the blurred image [47].
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Figure 2.7: Fourier transform of the blurred image. The parallel lines run perpen-
dicular to the blur direction Θ, and the distance between the minima is
equal to the blur length L. Own image, cf. [47].

Fig. 2.7 shows the Fourier transform of the blurred image in Fig. 2.6b. The zeros
of the PSF are clearly visible as diagonal lines. As the parallel lines in Fig. 2.7
are perpendicular to the direction of the motion blur, the blur direction Θ can be
determined by estimating the angle of the visible lines. In literature, the Hough
transform [56] or the Radon transform [57] are commonly used for this task. Knowing
the blur direction Θ, the blur length L is determined by estimating the distance
between the minima.

2.4 Motion compensation
The relative motion between the sample and the sensing system causes motion blur
effects in the measurement results. Thus, compensating the relative motion by active
sample tracking can mitigate these effects [58]. Wang et al. proposed a compensation
approach for surface inspection where the whole camera system is moved at the same
speed as the sample using a linear stage as schematically depicted in Fig. 2.8 [58].
The sample’s speed has to be accurately measured by an encoder or in-plane sensor
to match the speed of the imaging system and sample perfectly.
Hayakawa et al. proposed a motion blur compensation method that manipulates the
optical path of a camera using a galvanometer mirror. The sample’s speed is not
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measured by additional sensors, but by analyzing the background of the obtained
images [59]. Manipulating the optical path of point sensors by fast steering mirrors
(FSMs) is also a well-known approach in literature [60, 61]. While these approaches
are primarily intended to obtain 3D images by scanning the spot over the sample
surface, the scanning motion can be adapted to follow the sample, compensating
for motion blur. While manipulating the optical path allows high sample speeds,
the actuation range is limited by the mirror’s actuation range and the displacement
sensor’s measurement range [61]. Laimer and Wertjanz et al. [62, 63] proposed
a robot-based dual-stage in-line measurement system, where an industrial robot
extends the measurement range of a fast and precise scanning confocal chromatic
sensor [61] in all 6 degrees of freedom as illustrated in Fig. 2.9.

Figure 2.8: Schematic illustration of an active motion compensation system. The
sample’s motion can be compensated by moving the whole measurement
system at the sample’s speed [58].

While all these approaches compensate for relative motion between the measurement
system and the sample, the actuation system must be reset at the end of its actuation
range, yielding a blind spot in the measurement result. Thus, these approaches are
limited to piece-good production lines. Furthermore, the sample size is limited by
the actuation range of the motion compensation system.
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Figure 2.9: Robot based dual-stage approach. The industrial robot extends the
measurement range of the scanning confocal chromatic sensor [63].

2.5 Research questions
Considering the literature review findings, CCSs and LTSs are the most commonly
used measurement systems for fast, precise, and contactless quality inspection within
the production line. While the confocal chromatic principle facilitates high resolution
in the nanometer scale and simultaneous thickness measurements on transparent
samples, LTSs combine high axial resolution with an extensive measurement range,
making them suitable for most in-line measurement applications [14].
Active motion compensation systems significantly reduce the effects of motion blur
and create a static measurement environment by active sample tracking. Nevertheless,
the requirement for highly accurate sample tracking sensor systems, coupled with the
constraint of being applicable primarily to piece-good production lines, considerably
narrows down their range of potential applications. Edges are often defining elements
of spatial structures. Therefore, to determine the critical width of features, the
lateral position of the feature’s edges has to be determined accurately. Thus, a
measurement data correction approach is needed to mitigate motion-induced lateral
position uncertainty of edges in laser triangulation measurements on moving samples,
which leads to the first research question:

Research Question 1

Is it feasible to reduce the lateral position uncertainty of edge features in laser
triangulation measurements on moving samples by algorithmically correcting
the obtained measurement data?
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As LTSs primarily use CCD and CMOS line sensors to detect the position of the
reflected spot’s COG, measurements on moving samples are prone to motion blur.
The presented PSF estimation method assumes that the motion blur is constant
and linear [64]. Although the produced goods in a production line mostly move at
a constant and known speed, the motion of the light spot on the imaging sensor
is not expected to be constant. As the position of the spot, in LTSs, depends on
the sample height, the movement of the spot depends on the sample’s motion and,
especially, its topography. Hence, implementing the presented deblurring methods in
LTS systems is not feasible since the required PSF depends on the unknown structure
of the sample. A deblurring method tailored for laser triangulation measurements is
still missing, posing the question:

Research Question 2

Is it feasible to reduce the effects of motion blur in laser triangulation mea-
surements on moving samples by a tailored deblurring approach?





CHAPTER 3

Lateral feature uncertainty

To successfully reduce lateral uncertainty of edge feature locations, the root causes are
identified and analyzed first. The main two contributors are the spatial sampling itself
and motion blur, caused by the finite exposure time of the used camera.

3.1 Spatial sampling
LTSs typically use line cameras with CMOS imaging sensors to detect the reflected
laser spot [65]. The frame rate and, thus, the sampling rate of the LTS is limited by
the necessary exposure time of the camera. Various parameters, such as laser power,
surface reflectivity, and surface orientation, affect the required exposure time. From
the sensor system design point of view, the only adjustable parameter is the laser
power. However, since most applications require eye-safe laser sensor systems, the
laser power is limited to 1mW [12], determining the minimum exposure time of the
camera. The achievable sampling time, therefore, results to

Ts = Texp + Tidle + Tcam, (3.1)

with the exposure time Texp, the time for internal analog-digital conversion and data
processing Tcam and the remaining idle time Tidle, which is typically chosen to be
zero to minimize blind spots.
A typical industrial measurement application, where a produced good is transported
on a conveyor belt at a velocity v and inspected with an LTS, is schematically
depicted in Fig. 3.1. The spatial sampling length Δxs is equivalent to the distance

21
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Figure 3.1: Schematic illustration of an object, containing an edge feature, passing
by a LTS on a conveyor belt at speed v.

the sample travels during one sampling time of the LTS’ detector and can therefore
be described as

Δxs = vTs, (3.2)
with the sample’s velocity v and the sampling time Ts. Inserting Eq. (3.1) yields

Δxs = vTexp + v (Tidle + Tcam) = Δxexp +Δxblind, (3.3)

with the exposed sampel length Δxexp and the blind spot length Δxblind.
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Figure 3.2: Spacial sampling induced lateral uncertainty. The blue line illustrates
the sample topography, while the red circles mark the sampling points.
The smallest uncertainty Δx

2
is achieved when the actual edge is assumed

to be exactly between two sampling points.

An example showing lateral uncertainty caused by spatial sampling is illustrated in
Fig. 3.2. The red circles represent measurements taken at discrete locations equally
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spaced in the interval of Δxs = 0.2mm. As can be seen, the measurements at
x = 0.4mm and x = 0.6mm show a significant deviation of Δz = 1mm. Thus, it
can be assumed that an edge is located between the two sampling points. However,
since there is no additional measurement information between these points, the exact
edge location between the sampling points is unknown. It could be located at any
position between the two points. Thus, the lateral length of uncertainty is equal
to the spatial sampling length Δxs. A reasonable approach would be to assume
that the edge is located exactly between the two sampling points. In this case, the
possible error is minimal and in a range of ±Δxs

2
.

3.2 Motion blur

Another source of lateral uncertainty is motion blur. Since motion blur has different
effects on the measurement results depending on the measurement principle, it has
to be analyzed separately. In the case of an LTS, a change of the distance to the
sample causes the spot on the camera to move laterally, as illustrated in Fig. 3.3.
A measurement at a distance d1 would yield a single intensity peak at P1 on the
detector, while a measurement at a distance d2 would lead to a single local intensity
maximum at P2.
Considering a moving sample with an edge feature, at first, the sample’s surface
before the edge at a distance d1 is illuminated by the laser, and afterward, the surface
after the edge at a distance d2 is illuminated. During the exposure of the imaging
sensor, the voltage of each pixel capacitance drops depending on the light intensity
and exposure time. Therefore, if the transition from d1 to d2 happens during one
exposure time Texp, two peaks, located at P1 and P2, respectively, will be detected
since the pixels at both locations are exposed. A commonly used way to determine
the distance to the target is to consider the highest intensity peak. Two equally high
peaks would mean that the edge is located precisely in between the sampling point
prior to the start of the exposure and the point after the exposure. In this case,
either of the two peaks can be chosen, leading to the worst-case error explained in
the following.
Fig. 3.4 depicts the worst case scenario. Note that for the sake of simplicity, in this
illustration, Tcam and Tidle are assumed to be zero, i.e. Ts = Texp. Furthermore, it is
assumed that the edge is located at

xedge = xi−1 +
Δxexp

2
+ �, 0 < � <

Δxexp

2
, (3.4)
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Figure 3.3: Laser triangulation on a moving sample. A change in the distance to
the sample between d1 and d2 during one exposure time yields two local
intensity maxima P1 and P2 at the detector.

with the index of the current sampling step i. In this case, the sample surface before
the edge at the distance d1 is exposed longer than the surface after the edge at a
distance d2. Thus, the peak at P1 is higher than at P2, yielding d1 as measurement
result. However, this result is wrong in the sense that the laser spot has already
passed the edge, and the distance after the exposure time is d2. The distance from
the true location of the edge to the wrongly measured sampling point is denoted as
Δxb. The smaller � gets, the larger the distance Δxb gets. As � approaches zero,
Δxb reaches its maximum of

Δxb,max =
Δxexp

2
+ Δxblind. (3.5)

Note that if negative values of � would be allowed, the measured distance would be
d2, which decreases the position uncertainty. As in Fig. 3.4, the detected transition
from d1 to d2 is now shifted by the distance Δxb. At this point, the previously
discussed uncertainty caused by spatial sampling has to be considered, and the edge
location is estimated according to Section 3.1.
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Combining the aspects of spatial sampling and motion blur, the total edge position
uncertainty lies in the interval

Δx ∈
�
−
�
Δxexp +

3Δxblind

2

�
,
Δxs

2

�
=

�
−
�
vTexp +

3

2
v (Tidle + Tcam)

�
,
v (Texp + Tidle + Tcam)

2

�
.

(3.6)

As can be seen, the uncertainty range Δx can be reduced by reducing the sample
velocity v and the exposure time Texp.
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Figure 3.4: Worst case lateral uncertainty. An edge located in the center of the
exposed sample length Δxexp results in the largest possible lateral uncer-
tainty.

At this point, it should be mentioned that industrially used LTSs offer a variety
of multi-peak handling strategies, such as choosing the highest, first, second, or
widest peak [31, 66]. Choosing either the first or second peak is only applicable
for transparent multilayer samples where multiple spots are reflected from material
interface layers and, therefore, is not considered in this context. The widest peak is
suitable when measuring samples with varying surface conditions. This method is
also disregarded as this thesis focuses on measuring samples with constant surface
conditions.





CHAPTER 4

Laser triangulation sensor design

Although a large variety of industrial LTSs is available, these sensors usually do not
offer the possibility to read out the entire camera data and set specific parameters,
such as laser intensity or exposure time, automatically. However, to comprehensively
analyze the system behavior on moving samples, all the parameters mentioned must
be accessible and controllable. Therefore, a custom LTS is designed and built,
enabling the adjustment of all system parameters.

4.1 Design considerations for LTS
The thin lens equation describes the optical setup in standard imaging applications,
where the image plane and the plane of focus are parallel. However, these planes are
non-parallel in the case of an LTS, as can be easily seen in Fig. 4.1a. The Scheimpflug
and the hinge condition generalize the thin lens equation for non-parallel planes
[67].
Satisfying the Scheimpflug condition ensures a constant image size of an object on
the focal plane. Thus, in the case of an LTS, a constant spot size on the imaging
sensor over the whole measurement range. The Scheimpflug condition is satisfied if
the image plane, the lens plane, and the focal plane intersect on a single line, the
Scheimpflug line, as illustrated in Fig. 4.1a.
While the Scheimpflug condition ensures a constant spot size on the imaging sensor,
it does not automatically ensure that the focal plane is actually in the focus of the
lens [68]. Additionally, satisfying the hinge condition solves this problem. Like the
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Scheimplfug condition, the hinge condition is satisfied if three planes intersect on a
single line. In this case, the focal plane, the plane that runs parallel to the image
plane and through the center of the lens, and the front-focal plane, which is parallel
to the lens plane and offset by the front focal length of the lens, have to intersect on
the hinge line as shown in Fig. 4.1a. If those two conditions are satisfied, the spot
on the camera will be focussed and of constant size over the whole measurement
range.
For calibration purposes, an industrial LTS (type: optoNCDT1420, Micro-Epsilon,
Ortenburg, Germany) is used as a reference. To utilize the full range and resolution
of the industrial LTS, the experimental LTS should have a similar measurement
range. Furthermore, the industrial and the experimental LTS’ laser beams should
be parallel and on the same focal plane, enabling measurements on the same lateral
sample locations.
The satisfaction of the conditions mentioned above in the custom LTS design is
assured by adding the planes and constraints in the CAD tool (Solidworks, Dassault
Systèmes SolidWorks Corp., France) during the design of the mechanical frame.
As seen in Fig. 4.1b, both conditions are satisfied, resulting in a constant sized
and focussed spot of the custom LTS within the measurement range. The laser
beams of the industrial and experimental LTS are on the same focal plane and the
measurement ranges of both sensor systems are identical.

4.2 System components
The develped experimental LTS is displayed in Fig. 4.3. The black mechanical
frame is 3D printed using a fused deposition modeling (FDM) printer, while the
lens mount is printed with an stereolithography (SLA) printer due to its higher
requirements for dimensional accuracy. The geometry of these parts is designed to
fulfill both the Scheimpflug- and the hinge condition, which are discussed in detail
in Section 4.1.
A solid-state laser (type: PL206, Thorlabs, USA), depicted in Fig. 4.2, with a
wavelength of 638.8 nm and output power of 0.93mW is used as a laser light source.
For the sake of convenience and easier handling, the beam of the solid-state laser
is coupled into an optical fiber (type: P1-630A-FC-2 Thorlabs, USA) by operating
a fiber collimator (type: F280FC-B Thorlabs, USA) in the reverse direction. A
second fiber collimator (type: F230FC-B Thorlabs, USA) on the output side of the
optical fiber is used to generate a collimated laser beam with a waist diameter of
0.8mm, that is aligned perpendicular to the target. Industrial LTSs typically use
focussed laser beams to achieve smaller spot sizes on the target and hence better axial
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(a) (b)

Figure 4.1: Scheimpflug and hinge condition. (a) If the image plane, lens plane, and
focal plane intersect on the Scheimpflug line, the spot size on the detector
is constant for the whole focal plane. If the focal plane, front focal plane,
and parallel to lens plane intersect on the hinge line as well, the focal
plane is also focused on the detector. (b) shows the satisfaction of the
two conditions in the CAD design.

resolution [26]. However, the choice of a collimated beam is deliberately made to
simplify the sample illumination modeling and feature position correction procedure
(see Chapters 5 and 6).
A bi-convex lens (type: LB1761-A-ML, Thorlabs, USA) with a focal length of
f = 25.4mm is used to focus the reflected laser spot on the detector. As a detector,
a CMOS board camera (type: DMM 37UX273-ML, The Imaging Source, USA) with
a resolution of 1,440x1,080 pixels and a pixel pitch of 3.45 µm is used. The global
shutter prevents artifacts caused by the sample’s movement during readout, as they
would appear in rolling shutter imaging sensors. Furthermore, the shutter time
is adjustable between 1 µs and 30 s, which makes it perfectly suitable for various
laser powers and sample reflectivities. The image data is transferred to a computer
via a USB 3.1 interface. Industrial LTS typically use line cameras instead of 2D
imaging sensors since the reflected spot moves along a line as the sample displacement
changes. Thus, a large area of the used 2D imaging sensor is unused, producing
excessive image data. Therefore, a ROI is defined on the imaging sensor, limiting
the resolution to 1,440x500 pixels, with the window starting at the 400th vertical
pixel.
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Figure 4.2: Laser coupling. The beam from the solid-state laser is coupled to the
optical fiber using a fiber collimator. The neutral-density filter allows
adjustments of the laser power.

3D printed test samples, as illustrated in Fig. 4.4, are used to test the lateral edge
position correction performance. The samples are printed using an SLA printer with
a pixel pitch of 50 µm to create sharp edges on the sample. To move the sample
past the LTS, a linear stage (type: VT-80, Physik Instrumente GmbH & Co. KG,
Germany) with a top speed of v = 20mms−1 is used. Although the maximum
achievable speed of the linear stage is much smaller than the maximum speed in
industrial production lines, which can reach up to speeds of 10m s−1, its positioning
accuracy of ±10 µm and constant travel speed makes additional lateral position
sensors obsolete, which substantially decreases the system complexity. Furthermore,
as discussed in Chapter 3, the lateral feature position uncertainty Δx highly depends
on the distance the sample travels during the exposure. Increasing the exposure
time Texp can compensate for the small sample velocity v as shown in Eq. (3.6).
The linear stage and the camera can be operated using Matlab (The MathWorks,
USA).

4.3 Dimensionality reduction using PCA
The phrase ”the curse of dimensionality,” introduced by Richard Bellman [69],
describes the extraordinary rapid growth of complexity in problems as the number
of dimensions increases [70]. Since this is a common problem in the field of machine
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Figure 4.3: Experimental LTS. The optical fiber and the fiber collimator offer a
collimated laser beam, which is orientated perpendicular to the target.
The lens focuses the reflected spot on the CMOS camera chip. An
industrial LTS is used for calibration purposes.

learning and data science [71], a variety of dimensionality reduction (DR) algorithms,
such as principal component analysis (PCA), independent component analysis (ICA)
or linear discriminant analysis (LDA) are well known and often used [72]. For
normally distributed data, PCA is the most applicable since its problem formulation
is based on Gaussian distributions [73, 74].
An axial displacement of the sample leads to a lateral movement of the laser spot
on the camera, as discussed in Section 2.1.2. That means only one-dimensional
information is needed from the camera for displacement measurements. Since a
2D CMOS imaging sensor is used in the custom LTS as described in Section 4.2,
all the information spread along the axis perpendicular to the spot’s axis of mo-
tion is redundant. Hence, DR from 2D to 1D of the sensors pixel-information is
appropriate. A simple and computationally efficient DR approach is to use a linear
transformation

ξ = wTX, ξ ∈ R1×n,w ∈ R2,X ∈ R2×n, �w� = 1, (4.1)

where the transformation vector w transforms a number of n 2D coordinates X to
n 1D coordinates ξ. The transformation vector is chosen as a unity vector, so the
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Figure 4.4: Moving sample. The 3D-printed sample is mounted on a linear stage,
which allows linear motion with precise velocity.

transformation is scale invariant. Fig. 4.5 illustrates the DR principle using PCA.
The normalized first principle component w1 depicted in Fig. 4.5a is used as the
transformation vector. Note that the two principal components of the scattered
data are orthogonal. Applying Eq. (4.1) yields the transformed data ξ, as shown
in Fig. 4.5b. As can be seen, the scattered data gets projected on the axis of the
highest variance, and thus, the projected data contains the maximum information.

Since the laser’s spot profile is Gaussian, the spot on the camera will also be normally
distributed, which makes PCA the most suitable DR technique to determine the
transformation vector w. Since PCA is primarily used in data science and machine
learning, it is typically formulated for a set of scattered data containing n samples,
where each sample has m features, and the transformed n samples have k features,
where k < m. An image can also be interpreted as scattered data, having two
features, its pixel coordinates (a, b). The pixel values Ipx(a, b) can be interpreted
as the frequency of respective data points at the coordinates (a, b). As the primary
method for scattered data and image data is the same, it is first discussed for
scattered data and subsequently extended for image data.
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Figure 4.5: Dimensionality reduction of 2D scattered data. (a) shows 2D scattered
data points and its two principal components w1 and w2. The result,
after transforming the data onto the first principal axis w1, is depicted
in (b).

Given a dataset X ∈ Rm×n, with n samples, consisting of m features each, a
transformed data set ξ ∈ R1×n in a one-dimensional feature space is obtained by
applying Eq. (4.1). The transformation vector w is determined by solving the
optimization problem

w = argmax
�w�=1

var (ξ) , (4.2)

which maximizes the variance, and thereby the information, of the transformed data
ξ [75]. The mean value of the transformed data vector can be calculated as

µξ =
1

n

n�
i=1

wTXi = wTµX, (4.3)

with the mean value of the initial data µX. Using Eq. (4.1) and Eq. (4.3), the
variance of the transformed data is given as

var (ξ) =
1

n

n�
i=1

(ξi − µξ) (ξi − µξ)
T

=
1

n

n�
i=1

�
wTXi −wTµx

� �
wTXi −wTµx

�T
= wTSw,

(4.4)
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with the covariance matrix of the initial data S. Thus, the optimization problem
given in Eq. (4.2) can be solved by finding the solution of

∂

∂w

�
wTSw + λ

�
1−wTw

��
= 0, (4.5)

with λ being the Lagrangian multiplier. Solving the partial derivative and rearranging
yields the eigenvalue problem

Sw = λw. (4.6)
Therefore, the transformation vector w can be found by solving the eigenvalue problem
given in Eq. (4.6). Using the eigenvector corresponding to the largest eigenvalue λ
as the transformation vector w maximizes the variance of ξ. If the transformed data
should have k features, the eigenvectors of the first k eigenvalues are combined in a
transformation matrix W = [w1...wk], yielding the linear transformation

ξ = WTX, ξ ∈ Rk×n,W ∈ Rm×k,X ∈ Rm×n, k < m. (4.7)

Image data can be interpreted as scattered data, where the pixel value I(u, v) is
the frequency of occurrence of the respective datapoint at the coordinates (u, v).
Therefore, the total number of points is not described by the total number of pixels
on the imaging sensor but by the total sum of pixel values given as

N =
nu�
u=1

nv�
v=1

I(u, v), (4.8)

with the number of rows nu and the number of columns nv. The mean value µ of
the image data is given by

µ =
1

N

nu�
u=1

nv�
v=1



u
v

�
I(u, v), (4.9)

where, again, each pixel is weighted by its frequency I(u, v). Similarly, the co-
variance matrix S can be calculated by weighting each addend by its frequency,
yielding

S =
1

N

nu�
u=1

nv�
v=1

I(u, v)

�

u
v

�
− µ

�2

. (4.10)

The transformation vector w is obtained by solving the eigenvalue problem formulated
in Eq. (4.6) for the covariance matrix derived in Eq. (4.10).
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4.3.1 Identification of the principle component and transformed
pixel coordinates

In the case of an LTS, the axis of interest is the axis the spot moves along on the
camera due to an axial displacement of the sample. Therefore, in the first step, data
on spot positions for various axial displacements has to be acquired. A linear stage
(type: X-VSR20A-SV2, Zaber, Canada) operated in z-direction acts as sample with
adjustable height, as shown in Fig. 4.6.

Figure 4.6: Calibration setup. The linear z-stage acts as an adjustable sample. Both
spots of the industrial LTS are visible.

One hundred images for equally spaced displacements within the measurement
range are taken to acquire data over the full spot movement range. These pictures
are converted to real-valued images and added to obtain one cumulative image
representing the spot distribution over the full measurement range as depicted in
Fig. 4.7. The first principal component is determined by applying the procedure
described in Section 4.3, yielding the transformation vector

w =



0.9999
0.0111

�
, �w� = 1. (4.11)
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Figure 4.7: Cummulative image of the spots movement. The first principle component
is almost parallel to the a-axis.

The new 1D pixel coordinates ξ are obtained using Eq. (4.1). All possible 2D pixel
coordinate combinations are combined in the matrix X as

X =



1 . . . nu 1 . . . nu

1 . . . 1 2 . . . nv

�
, X ∈ R2×nunv , (4.12)

yielding a 1D coordinate vector ξ of length nunv. The entries of ξ are subsequently
sorted in ascending order. The sorted coordinates, as well as the sorted indices of ξ
prior to sorting, are saved.
A raw 2D image as depicted in Fig. 4.9a can now be transformed into a 1D repre-
sentation by reshaping the 2D data to a vector and sorting the entries according
to the coordinate vector’s previously saved sorted indices. The resulting image is
displayed in Fig. 4.9b. While the Gaussian intensity profile is visible, the plot looks
like an area plot. The transformation causes this artifact. Since all pixel coordinates
get transformed on the first principal axis, and all pixel values are assigned to the
new coordinates, pixel values from outside the spot, with a low intensity value, get
projected between pixels of the actual spots. This leads to periodically appearing
low intensity values between the high intensity values of the spot.
Furthermore, due to the angle of the projection axis, the transformed pixel coordinates
are not equidistantly spaced along the axis, which can lead to complications described
in Section 5.2. Equidistantly spaced data points are desired to make the 1D image
applicable for operations like linear filtering. This is achieved by binning the pixel
coordinates into equidistant bins with a distance of 1 between the respective bins. All
pixel values within one bin are summed up, resulting in the image shown in Fig. 4.9c.
As one can see, the Gaussian intensity profile is still clearly visible. The noise in the
intensity profile is mainly caused by speckles. While there exist methods to reduce
speckle noise, e.g., by integrating a moving diffuser mechanism in the optical path
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[30], such methods are not considered in this work as they would exceed the scope of
this thesis.
As discussed above and visible in Fig. 4.7, the projection axis is not precisely parallel
to either of the two coordinate axes. This is caused by a rotational alignment error of
the camera in the experimental LTS. Transforming the pixel data onto the projection
axis, the motion axis of the spot, compensates for this error, making the 2D camera
act as a perfectly aligned line camera.

4.4 Data driven system calibration
Since the relation between sample displacement and spot position on the camera is
non-linear (see Chapter 2) and alignment errors caused by manufcaturing uncertain-
ties cannot be neglected, a data-driven calibration approach is chosen to map the
spot’s COG to a displacement value. The COG of the spot is calculated similar to
Eq. (4.3) as

CoG =
1

nunv

nunv�
i=1

ξiI(ξi). (4.13)

Note that not the binned 1D image is used to calculate the COG, but the full
resolution 1D image (as in Fig. 4.9b) since the variable distance between pixel
coordinates and the low intensity pixels between the high intensity spot pixels do
not corrupt the calculation of the COG.
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Figure 4.8: System calibration results. The red dashed cubic spline model fits the
measurement data obtained by the industrial LTS.
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The same setup as explained in Fig. 4.6 is used for the calibration procedure. An
industrial LTS (type: optoNCDT1420, Micro-Epsilon, Germany) serves as a reference,
providing the ground-truth for displacement in z. Over a displacement range of
15mm 1000 measurements are taken. The displacement z over the COGs are
shown in Fig. 4.8 in solid blue. Using Matlab’s curve fitting toolbox, a cubic spline
model

z = M (CoG) (4.14)
is fitted to the calibration data. The resulting model is illustrated as a dashed red
line in Fig. 4.8. Looking at the dotted black linear reference, the nonlinearity of the
sensor system is clearly visible.
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(a) Raw image of the laser spot on the camera.

(b) Image data transformed into new pixel
coordinates ξ.
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(c) Binned transformed image data

Figure 4.9: DR of real image data. (a) depicts the raw image data of the laser spot on
the camera. The coordinate transformation yields the 1D representation
of the image in new pixel coordinates ξ as shown in (b). The obtained
equidistant pixel coordinates of the transformed data is binned, yielding
the results depicted in (c).





CHAPTER 5

Analysis of measurements on edge features

Before analyzing measurements on moving samples, the effects of measuring statically
on a sharp edge are investigated in the first step. Since the raw image data and
the transformed 1D image data are affected by noise caused by speckling, image
transformation, and binning, two ways for denoising and describing the obtained
intensity distribution are discussed. Subsequently, the causes for the obtained
intensity distribution are investigated and modeled.

5.1 Static measurements
A 3D printed structure containing a sharp edge with a height of 2mm is used as
a sample. As the laser spot moves over the edge, both the upper (d1) and lower
(d2) part of the structure, prior to and after the edge, get illuminated by the laser
as illustrated in 5.1a. Therefore, two areas on the imaging sensor correspond to
the respective heights and are expected to be illuminated by the reflected light as
depicted in 5.1b. The higher the edge, the larger the separation between the two
points. Looking at 5.1b, an offset in the v direction between the two reflected spots
(P1 and P2) is visible. This is not caused by misalignments but by the geometric
arrangement of the components. The red dotted lines indicate the path of the
reflected light, showing the offset in the v direction of the sample’s surface before
and after the edge.
The result of an actual measurement on the sample’s edge is shown in Fig. 5.2.
Two spots with their COGs representing the sample’s surface height are visible in

41
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(a) (b)

Figure 5.1: Schematic illustration of a measurement on an edge. (a) shows the laser
illuminating the sample’s surface before and after the edge. (b) Two
spots, with an offset in v direction, are reflected onto the imaging sensor.

Fig. 5.2a. As shown in Fig. 4.8, a COG at a lower pixel coordinate corresponds to a
smaller sample height. Hence, the spot on the left in Fig. 5.2a results from a smaller
sample height than the spot on the right. The spot on the right side being offset
to higher v coordinates than the left spot indicates that the area of a larger sample
height is located at a larger x coordinate than the area of a smaller sample height.
This corresponds to the schematic illustration in Fig. 5.1.
When the sample is moved past the LTS, the surface at d1 is illuminated, resulting
in a spot P1 on the imaging sensor. After the edge passed the LTS, a spot P2,
corresponding to d2, will be detected on the imaging sensor. During the transition,
i.e., when measuring on the edge, there is no smooth transition from P1 to P2 on the
imaging sensor. Since the u axis represents axial displacements in the z direction
and the measurement is performed on a sharp edge, spot P2 appears, and spot P1

disappears as the sample moves. The intensity on the sensor is dependent on the
laser intensity the respective sample area is exposed to, since only the reflected light
from the sample’s surface is detected on the imaging sensor.
The two spots are appearing as intensity peaks in the transformed 1D image in
Fig. 5.2b. Speckling, caused by the coherent light source, mainly contributes to the
considerable measurement noise. The image transformation itself also contributes to
the noise, as discussed in Section 4.3.1. However, by binning the unevenly spaced
transformed pixel coordinates to evenly spaced intervals and summing up the pixel
values within the bins, this effect can be mitigated to a large extent. To reduce
the speckle noise and to describe the obtained intensity distribution, further data
processing steps are necessary.
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(a) Raw 2D camera image
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(b) Transformed 1D image

Figure 5.2: Image data taken on a sharp edge. (a) shows the raw 2D image obtained
by the imaging sensor. Two spots, each representing one side of the edge,
are visible. The transformed image in (b) also shows two visible double
peaks. Both peaks appear to have Gaussian shapes.

5.2 Description of the intensity distribution
Since the fiber collimator at the optical fiber output emits a collimated beam with a
Gaussian intensity profile, it is a reasonable assumption that the intensity profile
on the imaging sensor will also be normally distributed. This assumption is further
backed up by the intensity distribution shown in Fig. 5.2b. It appears to be the
combination of two Gaussian normal distributions. Therefore, Gaussian models
are chosen to describe the intensity profile on the imaging sensor. Additionally, a
matched filter approach is discussed, as a complete model of the intensity profile is
not always needed to correct the lateral edge position.

5.2.1 Gaussian modelling
Choosing the suitable Gaussian model to describe the obtained data from the imaging
sensor is crucial for the subsequent feature position correction step (see Chapter 6).
As shown in Fig. 5.2, when measuring on an edge, the intensity profile in Fig. 5.2b
has the shape of two superimposed Gaussian distributions. On the other hand, when
measuring on a flat surface as shown in Fig. 5.3, the intensity profile can be described
as one single Gaussian distribution. Therefore, when fitting a Gaussian model to the
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Figure 5.3: Spot profile obtained from a flat surface measurement. (a) shows the raw
2D data from the imaging sensor, while the transformed and binned 1D
image is displayed in (b).

image data, it is first modeled as a single Gaussian normal distribution

N (x|µ, σ) = 1

σ
√
2π

e
− 1

2

�
x−µ
σ

�2

. (5.1)

The mean value µ and the standard deviation σ are the parameters to be esti-
mated.

5.2.1.1 Gaussian model on flat surfaces

The parameters µ and σ appear nonlinearly in the Gaussian normal distribution given
in Eq. (5.1). Therefore, a nonlinear optimization problem must be solved to estimate
these parameters. One approach would be to minimize the squared error of the
measured intensity distribution on the imaging sensor and the modelled distribution.
Another possibility would be to tackle the problem from a probabilistic theory point
of view. Both approaches are discussed and compared in the following.

Nonlinear least squares (NLSQ) fit
The parameters can be estimated by minimizing the squared deviation between
the obtained image data and the modeled intensity distribution. In general, the
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optimization problem [76]

Θ = argmin
Θ

J (I(ξ), ξ,Θ) , (5.2)

has to be solved for the parameters

Θ =


µ
σ
d
g

 . (5.3)

The sum of squared errors between the image data and the intensity model is used
as the cost function

J (I(ξ), ξ,Θ) =
1

2
(I(ξ)− (d+ gN (ξ|µ, σ))) (I(ξ)− (d+ gN (ξ|µ, σ)))T . (5.4)

Despite the Gaussian normal distribution in Eq. (5.1) having only the two parameters,
µ, and σ, to be estimated, two additional parameters d and g are needed for the
NLSQ. The Gaussian normal distribution N (ξ|µ, σ) is normalized to have a total
area of 1. Thus, the additional parameter g is used as a gain factor to match the image
data. Offsets caused by dark currents of the sensor and background illumination
are compensated for by the offset parameter d. This doubles the dimensionality of
the optimization problem, excessively increasing the complexity of the problem [69,
77], which is a significant drawback of this approach. Furthermore, the choice of
initial values for the optimization algorithm significantly impacts the convergence
properties of the NLSQ fit. A suitable choice of initial parameters Θ0, which chooses
them already close to the optimal value is

µ0 = argmax
ξ

(I (ξ)) , (5.5a)

σ0 = 35, (5.5b)
d0 = 0, (5.5c)

g0 =
max (I (ξ))

N (µ0|µ0, σ0)
. (5.5d)

The initial mean value µ0 is the pixel coordinate ξ at which the highest intensity value
occurs. The initial standard deviation value σ0 = 35 is chosen based on empirically
determined values for the experimental setup configuration. Since the offset errors
cannot be determined and are expected to be minor, a zero value is chosen for the
initial offset d0. The initial gain g0 is chosen, such that the maximum value of the
initial Gaussian model and the maximum measured intensity are equal.
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Fig. 5.4 shows the results of NLSQs fits. As one can see, if the initial parameters are
chosen according to Eq. (5.5), the model fits the image data very well. However, if the
initial values deviate too much from the optimal values, the optimization algorithm
converges to a local minimum, which does not fit the image data satisfactorily. As
displayed in Fig. 5.4 an initial standard deviation of σ0 = 60 results in the red dotted
line, which mean value fits the image data, but the standard deviation converged
to an even larger value. For measurements on perfectly flat surfaces with known
constant illumination and surface conditions, the nominal standard deviation σ0

can be determined empirically, as done in Eq. (5.5). If, for example, the surface
condition, such as the sample’s reflectivity, changes or if the sample is slightly tilted,
the obtained intensity profile on the imaging sensor would show a larger standard
deviation. As these conditions are not known during the NLSQ fit, it would lead
to a significant deviation between the initial values of the optimization parameters
Θ0 and the true parameters, and thus, leading to a poor NLSQ fit performance.
Therefore, this approach only applies under well-known conditions, which cannot be
guaranteed, especially in detecting defects in produced goods.

500 550 600 650 700 750 800 850 900 950 1,000
0

1

2

3

4
·105

ξ in a.u.

I p
x

in
a.

u.

Image data
Θ0 according to (1.5)
σ0 = 60

Figure 5.4: Result of an NLSQ fit on a flat surface measurement. The choice of initial
parameters has a significant impact on the convergence properties. The
dashed black line shows the result for initial values that are close to the
optimum, while the red dotted line shows the bad result for a standard
deviation chosen too large.

Maximum likelihood estimation (MLE)
To overcome the previously discussed drawbacks of NLSQ fits for Gaussian models,
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an approach that incorporates probabilistic theory methods is discussed in this
section. An efficient way to estimate the parameters of Gaussian distributions is the
maximum likelihood estimation (MLE) [77, 78]. It maximizes the probability of a
set of datapoints X containing N samples, given the parameters Θ = [µ, σ]T. It is
assumed that the data points are normally distributed. Therefore, the probability
of a single datapoint xn, given the parameters µ and σ, is obtained using Eq. (5.1).
To get the probability of the whole dataset X, the joint probability is given by the
product of single datapoint probabilities as

p (X|µ, σ) =
N�

n=1

N (xn|µ, σ) , (5.6)

assuming that the probabilities of the data points xn are independent. Since the
probability density function (PDF) given in Eq. (5.1) contains an exponential function,
it is convenient not to maximize the joint probability in Eq. (5.6), but to maximize
the loglikelihood function

l(Θ) = ln p (X|Θ)

= ln
N�

n=1

N (xn|µ, σ)

=
N�

n=1

�
− ln

�
σ
√
2π

�
− 1

2σ2
(xn − µ)2

�
,

(5.7)

instead, as the exponential function gets eliminated. This is valid since the nat-
ural logarithm is a strictly monotonically increasing function. The optimization
problem

Θ = argmax
Θ

l(Θ) (5.8)

is solved by evaluating the zeros of the gradient

∂

∂µ
ln p (X|µ, σ) =

N�
n=1

1

σ2
(xn − µ) = 0, (5.9a)

∂

∂σ
ln p (X|µ, σ) =

N�
n=1

�
− 1

σ
+

(xn − µ)2

σ3

�
= 0. (5.9b)
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Solving Eqs. (5.9a) and (5.9b) for µ and σ, respectively, yields the optimal set of
parameters

µ =
1

N

N�
n=1

xn, (5.10a)

σ2 =
1

N

N�
n=1

(xn − µ)2 . (5.10b)

Similar to the problem discussed in Section 4.3, this approach is tailored for scattered
data, where each datapoint is located at a coordinate xn. In the case of estimating
the distribution of intensities on the imaging sensor, these coordinates have to
be weighted with the measured intensity values I(ξn), as described in Section 4.3.
Substituting the weighted pixel coordinates I(ξn)ξn for the datapoints xn yields the
optimal parameters

µ =
1

Itot

N�
n=1

I (ξn) ξn, (5.11a)

σ =
1

Itot

N�
n=1

I (ξn) (ξn − µ)2 , (5.11b)

with the total intensity on the imaging sensor

Itot =
N�

n=1

I (ξn) . (5.12)

Since MLE estimates distribution parameters of scattered data, it is unnecessary to
work with the binned equidistant pixel coordinates. The algorithm performs even
better when using the full transformed image data (see Fig. 4.9b), since more data
points are available for the parameter estimation.
Fig. 5.5 shows the result of a Gaussian MLE fit of a spot obtained on a flat surface.
The estimated parameters are given in Table 5.1. As one can see, the Gaussian
model fits the obtained image data very well. Note that for the image data and the
modeled distribution, two different ordinates are used since the model is normalized
to have a cumulative density of� ∞

−∞
N (x|µ, σ)dx = 1. (5.13)
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In contrast to the NLSQ approach, no a priori intensity distribution information is
needed to estimate the parameters. As one can see in Eqs. (5.11a), (5.11b) and (5.12),
only the pixel coordinates ξn and the corresponding measured intensity values I(ξn)
are needed. Therefore, as long as the intensity profile on the imaging sensor is
normally distributed, this approach outperforms the NLSQ approach due to its
robustness.
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Figure 5.5: Results of the parameter estimation using MLE. As the image data is
normally distributed, the estimated normal distribution fits the image
data very well. Note that the estimated model is normalized and not to
scale with the image data. Hence, a second ordinate is introduced.

Table 5.1: Estimated parameters of the MLE approach.
Parameter Value

µ 735.193
σ 33.534

5.2.1.2 Gaussian mixture model (GMM) on edges

While the MLE algorithm for single Gaussian normal distributions performs well on
flat surfaces, it quickly approaches its limit when the measurement is conducted on the
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edge of the sample. Since the intensity distribution on the imaging sensor is no longer
normally distributed as shown in Fig. 5.2b, a single normal distribution is no longer
suitable to model the intensity distribution. Looking at Fig. 5.2b, the transformed
image appears to consist of two Gaussian distributions combined with different
weights. Thus, the model given in Eq. (5.1) is extended to a Gaussian mixture model
(GMM) [79], a superposition of weighted normal distributions

GMM(X|Θ) = p (X|Θ) =
K�
k=1

πkN (X|Θk) . (5.14)

with the parameters

Θ =

Θ1
...

ΘK

 =



µ1

σ1

π1
...

µK

σK

πK


, (5.15)

K Gaussian normal distributions, each parametrized by the respective mean value
µk and standard deviation σk are weighted with a weight πk and added up. The
weighting factor πk is called the prior of the respective Guassian component and is
constrained to

K�
k=1

πk = 1, 0 ≤ πk ≤ 1, (5.16)

assuring that the cummulative probability of the GMM is normalized as� ∞

−∞
p (x|Θ) dx =

� ∞

−∞

K�
k=1

πkN (x|Θk) dx

= π1

� ∞

−∞
N (x|Θ1) dx� �� �

=1

+ . . .+ πK

� ∞

−∞
N (x|ΘK) dx� �� �

=1

=
K�
k=1

πk = 1.

(5.17)
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Equally as in the single Gaussian model, the parameters are obtained by solving the
optimization problem stated in Eq. (5.8) with the loglikelihood function

l(Θ) = ln p(X|π,µ,σ) =
N�

n=1

	
ln

	
K�
k=1

πkN (xn|µk, σk)

��
. (5.18)

Solving the optimization problem for a GMM is more complex than solving it for
a single Gaussian distribution. Setting the derivatives to zero does not yield a
closed-form solution for the parameters [77]. Therefore, a different approach, namely
the expectation-maximization (EM) algorithm for GMM [80–83] is used to estimate
the parameters iteratively. As the name suggests, the EM algorithm consists of
two steps: the E-step (expectation) and the subsequent M-step (maximization).
The calculations needed in the EM algorithm can be derived by maximizing the
loglikelihood function for each parameter.
Setting the partial derivative of Eq. (5.18) with respect to µk to zero leads to

∂

∂µk

l(Θ) → 0 = −
N�

n=1

πkN (xn|µk, σk)�K
j=1 πjN (xn|µj, σj)� �� �

γn,k

σ2
k(xn − µk). (5.19)

Dividing by σ2
k and rearanging yields the solution for µk

µk =
1

Nk

N�
n=1

γn,kxn. (5.20)

The posterior probability, or responsibility

γn,k = p (wk|xn,Θ) =
p(wk)p(xn|Θk)

p(xn|Θ)
=

πkN (xn|µk, σk)�K
j=1 πjN (xn|µj, σj)

, (5.21)

describes the probability of a Gaussian component wk, given a datapoint xn and the
current parameters Θ. Alternatively, in other words, it expresses the probability that
a datapoint xn, given the current parameters Θ, belongs to the Gaussian component
wk. Since it “expects” which Gaussian component wk contains the datapoint xn,
based on the current parameters Θ, this calculation is called the expectation step,
or E-step. The variable Nk can be interpreted as the number of points, which are
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part of the respective Gaussian component as is calculated as

Nk =
N�

n=1

γn,k. (5.22)

Using the responsibility, the mean value of the respective component µk can be
interpreted as a weighted mean value, with the responsibilities acting as the weights
as shown in Eq. (5.20).
Similar to the calculation of the mean values, the standard deviations σk can be
calculated by setting the partial derivative of the loglikelihood function with respect
to σk to zero and subsequently solving the equation for σk. Using Eqs. (5.21)
and (5.22), yields

σ2
k =

1

Nk

N�
n=1

γn,k (xn − µk)
2 , (5.23)

which is also a weighted form of the standard variance formula.
To derive the optimal parameter πk, the constraint in Eq. (5.16) is considered through
a Lagrange multiplier in the maximization function

ln p(X|Θ) + λ

�
K�
k=1

πk − 1

�
. (5.24)

Setting the partial derivative to zero yields

∂

∂πk

�
ln p(X|Θ) + λ

�
K�
k=1

πk − 1

��
→ 0 =

N�
n=1

N (xn|µk, σk)�K
j=1 πjN (xn|µj, σj)

+ λ. (5.25)

By multplying both sides with πk and summing up over all k, the Lagrange multiplier
can be determined as λ = −N and subsequently the priors result as

πk =
Nk

N
. (5.26)

Since πk are the prior probabilities of the respective Gaussian components, they
can intuitively be interpreted as the proportion of the total number of points N
belonging to the respective component.
Despite solutions that can be derived as shown above, the equations presented in
Eqs. (5.20), (5.23) and (5.26) are not a closed-form solution since they all depend on
the responsibilities given in Eq. (5.21). The responsibilities, however, depend on the
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parameters that should be estimated. Therefore, the maximization problem has to
be solved iteratively in the following steps.

1. Initialization
A good choice of initial parameter values significantly improves the convergence
speed of the EM algorithm and prevents it from converging to a suboptimal
local loglikelihood maximum. Since the GMM is used on measurements on
edges, two Gaussian components (K = 2), one for each surface on either side of
the edge, are sufficient. Initially, the priors πk are chosen to be equal, so both
components are weighted equally. The standard deviations σk are also chosen
equally and set to the standard deviation of the whole intensity distribution
according to Eq. (5.11b). To choose initial mean values muk, some a priori
knowledge of the intensity profile can be used. Since the highest intensity in
the image data is expected to coincide with the mean value of one Gaussian
component, the first initial mean µ1 is chosen to be the pixel coordinate ξ at
which the highest intensity value I(ξ) occurs. The second mean value µ2 is
set to the pixel coordinate with the largest weighted squared distance to µ1.
Therefore, the initial parameters for the EM algorithm result as

µ
(0)
1 = argmax

ξ
I(ξ) (5.27a)

µ
(0)
2 = argmax

ξ

I(ξ)(ξ − µ1)
2

Itot
(5.27b)

σ
(0)
1 = σ

(0)
2 =

1

Itot

N�
n=1

I (ξn) (ξn − µ)2 (5.27c)

π
(0)
1 = π

(0)
2 =

1

K
=

1

2
(5.27d)

with µ being the total mean value of the image data according to Eq. (5.11a)
and Itot being the sum of intensity values given in Eq. (5.12). The superscripted
zero marks the parameters as initial values. From now on, currently available
old parameters are marked with a “-”, and updated parameters are indicated
with “+”.

2. E-step
In the expectation step, the responsibilities, meaning the probabilities of points
xn belonging to a Gaussian component wk given the current parameters, are
calculated. Similarly to the MLE in the one-dimensional case, scattered data



54 5.2. Description of the intensity distribution

is imitated using the intensity I(ξ) as the frequency of a pixel coordinate ξ.

γn,k =
π−
k N

�
ξn|µ−

k , σ
−
k

��2
j=1 π

−
j N

�
ξn|µ−

j , σ
−
j

� (5.28a)

Nk =
N�

n=1

I (ξn) γn,k (5.28b)

3. M-step
In the maximization step, the loglikelihood function is increased by calculating
the optimal parameter values derived previously, using the responsibilities
obtained in the E-step and the current parameters as

µ+
k =

1

Nk

N�
n=1

γn,kI(ξn)ξn, (5.29a)

σ+
k =

1

Nk

N�
n=1

γn,kI(ξn)
�
ξn − µ+

k

�2
, (5.29b)

π+
k =

Nk

Itot
. (5.29c)

4. Evaluation
Using the updated parameter values, the loglikelihood function

l(Θ+) =
N�

n=1

	
ln

	
2�

k=1

π+
k I(ξn)N

�
ξn|µ+

k , σ
+
k

���
. (5.30)

is evaluated. If the condition

l(Θ+)− l(Θ−) < Δl, (5.31)

with a threshold Δl is fulfilled, the loglikelihood function does not change sig-
nificantly with updated parameters, and thus, the EM algorithm has converged
and is terminated. The next iteration starts at step 2 if the condition is not
fulfilled.

As the EM algorithm uses a probabilistic approach to determine the model parameters,
the pixel coordinates do not have to be equidistantly spaced. Therefore, to improve
the fit performance, the whole transformed 1D image data, not the binned image data,
is used to estimate the parameters. The computation time can be significantly reduced
by thresholding the intensity values and omitting all values below the threshold. In
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Fig. 5.6, the result of a GMM fit is shown, with the estimated parameters given
in Table 5.2. Each Gaussian component represents one reflected spot from either
side of the edge. The combination of the two components fits the obtained intensity
profile.

Table 5.2: Estimated parameters of the GMM shown in Fig. 5.6.
Gaussian component πk µk σk

component 1 0.656 594.824 37.698
component 2 0.344 732.330 34.717

The intensity detected by the imaging sensor is reflected from the sample’s surface.
Therefore, when measuring on an edge, the higher the laser intensity on the sample’s
surface on one side of the edge, the higher the detected intensity peak on the
imaging sensor corresponds to this sample height. Thus, the proportion of the laser
power reflected from one sample height can be determined using the intensity profile
obtained by the imaging sensor. Using a GMM, the power proportion reflected from
one sample height can be obtained by integrating over one Gaussian component.
The property in Eq. (5.17) comes in handy, as the integral simplifies to the prior πk.
Hence, the intensity proportions are determined as

P1,sample

Ptot,sample

= π1, (5.32a)

P2,sample

Ptot,sample

= π2, (5.32b)

with the total laser power on the sample Ptot,sample and the power on the respective
sample height P1,sample and P2,sample.

5.2.2 Matched filter
Determining the proportional laser power on either side of the sample does not
necessarily require a GMM of the image data. One could add up the measured
intensities corresponding to the respective sample height. The local minimum between
the two intensity peaks can be used as a threshold to distinguish between the sample
heights before and after the edge. In the GMM, this local minimum is the transition
point between the Gaussian components, as clearly visible in Fig. 5.6. However, the
noise in the image data impedes the detection of the local minimum. Therefore, a
filter has to be designed to denoise the signal.
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Figure 5.6: GMM fit of the measurement data. The GMM in black fits the complete
shape of the intensity profile. Each Gaussian component represents one
intensity peak caused by the varying sample heights on either side of the
edge.

It would be sufficient for the filtered signal to detect the intensity peaks and the local
minimum in between, as the power related to two different sample heights can be
obtained by summing up the intensity values to the left and right of the minimum,
respectively. Since, as discussed previously, the shape of an intensity peak on the
imaging sensor can be expected to be Gaussian, a matched filter approach is suitable
for this application [84, 85]. A Gaussian function N (Xf |µf , σf ) with its parameters
given in Table 5.3 is used as the filter kernel. Note that the kernel is zero-centered
to avoid offsets in the resulting signal. A value of µf other than zero would result in
an offset of µf in ξ-direction in the filtered intensity distribution. As shown above
in Tables 5.1 and 5.2, an intensity peak on a flat surface typically has a standard
deviation of approximately 35 for the chosen system configuration. To avoid overlaps
with the second maximum, the filter kernel’s standard deviation is three times smaller
as σf = 10. Smaller values of σf would cause less noise reduction, while higher
values would blur the two peaks. As 99.99% of all points in a normal distribution
are within ±4σ, the sampling points of the filter Xf are chosen to be in the interval
[−4σ . . . 4σ]. The filtered intensity profile is calculated by multiplying the Fourier
transform of the image data with the conjugate complex Fourier transform of the
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matched filter and subsequent inverse Fourier transforming as

If (ξ) = F−1 {F {I(ξ)}F∗ {N (Xf |µf , σf )}} . (5.33)

The resulting filtered intensity profile is depicted in Fig. 5.7. Using the matched
filter approach, the noise data gets smoothed, and the denoised intensity profile is
clearly visible in dashed black.

Table 5.3: Parameters of the matched filter kernel.
Parameter Value

µf 0
σf 10
Xf −4σf . . . 4σf
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Figure 5.7: Filtered image using the matched filter. The raw data gets denoised and
a smooth envelope curve, shown in black, is obtained. Using the denoised
data, the local minimum between the peaks, shown in red, is identified.

Using the filtered data, the local minimum between the two intensity peaks can now
be identified by searching for the local minimum with the highest prominence. The
prominence of a local minimum is defined as the distance to the lowest adjacent local
minimum value [86, 87]. To avoid the detection of ambiguous minima, an additional
minimum prominence with an empirically determined value of 50 is used as a lower
bound. The red dot in Fig. 5.7 indicates the detected minimum at the location
ξm = 674.
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The detection of the local minimum is sufficient to determine the proportional power
of the peaks. Summing up the intensity values of the measured intensity profile to
the left and the right of the minimum, respectively, yields the proportional laser
power on the sample

P1,sample

Ptot,sample

=

�m
n=1 I(ξn)�N
n=1 I(ξn)

, (5.34a)

P2,sample

Ptot,sample

=

�m
n=m+1 I(ξn)�N
n=1 I(ξn)

. (5.34b)

5.3 Dynamic measurements

Due to the function principle of CMOS imaging sensors (see Section 2.2.2), a pixel
value is proportional to the integral value of the received light flux during the exposure
time

I(ξ) ∝
� Texp

0

Φe(t)dt, (5.35)

with the radiant flux Φe. Therefore, if the sample height changes during the exposure
time, a larger area of the imaging sensor gets exposed, yielding a non-Gaussian
intensity distribution on the sensor due to motion blur. However, the sample height
does not change when measuring on a flat, moving surface. Hence, the spot location
on the imaging sensor stays constant during the exposure. Solely, the speckle pattern
gets blurred by the motion, yielding an overall speckle noise reduction [30]. Therefore,
when an edge feature moves past the LTS, both illuminated sample heights, before
and after the edge, result in a spot on the imaging sensor. Since the change in height
occurs instantaneously, two spots are detected. The obtained intensity distribution
cannot be distinguished from a static measurement on an edge. Thus, all methods
mentioned above to analyze the intensity distribution can also be used for dynamic
measurements on moving samples.
As both the GMM model and the matched filter approach can determine the pro-
portional laser power on each sample surface, this information can determine the
lateral edge position within the distance the sample moves during the exposure time.
However, since the fiber collimator outputs a collimated beam with a Gaussian in-
tensity profile, the laser power is not homogenously distributed on the sample. Thus,
a model of the intensity distribution on the moving sample is required.
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5.3.1 Modelling the laser intensity distribution on the sample

According to the fiber collimator’s datasheet, the emitted beam has a Gaussian
intensity profile with a waist diameter of d = 0.8mm. As the collimator is aligned
perpendicular to the flat sample surface, the intensity profile at the static sample
can be modeled as a symmetrical Gaussian normal distribution

Ispot(x, y) =
1

2πσ2
e

�
− 1

2
(x−x0)

2+(y−y0)
2

σ2

�
, (5.36)

with the spot center (x0, y0). The waist diameter is the 1/e2 diameter, which means
the diameter at which the power is reduced to a factor of 1/e2 from the maximum
power. Using the symmetry of Eq. (5.36), y can be set to y0, and thus, the standard
deviation σ can be determined by solving

1

2πσ2
e
− 1

2

�
d
2σ

�2

=
1

2πσ2
e−2 (5.37)

for σ. This results in a standard deviation of

σ =
d

4
. (5.38)

However, the effective spot size that the imaging sensor detects is expected to be
smaller than the spot size on the sample since the intensity of light reflected from
a point further away from the spot’s center is too low to be detected. Thus, the
effective spot size on the sample that contributes to the spot on the imaging sensor
must be determined. In the first step, the model of the spot in Eq. (5.36) can be
simplified to a one-dimensional Gaussian distribution function. Since the edges of
the sample are expected to occur perpendicular to the movement direction x as
illustrated in Fig. 5.1, the intensity that is reflected from a line in y direction at a
constant position x corresponds to the same height measurement on the imaging
sensor. Thus, by integrating the intensity over y, the one-dimensional length-related
power is obtained as

Ispot(x) =

� ∞

−∞

1

2πσ2
e

�
− 1

2
(x−x0)

2+(y−y0)
2

σ2

�
dy =

1

σ
√
2π

e−
(x−x0)

2

2σ2 . (5.39)

Static measurements on an edge are conducted to estimate the effective spot size.
The respective proportional power that is reflected from the surface before (d1) and
after edge (d2), is determined using the previously introduced GMM. The prior π2

equals the light’s proportional power, reflected from the surface d2 after the edge
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as shown in Eq. (5.32). As the edge moves past the laser spot, more power gets
reflected from d2, and the power at P2 increases. Thus, by taking images for various
lateral displacements x and deterimining the parameters of the GMM, the cumulative
distribution function (CDF) of the laser power on d2

Pspot(x) =

� x

−∞
Ispot(τ)dτ =

� x

−∞

1

σ
√
2π

e−
(τ−x0)

2

2σ2 dτ =
1

2
+

erf
�√

2(x−x0)
2σ

�
2

, (5.40)

can be determined. The obtained CDF is displayed in Fig. 5.8. While the blue line
shows the obtained values of the prior π2, and thus the proportional power reflected
from d2, the black line shows the fitted model given in Eq. (5.40). The parameters
x0 and σ are estimated using NLSQ parameter estimation. While the mean value
x0 is only used as an offset in x-direction, the estimated standard deviation of
σeff = 0.0834mm yields the intensity distribution shown in blue in Fig. 5.9 with
an effective spot diameter of deff = 0.3336mm. Surface defects on the 3D-printed
sample cause the outliers of the measured power.
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Figure 5.8: Identification of the effective spot size. The modeled normalized power
distribution fits the measured distribution. Surface defects on the sample
cause the outliers in the measured power distribution.

As the sample is moving at the velocity v in x-direction, the center of the laser spot
on the sample travels the distance

Δx = vTexp� �� �
Δxexp

+ v (TADC + Tcam)� �� �
Δxblind

, (5.41)
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during one frame, as discussed in Section 3.1. Since the obtained image results solely
from the sample surface illuminated by the laser during the exposure time Texp, only
the travel distance Δxexp is relevant for the model. The intensity distribution on the
moving sample can be modeled as a convolution of the spot profile Ispot(x) over the
traveled distance Δxexp, resulting in

Isample(x) =
1

Δxexp

� x0+Δxexp

x0

1

σ
√
2π

e−
(x−x0−τ)2

2σ2 dτ

=
erf

�√
2(x−2x0)

2σ

�
+ erf

�√
2(2x0+Δxexp−x)

2σ

�
2Δxexp

.

(5.42)

The red dotted line in 5.9 illustrates the modeled intensity distribution for a travel
distance of Δxexp = 0.5mm, starting at x = 0mm. To obtain the power on the
sample, the intensity distribution derived in Eq. (5.42) is integrated, resulting
in

Psample(x) =

� x

−∞
Isample(τ)dτ

=
σ
�
e−α2 − e−β2

�
√
2πΔxexp

+

(x− 2x0) erf(α) + (x− 2x0 −Δxexp) erf(β) + Δxexp

2Δxexp

,

(5.43)

where

α =
(x− 2x0)√

2σ
, (5.44a)

β =
(−x+ 2x0 +Δxexp)√

2σ
. (5.44b)

The resulting power Psample(x) is the resulting power of the intensity distribution
Isample(x) until the point x, shown in dotted black in Fig. 5.9. If an edge is located
at a location x1 = 0.3mm, the surface area at a distance d1 located before the edge
is exposed to the power P1 = Psample(x1) = 0.602, as illustrated in Fig. 5.9. The area
after the edge, at a distance d2, is exposed to the power P2 = 1−P1 = 0.398.
Knowing the modeled intensity- and power distribution on the sample, as well as
the measured proportional power of the peaks on the imaging sensor, the lateral
position of an edge within the interval [x0, x0 +Δxexp] can now be determined, with
the correction procedure being described in detail in Chapter 6.
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Figure 5.9: Model of the intensity distribution on the sample. On a static sample,
the intensity has a Gaussian distribution shown in blue, while on the
moving sample, it is spread along the traveled distance as shown in red
dashed. Integrating the red intensity distribution results in the power on
the sample shown as the black dotted line.



CHAPTER 6

Lateral feature correction

The previously derived methods for DR (see Section 4.3) and to analyze the intensity
distribution on the imaging sensor (see Chapter 5), are now used to estimate the
true edge location on a moving sample. Correcting the lateral feature location
is performed in a postprocessing step and consists of the following sequentially
performed steps:

1. Raw data preprocessing
The raw 2D images are converted to 1D intensity profiles using PCA based
DR. These intensity profiles are analyzed, and features, such as the distance to
the sample and proportional peak power, are extracted using a combination of
filtering, 1D MLE and GMMs.

2. Detection of edge frames and edge types
Frames obtained at the location of an edge are detected and classified into
various edge types. The frame for the correction step is selected based on the
respective edge type.

3. Estimation of the true edge location
Using the features extracted in step 1, the edge location in the selected frame
is estimated. The resulting data point at the estimated edge location is added
to the existing measurement.

63
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6.1 Raw data preprocessing

Before the correct edge locations can be estimated, the imaging sensor’s raw data must
be preprocessed. The sequential steps performed in the preprocessing are illustrated
in Fig. 6.1. As one can see, in the first step, the 2D images are transformed into 1D
intensity profiles using the DR method described in detail in Section 4.3.
Subsequently, key features, namely the distance to the target and the proportional
power of the peaks, are extracted using the methods described in Section 5.2, of
which the matched filter approach is the computationally cheapest. Furthermore,
it provides the real measured power of the respective peak since the true measured
intensity values are summed up. Therefore, it is used first to search for local minima
in the intensity profile. In some cases, multiple local minima are detected due to
excessive noise, contamination of the sample, or surface defects. If so, the minimum
having the highest prominence is selected, and the intensity values to the left and
the right of the minimum are summed up to obtain the proportional powers of each
peak, π1,2, respectively. As mentioned in Section 3.2, the highest intensity peak is
used to determine the distance to the sample surface. The location of the intensity
maximum ζ is determined to sub-pixel accurarcy by Gaussian interpolation [88, 89]
as

ζ =
ln(ξmax − 1)− ln(ξmax + 1)

2 [ln(ξmax + 1)− 2 ln(ξmax) + ln(ξmax − 1)]
, (6.1)

with the pixel coordinate of the maximum measured intensity ξmax obtained as

ξmax = argmax
ξ

If(ξ), (6.2)

of the filtered intensity profile If (ξ). Using the interpolated location of the maximum
and the cubic spline model M, derived in Section 4.4, yields the distance to the
sample surface

d = M (ζ) . (6.3)

In some cases, if one peak is significantly higher than the other, no local minimum
can be detected, even though the measurement is conducted on an edge feature.
Therefore, if no minimum is found, a 1D MLE fit of a Gaussian normal distribution is
performed in the next step. The 1D MLE is the only one of the three used algorithms
to determine whether the measurement was conducted on an edge feature or a flat
surface. Since it is assumed that the sample surface is aligned perpendicularly to the
laser beam and the laser beam is collimated, a constant spot size on the imaging
sensor for an arbitrary distance to the sample is expected. Thus, when the standard
deviation σ of the 1D MLE Gauss fit exceeds a threshold of σmax = 50, it can be
expected that the measurement was conducted on an edge feature. Otherwise, the
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Figure 6.1: Flowchart of the preprocessing algorithm. The raw 2D image is converted
to the 1D intensity profile using PCA. A combination of the methods
introduced in Section 5.2 is used to obtain the measurement value and
the proportional peak powers.
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measurement was performed on a flat surface. In the latter case, the distance to the
sample d is determined by

d = M (µ) , (6.4)
with the mean µ of the MLE fit.
If σ exceeds the threshold, two intensity peaks are expected. Using a GMM fit,
the proportional power of the peaks π1,2 are immediately received as estimated
parameters. However, the location of the GMM’s peaks does not necessarily coincide
with the estimated means µ1,2. Therefore, the location of the maxima is determined
by solving the optimization problem

ζ1,2 = argmin
ζ

{−GMM(ζ|Θ)} , ζ0 = µ1,2, (6.5)

with the GMM given in Eq. (5.14), where the two maxima ζ1,2 are determined by
running the optimization two times with the starting values ζ0 = µ1,2, respectively.
The distance ultimately results as

d = M
�
argmax

ζ1,2

{GMM(ζ1,2|Θ)}
�
, (6.6)

where the location of the highest peak is used in the model M.
The order of the analysis algorithms is chosen to maximize the parameter estimation
accuracy in minimum runtime. Since the matched filtering is the computationally
cheapest and provides the most accurate proportional power estimation, it is run
first. If it fails, meaning that no local minimum is found, the 1D MLE algorithm is
executed since it is computationally cheaper than the GMM fit, and it can determine
whether the measurement was conducted on a flat surface or not. The GMM fitting
is only performed if the filtering approach fails and the 1D MLE estimation leads to
the expectation that the measurement was performed on an edge feature.
The result of the preprocessing is a dataset of distance measurements d and, if an
edge feature occurred, estimations of the proportional peak powers π1,2. From now on,
the frames where an edge was detected are referred to as “feature frames”.

6.2 Edge location estimation
The estimation of the true edge location is performed equally, regardless of the
specific edge type. Therefore, it is discussed before the edge frame detection and
edge type determination are described in detail.
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Table 6.1: Comparison of preprocessing methods. The matched filter approach is
the computationally cheapest and applicable for both single and double
peaks.

Algorithm Application Computational effort
1D MLE single peak cheap

Matched filter single & double peak cheapest
GMM double peak expensive

Looking at the schematic illustration of a dynamic measurement illustrated in
Fig. 6.2a, during one exposure time Texp the sample moves the distance Δxexp = vTexp

in x-direction. To estimate the true edge location, it is more convenient to analyze the
measurement in the sample-fixed reference frame [xs, ys, zs]

T. Using this measurement
frame, the sample moving in x-direction is equivalent to the laser spot on the sample
moving in xs direction. The moving laser spot causes the intensity distribution on the
sample I(xs). Given the edge location, the power reflected from the surface before
and after the edge is indicated as the green and orange areas, respectively. Since the
exposed surface area before the edge is larger than the surface area after the edge,
the power P1 is larger than P2. This yields a higher intensity peak corresponding to
d1 at the imaging sensor. Hence, the measurement result of this frame is d1. As the
lateral position of a measurement point is defined as the laser spot’s center position
at the end of the exposure, the lateral position of the distance measurement d1 is
located after the true edge, as illustrated in Fig. 6.2b. The dashed red line indicates
the assumed sample topography in the uncorrected case. As discussed in Section 3.1,
the edge is assumed to be exactly between two measurement points to minimize the
possible error.
The measurement result of the datapoint at xs = 0.5mm of d1 does not correspond
to the true distance to the sample d2 at this location due to motion blur. As the
intensity distribution on the imaging sensor that lead to this measurement value
shows a double peak, the actual edge has to be located between this datapoint and
the previous one. Thus, the lateral offset Δxoffset has to be estimated to obtain the
true lateral edge location.
Due to the symmetry of the intensity distribution of the sample, the power on the
sample’s surface after the edge P2 is given as

P2 =

� ∞

Δxexp−Δxoffset

I(x)dx =

� Δxoffset

−∞
I(x)dx = Psample(Δxoffset)

  
x0=0

, (6.7)



68 6.2. Edge location estimation

(a) Schematic illustration
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Figure 6.2: Schematic illustration of the laser power distribution von measuring on a
moving sample. While the sample in (a) moves in x-direction, the laser
moves in the sample fixed reference frame in xs-direction. The power
on the sample P1 being greater than P2 leads to the measuring result
depicted in (b).

with Psample derived in Eq. (5.43). To determine the offset using the given power
distribution, the equation

Psample(x)
  
x0=0

− P2 = 0, (6.8)

is numerically solved for x, yielding the lateral edge offset Δxoffset = x as illustrated
in Fig. 6.3a.
Knowing the lateral offset, the true edge location can now be determined. Since
the lateral position of the datapoint in the considered frame is defined as the end
of the exposure, the true edge location is always before the datapoint’s location.
Thus, the true edge location is determined by shifting the datapoint in negative
xs-direction by the determined distance Δxoffset. This procedure is illustrated in
Fig. 6.3. The datapoint shown in gray in Fig. 6.3b is shifted in negative xs-direction
by the obtained distance Δxoffset to the true edge location.
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If P2 < 0.5, which is equivalent to P2 < P1 since P1 + P2 = 1, the measured distance
d is the distance to the sample’s surface before the edge, due to the higher intensity
peak at this location on the imaging sensor. The lateral position of a measurement
point is defined as the laser spot’s center at the end of the exposure. Thus, if
P2 < 0.5, the shifted datapoint represents the distance to the sample before the edge.
To obtain a sharp edge in the measurement result, the datapoint of the next frame
is copied to the same xs position as the corrected point. This is shown in Fig. 6.3b,
where the two red x’s mark the shifted and the copied data point, respectively.
Similarly, if P2 > 0.5, the measured distance at the considered frame corresponds to
the distance of the surface after the edge. Thus, after shifting the datapoint to the
determined lateral edge position, the previous datapoint is copied and placed at the
same position to obtain a sharp edge.
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Figure 6.3: Edge location correction. Analyzing the power distribution in (a) corre-
sponds to an offset Δxoffset for the power P2. Correcting the measurement
by this offset yields the corrected result in (b). The wrongly measured
point, shown in grey, is shifted by the estimated offset. An additional
point is inserted to obtain a sharp edge.

6.3 Detection of edge frames and edge types
The edge location correction procedure introduced above applies to any given feature
frame. However, which frame should be considered for the correction is not trivial.



70 6.3. Detection of edge frames and edge types

Before describing the frame selection process, the following definitions of terms are
introduced for clarification.
Definition 1 (Edge frame). A frame is an edge frame if the difference between the
distance measurements of the considered frame di and the previous or next frame
di−1 and di+1, exceeds a minimum threshold of Δdmin.

|di − di+1| > Δdmin ∨ |di − di−1| > Δdmin (6.9)

Definition 2 (Feature frame). If the intensity distribution on the imaging sensor
shows a double-peak, this frame is denoted as a feature frame.
Definition 3 (Single edge). An edge is a single edge if at least two data points are
located between the considered edge and the next edges before and after the considered
edge.
Definition 4 (Double edge). A double edge combines a rising and falling edge, or
vice versa, where only one data point is located between the edges.
Note that, according to Definitions 1 and 2, an edge frame can also be a feature frame.
Five different edge types can be distinguished, of which four are correctable. These
cases, as well as the uncorrectable cases are discussed in the following.

6.3.1 Sinlge edge with mulitple feature frames
The first and most straightforward case is a single edge with multiple feature frames as
illustrated in Fig. 6.4a. Multiple feature frames can occur if the travel distance during
the exposure Δxexp is on the scale of the spot size. In this case, the exposed sample
areas of consecutive frames overlap. Hence, the edge is visible in multiple frames. The
correction accuracy highly depends on the accuracy of the power distribution model.
With the laser spot’s standard deviation σ being the only empirically determined
and error-prone model parameter, a power distribution with minimal sensitivity to
σ is beneficial. The power distribution sensitivity depicted in Fig. 6.5 shows that
the model is insensitive to σ in the middle of the travel distance. This is equivalent
to P2 having a value of P2 = 0.5. Thus, the feature frame with a minimal power
difference between the two peaks is chosen for the correction procedure.

6.3.2 Double edge with three feature frames
In the case of a double edge, where three feature frames are detected as illustrated
in Fig. 6.4b, two of the three points must be chosen for the correction procedure.
Only the two outer frames unambiguously contain information about the two edge
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Figure 6.4: Overview of correctable edge types. In the case of a single edge with
multiple feature frames in (a), the best feature frame is chosen to estimate
the true edge position. As shown in (b), the middle frame is omitted on
a double edge with three feature frames, as it can be ambiguous. When
two feature frames are available at a double edge, as in Figure (c), each
frame is used for one edge, respectively. If no edge is detected, but two
feature points are available, as in (d), the sample profile still can be
reconstructed.
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Figure 6.5: Sensitivity of the power distribution concerning the spot’s standard
deviation σ. In the middle of the exposed sample length, the sensitivity
concerning σ and, thus, the sensitivity to model errors is the smallest.

locations. Since the distance to the sample before and after the double edge relates
to the same spot on the imaging sensor, the intensity peaks of the middle frame
cannot be unambiguously assigned to a specific lateral position. Thus, the middle
feature frame is omitted, and the two outer feature frames are used to correct the
lateral position of the two edges.

6.3.3 Double edge with two feature frames
When only two feature frames are available, both are edge frames, and both have
to contain information about different edges. In the illustrated case in 6.4c, the
datapoint before the edge is not a feature frame, hence containing no information
about the edge. Therefore, the first feature frame has to contain information about
the first edge. Similarly, the data point after the second feature frame is not a feature
frame. Thus, the second feature frame must contain all the information about the
second edge.

6.3.4 Two feature frames without an edge frame
The case where no edge frame is detected but two consecutive feature frames are
available is solvable using a priori knowledge of the sample’s profile. Suppose there is
only one double edge between the two feature frames. In that case, the first feature
frame contains the information about the first edge, and the second feature frame has
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to contain information about the second edge. However, the measurement cannot
be corrected if the structure within the two feature frames is more complex than a
double edge. The edge height can be determined by using the location of the smaller
peak in the model given in Eq. (6.3).

6.3.5 Single feature frame
No statement about any edge location can be made if only one feature frame is
available. Even if an edge is detected in one frame, as exemplified in Fig. 6.6,
the surfaces contributing to the double peak in the intensity profile cannot be
distinguished. It can only be said that there is some feature. The size, however, is
unknown.
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Figure 6.6: Uncorrectable edge. Since only one feature frame is available for the
double edge, the two edges cannot be unambiguously reconstructed.





CHAPTER 7

Experimental performance evaluation

To verify the feature location correction procedure introduced in Chapter 6, mea-
surements on a moving sample are conducted using the experimental setup described
in Chapter 4. The lateral resolution and feature width uncertainty are compared to
a standard, not corrected, measurement on a moving sample.

7.1 Test sample and evaluation procedure
For validation, the 3D printed test sample, shown in Fig. 7.1, is mounted on the
linear stage. The sample contains four edge features of different lengths. The first
feature is a valley of 2mm height and a width of 4mm. It is used to test the
overall functionality of the correction procedure on large features. To evaluate the
performance on small features, where the travel distance Δxexp is larger than the
feature itself, the second and third grooves with a depth of 2mm and a width of
0.5mm and 0.8mm, respectively. The last feature is a step of 0.4mm width at a
height of 1mm. Between each feature lies a flat surface with a width of 10mm
respectively, to distinguish between the individual features.
The actual feature topography is determined by performing static measurements on
the sample using the custom LTS designed in Chapter 4. Using the linear stage, the
sample is moved 1 µm between measurement points. The resulting reference sample
profile is shown in Fig. 7.2. Note that the profile appears inverted compared to the
modeled sample profile in Fig. 7.1b, as the distance to the sample d is measured and
not the sample height directly. The feature widths differ slightly from the designed
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Figure 7.1: Test sample for the performance evaluation. The 3D-printed sample in
(a) has a nominal feature height of 2mm and a smaller feature width
a height of 1mm. The valleys alter in length, to determine the lateral
resolution for various travel lenghts as depicted in (b).

widths due to manufacturing inaccuracies in the SLA printing and rework processes.
Due to the relatively small size of the last feature compared to the laser spot size, it
is not clearly visible as an edge but as a slope in the static reference measurement
and, therefore, disregarded in the subsequent performance evaluation.
For the performance evaluation of the edge location correction procedure, mea-
surements on the moving sample are conducted using various exposure times of
the imaging sensor. The linear stage moves the sample at a constant speed of
v = 20mms−1. The travel distance during one exposure time Δxexp = vTexp is
adjusted by the chosen exposure time Texp. A constant effective spot size on the
sample for varying exposure times is achieved by adjusting the neutral density filter
(see: Section 4.2).
Image data is transmitted via a USB 3.0 interface from the imaging sensor to the
computer. Since this interface is not real-time capable, a constant frame time cannot
be guaranteed. Looking at the image meta-data, the frame time fluctuates up to
±50%, also violating the set exposure time. Since the sensor’s internal timings,
which cause a blind spot, are unknown but expected to be small compared to the
exposure time, they are neglected in the correction procedure, and the exposure time
is assumed to be equal to the time difference between the two frames. This time,
ΔTframe is obtained from the transmitted meta-data. Thus, the travel distance used
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Figure 7.2: Static reference measurement of the sample. Due to manufacturing
inaccuracies, the true feature widths differ from the CAD design. The
last feature with a width of 0.4mm and a height of 1mm is not clearly
visible due to its width being almost the effective size of the laser spot
and its small height.

in the correction is obtained as

Δxsample = vΔTframe ≈ vTexp. (7.1)

7.2 Results
An example result is shown in Fig. 7.3. The illustrated section shows the second
and third features of the test sample. With a frame time of ΔTframe = 40ms, the
sample moves the distance Δxsample = 0.8mm during each frame. For a feature to
be detected in a dynamic uncorrected measurement, at least half of the reflected
light power has to be reflected from the feature surface to cause a higher intensity
peak on the imaging sensor. Thus, the minimum feature width to be detectable
is Δxmin = Δxexp/2. In the illustrated case, the feature at xs = 35mm has a
statically determined width of 0.558mm. Although this feature width exceeds the
necessary minimal width of Δxmin = 0.4mm, it is not detected in the uncorrcted
dynamic measurement. That is probably caused by the fluctuating exposure time,
which can lower the minimum feature width if the exposure time of the respective
frame is shorter than the nominal value. However, utilizing the developed correction
procedure, the feature is detectable, with its edge locations fitting the statically
determined edge locations very well. While the feature at xs = 46mm is detected in
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Figure 7.3: Correction result at a travel distance of Δxexp = 0.8mm. The without
correction invisible feature at xs = 35mm is clearly visible in the corrected
measurement. Even if only one datapoint is on the feature, the edges can
be reconstructed as visible at xs = 46mm.

the uncorrected measurement, its edge location and width are greatly refined using
the correction procedure.
To quantitatively evaluate the correction performance, dynamic measurements are
performed for various exposure times, namely 10ms, 20ms, 30ms, 40ms and 50ms,
which correspond to travel distances Δxframe of 0.2mm, 0.4mm, 0.6mm, 0.8mm
and 1mm within one nominal frame. For each configuration, 50 measurements are
conducted. The starting point x0 varies randomly up to 1mm for each measurement.
After the raw image data of the measurements is obtained, the edge location correction
procedure, described in detail in Chapter 6, is performed in a postprocessing step
for each measurement. The measured feature widths shown in Fig. 7.2 serve as a
performance measure. For a fair comparison, the edge location in the uncorrected
dynamic measurements is assumed to be in the middle of the two edge frame
locations, as it yields the smallest possible error as discussed in Chapter 3. As a
performance measure, the error e of the dynamic feature widths, with respect to
the statically measured feature widths, is considered. The accuracy in edge location
detection is highly improved, as shown in Fig. 7.4. While the occurrence of errors
in the uncorrected measurements, displayed in the left column, is widely spread,
the corrected measurements in the right column are centered around an error of
zero and limited to a significantly smaller range. Looking at the results given in
Table 7.1, one can see that both the accuracy and the repeatability are significantly
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improved by the correction procedure, as both the mean absolute error and the error’s
standard deviation are reduced. An outstanding performance increase is visible when
investigating the detectability of features. While the uncorrected measurements miss
19 features at a travel distance of Δxframe = 0.8mm, all features are detected in the
corrected measurements. Even at a travel distance of Δxframe = 1mm, where almost
all of the small features with a width of 0.558mm are lost, the number of missed
features can be reduced by more than a factor of two.

Table 7.1: Comparison of feature width errors for uncorrected and corrected dynamic
measurements, respectively. The corrected measurements show a signifi-
cant reduction in both absolute error and variance of error.

Δxsample in mm
Uncorrected Corrected

|e| in µm σe in µm missed |e| in µm σe in µm missed
0.2 74.3 90.5 0 23.6 29.4 0
0.4 145.0 175.2 0 58.7 85.9 0
0.6 180.6 224.2 4 68.5 84.1 0
0.8 238.8 351.6 19 151.1 184.3 0
1.0 353.7 446.1 31 244.7 286.5 13
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(c) Δxsample = 0.4mm, uncorrected
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(d) Δxsample = 0.4mm, corrected
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(e) Δxsample = 0.6mm, uncorrected
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(f) Δxsample = 0.6mm, corrected
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(j) Δxsample = 1mm, corrected

Figure 7.4: Histograms of feature width errors. While the errors of the dynamic
uncorrected measurements in the left column are widely spread, the
errors of the corrected dynamic measurement appear normally distributed
around zero.



CHAPTER 8

Conclusion and Outlook

In the course of this thesis, a lateral feature location correction algorithm has been
developed and successfully tested in laser triangulation measurements on moving
samples. The findings are summarized in this chapter. Furthermore, an outlook
towards future extensions and improvements regarding this work is given.

8.1 Conclusion
Regarding the findings of the literature research, this thesis aimed to reduce the
lateral feature location uncertainty in laser triangulation measurements, as LTSs
are the most frequently used sensors in in-line metrology applications. The initial
analysis of the root causes of lateral uncertainty has shown that spatial sampling
and motion blur result in lateral uncertainty that exceeds the travel distance of
the moving sample Δxsample during the sensor’s exposure time. Since available
industrial LTSs do not allow adjustment of sensor parameters like laser intensity or
exposure time manually and are not able to output the imaging sensor’s raw data,
an experimental LTS has been designed. Considering the requirements derived in
Section 4.1, the experiments LTS allows adjustment of laser intensity, exposure time,
and, most importantly, the readout of the CMOS imaging sensor’s raw pixel data. A
thorough analysis of the intensity distribution on the imaging sensor when measuring
on edge features has shown that the power ratio of the intensity peaks detected on
the imaging sensor equals the power ratio of the laser on the sample surfaces prior
to and after an edge.
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After studying the state-of-the-art, two research questions arose and were formulated
in Section 2.5. To conclude the findings of this thesis, these questions are answered
in the following.

Research Question 1

Is it feasible to reduce the lateral position uncertainty of edge features in laser
triangulation measurements on moving samples by algorithmically correcting
the obtained measurement data?

The proposed feature location correction algorithm compares the peak power ratio
on the imaging sensor to the model of the power ratio that is reflected from the
sample surface. Using a combination of matched filtering, 1D Gaussian MLE, and
GMM fitting, the power ratio obtained by the imaging sensor can be estimated. The
power distribution model on the sample surface is derived by convolving the laser
spot’s intensity profile over the distance the sample travels during one exposure
time Δxsample. Using this model and the estimated power ratio, the lateral offset
of an edge feature can be estimated. The experimental performance evaluation in
Chapter 7 shows a significant reduction of the lateral feature location uncertainty.
Using a 3D-printed test sample, the proposed method reduces the mean absolute
feature width error by more than 60%. Thus, considering the presented results in
Chapter 7, the first research question can be answered with yes.

Research Question 2

Is it feasible to reduce the effects of motion blur in laser triangulation mea-
surements on moving samples by a tailored deblurring approach?

As shown in Chapter 7, small features can be missed in uncorrected measurements.
The results in Table 7.1 show that features are missed in the uncorrected measure-
ments if the feature width is smaller than the travel distance Δxsample. Since the
proposed correction algorithm does not only regard the displacement measurement
value, but also the whole intensity distribution on the imaging sensor, information
between two sampling points is considered as well. Only if the feature width is
smaller than 70% of Δxsample, features are missed in the corrected measurements,
which is a significant improvement compared to the uncorrected case. Hence, the
effect of missed features due to motion blur is significantly mitigated, which answers
the second research question: Yes.
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8.2 Outlook
Aiming for further improvement of the proposed lateral feature location correction
algorithm, two limitations of the current approach must be pointed out. First,
the CMOS imaging sensor transmits image data via a USB interface, which is not
real-time capable. This leads to a fluctuation of the frame time and the exposure
time. Evaluations have shown, that the deviation of the frame time from its nominal
value reaches up to ±50%. Thus, an unknown error is induced in the intensity
distribution model as it highly depends on the accuracy of the exposure time. A
real-time imaging system with constant exposure and frame time can overcome this
drawback. Furthermore, by knowing the exact exposure and frame time, the idle
time, discussed in Section 3.1, which causes lateral blind spots in the measurement,
can also be considered in the model.
As the spot diameter is a limiting factor for the axial, and thus, the lateral resolution
of the correction algorithm, a focussed beam could be used instead of the collimated
beam, reducing the spot size. However, a focused beam would result in a sample
height-dependent spot size and intensity distribution on the sample, significantly
increasing the model complexity.
The proposed method is currently limited to edge features of a sample. Since, in many
applications, arbitrary surface structures are of interest, an extension to estimate slope
gradients would be a significant improvement of the proposed approach. Measuring
on non-flat surfaces, however, leads to non-Gaussian intensity distributions on the
imaging sensor. The resulting intensity distribution depends on the slope gradient,
direction, and sample height, leading to a large amount of possible distribution
shapes on the imaging detector. Therefore, the integration of machine learning is a
promising approach for this application.
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