KPZ fluctuations and bosonic skin effect in the ASIP model

Louis Garbe

Les Houches, 08/03/2023

Diffusive transport

Minimal model: particles hopping incoherently, independently and symmetrically on a 1D lattice

Fourier/Ohm/Fick's law, Gaussian Fluctuations...

Minimal model: particles hopping incoherently, independently and symmetrically on a 1D lattice

Coherent transport (See J.-P. Brantut's talk)

Minimal model: particles hopping incoherently, independently and symmetrically on a 1D lattice

Asymmetric Simple Exclusion Process

$$\Gamma_r \neq \Gamma_l$$

$$P[p \rightarrow p+1] \propto \Gamma_r(1-n_{p+1})$$

Asymmetric Simple Inclusion Process

$$\Gamma_r \neq \Gamma_l$$

$$\Gamma_r \neq \Gamma_l$$
 $P[p \to p+1] \propto \Gamma_r(1+n_{p+1})$

Asymmetric Simple Inclusion Process

Grosskinsky et al., J.stat.phys 142, 952-974 (2011) Reuveni et al., PRE 84, 041101 (2011) D. Bernard et al., Europhy. Lett. 121, 60006 (2018) Haga et al., PRL 127, 070402 (2021)

(Non-interacting) bosonic systems

$$\mathcal{L}_{\text{hop}}\rho = \sum_{l=1}^{L-1} \Gamma_l \mathcal{D}[a_p^{\dagger} a_{p+1}] \rho + \Gamma_r \mathcal{D}[a_{p+1}^{\dagger} a_p] \rho$$

$$\mathcal{L}_{\text{hop}}\rho = \sum_{p=1}^{L-1} \Gamma_l \mathcal{D}[a_p^{\dagger} a_{p+1}] \rho + \Gamma_r \mathcal{D}[a_{p+1}^{\dagger} a_p] \rho$$

Bosons hop by emitting (absorbing) energy in an environment

Asymmetry set by the temperature of the environment

Some possible platforms:

Bloch, Nature 453, 1016-1022 (2008)

Cold atoms

Klaers and al., PRL 108, 160403 (2012)

Photons condensates

Fontaine and al., Nature 608, 687-691 (2022)

Polaritons condensates

This talk

1) Current statistics: why ASIP=ASEP ‡2) Driven transport: why ASIP≠ASEP

Classical problem

Configuration
$$\vec{n}=(n_1,n_2,...)$$

$$\Gamma_l = 0$$

$$P[\vec{n}, t] = \langle \vec{n} | \rho(t) | \vec{n} \rangle$$

Domain wall initial state

Monte-Carlo sampling

$$dY_{-2} \ dY_{-1} \ dY_{0}$$

$$x = 0$$

$$dY_{i}(t) = (0, 1)$$

$$P[dY_{i}(t) = 1] \sim \Gamma_{r} n_{i} (1 + \sigma n_{i+1}) dt$$

$$\sigma = +1 \text{ (Bosons)}, -1 \text{ (Fermions)}, 0 \text{ (ZRP)}$$

Integrated current

$$dn_i = dY_{i-1}(t) - dY_i(t)$$

Conservation relation

$$n_i \leftrightarrow h_i(t) = h_i(0) + \int_0^t dY_i(\tau)d\tau$$
 Integrated current

Integrated current across the origin $\,h_0(t)\,$

$$h_0 = j_{\sigma}t + \Delta h(t)$$

Connection to growth dynamics

Long-wavelength limit:

$$n_i(t) \to n(x,t)$$

(Stochastic) Burgers
$$\partial_t n = -\Gamma_r (1 \pm 2n) \partial_x n + \nu \partial_x^2 n - \partial_x \xi(x,t)$$

Connection to growth dynamics

Long-wavelength limit:

$$n_i(t) \to n(x,t)$$

(Stochastic) Burgers
$$\partial_t n = -\Gamma_r (1 \pm 2n) \partial_x n + \nu \partial_x^2 n - \partial_x \xi(x,t)$$

$$\partial_t n + \partial_x J = 0$$

$$h(x,t) = h_0(x) + \int_0^t J$$

$$n(x,t) = -\partial_x h(x,t)$$

Connection to growth dynamics

Long-wavelength limit:

$$n_i(t) \to n(x,t)$$

$$\partial_t n = -\Gamma_r (1 \pm 2n) \partial_x n + \nu \partial_x^2 n - \partial_x \xi(x, t)$$

$$\partial_t n + \partial_x J = 0$$

$$h(x,t) = h_0(x) + \int_0^t J$$

$$n(x,t) = -\partial_x h(x,t)$$

$$\partial_t h = \Gamma_r \left[-\partial_x h \pm (\partial_x h)^2 + \partial_x^2 h \right] + \xi(x, t)$$

$$h(x,t) = h(x,0) + \int_0^t dY(x,\tau)d\tau \qquad \partial_x h(x,0) = -n(x,0)$$

Domain wall:

$$n(x,0) = \theta(-x)$$

$$h(x,0) = -x\theta(-x)$$

The surface growth records the jumps events, on a substrate given by the initial conditions

$$\partial_t h = \Gamma_r \left[-\partial_x h \pm (\partial_x h)^2 + \partial_x^2 h \right] + \xi(x,t)$$
 KPZ + lateral motion

Tilt transformation:
$$\tilde{h}(x,t) = h(x,t) \pm \left(\frac{\Gamma_r t}{4} - \frac{x}{2}\right)$$

$$\partial_t \tilde{h} = \Gamma_r \left[\pm (\partial_x \tilde{h})^2 + \partial_x^2 \tilde{h} \right] + \xi(x,t) \qquad \text{Canonical KPZ equation}$$

Statistics affects both the tilt and the final equation

Evaporation in a **curved** geometry

GUE, sign-flipped

GOE, no sign-flip

Summary

- Connection between correlated transport and surface growth
- Both ASEP and ASIP belong to KPZ universality class
- Unified description of bosons and fermions: statistics reflected in substrate and growth properties

Driven transport

Density profile

Diffusive transport

Linear population profile

$$J \propto rac{n_r - n_l}{L}$$

Accumulation on the edge

→ bosonic skin effect

Ballistic transport

$$J \propto \bar{n}_r$$

Zig-zag structure → failure of hydrodynamic treatment

Pile-up and clustering of particles → bosonic behavior

Population fluctuations

So far: we only considered the average population $\langle \hat{n}_p \rangle$. What about the fluctuations?

Wigner distribution in quadrature space:

$$x_q = a_q^{\dagger} + a_q$$
$$p_q = i(a_q^{\dagger} - a_q)$$

Weak asymmetry:

Population fluctuations

So far: we only considered the average population $\langle \hat{n}_p \rangle$. What about the fluctuations?

Wigner distribution in quadrature space:

$$x_q = a_q^{\dagger} + a_q$$
$$p_q = i(a_q^{\dagger} - a_q)$$

Lasing transition

U(1) symmetry breaking→ lasing/condensation effect on every other site

Signature of a properly bosonic behavior

Lasing transition

Poisson-like statistics vs thermal-like statistics

Long-lived phase coherence

Outro: of rabbits and sunflower

Fibonacci sequence: $d_p = 1, 1, 2, 3, \dots$

$$\frac{d_p}{d_{p+1}} \to \phi$$

$$0.8$$

$$0.4$$

$$2$$

$$4$$

$$6$$

$$8$$

Here: $n_p \propto \frac{a_p}{d_{p+1}}$

$$d_{p+2} = d_{p+1} + ad_p$$

Lucas sequence

Summary

- Accumulation on the edge: bosonic skin effect
- Zig-zag phase with alternating thermal and 'condensed' state
- U(1) symmetry breaking and coherence in a purely dissipative transport scenario

Yuri Minoguchi

Julian Huber

Peter Rabl

Andrea Gambassi

L. Garbe, Y. Minoguchi, J. Huber, P. Rabl, arXiv:2301.11339 Y. Minoguchi, J. Huber, L. Garbe, A. Gambassi and P. Rabl, in preparation

Semi-intuitive explanation for the zigzag

$$J_{p,p+1} \simeq \Gamma_l n_{p+1} - \Gamma_r n_p + (\Gamma_l - \Gamma_r) n_p n_{p+1}$$

 $n_1 n_2 > n_2 n_3$

Unstable

 $n_1 = n_2 > n_3$ $n_1 n_2 > n_2 n_3$

Unstable

Extreme case: nonlinear term only

$$J_{p,p+1} \sim n_p n_{p+1}$$

 $n_1 n_2 - n_2 n_3$

$$n_1 n_2 = n_2 n_3$$

Stable

Connection with non-Hermitian physics

Linearization:

$$n_p(t) = n_\infty + \epsilon_p(t)$$

$$\frac{d\vec{\epsilon}}{dt} \sim -iH_{\rm eff}\vec{\epsilon}$$

Dynamical matrix gives a non-Hermitian Hamiltonian

$$c = (\Gamma_r - \Gamma_l)n_{\infty}$$
$$\nu = \Gamma_r + \Gamma_l$$

$$\nu = \Gamma_r + \Gamma_l$$

$$H_{\text{eff}} = i \begin{bmatrix} c + \frac{\nu}{2} & \frac{\nu}{2} + c & 0 & 0 & 0 & \dots \\ \frac{\nu}{2} - c & 0 & \frac{\nu}{2} + c & 0 & 0 & \dots \\ 0 & \frac{\nu}{2} - c & 0 & \frac{\nu}{2} + c & 0 & \dots \\ 0 & 0 & \frac{\nu}{2} - c & 0 & \frac{\nu}{2} + c & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix} - i\nu \mathbf{1}$$

Connection with non-Hermitian physics

$$H_{\text{eff}} = i \begin{bmatrix} c + \frac{\nu}{2} & \frac{\nu}{2} + c & 0 & 0 & 0 & \dots \\ \frac{\nu}{2} - c & 0 & \frac{\nu}{2} + c & 0 & 0 & \dots \\ 0 & \frac{\nu}{2} - c & 0 & \frac{\nu}{2} + c & 0 & \dots \\ 0 & 0 & \frac{\nu}{2} - c & 0 & \frac{\nu}{2} + c & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix} - i\nu \mathbf{1}$$

The steady-state shows a zig-zag

 $c = \frac{1}{2}$ transition for

Decaying

states

Stable steady-

△ Neumann • Dirichlet

state

Connection with non-Hermitian physics

At the transition: excited states coalesce

$$H_{\text{eff}} = 2ci \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & -1 & 1 & 0 & 0 & \dots \\ 0 & 0 & -1 & 1 & 0 & \dots \\ 0 & 0 & 0 & -1 & 1 & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

Non-diagonalizable Jordan form

→ Exceptional point in the excited states associated with the transition in the steadystate.