

On hardness of some Boolean counting CSPs

Mike Behrisch[×] Miki Hermann[†]

 $^{\times}$ Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien, Austria

[†]LIX, École Polytechnique, Palaiseau, France

4th June 2021 • Novi Sad

Counting problems

Formally: counting problem \mathbb{P}

 $\begin{array}{l} \equiv \text{ a relation } R \subseteq \{0,1\}^* \times \{0,1\}^* \text{, such that} \\ \exists p \colon \mathbb{N} \to \mathbb{N} \text{ polynomial: } \forall (x,y) \in R \colon \quad |y| \leq p(|x|) \end{array}$

Informally

a binary relation R between instances x and their solutions y; size of solutions polynomially bounded in size of instance

Aim: count solutions

For
$$x \in \{0,1\}^*$$
: $S_{\mathbb{P}}(x) \equiv S_R(x) := \{ y \in \{0,1\}^* \mid (x,y) \in R \}$
 $|S_{\mathbb{P}}(x)| \equiv |S_R(x)| = ? \in \mathbb{N}$

Complexity of \mathbb{P} understood via Turing machines T computing $|\mathsf{S}_{\mathsf{R}}| \colon \{0,1\}^* \to \mathbb{N}$.

Example: #CSP(Q)

For a finite set of relations on a finite set A: $Q \subseteq \mathcal{R}_A$ $\#_{\mathrm{CSP}}(Q)$

Input formula
$$\varphi \equiv \bigwedge_{i=1}^{\ell} \varrho_i(\mathbf{v}_{i,1}, \dots, \mathbf{v}_{i,m_i})$$

 $\varrho_i \in Q^{(m_i)}, \ \mathbf{v}_{i,j} \in \{x_1, \dots, x_n\} \text{ for } 1 \le i \le \ell,$
 $1 \le j \le m_i$

Goal number of satisfying assignments (solutions) $|\{s: \{x_1, \ldots, x_n\} \to A \mid s \models \varphi\}|$

Compare:

Decision problem # solutions: = 0 vs. > 0? Counting problem # solutions: = ? $\in \mathbb{N}$

In this talk:

 $A = \{0, 1\}$ Boolean relations Post's lattice!

Our Motivation

Goal

Understanding of #ETH Exponential Time Hypothesis for Counting Problems

Our Motivation

Goal

Understanding of #ETH Exponential Time Hypothesis for Counting Problems

What is **#**ETH?

analogue of ${\rm ETH}$ for counting problems

Our Motivation

Goal

Understanding of #ETH Exponential Time Hypothesis for Counting Problems

What is **#**ETH?

analogue of ${\ensuremath{\operatorname{ETH}}}$ for counting problems

What is ETH?

```
(Impagliazzo, Paturi, Zane, 2001)
```

```
There is c \in \mathbb{R}_{>0} such that...
```

```
... no deterministic algorithm solves 3-SAT in time O(2^{cn})
```

i.e., 3-SAT is not solvable in subexponential time.

#ETH

What is **#**ETH? (Dell, Husfeldt, Marx, Taslaman, Wahlén, 2014) There is $c \in \mathbb{R}_{>0}$ such that... ... no deterministic algorithm solves **#**3-SAT in time O(2^{cn})

¬#ETH?

 $\forall \varepsilon > \mathbf{0} \exists \text{ deterministic } O((2^{\varepsilon})^n) \text{-algorithm } A$:

A solves #3-SAT

Lower bound on bases of runtime $b := \inf\{c \in \mathbb{R}_{\geq 0} \mid \exists \text{ deterministic } O(2^{cn})\text{-algorithm } A \text{ for } \#3\text{-}sat\}$

 $\neg \# \text{ETH} \iff b = 0 \qquad \qquad \# \text{ETH} \iff b > 0$ algos with faster and faster runtimes no algo better than $O((2^b)^n)$

A characterisation of #ETH, or 'What is *n*?'

(Dell et al., 2014)		
There is $c \in \mathbb{R}_{>0}$ such that no deterministic algorithm solves #3-SAT in time O(2 ^{cn}) where <i>n</i> number of variables in the solution.		
(Dell et al., 2014)		
There is $c \in \mathbb{R}_{>0}$ such that		
no deterministic algorithm solves $\#k$ -SAT in time O(2 ^{cN}) where N size of the formula (number of clauses (atoms)		

A characterisation of #ETH, or 'What is *n*?'

#ETH	(Dell et al., 2014)	
There is $c \in \mathbb{R}_{>0}$ such that no deterministic algorithm solves #3-SAT in time O(2 ^{cn}) where <i>n</i> number of variables in the solution.		
	(Doll at al 2014)	
$\forall k \geq 3. \#EIH \iff$	(Dell et al., 2014)	
There is $c \in \mathbb{R}_{>0}$ such that		
no deterministic algorithm solves $\#k$ -SAT in time O(2 ^{cN})		
where N size of the formula (number of clauses/atoms).		

Remark

- analogous to ETH and k-SAT by Impagliazzo, Paturi, Zane
- importance of complexity parameter already noted there

Standard reductions: $\mathbb{P} \leq \mathbb{Q}$

 \exists deterministic polynomial-time $\mathbb Q\text{-oracle}$ algorithm counting $\mathbb P$

Reductions with linear parameter growth:

 $\exists a, b \in \mathbb{N} : \exists$ deterministic \mathbb{Q} -oracle algorithm A with oracle B: \forall input x of \mathbb{P} of measure n:

- A counts $S_{\mathbb{P}}(x)$
- $\forall \varepsilon > 0$: A runs in at most $O(2^{\varepsilon n})$ time-steps (subexponential)
- for each oracle call:

A calls B on an input of measure $N \leq an + b$

 $(\mathbb{P}, n) \leq_{\text{lin}} (\mathbb{Q}, N)$

 $a = \max_{\varrho \in Q} \operatorname{ar}(\varrho)$

Example

 $(\# CSP(Q), atoms) \leq_{lin} (\# CSP(Q), variables)$

Subexponentiality

(\mathbb{P}, n) is subexponential

 $\forall \varepsilon > 0 \exists \text{ deterministic } O((2^{\varepsilon})^n) \text{-algorithm } A : A \text{ counts } (\mathbb{P}, n)$

$$\neg \# \text{ETH} \iff \# \text{3-SAT is subexponential (wrt. variables)} \\ \iff \forall k \geq 3 \colon \# k \text{-sAT is subexponential (wrt. variables/atoms)}$$

Lemma:

If
$$(\mathbb{P}, n) \leq_{\text{lin}} (\mathbb{Q}, N)$$
, then:
 (\mathbb{Q}, N) subexponential $\implies (\mathbb{P}, n)$ subexponential

Lemma: For $(\mathbb{P}, n) \leq_{\text{lin}} (\mathbb{Q}, N)$:

 (\mathbb{Q}, N) subexponential $\implies (\mathbb{P}, n)$ subexponential

- Consider any given $\delta > 0$; define $\varepsilon := \frac{\delta}{a+2}$
- Consider input x for \mathbb{P} of measure $n \geq b$.
- Use the \mathbb{Q} -oracle algorithm A with an $O(2^{\varepsilon N})$ -oracle B on x
- Each oracle call to *B* takes $O(2^{\varepsilon N})$ time, i.e. $\leq C_1 \cdot 2^{\varepsilon N} \leq C_1 \cdot 2^{\varepsilon(an+b)} \leq C_1 \cdot 2^{\varepsilon(an+n)} = C_1 \cdot 2^{\varepsilon(a+1)n}$
- Altogether $O(2^{\varepsilon n})$ steps, i.e. $\leq C_2 \cdot 2^{\varepsilon n}$ oracle calls
- Total time for $x: \leq C_3 \cdot 2^{\varepsilon n} \cdot 2^{\varepsilon(a+1)n} = C_3 \cdot 2^{\varepsilon(a+2)n} = C_3 \cdot 2^{\delta n}$

Consequence:

 \neg #ETH \iff #3-SAT is subexp. (wrt. variables) \implies #3-SAT is subexp. (wrt. atoms) #3-SAT subexp. wrt. atoms \implies #3-SAT subexp. wrt. variables

... needs a different construction:

Problem: with *N* variables \rightsquigarrow populate $n = N^{\ell} \ell$ -ary atoms (constraints)

Sparsification

(Impagliazzo, Paturi, Zane)

 $\forall \varepsilon > 0 : \exists C \ge 0 : \text{split up any big instance of measure } N$

- into $\leq 2^{\varepsilon N}$ small subproblems
- each subproblem is sparse $n \leq CN$
- the whole algorithm of splitting and combining runs in $O(2^{\varepsilon N})$

Counting CSPs and reductions

Importance of the complexity measure

- size of instance (# atoms) vs. solution size (# variables)
- (#CSP(P), param₁) ≤_{lin} (#CSP(Q), param₂) ⇒
 (#CSP(Q), param₂) subexponential ⇒ (#CSP(P), param₁) subexponential
- for free: (#CSP(Q), variables) subexponential ⇒ (#CSP(Q), size) subexponential
 needs work (e.g. sparsification):
 - (# CSP(Q), size) subexponential

 \implies (#CSP(Q), variables) subexponential

Counting CSPs and reductions

Importance of the complexity measure

- size of instance (# atoms) vs. solution size (# variables)
- $(\#CSP(P), param_1) \leq_{lin} (\#CSP(Q), param_2) \implies$ $(\#CSP(Q), param_2)$ subexponential $\implies (\#CSP(P), param_1)$ subexponential
- for free: (#CSP(Q), variables) subexponential $\implies (\#CSP(Q), size)$ subexponential
- needs work (e.g. sparsification):
 (#CSP(Q), size) subexponential
 (#CSP(Q), variables) subexponential
 - \implies (#CSP(Q), variables) subexponential

Universal algebra

helps constructing \leq_{lin} -reductions

Partial polymorphisms

$$\forall W \subseteq \mathcal{R}_A \qquad \mathsf{pPol}(W) \mathrel{\mathop:}= \{ f \in \mathcal{P}_A \mid \forall \varrho \in W \colon f \rhd \varrho \}$$

Invariant relations

$$\forall C \subseteq \mathcal{P}_A \qquad \mathsf{Inv}(C) := \{ \varrho \in \mathcal{R}_A \mid \forall f \in C \colon f \rhd \varrho \}$$

Theorem: for finite A

(Romov 1981)

- {pPol(Inv(W)) | W ⊆ R_A}all strong partial clones (closure under projections, composition, domain restriction)
- {Inv(pPol(C)) | C ⊆ P_A}all weak systems with equality (closure under conjunctive definitions incl. =)
 [W]_{∧,=} = pPol(Inv(W))

Theorem on intervals of strong partial clones

Given a clone F = Pol Q with relational clone Q = Inv F

Partial clones with total part F

$$\mathcal{I}(F) = \{ C \leq \mathcal{P}_A \mid C \cap \mathcal{O}_A = F \}$$

= $\{ C \leq \mathcal{P}_A \mid C \cap \mathcal{O}_A = \text{Pol} Q \}$
= $\{ p\text{Pol}(W) \mid W \subseteq \mathcal{R}_A \land \text{Pol} W = p\text{Pol}(W) \cap \mathcal{O}_A = \text{Pol} Q \}$
contains largest element F_{\top}

Weak systems with equality generating
$$Q$$

 $\mathcal{I}(Q) = \{ \operatorname{Inv} p\operatorname{Pol}(W) \mid W \subseteq \mathcal{R}_A \land \operatorname{Pol} W = \operatorname{Pol} Q \}$
 $= \{ S = [S]_{\land,=} \subseteq Q \mid \operatorname{Pol} S = \operatorname{Pol} Q \}$
 $= \{ S = [S]_{\land,=} \subseteq Q \mid [S]_{\exists,\land,=} = Q \}$
has a least element S_1

Weak bases

Given a relational clone $Q, F := \operatorname{Pol} Q$ Weak basis of Q (Schnoor&Schnoor, 2008) S_{\perp} be least weak system incl. = with $[S_{\perp}]_{\exists,\wedge,=} = Q$ W weak base of Q: any finite $W \subseteq S_{\perp}$ with $S_{\perp} = [W]_{\wedge,=}$ (i.e. finite weak generating sets of S_{\perp})

Properties of weak bases W, W' of $Q = [Q_0]_{\exists, \wedge, =}$

•
$$[W]_{\exists,\wedge,=} = Q$$

•
$$W \subseteq [Q_0]_{\wedge,=}$$

 $\Rightarrow (\#CSP(W), var.) \leq_{lin} (\#CSP(Q_0), var.)$

•
$$[W]_{\wedge,=} = [W']_{\wedge,=}$$

V. Lagerkvist (2014) determined weak bases for Boolean rel. clones

Result

Theorem

 $\forall H \in \mathcal{H}$: $\neg \# \text{ETH} \iff \# \text{CSP}(H)$ is subexponential wrt. var.

i.e. many Boolean counting CSPs do not have subexponential algorithms under $\#_{\rm ETH}$.

What is \mathcal{H} ? $\mathcal{H} = \{ H \subseteq_{\text{fin}} \mathcal{R}_2 \mid \text{Pol } H \subseteq M \lor \text{Pol } H \subseteq F_4^2 \lor \text{Pol } H \subseteq F_8^2 \}$

An important problem in social relations

The T-counting problem

input a string

goal count the number of occurrences of the letter T

The T-counting problem

input a string

goal count the number of occurrences of the letter T

Example

input Thank you for your attention. Thank you for your at

answer 42