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Abstract
Verification of software systems against hyperproperties that
require quantifier alternation among the quantified trace
variables is notoriously difficult because it generally cannot
be reduced to the verification of single-trace properties. Such
hyperproperties include the class of ∀∃-safety hyperprop-
erties, which contains important hyperproperties such as
refinement and generalized non-interference. Existing ap-
proaches to the verification of these properties are often
incomplete or restricted to finite-state systems. When the
hyperproperty does not hold, no existing approaches can
fully automatically produce counterexamples demonstrating
this fact. We present an algorithm that searches for coun-
terexamples to ∀∃-safety hyperproperties in infinite-state
software systems and evaluate its effectiveness based on
existing examples from related works.

1 Introduction
Hyperproperties [12] specify properties of systems across
multiple execution traces. Many important properties are
hyperproperties, for example, observational determinism,
injectivity, symmetry, and idempotence are 2-safety prop-
erties. In other words, these properties require a statement
about two universally quantified trace variables. Some hyper-
properties require existential trace quantification and often
even quantifier alternation. For example, nondeterminism
requires existential quantification of two traces. In this work,
we focus on the class of∀∃-safety hyperproperties. This class
contains prominent hyperproperties such as refinement and
generalized non-interference.
∀∃ hyperproperties are challenging in multiple ways. Au-

tomated verification of such hyperproperties necessarily re-
quires algorithms that are capable of proving statements that
contain quantifier alternation. The verification of 𝑘-safety
hyperproperties can be reduced to single-trace safety ver-
ification through self-composition [2] or through product
programs [1], and a wide range of approaches exists for
the verification of single-trace safety properties. Such a re-
duction is generally not possible for ∀∃ hyperproperties, so
traditional safety verification methods cannot be applied. In-
stead, a proof of correctness given a∀∃-safety hyperproperty
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and a transition system typically requires a witness function
for the existentially quantified traces, which is often referred
to as a strategy. Synthesizing such a witness function as part
of a proof of correctness is 2-EXPTIME-complete for finite-
state transition systems [4], and software verification often
even requires infinite-state models. In the context of runtime
verification, single-trace safety properties and even 𝑘-safety
hyperproperties can be monitored at runtime to varying de-
grees. Hyperproperties that existentially quantify over traces,
such as ∀∃ hyperproperties, cannot be monitored directly
because, for any particular trace that has been obtained at
runtime, the witness of the respective existentially quantified
trace might never appear at runtime [8].
While formal methods have traditionally focused on the

formal verification of an implementation against some spec-
ification, the resulting techniques rarely scale to real-world
instances. Thus, software engineering commonly relies on
underapproximate methods for finding specification viola-
tions in implementations. In other words, instead of formally
proving the correctness of an implementation with respect
to a specification, software engineers use tools to locate –
and thus prove the existence of – specification violations. We
refer to such methods as underapproximate because a lack of
found specification violations generally does not imply that
the implementation does not diverge from the specification
in some way that has not been discovered by the analysis.
Such techniques include testing, fuzzing, symbolic execution,
as well as various kinds of static and dynamic analysis.

Such underapproximate methods have recently also been
the focus of formal methods and various, often incomplete,
methods have been proposed to prove incorrectness instead
of correctness. Runtime verification is an inherently under-
approximate technique. Recently, Incorrectness Logic [21]
has been explored as a natural dual of Hoare Logic for under-
approximate reasoning about program behavior. Since then,
multiple other logics have been developed that also facilitate
underapproximate Hoare-style reasoning. Bounded model
checking is underapproximate as well, unless the bound in
bounded model checking is sufficiently large to fully explore
all possible states of the system [6]. Symbolic execution and
concolic testing generally also cannot explore all possible
paths in infinite-state systems and are thus underapproxi-
mate.
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Verification tools for ∀∃ hyperproperties are often incom-
plete [5] and might fail even if the property holds. If a ∀∃-
safety hyperproperty does not hold, algorithms that attempt
to verify such properties generally either do not terminate or,
if they do terminate, do not produce counterexamples [4]. In
this work, we propose an algorithm for finding counterexam-
ples to∀∃ hyperproperties. Such algorithms are naturally un-
derapproximate. Because the underlying decision problems
are generally undecidable, we do not aim for termination in
general. Non-termination of an algorithm that aims to find
specification violations does not necessarily correspond to
a proof of correctness. We combine symbolic execution for
the universally quantified traces with a variant of bounded
model checking for the existentially quantified traces.

2 Background
Hyperproperties were introduced by Clarkson and Schnei-
der [12] and relate multiple execution traces of a system.
Bounded model checking is a well-known method for

verifying whether a transition system satisfies a trace prop-
erty. This method is underapproximate insofar that bounded
model checking only considers traces of lengths up to some
finite bound. Thus, if a trace exists that violates the trace
property, its existence will only be detected if the length of
the counterexample does not exceed the bound.
Symbolic execution was first introduced during the mid-

1970s [7, 19, 20]. Alongside bounded model checking and
fuzzing, it has since become one of the most popular tech-
niques for the automated detection of faults in implementa-
tion. Several tools based on symbolic execution have been
presented to the scientific community, including CUTE [22],
DART [17], and KLEE [9]. These tools often combine sym-
bolic and concrete execution in a way that is commonly
referred to as concolic testing.
Various logics exist that can represent the semantics of

temporal hyperproperties, albeit many are not capable of
representing hyperproperties that require quantifier alterna-
tion. Observation-based HyperLTL (OHyperLTL) [4] extends
HyperLTL [11], which itself is an extension of propositional
linear-time temporal logic (LTL). While HyperLTL formu-
las express properties over multiple traces synchronously,
OHyperLTL formulas can represent both synchronous and
asynchronous properties by effectively projecting asynchro-
nous traces to synchronous sequences of observations. Addi-
tionally, HyperLTL considers traces to be sequences of sets
of atomic propositions and thus restricts the atoms within
formulas to atomic propositions, whereas atoms in OHyper-
LTL formulas may contain predicates from the underlying
theory. This allows OHyperLTL to effectively reason about
variables over infinite domains.

We refer to Beutner and Finkbeiner [4] for the precise
definition of the syntax and semantics of OHyperLTL. The

original (unbounded) semantics of LTL, HyperLTL, and OHy-
perLTL are defined for application to infinite traces. To ap-
ply the same temporal logics to finite traces, the semantics
have to be adapted accordingly. Such bounded semantics
for LTL have been defined, for example, by Biere et al. [6],
and bounded semantics for HyperLTL have been defined, for
example, by Hsu et al. [18]. These bounded semantics for
HyperLTL can be adapted for OHyperLTL [4] in a straightfor-
ward manner, with some necessary modifications to support
quantification over traces that may or may not have a finite
number of observation points only.

3 Algorithm
We present an algorithm that, given input programs P and Q
and a OHyperLTL [4] specification𝜓 = ∀𝜏 : Ω . ∃𝜏 ′ : 𝜉 .G(𝜑)
for some quantifier-free formula 𝜑 that is free of temporal
operators, searches for a counterexample that witnesses a
violation of the given specification.

As is common for bounded model checking, the algorithm
repeatedly increments a bound 𝑘 until a counterexample has
been found. Due to the nature of OHyperLTL [4], the bound
is not the length of the relevant paths (or traces), but rather
the number of observation points along said paths.

For each bound 𝑘 , the algorithm then iterates over all (fea-
sible) paths in the input program P that contain𝑘 observation
points as determined by Ω. For each such path, the algorithm
constructs the relevant symbolic constraints, which restrict
the values of program variables during subsequent SAT/SMT
queries. This step is inherent to symbolic execution.
The algorithm then repeatedly queries a SAT or SMT

solver with formulas constructed from the specification, from
the previously generated symbolic constraints arising from
the selected path of P, as well as from an encoding of the
relevant behavior of Q. At some point, either all potential
counterexamples have been refuted, or some counterexample
cannot be refuted. If the latter is true, then a counterexample
has been found. Otherwise, eventually, all potential coun-
terexamples along the selected path have been refuted, and
the algorithm begins processing the next path. This step re-
sembles bounded model checking of the control flow automa-
ton Q against the specification𝜓 and additional constraints
due to the selected path in P.
The proposed algorithm relies on multiple abstract pro-

cedures whose definition depends on the underlying theory.
Even if the underlying theory is decidable, some of the deci-
sion procedures that are necessary for our variant of bounded
model checking might not terminate due to certain character-
istics of the behavior of the input programs. We also discover
problems in approximating preconditions, similar to those
outlined by Cimatti et al. for their APPROX-PREIMAGE
procedure [10]. Nevertheless, we precisely define sufficient
conditions that result in relative completeness of our ap-
proach, i.e., there is a non-trivial class of input programs and
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specifications for which our algorithm is guaranteed to find a
counterexample if one exists. Similarly, we prove soundness
of our algorithm in the context of the modified, bounded
semantics of OHyperLTL [4]. Lastly, while the core algo-
rithm assumes exactly one universally and one existentially
quantified trace variable, we also show how to apply the pro-
posed algorithm to specifications that contain any number of
universally and existentially quantified trace variables. This
allows our approach to handle ∀∀∃-safety hyperproperties
such as generalized non-interference, as well as properties
without quantifier alternation, e.g., ∃∃ hyperproperties for
non-determinism or flaky tests and ∀∀ hyperproperties for
various mathematical properties, including monotonicity,
determinism, injectivity, symmetry, anti-symmetry, asym-
metry, totality, idempotence, and many more.

4 Experimental evaluation
We implemented the algorithm described above and evalu-
ated it against a diverse set of examples, many of which
we drew from related works [4, 14]. These examples in-
clude several instances of refinement and generalized non-
interference, as well as various other problems.

When the respective ∀∃-safety hyperproperties hold, the
algorithm either does not terminate or terminates without
producing a counterexample. The latter outcome generally
only occurs if all traces of the input program have a finite
number of observation points only, for example, because the
input program always terminates after a bounded number of
steps. For the vast majority of examples, if the ∀∃-safety hy-
perproperty does not hold, the algorithm terminates within
a short amount of time and produces a concrete trace for the
universally quantified trace variable that witnesses the viola-
tion. A few examples from the literature lead to divergence
in the respective control flow automatons. A small number
of examples rely on non-linear arithmetic or non-integer
data types, which our implementation currently rejects.

5 Related work
Beutner and Finkbeiner developed a game-theoretic approach
to the verification of ∀∃-safety properties [4] in infinite-state
settings. An earlier game-theoretic approach for ∀∃ hyper-
properties by Coenen et al. [13] followed a similar idea but
was limited to finite-state systems. Such strategy-based veri-
fication methods are generally incomplete, i.e., verification
might fail even though the respective property holds, and ex-
isting approaches to completeness do not scale beyond very
small systems and constrained classes of properties [3, 5].
Additionally, when verification fails, these algorithms gener-
ally cannot produce concrete counterexamples that witness
the property violation.

More recently, Beutner and Finkbeiner designed an explicit-
state model checker for arbitrary HyperLTL properties [5],
which is the first complete model checker to support both

quantifier alternation and arbitrary temporal operators in
the LTL body of HyperLTL formulas. However, like earlier
automata-based approaches [16], this method is limited to
finite-state systems.
Hsu et al. apply bounded model checking to hyperprop-

erties by reducing the verification task to the quantified
Boolean formula (QBF) problem [18]. In some sense, our al-
gorithm lifts this approach to arbitrary theories through the
use of an SMT solver, yet we do not require the SMT solver’s
decision procedure to handle quantifier alternation. Addi-
tionally, we use symbolic execution to simplify individual
SMT queries such that each query corresponds to a single
path in the universally quantified program only. Lastly, our
approach benefits from the significant advancements in the
design and implementation of SMT solvers.

The SMT solver Yices introduced an algorithm for solving
∃∀ queries in version 2.2 to aid in the synthesis of system
parameters [15]. Their method is very similar to the inner
loop in our algorithm and even provides termination guar-
antees for some underlying theories (including bitvectors
and subsets of integer arithmetic).

Dickerson et al. use a Hoare-style program logic to verify
∀∃ hyperproperties that combines both overapproximate and
underapproximate reasoning [14]. This relational logic can
reason about programs directly and produces a set of verifica-
tion conditions for an SMT solver. Upon verification failure,
their implementation produces a counterexample. However,
as is common for Hoare-style program logics, loops in the
input program present a major challenge for this verification
approach, whereas symbolic execution and bounded model
checking can often identify problems without considering
every possible unrolling of a loop. In fact, the implementa-
tion of this program logic, ORHLE [14], requires every loop
to be annotated with relevant loop invariants.

6 Conclusion
We present an algorithm capable of searching for counterex-
amples that witness the violation of ∀∃-safety hyperprop-
erties given user-defined input programs for the respective
quantified trace variables. We have demonstrated its effec-
tiveness in locating specification violations by evaluating
our implementation against various examples from related
works, and we have characterized precisely under what cir-
cumstances it succeeds (as opposed to diverging).
It is worth noting that the counterexamples produced by

the proposed algorithm consist of concrete traces for the
universally quantified traces only. Future work includes an
extension that also produces an explanation as to why these
traces form a counterexample, likely in the form of a proof.
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