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Motivation

• nuclear fusion

• role of defects of different size (point defects, collision cascades)

Experimental

• neutron irradiation

• introduced defects

Results

• decrease of Tc and superfluid density

• enhancement of vortex pinning

Conclusions

Outline
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Motiviation

Nuclear Fusion

4A small fraction of the fusion neutrons reaches the superconducting magnets.

introduced defects 

• enhance pinning

• increase scattering of charge carriers 

30 K, 15 T



Motiviation
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scattering is pair breaking in d-wave superconductors 

• decrease of transition temperature, Tc

• decrease of superfluid density, rs

Normalized transition 

temperature

Fast neutron fluence



Motiviation
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Homes’ scaling law

• though logarithmic, the superfluid 

density scales with 𝜎dc and 𝑇c

• many orders of magnitude

• many different materials



Motiviation
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rs ... superfluid density

Homes’ scaling law

sdc = rdc
-1

... normal state conductivity

𝜂 … pinning efficiency

𝑗c
p

... physical critical current

jc should be proportional to the normal state resistivity

p



Motiviation
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Homes’ scaling law

𝐽c 𝐽c
p 𝐽d 𝐽

𝑈

𝜌FF ∙ 𝐽

∝ 𝐼𝑛

𝜌n ∙ 𝐽

p



Motiviation
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High scattering rate: high density of small defects.

Size of pinning centres should match the superconducting coherence length: large defects. 

30 K, 15 T

Large defects

Improved flux pinning
Small defects

Reduced superfluid density

Oversimplified picture?



Experimental



TRIGA MARK II – experimental fission reactor

Neutron Irradiation 

TRIGA MARK II at TU Wien

• irradiation in the central irradiation facility

• fast / thermal neutron flux 3.2 / 4 x 1016 m-2 s-1

• irradiation with and without thermal (< 0.55 eV) neutrons
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Can be screened 

by cadmium foil

> 70 C at sample



left – TEM picture of neutron induced defects

right – FFT of selected regions 1

Defect structure

[1] with friendly permission by Yatir Linden, Analysing neutron radiation damage in YBa2Cu3O7–x high-

temperature superconductor tapes, https://doi.org/10.1111/jmi.13078
Department of Materials, University of Oxford, Oxford, UK

1. Undisturbed GdBCO

2. Crystalline BZO rod

3. Amorphous cascade
Defect size   ≤ 10  nm

Mean           ~ 4    nm

ξ0
ab ~ 1.4 nm

ξ77
ab ~ 3    nm
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Only large defects visible in TEM  

https://doi.org/10.1111/jmi.13078


• thermal neutrons excite Gd emission of gamma displaces the nucleus

• very high defect densities achievable

• add to fast neutron induced defects

K.E. Sickafus et al., Phys. Rev. B 46 (1992) 11862

Defect structure

13



How do these defects influence the superconducting properties?

Defect structure
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P. Gao et al., AIP Advances 7 (2017) 035215 

Gd



How do these defects influence the superconducting properties?

Most likely distorting the CuO2 Planes!  

Daniele Torsello, Davide Gambino & Francesco Laviano

Defect structure

15

P. Gao et al., AIP Advances 7 (2017) 035215 

CuO2 Plane



• two nearly identical pristine samples

• Gd-123 tape from SuperPower (2009) no APCs

• irradiated with and without Cd-screen

• difference: number of displaced Gd-atoms 

Two nearly identical samples
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Two nearly identical samples

• sample consistency checked by 

hall  scans

• profile at selfield & 77 K

• voltage taps in low defect areas

• slight differences in signal due to

probe – sample distance



Results



Influence of thermal neutrons: Tc

Tc degrades ~13-15 x faster due to Gd-point defects

0.17 2.5
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Influence of thermal neutrons: Jc
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• maximum occurs at much lower neutron fluences

• Jc at maximum is smaller

• Degradation much faster

14 T, 30 K



Influence of thermal neutrons: Jc
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14 T, 30 K

Does Jc increase due to large fast neutron induced defects? 

• maximum occurs at similar Tc

• degradation with similar slope

• Tc is efficient disorder parameter

(decrease of superfluid density)



Influence of thermal neutrons: Jc
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• maximum occurs at similar Tc

• degradation with similar slope

• Tc is efficient disorder parameter

(decrease of superfluid density)

14 T, 30 K

Both samples have same density of large cascades



Influence of Gd point defects: Jc
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irradiated to similar fluence

unshielded sample:

• smaller Tc

• similar density of large defects

• larger Jc at low temperatures and

high fields

• lower Jc at low fields (crossover)

Displaced Gd atoms lead to efficient pinning below about 30 K!



Influence of thermal neutrons: Jc
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• extremely different defect size 
distribution

• almost equivalent slope in degrading 
branch

• uniformal only for neutron induced 

defects?
14 T, 30 K



Influence of thermal neutrons: Jc
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14 T, 30 K

Why does Jc decrease so uniformally? 

• extremely different defect size 
distribution

• almost equivalent slope in degrading 
branch

• uniformal only for neutron induced 

defects?



Influence of radiation on the I-V curve
26

𝐽c 𝐽c
p 𝐽d 𝐽

𝑈

𝜌FF ∙ 𝐽

∝ 𝐼𝑛

𝜌n ∙ 𝐽

p
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𝐽c 𝐽d 𝐽

𝑈

p

Influence of radiation on the I-V curve

𝐽c
p

assumption: n … almost constant
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𝐽c 𝐽d 𝐽

𝑈

p

Influence of radiation on the I-V curve

𝐽c increases with 𝐽𝑐
𝑝

assumption: n … almost constant

𝐽c
p
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𝐽c 𝐽d 𝐽

𝑈

p

Influence of radiation on the I-V curve

𝐽c increases with 𝐽𝑐
𝑝

𝐽d decreases

𝐽c
p

assumption: n … almost constant
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𝐽c 𝐽d 𝐽

𝑈

p

Influence of radiation on the I-V curve

𝐽c increases with 𝐽𝑐
𝑝

𝐽d decreases

𝝆𝐧 increases

𝐽c
p

assumption: n … almost constant

𝜼 increases
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𝐽c 𝐽d 𝐽

𝑈

Influence of radiation on the I-V curve

Enhancing of 𝜂 can increase 𝐽c only so much

If the degradation of 𝐽d is too high – 𝐽c decreases

→ explains (?) uniformity

• in maximum position

• and slope of degrading branch

𝐽c
p

assumption: n … almost constant

x



▪ pair breaking by scattering decreases Tc linearly with neutron 
fluence (defect density).

• Tc is an efficient disorder parameter.

• Indicating a decrease in superfluid density.

• linear decrease of Jc at high fluences?

▪ decrease of Jc at high defect density 
driven by the decrease of superfluid density 

▪ point-like disorder as displaced Gd-atoms enhances pinning at low 

temperatures (< ~30 K) and high magnetic fields

▪ competition between enhanced pinning and reduced superfluid 

density

Conclusions
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Discussion
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▪ irradiation studies. What is important?

• understanding the degradation mechanism

• correlation with introduced defects

• irradiation experiments with other particles?

• mitigation strategy

• radiation robust conductors?

• annealing

• shielding (expensive)

• new materials?

• irradiation at cryogenic temperatures


