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Abstract

The increasing importance of 3D vision in the realm of industrial automation, driven
by the challenges towards Industry 4.0, demands a fieldbus-capable depth camera.
This master’s thesis evaluates the integration of depth information from a 3D camera
via the EtherCAT fieldbus into a programmable logic controller (PLC). Additionally,
the developed fieldbus-capable depth camera system is integrated into a collaborative
industrial robot system, subject to the DIN ISO/TS 15066 standard, to define conditions
and create comparability with the performance of existing systems in the collaboration
space.

The proposed EtherCAT-capable camera module consists of three main components:
a depth camera, a single-board computer, and an EtherCAT Slave Controller (ESC).
Thereby, a depth image segmentation method enables the transmission of high-resolution
depth images via EtherCAT. In the human-robot collaboration application, a five-axis
robotic arm operates within the field of view of the depth camera, monitoring the
minimum distance between humans and robots. Safety stops are executed to avoid
collisions. The detection time is then utilized as a benchmark for comparing the system’s
performance with state-of-the-art technologies.

The implemented camera system allows for data transmission rates exceeding
25Mbit s−1. Through the utilization of various tested data reduction methods, detection
times of less than 25ms are realized. The camera system employed in a human-
robot collaboration application, coupled with data reduction techniques, results in a
reduced minimal safety distance, surpassing existing state-of-the-art applications in the
collaboration space by 75mm.
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Kurzfassung

Die wachsende Bedeutung der 3D-Vision im Bereich der industriellen Automatisierung,
getrieben durch die Herausforderungen von Industrie 4.0, erfordert eine Feldbus-fähige
Tiefenkamera. Diese Masterarbeit bewertet die Integration von Tiefeninformationen
aus einer 3D-Kamera über den EtherCAT-Feldbus in einer speicherprogrammierbaren
Steuerung (SPS). Darüber hinaus wird das entwickelte Feldbus-fähige Tiefenkamerasys-
tem in eine kollaborative Industrieroboteranwendung integriert, das dem Standard DIN
ISO/TS 15066 unterliegt, um Bedingungen zu definieren und Vergleichbarkeit mit der
Leistungsfähigkeit bestehender Systeme im Kollaborationsraum zu schaffen.

Das vorgeschlagene EtherCAT-fähige Kamerasystem besteht aus drei Hauptkom-
ponenten: einer Tiefenkamera, einem Einplatinencomputer und einem EtherCAT
Slave Controller (ESC). Dabei ermöglicht eine Tiefenbildsegmentierungsmethode die
Übertragung hochauflösender Tiefenbilder mittels EtherCAT. In der Mensch-Roboter-
Kollaborationsanwendung aktuiert ein Fünf-Achs-Industrieroboter innerhalb des Sicht-
felds der Tiefenkamera und überwacht den minimalen Abstand zwischen Menschen
und Roboter. Die Erkennungsszeit wird anschließend als Maßstab verwendet, um die
Leistung des Systems mit modernsten Technologien zu vergleichen.

Das implementierte Kamerasystem ermöglicht Datenübertragungsraten von über
25Mbit s−1. Durch die Anwendung verschiedener Datenreduktionsmethoden werden
Erkennungszeiten von weniger als 25ms realisiert. Das in einer Mensch-Roboter-
Kollaborations Anwendung implementierte Kamerasystem, in Verbindung mit Datenkom-
primierungsmethoden, führt zu einer reduzierten minimalen Sicherheitsdistanz, die beste-
hende Anwendungen im Kollaborationsraum um 75mm übertrifft.
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CHAPTER 1

Introduction

One of the most current topics in industrial production nowadays is Industry 4.0 or
the ”Industrial Internet of Things” [1]. Industry 4.0 includes areas such as automation,
big data, cloud computing, machine learning, and image processing, which have led
to significant changes in existing production processes. For the latter, industrial
applications are not just limited to classic RGB or mono images. The integration of
depth information into systems, the so-called 3D vision [2], is also part of Industry
4.0. 3D vision comprises the acquisition, evaluation, and processing of sensor-based 3D
information for the control of mechanical systems or processes. In this way, 3D vision
enables new possibilities and solutions for existing problems that could not be solved
with classic 2D vision approaches.

1.1 Motivation

The range of applications that rely on 3D vision has grown significantly over the last few
years [3] and it’s potential is far from exhausted. An example of the use of 3D vision
is bin picking [4, 5]. Bin picking is the robot-based separation of randomly provided
objects in a bin. It is a core problem in computer vision and robotics, where depth
data are used to guarantee a precise gripping process by means of pose estimation.
Pose estimation based on 3D vision will also be used in depalletization [6, 7]. During

1



CHAPTER 1. INTRODUCTION

depalletization, the pallets loaded with cartons are unloaded one by one. These systems
have increased steadily as a result of the growth of sectors such as logistics, warehousing,
and supply chains. Another area of industrial 3D vision application is inspection [8].
Inspection systems are often used in industrial quality control, for example, to check
certain characteristics of products. The inspection covers both functional aspects of
a product, e.g. whether all components are fitted to an assembly, as well as aesthetic
properties, e.g. checking for scratches on a polished surface.

Collaborative applications involving humans and robots also necessitate the inte-
gration of 3D vision. Human-robot collaboration workspaces are becoming increasingly
important to improve work efficiency, flexibility, and overall productivity in production
facilities [9, 10]. State-of-the-art approaches in the field of collision avoidance use
depth cameras to monitor the environment around robotic systems, enabling a safe and
collaborative working environment.

There are different types of depth cameras. Stereo vision cameras, for example, use
the human depth vision principle by means of stereo disparity of two 2D images from
different positions [11]. The depth perception of stereo vision cameras is based on a
geometric approach called triangulation. Structured light cameras use a light source,
such as a LED or a laser, to cast a narrow light pattern onto the surface and detect
distortions of the illuminated patterns [12]. Based on the distortion of the pattern, the
camera geometrically reconstructs a 3D image.

Time of Flight (ToF) is another technology for the area-wide acquisition of depth
data [13][11]. A ToF camera illuminates the scene with a modulated infrared light
source and observes the reflected light. The phase shift between the emitted light and
the reflection is measured and converted to distance.

The interface for depth cameras is usually USB or Ethernet. However, the latest
standard for data exchange in industrial automation between the field and control level
is the fieldbus [14, 15]. A fieldbus is a bus system that connects sensors, actuators,
electric motors, switches, valves, etc. to a control unit, such as a Programmable Logic
Controller (PLC), to exchange information. This means that a data connection is
established from a PLC to various device participants through bus lines [16].

Today’s demands on various field components in Industry 4.0 require modularity
and versatility. This aims to improve efficiency, productivity, and connectivity across
different elements of the industrial landscape. It therefore stands to reason that camera
systems for industrial plants should also be modular and connectable [17].
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1.2 Research goals

The main objectives of this research are two main topics: The first task is to develop
a methodology to make a depth camera fieldbus compatible, as shown in Figure 1.1.
Subsequently, the second task is the implementation of the fieldbus-capable depth
camera in an industrial application to create comparability with existing state-of-the-art
camera systems.

Figure 1.1: The schematic overview on the left shows a typical industrial application
involving a 3D camera [18, 19]. All components at field level communicate
with the PLC via fieldbuses. The 3D camera uses a separate interface for
data exchange. The depth data is then exchanged with the PLC via Ethernet.
The schematic overview on the right shows the estimated approach, which
aims to integrate the 3D camera into the fieldbus.

High-resolution depth cameras generate depth images with a data volume of several
kilobytes to several megabytes [20, 21]. These cameras typically work with frame rates
of between 30 fps and 60 fps. In order to achieve efficient data transmission between the
camera system and the PLC, a fieldbus is required that guarantees a data transmission
rate that matches the specifications of the depth camera. By integrating the system
components into a fieldbus that supports such high data rates, high-resolution depth
images can be embedded in the application.

The necessary criteria for human-robot collaboration applications are defined in the
DIN ISO/TS 15066 standard [22]. This makes it possible to establish the comparability
of existing systems in the collaboration space under defined framework conditions. In
particular, this standard specifies the minimum safety distance between robots and
humans. The detection time of the sensor system plays a decisive role here, as shorter
detection times lead to shorter safety distances in the collaborative workspace. This
optimization increases productivity and efficiency in the execution of processes. An
existing system in the field of human-robot collaboration is from Veo Robotics [23]. Their
Veo FreeMove safety system is for industrial work cells with human-robot collaboration.

3
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The system monitors work cells in 3D and implements dynamic speed and distance
monitoring in accordance with DIN ISO/TS 15066, which enables safe interaction
between humans and robots. The parameters defined here serve as a benchmark for the
desired depth camera system.

For the implementation of the application, low latency in combination with a high
data rate are therefore among the most important specifications of the fieldbus [22].
Ethernet for Control Automation Technology (EtherCAT) is a real-time Ethernet,
disclosed in the IEC 61158 standard [16], that meets these requirements.

As already mentioned, there are different types of depth cameras. ToF depth cameras
are characterized in particular by their high depth accuracy, resolution, and frame
rate. Furthermore, ToF cameras are compact, lightweight, and relatively inexpensive
compared to other camera systems. Although ToF depth cameras have poor depth
determination in highly reflective or transparent materials as well as strongly illuminated
environments, the advantages over other camera systems outweigh the disadvantages in
a human robot collaborating application. For this reason, a ToF camera is preferred for
implementation [11, 24].

The primary objective is to integrate a ToF depth camera into the EtherCAT
fieldbus. The aim is to achieve a maximum data transfer rate with minimum latency. In
addition, the EtherCAT-compatible depth camera is to be integrated into a human-robot
collaboration application. The task of the human-robot collaboration application is
to monitor the safety distance between the robot and humans and to initiate safety
stops if necessary. The existing state-of-the-art system from Veo Robotics serves as a
reference for evaluation.

1.3 Outline

In order to give more insight into the implementation of an EtherCAT-capable ToF
depth camera, Chapter 2 of the thesis elaborates on the EtherCAT fieldbus and its
components. In this context, a process data interface serves as the interface between
the camera and the EtherCAT device. Subsequently, the indirect ToF technology
is discussed. These topics are laying the groundwork for formulating two research
questions. Chapter 3 is dedicated to describing the components used. In Chapter 4,
the focus is on the implementation of the EtherCAT-enabled camera module and the
realization of the human-robot collaboration application. Chapter 5 delves into the
discussion of the results of the depth camera and the application, including possible
methods for data reduction. Finally, Chapter 6 presents a conclusion and an outlook
for potential further research directions.
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CHAPTER 2

State of the Art

This chapter focuses on the state of the art technologies in camera-based industrial
robotics. First, 3D vision systems are described, in particular Time of Flight (ToF)
cameras. Afterwards the functional principle and implementation of the Ethernet for
Control Automation Technology (EtherCAT) fieldbus are discussed. Here, the focus
will shift towards the individual components of the EtherCAT fieldbus. Finally, an
introduction to the Serial Peripheral Interface (SPI) is provided.

2.1 3D vision

In recent years, there has been notable growth in the field of industrial applications
utilizing 3D vision. The array of applications is continuously expanding and has not
yet reached its full potential [3]. 3D vision is the capture and use of three-dimensional
information from target objects in applications [25]. The image of the target object in
a 3D vision system is a three-dimensional point cloud with coordinates showing the
position of each pixel in space. It simultaneously provides data in the X, Y, and Z
planes, as well as rotation information (around each of the axes). Both on the camera
and on the PC system, the 3D information can be calculated.

There are various methods for obtaining comprehensive 3D data, such as ToF

5



CHAPTER 2. STATE OF THE ART

principle, Structured Light, Stereo Vision, and Laser Triangulation. ToF camera
technology is characterized by its compact size and low power consumption [11, 24].
ToF cameras also operate in a wide range of lighting conditions, from bright sunlight to
complete darkness, making them suitable for a variety of environments. In addition
to their accuracy and reliability, ToF cameras are also known for their fast response
times. This is critical for applications that require fast response times, such as collision
avoidance in robotic systems. For this reason, tof technology is a prerequisite when
choosing a depth camera for use in the collaboration space.

2.1.1 Time of Flight (ToF)

ToF technology is used for a variety of applications, including robot navigation, 3D
perception, people counting, and object detection [26, 27]. ToF distance sensors use the
time it takes for photons to travel between two points to calculate the distance between
the points. ToF technology is divided into two different methods, direct and indirect
ToF. In both methods, the intensity and distance are measured simultaneously for each
pixel in a scene.

Direct ToF sensors emit short light pulses [28]. These typically last only a few
nanoseconds. The time it takes for a portion of the emitted light to return is measured.
The principle of direct ToF measurement is simple, but places high demands on the light
source at the transmitter, the image sensor at the receiver, and the synchronization
and timing circuits. The transmitter must be able to generate short pulses, and the
image sensor in the receiver must use high-sensitivity optical detection to detect weak
optical signals. This results in a small number of sensor elements in one device, which
is used for single or a few point measurement.

There are different approaches for modulating the light in an indirect ToF camera.
A simple approach is to use continuous wave modulation. Indirect continuous wave
ToF sensors emit continuous modulated light [29, 30]. The phase difference between
emitted and reflected light is measured to calculate the distance to an object. This
technology allows for higher depth resolution, the use of low-frequency light, and greater
illumination duration. It is also relatively easy to scale up the process to sensor arrays
with multiple pixels. This makes indirect ToF sensors suitable for high-resolution 3D
cameras. The operating principle of an indirect ToF sensor is shown in Figure 2.1.

The continuous wave ToF camera measures the time difference td between the
transmitted signal and the returning signal by estimating the phase offset ϕ = 2πf · td
between the fundamental waves with the modulation frequency fmod of these two

6
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Figure 2.1: The working principle of an indirect ToF depth sensing system using contin-
uous wave modulation [31]. A light source emits modulated light. When the
light hits an object, it is reflected and detected by the ToF sensor. Based
on the phase shift between the transmitted and received light, the distance
of the object to the camera can be determined. Sensor arrays are used to
generate depth images covering a bigger area in front of the camera. In
addition to the depth image a gray image can be constructed, based on the
received amplitudes of the reflected signals.

signals [32]. The depth d is calculated from the phase offset ϕ and the speed of light c:

d =
c · ϕ

4πfmod

. (2.1)

Phase measurement errors occur due to photon shot noise, readout circuit noise,
and multipath interference [33]. The effect of these errors on the depth estimate
can be reduced by using a high modulation frequency. A disadvantage of a high
modulation frequency is that the clearly measurable range is shorter. This problem
can be circumvented by using multiple modulation frequencies. The lowest modulation
frequency provides a large range without ambiguity, but larger depth errors. Higher
modulation frequencies are used to reduce depth errors. An example of this scheme with
two different modulation frequencies is shown in Figure 2.2. The final depth estimate is
calculated by weighting the phase estimates for the different modulation frequencies,
assigning a higher weight to the higher modulation frequencies.

The depth (d), which denotes the distance between the camera and the depth
point, can be converted to point cloud information. This information of a particular
pixel represents its real-world coordinates (x,y,z) in space on a reference frame. Often
applications use only the z-image map (depth map) instead of the full point cloud.
The calculation of the point cloud requires knowledge of the intrinsics of the lens and
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distortion parameters. These parameters are estimated during the geometric calibration
of the camera. In this process, the coordinates of each pixel pcd are calculated via the
depth value of the pixel d(i, j), where i and j are the indices for the row and column in
the depth image, the focal lengths of the camera fx, fy and the optical centers cx, cy,
respectively:

pcd(i, j) =





z = d(i, j)

x =
(j − cx) · z

fx

y =
(j − cy) · z

fy

. (2.2)

Depth processing can be done on the camera module itself or in a processor elsewhere
in the system.

Figure 2.2: The effect of phase error on depth estimation [33]. The upper graph has
a lower modulation frequency for depth calculation. This allows a higher
range, but the phase error has a stronger effect on the depth calculation. The
lower graph uses 3 times the frequency of the upper graph. This reduces
the maximum range by a factor of 3. However, a more accurate depth
calculation is possible here. When using several modulation frequencies
in one camera system, high ranges can be achieved with high accuracy.
However, this yields increased computational effort.

In order to process the data of the camera system in various applications, different
transmission systems can be used. It must be ensured that the bandwidth of the system
is sufficient for the amount of data produced by the camera. In order to be able to
dimension the transmission medium, the required data transmission rate of the camera
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is therefore necessary. This can be calculated from the following camera parameters:

• Data transmission rate DTR,

• Frame rate FRR,

• Pixels per line (image width) Wimage,

• Pixels per row (image height) Himage,

• Bits per pixel (depth resolution) Rdepth,

DTR = FRR ·Wimage ·Himage ·Rdepth. (2.3)

Depth cameras often use interfaces such as USB or Ethernet for data transmission.

2.2 EtherCAT

The latest standard for data exchange in industrial automation between the field and
control level is the fieldbus. One of the most advanced and fastest fieldbuses is EtherCAT.
EtherCAT is a real-time Ethernet technology [34]. The EtherCAT protocol, which is
disclosed in the IEC 61158 standard [16], operates on the principle of a master-slave
system and is suitable for real-time hard and soft requirements in automation technology
[35]. The EtherCAT operating principle is shown in Figure 2.3.

The telegram sent by the master passes through all nodes. In an EtherCAT
fieldbus system, each slave reads the output data assigned for it from the frame and
simultaneously writes its input data to the frame as the frame passes through the system.
Only the EtherCAT master in a segment is allowed to actively send an EtherCAT frame.
All other participants only forward the frames. This avoids unpredictable delays and
guarantees the real-time capability of EtherCAT.

The master uses a standard Ethernet medium access controller without an additional
communication processor. This means that a master can be installed on any hardware
platform that provides an Ethernet port.

EtherCAT slaves use an EtherCAT Slave Controller (ESC) for processing. So the
data processing is completely done in hardware, which makes the performance of the
network deterministic. Telegrams are only delayed by hardware cycle times. If a frame
reaches the last node of a segment, the slave detects an open port and sends the telegram
back to the master.
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Figure 2.3: Illustration of an exemplary EtherCAT application [34]. The master sends
an EtherCAT frame to the three slaves. The EtherCAT frame contains
two datagrams, which results due to two different process mapping tasks
in the application. Each slave reads it’s associated output data in the
respective datagram from the frame and writes its input data to the correct
datagram while the telegram passes through each slave. Slave three is the
last connected slave, whereby it recognizes an open port and thus sends the
EtherCAT frame back to the master.

2.2.1 System Architecture

The basic EtherCAT network architecture is shown in Figure 2.4. The EtherCAT master
and the EtherCAT slaves use a standard Ethernet port for communication. Different
topology types such as line, tree, star and daisy chain are possible for EtherCAT
networks. The network configuration information is stored in the EtherCAT Network
Information (ENI) file. The ENI is created based on EtherCAT Slave Information (ESI)
which are provided by the vendors for each device [36].

EtherCAT Slave Information (ESI)

An ESI serves as a configuration file in EtherCAT systems, in which the functionality
and configuration parameters of EtherCAT slave devices are described in detail. ESI
files, which are based on Extensible Markup Language (XML), are provided by the
slave device manufacturer or vendor and contain information such as device type,
supported mailbox protocols, synchronization settings, and mapping of its input and
output process data (Process Data Objects (PDO)) that the master needs to configure
and communicate with slaves [37].
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EtherCAT Network Information (ENI)

An ENI serves as the central configuration file in EtherCAT systems and has the task of
describing the network topology, the slave positioning and the process data structures
for all EtherCAT slaves. Typically, this file is generated by a EtherCAT configuration
tool, which defines the structure of the network by scanning it for devices or manually
integrating the slave devices EtherCAT. In addition, the configuration tool analyzes
information from the provided ESI files associated with each slave device. The ENI file,
which is essential for the EtherCAT master functionality, enables the configuration and
initialization of the network. It encapsulates all the relevant details that the master
needs to communicate with each slave device in the network [37].

Figure 2.4: Graphical representation of the EtherCAT Network Architecture [36]. The
architecture of each slave defined in the EtherCAT network is described
in the ESI file created for this slave. An EtherCAT configuration tool
summarizes this information in a single ENI File and makes it available
to the EtherCAT master. This provides the master with all the necessary
information to communicate with each device within the network.

2.2.2 Frame

EtherCAT uses standard Ethernet frames [38]. EtherCAT data are embedded in the
data field of the Ethernet frame. The telegram is terminated by the Frame Check
Sequence (FCS). FCS refers to a checksum that is added to a Ethernet frame to enable

11



CHAPTER 2. STATE OF THE ART

error detection.

The EtherCAT data contain an EtherCAT header and one or more EtherCAT
datagrams. The structure of a complete EtherCAT frame can be seen in Figure 2.5. Up
to 15 datagrams can be included in the EtherCAT data. If the whole Ethernet frame is
smaller than 64B, one to 32 padding bytes are inserted at the end of the EtherCAT
data to to ensure the minimum length of the Ethernet frame. A datagram consists
of a datagram header, the data to be read or written, and a working counter. The
working counter is incremented when an EtherCAT node is successfully addressed and
a read, write, or read and write operation is successfully executed. It is possible to
specify a certain value for the working counter for each datagram, which is expected
as soon as the telegram passes through all interconnected nodes. By comparing the
expected operational counter value with the actual received value after the telegram
has passed through all nodes, the master can check the successful processing of an
EtherCAT datagram. The maximum amount of data is 1486B. If more bytes have to
be sent, multiple EtherCAT frames are necessary. The interpretation of the individual
bits of the EtherCAT header and the datagram header are given in Table 2.1.

Figure 2.5: Structure of an EtherCAT frame [38]. The red marked area indicates the
location of the transmitted data in the EtherCAT frame. The EtherCAT
header, marked orange, and the datagram header, marked green, are de-
scribed in more detail in Table 2.1.

The addressing area specified in the datagram header is separated into two addressing
modes: Device addressing and logical addressing. Three device addressing modes are
available: auto-increment addressing, configured station address, and broadcast.

Logical addressing supports the bit-wise assignment of data and reduces unnecessary
communication contents during data processing. Each slave uses a mapping unit, the
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Fieldbus Memory Management Unit (FMMU), to map data from the logical process
data image to its local address space. For this, a 4GB address space is available. The
master configures the FMMUs of each slave during the start-up. Using the configuration
information of its FMMUs, a slave knows which parts of the logical process data image
should be assigned to which local address space. Each slave is assigned one or more
addresses in this address space when the network starts up. By giving several slaves an
address in the same area, these slaves can be addressed via a single datagram. Since
the information on the desired data access is completely contained in the datagrams,
the master can decide when to access which data. This allows it to control processes
with different cycle times at the same time.

Table 2.1: EtherCAT header and the datagram header description [38].

EtherCAT Header

Field Data type Description

Length 11 Bit Length of the EtherCAT datagram

Res. 1 Bit Reserved, set to 0

Type 4 Bit Protocol type

Datagram Header

Field Data type Description

Cmd BYTE Length of the EtherCAT datagram

Idx BYTE Reserved, set to 0

Address BYTE[4] Device addressing and logical addressing

Len 11 Bit Length of the data of this datagram

R 3 Bit Reserved, set to 0

C 1 Bit Protocol type

M 1 Bit
Multiple EtherCAT datagrams:
0: Last EtherCAT datagram
1: A following EtherCAT datagram exists

IRQ WORD The EtherCAT event request registers of all slave devices
are combined using a logical OR operation

2.2.3 Master

An EtherCAT master is a device that manages and controls an EtherCAT network
[34, 37]. This is typically a PC, an embedded microprocessor, a Programmable Logic
Controller (PLC) or a motion controller that communicates with and is responsible for
controlling the devices connected to the network. An Ethernet port of an on-board
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Ethernet controller or a standard network card serves as the interface between the
control unit and the fieldbus. The EtherCAT master is the control point for the network.
It is also responsible for managing the network clock and synchronization across the
network, as well as error handling mechanisms. Furthermore, the EtherCAT master
uses data from the ENI and ESI files to identify and understand the structure of the
network and the capabilities of the connected slaves.

The Ethernet controller is connected to the master Direct Memory Access (DMA).
This means that data transfer between the master and network memory does not require
any CPU power. The power requirement of the master CPU is thus not determined by
the EtherCAT connection, but by the desired master application. Thereby, the process
image is already fully sorted, as the process data is not configured in the master but
in the slaves. The peripheral devices insert their data at the corresponding position
in the passing frame and read the data intended for them. When the frame with the
input information is received again, the Ethernet controller can also copy it directly
into the working memory of the computer by means of DMA. Thus, no active copying
is required by the CPU.

2.2.4 Slave

An EtherCAT slave is a device that is integrated into an EtherCAT network and is
controlled by an EtherCAT master [34, 36, 37]. Typically, EtherCAT slave devices
include sensors, drives, actuators or other automation devices that are assigned to
specific tasks within the system. To enable EtherCAT frame processing, these slave
devices require an ESC. Each slave device in the network is automatically assigned
a unique address, which is used for unique communication with the master. The
functionality of a slave device is defined by the ESI file. The EtherCAT slave contains
three main layers: the Physical Interface (PHY), the data link layer, and the application
layer. The architecture of an EtherCAT slave can be seen in Figure 2.6.

The PHY and the network interface is defined in the Ethernet standard [39]. It
contains components to process fieldbus signals, applies signals from the ESC to the
network and forwards data from the network to the ESC. The network interface consists
of three main components:

1. Plugs: Cable connectors such as RJ45 connectors or M12 D-code connectors can
be used. EtherCAT cables are usually shielded twisted pair enhanced category 5
cables (CAT 5e STP) or better.

2. Magnetics: Pulse transformers are used for galvanic isolation between network
and slave.
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3. PHY: connects the link layer device (ESC) to a physical medium such as an
optical fiber or copper cable. The hardware functions implemented in the chip
are used to transmit and receive Ethernet frames.

Figure 2.6: Block diagram of an ESC [36]. It consists of three layers: PHY, data
link layer and the application layer. The PHY forwards the data from
the network to the data link layer and makes the data from the data link
layer available to the network. The data link layer manages the EtherCAT
protocol in real-time. It serves as interface for the data exchange between
the EtherCAT network and the local application. The application layer
consists of hardware, communication software, and device-specific software
to ensure the data exchange between the data link layer and the slave
application. This can be realized for example by a µC.

The second level of an EtherCAT slave is the data link layer. This layer handles
the EtherCAT protocol in real-time by processing the EtherCAT frames on the fly
and providing the interface for data exchange between the EtherCAT master and the
slave’s local application controller via registers and a Dual Port Random Access Memory
(DPRAM). It contains the ESC, an Electrically Erasable Programmable Read-Only
Memory (EEPROM) and status LED‘s.

1. ESC: The ESC is a chip for EtherCAT communication. It is explained in more
detail in Section 2.2.4

2. EEPROM: The EEPROM, also known as the Slave Information Interface (SSI),
stores hardware configuration details for the ESC. These configuration parameters
are loaded into the ESC’s internal registers during its power-up sequence. This
action activates the Process Data Interface (PDI) so that the DPRAM can interact
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with the nearby host controller. The EEPROM can be modified by a configuration
tool via EtherCAT using the information provided by the ESI file. If authorized
access is granted, the µC can also read and write to the EEPROM. All interactions
with the EEPROM are channeled through the ESC via the Inter-Integrated Circuit
(I2C) data bus.

3. EtherCAT LEDs: LEDs provide information from the ESC and the application
status.

The application layer consists of hardware, communication software, and device-
specific software. A local µC can meet the mentioned requirements. This controller
handles the EtherCAT State Machine (ESM), process data exchange with the slave
application, and mailbox-based protocols for acyclic data exchange. The µC performance
depends solely on the device application, not on the EtherCAT communication.

EtherCAT Slave Controller (ESC)

The ESC usually uses an Application-Specific Integrated Circuit (ASIC) or a Field
Programmable Gate Array (FPGA). Direct integration into the processor is also possible.

The ports connect the ESC to other EtherCAT slaves and the master. EtherCAT
slaves support two to four ports. The logical ports are numbered 0-1-2-3 or A-B-C-D.
A physical topology of an EtherCAT network is always structured as a logical ring, as
can be seen in Figure 2.7.

The ESCs are always connected to the master via Port 0 and to the following
slave via Ports 1 to 3. The EPU, which is located behind Port 0, takes over the frame
processing. The returning frames are directly forwarded to the next Port (as shown at
Port 1) or returned to Port 0 (as shown at Port 2). Each port has a auto-forwarder
and a loop-back-function. The auto-forwarder receives the Ethernet frames, performs
a check of the frames and forwards them to the loop-back function. The loop-back
function forwards Ethernet frames to the next logical port if there is no link at a port,
if the port is not reachable, or if the loop for the port is closed. The loop back function
of Port 0 forwards the frames to the EPU.

EtherCAT Processing Unit (EPU)

The EPU receives, analyzes, and processes the EtherCAT data [38]. It enables and
coordinates the access to the internal registers and to the memory area of the ESC.
The memory area of the ESC can be addressed by the EtherCAT master and via the
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Figure 2.7: Processing order of a four-port-ESC [36]. Each port has an auto-forwarder
and a loop-back function. The auto-forwarder receives the Ethernet frames,
performs a check of the frames and forwards them to the loop-back function.
The loop-back function forwards Ethernet frames to the next logical port.
If there is no link at a port, the port is not reachable or the loop for the
port is closed, the loop-back function forwards the Ethernet frames to the
next logical port. The EPU is always located after Port 0. The master is
always connected via Port 0.
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PDI by the local application. Figure 2.8 shows the main components of the EPU.

Figure 2.8: Block diagram of an EPU [38]. The ESC address space (Dual Port Random
Access Memory) is accessible from both directions, the EtherCAT network
and the PDI. SyncManager managers prevent simultaneous access to the
memory. FMMUs map the logical addresses of the EtherCAT frame to the
local address space in the EPU. Other important components of the EPU
are PHY Management, Monitoring, Distributed Clocks, EEPROM, Status
Block and a Reset controller.

The following descriptions provide a brief overview of the various components and
functions of an EPU.

• Physical Layer (PHY) Management
The task of the PHY management is to read and write the control and status
registers of the PHY in order to configure each PHY before operation, and to
monitor link status during operation.

• SyncManager
SyncManagers are responsible for a consistent data exchange between the Ether-
CAT master and the EtherCAT slaves. To prevent simultaneous access to DPRAM
by the EtherCAT network (master) and the PDI (local µC), a mechanism is needed
to protect the data. This task is performed by the SyncManager.
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If the slave uses FMMU, the SyncManagers for the corresponding data blocks are
located between the DPRAM and the FMMU. To guarantee data consistency two
modes can be used, mailbox mode and buffered mode.

In mailbox mode the EtherCAT master and the µC only get access to the buffer
when the other has finished its access. If the sender writes to the buffer, the buffer
is locked for writing until the receiver has read it out. Mailbox mode is typically
used to exchange acyclic data such as parameter settings.

Buffered mode is typically used for cyclic data exchange. In buffered mode, the
EtherCAT master and µC can access the communication buffer simultaneously.
This makes this mode suitable for the exchange of process data. The sender can
always update the content of the buffer whereby the receiver always receives the
latest buffer content. Three buffers of identical size are physically used for the
buffered mode and therefore require three times the process data size assigned
in DPRAM. The start address and size of the first buffer are configured in the
SyncManager configuration. The addresses of this first buffer are used by the
master device and by the µC for reading and writing the data. Depending on the
state of the SyncManager, accesses to the address range of the first buffer are
redirected to one of the three buffers. Therefore other SyncManagers must be
configured in such a way that they do not address the memory area of the second
and third buffer.

The standard configuration includes four SyncManagers. One for acyclic data
output (mailbox out, master to slave), one for acyclic data input (mailbox in,
slave to master), one for cyclic data output (process data out, master to slave)
and one for cyclic data input (process data in, slave to master). The standard
configuration plus the calculation of the DPRAM size can be seen in Table 2.2.

Table 2.2: Standard SyncManger configuration and DPRAM size calculation [36].

SyncManager Buffer Count Length [Byte] Total Length [Byte]

Mailbox Output 1 L_MbxOut 1 · L_MbxOut
Mailbox Input 1 L_MbxIn + 1 · L_MbxIn
Outputs 3 L_Out (TxPDO) + 3 · L_Out
Inputs 3 L_In (RxPDO) + 3 · L_In

= Σ DPRAM size

• Fieldbus Memory Management Units (FMMU)
FMMUs are used to map logical addresses bit by bit or byte by byte to physical
addresses of the ESC. In the start-up phase, the master configures the FMMUs of
each slave to set which area of the logical process data image is to be assigned
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to which local address space. Each FMMU channel maps a continuous logical
address space to a continuous physical address space of the slave device. While
the telegram is passing through the device, the FMMU can extract specific data
for the terminal and also insert data into the telegram.

• Dual Port Random Access Memory (DPRAM)
An EtherCAT slave can have an address space of up to 64 kB. The first block
of 4 kB, 0x0000-0x0fff, is used for registers and for user memory. The memory
address 0x1000-0xffff is used as process data memory. The size of the process
data memory depends on the device. The ESC address area is directly addressable
by the EtherCAT master or an attached µC.

• Process Data Interface (PDI)
An EtherCAT slave can have several types of PDIs. The different types of PDI
are: Digital I/O, SPI slave, 8-16 bit µC, on-chip bus, and multipurpose I/O.

• Status
The status block provides ESC information and application status information. It
controls the external LEDs.

• Electrically Erasable Programmable Read-Only Memory (EEPROM)
A non-volatile memory is used for the ESC configuration and the device description.

• Distributed Clocks
Distributed clocks allow precisely synchronized generation of output signals,
precisely synchronized reading of inputs and generation of time stamps for events.
Synchronization can involve the entire EtherCAT network.

• Monitoring
The monitoring unit contains blocks for counting errors and contains watchdogs.
Watchdogs are functions that monitor correct process data communication. Error
counters help to analyze errors.

• Reset
The integrated reset controller monitors the power supply and controls external
and internal resets.

2.2.5 EtherCAT State Machine (ESM)

The state of the EtherCAT slave is controlled via the ESM [36, 38] In each state, special
functions can be executed in the EtherCAT slave. A distinction is made between five
different states: Init, Pre-Operational, Safe-operational, Operational, and Bootstrap.
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The functional principle is shown in Figure 2.9.

Figure 2.9: Illustration of the different states and the possible transitions of an ESM
[36].

Init

The EtherCAT slave is in Init state after power-on. The EtherCAT master initializes
the SyncManager for mailbox communication. Neither mailbox nor process data
communication is possible.

Pre-Operational (Pre-Op)

At the transition from Init to Pre-Op the EtherCAT slave checks the correctness of
the mailbox initialization. In Pre-Op state mailbox communication is possible. The
EtherCAT master initializes the SyncManager for process data and the FMMU channels.
If the EtherCAT slave supports a configurable mapping, the EtherCAT master also
initializes the PDO mapping or the SyncManager PDO assignment. In addition, the
settings for the process data transfer as well as possible terminal-specific parameters
that deviate from the default settings are transferred.

Safe-Operational (Safe-Op)

During the transition from Pre-Op to Safe-Op the EtherCAT slave checks whether
the SyncManager channels for the process data communication. Furthermore the
EtherCAT slave copies current input data into the corresponding DPRAM areas of the
ESC before the state change is completed. In Safe-Op state mailbox and process data
communication is possible. The input data are already updated cyclically. However,
the data outputs of the EtherCAT slave are not yet active.

Operational (Op)

During the transition from Safe-Op to Op the EtherCAT master activates the output
of the EtherCAT slave. In the Op state full process data and mailbox communication
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is possible.

Boot

The Boot state can only be reached via the Init state. Here, an update of the slave
firmware can be done. In the Boot state only mailbox communication via the File-Access
over EtherCAT protocol is possible.

2.3 Serial Peripheral Interface (SPI)

As already mentioned in Section 2.2, different PDIs can be used for communication
between the ESC and the application layer. One of the PDIs is the SPI. SPI facilitates
full-duplex communication, allowing simultaneous transmission and reception of data
[40]. With support for high-speed data transfers and straightforward connectivity,
this interface is well-suited for the transmission of depth data. In the course of this
sub-chapter, the SPI is discussed in more detail.

SPI is a synchronous, full duplex main-subnode-based interface for synchronous
serial short distance communication between integrated circuits [41]. The SPI topology
consists of one main/master device and one or multiple subnodes/slave devices. Both
the main and the subnode can transmit data at the same time. The 4-wire SPI interface
has four signals: Clock (SPI CLK, SCLK), Chip Select/Slave Select (CS/SS), Main
Out and Subnode In (MOSI), Main In and Subnode Out (MISO). Figure 2.10 shows
the functionality of the SPI.

The master generates the clock signal that provides the synchronization of the data
transmission. The chip select signal from the main is used to select the subnode, and it
is usually an active Low signal. This signal is pulled High to disconnect the subnode
from the SPI bus. Each subnode has an individual chip select signal from the main.
MOSI and MISO are the lines for data transmission. MOSI transmits data from the
main to the subnode, and MISO transmits data from the subnode to the main. On the
subnode side, the data lines are named serial data output (SDO) or serial data input
(SDI).

The SPI distinguishes between four different modes, in which they differ in clock
polarity (CPOL) and clock phase (CPHA). The period when the chip select is High
and goes Low at the beginning of the transmission and when chip select is Low and goes
High at the end of the transmission is called idle state. The CPOL bit sets the polarity
of the clock signal during the idle state. The CPHA bit selects the clock phase. Either
a rising or falling edge is used to sample and/or shift the data, depending on the CPHA
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Figure 2.10: Blockdiagram of a SPI network with one SPI main and two SPI subnodes
in regular mode [41]. Each subnode has it’s one inverted Chip Select
(CS) connection. The main sets the Clock (SCLK) in the SPI network.
Data between the main and the selected subnode can be simultaneously
transmitted via two lines. MOSI transmits data from the main to the
subnode, and MISO transmits data from the subnode to the main.

bit. The requirements of the subnode regarding clock polarity and clock phase must be
fulfilled in the main.

As already mentioned multiple subnodes can be used with a single SPI main. The
subnodes can be connected in regular mode or daisy-chain mode. In regular mode,
every subnode has an individual chip select from the main. The clock and data are
available for the selected subnode as soon as the associated chip select signal is enabled
(pulled Low). If several chip select signals are enabled, the data on the data lines will
be corrupted because the main cannot identify which subnode is transmitting the data.

In daisy-chain mode, the sub-nodes are implemented with a common chip select
signal so that the data flows from one sub-node to the next. In this arrangement,
all sub-nodes receive the SPI clock simultaneously. The main data line is connected
directly to the first sub-node, which then transmits data to the subsequent sub-nodes
in sequence. This means that the number of clock cycles required for transmission is
directly linked to the position of the sub-node in the chain as the data pass through
the daisy chain.

2.4 Research Question

Research shows that 3D vision is becoming increasingly important in industrial au-
tomation. The potential of application areas is constantly expanding and far from
being exhausted. In particular, the use of high-resolution depth images in industrial
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applications to detect objects or people is steadily increasing. Typically, data from
depth cameras are transmitted to controllers or PC systems via USB or Ethernet inter-
faces. Some of the goals of Industry 4.0 are to meet needs in a customer-oriented sense,
emphasizing speed, (cost-) efficiency, simplicity, reliability, and modularity. Fieldbuses,
in general, meet these needs. One of the most modern fieldbuses is EtherCAT. This
fieldbus is characterized by its short cycle times and its high data transfer rate. It also
guarantees real-time and is versatile. There are now countless fieldbus components such
as actuators, analog and digital input and output terminals, 2D cameras, and much
more, which communicate via this bus with a controller in the context of an industrial
application. 3D vision can contribute to improving industrial applications, as more
information is available. As fieldbus systems are state of the art in industry and depth
cameras usually have a USB or Ethernet interface, integrating depth cameras into a
fieldbus would be in line with Industry 4.0. This leads to the first research question of
this master thesis:

Research Question 1

Is it feasible to embed depth information from a 3D camera via fieldbus within a
PLC, while maintaining the specifications of the embedded camera system?

To prove feasibility, the proposed system is integrated and tested in an industrial
application. Safety applications are particularly suitable for evaluation, since certain
requirements for the system are defined in the standards. Therefore, an application
in the field of collision avoidance is developed. The relevant valid standard is DIN
ISO/TS 15066 Robots and robotic devices - Collaborating robots [22]. This technical
specification defines the safety requirements for collaborative industrial robot systems
and the working environment and supplements the requirements and instructions for
the operation of collaborative industrial robots given in ISO 10218-1 and ISO 10218-2
[42, 43]. With regard to the camera system, the DIN ISO/TS 15066 standard primarily
evaluates the recognition time, which results from the latency and the frame rate.
Modern safety camera systems specify a latency of less than 100ms at a frame rate of
30 fps. This will be used as motivation for the second research question:

Research Question 2

Is it feasible to use the developed camera system in a human robot collaboration
application, while complying with the specifications of existing camera systems?
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System setup for the transmission of depth data via EtherCAT

This chapter describes the system setup for the transmission of depth data via Ethernet
for Control Automation Technology (EtherCAT) and the selection of the different
components of the EtherCAT-capable camera. First, an overview of the system structure
is given. Subsequently, the used EtherCAT master is described. Finally, the components
of the EtherCAT slave are presented.

The aim of the system is to integrate depth data from a 3D camera into the
fast Ethernet fieldbus EtherCAT, making it accessible within a Programmable Logic
Controller (PLC). The setup system consists of an EtherCAT master and an EtherCAT
slave. The slave is the EtherCAT-capable depth camera and consists of three components:
a 3D camera, a Microcontroller (µC) device, and an EtherCAT Slave Controller (ESC)
device. The depth camera transmits the data via a bus to a µC. The µC processes
and forwards the depth information via a process data interface to an ESC. The ESC
is directly connected to the controller via the EtherCAT fieldbus. If a frame passes
through the slave, the slave writes the data to the frame and sends them back to the
master. Thus, the depth data has been transmitted to a PLC via a fieldbus. Figure 3.1
gives a basic overview of the proposed system.
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Figure 3.1: System overview of the EtherCAT master and EtherCAT slave. The PLC
is directly connected over EtherCAT with the EtherCAT slave. The slave
consists of three components: ESC device, µC and 3D camera. This 3D
camera uses ToF technology to generate depth information. A light source
emits infrared light. If the light hits an object, it is reflected and sent back
to the camera. A sensor detects the reflected light. Amplitude modulation
is used to determine the distance between the camera and the object. The
3D camera shares this information with a µC via bus. The µC processes
the data and sends it via a Process Data Interface to the ESC, where it can
be polled by EtherCAT frames.

3.1 Master device

The EtherCAT Master is a desktop PC with the Windows 10 operating system and
the The Windows Control and Automation Technology 3 (TwinCAT3) software from
Beckhoff Automation GmbH [44]. TwinCAT3 transforms a PC-based system into a
real-time controller with one or more run-time systems. TwinCAT3 is structured into
three main components: TwinCAT3 eXtended Automation Engineering (TwinCAT3
XAE), TwinCAT3 eXtended Automation Runtime (TwinCAT3 XAR), and TwinCAT3
Functions.

The TwinCAT3 XAE is an engineering tool that enables the programming and
configuration of hardware. The standard version of TwinCAT3 includes all programming
languages of the IEC 61131-3 standard [45], as well as functionalities such as program
debugging and control hardware diagnostics.

The TwinCAT3 XAR is a real-time capable runtime, which is used to control in
the field level of a system. In addition to an operating-system-independent runtime,
the operating system which always runs on PC-based controllers enables the execution
of other applications as well.
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TwinCAT3 Functions enables the modularity of the system, which means that
individual and demand-oriented projects can be created. The basic system can be
extended with a wide range of automation functions. Within the application of human
robot collaboration, the following Vision functions is relevant. It is used for image
processing, configuration of cameras and programming of image analysis [46].

TwinCAT3 XAE is integrated in a Microsoft Visual Studio environment. TwinCAT3
XAE enables the inputs and outputs of the PLC to be linked with the inputs and
outputs of the I/Os [47]. TwinCAT3 I/Os collect cyclic data from different fieldbuses
in the process images. Tasks drive the corresponding fieldbuses, which can be operated
with different cycle times, on a CPU. Tasks are executed cyclically and can be weighted
with priorities. Tasks with higher priority can interrupt tasks with lower priority, which
is why tasks with short cycle times should have high priority. The transport layer
between the TwinCAT3 XAE and the TwinCAT3 XAR is the Automation Device
Specification (ADS) communication protocol [38]. The TwinCAT3 architecture of an
exemplary application can be seen in Figure 3.2.

For multi-core processor systems, TwinCAT3 offers the possibility to isolate indi-
vidual cores. This allows different TwinCAT3 tasks to be assigned to a core that is
isolated for real-time use. For communication between the master and the slaves, a
network card is required that supports the TwinCAT3 driver for Ethernet cards. In the
following the system-relevant Desktop PC components are specified:

• Processor: Intel(R) Core(TM) i5-6600 CPU 3.30GHz 4 Cores,

• Network card: Beckhoff FC9001-0010 Ethernet-Network card.

3.2 Slave device

The requirements for the EtherCAT slave are: high data transmission rate, low latency,
compact, moderate implementation effort, low cost, and easy to reproduce. Limita-
tions are only given by the EtherCAT fieldbus and the EtherCAT master. Since the
standard EtherCAT data transmission allows a maximum speed of 100Mbit s−1 [34],
it is important to select an EtherCAT-capable camera system so that this limit is not
exceeded [34]. Due to the modularity and versatility of EtherCAT slaves, the system
should be far below the 100Mbit s−1 mark. The limiting of the data transfer rate can
be done by the choice of the 3D camera or by a software solution. In this regard, a µC
should be chosen that offers a suitable interface for configuration and programming,
an easy connection to the 3D camera and a Process Data Interface (PDI) interface for
the EtherCAT controller. In addition the µC should be powerful enough to handle the
amount of depth data provided by the depth camera. The data transfer rate should also
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Figure 3.2: Overview of the TwinCAT3 implementation on a desktop PC with an
exemplary application [47]. The TwinCAT3 eXtended Automation (XA)
architecture consists of two main components, the TwinCAT3 engineering
tool and the TwinCAT3 runtime. The eXtended Automation Engineering
(XAE) is the development environment of TwinCAT3. It offers different
programming languages and libraries like the vision library. A compiler
for translation is also included in TwinCAT3. The eXtended Automation
Runtime (XAR) is the real-time environment in which the TwinCAT3
modules created are loaded, executed, and managed. In this figure, two
PLC modules, one I/O module, and one NC module are executed. These
are cyclically performed by the so-called tasks. Such TwinCAT3 tasks can
be distributed to different cores of a CPU to increase performance. In this
application, two slaves are connected to the master via a fieldbus. The
communication with the respective modules is cyclic.
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not be limited by the process data interface and by the hardware of the ESC. Based on
these requirements, the components of the EtherCAT capable camera system can be
selected.

3.2.1 Microcontroller device

The µC is the core of the EtherCAT slave. It serves on the one hand as an interface
from the 3D camera to the ESC, on the other hand for processing the depth data and
as a user interface for settings and programming. This means that the µC must contain
an interface for a depth camera and an ESC. The µC used for this master thesis is the
Raspberry Pi 4 Model B [48]. The Raspberry Pi is a single board computer, which can
be operated with the operating system Raspberry Pi OS. Raspberry Pi OS is a free
operating system based on Debian (Linux), optimized for Raspberry Pi hardware. It
supports most programming languages like C, C++, Java, HTML, Python etc. It also
offers an easy-to-use user interface for programming. The Raspberry Pi has two Micro
HDMI ports for this purpose. In addition, it is also possible to access the system with
the network protocol Secure Shell (SSH). Due to the Linux-based operating system, a
high availability of camera drivers is given, which facilitates the commissioning of these.
The single-board computer offers two USB 2, two USB 3 and an Ethernet interface
for the connection of a depth camera. It also has an Serial Peripheral Interface (SPI),
which allows process data to be exchanged with ESCs that support this process data
interface. The physical connection is provided via the General Purpose Input/Output
(GPIO) pins of the Raspberry Pi. Figure 3.3 serves to illustrate the Raspberry Pi 4
Model B.

Figure 3.3: Raspberry Pi 4 Model B.

The system-relevant properties of the Raspberry Pi 4 Model B used are listed below:

• Processor Broadcom BCM2711 Chip
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64 bit Quad Core ARM v8 Cortex-A72 1,5 GHz,

• Random Access Memory 4 GB LPDDR4,

• Gigabit Ethernet,

• 2x USB 3.0 port and 2x USB 2.0 port,

• 40 Pin GPIO Header,

• 2x micro HDMI,

• Power supply 5V/3,0A DC via USB Type C jack,

• Micro SD format for loading the operating system and for data storage.

The advantages of the Raspberry Pi 4 Model B as an EtherCAT slave are its versatile
connectivity, the user-friendly interface and the powerful processor. The decisive factor,
however, is that there is an ESC board developed for the Raspberry Pi, the EasyCAT
HAT from AB&T Srl.

3.2.2 EtherCAT slave controller (ESC)

For the single-board computer Raspberry Pi 4 Model B an ESC board exists. The
EasyCAT HAT from AB&T Srl allows a Raspberry microcontroller to become an
EtherCAT Slave [49]. The communication between the single board computer and
the ESC takes place via the SPI of the Raspberry Pi’s GPIO pins. The power supply
of the EasyCAT HAT is also done via the GPIO pins. The ESC LAN9252 from
Microchip [50] is integrated on the AB&T Srl board. The LAN9252 is a two or
three-port ESC with integrated Physical Interface (PHY). Each PHY contains a full
duplex 100BASE-TX transceiver and supports 100Mbit s−1 operation. The ESC of the
LAN9252 includes 4 kB of Dual Port Random Access Memory (DPRAM) and three
Fieldbus Memory Management Unit (FMMU). The board also has 4 kB of Electrically
Erasable Programmable Read-Only Memory (EEPROM) to define the EtherCAT slave.
The ESC includes four SyncManagers. These allow the exchange of data between the
EtherCAT master and the local application. Each SyncManager’s direction and mode
of operation, buffered mode, or mailbox mode, are configured by the EtherCAT master.
An SPI slave controller provides a synchronous slave interface with a low pin count.
It allows access to the System Control and Status Registers (CSR), internal First In
First Out (FIFO) buffers, and memory. Bit lanes are supported with a clock rate of
up to 80MHz. AB&T Srl also provides a tool, called EasyConfigurator, to write the
EEPROM and thus define the slave. However, only 256B can be defined with this tool.
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Figure 3.4 shows the EasyCAT HAT.

Figure 3.4: ESC device: AB&T Srl EasyCAT HAT.

3.2.3 3D camera

The requirements for the 3D camera in this system are: a data transfer rate much lower
than 100Mbit s−1 due to the EtherCAT limitations, the use of ToF technology because of
the advantages for the human robot collaboration application as discussed in Section 2.1,
the availability of a driver for Linux based operating systems to operate on the Raspberry
Pi, and connection via USB or Ethernet. The flexx2 from pmd technologies is a 3D
imaging ToF USB camera [20]. It offers software drivers for Windows and Linux
operating systems. With a resolution of 224× 172 pixels (Wimage×Himage), a maximum
frame rate FRR of 60 fps and a measuring range of 0.1m to 4m at a depth resolution of
<= 1% of measured distance it achieves a maximum data transfer rate DTR, according
to Equation (2.3), of

DTR = Wimage ·Himage · FRR ·Rdepth

= 224 · 172 · 60 fps · 16 bit = 36.99Mbit s−1,
(3.1)

using a depth information Rdepth of 16 bit per pixel. The camera includes a IRS2381
Infineon REAL3 3D Image Sensor based on pmd technology with a viewing angle
(Horizontal × Vertical) of 56◦ × 44◦. Figure 3.5 shows the flexx2.

Since ToF technology is not limited to certain distances, it increases flexibility in
various applications. The flexx2 driver offers several pre-defined modes that the user
can select. Depending on the use case, the distance and frame rate can be changed
to obtain a suitable image capture. The mode can be changed on-the-fly and requires
one frame for the change. The "5" modes (five sub-frames) are better suited for short
distances or when the processor load is a problem. The mode "5" cases require about
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Figure 3.5: 3D ToF USB camera: flexx2.

30% less processing than the mode nine cases. The "9" modes (nine sub-frames) have
greater range and depth quality because they use two modulation frequencies, but they
need more processing power. On the Raspberry Pi 4 Model B, all modes work without
dropping a frame rate. The different modes are listed in Table 3.1.

Table 3.1: Different settings of the flexx2 [20].

Frequency Mode Name Exposure
Time Phases FPS Approximate

Max Range
20MHz MODE_5_15FPS 1040 µs 5 15 fps 3m

20MHz MODE_5_30FPS 500 µs 5 30 fps 2.5m

20MHz MODE_5_45FPS 310 µs 5 45 fps 2m

20MHz MODE_5_60FPS 220 µs 5 60 fps 1m

20MHz−60MHz MODE_9_5FPS 1500 µs 9 5 fps 4m

20MHz−60MHz MODE_9_10FPS 760 µs 9 10 fps 3.5m

20MHz−60MHz MODE_9_15FPS 500 µs 9 15 fps 3m

20MHz−60MHz MODE_9_20FPS 390 µs 9 20 fps 2.5m

20MHz−60MHz MODE_9_30FPS 220 µs 9 30 fps 2m
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Implementation of the EtherCAT-capable depth camera in an
industrial application

This chapter describes the implementation of the depth camera, flexx, in the Ethernet
for Control Automation Technology (EtherCAT) fieldbus as well as its integration
into the human-robot collaboration application. First, the concept for transferring
the depth data via EtherCAT is presented in Section 4.1. Then the implementation
of the EtherCAT Slave Controller (ESC) EASYCAT HAT on the Raspberry Pi is
discussed in Section 4.2. Subsequently, the connection of the flexx2 to the Raspberry Pi
is described in Section 4.3, which leads to the complete integration of the depth camera
in EtherCAT, presented in Section 4.4. Afterwards, the depth data processing in The
Windows Control and Automation Technology 3 (TwinCAT3) is outlined in Section 4.5.
This results to the integration of an EtherCAT-capable camera into an application in
the field of collision avoidance, presented inSection 4.6.

4.1 Concept for the transmission of depth data via
EtherCAT

Images or depth images have a high memory requirement. This depends on the resolution
and the bit depth used. A depth image of the flexx2 has 38.528 pixels [20]. With
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a measurement range of 0.1m − 4m at a depth accuracy of ≤ 1% of the measured
distance. 2B per pixel are sufficient to define all the depth information provided by the
flexx2. This results in a total byte count of 77 056B per frame.

As mentioned in Section 3.2.2, the ESC LAN9252 [50] has a Dual Port Random
Access Memory (DPRAM) of 4 kB. The first block of address space, 0x0000-0x0fff,
is used for registers and user memory (mailbox communication). The address space,
0x1000-0x1fff is available for DPRAM. Due to the buffered mode this results in a
maximum definable memory area for cyclic data exchange of

DPRAMavailable =
DPRAMtotal

3
=

4096B

3
≈ 1365B. (4.1)

To be able to transmit a depth image of the flexx2 without loss, a method must be
developed that allows 77 056B per frame to be sent via the relatively limited DPRAM
of 1365B. The considered approach can be seen in Figure 4.1.

The depth images sent by the flexx2 are transmitted as line-sorted 1D arrays to the
Raspberry Pi via USB. Thereby, the 1D array is divided into segments of equal size.
The depth data are then written to the EASYCAT HAT’s DPRAM via SPI. In the
ESC, a two byte input variable is defined for each pixel in a segment. The definition
of the input variable is given by the Electrically Erasable Programmable Read-Only
Memory (EEPROM) configuration. If an EtherCAT frame passes the ESC, the data of
a segment are written to the EtherCAT frame and forwarded to the controller. During
this reading process the data of the next segment are written into another buffer of the
DPRAM. This is then read with the next EtherCAT frame. The process is repeated
until the entire depth image has been transferred.

Within the controller, the input variables of the camera device in the I/O area are
linked to a defined segment array in the Programmable Logic Controller (PLC). To
reconstruct the one-dimensional depth array, the position of the sent segment must be
known. Therefore, the address of the first element in the segment is also sent with the
depth data. Once the entire depth image has been transmitted, the entire process can
be repeated.

The attempted approach requires multiple EtherCAT frames per depth image.
These are sent cyclically by TwinCAT3. The minimum cycle time of TwinCAT3 is 50 µs.
To keep the latency of the camera system as low as possible, the number of required
frames is minimized, whereby a maximum of 1365B per frame can be transmitted. In
addition, the segmentation process should be as simple as possible. If the total number
of bytes per depth image is divisible by the number of pixels per transmitted segment,
this simplifies the implementation.
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Figure 4.1: Representation of the implemented methods to transmit depth data via
EtherCAT. A depth camera sends the depth image as a row sorted 1D array
via USB to the µC. The image here has an exemplary resolution of 36 pixels.
In the µC, only one segment and the address of the first element in the
segment is sent to the ESC via SPI. Here, the array is divided into three
segments. When an EtherCAT frame passes the slave, the data and the
address are read from the DPRAM and sent to the controller. The data
received in the I/O area are linked to an array of the size of the DPRAM of
the ESC. Using the segment address, the depth image can be reconstructed
in the form of a 1D array. This process is repeated in this case 3 times
per depth image. After that, a new frame of the depth camera can be
transferred.
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A data transmission of 301 pixel per segment results in an utilization of slightly
more than 44% of the DPRAM as well as an easy implementation of the segmentation.
The flexx2 has 172 lines per depth image. This results in exactly 128 required EtherCAT
frames for one depth image with a theoretical total latency of 6.4ms. With the depth
information of two byte per pixel plus two byte address information, a memory area
of 604B is defined in the ESC. Better utilization of the DPRAM would be possible,
however, as can be seen in Section 5.3, the segmentation of 301 pixels per EtherCAT
frame allows comparability of the different implemented data reduction methods.

4.2 Implementation of the EASYCAT HAT on the
Raspberry Pi

The EASYCAT is directly connected via the GPIO ports of the Raspberry Pi 4. Since
the board of the ESC is directly above the heat sinks of the Raspberry Pi after mounting,
this results in a low heat dissipation of the system. To avoid performance losses due to
overheating, the components are actively cooled. In addition, a heat sink is mounted
directly on the ESC. The setup used is shown in Figure 4.2.

Figure 4.2: Implementation of the Raspberry Pi 4 and the EASYCAT HAT with active
cooling to avoid performance losses due to overheating.

The aim of the implementation is not only to transmit the depth data but also to
maintain the desired frame rate of the depth camera in the PLC and to minimize the
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latency of the entire transmission. This requires the fastest possible processing of the
implemented methods. The Raspberry Pi 4 Model B is overclocked for this purpose.
The following configuration parameters are set in the Raspberry Pi:

• over_voltage=6: Sets an overvoltage to the base voltage of the CPU,

• arm_freq=2000: Maximum clock speed of the CPU,

• gpu_freq=750: Maximum clock speed of the GPU,

• force_turbo=1: Forces the maximum value of the CPU clock permanently.

4.2.1 EEPROM programming

As already mentioned in Section 2.2.1, EtherCAT slaves are defined by so called
EtherCAT Slave Information (ESI) files in Extensible Markup Language (XML) format.
The EASYCAT HAT from AB&T Srl is delivered with a configuration software called
EasyConfigurator. However, this only allows for a configuration of the EEPROM with
a maximum of 256B. 604B of memory is required to implement the desired method.
Therefore, with the EasyConfigurator software, only a template is created in XML
format, which is then processed with a Python script designed for this slave. In the ESI,
the structure of the object dictionary and the corresponding behavior of the entries
are based on the Modular Device Profile (MDP) [51] of EtherCAT. When using MDP
objects, the inputs (index 0x6000 - 0x6FFF) are mapped to Process Data Objects
(PDO) mapping objects (index 0x1A00 - 0x1BFF for TxPDO mapping) and assigned
to the respective SM via index 0x1C10 (SM0) for PDO assignment.

For each pixel in a segment and for the address of the first pixel in the depth data
array two bytes are needed. Thus, the variables in the slave are defined as Unsigned
Integer (UINT) with 16 bits. The utilized method sends 301 pixels and one address
per EtherCAT frame. This results in a total of 302 defined input variables of type
UINT. Two TxPDO are created for this purpose. The first PDO with the index 0x1A00
contains the address of the first element of the transmitted segment. The second PDO
with the index 0x1A01 defines the sent 301 pixel of the depth image. The indexing of
the depth data is based on the input variable designation. The PDO of the address is
implemented in XML format as follows:
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Listing 4.1: PDO of the address in XML format
<TxPdo Fixed="1" Mandatory="1" Sm="0">
<Index>#x1A00</Index>
<Name>Address</Name>
<Entry>
<Index>#x6000</Index>
<SubIndex>0</SubIndex>
<BitLen>16</BitLen>
<Name>address</Name>
<DataType>UINT</DataType>

</Entry>
</TxPdo>

In the following the implementation of the first two data of a line is shown:

Listing 4.2: PDO of the data in XML format
<TxPdo Fixed="1" Mandatory="1" Sm="0">
<Index>#x1A01</Index>
<Name>InputData</Name>
<Entry>
<Index>#x6001</Index>
<SubIndex>0</SubIndex>
<BitLen>16</BitLen>
<Name>data1</Name>
<DataType>UINT</DataType>

</Entry>
<Entry>
<Index>#x6002</Index>
<SubIndex>0</SubIndex>
<BitLen>16</BitLen>
<Name>data2</Name>
<DataType>UINT</DataType>

</Entry>
...

</TxPdo>

To make the slave configuration available to the master, the slave ESI file must
be available to TwinCAT3. The EEPROM of the EASYCAT HAT can be written
by different tools. TwinCAT3 allows the configuration and writing of EEPROMs of
EtherCAT capable slave devices. This requires a functioning EtherCAT connection
between master and slave, and the existing EtherCAT Network Information (ENI) file.
For the configuration of the EtherCAT slave in TwinCAT3, the device in the I/O of the
Solution Explorer in a TwinCAT3 project must be scanned. The detected slave can
then be configured by updating the EEPROM with the defined ESI file. To adopt the
configuration of the EEPROM, the slave device must be removed and added again by
scanning the entire device.
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4.2.2 Configuration of the SPI

AB&T Srl [49] offers an implementation of the SPI on a Raspberry Pi based on the
programming language C++. For the communication between the Raspberry Pi 4 Model
B and the ESC, the LAN9252, the Broadcom BCM2835 library [52] is implemented.
This is a C library for Raspberry Pi. It provides access to GPIO and other IO functions
on the Broadcom BCM2835 chip, as well as on the BCM2711 chip. This allows control
and communication with external devices such as the ESC LAN9252. The program
structure of the SPI implementation consists of two header files (EasyCAT.h and
camera.h) and two C++ files (main.cpp and EasyCAT.cpp).

camera.h

Using the EasyConfigurator, a header file is created which describes the slave. The
data types and designations of the input and output variables of the EtherCAT slave
are described, as well as the total number of bytes used in the memory of the slave.
However, since the EasyConfigurator can define a maximum data range of 256B,
the input variables in the camera.h header file are configured using a Python script.
Listing 4.3 shows the structure of the input data.

Listing 4.3: Input Variables of the EtherCAT slave.

#define TOT_BYTE_NUM_ROUND_IN 604
typedef union
{

uint8_t Byte [TOT_BYTE_NUM_ROUND_IN ];
struct
{

uint16_t address;
uint16_t data1;
uint16_t data2;
...
uint16_t data301;

}DataIn;
} PROCBUFFER_IN;

EasyCAT.h

The EasyCAT.h header file contains various addresses for accessing different registers of
the ESC LAN9252. Furthermore, all commands of the flag register of the ESC LAN9252
as well as the EtherCAT State Machine (ESM) are defined. Additionally the write and
read commands of the ESC and the SPI are specified. The EasyCAT class represents
the instance of the ESC on the Raspberry Pi. It contains various constructors, variables
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and functions, which allow the data exchange. Listing 4.4 shows the structure of the
EasyCAT class. It is described in more detail in EasyCAT.cpp.

Listing 4.4: EasyCAT class

class EasyCAT
{

public:
EasyCAT ();
EasyCAT(uint8_t SCS);
EasyCAT(SyncMode Sync);
EasyCAT(uint8_t SCS , SyncMode Sync);

bool Init ();
unsigned char SlaveTask ();
void CameraTask ();

PROCBUFFER_OUT BufferOut;
PROCBUFFER_IN BufferIn;

private:
void SPIWriteRegisterDirect (unsigned short Address ,

unsigned long DataOut);
unsigned long SPIReadRegisterDirect (unsigned short Address);
void SPIWriteRegisterIndirect (unsigned long DataOut ,

unsigned short Address ,
unsigned char Len);

unsigned long SPIReadRegisterIndirect (unsigned short Address ,
unsigned char Len);

void SPIReadProcRamFifo ();
void SPIWriteProcRamFifo ();

uint8_t SCS_;
SyncMode Sync_;

};

EasyCAT.cpp

All functions of the EasyCAT class are defined in the EasyCAT.cpp file. These are
described in more detail below.

EasyCAT()
This is the standard constructor of the EasyCAT class. It defines the private
variables SCS and Sync. SCS is the SPI Chip Select. A selection can be made
between the two available SPI pins of the Raspberry Pi GPIO. The variable
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Sync selects the synchronization mode of the EtherCAT slave. It is defined as
an enumeration in the EasyCAT.h header file. The default mode is ASYNC. In
this case, the slave operates autonomously based on its own cycle and is not
synchronized with the EtherCAT cycle.

bool Init()
Executing the Init() function is necessary to be able to transfer data via SPI.
It starts the initialization of the bcm2835 driver, sets up the GPIO pins for SPI
access, selects the chip select defined in the constructor and also the SPI data
mode. In addition, the clock divider can be selected. This is an integer divisor
that is used to set the SPI clock. The core clock is the reference here. In addi-
tion, the Init() function uses the private functions SPIWriteRegisterDirect,
SPIReadRegisterDirect, SPIWriteRegisterIndirect to select the synchroniza-
tion mode, to perform an ESC reset, or to query the Ready flag. If the initialisation
is successful, the return value is true.

unsigned char SlaveTask()
The SlaveTask() function is the standard task of the ESC. First, the watchdog
status and the ESM status are requested. Then the output variables are read
from the DPRAM and the input variables are written to the DPRAM. For this,
the private functions SPIReadProcRamFifo() and SPIWriteProcRamFifo() are
used. The return value is the current status of the ESM.

void CameraTask()
The CameraTask() function is based on the SlaveTask() function, but only input
variables can be written to the DPRAM using the private function SPIWriteProc-
RamFifo(). In addition, the watchdog and ESM status are ignored. This allows
considerably faster transmission of input data via the SPI.

PROCBUFFER_OUT BufferOut
The output variables are defined in the header file camera.h.

PROCBUFFER_IN BufferIn
The input variables defined in the header file camera.h.

main.cpp

The main.cpp file is used to run the application. A variable of type EasyCAT must be
defined for the implementation of the EASYCAT HAT. This allows the transfer of data
through SPI. Successful initialization is crucial for data transmission. The variables
created in the header file camera.h are written via the EasyCAT class. The utilized
task writes the data to the DPRAM of the ESC. It is necessary for a continuous data
exchange to have the data updated cyclically, for example with a loop.
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4.3 Software implementation of the flexx2 on the
Raspberry Pi

The flexx2 is supplied with the Royale Application Programming Interface (API) [53].
This software package is a camera framework for Time of Flight (ToF) cameras and
is written entirely in the C++ programming language. Therefore, the camera can be
controlled via a high-level interface. In Listing 4.5, the functions required for the depth
data obtained from the camera are described using a simple implementation.

Listing 4.5: Simple implementation of the Royale API for capturing depth data of a 3D
camera.

#include <stdio.h>
#include <royale.hpp >
using namespace std;

class MyListener : public royale :: IDepthDataListener {
public:

MyListener (){}
void onNewData(const royale :: DepthData *data) override {

...
}

};

int main()
{

unique_ptr <MyListener > listener;
...

The libraries stdio.h and royale.hpp are required for the implementation. The IDepth-
DataListener class provides the listener interface to retrieve depth data from the
Royale API. The onNewData(...) function is called with every update of the Royale
framework frame. The structure DepthData defines the depth data that is delivered
via the callback. This data contains a 3D point cloud with the size of the depth image
(width, height). The coordinate pointer returns a line-sorted array with the size of
(width x height x 4). For each pixel, the x, y and z coordinates are available in meters,
as well as the confidence (in the range from 0 (bad) to 1 (good)). Based on this
confidence, the user can decide whether to use the 3D point or not. The point cloud
uses a right-handed coordinate system (x -> right, y -> down, z -> in image plane).
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...
royale :: CameraManager manager;
unique_ptr <royale :: ICameraDevice > cameraDevice;

auto camlist = manager.getConnectedCameraList ();
if (! camlist.empty ()){

cameraDevice = manager.createCamera(camlist [0]);}
if (cameraDevice == nullptr){

return 1;}

if (cameraDevice ->initialize () != royale :: CameraStatus :: SUCCESS){
return 1;}

...

The class ICameraDevice() is the main interface for communication with the ToF
camera system. The CameraManager is responsible for recognizing and creating instances
of ICameraDevices, one for each connected (supported) camera device. The function
getConnectedCameraList() attempts to establish a connection to each plugged-in
camera, asks for its unique serial number, and returns the list of connected camera
modules. The cameras found are transferred to an object of type ICameraDevice
by calling createCamera(). This implementation assumes that only one camera is
connected. The function initialize() initializes the camera device and sets the first
available use case. It is necessary to call the initialize method before working with the
camera device.

...
listener.reset(new MyListener ());
if (cameraDevice ->registerDataListener(listener.get()) != royale ::
CameraStatus :: SUCCESS){

return 1;}
...

The function registerDataListener() registers the listener on the camera device.

...
if (cameraDevice ->startCapture () != royale :: CameraStatus :: SUCCESS){

return 1;}

cin.get();

if (cameraDevice ->stopCapture () != royale :: CameraStatus :: SUCCESS){
return 1;}

return 0;
}
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The function startCapture() starts the video capture mode, based on the specified
operation mode. The function stopCapture() stops the video capture mode.

As described in Section 3.2.3, the flexx2 offers a selection of different operating
modes. These can also be changed during image capture.

Listing 4.6: Implementation of the operation mode selection.

auto selectedUseCaseIdx = 7;
royale ::Vector <royale ::String > useCases;
auto status = cameraDevice ->getUseCases(useCases);

if (status != royale :: CameraStatus :: SUCCESS || useCases.empty ()){
return 1;}

if (cameraDevice ->setUseCase(useCases.at(selectedUseCaseIdx)) !=
royale :: CameraStatus :: SUCCESS){

return 1;}

The function getUseCases(useCases) returns all use cases that are supported by the
connected device. After checking the existing use cases, the camera mode can be set
with the function setUseCase(useCases.at(selectedUseCaseIdx)). The variable
selectedUseCaseIdx specifies the index of all use cases. For the flexx2, index 7
corresponds to the MODE_9_30FPS mode. If the mode is not selected, the default
mode is MODE_9_5FPS.

4.4 Integration of flexx2 in EtherCAT

The considered approach, depicted in Figure 4.1, is now realized based on the implementa-
tions described in Section 4.2 and Section 4.3. For this purpose, the main.cpp file and the
flexx2 implementation code are merged. Thereby, function void sendFrame(float*,
int ) is implemented for segmented transmission. The structure of the function is
shown in Listing 4.7.
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Listing 4.7: Function for sending depth data segment by segment via EtherCAT.

void sendFrame(float* depthData , int numOfPixels){

size_t numOfInputs = TOT_BYTE_NUM_IN /2-1;

for (size_t address = 0; address < (numOfPixels/numOfInputs);
address ++) {

EASYCAT.BufferIn.DataIn.address = static_cast <uint16_t >( address)
;

EASYCAT.BufferIn.DataIn.data1 = static_cast <uint16_t >
(*( depthData +2+( address*numOfInputs +0) *4) *1000.0);

EASYCAT.BufferIn.DataIn.data2 = static_cast <uint16_t >
(*( depthData +2+( address*numOfInputs +1) *4) *1000.0);
...

EASYCAT.BufferIn.DataIn.data301 = static_cast <uint16_t >
(*( depthData +2+( address*numOfInputs +300) *4) *1000.0);

EASYCAT.CameraTask ();
}

}

The arguments passed are the pointer to the depth data, the ESC object of type Easy-
CAT, and the number of pixels to be transferred per depth image. The pointer points to
the 1D array coordinates of the structure DepthData. The function sendFrame(...)
iterates over all segments, assigns the corresponding depth values to the ESC variables
and calls the function CameraTask() after the assignment. Therefore the values are
written to the DPRAM of the ESC. The address variable sent with each segment
contains its index. The assignment of individual depth values to the ESC variables is
described in Figure 4.3.

The function sendFrame(...) is called in the function onNewData(..) of the data
listener. As this function is automatically called by the Royale API after every frame
update, no loop is required for the cyclical writing of data. The listener in Listing 4.5
is extended as shown in Listing 4.8.
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Listing 4.8: Extension of the data listener for the attempted approach.

class MyListener : public royale :: IDepthDataListener {
public:

MyListener (){}

void onNewData(const royale :: DepthData *data) override {
int numOfPixels = data ->width * data ->height;
float* depthData = (float *)data ->coordinates;
sendFrame(depthData , EASYCAT_ , numOfPixels);

}
};

Figure 4.3: Assignment of the individual depth data for every segment. The input data
data3 is shown here as an example. As the depth data is stored in an
array of type float and the input variables are of type uint16_t, a type
conversion is performed for each variable. Before this, the value is multiplied
by a factor of 1000 to convert the unit from m to mm. The address of the
depth value in the 1D array results from the address of the 1D array, an
offset, the index of the current segment of the depth image, the number of
input variables of the slave and the input data index.

The standard constructor of the EasyCAT class is used in the main.cpp file. This
means that the asynchronous mode is defined when writing the DPRAM and pin
24 of the Raspberry Pi’s GPIO. The following settings have been made in the bool
EasyCAT::Init() function of the EasyCAT.cpp file:
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• bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
This function sets the polarity (CPOL = 0) and the clock phase (CPHA = 0) of
the SPI.

• bcm2835_spi_setClockDivider(20);
This function sets the clock divider factor of the SPI. With a set base clock of
750MHz, an SPI clock divider of 20 results in an SPI clock frequency of 37.5MHz.
This is also the minimum possible factor at a clock frequency of 750MHz. The
maximum SPI clock frequency of this system is approximately 38MHz. Stable
data transmission is no longer possible at higher clock frequencies.

During runtime of the application, it must be guaranteed that each segment of the
depth image is transmitted via EtherCAT. As the asynchronous mode is set in the ESC,
the cycle time of the PLC must be shorter than the shortest time required to transfer a
segment via SPI in order to prevent data loss. Therefore, the cycle time of the PLC is
selected based on the measured SPI transmission times. Figure 4.4 shows the times of
50000 measurements. It can be seen that a transmission task requires at least 0.15ms.
It can be assumed that a cycle time of 0.1ms is sufficient for loss-free data transmission.

Figure 4.4: SPI transmission time for a segment. The times of 50000 transmissions are
shown. The red line shows the average value of all times.

4.5 Implementation of the camera device in
TwinCAT3

As already mentioned in Section 4.4, the PLC garantees a cycle time of 0.1ms. In
TwinCAT3, the cycle time is adjusted in the real-time settings. As different program
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structures have different processing times, it is advantageous to map these to different
tasks. The cycle times of the tasks can be customised according to requirements.

The merging of the individual segments into a depth image is realised with a code
designed in Structured Text (ST). This is shown in Listing 4.9. The data is written to
the corresponding position in the 1D array via a simple loop. iterating through each
depth data input variable in the segment. The address of the input variable specifies
the segment index. The 1D array is defined as a global variable.

Listing 4.9: Implementation of the merging of individual data segments into a com-
plete depth image. A segment consists of 301 input variables for depth
data (inputArray) and one input variable containing the segment index
(address).

PROGRAM PROCESS_DATA
VAR

inputArray AT%I* : ARRAY[1..301] OF UINT;
address AT%I*: UINT;
i: UINT;

END_VAR

FOR i := 1 TO 301 BY 1 DO
GVL.depthData[address * 301+i] := inputArray[i];

END_FOR

4.6 Implementation of the camera device in an
industrial application

The application in which the EtherCAT-capable depth camera will be integrated is
in the field of collision avoidance for robotic systems. The safety distances between
robots and people in the collaboration space is evaluated according to the DIN ISO/TS
15066:2016 [22] standard based on the measured detection times of the camera system
[22]. This safety margin allows the system to be benchmarked and creates comparability
with state-of-the-art applications.

ISO/TS 15066:2016 describes the safety requirements for the integration of col-
laborative industrial robot systems. The operating characteristics of collaborative
robot systems differ significantly from those of conventional robot systems in that in
collaborative robot operation the operators can work in the immediate vicinity of the
robot system. Energy is applied to the drive elements of the robot and physical contact
between an operator and the robot system can occur within the collaboration space.
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With this operating mode of velocity and distance monitoring, the robot system
and operator may move simultaneously in the collaboration space. Risk reduction is
achieved by maintaining at least the safety distance between the operator and the robot
without interruption. If the distance is reduced to a value below the safety distance,
the robot system stops. If the operator moves away from the robot system, the robot
system can automatically resume movement as long as at least the safety distance is
maintained. If the robot system reduces its velocity, the safety distance is reduced
accordingly.

With variable values, the maximum permissible velocities and the safety distances
can be set continuously on the basis of the relative velocities and distances of the
robot system and the operator. On the contrary, with constant values, the maximum
permissible velocity and the safety distance must be determined by the risk assessment
as the most unfavorable cases in the entire course of the application. This means that a
reduction in velocity depending on the measured distance between the robot and the
human is conducive to maintaining operation.

The safety distance, Sp, at the time t0 is described in the standard DIN ISO/TS
15066:2016 by the following equation:

Sp(t0) = Sh + Sr + Ss + C + Zd + Zr (4.2)

with the parameters:

Sh The contribution to the safety distance due to the change in the position
of the person.

Sr The contribution to the safety distance that can be attributed to the
response time of the robot system.

Ss The contribution to the safety distance due to the stopping distance of
the robot system.

C The penetration distance, as defined in ISO 13855. This is the distance
by which a body part can penetrate the detection zone (the sensor field)
before it is detected.

Zd The position uncertainty of the operator in the collaboration space, mea-
sured by the presence detection device, resulting from the measurement
tolerance of the sensor system.

Zr The position uncertainty of the robot system resulting from the accuracy
of the system for measuring the robot position.

With the definition of the safety distance according to Equation (4.2), a concept of
a safety application can be designed and implemented.
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4.6.1 Experimental setup

A description of the structure is essential for designing the experimental application.
The main components of the setup include the EtherCAT-capable depth camera, a
5-axis gripper arm robot and a desktop PC with TwinCAT3. The depth camera is
attached to the superstructure of a 5-axis gripper arm robot. The Field of View (FoV)
of the camera covers part of the robot’s working area. The robot only operates in this
area. The robot and depth camera, including the labelled FoV, are shown in Figure 4.5.

The robot used is a 5-axis robolink RL-DP-5 gripper robot from igus [54]. Each
axis of the robot is controlled by a stepper motor with incremental encoder. These
are connected directly to EtherCAT terminals for stepper motors with incremental
encoders. An EtherCAT bus coupler connected to the terminals ensures the EtherCAT
capability of the robot.

The pixel information of the depth camera transmitted via EtherCAT only refers
to the distance between the pixel and the camera. To reconstruct a three-dimensional
image, Equation (2.2) in Section 2.1.1 are required. To do this, the intrinsic parameters
of the camera must be known. These can be obtained via the Royale API of flexx2.
Listing 4.10 shows the code structure. The getLensParameters(...) function of the
camera device returns the intrinsic parameters.

Listing 4.10: Output of the intrinsic parameters via the Royale API of the flexx2.

royale :: LensParameters parameters;
if (royale :: CameraStatus :: SUCCESS != cameraDevice ->getLensParameters(

parameters)) {
return 1;}

cout << "Lens focal length: " << lens.focalLength.first << " / " <<
lens.focalLength.second << endl;

cout << "Principal point: " << lens.principalPoint.first << " / " <<
lens.principalPoint.second << endl;

Due to the fixed mounting of the camera on the robot body, the extrinsic camera
parameters are transferred to the robot system by a simple transformation. The
transformation matrix is measured and read manually. The camera coordinates are
transformed into the origin of the first axis of the robot. The position of the coordinate
origin is shown in Figure 4.6 a). The coordinate transformation between the camera
coordinate system and the robot coordinate system for each pixel is as follows:
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Figure 4.5: Graphical representation of the experimental setup. The flexx2 depth
camera is mounted on the superstructure of a 5-axis gripper arm robot. The
green lines represent the FoV of the camera. This shows how an arm reaches
into the working area of the robot. The closest point of the detected and
calculated point cloud to the robot defines the distance between the robot
and the object.
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{xr, yr, zr} are the coordinates of the robot and {xc, yc, zc} are the coordinates of the
camera. All coordinates are specified in millimeters.

4.6.2 Functional principle of the application

Since the minimum safety distance in the collaboration space depends on the robot
velocity, two modes are implemented when moving the axes, the stop mode and the
reduced velocity mode. The robot performs simple positioning movements with axes 2, 3
and 4 only in order to remain in the camera’s FoV. All axes should stop when an object
falls below the safety distance. The velocity mode should also be activated if an object
falls below a certain distance. In this mode, all axes should reduce the velocity linearly
to the object-robot distance, whereby the lower bound is the threshold distance of the
stop mode and the upper bound is selected based on the robot dynamics.

The functional principle of the application is explained in more detail in Figure 4.6.
Axis 1 is not moved in order to guarantee that the robot remains in the camera’s FoV.
Axis 5 only allows a rotational movement of the end effector and thus has no influence
on the translation. Therefore, it will also stay deactivated. On this basis, three line
segments are formed in the centre of each robot segment. The coordinates in the space
of both end points of each segment are the axis positions in the space. These can be
determined by the forward kinematics of the robot. This allows the line segments to be
calculated in space.

The smallest distances of an object in space to each line segment can be determined
using its orthogonal projection onto each segment. The smallest distance of all projec-
tions is the smallest distance between the object and the robot. For the robot model, an
offset is chosen for each line segment based on the element of a segment that is furthest
away from the line. This results in a cylindrical approximation of the individual robot
segments. The resulting deviation from the model to the real robot system is irrelevant
in terms of collision avoidance, as the dimensions of the model are greater than or equal
to the actual robot dimensions.

The point cloud generated by the robot can be uniquely identified with the approx-
imated model, making it possible to distinguish between the robot and the object in
space. The point in the point cloud that does not belong to the robot and has the
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Figure 4.6: Graphical representation of the functional principle of the safety application
for collaborating robot systems. Figure a) shows the robot and the axes used
for the trajectory. There are also three objects in the immediate vicinity.
Line segments are formed from the coordinates of the axis positions in space,
which can be determined by the forward kinematics of the robot, as shown
in figure b). From the orthogonal projection of all objects onto all segments,
the smallest distance of each object to the robot can be determined, whereby
an offset is defined for each line segment, which approximates the robot
model, as shown in figure c). The positions of the objects in space are given
by the point cloud generated by the depth camera. Figure d) shows the
closest object to the robot and the zones for the stop mode and reduced
velocity mode.
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smallest distance to the approximated robot model is therefore the smallest distance
between any object in space and the robot. In this way, it is also possible to distinguish
whether the closest object to the robot is located in the stop mode zone, in the reduced
velocity mode zone or outside both zones.

4.6.3 Direct Kinematic of the robot

In order to be able to calculate the line segments of the robot, the axis position in space
must be defined. This can be done using direct kinematics.

The kinematic model of a manipulator can be obtained in the form of a kinematic
chain by using systematic schemes for joints and rigid links. This is also known as
direct kinematics or forward kinematics. A kinematic chain is obtained by determining
the geometric quantities and the kinematic parameters. These parameters define the
relative position and orientation of a joint in relation to a neighbouring joint depending
on the variable coordinates [55].

The Denavit-Hartenberg convention [56, 57], for example, can be used to determine
these geometric variables and kinematic parameters. This scheme specifies the minimum
number of parameters required to describe the geometry of a link between two joints and
the joint variables. The following DH parameters are defined to describe the five-axis
robot used in this application.

Table 4.1: DH parameter of the application.

Index i θi di ai αi

1 0 rad 157 mm 0 mm −π/2 rad

2 −π/2 rad 0 mm 350 mm 0 rad

3 +π/2 rad 0 mm 270 mm 0 rad

4 −π/2 rad 0 mm 0 mm −π/2 rad

5 0 rad 190 mm 0 mm 0 rad

The DH parameters θi are added to the joint angles of the respective axes in the
application. When the individual axis positions are determined in 3-dimensional space,
line segments can be formed between the axis points. Each point of the point cloud
can thus be projected onto each line segment. This makes it possible to determine the
closest point or object to the robot.
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4.6.4 Implementation of the application in TwinCAT3

The entire safety application is implemented in TwinCAT3. The various interacting
processes are described in four structured programming organisation units (POUs)
of the program type. A programming object requires an extension in the sense of a
method. The structure of the PLC project is shown in Figure 4.8.

In the PROCESS_DATA program, the depth data segments are reassembled into a
complete depth image in the sense of a 1D array sorted in rows. The input variables of
the camera device in the I/O area are linked to an input array defined in PROCESS_DATA.
The MAIN program is responsible for controlling robot processes. The actuators are
linked to the defined axis variables here. KINEMATIC uses the Denavit-Haarenberg
convention to calculate the axis coordinates in space. POINTCLOUD calculates the point
cloud using depth data and performs various operations to eliminate irrelevant points
caused by surrounding objects, noise, etc. The KINEMATIC and POINTCLOUD programs
are called up in the MAIN program.

Data are exchanged between programs via global variables. These are defined in the
Global Variable List (GVL) GVL. For the application, the TwinCAT3 libraries Tc2_MC2
for axis control and Tc3_Vision for displaying the depth data are added to the PLC
project.

Two tasks with different cycle times are referenced for processing the program struc-
tures. To ensure fast depth data processing, the program PROCESS_DATA is referenced
to a task with a cycle time of 0.1ms. Due to the increased computational effort of point
cloud processing, the remaining programs are processed cyclically with 10ms.

The programs MAIN and POINTCLOUD are explained in more detail below. A more
detailed structural overview is shown in Figure 4.7.

MAIN

In addition to the program calls of KINEMATIC and POINTCLOUD, a state machine is
implemented for robot control. A state variable of type STATE specifies the current
state. The states are as follows:

• POWER activates the axes,

• HOMING performs an initialization run based on the incremental encoders of
the axes,

• INIT_POS moves the robot to the initial position,
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• DRIVE1 moves the robot to position 1,

• DRIVE2 moves the robot to position 2.

An axis override control is also implemented in MAIN. This controls the override variables
and thus the velocity of all axes based on the distance of the closest point. The axis
override control is activated as soon as all axes have been initialized, and the actual
joint angles of the incremental encoders are read out.

Figure 4.7: Display of the various sub-processes of the programs MAIN, KINEMATIC and
POINTCLOUD. After initializing the robot, the functions for determining the
nearest point and for axis control are activated. The ObjectDistance
method calculates the smallest distance for each relevant point in the point
cloud.

POINTCLOUD

POINTCLOUD is used to process and prepare the depth data, which is ultimately used to
determine the nearest point.

The TwinCAT3 Automation Device Specification (ADS) Image Watch function is
used for graphical display of depth images. It retrieves the images from the PLC and
displays them in the development environment. The 1D depth data field is formatted
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and normalized as a grayscale image.

The point cloud is generated using the depth image and the intrinsic of the camera.
An image coordinate transformation is required to integrate the camera data into the
robot system. This is described in Equation (4.3).

To be able to distinguish between robot and object, the robot model is removed
from the point cloud. This is possible by forming cylindrical areas around the line
segments between the axes. Irrelevant points are also eliminated to save computing
power. These include, for example, points on the ceiling or the superstructure.

ToF cameras are rather sensitive to edges, strongly reflective and black objects.
Because the robot model used has a black surface, a strong outbreak occurs in the
surrounding area. This requires some sort of noise suppression. A filter implemented
for this purpose deletes points from a point cloud if there are too few nearby neighbors.
Manually adjustable parameters such as window size, maximum permissible point
distance, or minimum number of points per window are determined experimentally.

The remaining points of the point cloud are used for the closest point determination.
This function is activated only after the robot system is initialized. The ObjectDistance
method determines the nearest segment of each point, the orthogonal projection and
its distance. This allows the point to be determined at the smallest distance from the
robot.
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Figure 4.8: Structured overview of the PLC project. The input variables of the camera
device are linked to an input array defined in PROCESS_DATA. The depth
data is then sorted into a 1D array for depth data defined in GVL based
on the address sent. POINTCLOUD processes the depth data into a point
cloud and uses the kinematic chain calculated in KINEMATIC and the method
ObjectDistance to calculate the closest point to the robot. This is saved
together with all important information in GVL as structure NEAREST_OBJECT.
MAIN communicates with the robot system and controls it based on the
distance of the closest object.
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Experiments and Results

This chapter discusses the experiments in more detail and presents the results. First, in
Section 5.1 the viability of the proposed integration approach of depth data from a 3D
camera into the Ethernet for Control Automation Technology (EtherCAT) fieldbus is
demonstrated. Thereafter, the latency and frame rate of the flexx2 in The Windows
Control and Automation Technology 3 (TwinCAT3) are then evaluated in Section 5.2.
Subsequently, the data reduction methods described in Section 5.3 are intended to
reduce latency and increase the frame rate of the camera measured in TwinCAT3.
Finally, Section 5.4 defines the resulting safety distances in collaboration space based
on the total detection times of the flexx2.

5.1 Evaluation of the transmitted depth image via
EtherCAT to TwinCAT3

The first objective is to transfer depth images to a controller via EtherCAT. For this
evaluation, the entire flexx2 image resolution (224× 172 pixels) is transmitted through
EtherCAT. The depth defined resolution is 1mm and is transmitted with 16 bit per
pixel. As flexx2 has a range of 0.1m - 4m with an accuracy of 1% of the measured
distance, this type of transmission can be described as virtually loss-free in terms of
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depth resolution. The camera is configured to use of double modulation frequencies at
30 fps.

The transmitted depth image is shown in the right image of Figure 5.1. The
Automation Device Specification (ADS) image watch function displays the depth image.
In addition, the depth data is exported to a Python file via ADS and visualized as point
cloud using Open3D, shown in the left image of Figure 5.1.

Figure 5.1: Display of the depth data transmitted via EtherCAT. The left-hand image
shows the point cloud of the depth image. The depth data is exported to
a python file via ADS and visualized using the Open3D library. The right
image shows the depth image as a gray scale image displayed via the ADS
image monitoring function.

5.2 Evaluation of the latency and frame rate of
flexx2 in TwinCAT3

The safety distances for collaborative robots specified in the DIN ISO/TS 15066 standard
[22] are determined in relation to the measuring system by the detection time, the
position uncertainty of the operator in the collaboration space, and the penetration
depth. In this regard, the position uncertainty and the penetration depth are determined
by the calibration of the camera, the accuracy of the coordinate transformation between
the robot and the camera system, the resolution of the camera and its depth resolution.
The detection time results from the latency of the camera, including the transmission
system and the frame rate. Moreover, it is essential for determining the safety distances
in the collaborating workspace.

To determine the detection time, an infrared LED is mounted in the camera’s Field
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of View (FoV). This LED emits infrared light with the same wavelength of 940 nm as
the flexx2 transmitter. If the LED emits light in the depth image, no depth data is
available at the position of the LED. The reason for this is that the modulated light
from the camera interferes with the light from the LED. As a result, the sensor array
cannot detect any phase difference between the emitted and captured light. Therefore,
the measured distance is 0m. If the LED does not emit any light, only the modulated
reflected light is received by the depth camera, so the distance between the camera and
the LED can be measured.

When sending the output signal to switch on the LED, the time is saved in a
time variable in TwinCAT3. If the switched-on LED is detected in a depth image,
this time is saved in a second time variable. The difference results in the detection
time of the EtherCAT-capable camera system. This measurement process is repeated
with a random time delay until a sufficient number of measurements is reached (10,000
measurements), in order to guarantee statistical significance of the results.

5.2.1 Setup

In addition to the depth camera, a EK1100 EtherCAT bus coupler from Beckhoff
Automation GmbH [58] is connected to the EtherCAT fieldbus to measure the detection
time. The EL2008 digital output terminal [59], also from Beckhoff Automation GmbH,
is mounted on the bus coupler. The terminal output voltage is 24V. The TSAL6100
infrared LED [60] is connected to this output terminal and is located in the field of
view of the flexx2. The forward voltage of the LED is 1.35V with a forward current of
100mA and a illumination time of 20ms. The LED is connected in series with a 5W,
R = 220Ω resistor to limit the current. The setup is shown in Figure 5.2.

The infrared LED is firmly screwed to the structure of the application for all
measurements, which results in a fixed position of the LED in the depth image. The
distance between the LED and the camera is 0.51m.

In order to evaluate only the camera system, a low latency of the light source
components is essential. The LED has a rise and fall time of 15 ns. The EL2008
output terminal switches with a turn-on time of 60 µs and a turn-off time of 300 µs. A
transmission time of 1 µs is specified for the EK1100 bus coupler for ten modules with
32 bit input/output each. As the latency of the light source should be kept as low as
possible in order to approximately evaluate only the camera system, only switch-on
times are measured due to the output terminal. This results in a total maximum latency
of approximately 61 µs of the light source.
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Figure 5.2: System overview of the setup to measure the detection time. A EK1100
EtherCAT bus coupler [58] with the EL2008 output terminal from Beckhoff
Automation GmbH [59] and the depth camera it connected to PC with
TwinCAT3 via the EtherCAT field bus. The terminal EL2008 switches an
infrared LED, which is mounted in the field of view of the flexx2, on and
off. This switching process can be seen in the depth image. To determine
the latency of the camera system, the time from the moment the LED is
switched on until it is detected in the depth image is measured.
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5.2.2 Implementation

Evaluation of latency and frame rate is implemented in the program PROCESS_DATA.
The frame rate is determined by measuring the time required to transmit all segments
of 1000 images. To calculate the average frame rate over these 1000 frames, 1000 is
divided by the measured time.

When measuring the latency, the time that elapses between the LED being switched
on and the recognition in the depth image is measured. A 5× 5 grid is viewed in the
image where the LED is located. This is shown in Figure 5.3. The mean value of all
distances in the grid is calculated. If this is below the value of a defined threshold, the
LED is turned on, as some pixels on the grid have the value 0. If the average value is
above the threshold, the LED is switched off. Since the mean value of the 5× 5 grid,
which is the mean distance of this 5× 5 grid, is approximately 230mm when the LED
is switched on and approximately 470mm when it is switched off, a threshold mean
value of 350mm of the 5× 5 grid has proven to be well suited for the measurements.

Figure 5.3: Depth image for measuring the latency of the camera in TwinCAT3. The
red window shows the area around the infrared LED when it is switched
off. Two pixels remain black due to the transparent surface of the LED. In
this case, no modulated light from the depth camera is reflected. The green
window shows the area around the LED when it is emitting light. Due to
the interference between the light from the LED and the light from the
depth camera, the sensor array can no longer detect a phase difference. The
measured distance is therefore 0. The detection time of the camera results
from the time measurement between switching on the LED and detection
in the depth image.
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5.2.3 Results

The detection times of four different camera modes are measured. For the first two
modes, the camera operates at 20 fps and 30 fps, respectively, and double frequency
modulation. Modes three and four operate with a single modulation frequency at
45 fps and 60 fps, respectively. In all modes, 10,000 measured values are recorded. The
results are shown in Figure 5.4. The average frame rate of the camera in TwinCAT3
is 20.1 fps in mode MODE_9_20FPS, 28.6 fps in mode MODE_9_30FPS, 41.5 fps in
mode MODE_5_45FPS, and 41.6 fps in mode MODE_5_60FPS.

5.2.4 Discussion

The results shown in Figure 5.4 are now discussed and analyzed in more detail. The
histograms show the detection times of the depth camera in TwinCAT3 over 10000
measured values in order to guarantee statistical significance of the results. In addition,
the the mean value is displayed as a red line. The measured values show that the
average detection time is significantly higher than the reciprocal of the frame rate of
the camera. Furthermore, a high variance in the values can be noted. For a better
understanding of the measured values, a thought experiment is carried out:

If the transmission latency is negligible, one would expect the histogram to resemble
a uniform distribution on an interval corresponding to the reciprocal of the frame rate,
and the mean value of all measured detection times to correspond to the value of half
the frame rate. However, if the latency is not negligible but constant, all values of
the uniform distribution would increase by the latency. If the latency time varies, the
interval of the uniform distribution would extend. This can be observed in the top
histogram of Figure 5.4.

Except the mode MODE_9_20FPS, the time interval between lowest and highest
measured detection time in Figure 5.4 do not correspond to the reciprocal of their
frame rate. This is not only due to the variance of the latency, but much more to the
type of implementation. As already explained in Section 4.3, the Royal Framework
calls the function onNewData(...) of the data listener for a new frame. The frame is
calculated beforehand from the measured sub-frames. The depth processing thread of
the Royale library may block while waiting for the function onNewData(...) to return.
If this function exceeds the elapsed time between capturing frames, there may be a
delay between the capture and the function onNewData(...) for the next frame. The
Royale Application Programming Interface (API) may even skip frames to catch up.

In the onNewData(...) function, the data is sent via Serial Peripheral Interface
(SPI). If the transmission via SPI of an entire frame is not completed before the next

64



5.2. EVALUATION OF THE LATENCY AND FRAME RATE

Figure 5.4: Measured detection times, defined as the time span between switching
the LED on to detecting the LED in the depth image. The results
of 10 000 measured values from four different operating modes are dis-
played. The histograms contain the measured values from MODE_9_20FPS,
MODE_9_30FPS, MODE_5_45FPS and MODE_5_60FPS. The red line
shows the mean value of all measured values.
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frame is processed, there is a delay in frame processing or even a frame drop. This
is also clearly visible in TwinCAT3. In the mode MODE_9_30FPS, a frame rate of
28.6 fps is measurable instead of the desired 30 fps.

It is also noticeable that individual detection times are significantly longer than the
other values. To be able to describe this better, the times for a transmission via SPI
are measured on the Raspberry Pi. This is shown in Figure 5.5. The times apply to a
transmission of 604B.

Figure 5.5: SPI transmission times measured on the Raspberry PI 4 Model B with the
camera running (MODE_9_30FPS mode) and with the camera switched off.
604 bytes are transferred. For the measurement, 50000 values are recorded.

Transmission times are recorded with and without the camera running. It can be
clearly seen that the camera influences the SPI transmission. It is assumed that the
limited computing power of the Raspberry Pi 4 Model B has a significant influence on
the SPI transmission. Individual SPI transmissions are also notable to take significantly
longer than average. This could also be the reason for the increased duration of
individual detection times. However, there is a lower threshold in the transmission time
of the SPI. This means that the transmission time of a frame with this implementation
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can only be reduced by reducing the number of segments per frame. The detection time
is therefore directly related to the number of transmitted segments per depth frame.

5.3 Evaluation of the detection times of flexx2 in
TwinCAT3 using data reduction methods

The detection times of flexx2 in TwinCAT3 can be reduced by the number of segments
per depth image, provided the segment size is constant. This can be implemented in
two different ways while maintaining the frame rate. Either the number of pixels can
be reduced or the number of bits per pixel. Both methods are explained in more detail
in this chapter.

5.3.1 Implementation

One method to lower the data transfer rate of the flexx2 is to reduce the number of bits
per pixel. The smallest number of bits that an EtherCAT slave variable can have is 8
(1B). The largest unsigned integer that can be displayed is 255, which means that if a
pixel is represented by just one byte, a depth of 0m to 2.55m can be displayed with a
depth resolution of 1 cm, for example. Thus, this method sets all values greater than
2.55m to 0m. Therefore, the data of a depth image is reduced by a factor of two.

Another method of reducing the data transfer rate of the flexx2 is to reduce the
number of pixels per depth image. This is achieved, for example, with a minimum pool
operation. This is shown in Figure 5.6.

For example, a 2× 2 window is used to iterate over the depth image. The smallest
value except 0m is retained, the rest is ignored. In this case, the resolution of a flexx2
depth image is reduced from 224× 172 pixels to 112× 86 pixels. This means that a
2× 2 pooling operation reduces the data volume of a depth image by a factor of four, a
4× 4 pooling operation by a factor of 16.

On the one hand, the minimum pooling operation leads to noise suppression in
the depth image, and, on the other hand, this method is suitable for applications in
the field of collaborative robot systems. If the entire workspace can be captured three-
dimensional by depth cameras, the dimensions of all captured objects or persons remain
the same or are even enlarged by the minimum pooling operation. By enlarging the
objects, safety stops would be triggered earlier, and thus complies with the requirements
given in collaborative workspaces.
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Figure 5.6: Display of two minimum pooling operations from one depth image. The
16x16 pixel depth image in the upper half of the figure shows the depth
values displayed as a grayscale image. This image is processed once with
a 2 × 2 pooling operation and once with a 4 × 4 pooling operation. The
smallest value in the pooling window other than 0 is retained, the remaining
pixels are ignored.

68



5.3. DATA REDUCTION METHODS

5.3.2 Results

When evaluating the data reduction methods, the 3 different modes MODE_9_30FPS,
MODE_5_45FPS and MODE_5_60FPS are compared. The methods used are the
reduction of the depth information to 8 bit per pixel, a 2×2 minimum pooling operation
and a 4 × 4 minimum pooling operation. The results of the recognition times for
the three different data reduction methods are shown in Figure 5.7, Figure 5.8 and
Figure 5.9, respectively.

5.3.3 Discussion

The average values of all data rates measured in TwinCAT3 over 1000 frames corre-
spond to the data rate of the specified mode. This means that the processing of the
onNewData() function of the camera framework does not cause any delays or frame
losses.

The method to reduce the depth data halves the number of bytes per depth image.
The minimum pooling operation 2× 2 reduces the bytes per depth image by a factor of
four, the minimum pooling operation 4× 4 by a factor of 16. In Figure 5.7, Figure 5.8,
and Figure 5.9, a direct regression of the expected value, as well as the maximum value
of all measured detection times, is recognizable in direct dependence of the number of
segments transmitted via EtherCAT per depth image.

If the amount of data per depth image is reduced, fewer segments and therefore
EtherCAT frames are required for transmission. As there is a latency with every SPI
transmission and every EtherCAT frame also causes a latency depending on the cycle
time, the total latency of the depth camera is reduced by reducing the amount of data
per depth image.

69



CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.7: Measured detection times using the reduction of depth information to 8 bit
per pixel. The results of 1000 measured values from three different operating
modes are displayed. The upper histogram contains the measured values
from MODE_9_30FPS, the second from MODE_5_45FPS, and the lowest
from MODE_5_60FPS. The red line shows the mean value of all measured
values.
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Figure 5.8: Measured detection times using the 2 × 2 minimum pooling operation.
The results of 1000 measured values from three different operating modes
are displayed. The upper histogram contains the measured values from
MODE_9_30FPS, the second from MODE_5_45FPS, and the lowest from
MODE_5_60FPS. The red line shows the mean value of all measured
values.
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Figure 5.9: Measured detection times using the 4 × 4 minimum pooling operation.
The results of 1000 measured values from three different operating modes
are displayed. The upper histogram contains the measured values from
MODE_9_30FPS, the second from MODE_5_45FPS, and the lowest from
MODE_5_60FPS. The red line shows the mean value of all measured
values.
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5.4 Evaluation of safety distances in the application
for collaborative robot systems

When determining the minimum safety distance, the camera system only has an influence
on the parameters Sh, Sr, C and Zd of Equation (4.2) according to [22]. For the following
description of the contributions of the minimum safety distance, only the detection
time of the camera system is taken into consideration.

5.4.1 Specification of the parameters for calculating the safety
distances

The variable Sh represents the contribution to the distance caused by the movement
of the operator from the actual time until the robot comes to a standstill. According
to [22], if the velocity of a person vh is not monitored, the design of the system must
assume that vh is 1.6m s−1 in the direction in which the distance decreases the most. A
constant value for Sh using the estimated human velocity (1.6m s−1) can be estimated
using the following equation:

Sh = vh · Tr = 1.6m s−1 · Tr. (5.1)

Tr is the detection time of the robot system, including the time for detecting the
operator’s position, the time for processing this signal, and the time for activating a
stop of the robot, but excluding the time for the robot to come to a standstill.

The variable Sr represents the contribution to the distance resulting from the
movement of the robot after a person has entered the sensor field until the control
system triggers a stop. Sr depends on the directional velocity vr of the robot towards
a person in the collaboration space. To simplify the system, vr is assumed to be a
constant value defined as the highest velocity in all areas of the robot, which is the
worst case in the human-robot collaboration application. The tool center point is the
area of the robot that has the highest velocity during the process when all axis are
aligned at maximum velocity. In this application, axes 2, 3 and 4 of the 5-axis robolink
RL-DP-5 gripper robot from igus [54] are moved during the process, resulting in a
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maximum velocity of the tool center point as follows:

vr = vTCP1 + vTCP2 + vTCP3

=
2π

360◦
· [ωmax2 · (a2 + a3 + d5) + ωmax3 · (a3 + d5) + ωmax4 · d5]

=
2π

360◦
· [15 ◦ s−1 · (0.35m + 0.27m + 0.23m) + 30 ◦ s−1 · (0.27m + 0.23m)+

+ 20 ◦ s−1 · 0.23m]

≈ 0.565m s−1.

(5.2)

ωmax2, ωmax3 and ωmax4 are the maximum angular velocities of axes 2, 3 and
4 measured in degrees. a2, a3 and d5 are the dimensions of the DH convention in
Section 4.6.3. According to DIN ISO/TS 15066, a constant value for Sr can be
estimated using the following equation:

Sr = vr · Tr. (5.3)

For the contributions C and Zd of Equation (4.2), the depth resolution of the flexx2
is assumed at a maximum measuring distance of 2m. The maximum penetration depth
C and the positional uncertainty Zd of a person with this camera system is half the
diagonal of a voxel. A voxel is calculated from the depth resolution z, the x and y
dimensions of a pixel at the maximum distance. This is shown in Figure 5.10.

The maximum z-value of the voxel is calculated from the maximum measured depth
dmax for the collaboration space and the depth resolution:

zmax = dmax · 0.01 = 2m · 0.01 = 20mm. (5.4)

The maximum x and y values of a pixel are calculated from the FoV, the resolution
p, and the maximum depth measured dmax:

xmax =
2 · tan FOVx

2
· dmax

px
=

2 · tan 56◦
2

· 2m
112

≈ 18.99mm, (5.5)

ymax =
2 · tan FOVy

2
· dmax

py
=

2 · tan 44◦
2

· 2m
86

≈ 18.79mm. (5.6)

However, these relations do not take into account the lateral noise of the camera.
As there is no information on the lateral noise of the flexx2, a lateral noise of one pixel
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Figure 5.10: 3D grayscale image of the depth data displayed as a voxel grid. Closer
points are darker, and far-off points are lighter. Every voxel defines a
specific area in space depending on the resolution of the depth camera
and the measured distance. The position uncertainty Zd of a person in
this camera system is half a diagonal of a voxel. The lateral noise of the
camera is in this figure ignored.

at a distance of 2m is assumed according to the information in [61]. The contributions
C and Zd are determined as follows:

C = Zd = [(1 + 0.5) · xmax]2 + [(1 + 0.5) · ymax]2 + z2max

= (1.5 · 18.99mm]2 + (1.5 · 18.79mm)2 + 20mm2

≈44.8mm.

(5.7)

However, the contributions C and Zd depend on the type of implementation. For
example, the values for x and y change in the 2× 2 minimum pooling operation:

C = Zd = [(1 + 1) · xmax]2 + [(1 + 1) · ymax]2 + z2max

= (2 · 18.99mm]2 + (2 · 18.79mm)2 + 20mm2

≈57.1mm.

(5.8)

For the 4×4 minimum pooling operation, the contributions C and Zd are as follows:

C = Zd = [(1 + 2) · xmax]2 + [(1 + 2) · ymax]2 + z2max

= (3 · 18.99mm]2 + (3 · 18.79mm)2 + 20mm2

≈82.6mm.

(5.9)
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In the method for reducing the depth resolution, a depth step of 1 cm is added to
zmax:

C = Zd = [(1 + 0.5) · xmax]2 + [(1 + 0.5) · ymax]2 + (10mm+ zmax)2

= (1.5 · 18.99mm]2 + (1.5 · 18.79mm)2 + (10mm+ 20mm)2

≈50.1mm.

(5.10)

5.4.2 Results

With the definition of all contributions necessary for the evaluation of the camera system
to determine the safety distance Sp in the collaboration space, this can be specified as
follows:

Sp = Sh + Sr + C + Zd = (1.6m s−1 + 0.565m s−1) · Tr + C + Zd. (5.11)

The results for the safety distance regarding the discussed data reduction methods with
different frame rates of the flexx2 can be seen in Table 5.1.

Table 5.1: Safety distances according to standard DIN ISO/TS 15066 of measured
detection times.

method frame rate Sh Sr C Zd Sp

no method

20 fps 144mm 51mm 45mm 45mm 284mm

30 fps 186mm 66mm 45mm 45mm 342mm

45 fps 138mm 49mm 45mm 45mm 277mm

60 fps 130mm 46mm 45mm 45mm 265mm

8bit/pixel
30 fps 107mm 38mm 50mm 50mm 245mm

45 fps 62mm 22mm 50mm 50mm 184mm

60 fps 59mm 21mm 50mm 50mm 180mm

pool 2× 2

30 fps 99mm 35mm 57mm 57mm 247mm

45 fps 53mm 19mm 57mm 57mm 186mm

60 fps 45mm 16mm 57mm 57mm 175mm

pool 4× 4

20 fps 84mm 30mm 83mm 83mm 280mm

45 fps 47mm 17mm 83mm 83mm 229mm

60 fps 39mm 14mm 83mm 83mm 217mm
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The stop mode is activated in the application when the safety distance Sp is reached.
The lowest safety distance is achieved with the data reduction method minimum pooling
2× 2 at a frame rate of 60 fps. The minimum safety distance due to the depth camera
is 175mm. The task is now to determine the distance until the reduced-velocity mode
becomes effective. This is determined on the basis of the braking ramps of all axes of
the robot at maximum velocity and the maximum velocity of the person. The velocity
vr is multiplied by the maximum braking time. vs is the velocity of the robot during the
stop, from the activation of the stop command until the robot comes to a standstill. As
vs is not monitored, vs is selected as the maximum velocity of the robot. This results
in the calculation of the distance for activating reduced velocity mode with the lowest
safety distance of Table 5.1 (Sp = 175mm):

dv =Sp + (vh + vr + vs) · Ts

=0.175m + 1.6m s−1 + 0.565m s−1 + 0.565m s−1) · 0.3 s
=0.994m.

(5.12)

If a person falls below the distance to the robot of dv, the velocities of the axes are
linearly reduced until the safety distance Sp is reached, where all axes are stationary.
Since the velocity of people and the robot in the collaboration space is not tracked, the
reduced velocity mode is a method to ensure a continuous transition between procedure
and the stop mode.

In order to create a comparison of the implemented system with the state of the
art, the specifications of the human-robot collaboration system from Veo Robotics [23]
are applied to the implemented system. The recognition time is specified as 100ms and
the resolution as 25mm at a distance of 3m. This leads to a safety distance of:

Sp =Sh + Sr + C + Zd

=(1.6m s−1 + 0.565m s−1) · 0.1 s + 0.025m · 2m
3m

+ 0.025m · 2m
3m

≈250mm.

(5.13)
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5.4.3 Discussion

The results in Table 5.1 indicate that a higher frame rate contributes to a decreased
feasible safety distance between the robot and human. Additionally, utilizing data
reduction methods leads to a reduction in the safety distance. Despite the minimum
pooling operation 4× 4 achieving the lowest detection time of 24.1ms, the calculated
safety distance is larger compared to other data reduction methods. This discrepancy
arises from the lower resolution, causing higher inaccuracies. The most favorable
outcome is obtained with the minimum pooling operation 2× 2, resulting in a safety
distance of 175mm. Consequently, the safety distance of the implemented system is
75mm less than of the state-of-the-art system, and thus show the feasibility of the
proposed integration approach.
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Conclusion and Outlook

This chapter summarizes the system and implementation of the Ethernet for Control Au-
tomation Technology (EtherCAT) enabled depth camera and evaluates its performance
in a human-robot collaboration application. In addition, the research questions are
raised again and discussed. Finally, the chapter concludes with a perspective, referring
to possible future research and suggesting improvements to the system.

6.1 Conclusion

The motivation of this thesis is the simplification of components in Industry 4.0 and
their standardized integration into the field level. In the course of this project, a depth
camera, the flexx2 from pmd technologies [20], is converted for the use with EtherCAT.
A Raspberry Pi 4 serves as a Microcontroller (µC) that segments the depth data from
the flexx2 connected via USB 3.0 and sends it to the EtherCAT Slave Controller (ESC)
via Serial Peripheral Interface (SPI). On the ESC of the EASYCAT HAT board [49],
602B are defined for the data and 2B for the segment address. The EtherCAT master,
The Windows Control and Automation Technology 3 (TwinCAT3), reassembles the
segments sent via EtherCAT frames into a complete depth image. The cycle time is
0.1ms to ensure that all segments of a depth image are transmitted as fast as possible.
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Various modes are tested for the operation of the depth camera, which differ in the
number of modulation frequencies used, the range of depth information, and the frame
rate. The maximum possible data transmission rate is decisive for the transmission of
depth images.

In the course of this diploma thesis, two research questions are addressed. The first
question is as follows:

Research Question 1

Is it feasible to embed depth information from a 3D camera via fieldbus within a
Programmable Logic Controller (PLC), while maintaining the specifications of
the embedded camera system?

Yes, depth images can be transmitted with a resolution of 224 × 172 pixels, a
depth information of 16 bit/pixel and a frame rate of 30 fps. The use of one modulation
frequency allows a maximum SPI data transfer rate of approximately 25Mbit s−1.
However, if two modulation frequencies are used to calculate depth, the maximum
transmission rate of the SPI is reduced to 17Mbit s−1. The reason for this is the
influence of the computing power utilization of the Raspberry Pi 4 Model B on the
SPI. When the depth camera is switched off, data transfer rates of over 28Mbit s−1 are
possible via SPI.

In order to establish comparability with current depth camera systems, the flexx2
is integrated into a human-robot collaboration application. Veo Robotics’ collaboration
space system [23] with a specified detection time of 100ms for objects smaller than
17mm at a distance of two meters from the measuring system serves as a benchmark.
On this basis, the second research question can be formulated as follows:

Research Question 2

Is it feasible to use the developed camera system in a human-robot collaboration
application while complying with the specifications of existing camera systems?

Yes, the EtherCAT-enabled camera system is integrated into a human-robot collab-
oration application with detection times of less than 28ms for objects with a detectable
size of 57mm at a distance of two meters. In the implementation, different methods for
data reduction are compared to counteract the limited data transfer rate. The safety
distances between humans and robots, as defined in the DIN ISO/TS 15066 standard
[22] for collaborative robot systems, are up to 75mm smaller with the implemented
EtherCAT-capable depth camera in combination with various data reduction methods
than with the reference system from Veo Robotics. The resulting smaller safety distance
therefore enables a more efficient and fluid way of working in the collaboration space.
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6.2 Outlook

With regard to future research, it is desirable to aim for overall data transmission
performance. The focus here is particularly on the maximum data transfer rate, the
latency, and the real-time capability of the implemented camera system.

The maximum data transfer rate of the system is limited by the SPI, which in
turn depends on the selected mode. The limited computing power of the Raspberry
Pi determines the maximum data transfer rate of the SPI. Therefore, a more powerful
single-board computer or a Field Programmable Gate Array (FPGA) could ensure
faster transmission via SPI and lower latencies. In this case, the selected Process Data
Interface (PDI), i.e. the SPI, would be the bottleneck. Serial communication between
the µC and the ESC is a limiting factor. Parallel interfaces can improve the data
transfer rate and reduce latencies, enabling the transmission of higher-resolution images
and higher frame rates.

The real-time capability of systems plays a decisive role in robotics. However, the
connected USB camera and the Linux-based operating system of the Raspberry Pi do not
enable real-time capability due to unpredictable latencies. Further development of the
EtherCAT-capable camera in this area is therefore desirable in industrial automation.
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