On hardness of some Boolean counting CSPs

Mike Behrisch ${ }^{\times}$Miki Hermann ${ }^{\dagger}$

${ }^{\times}$Institute of Discrete Mathematics and Geometry, Algebra Group,
TU Wien, Austria
†LIX, École Polytechnique,
Palaiseau, France

$4^{\text {th }}$ June 2021 • Novi Sad

Counting problems

Formally: counting problem \mathbb{P}

\equiv a relation $R \subseteq\{0,1\}^{*} \times\{0,1\}^{*}$, such that $\exists p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial: $\forall(x, y) \in R: \quad|y| \leq p(|x|)$

Informally

a binary relation R between instances x and their solutions y; size of solutions polynomially bounded in size of instance

Aim: count solutions
For $x \in\{0,1\}^{*}: \quad S_{\mathbb{P}}(x) \equiv S_{R}(x):=\left\{y \in\{0,1\}^{*} \mid(x, y) \in R\right\}$

$$
\left|S_{\mathbb{P}}(x)\right| \equiv\left|S_{R}(x)\right|=? \in \mathbb{N}
$$

Complexity of \mathbb{P} understood via Turing machines T computing $\left|S_{R}\right|:\{0,1\}^{*} \rightarrow \mathbb{N}$.

Example: \#CSP(Q)

For a finite set of relations on a finite set $A: \quad Q \subseteq \mathcal{R}_{A}$

$\# \operatorname{csp}(Q)$

Input formula $\varphi \equiv \bigwedge_{i=1}^{\ell} \varrho_{i}\left(v_{i, 1}, \ldots, v_{i, m_{i}}\right)$

$$
\begin{aligned}
& \varrho_{i} \in Q^{\left(m_{i}\right)}, v_{i, j} \in\left\{x_{1}, \ldots, x_{n}\right\} \text { for } 1 \leq i \leq \ell, \\
& 1 \leq j \leq m_{i}
\end{aligned}
$$

Goal number of satisfying assignments (solutions)

$$
\left|\left\{s:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow A \quad \mid \quad s \models \varphi\right\}\right|
$$

Compare:

Decision problem \# solutions: $=0$ vs. >0 ?
Counting problem \# solutions: $=? \in \mathbb{N}$
In this talk:
$A=\{0,1\}$ Boolean relations $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

Our Motivation

Goal

Understanding of \#ETH
............... Exponential Time Hypothesis for Counting Problems

Our Motivation

Goal

Understanding of \#ETH
............. Exponential Time Hypothesis for Counting Problems

What is \#ЕTH? analogue of ETH for counting problems

Our Motivation

Goal

Understanding of \#ETH
............... Exponential Time Hypothesis for Counting Problems

What is \#ETH?
analogue of ETH for counting problems

What is ETH?
 (Impagliazzo, Paturi, Zane, 2001)

There is $c \in \mathbb{R}_{>0}$ such that. . .
... no deterministic algorithm solves 3-SAT in time $\mathrm{O}\left(2^{c n}\right)$
i.e., 3-SAT is not solvable in subexponential time.

\#ЕTH

What is \#етн? (Dell, Husfeldt, Marx, Taslaman, Wahlén, 2014) There is $c \in \mathbb{R}_{>0}$ such that. . .
... no deterministic algorithm solves \#3-SAT in time $\mathrm{O}\left(2^{\text {cn }}\right)$

ᄀ\#ETH?

$\forall \varepsilon>0 \exists$ deterministic $\mathrm{O}\left(\left(2^{\varepsilon}\right)^{n}\right)$-algorithm A :
A solves \#3-SAT
Lower bound on bases of runtime
$b:=\inf \left\{c \in \mathbb{R}_{\geq 0} \mid \exists\right.$ deterministic $\mathrm{O}\left(2^{c n}\right)$-algorithm A for \#3-SAT $\}$
\neg \#ЕTH $\Longleftrightarrow b=0$
algos with faster and faster runtimes
\#ETH $\Longleftrightarrow b>0$ no algo better than $\mathrm{O}\left(\left(2^{b}\right)^{n}\right)$

A characterisation of \#ETH, or 'What is n ?'

\#ETH

(Dell et al., 2014)
There is $c \in \mathbb{R}_{>0}$ such that...
... no deterministic algorithm solves \#3-SAT in time $\mathrm{O}\left(2^{\text {cn }}\right)$ where n number of variables in the solution.

$\forall k \geq 3: \quad$ ETH \Longleftrightarrow
 (Dell et al., 2014)

There is $c \in \mathbb{R}_{>0}$ such that...
... no deterministic algorithm solves \#k-SAT in time $\mathrm{O}\left(2^{c N}\right)$ where N size of the formula (number of clauses/atoms).

A characterisation of \#ETH, or 'What is n?'

\#ETH

(Dell et al., 2014)
There is $c \in \mathbb{R}_{>0}$ such that. .
... no deterministic algorithm solves \#3-SAT in time $\mathrm{O}\left(2^{c n}\right)$ where n number of variables in the solution.

$\forall k \geq 3: \quad$ \#ETH \Longleftrightarrow
 (Dell et al., 2014)

There is $c \in \mathbb{R}_{>0}$ such that. ..
\ldots no deterministic algorithm solves \#k-SAT in time $\mathrm{O}\left(2^{c N}\right)$ where N size of the formula (number of clauses/atoms).

Remark

- analogous to ETH and k-SAT by Impagliazzo, Paturi, Zane
- importance of complexity parameter already noted there

Reductions

Standard reductions: $\mathbb{P} \leq \mathbb{Q}$

\exists deterministic polynomial-time \mathbb{Q}-oracle algorithm counting \mathbb{P}

Reductions with linear parameter growth:

$\exists a, b \in \mathbb{N}: \exists$ deterministic \mathbb{Q}-oracle algorithm A with oracle B :
\forall input x of \mathbb{P} of measure n :

- A counts $\mathrm{S}_{\mathbb{P}}(x)$
- $\forall \varepsilon>0$: A runs in at most $O\left(2^{\varepsilon n}\right)$ time-steps (subexponential)
- for each oracle call:
A calls B on an input of measure $N \leq a n+b$

Example

$(\# \operatorname{CSP}(Q)$, atoms $) \leq \operatorname{lin}(\# \operatorname{CSP}(Q)$, variables $) \quad a=\max _{\rho \in Q} \operatorname{ar}(\varrho)$

Subexponentiality

(\mathbb{P}, n) is subexponential
 $\forall \varepsilon>0 \exists$ deterministic $\mathrm{O}\left(\left(2^{\varepsilon}\right)^{n}\right)$-algorithm $A: \quad A$ counts (\mathbb{P}, n)

\neg \#ETH \Longleftrightarrow \#3-sAT is subexponential (wrt. variables)
$\Longleftrightarrow \forall k \geq 3$: \#k-SAT is subexponential (wrt. variables/atoms)
Lemma:
If $(\mathbb{P}, n) \leq \operatorname{lin}(\mathbb{Q}, N)$, then:
(\mathbb{Q}, N) subexponential $\Longrightarrow(\mathbb{P}, n)$ subexponential

Preserving subexponentiality

Lemma: \quad For $(\mathbb{P}, n) \leq \operatorname{lin}(\mathbb{Q}, N)$:

(\mathbb{Q}, N) subexponential $\Longrightarrow(\mathbb{P}, n)$ subexponential

- Consider any given $\delta>0$; define $\varepsilon:=\frac{\delta}{a+2}$
- Consider input x for \mathbb{P} of measure $n \geq b$.
- Use the \mathbb{Q}-oracle algorithm A with an $\mathrm{O}\left(2^{\varepsilon N}\right)$-oracle B on x
- Each oracle call to B takes $O\left(2^{\varepsilon N}\right)$ time, i.e.

$$
\leq C_{1} \cdot 2^{\varepsilon N} \leq C_{1} \cdot 2^{\varepsilon(a n+b)} \leq C_{1} \cdot 2^{\varepsilon(a n+n)}=C_{1} \cdot 2^{\varepsilon(a+1) n}
$$

- Altogether $\mathrm{O}\left(2^{\varepsilon n}\right)$ steps, i.e. $\leq C_{2} \cdot 2^{\varepsilon n}$ oracle calls
- Total time for $x: \leq C_{3} \cdot 2^{\varepsilon n} \cdot 2^{\varepsilon(a+1) n}=C_{3} \cdot 2^{\varepsilon(a+2) n}=C_{3} \cdot 2^{\delta n}$

Consequence:

\neg \#ETH \Longleftrightarrow \#3-sAT is subexp. (wrt. variables)
\Longrightarrow \#3-sat is subexp. (wrt. atoms)

Sparsification

\#3-sat subexp. wrt. atoms \Longrightarrow \#3-sAT subexp. wrt. variables
. . . needs a different construction:

Problem:

with N variables $\quad \rightsquigarrow$ populate $n=N^{\ell} \ell$-ary atoms (constraints)

Sparsification
 (Impagliazzo, Paturi, Zane)

$\forall \varepsilon>0: \exists C \geq 0$: split up any big instance of measure N

- into $\leq 2^{\varepsilon N}$ small subproblems
- each subproblem is sparse $n \leq C N$
- the whole algorithm of splitting and combining runs in $\mathrm{O}\left(2^{\varepsilon N}\right)$

Counting CSPs and reductions

Importance of the complexity measure

- size of instance (\# atoms) vs. solution size (\# variables)
- $\left(\# \operatorname{CSP}(P), \operatorname{param}_{1}\right) \leq \operatorname{lin}\left(\# \operatorname{CSP}(Q), \operatorname{param}_{2}\right) \Longrightarrow$ $\left(\# \operatorname{CSP}(Q)\right.$, param $\left.{ }_{2}\right)$ subexponential
$\Longrightarrow\left(\# \operatorname{CSP}(P)\right.$, param $\left.{ }_{1}\right)$ subexponential
- for free:
(\#CSP (Q), variables) subexponential
$\Longrightarrow(\# \operatorname{CSP}(Q)$, size $)$ subexponential
- needs work (e.g. sparsification):
$(\# \operatorname{CSP}(Q)$, size) subexponential
$\Longrightarrow(\# \operatorname{csp}(Q)$, variables) subexponential

Counting CSPs and reductions

Importance of the complexity measure

- size of instance (\# atoms) vs. solution size (\# variables)
- $\left(\# \operatorname{CSP}(P), \operatorname{param}_{1}\right) \leq \operatorname{lin}\left(\# \operatorname{CSP}(Q), \operatorname{param}_{2}\right) \Longrightarrow$ $\left(\# \operatorname{CSP}(Q)\right.$, param $\left.{ }_{2}\right)$ subexponential
$\Longrightarrow\left(\# \operatorname{CSP}(P)\right.$, param $\left.{ }_{1}\right)$ subexponential
- for free:
(\#CSP (Q), variables) subexponential
$\Longrightarrow(\# \operatorname{CSP}(Q)$, size $)$ subexponential
- needs work (e.g. sparsification): $(\# \operatorname{CSP}(Q)$, size) subexponential
$\Longrightarrow(\# \operatorname{CSP}(Q)$, variables) subexponential

Universal algebra

helps constructing $\leq_{\text {lin }}$-reductions

A Galois connection

Partial polymorphisms

$\forall W \subseteq \mathcal{R}_{A} \quad \operatorname{pPol}(W):=\left\{f \in \mathcal{P}_{A} \mid \forall \varrho \in W: f \triangleright \varrho\right\}$
Invariant relations
$\forall C \subseteq \mathcal{P}_{A} \quad \operatorname{lnv}(C):=\left\{\varrho \in \mathcal{R}_{A} \mid \forall f \in C: f \triangleright \varrho\right\}$

Theorem: for finite A
(Romov 1981)

- $\left\{\operatorname{pPol}(\operatorname{lnv}(W)) \mid W \subseteq \mathcal{R}_{A}\right\} \ldots . . .$. . all strong partial clones (closure under projections, composition, domain restriction)
- $\left\{\operatorname{lnv}(\operatorname{pPol}(C)) \mid C \subseteq \mathcal{P}_{A}\right\} \ldots .$. all weak systems with equality (closure under conjunctive definitions incl. =)
$[W]_{\wedge,=}=\operatorname{pPol}(\operatorname{Inv}(W))$

Theorem on intervals of strong partial clones

Given a clone $F=\operatorname{Pol} Q$ with relational clone $Q=\operatorname{lnv} F$
Partial clones with total part F

$$
\begin{aligned}
\mathcal{I}(F) & =\left\{C \leq \mathcal{P}_{A} \mid C \cap \mathcal{O}_{A}=F\right\} \\
& =\left\{C \leq \mathcal{P}_{A} \mid C \cap \mathcal{O}_{A}=\operatorname{Pol} Q\right\} \\
& =\left\{\operatorname{pPol}(W) \mid W \subseteq \mathcal{R}_{A} \wedge \operatorname{Pol} W=\operatorname{pPol}(W) \cap \mathcal{O}_{A}=\operatorname{Pol} Q\right\}
\end{aligned}
$$

contains largest element F_{T}
Weak systems with equality generating Q

$$
\begin{aligned}
\mathcal{I}(Q) & =\left\{\operatorname{lnvpPol}(W) \mid W \subseteq \mathcal{R}_{A} \wedge \operatorname{Pol} W=\operatorname{Pol} Q\right\} \\
& =\left\{S=[S]_{\wedge,=} \subseteq Q \mid \text { Pol } S=\operatorname{Pol} Q\right\} \\
& =\left\{S=[S]_{\wedge,=} \subseteq Q \mid[S]_{\exists, \wedge,=}=Q\right\}
\end{aligned}
$$

has a least element S_{\perp}

Weak bases

Given a relational clone $Q, F:=\mathrm{Pol} Q$

Weak basis of Q

(Schnoor\&Schnoor, 2008)
S_{\perp} be least weak system incl. $=$ with $\left[S_{\perp}\right]_{\exists, \wedge,=}=Q$
W weak base of Q : any finite $W \subseteq S_{\perp}$ with $S_{\perp}=[W]_{\Lambda,=}$ (i.e. finite weak generating sets of S_{\perp})

Properties of weak bases W, W^{\prime} of $Q=\left[Q_{0}\right]_{\exists, \wedge,=}$

- $[W]_{\exists, \wedge,=}=Q$
- $W \subseteq\left[Q_{0}\right]_{\wedge,=}$
$\Longrightarrow \quad(\# \operatorname{CSP}(W)$, var. $) \leq$ lin $\left(\# \operatorname{csp}\left(Q_{0}\right)\right.$, var. $)$
- $[W]_{\Lambda,=}=\left[W^{\prime}\right]_{\Lambda,=}$
V. Lagerkvist (2014) determined weak bases for Boolean rel. clones

Result

Theorem
$\forall H \in \mathcal{H}: \quad \neg$ ETH $\Longleftrightarrow \# \operatorname{CSP}(H)$ is subexponential wrt. var.
i.e. many Boolean counting CSPs do not have subexponential algorithms under \#ETH.

What is \mathcal{H} ?
$\mathcal{H}=\left\{H \subseteq\right.$ fin $\mathcal{R}_{2} \mid$ Pol $\left.H \subseteq M \vee \operatorname{Pol} H \subseteq F_{4}^{2} \vee \operatorname{Pol} H \subseteq F_{8}^{2}\right\}$

An important problem in social relations

The T-counting problem
input a string
goal count the number of occurrences of the letter T

An important problem in social relations

The T-counting problem

input a string
goal count the number of occurrences of the letter T

Example

input Thank you for your attention. Thank you for your attention.

