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ABSTRACT

Dynamic network visualization is a rapidly evolving field and com-
puting a node-link layout for these graphs is one of the most studied
problems in this discipline. Benchmark datasets and quality criteria
are lacking in order to enable comparative evaluations of the layouts
produced by different dynamic network visualization techniques.
This paper proposes a collection of both discrete time and event-
based dynamic quality criteria for evaluating dynamic graph layouts.
Furthermore, we present and discuss datasets, generated from real
data, which we include in a benchmark set for future researchers to
use in their evaluations.

Index Terms: Human-centered computing—Visualization—
Visualization techniques—Graphs;

1 INTRODUCTION

Node-link representations of graphs on a plane are the most common
way to visualize graphs [16]. Typically, these graphs G = (V,E) en-
code the vertices ν ∈V as circles linked together by edges e ∈ E, de-
picted as lines. Dynamic network visualization develops approaches
to depict the temporal dynamics of nodes and edges. Broadly speak-
ing, time can be represented in two ways [2, 6]: mapping time to
space (i.e., small multiples) or time to time (i.e., animation).

As the dynamic network visualization discipline evolves, differ-
ent time abstractions are introduced. In graph drawing, time has
been modeled as snapshots of the graph at equally spaced, discrete
moments in time (the timeslices) [6]. Recent techniques model the
temporal dynamics of nodes and edges (e.g., addition/deletion) as
events with time coordinates as real numbers and duration, hence the
name temporal (or event-based) networks [10]. Modeling the graph
dynamics in this fashion better approximates real-world phenomena,
as data from microblogging messages, network communications,
and contact tracing do not naturally fall neatly into timeslices. This
new perspective motivates this presentation of quality criteria and
benchmark datasets for designing and evaluating visualizations, an
otherwise largely under-investigated topic.
Our Contribution. We compile a list of quality criteria for event-
based layouts; second, we survey and include real-world both times-
liced and temporal graphs as benchmark datasets for further research
in the field. Our objective is to provide the community with a starting
set of resources to support transparent, reproducible, and compara-
tive evaluations of the techniques developed in this design space. We
also advocate for more research in this direction given the advantages
of temporal networks in dynamic network visualization [4, 17].
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2 RELATED WORK

Research on static graph quality metrics focuses on understanding
which factors influence layout readability, e.g., through user studies
(e.g., Purchase et al. [16]). From this work, it became clear that it
was not possible to optimize all quality criteria simultaneously, thus
requiring tradeoffs. Brandes et al. [7] conducted an experimental
study exploring the tradeoff between quality and stability in the
context of timesliced graph drawing. Beck et al. [5] identified a
set of aesthetic criteria for network animations. Among these, it
also mentions the user mental map preservation, which has been
investigated in several studies [3]. As all related work focuses on
timesliced dynamic graphs and considering recent developments in
temporal network visualization, this highlights gaps in literature and
motivates research on benchmark datasets and quality criteria.

3 TEMPORAL NETWORKS: QUALITY CRITERIA & DATASETS

Quality Criteria. We present quality criteria for drawing temporal
networks that do not depend on the temporal encoding but are rather
indicators of the readability of the embedding in a 2D+ t space-time
cube. These methods have been used in prior work [4, 17].
◦ Node Movement tracks the average distance traveled by the nodes
during the evolution of the dynamic graph [17]. This metric is
strongly related to layout stability which is required to support the
cognitive map [3] of the viewer. This metric has been used in both
timesliced [7] and event-based [4,17] evaluations. Lower movement
reflects stable graph drawings but some networks require, by their
nature, higher movement – for example when there is a fundamental
change in a node’s local neighborhood in a short period of time.
◦ Crowding counts the number of times a node passes close to an-
other node during the evolution, meaning that node identities could
be confused. It has been used in previous studies to evaluate draw-
ings of temporal networks [4, 17]. Low crowding means that nodes
are easily distinguishable and high crowding indicates that it could
be hard to follow the node through the evolution of the dynamic net-
work. High crowding may also result from low movement drawings
with the nodes very close to each other.
◦ Stress measures the difference between the Euclidean and graph
theoretic distance in the drawing and has been extensively used to
evaluate dynamic graph drawings [4, 7, 17]. Low stress drawings
place nodes at Euclidean distances proportional to their distance
in terms of the number of hops on the graph. In this context, we
identify two methods for computing stress: (i) Timesliced Stress,
computed and averaged on a per timeslice basis, and (ii) Continuous
Stress, calculated and averaged in continuous time, using the exact
node and edge appearances. In literature [4, 17], they are called
StressOn and StressOff respectively.
Timesliced & Temporal Datasets. We present a collection of
timesliced and temporal networks that can be used for evaluating
visualizations (see Table 1). The datasets have a variety of event
distributions, matching the characteristics of several real-world sce-
narios (e.g., alternating peaks and valleys, periods of stability, high
volatility). The datasets and code are openly available on GitHub [1].
◦ Timesliced Graphs. Van Debunt: encodes the relationship between
32 freshman at seven different time points [18]. Timeslices and edges



Dataset Name Van Debunt Newcomb InfoVis Rugby Pride MOOC RM MSG RAMP
Reference [18] [14] [11] [17] [9] [12] [8] [15] [13]
Dataset Type Timesliced Timesliced Timesliced Event-based Event-based Event-based Event-based Event-based Event-based
# of Events 0.1k 0.6k 2.8k 3.1k 4.0k 15k 28k 15k 0.8k

Trends
Table 1: Overview of timesliced and event-based datasets with their references. The trends represent the “shape” of changes, or event distribution
(i.e., % of total number of events over time) for each graph dataset. Each graph has a different temporal extent but the same Y-axis.

are selected as in the paper by Brandes and Mader [7]. Newcomb:
contains the sociometric preference of 17 members of a fraternity
in the University of Michigan in the fall of 1956 [14]. Timeslices
are selected as in previous work [7]. InfoVis: is a co-authorship
network for papers published in the InfoVis conference from 1995
to 2015 [11]. Authors of a paper are connected in a clique at the
time of publication. This is not a cumulative network as authors can
appear, disappear and appear again. The dataset has 21 timeslices
(one per year). Although timesliced, previous studies have shown
that event-based drawings of this data [4, 17] outperform timesliced
based methods due to the drastic changes between timeslices.
◦ Temporal Networks. Rugby is derived from over 3000 tweets
involving teams in the ‘Guinness Pro12’ rugby competition. The
tweets were posted between 1 September 2014 and 23 October 2015.
Each edge has a time of publication with a precision down to the
second. Pride: lists the dialogues between characters in the novel
‘Pride and Prejudice’ in order [9]. The book has 61 chapters with
4000 interactions between characters. When the algorithm required
timeslices as input, we divided this data into 61 of them (one for
each chapter). The graph can naturally be considered a temporal
network by simply considering the character interactions in order.
MOOC: represents the actions taken by users on a popular massive
open online class platform [12]. The nodes represent users and
course activities (targets), and the edges represent the actions by
users. We pick and elaborate the first 15 thousand events. RM: is
the data coming from The Reality Mining study [8]. It followed 94
participants using mobile phones pre-installed with several pieces of
software that recorded their actions. We only consider voice calls
and consider the first 28 thousand events. MSG: is comprised of
private messages sent on an online social network at the University
of California, Irvine [15]. Each message is represented as a temporal
edge. We consider the first 15 thousand events. RAMP: consists of
the simulated spread of COVID-19. It was developed by the Scottish
COVID-19 Response Consortium contact tracing model [13]. Nodes
are infected individuals and edges occur on the day when the illness
was transmitted. We consider the first 800 events.

4 CONCLUSION

This paper presents a collection of datasets and quality criteria for
supporting further research on the visualization and layout of tempo-
ral networks. Event-based layout showed higher quality drawings
on temporal graphs, due to all temporal information being used, and
not (partially) lost in discretization. We believe that these resources
can benefit both researchers and practitioners pursuing this research
direction, by enabling them to develop, compare, and evaluate tech-
niques. Future work can extend this collection of temporal network
metrics and datasets by incorporating more graphs and expanding the
quality criteria to cover additional aspects of network visualization,
such as user interaction, engagement, and perception.
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