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Abstract. We present a continuation to our previous work, in which we
developed the MR-CKR framework to reason with knowledge overriding
across contexts organized in multi-relational hierarchies. Reasoning is re-
alized via ASP with algebraic measures, allowing for flexible definitions of
preferences. In this paper, we show how to apply our theoretical work to
real autonomous-vehicle scene data. Goal of this work is to apply MR-
CKR to the problem of generating challenging scenes for autonomous
vehicle learning. In practice, most of the scene data for AV learning
models common situations, thus it might be difficult to capture cases
where a particular situation occurs (e.g. partial occlusions of a crossing
pedestrian). The MR-CKR model allows for data organization exploit-
ing the multi-dimensionality of such data (e.g., temporal and spatial).
Reasoning over multiple contexts enables the verification and configura-
tion of scenes, using the combination of different scene ontologies. We
describe a framework for semantically guided data generation, based on
a combination of MR-CKR and Algebraic Measures. The framework is
implemented in a proof-of-concept prototype exemplifying some cases of
scene generation.

1 Introduction and motivation

Testing and evaluation are important steps in the development and deployment
of Automated Vehicles (AVs). To comprehensively evaluate the performance of
AVs, it is crucial to test the AVs’ perception systems in safety-critical scenarios,
which rarely happen in naturalistic driving environment, but still possible in
practice. Therefore, the targeted and systematic generation of such corner cases
becomes an important problem. Most existing studies focus on generating ad-
versarial examples for perception systems of AVs which are concerned with very
simple perturbations in the input (e.g., changing the color or position of a vehi-
cle), whereas limited efforts have been put on the generation of ontology-based
and context-specific complex scenes (e.g., child walking a dog in the evening
in a rainy weather). This is exactly the problem we want to consider in this
micro-project.
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Specifically, we define our task of interest as follows: given an existing scene
(represented by a scene graph) from a known dataset, we want to generate a
new set of scenes that are variations of the current scene and are:

1. Realistic: that is, consistent with the ontologies describing objects in the
scene (e.g., traffic signs usually do not move);

2. Interesting: that is, they satisfy a semantic restriction, which tells us that
the scene is for example “dangerous” or challenging for our prediction model
(e.g., seeing a cat in the middle of the street requires special action);

3. Similar: that is, changing the original scene to the generated scenes requires
only small variations.

We propose to use symbolic methods to generate valid and challenging scenes on
the base of existing scene graphs and semantic definitions of scenes. In particu-
lar, MR-CKR [3,2] is a useful formalism for this. Here, ontological knowledge is
contextualized such that in different contexts it may have different interpreta-
tions (possibly with non-monotonic effects). This means that MR-CKR can help
us in generating realistic scenes, since it is capable of handling the background
ontologies describing the AC domain. Additionally, we may have different con-
textualized notions of interestingness. MR-CKR also allows us to express this by
associating different independent semantic restrictions on scenes within different
contexts.

Another benefit of MR-CKR is that it comes with a translation to Answer
Set Programming (ASP), which is a declarative programming language that can
be used to easily express and efficiently solve hard logical problems.

Apart from realism and interest, we care about similarity. Thus, we need
a way to measure how similar the generated scenes are to the original scene
that we started from. So-called Algebraic Measures [9] are of great use here.
They are a general framework from the field of ASP that allows us to measure
quantities associated with solutions. As such, they are also capable of expressing
a similarity measure of scenes, which we need.

Our main contributions are as follows:

– We provide a novel framework for semantically guided data generation, which
can be adversarial or training data.

– By basing our framework on a combination of MR-CKRs and Algebraic Mea-
sures we obtain a highly flexible approach with efficient solving options by
employing translations to ASP.

– MR-CKRs allow us (i) to incorporate ontological background knowledge en-
suring realism of the generated data and (ii) to contextualize the notion of
what makes a generated input interesting.

– Algebraic Measures enable the maximization of similarity between original
and generated data.

– Our prototype for scene generation in the domain of AV is intentionally kept
minimal but shows promise.
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Fig. 1. The general framework for generating (similar) dangerous scenes with ASP
according to (possibly) related types of dangers defined by an MR-CKR.

Related Work. The generation of adversarial or challenging examples for neural
models is an important problem that gained interest both in industry4 and re-
search [13,16,6,10]. Also in these works the generation of inputs that are similar
to the original ones and realistic is of importance. However, instead of using sym-
bolic methods to generate new inputs and to verify that the generated inputs are
realistic, numerical methods are used here. E.g., [13] uses small numerical pertur-
bations of images, [16] uses an optimization that minimizes the numerical change
of the input data such that it leads to a different prediction of the network. The
closest work that we found to ours is [10], which generates adversarial text for
natural language processing by performing minimal replacements of characters.
However, while this optimization for the minimal replacement can be seen as a
symbolic approach, no verification of how realistic the newly generated text is,
was performed.

2 Framework Overview

Before we go into the technical details of how we generate descriptions of new
challenging training scenes, we provide a general structural overview of our
framework.

We consider for this, the schema described in Figure 1. Here, we see that we
use an MR-CKR to define, on the one hand, the possible scene modifications and
on the other hand different contexts, here c1 and c2, that specify possibilities for
a scene to be dangerous/interesting. Optimally, these different types of danger
correspond to diagnoses of a neural network engineer for poor performance of
the current neural network. For example, in the AV context, we might observe
that a car does not stop in the correct location when there is not only a stop
4 https://www.efemarai.com/

https://www.efemarai.com/


sign but also a stop line marking that specifies where the car should stop. Here,
we would therefore want to modify scenes in such a manner that they have both
a stop sign and a stop line marking.

Generally, the goal is to generate more scenes that we suspect the network
also performs badly on, such that we have adversarial examples that we can use
to train the neural network in the hopes of improving its performance on these
situations that are hard for it, due to a lack of training data. Given the definitions
of danger in different contexts (i.e., based on different diagnosis) that may be
related via specialization or otherwise, we can then obtain an equivalent encoding
in ASP to obtain models, i.e., generated scenes that are realistic according to
the base ontology included in the MR-CKR.

Additionally, we add further ASP constraints to make sure the modifications
of the scene are such that the resulting scene is (a) dangerous (using the strong
constraints) and (b) as similar as possible to a given starting scene (using the
weak constraints that express the algebraic measure).

Putting both things together, we can thus obtain realistic, dangerous scenes
that are as similar to the starting scene as possible. On top of that, the different
contexts allow us to specify different types of target dangers resulting in one
generated scene that includes it per context.

In the following, we substantiate our abstract idea by formalizing how we
generate scenes with MR-CKR and measure their similarity with Algebraic Mea-
sures.

3 Formalization of scene generation problem in MR-CKR

We begin by introducing formally the MR-CKR framework and we provide a
solution making use of MR-CKR in scene generation.

3.1 MR-CKR definition

We assume the customary definitions for description logics (see, e.g., [1] for an
introduction). We summarize in the following the main definitions of MR-CKR
(as introduced in [2]).

We consider a generic description language LΣ based on a DL signature Σ,
which is composed of a set of concept names NC, role names NR and individual
names NI.

Consider a nonempty set N ⊆ NI of context names. A contextual relation is
any strict order ≺i⊆ N×N over contexts. A way to define contextual relations
is to use contextual dimensions [4,14], that is a set of contextual “coordinates”
associated to each of the contexts: in the case of scene descriptions, for example,
these can represent the time of the day, location type or situation occurring in
a scene. The contextual structure, then, is defined from the product of order of
features (dimensions) associated to the contexts, corresponding to a contextual
relation.



In a MR-CKR, axioms inside contexts can be specified as defeasible (i.e. they
can be overridden in case of exceptions) with respect to one of the contextual
relations composing the contextual structure.

Definition 1 (r-defeasible axiom). Given a set R of contextual relations over
N and a description language LΣ, an r-defeasible axiom is any expression of the
form Dr(α), where α is an axiom of LΣ and ≺r∈ R.

We allow for the use of r-defeasible axioms in the local language of contexts:

Definition 2 (contextual language). Given a set of context names N, for
every description language LΣ we define LΣ,N as the extension of LΣ where: (i)
LΣ,N contains the set of r-defeasible axioms in LΣ; (ii) eval(X, c) is a concept
(resp. role) of LΣ,N if X is a concept (resp. role) of LΣ and c ∈ N.

Multi-relational CKRs are then composed by a global structure of context based
on the contextual relations in R and a set of DL knowledge bases associated to
each of the local contexts.

Definition 3 (multi-relational simple CKR). A multi-relational simple CKR
(sCKR) over Σ and N is a structure K = 〈C,KN〉 where:

– C is a structure (N,≺1, . . . ,≺m) where each ≺i is a contextual relation over
N, and

– KN = {Kc}c∈N for each context name c ∈ N, Kc is a DL knowledge base over
LΣ,N.

Example 1. We provide a simple example of MR-CKR to better explain the in-
tended use of defeasible axioms. Consider the sCKR K = 〈C, {K1,K2}〉 composed
by the following elements:

C = {c2 ≺c c1}
K1 = {Dc(Dog v ¬DangerousAnimal)}
K2 = {Dog v DangerousAnimal ,Dog(d)}

Intuitively, we want to recognize that in the more specific context c2, dogs are
considered as dangerous animals, thus the more general defeasible axiom in c1
is not applied to the instance d of Dog .

Interpretations of MR-CKRs are family of DL interpretations associated to
each of the contexts.

Definition 4 (sCKR interpretation). An interpretation for LΣ,N is a family
I = {I(c)}c∈N of LΣ interpretations, such that ∆I(c) =∆I(c

′) and aI(c) = aI(c
′),

for every a∈NI and c, c′ ∈N.

The interpretation of concepts and role expressions in LΣ,N is obtained by
extending the standard interpretation to eval expressions: for every c ∈ N,



eval(X, c′)I(c) = XI(c
′). We consider the definition of axiom instantiation pro-

vided by [3]: given an axiom α ∈ LΣ with FO-translation ∀x.φα(x), the instanti-
ation of α with a tuple e of individuals in NI, written α(e), is the specialization
of α to e, i.e., φα(e), depending on the type of α.

A clashing assumption for a context c and contextual relation r is a pair 〈α, e〉
such that α(e) is an axiom instantiation of α, and c′ �−r c′′ �r c. A clashing set
for 〈α, e〉 is a satisfiable set S of ABox assertions s.t. S ∪{α(e)} is unsatisfiable.

Definition 5 (CAS-interpretation). A CAS-interpretation is a structure
ICAS = 〈I, χ〉 where I is an interpretation and χ = {χ1, . . . , χm} such that
each χi, for i ∈ {1, . . . ,m}, maps every c ∈ N to a set χi(c) of clashing assump-
tions for context c and context relation ≺i.

Definition 6 (CAS-model). Given a multi-relation sCKR K, a CAS-interpretation
ICAS = 〈I, χ〉 is a CAS-model for K (denoted ICAS |= K), if the following holds:

(i) for every α ∈ Kc (strict axiom), and c′ �∗ c, I(c′) |= α;
(ii) for every Di(α) ∈ Kc and c′ �−i c, I(c′) |= α;
(iii) for every Di(α) ∈ Kc and c′′ ≺i c′ �−i c, if 〈α,d〉 /∈ χi(c′′), then I(c′′) |=

φα(d).

We provide a local preference on clashing assumption sets for each of the
relations:

(LP). χ1
i (c) > χ2

i (c), if for every 〈α1, e〉 ∈ χ1
i (c) \ χ2

i (c) with Di(α1) at a
context c1 �−i c1b �i c, some 〈α2, f〉 ∈ χ2

i (c) \ χ1
i (c) exists with Di(α2) at

context c2 �−i c2b �i c s.t. c1b �i c2b.
Intuitively, χ1

i (c) is preferred to χ2
i (c) if χ1

i (c) exchanges the “more costly” excep-
tions of χ2

i (c) at more specialized contexts with “cheaper” ones at more general
contexts.

Two DL interpretations I1 and I2 are NI-congruent, if cI1 = cI2 holds for
every c ∈ NI. This extends to CAS interpretations ICAS = 〈I, χ〉 by considering
all context interpretations I(c) ∈ I.

Definition 7 (justification). We say that 〈α, e〉 ∈ χi(c) is justified for a CAS
model ICAS , if some clashing set S〈α,e〉,c exists such that, for every I′CAS =
〈I′, χ〉 of K that is NI-congruent with ICAS , it holds that I ′(c) |= S〈α,e〉,c. A
CAS model ICAS of a sCKR K is justified, if every 〈α, e〉 ∈ χ is justified in K.

We define a model preference by combining the preferences of the relations: it
is a global lexicographical ordering on models where each ≺i defines the ordering
at the i-th position.
(MP). I1CAS = 〈I1, χ1

1, . . . , χ
1
m〉 is preferred to I2CAS = 〈I2, χ2

1, . . . , χ
2
m〉 if

(i) there exists i ∈ {1, . . . ,m} and some c ∈ N s.t. χ1
i (c) > χ2

i (c) and not
χ2
i (c) > χ1

i (c), and for no context c′ 6= c ∈ N it holds that χ1
i (c
′) < χ2

i (c
′)

and not χ2
i (c
′) < χ1

i (c
′).



(ii) for every j < i ∈ {1, . . . ,m}, it holds χ1
j ≈ χ2

j (i.e. (i) or its converse do
not hold for ≺j).

Definition 8 (CKR model). An interpretation I is a CKR model of a sCKR
K (in symbols, I |= K) if: (i) K has some justified CAS model ICAS = 〈I, χ〉;
(ii) there exists no justified I′CAS = 〈I′, χ′〉 that is preferred to ICAS .

Example 2. Using the semantics mechanism shown above, we can show how to
interpret the sCKR in previous example. In particular, we can consider the CAS-
interpretation ICAS = 〈I, χ〉 where χ(c2) = {〈Dog v ¬DangerousAnimal , d〉}.
This implies that ICAS is a CAS-model if the defeasible axiom of c1 is not applied
to the only Dog in c2, as expected. Note that such CAS-model is also justified,
since the clashing assumption admits the clashing set {Dog(d),DangerousAnimal(d)}:
thus, considering that no other alternative CAS-model that is minimal with re-
spect to the preference can be defined, the considered interpretation is also a
CKR-model. The preference defined above is useful to prefer defeasible axioms
in the most specific contexts: for example, if Dog v DangerousAnimal in c2 was
defined as defeasible (w.r.t. the same contextual relation of the above defeasible
axiom), the context below c2 would have preferred the more specific axiom and
thus the interpretations where exceptions are made on the more generic axiom
of the upper context c1.

As a method to implement reasoning on MR-CKR, in [2] we provided a
translation for MR-CKRs to ASP logic programs: in particular, we showed that
such translation can be used to reason on instance checking and query answering
in a given context.

3.2 Scene generation in MR-CKR

Following the intuitive structure of Figure 1, the role of MR-CKR in our archi-
tecture is to define the logical constraints of the scenes we want to generate, on
the base of a common scene ontology.

Given its multi-contextual structure, the MR-CKR is useful to provide a
complex representation (a contextualization) of the contents of the base scene
and its modifications towards the different diagnoses of interest.

With respect to the second aspect, the basic organization of contexts can be
defined as in Figure 2.
The contexts of this structure are related by a contextual relation �sim, denoting
the relation of similarity: the upper context Exchange contains, in form of defea-
sible axioms, the axioms that can be modified in the diagnosis scenes. In the Base
context, we assume to have the description of the base scene and the base axioms
of the scene description ontology. The contexts Diagnosis-1 , . . . ,Diagnosis-N ,
then, provide the different modifications to the base scene we are interested to
model. The kind of axioms that are needed to model the different modifications
depend on the kind of changes (additions, deletions, etc.) that we want to ad-
mit in scene modifications: more detail on such axioms will be provided in the
following sections, where we consider specific modifications.



Exchange

Base

Diagnosis-1 Diagnosis-N…

Fig. 2. General structure of contexts for scene modification

With respect to the scene contextualization, we can make use of the multi-
relational nature of MR-CKR to further define the context in which the scene
take place.

Example 3. An example of such contextualization is shown in Figure 3.

General-exch

General-base

General-d1

City-exch

City-base

City-dN

Town-exch

Town-base

Town-d1 Town-dNGeneral-dN City-d1

Fig. 3. Example of general structure of MR-CKR for scene representation

In this contextual structure, the relation represented by the horizontal ar-
rows represent the specialization of scenes with respect to the specificity of the
location: starting from axioms that are verified for general scenes, we can add
further logical constraints that are true for city scenes and then town scenes.
Note that such direction is orthogonal to the base contextual structure described
above.

After modelling scenes by such framework, we want to use the translation of MR-
CKR to ASP in order to generate the possible models of the diagnoses contexts:
these models then correspond to alternative generated scenes. However, we now
need a method to provide a measure the similarity of the generated scenes with
respect to the scenes of interest: as we detail in the following sections, this can
be easily obtained by means of algebraic measures.



4 Formalization of Similarity using Algebraic Measures

If we want to generate a new scene based on a starting scene, we want to optimize
a measure of similarity. For measuring similarity, we can make use of algebraic
measures. The intuitive idea behind algebraic measures is that they allow us
to measure a quantity associated with an interpretation or a model. In order to
allow measuring different quantities in a uniform framework, we use the algebraic
structure of semirings, which allow for many different forms of computation.

4.1 Preliminaries

We introduce algebraic measures and their necessary preliminaries.

Definition 9 (Monoid). A monoidM = (M,⊗, e⊗) consists of an associative
binary operation ⊗ on a set M with neutral element e⊗, also called identity
element. Here, a binary operation on M is a function ⊗ : M ×M → M that
maps pairs of values from M to a value in M . We write the application of such
a binary operation ⊗ to a pair (m1,m2) of values m1,m2 ∈M in infix notation
m1⊗m2.

A value e⊗ ∈ M is a neutral element for a binary operation ⊗ on M if for
all values m ∈M it holds that

e⊗⊗m = m = m⊗e⊗.

Additionally, a binary operation ⊗ onM is associative, if for all m,m′,m′′ ∈
M it holds that

m⊗(m′⊗m′′) = (m⊗m′)⊗m′′.

Some examples of monoids are

– Strings = ({0, 1}∗,�, ε), the set of binary strings with concatenation �
and empty string ε is a non-commutative, non-idempotent, and non-invertible
monoid,

– P(A) = (2A,∪, ∅), the set of subsets for a set A with union ∪ is a commutative,
idempotent and non-invertible monoid,

– P(A) = (2A,∩, A), the set of subsets for a set A with intersection ∩ is a
commutative, idempotent and non-invertible monoid,

– Z = (Z,+, 0), the integers with addition + is a commutative, non-idempotent
and invertible monoid.

Based on monoids, we introduce semirings.

Definition 10 (Semiring). A semiring R = (R,⊕,⊗, e⊕, e⊗) is a nonempty
set R equipped with two binary operations ⊕ and ⊗, called addition and multi-
plication, such that

– (R,⊕) is a commutative monoid with identity element e⊕,
– (R,⊗) is a monoid with identity element e⊗,



– multiplication left and right distributes over addition, i.e., for all r, r′, r′′ ∈ R
it holds that

r⊗(r′⊕r′′) = r⊗r′⊕r⊗r′′

(r′⊕r′′)⊗r = r′⊗r⊕r′′⊗r

– and multiplication by e⊕ annihilates R, i.e., for all r ∈ R it holds that

r ⊗ e⊕ = e⊕ = e⊕ ⊗ r.

Some examples of semirings are

– B = ({0, 1},∨,∧, 0, 1), the Boolean semiring, with disjunction and conjunction
as addition and multiplication,

– F = (F,+, ·, 0, 1), for F ∈ {N,Z,Q,R} the semiring of the numbers in F with
addition and multiplication,

– P(A) = (2A,∪,∩, ∅, A), the semiring over the powerset of A with union and
intersection, and

– Rmin,+ = (N ∪ {∞},min,+,∞, 0), the min-plus semiring.

Another list of semirings, which is annotated with applications, can be found
in [12].

In order to connect the quantitative aspects of semirings and the qualita-
tive ones of logics we use weighted logics. They were initially introduced by [8]
in the second order setting. Here, we only introduce the restricted version for
propositional logic.

Definition 11 (Syntax). Let V be a set of propositional variables and let R =
(R,⊕,⊗, e⊕, e⊗) be a semiring. A weighted (propositional) formula over R is of
the form α given by the grammar

α ::= k | v | ¬v | α+ α | α ∗ α

where k ∈ R and v ∈ V.
We can evaluate weighted formulas with respect to an interpretation to obtain
a value from the semiring.

Definition 12 (Semantics). Given a weighted propositional formula α over a
semiring R = (R,⊕,⊗, e⊕, e⊗) and propositional variables from V as well as an
interpretation I, i.e., a subset of V, the semantics JαKR(I) of α over R w.r.t.
I is defined as follows:

JkKR(I) = k

JvKR(I) =
{
e⊗ v ∈ I
e⊕ otherwise. (v ∈ V)

J¬vKR(I) =
{
e⊕ v ∈ I
e⊗ otherwise. (v ∈ V)

Jα1 + α2KR(I) = Jα1KR(I)⊕Jα2KR(I)
Jα1 ∗ α2KR(I) = Jα1KR(I)⊗Jα2KR(I).



We define algebraic measures to combine the qualitative language of answer
set programs with the quantitative one of weighted logic.

Definition 13 (Algebraic Measure). An algebraic measure µ = 〈Π,α,R〉
consists of an answer set program Π, a weighted formula α, and a semiring R.
Then, the weight of an answer set I ∈ AS(Π) under µ is defined by

µ(I) = JαKR(I).

Additionally, the result of an (atomic) query for an atom a from Π is given by

µ(a) =
⊕
I∈AS(Π),a∈Iµ(I),

and the result of the overall weight query of Π is

µ(Π) =
⊕
I∈AS(Π)µ(I).

Intuitively, the idea here is that for an algebraic measure µ = 〈Π,α,R〉 the
semiring R determines the mode of quantitative computation, Π states the log-
ical background theory that determines which interpretations are solutions and
α assigns each answer set I a weight over the semiring, by performing a calcu-
lation over the semiring that depends on the satisfaction of atomic formulas in
the interpretation I.

4.2 Similarity of Scenes

Broadly speaking, we can modify a scene in three ways:

(i) Object Addition,
(ii) Object Deletion, or
(iii) Object Modification.

Our goal is to assign these actions a cost. Then we can compute how costly it is to
obtain one scene from another by performing a sequence of actions and summing
up their costs. The higher this cost is the lower is the similarity between the two
scenes.

The effect of (i) and (ii) are clear and do not allow for many suboptions. The
only possibility in this direction is to differentiate between the addition/deletion
of objects of different complexities, assigning higher costs to more complex ob-
jects. This option can be explored more later if necessary. For now, we assume
that an addition and deletion have fixed costs cost(Add) and cost(Del), respec-
tively.

For modification, however, we have different options:

– Displacement (e.g., to force an overlap between two objects),
– Class Variation, and
– Property Variation (i.e., removing a property, adding a property, or modifying
the value of a property).



For class variation it makes sense to add some restrictions, otherwise, we could
perform an object modification to achieve a deletion and addition in the same
step. For this, we assert that it is only possible to exchange class C by class C ′
if they share a reasonable superclass Cs, i.e., C v Cs and C ′ v Cs must hold for
a superclass Cs that is not owl :Thing or something of the sort. Here, we choose
a list of reasonable superclasses including Vehicle,Animal , and StreetSign.

The costs we assign for each of the modifications are as follows:

– Displacement: Either the distance between the former and the latter location
multiplied by a constant factor or a constant cost cost(Disp).

– Class Variation: When replacing class C by C ′ with lowest common super-
class Cs, the cost is the minimal number of DL-axioms that need to be used
to derive that C v Cs and C ′ v Cs. For example, consider the following set
of axioms:

Hedgehog v DangerousAnimal ,

Tiger v DangerousAnimal

Here, for C = Hedgehog , C ′ = Tiger , and Cs = DangerousAnimal , we need
one DL-Axiom to derive Hedgehog v DangerousAnimal and one DL-Axiom
to derive Tiger v DangerousAnimal . Thus, replacing a tiger by a hedgehog
would result in a cost of 2.

– Property Variation: We assign deletion, addition, and modification a con-
stant value cost(PDel), cost(PAdd), and cost(PMod), each. It makes sense to
have cost(PDel) = cost(PAdd) > cost(PMod).

Given these assumptions on how we measure the similarity, we can proceed
with the modelling of its measurement.

4.3 Measuring Similarity with Algebraic Measures

Algebraic measures consist of three parts. The program, specifying the logical
constraints, the weighted formula specifying how we measure the weight, and the
semiring specifying what kind of weight we measure. For the semiring it makes
sense to use Rmin,+. Then, we can sum up different costs that are incurred by
an interpretation and choose the minimum possible cost, if there are different
options.

The logical constraints are mainly given by the MR-CKR. However, in order
to specify a weighted formula, we need to be able to use some atomic formulas
that tell us which modifications were performed to arrive at the scene in the
model. Thus, we ensure that the signature of the program includes the following
predicates:

– addition(C, I), denoting additions of individual I to class C;
– deletion(C, I), denoting deletion of individual I from class C;
– displacement(I) (resp. displacement(I,D)), denoting displacement of individ-

ual I (resp. by distance D);



– classVar(I, C,C ′), denoting that individual I was in class C in the original
scene but is now in class C ′;

– propertyVar(I, T ), denoting that a property of individual I underwent a mod-
ification of type T .

Using the above mentioned predicates, we can easily specify the weighted
formula αcost that measures the cost of transforming the original scene into the
modified one, as follows:

Πclass c,individual i(addition(c, i) ∗ cost(Add)+ ¬addition(c, i))
∗Πclass c,individual i(deletion(c, i) ∗ cost(Del)+ ¬deletion(c, i))
∗Πindividual i(displacement(i) ∗ cost(Disp)+ ¬displacement(i))

∗Πclasses c,c′,individual i(classVar(i, c, c
′) ∗ dist(c, c′)+ ¬classVar(i, c, c′))

∗Πindividual i,t∈{PDel,PAdd,PMod}(propertyVar(i, t) ∗ cost(t)+ ¬propertyVar(i, t))

One line takes care of the cost for one modification type each. Here, dist(c, c′)
denotes the distances between two classes c and c′ as explained above. We can
compute these statically for each of the contexts.

Example 4. Consider for example the interpretation

I = {addition(RollingContainer , i1),deletion(Child , i2),deletion(Child , i3)}.

Intuitively, this means that we add the object i1 to the concept RollingContainer
and remove the objects i2 and i3 from the concept Child .

We expect that this interpretation comes with a cost of cost(Add) + 2 ·
cost(Del) since we add one object to a concept and remove two.

Accordingly, we obtain JαcostKRmin,+
(I = cost(Add) + 2 · cost(Del). This can

be seen as follows. First, observe that the last three rows of the definition of αcost
are equal to e⊗ since ¬displacement(i),¬classVar(i, c, c′),¬propertyVar(i, t) hold
for all i, c, c′, t and thus

Jdisplacement(i) ∗ cost(Disp)+ ¬displacement(i)KRmin,+
(I)

=Jdisplacement(i) ∗ cost(Disp)KRmin,+
(I)⊕J¬displacement(i)KRmin,+

(I)
=Jdisplacement(i)KRmin,+

(I)⊗Jcost(Disp)KRmin,+
(I)⊕e⊗

=e⊕⊗Jcost(Disp)KRmin,+
(I)⊕e⊗

=e⊕⊕e⊗ = e⊗

The same can be observed for the last two rows.
On the other hand, by the same reasoning, since the interpretation I con-

tains addition(RollingContainer , i1) the first row evaluates to cost(Add) and the
second row evaluates to cost(Del)⊗cost(Del), resulting in

cost(Add)⊗cost(Del)⊗cost(Del).

Since we use Rmin,+ the operation ⊗ is + and we obtain cost(Add)+2 ·cost(Del)
as the final cost, as expected.



4.4 Translation to Weak Constraints

While algebraic measures are a useful tool, to specify quantitative measures for
the answer sets of programs, most solvers for ASP currently do not support
optimization of the weight of an algebraic measures. However, the algebraic
measure that we use can be translated to weak constraints [5].

Recall that intuitively the weighted formula αcost corresponds to the sum of
the cost of the modifications that were performed on the scene. E.g. for

(addition(c, i) ∗ cost(Add)+ ¬addition(c, i))

we either have cost 0 if ¬addition(c, i) holds or cost cost(Add) if addition(c, i)
holds.

This is exactly the kind of costs that can be modelled and optimized using
weak constraints of the form

:∼a1, . . . , an, not b1, . . . ,not bm.[C, t1, . . . , tk],

where ai and bj are atom formulas, C is the cost and tl are terms. This weak
constraints means that satisfying a1, . . . , an but not b1, . . . , bm incurs a cost of
C. The terms t1, . . . , tk intuitively group different weak constraints. That is, if
there are multiple weak constraints with the same terms, then only the one with
the highest cost is triggered.

This means, we can use the weak constraint

:∼addition(C, I).[cost(Add), add, C, I]

to add a cost of cost(Add) for each individual i and concept c such that addition(c, i)
holds, i.e., such that we add i to concept c.

We can do the same for the other factors of αcost to translate it to ASP with
weak constraints.

5 Implementation Prototype for Scene Generation in
Autonomous Driving

We implemented and tested our approach using an example from Autonomous
Driving. Here, we reconstructed and slightly extended the base ontology from
[7,15].5 It features different scenes each annotated with the objects included
in it. The included objects are annotated with information about them, such
as their type. Additionally, the ontology includes axioms that add additional
knowledge about the relationship between different concepts in the ontology.
Overall, the base ontology has more than 3 million axioms, concerning knowledge
of 41 concepts, more than 100 scenes, and more than 50 thousand objects.

In our prototype we restrict ourselves to limited scene variations, i.e., addition
and deletion of objects from concepts, and assign them cost 1 each. However,
also the other modifications detailed above could be added without problems.
5 https://github.com/boschresearch/ad_cskg

https://github.com/boschresearch/ad_cskg


5.1 Overview

cexch

Dsim(Named v ADDC) Dsim(Named v NOADDC)
Dsim(Named v DELC) Dsim(Named v NODELC)
(ORIGC uNODELC) tADDC v C

cbase

ADDC uNOADDC v ⊥
DELC uNODELC v ⊥

cgliding cchild crolling csign&smoke csign&stop

:- not found_gliding. . . . :- not found_sign&stop.

:∼ instd(X,DELC ,Context,"main"). [1,X,DELC ,Context]
:∼ instd(X,ADDC ,Context,"main"). [1,X,ADDC ,Context]

Fig. 4. MR-CKR and additional constraints used in our prototype for autonomous
driving. ci denotes the different contexts, arrows between contexts denote higher speci-
ficity. Ontology axioms and additional ASP constraints belonging to some context are
shown in green and yellow boxes, respectively, and are connected to their context with
a dotted line. The red box contains the additional weak constraints that optimize for
similarity.

We provide an overall sketch of the MR-CKR and its interplay with ASP
constraints in Figure 4. We go over the different parts step by step.

As diagnoses for network failure we use the following (using existing classes
from the ontology):

1. The scene contains an object that is in the class GlidingOnWheels. Danger-
ous due to lack of no examples.

2. The scene contains an object that is in the class Child. Dangerous due to
unpredictable behaviour compared to other humans.

3. The scene contains an object that is in the class RollingContainer but no
object in the class Human. Dangerous due to unpredictable behaviour of the
rolling container.

4. The scene contains an object that is in the class Sign and an object in the
class Smoke. Dangerous due to harder recognition of the sign due to smoke.

5. The scene contains an object that is in the class Sign and an object in the
class StopLineMarking. Dangerous because the network does not predict
stopping at the stop line properly.

This means that we have one context ci for each diagnosis i.



Recall the overall framework from Figure 1. In order to model the possible
scene modifications, we have an exchange context cexch, that contains for each
original (modifiable) concept C in the ontology the following default axioms:

Dsim(Named v ADDC) Dsim(Named v NOADDC)

Dsim(Named v DELC) Dsim(Named v NODELC)
(ORIGC uNODELC) tADDC v C

Here,

– Named is a concept we define based on the original ontology that contains all
modifiable objects,

– ADDC is a concept that represents the individuals that should be added to
the concept C,

– NOADDC is a concept that represents the individuals that should not be
added to the concept C,

– DELC is a concept that represents the individuals that should be removed
from the concept C,

– NODELC is a concept that represents the individuals that should not be
removed from the concept C,

– ORIGC is a concept that represents the individuals that were in the concept
C in the original ontology.

Thus, we assert for each modifiable individual that the should be (not) added/removed
to/from the concept C. If they were originally in C and are not removed or are
added to C, then they should be in C, as the last axiom asserts. Clearly on
its own, this does not make sense, since every modifiable individual will be in
every concept. Therefore, we add a base context cbase that contains for each
(modifiable) concept C in the ontology the following axioms:

ADDC uNOADDC v ⊥
DELC uNODELC v ⊥

These ensure that we either add (resp. remove) or do not add (resp. remove) an
individual but not both. Then if cexch is less specific than cbase with respect to
�sim, we can override the defaults of cexch in cbase, such that we can satisfy the
disjointness requirements in cbase.

In order to give the contexts ci for the diagnoses access to the possibility
of modification, we then declare each context ci more specific than cbase with
respect to �sim.

What is left, are the additional ASP constraints, that (i) ensure minimal
modifications and (ii) ensure the presence of the diagnosis in the given contexts.

For (i), we use the following rules for each modifiable concept C:

:~ instd(X,DELC,Context,"main"). [1,X,DELC,Context]
:~ instd(X,ADDC,Context,"main"). [1,X,ADDC,Context]



This ensures that a penalty of 1 is added every time we add or delete an indi-
vidual X to C. Note that the penalty is applied for every context.

For (ii), we simply add constraints that ensure that the diagnosis is derived.
For example, for the third diagnosis in context C3, where we need to derive that
there is an object in the concept RollingContainer but none in the concept
Human, we add the rules

found_rolling_no_human_1 :- instd(X, RollingContainer, C3, "main").
:- not found_rolling_no_human_1.
found_rolling_no_human_2 :- instd(X, Human, C3, "main").
:- found_rolling_no_human_2.

Example 5. Assume our input scene contains four objects i1, . . . , i4 and

Child(i2), Child(i3), Car(i4)

hold.
Due to the ontology axiom Child v Human, we could derive Human(i2)

and Human(i3).
Thus, in context C3, where we need a rolling container but no human, we

need to remove i2 and i3 from the Child concept and add an object to the
RollingContainer concept. Thus, a potential modification (restricted to context
C3) is represented by the interpretation

I = {instd(i1, ADDRollingContainer, C3, “main”),

instd(i2, DELChild, C3“main”),

instd(i3, DELChild, C3, “main”)}.

As discussed in the previous example, it has cost cost(Add)+2 ·cost(Del), which
is 3 since we assign addition and deletion cost 1.

Since there is no modification of a lower cost, one of the possible generated
scenes for C3 consists of

RollingContainer(i1), Car(i4),

i.e., it contains a rolling container i1, no humans, but a car i4.

5.2 Practical Implementation

In order to transfer the idea that we sketched above into a formal encoding of
the problem that we can solve with an ASP solver such as clingo [11], we proceed
in the following steps:

1. Build an MR-CKR encoding
2. Translate the MR-CKR encoding to ASP
3. Add strong constraints to ensure danger
4. Add weak constraints to ensure similarity

We implemented all these steps and made them available online.6 In more detail,
we tackle them as follows.
6 https://github.com/raki123/MR-CKR

https://github.com/raki123/MR-CKR


Building an MR-CKR encoding. Here, we read the base ontology and gather (i)
axioms that generally hold and (ii) knowledge regarding some particular scene.
Then, we build the MR-CKR as sketched in Figure 4. There are two details to
note here. First, we additionally add the general axioms from the base ontology
that we previously gathered to cbase. This ensures that the generated scenes are
realistic. Second, we do not add defaults to add/delete individuals to concepts
for every concept but only a subset of relevant ones. This helps us by reducing
the size of the problem encoding and by improving inference performance.

Translating the MR-CKR encoding to ASP. The CKRew software7 is an existing
tool from previous work [2] that performs the desired translation of MR-CKRs
to ASP. The original translation is capable of handling highly complex relations
between contexts and supports arbitrary defaults and flexible ontological back-
ground knowledge. However, this comes at the cost of an encoding in ASP that
is not suitable for our purposes, using large scene graphs with many contexts
and concepts.

To circumvent this, we specialized the encoding to our setting. Namely, for
a given concept C, the (defeasible) axioms

Dsim(Named v ADDC) Dsim(Named v NOADDC)

ADDC uNOADDC v ⊥

tell us that we guess either the addition or the non-addition of any named
individual X to C, as long as there is no other reason in the ontology that
prevents both. Since our base ontology is consistent, there can never be a reason
in our ontology that prevents the non-addition. Therefore, the either-or really
holds in our setting.

This allows us to use the following rules to encode the (defeasible) axioms
above:

instd(X,ADDC,Con,"main") :- instd(X,"Named",Con,"main"),
not instd(X,NOADDC,Con,"main").

instd(X,NOADDC,Con,"main") :- instd(X,"Named",Con,"main"),
not instd(X,ADDC,Con,"main").

We do the same for deletion and non-deletion.
This specialized translation for our setting leads to a significant performance

improvement. While the original encoding only allows us to generate new scenes
using tiny starting scenes, the improved strategy allows inference of the real
world scenes from the ontology within seconds.

Adding ASP constraints The addition of the strong and weak constraints is
surprisingly simple. We can refer to the derived knowledge by making use of the
vocabulary that CKRew uses for translation. Thus, we can provide all additional
constraints in a separate program file and solve the combination of the ASP
encoding of the MR-CKR and the additional constraints.
7 https://github.com/dkmfbk/ckrew

https://github.com/dkmfbk/ckrew
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Fig. 5. Solving time after using the General translation of MR-CKR to ASP.

5.3 Scalability

We briefly investigate how large the instances that we can solve can become,
while maintaining a low runtime. Here, we consider on the one hand the original
translation of MR-CKR to ASP, denoted General, and on the other hand the
specialized translation that makes use of the restricted use of defaults, denoted
Specialized. The aim here is to show that is not only helpful but even necessary
to use Specialized over General, when solving real world problems.

Secondly, we investigate the dependence of the runtime on (i) the number
of objects in the scene and (ii) the number of contexts. We vary (i) between 1
and 20 and (ii) between 1 and 5 on a randomly chosen example scene from the
ontology.

We only measure the solving time, since building the MR-CKR and trans-
lating the MR-CKR to an ASP encoding only consumed insignificant time (less
than 1 second) regardless of the translation and number of objects/contexts.

For the solving phase, we use “clingo” [11] on the non-ground program with
input option “-t 3” to specify that three threads in parallel should be used to
solve the problem. We apply a time limit of 120 seconds and assign runs that do
not finish during this time a runtime of 120 seconds.

The results of our investigation are given in Figures 5 and 6. We see that even
if only one context is used, the runtime after General grows quickly. While it
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Fig. 6. Solving time after using the Specialized translation of MR-CKR to ASP.

still remains in a feasible range, when using one context and up to 20 objects
in the scene, the same cannot be said when more contexts are used. For five
contexts, solving already becomes slow when ten or more objects are included
in the scene. Additionally, the original scene has many more objects (more than
300), thus, this translation can only be employed to restricted examples, even if
there is only one context.

On the other hand, for Specialized we see that the solving time is consis-
tently far below one second, even when using all five contexts and 20 objects in
the scene. Note here the different limits of the Y-axis, which we adapted to make
the runtimes visible. Even when using all objects that were originally included
in the scene (more than 300) the solving time remains at around 0.67 seconds.

We see that while the original translation General is able to handle a
broader range of MR-CKRs, it pays off to use the specialized translation Spe-
cialized in our setting. With Specialized we can generate new scenes in sub-
second times, even if the full scene (i.e. all its objects) and all contexts are used.
This suggests that with Specialized we can also generate new inputs for more
complex semantic conditions and base ontologies than the ones provided in our
prototype, giving us interesting opportunities to extend our work in the future.



6 Conclusion

We introduced a new framework to generate new interesting inputs for neural
models based on existing ones, in particular the setting of scene generation for
AV scene data. Notably, our framework does so based on symbolic reasoning
methods: this allows us, on the one hand, to incorporate real world knowledge
(in the form of contextual knowledge) that ensures that the generated inputs are
realistic, and, on the other hand, to formulate a semantic criterion that should
be satisfied by the new input.

We saw that all components that we incorporated in our framework add their
respective benefits:

– MR-CKR allows us (i) to incorporate ontological knowledge easily and (ii)
to perform different modifications in different contexts.

– Algebraic Measures allow us to easily specify a cost value to optimize.
– ASP, as a declarative programming language to translate to, allows us to
perform reasoning/scene generation efficiently using standard solvers.

While we only considered a small example in our prototype, it successfully gen-
erates new scene descriptions. Furthermore, as it can be easily generalized to
the generation of different types of scenes, it provides a proof of concept of our
approach.

In future work, it will be interesting to extend this example with more com-
plicated semantic descriptions of interesting scenes gathered by inspecting poor
performing inputs for a prediction task with a neural model: in particular, it
would be interesting to use more complex contextual structures to represent
different variations of the scenes, but also use inputs performances to give a
quantification of the more interesting cases to be generated. Another open chal-
lenge is to use the symbolic description of the new scene to generate images that
can be fed to the neural model and assess how much training with these new
examples improves the network performance.
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