

Parallel plate force metrology: Status and Perspectives

PIERS 2023 July 03, 2023, Prague

René Sedmik

A little repetition

+

Thermal effects

Morphology of dipole interactions:

Morphology of dipole interactions:

Morphology of dipole interactions:

Starting point: Lifshitz theory

$$\begin{array}{l} \text{Energy per area between plane parallel plates, } T = 0 \text{:} \\ \frac{E_{I}}{A} = \frac{\hbar}{(2\pi)^{2}c^{2}} \int_{1}^{\infty} \mathrm{d}p \int_{0}^{\infty} \mathrm{d}\xi \, p\xi^{2} \left[\ln \frac{\Delta_{\perp}(i\xi,a)}{\Delta_{\perp,\infty}(i\xi)} + \ln \frac{\Delta_{\parallel}(i\xi,a)}{\Delta_{\parallel,\infty}(i\xi)} \right], \\ \frac{E_{I}}{\Delta_{\perp,\infty}(p,i\xi)} = 1 - \left(\frac{K_{1}\varepsilon_{0}(i\xi) - K_{0}\varepsilon_{1}(i\xi)}{K_{1}\varepsilon_{0}(i\xi) + K_{0}\varepsilon_{1}(i\xi)} \right)^{2} \mathrm{e}^{-2a\frac{\xi}{c}K_{0}}, \\ K_{j}(p,i\xi) = \sqrt{p^{2} - 1 + \varepsilon_{j}(i\xi)} \end{array}$$

Starting point: Lifshitz theory

8

Starting point: Lifshitz theory

Dissipation at zero frequency or not?

$$\begin{array}{c} \text{Drude} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} \end{array} \begin{array}{c} \text{plasma} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \end{array} + \begin{array}{c} \text{oscillator} \\ \text{terms} \end{array} \begin{array}{c} \omega_p \\ \gamma \\ \text{relaxation frequency} \\ \text{(dissipation)} \end{array} \end{array}$$

Dissipation at zero frequency or not?

$$\begin{array}{c} \text{Drude} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} \end{array} \begin{array}{c} \text{plasma} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \end{array} + \begin{array}{c} \text{oscillator} \\ \text{terms} \end{array} \begin{array}{c} \omega_p \\ \gamma \\ \tau_q \end{array}$$

plasma frequency relaxation frequency (dissipation)

Physics?

- Neither of the two models are derived from first principles.
- None of these models can be a description for a real material

Dissipation at <u>zero frequency</u> or not? Drude vs. plasma debate (still)

$$\begin{array}{c} \text{Drude} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} \end{array} \begin{array}{c} \text{plasma} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \end{array} + \begin{array}{c} \text{oscillator} \\ \text{terms} \end{array} \begin{array}{c} \omega_p \\ \gamma \\ \text{terms} \end{array} \begin{array}{c} \text{plasma frequency} \\ \text{relaxation frequency} \\ \text{(dissipation)} \end{array}$$

Recent data suggests: No dissipation for vacuum fluctuations (short distance)! Bimonte *et al*, Phys. Rev. B **93**, 184434 (2016) Banishev *et al*, PRL **110**, 137401 (2013) Bimonte *et al. Universe* **7** 93 (2021) Liu *et al. Phys. Rev. A* **100**, 052511(2019)

- Situation at large distance (
$$\gtrsim\!\!5\,\mu\text{m})$$
 unclear

Physics?

- Neither of the two models are derived from first principles.
- None of these models can be a description for a real material

Dissipation at <u>zero frequency</u> or not? Drude vs. plasma debate (still)

$$\begin{array}{c} \text{Drude} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} \end{array} \begin{array}{c} \text{plasma} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \end{array} + \begin{array}{c} \text{oscillator} \\ \text{terms} \end{array} \begin{array}{c} \omega_p \\ \gamma \\ \text{relaxation frequency} \\ \text{(dissipation)} \end{array} \end{array}$$

Recent data suggests: No dissipation for vacuum fluctuations (short distance)! Bimonte *et al*, Phys. Rev. B **93**, 184434 (2016) Banishev *et al*, PRL **110**, 137401 (2013) Bimonte *et al. Universe* **7** 93 (2021) Liu *et al. Phys. Rev. A* **100**, 052511(2019)

- Situation at large distance (
$$\gtrsim\!\!5\,\mu\text{m})$$
 unclear

Physics?

- Neither of the two models are derived from first principles.
- None of these models can be a description for a real material

But ...

- (DC) Dissipation is a proven concept (e.g. Johnson noise)
- ... captured by the Drude model

Q: Why is this still a topic worth investigating?

Dissipation at <u>zero frequency</u> or not? Drude vs. plasma debate (still)

$$\begin{array}{c} \text{Drude} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} \end{array} \begin{array}{c} \text{plasma} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} \end{array} + \begin{array}{c} \text{oscillator} \\ \text{terms} \end{array} \begin{array}{c} \omega_p \\ \gamma \\ \text{relaxation frequency} \\ \text{(dissipation)} \end{array} \end{array}$$

Recent data suggests: No dissipation for vacuum fluctuations (short distance)! Bimonte *et al*, Phys. Rev. B **93**, 184434 (2016) Banishev *et al*, PRL **110**, 137401 (2013) Bimonte *et al. Universe* **7** 93 (2021) Liu *et al. Phys. Rev. A* **100**, 052511(2019)

- Situation at large distance (
$$\gtrsim\!\!5\,\mu\text{m})$$
 unclear

Physics?

- Neither of the two models are derived from first principles.
- None of these models can be a description for a real material

But ...

- (DC) Dissipation is a proven concept (e.g. Johnson noise)
- ... captured by the Drude model

Q: Why is this still a topic worth investigating?

A1: Maybe a test of the fluctuation dissipation theorem

A2: Role of Non-locality

A3: Maybe different responses for propagating and evancescent waves?

Thermal Casimir forces (in thermal equilibrium).

Include the spectrum of thermal Planck photons $T \neq 0$

 $\mathcal{F} = -k_B T \ln \sum_{n=0}^{\infty} e^{-\hbar \omega_n / k_B T}$ free energy

Formal replacement:

Matsubara frequencies

$$\xi_\ell = 2\pi \frac{k_B T}{\hbar} \ell$$

Casimir energy at non-zero temperature between parallel plates

$$\frac{\mathcal{F}_{\mathrm{ren}}(a,T)}{A} = \frac{k_B T}{(2\pi)c^2} \int_{1}^{\infty} \mathrm{d}p \sum_{\ell=0}^{\infty} {}' p \xi_{\ell}^2 \left[\ln \frac{\Delta_{\perp}(i\xi_{\ell},a)}{\Delta_{\perp,\infty}(i\xi_{\ell})} + \ln \frac{\Delta_{\parallel}(i\xi_{\ell},a)}{\Delta_{\parallel,\infty}(i\xi_{\ell})} \right],$$

Split into vacuum and thermal contributions:

$$\mathcal{F}(a,T) = E_{ren}(a,T=0) + \Delta_T \mathcal{F}(a,T)$$

vacuum thermal fluctuations

M.. Bordag et al "Advances in the Casimir effect", *Oxford Science Publications*, (2015). 16

Thermal Casimir forces and the Casimir Puzzle. Some ideas on what to measure?

Idea 1 (the obvious one)

Measure the force(pressure) at a \sim 10 μ m:

Thermal Casimir forces and the Casimir Puzzle. Some ideas on what to measure?

Idea 1 (the obvious one)

Measure the force(pressure) at a \sim 10 μ m:

Idea 2

Two half spaces at **different** temperature

pioneering works:

Antezza *et al*, PRL 95, 113202 (2005) , PRA **77**, 022901 (2008), PRL 97, 223203 (2006) Krüger et al. EPL 95, 21002 (2011) Bimonte *et al*, PRA **84**, 042503 (2011), PRA **92**, 032116 (2015)

Half spaces:

$$\begin{split} P(a,T_1,T_2) &= \\ \frac{1}{2} [P_{\rm eq}(a,T_1) + P_{\rm eq}(a,T_2)] \\ & \text{equilibrium pressures} \end{split}$$

Idea 2

pioneering works:

Antezza et al, PRL 95, 113202 (2005), PRA 77, 022901 (2008),

Idea 2

Two plates at **different** temperature One plate in equilibrium with environment

Finite plates

 $P^{(1)}(a, T_1, T_2) = \frac{1}{2} [P_{eq}(a, T_1) + P_{eq}(a, T_2)] + \Delta P_{neq}(a, T_1, T_2) + \frac{2\sigma}{3c}(T_2^4 - T_1^4)$ equilibrium pressures anti-symmetric term radiation pressure identical plates: $\Delta P_{neq} \rightarrow 0$

Idea 2

Two plates at **different** temperature One plate in equilibrium with environment

Can we measure these effects?

How to measure these effects? A little orders of magnitude comparison

	Torsional balances	AFM-type	Micro-machined oscillators	Micro-beam	Parallel plates
Geometry					
Object size	10 cm	100 µm	100 µm	1 mm	1 cm
Theory	PFA	PFA	PFA	Full Theory	~exact
Effective Area [cm ²] $A_{eff} \approx \pi R d$	0.01	10-6	10-6	10-5	1
Sensitivity [pN]	1	10-2	10-3	1	0.1 (target)

How to measure these effects? A little orders of magnitude comparison

	Torsional balances	AFM-type	Micro-machined oscillators	Micro-beam	Parallel plates
Geometry					
Object size	10 cm	100 µm	100 µm	1 mm	1 cm
Theory	PFA	PFA	PFA	Full Theory	~exact
Effective Area [cm ²] $A_{eff} \approx \pi R d$	0.01	10-6	10-6	10-5	1
Sensitivity [pN]	1	10-2	10 -3	1	0.1 (target)
[pN/cm²]	100	104	1000	105	0.1 (target)
Advantage	Precision	Versatility	Precision	Geometry	Precision

The CANNEX Setup

Force detection

Principle:

Measure the displacement or resonance freq. of a spring.

Implementation: upper plate (sensor)

Custom-fabricated Silicon membrane

Force constant:	0.22 ± 0.02 N/M
Disk area :	1.0834±0.0005 cm²
Waviness(disk)	< 15 nm (whole area)
Coating:	10 nm TiW + 65 nm Au ₂₈

Force detection

Principle:

Measure the displacement or resonance freq. of a spring.

Implementation: upper plate (sensor)

Custom-fabricated Silicon membraneForce constant:0.22±0.02 N/mDisk area:1.0834±0.0005 cm²Waviness(disk)< 15 nm (whole area)</td>Coating:10 nm TiW + 65 nm Au 29

Force detection

Principle:

Measure the displacement or resonance frequency of a spring.

Implementation lower plate:

Force detection (2018)

Control: Parallelism: tilt modulation + feedback

Separation: Electrostatic fit Vo: feedback

Force detection concepts

First results (under far from ideal conditions)

Take-home message:

CANNEX works in principle. Proof of concept successful.

Calibrated / Measured Parameters Parallelism (calibrated): < 200 µrad Residual electrostatic potential:< 8 µV

Drift < 500 nm/h Total thermal drift error < 2.5 µm/run

Updates – a new setup

• All-optical sensing for parallelism and frequency shift — Less ES background

- All-optical sensing for parallelism and frequency shift Less ES background
- Independent thermal controls for both plates

• Enable $\Delta T = 10 \text{ K}$ with < 1mK precision

- All-optical sensing for parallelism and frequency shift Less ES background
- Independent thermal controls for both plates
- In-situ Ar-Ion cleaning and UV irradiation

Enable $\Delta T = 10$ K

with < 1mK precision

Reduce surface pot.

Planned technical improvements (core) Realization

Planned technical improvements (core) Realization

Planned technical improvements: Vibration isolation

Planned technical improvements: Vibration isolation (preliminary)

Planned technical improvements: Vibration isolation (preliminary)

Metrology

Considered detailed data and models on all relevant systematic and statistical noise sources For force measurements and gradient measurements different:

- Seismic: Non-linearity (stat.)
 - RMS noise in different bandwidths (stat.)
 - Direct force noise (stat.)
 - Phase noise (stat.)
- Surface deformations: Stochastic roughness (stat.)
 - large-scale deformations (sys. + stat.)
- Residual tilt (stat.)
- **Thermal fluctuations:** Thermal expansion (stat.)
 - Changes of the Young's modulus (stat.)
- Mechanical Brownian noise: (stat.)
- Detector noise (stat. + sys.)
- Phase resolution (PLL) (sys.)
- Calibration uncertainties (stat.)
- Laser stability/Allen deviation (stat.)
- Optical path variations (sys.)
- Electrostatic surface potentials (sys.)
- Voltage noise (stat.)

Details: Sedmik and Pitschmann, Universe, 7(7), 234 (2021)

Detection

Total error: $\delta_{\rm tot} = \left[\sum ({\rm stat.})^2\right]^{1/2} + \sum ({\rm sys.})$

Metrology

Considered detailed data and models on all systematic and statistical noise sources For force measurements and gradient measurements different:

Targeted sensitivity 1 nN/m² and 1 mN/m³ achievable at >10 μ m At all separations Measurement of the Casimir force at % level Measurement options: g_S^2 , g_P^2 , $g_S g_P$, g_V^2 , G(r)Advantage: $N = 10^{23}$ amplification factor

First accurate Casimir measurement beyond 10 μ m with parallel plates

Cannex is the only experiment that can distinguish all available models

+ First accurate Casimir measurement out of thermal equilibrium (ΔT = 10 K)

G. Klimchitskaya, V.M. Mostepanenko, R.I.P. Sedmik, and H. Abele, Symmetry, 11(3) 407 (2019)

First measurement of non-equilibrium thermal contributions: gradient

Measurement of separation-independent radiation pressure

Exclusion of the Chameleon as dark energy candidate

Dynamic scalar field: $\mathcal{L} = \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{\left(\partial\phi\right)^2}{2} + V(\phi) \right] + \mathcal{L}_{\mathrm{sm}}(\psi, \tilde{g}_{\mu\nu})$ $\tilde{g}_{\mu\nu} = A^2(\phi)g_{\mu\nu}$ Coupling: $A(\phi) = e^{\beta \phi/m_{\rm pl}}$ Potential: $V(\phi) = \Lambda^4 \left(1 + \frac{\Lambda^n}{\phi^n} \right)$ $\Lambda = \Lambda_0 pprox$ 2.4 meV Effective potential: $V_{\text{eff}} = V(\phi) + \rho e^{\frac{\beta}{M_{Pl}}\phi}$ Measurement via vacuum pressure modulation

Complete exclusion possible

Limits on the Symmetron as dark energy candidate

Limits on the Dilaton as dark energy candidate

Dynamic scalar field: $\mathcal{L} = \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{(\partial \phi)^2}{2} + V(\phi) \right] + \mathcal{L}_{sm}(\psi, \tilde{g}_{\mu\nu})$ $\tilde{g}_{\mu\nu} = A^2(\phi)g_{\mu\nu}$ Coupling: $A(\phi) = 1 + \frac{A_2\phi^2}{2m_{pl}^2}$ Potential: $V(\phi) = V_0 e^{-\lambda\phi/m_{pl}}$

Effective potential: $V_{\rm eff} = V_0 e^{-\lambda \phi/m_{\rm pl}} + A_2 \frac{\phi^2}{2m_{\rm pl}^2} \rho$

Measurement via vacuum pressure modulation

Improved limits on Axion-nucleon (scalar-pseudoscalar) interactions G. Klimchitskaya, V.M. Mostepanenko, R.I.P. Sedmik, and H. Abele, Symmetry, 11(3) 407 (2019)

$$V_{an}(r) = -\frac{g_{an}^{4}}{32\pi^{3}} \frac{\hbar^{2} m_{a}}{m^{2}} (r_{1} - r_{2})^{-2} K_{1} \left(\frac{2m_{a}c|r_{1} - r_{2}|}{\hbar}\right)$$

New limits achievable

Improved limits on Yukawa interactions G. Klimchitskaya, V.M. Mostepanenko, R.I.P. Sedmik, and H. Abele, Symmetry, 11(3) 407 (2019)

$$V_{\rm Yu}(r) = -\alpha \frac{Gm_1m_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|} \exp\left(-\frac{(|\boldsymbol{r}_1 - \boldsymbol{r}_2|}{\boldsymbol{\lambda}}\right)$$

Conclusion

- CANNEX is about to become the **first metrological plane parallel plate Casimir experiment**
- The proof of principle was successful (though solvable technical problems encountered)
- Setup **is being rebuilt** with many enhancements
- First setup to detect force and force gradient in one measurement Interfacial and Cavendish configuration possible.
- CANNEX will allow to measure:
 - Casimir forces at large separations (>10 μm)
 - Thermal effects
 - Dark matter and dark energy "fifth" forces
 - Gravity

Acknowledgments

Thank you for your your attention!

Present and former team members

ATI: René Sedmik Hamid Haghmorad	VU (NL): Attaallah Almasi iJoost C. Rosier	Nikhef (NL):	Berlin: Francesco Intravaia	St. Petersburg
Mario Pitschmann Andrzej Pelczar Ivica Galic Roman Gergen Thomas Dokulil Hartmut Abele	Lex v. d. Gracht Davide Iannuzzi Rogier Elsinga Rob Limburg	Alessandro Bertolini Eric Hennes Arnold Rietmeijer Johannes v. d. Brand	Paris Saclay: Philippe Brax	Galina Klimchitskaya Vladimir M. Mostepanenko

Make Research & Innovation Visible

partially crowd-funded via Flintwave and

ASML

-UIF-

