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Counting problems

Formally: counting problem P
≡ a relation R ⊆ {0, 1}∗ × {0, 1}∗, such that
∃p : N→ N polynomial: ∀(x , y) ∈ R : |y | ≤ p(|x |)

Informally
a binary relation R between instances x and their solutions y ;
size of solutions polynomially bounded in size of instance

Aim: count solutions
For x ∈ {0, 1}∗: SP(x) ≡ SR(x) := {y ∈ {0, 1}∗ | (x , y) ∈ R}

|SP(x)| ≡ |SR(x)| = ? ∈ N

Complexity of P understood via Turing machines T
computing |SR | : {0, 1}∗ → N.
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Example: #csp(Q)

For a finite set of relations on a finite set A: Q ⊆ RA

#csp(Q)

Input formula ϕ ≡
∧`

i=1 %i(vi ,1, . . . , vi ,mi )
%i ∈ Q(mi ), vi ,j ∈ {x1, . . . , xn} for 1 ≤ i ≤ `,
1 ≤ j ≤ mi

Goal number of satisfying assignments (solutions)
|{s : {x1, . . . , xn} → A | s |= ϕ}|

Compare:
Decision problem # solutions: = 0 vs. > 0?
Counting problem # solutions: = ? ∈ N

In this talk:
A = {0, 1} Boolean relations . . . . . . . . . . . . . . . . . . . . . . . . Post’s lattice!
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Our Motivation

Goal
Understanding of #eth
. . . . . . . . . . . . . Exponential Time Hypothesis for Counting Problems

What is #eth?
analogue of eth for counting problems

What is eth? (Impagliazzo, Paturi, Zane, 2001)

There is c ∈ R>0 such that. . .
. . . no deterministic algorithm solves 3-sat in time O(2cn)

i.e., 3-sat is not solvable in subexponential time.
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#eth

What is #eth? (Dell, Husfeldt, Marx, Taslaman, Wahlén, 2014)

There is c ∈ R>0 such that. . .
. . . no deterministic algorithm solves #3-sat in time O(2cn)

¬#eth?

∀ε > 0∃ deterministic O((2ε)n)-algorithm A : A solves #3-sat

Lower bound on bases of runtime
b := inf{c ∈ R≥0 | ∃ deterministic O(2cn)-algorithm A for #3-sat}

¬#eth ⇐⇒ b = 0 #eth ⇐⇒ b > 0
algos with faster and faster runtimes no algo better than O

((
2b
)n)
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A characterisation of #eth, or ‘What is n?’

#eth (Dell et al., 2014)

There is c ∈ R>0 such that. . .
. . . no deterministic algorithm solves #3-sat in time O(2cn)
where n number of variables in the solution.

∀ k ≥ 3 : #eth ⇐⇒ (Dell et al., 2014)

There is c ∈ R>0 such that. . .
. . . no deterministic algorithm solves #k-sat in time O(2cN)
where N size of the formula (number of clauses/atoms).

Remark
analogous to eth and k-sat by Impagliazzo, Paturi, Zane
importance of complexity parameter already noted there

M. Behrisch, M. Hermann On hardness of some Boolean counting CSPs



A characterisation of #eth, or ‘What is n?’

#eth (Dell et al., 2014)

There is c ∈ R>0 such that. . .
. . . no deterministic algorithm solves #3-sat in time O(2cn)
where n number of variables in the solution.

∀ k ≥ 3 : #eth ⇐⇒ (Dell et al., 2014)

There is c ∈ R>0 such that. . .
. . . no deterministic algorithm solves #k-sat in time O(2cN)
where N size of the formula (number of clauses/atoms).

Remark
analogous to eth and k-sat by Impagliazzo, Paturi, Zane
importance of complexity parameter already noted there

M. Behrisch, M. Hermann On hardness of some Boolean counting CSPs



Reductions

Standard reductions: P ≤ Q
∃ deterministic polynomial-time Q-oracle algorithm counting P

Reductions with linear parameter growth: (P, n) ≤lin (Q,N)

∃ a, b ∈ N : ∃ deterministic Q-oracle algorithm A with oracle B :
∀ input x of P of measure n:

A counts SP(x)
∀ε > 0 : A runs in at most O(2εn) time-steps (subexponential)
for each oracle call:

A calls B on an input of measure N ≤ an + b

Example
(#csp(Q), atoms) ≤lin (#csp(Q), variables) a = max%∈Q ar(%)
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Subexponentiality

(P, n) is subexponential
∀ε > 0∃ deterministic O((2ε)n)-algorithm A : A counts (P, n)

¬#eth ⇐⇒ #3-sat is subexponential (wrt. variables)

⇐⇒ ∀k ≥ 3 : #k-sat is subexponential (wrt. variables/atoms)

Lemma:
If (P, n) ≤lin (Q,N), then:

(Q,N) subexponential =⇒ (P, n) subexponential
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Preserving subexponentiality

Lemma: For (P, n) ≤lin (Q,N):

(Q,N) subexponential =⇒ (P, n) subexponential

Consider any given δ > 0; define ε := δ
a+2

Consider input x for P of measure n ≥ b.
Use the Q-oracle algorithm A with an O(2εN)-oracle B on x
Each oracle call to B takes O(2εN) time, i.e.
≤ C1 · 2εN ≤ C1 · 2ε(an+b) ≤ C1 · 2ε(an+n) = C1 · 2ε(a+1)n

Altogether O(2εn) steps, i.e. ≤ C2 · 2εn oracle calls
Total time for x : ≤ C3 · 2εn · 2ε(a+1)n = C3 · 2ε(a+2)n = C3 · 2δn

Consequence:

¬#eth ⇐⇒ #3-sat is subexp. (wrt. variables)

=⇒ #3-sat is subexp. (wrt. atoms)
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Sparsification

#3-sat subexp. wrt. atoms =⇒ #3-sat subexp. wrt. variables

. . . needs a different construction:

Problem:
with N variables  populate n = N` `-ary atoms (constraints)

Sparsification (Impagliazzo, Paturi, Zane)

∀ ε > 0 : ∃C ≥ 0 : split up any big instance of measure N
into ≤ 2εN small subproblems
each subproblem is sparse n ≤ CN
the whole algorithm of splitting and combining runs in O(2εN)
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Counting CSPs and reductions

Importance of the complexity measure
size of instance (# atoms) vs. solution size (# variables)
(#csp(P), param1) ≤lin (#csp(Q), param2) =⇒
(#csp(Q), param2) subexponential

=⇒ (#csp(P), param1) subexponential
for free:
(#csp(Q), variables) subexponential

=⇒ (#csp(Q), size) subexponential
needs work (e.g. sparsification):
(#csp(Q), size) subexponential

=⇒ (#csp(Q), variables) subexponential

Universal algebra
helps constructing ≤lin-reductions
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A Galois connection

Partial polymorphisms
∀W ⊆ RA pPol(W ) := { f ∈ PA | ∀% ∈ W : f B %}

Invariant relations
∀C ⊆ PA Inv(C ) := {% ∈ RA | ∀f ∈ C : f B %}

Theorem: for finite A (Romov 1981)

{pPol(Inv(W )) | W ⊆ RA} . . . . . . . . . . all strong partial clones
(closure under projections, composition, domain restriction)
{ Inv(pPol(C )) | C ⊆ PA} . . . . . .all weak systems with equality
(closure under conjunctive definitions incl. =)
[W ]∧,= = pPol(Inv(W ))
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Theorem on intervals of strong partial clones

Given a clone F = PolQ with relational clone Q = Inv F

Partial clones with total part F

I(F ) = {C ≤ PA | C ∩ OA = F}
= {C ≤ PA | C ∩ OA = PolQ}
= {pPol(W ) | W ⊆ RA ∧PolW = pPol(W ) ∩ OA = PolQ}

contains largest element F>

Weak systems with equality generating Q

I(Q) = { Inv pPol(W ) | W ⊆ RA ∧PolW = PolQ}

=
{

S = [S ]∧,= ⊆ Q
∣∣∣ Pol S = PolQ

}
=
{

S = [S ]∧,= ⊆ Q
∣∣∣ [S ]∃,∧,= = Q

}
has a least element S⊥
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Weak bases

Given a relational clone Q, F := PolQ

Weak basis of Q (Schnoor&Schnoor, 2008)

S⊥ be least weak system incl. = with [S⊥]∃,∧,= = Q
W weak base of Q: any finite W ⊆ S⊥ with S⊥ = [W ]∧,=

(i.e. finite weak generating sets of S⊥)

Properties of weak bases W ,W ′ of Q = [Q0]∃,∧,=

[W ]∃,∧,= = Q
W ⊆ [Q0]∧,=

=⇒ (#csp(W ), var.) ≤lin (#csp(Q0), var.)
[W ]∧,= = [W ′]∧,=

V. Lagerkvist (2014) determined weak bases for Boolean rel. clones
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Result

Theorem
∀H ∈ H : ¬#eth ⇐⇒ #csp(H) is subexponential wrt. var.

i.e. many Boolean counting CSPs do not have subexponential
algorithms under #eth.

What is H?
H = {H ⊆fin R2 | PolH ⊆ M ∨ PolH ⊆ F 2

4 ∨ PolH ⊆ F 2
8 }
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An important problem in social relations

The T-counting problem
input a string
goal count the number of occurrences of the letter T

Example
input Thank you for your attention. Thank you for your attention. Thank you for your attention.

Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.
Thank you for your attention. Thank you for your attention. Thank you for your attention.

answer 42
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