

# Impact of neutron induced ex-situ defects on the properties of CCs and their thermal stability

<u>Raphael Unterrainer</u><sup>1</sup>, Davide Gambino<sup>2</sup>, Alexander Bodenseher<sup>1</sup>, Florian Semper<sup>1</sup>, Danielle Torsello<sup>3,4</sup>, Francesco Laviano<sup>3,4</sup>, Michael Eisterer<sup>1</sup>

<sup>1</sup>Atominstitut, TU Wien, Vienna, Austria
 <sup>2</sup>IFM, Linköping University, Linköping, Sweden
 <sup>3</sup>DiSAT, Politecnico di Torino, Torino, Piemonte, Italy
 <sup>4</sup>INFN, Sezione di Torino, Torino, Piemonte, Italy



## Collaborations and Funding



This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.



Funded by the European Union













P. Gao et al., AIP Advances **7** (2017) 035215

- position enables introduction of many defects close to the planes
- defects are small in comparison to coll. cascades
- defects may be modelled with MDS



#### Irradiation influences performance



4



#### Background

- what values do we actually determine  $J_c$ , n value,  $T_c$
- how does irradiation influence those parameters

#### Methods

- neutron irradiation techniques
- Gd neutron capture process
- introduced defects molecular dynamics simulations (MDS & DFT)

#### Results

- decrease of  $T_{\rm c}$  and superfluid density
- degradation of the irreversibility line
- Recovery of  $T_c$  by annealing

#### Conclusions





## Background





#### Concerning $J_{c}$





#### Concerning $J_{c}$





#### Concerning $J_{c}$





$$E_{\rm c} = \frac{1}{\lambda^2 \xi^2} = \frac{1}{\lambda^2} H_{\rm c2}$$
$$n = \frac{U_0}{k_B T} \qquad \frac{1}{\lambda^2} = \rho_s$$

$$U_0 \propto E_c$$
$$E_c = \rho_s \frac{1}{\xi_0 l}$$

$$J_d \propto \frac{H_c}{\lambda} \propto \frac{1}{\lambda^2 \xi} \propto \sigma_{dc} T_c \propto \eta^{-1} J_c^p$$

 $\rho_{\rm s}$  ... superfluid density  $\sigma_{dc} = \rho_{dc}^{-1}$ ... normal state conductivity  $\xi_0$  ... clean limit coherence length *l* ... mean free path  $E_c$  ... condensation energy  $U_0$  ... pinning energy  $\eta$  ... pinning efficience



$$E_{\rm c} = \frac{1}{\lambda^2 \xi^2} = \frac{1}{\lambda^2} H_{\rm c2}$$
$$n = \frac{U_0}{k_B T} \qquad \frac{1}{\lambda^2} = \rho_s$$

 $\rho_{\rm s}$  ... superfluid density

 $\sigma_{dc} = \rho_{dc}^{-1}$ ... normal state conductivity

 $\xi_0$  ... clean limit coherence length

What's important here  $E_c$  condensation energy  $E_c = \rho_s \frac{1}{\xi_0 l}$   $U_0$  ... pinning energy

 $\eta$  ... pinning efficience

$$J_d \propto \frac{H_c}{\lambda} \propto \frac{1}{\lambda^2 \xi} \propto \sigma_{dc} T_c \propto \eta^{-1} J_c^p$$



$$\frac{1}{\lambda^2} = \rho_s \qquad U_0 \propto E_c$$

$$\boldsymbol{n} = \frac{\boldsymbol{U}_0}{k_B T} \qquad \boldsymbol{E}_c = \frac{1}{\boldsymbol{\lambda}^2 \boldsymbol{\xi}^2}$$

$$\boldsymbol{J_d} \propto \frac{H_c}{\lambda} \propto \frac{1}{\lambda^2 \xi} \propto \sigma_{dc} \boldsymbol{T_c} \propto \eta^{-1} \boldsymbol{J_c^p}$$

 $\rho_{\rm s}$  ... superfluid density

 $\sigma_{dc} = \rho_{dc}^{-1}$ ... normal state conductivity  $\xi_0$  ... clean limit coherence length

- $E_c$  ... condensation energy
- $U_0$  ... pinning energy
- $\eta$  ... pinning efficience

12



#### $\frac{1}{\lambda^2} = \rho_s \qquad U_0 \propto E_c$ Very simplified

o<sub>s</sub> ... superfluid density

 $\sigma_{dc} = \rho_{dc}^{-1}$ ... normal state conductivity

 $\xi_0$  ... clean limit coherence length

# $\rho_s \propto T_c \propto E_c \propto n \propto J_d \propto J_c^p \eta^{-1}$

 $\boldsymbol{J_d} \propto \frac{H_c}{\lambda} \propto \frac{1}{\lambda^2 \xi} \propto \sigma_{dc} \boldsymbol{T_c} \propto \eta^{-1} \boldsymbol{J_c^p}$ 

 $U_0$  ... pinning energy

 $\eta$  ... pinning efficience

13

## Background - $T_c$ degradation

scattering is pair breaking in *d*-wave superconductors

- decrease of transition temperature, T<sub>c</sub>
- decrease of superfluid density,  $\rho_s$



## Background – *n*-value degradation



- n value degrades linearly with  $T_{\rm c}$
- degradation of condensation energy reduces  $T_c$ ,  $I_c$  and n
- n degrades with the same slope for completely different defect landscapes









<sup>\*</sup>drawing assumes constant n







## Methods



#### Two nearly identical samples



- SuperPower 2009 no APC
- sample consistency checked by hall scans
- profile at self-field & 77 K
- voltage taps in low defect areas

#### Two nearly identical samples



- two nearly identical pristine samples
- Gd-123 tape from SuperPower (2009) no APCs
- irradiated with and without Cd-screen
- difference: number of displaced Gd-atoms

## Neutron irradiation – sample 1

#### TRIGA MARK II at TU Wien

- irradiation in the central irradiation facility
- fast / thermal neutron flux 3.2 / 4 x 10<sup>16</sup> m<sup>-2</sup> s<sup>-1</sup>
- irradiation with and without thermal (< 0.55 eV) neutrons



#### < 70 C at sample



TRIGA MARK II – experimental fission reactor

### Defect structure



**left** – TEM picture of neutron induced defects **right** – FFT of selected regions <sup>1</sup>

#### Only large defects visible in TEM

0.3

[1] with friendly permission by Yatir Linden, *Analysing neutron radiation damage in YBa2Cu3O7–x high-temperature superconductor tapes*, <u>https://doi.org/10.1111/jmi.13078</u> Department of Materials, University of Oxford, Oxford, UK

## Neutron irradiation – sample 2

#### **TRIGA MARK II at TU Wien**

- irradiation in the central irradiation facility
- fast / thermal neutron flux 3.2 / 4 x 10<sup>16</sup> m<sup>-2</sup> s<sup>-1</sup>
- irradiation with and without thermal (< 0.55 eV) neutrons



#### < 70 C at sample



TRIGA MARK II – experimental fission reactor





K.E. Sickafus et al., Phys. Rev. B 46 (1992) 11862

- thermal neutrons excite Gd —> emission of gamma displaces the nucleus
- very high defect densities achievable
- add to fast neutron induced defects



#### What defects do we introduce?

27



#### MD simulations



- different defects originating from Gd PKA (primary knock on atom)
- calculate expected defect distribution
- calculate DOS close to the Fermi-energy
  - estimate influence on superconducting properties

MD... molecular dynamics DFT... density-functional theory

#### MD simulations



- different defects originating from Gd PKA (primary knock on atom)
- calculate expected defect distribution
- calculate DOS close to the Fermi-energy
   estimate influence on superconducting properties



#### **DFT** calculations



- different defects originating from Gd PKA (primary knock on atom)
- calculate expected defect distribution
- calculate DOS close to the Fermi-energy
  - estimate influence on superconducting properties

\* consistency of DFT calculation confirmed with exp. data Cu substitution by Fe, Zn & Ni



# Results



### Influence of thermal neutrons - $T_c$



 $T_{\rm c}$  degrades ~13-15 x faster due to Gd-point defects



## $\square$ Influence of thermal neutrons - $J_c$



- maximum occurs at much lower neutron fluences
- *J*<sub>c</sub> at maximum is smaller
- degradation is much faster

## $\square$ Influence of thermal neutrons - $J_c$



## $\square$ Influence of thermal neutrons - $J_c$





shielded sample

unshielded sample





shielded sample

#### unshielded sample



 shielded peak is at lower fields at "matching" field  unshielded peak is broad and at higher fields



shielded sample

#### unshielded sample



 shielded peak is at lower fields at "matching" field  unshielded peak is broad and at higher fields



shielded sample



unshielded sample

- more degradation at higher fields
- secondary defects?

 degrading effect more homogeneous less field dependent



shielded sample

unshielded sample



- more degradation at higher fields
- secondary defects?

 degrading effect more homogeneous less field dependent



# What's leading to this almost equivalent degradation?





$$B_{\rm irr}({\rm T}) = \boldsymbol{B}_{irr}(\boldsymbol{0}) \times \left(1 - \frac{T}{T_{\rm c}}\right)^n$$
 applied fit function

**bold** – fit parameters

# Can't we just blame the irreversibility field?





$$B_{\rm irr}({\rm T}) = \boldsymbol{B}_{irr}(\boldsymbol{0}) \times \left(1 - \frac{T}{T_{\rm c}}\right)^n$$
 applied fit function

**bold** – fit parameters

#### Can we trust this interpolation?

#### fit is extrapolated quite far however trend is probably valid





- in shielded sample B<sub>irr</sub> at 30 K is still at or above pristine value
- in unshielded sample B<sub>irr</sub> is degraded to ~ 80% of pristine value

 $\implies$   $B_{irr}$  behaves completely different in both samples degradation of  $J_c$  at 15 T and 30 K is the same ~ 70% of pristine value

#### Homogeneous degradation

## How can we (try to) explain it then?

45

## Homogeneous degradation



.

## Homogeneous degradation



## Thermal stability of small vs large defects



- $T_{\rm c}$  regenerates linearly with  $T_{\rm a}$
- all neutron irradiated samples anneal to same point
- annealing defects have same/similar distribution and activation barrier.
- n<sub>therm</sub>, n<sub>fast</sub> & p<sup>+</sup> irradiated samples



#### Conclusions

#### Simulation results:

- from MDS dominant defect species are O<sub>2</sub> vacancies.
- Gd antisites are 500:1 less probable, however calculation of DOS indicates strong suppression at E<sub>F</sub>

#### **Experimental results:**

- small defects contribute to pinning at large fields and low temperatures
- position of maximum in J<sub>c</sub> is dependent on defect density independent of irradiation technique (p<sup>+</sup>, n<sub>therm</sub>, n<sub>fast</sub>)
- suppression of J<sub>c</sub> at high fluences and fields almost equivalent (n<sub>therm</sub> vs n<sub>fast</sub>)
- annealing indicates that degradation comes from same defect class

#### Seems to confirm that $O_2$ interstitials are the driving force in the degradation



#### Homes' scaling law



- though logarithmic, the superfluid density scales with  $\sigma_{dc}$  and  $T_{c}$
- many orders of magnitude
- many different materials



#### Thermal stability of small vs large defects





$$B_{irr}(T) = \boldsymbol{B}_{irr}(\mathbf{0}) \times \left(1 - \frac{T}{T_c}\right)^n$$
 applied fit function  
**bold** – fit parameters

#### shielded tape

- irreversibility line changes slope •
  - at low fluences --> increases
  - at high fluences → decreases ۲

unshielded tape

• irreversibility line keeps slope





$$B_{irr}(T) = \boldsymbol{B}_{irr}(\mathbf{0}) \times \left(1 - \frac{T}{T_c}\right)^n$$
 applied fit function  
**bold** – fit parameters

#### shielded tape

- irreversibility line changes slope
  - at low fluences → increases
  - at high fluences → decreases

#### unshielded tape

• irreversibility line keeps slope





$$B_{irr}(T) = \boldsymbol{B}_{irr}(\mathbf{0}) \times \left(1 - \frac{T}{T_c}\right)^n$$
 applied fit function  
**bold** – fit parameters

# Does the degradation of $B_{irr}$ explain the low $J_c$ at 30 K?



Can't we just blame the irreversibility field?

No.

$$B_{\rm irr}({\rm T}) = \boldsymbol{B}_{irr}(\boldsymbol{0}) \times \left(1 - \frac{T}{T_{\rm c}}\right)^n$$
 applied fit function

**bold** – fit parameters



#### Homes' scaling law

$$ho_{
m s} \propto \sigma_{
m dc} T_{
m c}$$

 $\rho_{\rm s}$  ... superfluid density

 $\sigma_{dc} = \rho_{dc}^{-1}$  ... normal state conductivity

$$j_{
m d} \propto rac{H_{
m c}}{\lambda} \propto rac{1}{\lambda^2 \xi} \propto rac{
ho_{
m s}}{\xi}$$

$$j_{\rm c}^{\,{\rm p}}=\eta\;j_{
m d}$$

 $\eta$  ... pinning efficiency

 $j_{\rm c}^{\rm p}$  ... physical critical current

 $j_{c}$  should be proportional to the normal state resistivity