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Georgi Angelov†, Raimund Kovacevic‡, Nikolaos I. Stilianakis§, and Vladimir M. Veliov¶

Abstract

In epidemics, waning immunity is common after infection or vaccination of individuals.
Immunity levels are highly heterogeneous and dynamic. This work presents an immuno-
epidemiological model that captures the fundamental dynamic features of immunity acquisition
and wane after infection or vaccination and analyzes mathematically its dynamical properties.
The model consists of first order partial differential equations with different transfer velocities.
This untypical feature makes the proved existence of a solution novel and non-trivial. The
asymptotic behaviour of the model is analysed using the obtained qualitative properties of the
solution. An optimal control problem with objective function including the total number of
deaths and the costs of vaccination is explored. Numerical results describe the dynamic re-
lationship between contact rates and optimal solutions. The approach can contribute to the
understanding of the dynamics of immune responses at population level and may guide public
health policies.

1 Introduction

In many infectious diseases immunity acquired from infection is waning over time. The same
accounts for immune responses elicited by vaccines. Typical examples are influenza and COVID-
19 where immunity wanes within a few months (Rambhia & Rambhia [2019]; Goldberg et al.
[2022]). The durability of natural immunity and immune responses triggered by vaccines are
crucial for public health and the associated decision making for interventions. Antibodies seem to
be the protective mechanism for these infections but often more specific immune responses such as
specific T cell groups are needed to build up and maintain immune memory. Immunity waning is
highly heterogeneous in the population between individuals and changes over time (Lavine et al.
[2021]).

Several mathematical models have been developed to assess effectiveness and the possibility of
waning immunity after infection or vaccination (Montalbán et al. [2022]; Iyaniwura et al. [2023];
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Pell et al. [2022]; Gosh et al. [2022]; Domenech de Celles et al. [2022]; Veliov and Widder
[2016]). To a lesser extent models investigated the optimal timing of vaccine administration, ac-
counting for interseasonal waning immunity for infectious diseases such as influenza (Costantino
et al. [2019]). A population with heterogeneous immunity is considered in Montalbán et al.
(2022). However, individual immunity is modeled as constant over time. In addition, Montalbán
et al. (2022) consider no change in immunity levels due to previous infection or vaccination and
do not study decision (control) aspects. Iyaniwura et al. (2023) used a distributed delay equations
framework to describe the dynamics of waning immunity in a population with vaccine or natural
infection induced immunity at an endemic stage. They performed a bifurcation analysis showing
that waning immunity from natural infection influences the bifurcation type more than vaccine
associated waning immunity. In addition, they derived a control reproduction number and showed
the interplay between waning immunity rate and transmission rate of the pathogen. Similar ap-
proaches were used by Pell et al. (2022) and Gosh et al. (2022). Domenech de Cellès et al. (2022)
showed in a simulation study how immunological heterogeneity plays a role in determining durabil-
ity of vaccine protection. A model with heterogeneous dynamic immunity where sub-populations
were structured with respect to the host immunity was developed and analysed by Veliov and
Widder (2016). In all cases the investigation of control aspects were either not investigated or
played a rather limited role.

In the present work, we develop a deterministic model in order to study the dynamics of an
infectious disease with waning immunity after natural infection or vaccination. The approach
models the following characteristic effects: A model with dynamic immunity, formulated as a time
dependent function ω(t). After infection, immunity at the individual level mounts overtime until
recovery starts. With the initiation of recovery immunity declines over time, denoting the waning
immunity after natural infection or vaccination.

Model features such as existence of solution and asymptotic behaviour are explored. The model
is then extended to capture effects of vaccination. Numerical results are presented for several
scenarios, including the disease behaviour with and without vaccination and optimal vaccination
policies. The latter could be used in the assessment of vaccine administration.

From the mathematical point of view, the model we propose is challenging due to the following
reasons:

(i) It consists of a system of two or three first order Partial Differential Equations (PDE)
(each of which is of size-structured type, see, e.g., Martcheva & Pilyugin [2006]) with different
transfer velocities, hence, with different characteristic lines. This creates a substantial problem in
the analysis of the system, because the usual reformulation of the PDE system as an Ordinary
Differential Equation (ODE) system in a closed form is not possible.

(ii) The Lipschitz constant of the equations may tend to infinity along the solution, which
makes problematic the proof of global existence.

Several authors investigate the disease dynamics taking into account waning immunity, some
also regarding gaining immunity during infection or after vaccination. Closer to our model is the
work of White and Medley [1998], where equations with different transfer velocities are involved.
However, the authors focus on the formal steady state equations and do not study the overall PDE
system. Also Rouderfer and Becker [1994], Barbarosa and Röst [2015], Ehrhardt et al. [2019],
among others, consider first order PDEs, but either the velocity flows are identical or a single PDE
(together with ODEs) is involved.

In the Appendix of this work we prove global existence of a solution, even for more general sys-
tem than our particular model requires. The proof is not straightforward and can be of independent

2



mathematical interest (see Subsection 3.2 for more explanations).
The optimal vaccination problem presented in Subsection 4.2 is analyzed only numerically,

focusing on meaningful observations about the optimal vaccination policy and the respective evo-
lution of the epidemic. A more profound investigation of the optimization problem, in more general
terms, is a subject of future work.

2 The basic model with dynamic immunity

In order to model effects of immunity in the population, we use a function ω(t), indicating the
immunity level at time t. It takes values in the interval [0, 1] and may be chosen, e.g., proportional
to the individual immunity status, measured for example by the amount of antibodies per ml
blood. The larger this number ω, the higher is the individuals immunity, which implies lower
susceptibility and lower infectiousness.

Throughout the paper we assume that after an individual is infected, its immunity level in-
creases until the time or recovery (Yaugel-Novoa et al. [2022]). Therefore, we describe the
evolution of the immunity level after infection at time τ by the equation

ω̇(t) = g(ω(t)), ω(τ) = ξ, t ≥ τ, (2.1)

where ξ ∈ [0, 1] is the initial immunity level at the time of infection τ . The function g : [0, 1] →
[0,+∞) is assumed to be differentiable and to satisfy g(0) > 0, and g(1) = 0.

In the long run, the immunity level decreases (Yaugel-Novoa et al. [2022]). Therefore, be-
ginning with recovery or shortly after vaccination, immunity wanes over time and we describe its
decrease by the equation

ω̇(t) = f(ω(t)), ω(τ) = ξ, t ≥ τ, (2.2)

where ξ ∈ [0, 1] is the immunity level at the time of recovery τ . It is assumed that f : [0, 1] →
(−∞, 0], is continuously differentiable with f(0) = 0, f(1) < 0.

While in a population the individual immunity levels change as described above, at any point
in time the individuals in a population may have differing immunity levels, depending on their
individual history with the disease. Therefore, the immunity status of a whole population can be
modeled as a frequency distribution over the possible values of the immunity level, ω ∈ [0, 1]. Note
that ω here denotes just one possible value of the function ω(·).

Based on these considerations, we denote by S(t, ω) and I(t, ω) the size of the susceptible,
respectively infected, population of immunity level ω at time t. Thus the total population at time
t is

N(t) =

∫ 1

0
[S(t, ω) + I(t, ω)] dω,

Throughout this paper it is assumed that, given a particular disease, the susceptibility of an
individual depends only on the immunity level ω. This immune memory may have been acquired
through previous exposure to the relevant pathogen and infection or previous vaccination. We
denote the susceptibility by σ(ω) ≥ 0, where the function σ : [0, 1] → [0,∞) is continuous and
presumably decreasing in ω. Similarly, the infectiousness of infected individuals is modeled as solely
dependent on the immunity level ω. It is denoted by i(ω), where i is a continuous non-negative
function.

We denote by c > 0 the contact rate of susceptible individuals, while the contact rate of infected
individuals is denoted by cI ∈ (0, c]. In principle, the contact parameters may be extended to
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depend on ω, because people who know that they are well protected by immunity may have more
contacts. Moreover, dependence on time may be used for the description of seasonal or other time
dependent behaviour of the individuals. However, in this paper we assume for simplicity that c
and cI are constant.

Under the assumption of weighted random mixing, the infectiousness of the environment in
which susceptible individuals contact infected individuals is represented as

D(t) =
cI
∫ 1

0 i(ω)I(t, ω) dω

cI
∫ 1

0 I(t, ω) dω + c
∫ 1

0 S(t, ω) dω
. (2.3)

Finally, the mortality rate of infected individuals is denoted by µ(ω), and the recovery rate from
infection is denoted by ρ(ω). Both parameters are modeled as functions, depending on the im-
munity level. In the present paper we will not take into account demographic influences such as
births and deaths (all-cause mortality), which play a role in the long run.

Based on these assumptions and the related notations, it is now possible to describe the time
dependent dynamics of the classes of susceptible and infected individuals for different immunity
levels in terms of a system of PDEs for the population sizes S and I of the susceptible and infected
individuals.

∂

∂t
S(t, ω) +

∂

∂ω
(f(ω)S(t, ω)) = −cD(t)σ(ω)S(t, ω) + ρ(ω)I(t, ω), (2.4)

∂

∂t
I(t, ω) +

∂

∂ω
(g(ω)I(t, ω)) = cD(t)σ(ω)S(t, ω)− (ρ(ω) + µ(ω))I(t, ω), (2.5)

with the initial conditions

S(0, ω) = S0(ω), I(0, ω) = I0(ω), ω ∈ [0, 1], (2.6)

(S0 and I0 are initial data) and the zero flux boundary conditions

f(ω)S(t, ω) = 0, g(ω)I(t, ω) = 0, ω ∈ {0, 1}, t ≥ 0.

In this system, the left hand side is obtained as the total derivative of S, respectively I with
respect to t, taking into account the dynamics of ω(·) for susceptible - see (2.2) - and infected - see
(2.1) - individuals. The right hand side models the change in the compartment at immunity level ω
due to new infections, recovery and death. This derivation of the next equations follows the same
(conservation of mass) argument as that for the advection-reaction equation for a compressible
gas.

We note that due to the assumptions f(0) = g(1) = 0 and f(1) < 0, g(0) > 0, the initial
conditions and the zero-flux condition are equivalent to

S(t, 1) = 0, I(t, 0) = 0, t > 0. (2.7)

Moreover, due to the meaning of ω, and for consistency of the initial and boundary conditions it
is natural to assume that S0(1) = I0(0) = 0.
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3 Existence of solution and asymptotic behaviour

3.1 Notion of solution

The following assumptions hold throughout the paper.

Standing Assumptions. The functions f and g are differentiable with Lipschitz derivatives, de-
fined in a neighborhood of [0, 1], with f(0) = g(1) = 0, and the derivatives f ′(ω) < 0 on (0, 1],
g′(ω) < 0 in ω ∈ [0, 1). The function i : [0, 1] → [0,∞) is measurable and bounded, the func-
tions σ, ρ, µ, S0, I0 : [0, 1] → [0,∞) are continuous, differentiable on (0, 1) except a finite number
of points1, and the derivatives are Lipschitz continuous in each interval of existence. Moreover,
S0(1) = I0(0) = 0 and

∫ 1
0 (S0(ω) + I0(ω)) dω = 1.

The solution of the system (2.3)–(2.7) can be defined in several ways (cf. Kato & Torikata [1997]).
Here, we define the notion of solution by the method of characteristics. For reasons of further
analysis, we restrict the definition to the case of Lipschitz continuous solutions (although the
solutions may be discontinuous for general initial/boundary data).

Denote Γ := [0, T ]× [0, 1], and let Γ̃ ⊂ R2 be an open neighborhood of Γ. For γ := (τ, ξ) ∈ Γ̃ we
denote by ωf [γ](·) and ωg[γ](·) the solutions of (2.2) and (2.1), respectively. Due to the assumptions
for f and g, the set [0, 1] is an invariant domain for both equations, hence, considering a sufficiently
small neighborhood Γ̃ of Γ, the solutions are defined on [0, T ] for every γ ∈ Γ̃.

Further, denote Γf := ({0} × [0, 1]) ∪ ([0, T ] × {1}) (the left-upper boundary of Γ), Γg :=
({0} × [0, 1]) ∪ ([0, T ]× {0}) (the left-lower boundary of Γ). Due to the assumptions for f and g,
we have that ∪γ∈Γf ω

f [γ](t) = [0, 1]. Similarly, ∪γ∈Γg ω
g[γ](t) = [0, 1]. Again due to the properties

of f and g, there are unique functions γf : Γ̃→ Γf and γg : Γ̃→ Γg such that ωf [γf (t, ω)](t) = ω
and ωg[γg(t, ω)](t) = ω for all Γ̃. Moreover, due to the (Lipschitz) continuous dependence of the
solutions of (2.2) and (2.1) on the initial data, the functions ωf , ωg, γf , γg have Lipschitz continuous
derivatives with respect to γ and t.

(a) Characteristic lines for ωf [γ0](·), γ0 ∈ Γf (b) Characteristic lines for ωg[γ0](·), γ0 ∈ Γg

Figure 3.1: Characteristic lines and illustration of the notations.

1The assumption can be relaxed by replacing “finite number” with “countable number”.
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For the (dummy) real numbers t, ω, d, s, i, denote (in relation with (2.4)–(2.5))

FS(t, ω, d, s, i) := −cdσ(ω)s+ ρ(ω)i− f ′(ω)s, (3.1)

F I(t, ω, d, s, i) := cdσ(ω)s− (ρ(ω) + µ(ω))i− g′(ω)i, (3.2)

where the argument t is included for further use. For shortness we introduce the notations

γf (γ) := (τ f (γ), ξf (γ)), γg(γ) := (τ g(γ), ξg(γ)),

for γ ∈ Γ, and and for γ ∈ Γf and γ ∈ Γg, respectively:

S̄0(γ) :=

{
S0(ξ) if γ = (0, ξ),

0 if γ = (τ, 1),
Ī0(γ) :=

{
I0(ξ) if γ = (0, ξ),

0 if γ = (τ, 0).

for γ ∈ Γf and γ ∈ Γg, respectively.

Definition 3.1. The pair of continuous functions S, I : Ω → R is called a solution of system
(2.3)–(2.7) if the following equations are satisfied for all γ = (t, ω) ∈ Γ:

S(γ) =

∫ t

τf (γ)
FS
(
s, ωf [γ](s), D(s), S(s, ωf [γ](s)), I(s, ωf [γ](s))

)
ds+ S̄0(γf (γ)), (3.3)

I(γ) =

∫ t

τg(γ)
F I
(
s, ωg[γ](s), D(s), S(s, ωg[γ](s)), I(s, ωg[γ](s))

)
ds+ Ī0(γg(γ)), (3.4)

together with the relation (2.3).

For readers who are not familiar with this kind of definition we mention that if S and I are
differentiable and satisfy the equations (2.3)–(2.7) in classical sense, then they also solve equations
(3.3), (3.4). This fact is not straightforward, however it can be directly checked using the identities
∂
∂tω

f [γ](s) + f(ω) ∂
∂ωω

f [γ](s) = 0 for all γ = (t, ω) ∈ Γf , and a few more similar identities that
appear when plugging the expressions of S and I in (3.3)–(3.4) into (2.4)–(2.5). An alternative
way of verifying (2.3)–(2.7) is to use the representation of S and I along the characteristic lines,
as presented in Part 5 of the proof of Theorem 6.1 in Appendix.

3.2 Existence of a “smooth” solution

In the next subsection we prove existence of a solution of system (2.3)–(2.7) which is regular
enough to enable performing the subsequent analysis. Although the proof is based on the Banach
contraction mapping theorem, it is not straightforward due to two reasons: (i) the Lipschitz
constants of FS and F I may tend to infinity with the time due to the expression (2.3) for D,
which makes the existence on [0,∞) problematic; (ii) due to the involvement of different flow
velocity fields f and g, the system (2.4)–(2.5) cannot be reduced to a closed form ODE system
along the characteristics; (iii) proving the non-negativity of the solution is not straightforward
at all. Therefore, we present in Appendix a detailed proof of the existence. In fact, we prove a
more general theorem assuming a few properties of the functions FS and F I in (3.3)–(3.4) and
not necessarily the specific form in (3.1)–(3.2).
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Theorem 3.1. Under the standing assumptions, system (2.3)–(2.7) has a solution (S, I) on
[0,∞) × [0, 1] which is Lipschitz continuous on every set [0, T ] × [0, 1], T > 0. Moreover, for
each ω ∈ [0, 1] and T ∈ (0,∞) the derivatives ∂

∂tS(t, ω), ∂∂tI(t, ω) exist on (0, T ] except of finite

number of points, and for each t ∈ (0,∞) the derivatives ∂
∂ωS(t, ω), ∂

∂ω I(t, ω) exist on (0, 1) except
of finite number of points.

Remark 3.1. The differentiability property in the claim of the theorem is important, because it
allows to integrate equations (2.4)–(2.5) in ω, and changing the order of integration and differen-
tiation. This results, having in mind the zero flux conditions (given after (2.6)), in the relations

d

dt

∫ 1

0
S(t, ω) dω =

∫ 1

0
[−cD(t)σ(ω)S(t, ω) + ρ(ω)I(t, ω)] dω,

d

dt

∫ 1

0
I(t, ω) dω =

∫ 1

0
[cD(t)σ(ω)S(t, ω)− (ρ(ω) + µ(ω))I(t, ω)] dω,

where the derivatives exist for all t except a finite number of points on every bounded set ]0, T ].
Hence,

d

dt

∫ 1

0
(S(t, ω) + I(t, ω)) dω = −

∫ 1

0
µ(ω))I(t, ω) dω (3.5)

We mention that local existence of a solution is proved in the Appendix for a more general system
than (2.3)–(2.7). Moreover, including more equations with different characteristic curves (such
as the system with vaccination in the next section) does not change the proof. Since we allow
dependence of the functions FS and F I on the time in the proof, also the presence of control
function in the equations is covered by the existence theorem as proved in the Appendix.

We also mention that the above theorem does not claim uniqueness. The proof given in
Appendix employ two times contraction mapping theorem, therefore uniqueness in a restricted set
of functions is implied.

3.3 Long run behaviour

The goal of this subsection is to obtain conditions under which the epidemic converges to a disease-
free state. For that we assume the differentiability of the solution in Theorem 3.1. Let (S, I,D)
be the solution of (2.3)–(2.7) on [0,∞)× [0, 1]. Denote

Ŝ(t) :=

∫ 1

0
S(t, ω) dω, Î(t) :=

∫ 1

0
I(t, ω) dω.

According to Remark 3.1, the next equations are fulfilled:

˙̂
S(t) = −cD(t)

∫ 1

0
σ(ω)S(t, ω) dω +

∫ 1

0
ρ(ω)I(t, ω) dω,

˙̂
I(t) = cD(t)

∫ 1

0
σ(ω)S(t, ω) dω −

∫ 1

0
(ρ(ω) + µ(ω))I(t, ω) dω.

Using the obvious estimation

cD(t) ≤
cI
∫ 1

0 i(ω))I(t, ω) dω

Ŝ(t)
, (3.6)
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we obtain from the equation for Î that

˙̂
I(t) ≤

∫ 1

0
[cI σ̄i(ω)− (ρ(ω) + µ(ω))]I(t, ω) dω, σ̄ := sup{σ(ω) : ω ∈ [0, 1]}. (3.7)

Thus we obtain the following proposition.

Proposition 3.2. At any time, if the current density of infected individuals, I(ω), satisfies the
inequality ∫ 1

0
[cI σ̄i(ω)− (ρ(ω) + µ(ω))]I(ω) dω < 0,

then the number of infected individuals strictly decreases at this time.

Corollary 3.3. Let the following inequality be fulfilled:

λ := min
ω∈[0,1]

{ρ(ω) + µ(ω)} − cI īσ̄ > 0, ī := sup{i(ω) : ω ∈ [0, 1]}. (3.8)

Then for any initial state (S0(·), I0(·)) the disease dies out exponentially, namely, Î(t) ≤ e−λtÎ(0).
Moreover, if the initial amount of infected, Î(0) =

∫ 1
0 I

0(ω) dω, is sufficiently small, then the
solution converges to a non-void disease free population. More precisely, using the notation b :=
max{0, cI σ̄ī−minω∈[0,1] ρ(ω)}, we have that for all t ≥ 0

Ŝ(t) ≥ Ŝ(0)− b

λ+ b
> 0,

provided that Î(0) < λ
λ+b .

Proof. Indeed, from (3.7) we obtain that

˙̂
I(t) ≤

∫ 1

0
[cI σ̄i(ω)− (ρ(ω) + µ(ω))] I(t, ω) dω ≤ −λÎ(t),

hence Î(t) ≤ e−λtÎ(0). Moreover, from the equation for Ŝ and (3.6) we have

˙̂
S(t) ≥

∫ 1

0
[−cI σ̄ī+ ρ(ω)]I(t, ω) dω ≥ −bÎ(t).

Integrating, we obtain

Ŝ(t) ≥ Ŝ(0)− b
∫ t

0
Î(s) ds ≥ Ŝ(0)− b

λ
Î(0) ≥ Ŝ(0)− b

λ

λ

λ+ b
= Ŝ(0)− b

λ+ b
> 0.

The last inequality follows from 1 = Ŝ(0) + Î(0) < Ŝ(0) + λ
λ+b . �

Inequality (3.8) is only a sufficient condition for extinction of the disease. In the benchmark case
considered in Section 5, the condition in Proposition 3.2 is not fulfilled and the disease converges to
an endemic state (see Figure 5.4a). Another example is given in which the disease extincts (Figure
5.4b). The condition (3.8) fails in this case, but the condition in Proposition 3.2 is fulfilled.
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For comparison, we mention that in the case of data independent of ω, condition (3.8) can be
represented as

R0 :=
cIiσ

ρ+ µ
< 1,

which the usual expression for the basic reproduction number (in our notations).

A way of formal derivation of the steady states of the system (2.3)–(2.7) is given for a similar
model in Veliov and Widder [2016]. It can easily be obtained that the disease free steady state is
S∗(ω) = αδ0(ω), where δ0 is Dirac’s delta function concentrated at zero, and α ∈ [0, 1] (and equals
one in the case of zero mortality).

4 Modeling and optimization of vaccination

In this section we introduce a control variable that represents the vaccination efforts and consider
a class of optimization problems for the vaccination policy.

4.1 Modelling vaccination

Including vaccination requires an extension of the basic model (2.3)–(2.7). We assume that only
susceptible individuals are vaccinated. It is necessary then, to model the act of vaccination together
with the immunological behavior of vaccinated individuals.

We denote by v(t, ω) the vaccination effort applied to susceptible individuals of immunity level
ω at time t. This means, that v(t, ω)S(t, ω) individuals of immunity level ω become vaccinated at
time t. As far as the immunity level of people is not measured in reality, the dependence of v on
ω is an idealization. However, the time from last vaccination or from the last infection could be
considered (as practiced in reality) as a proxy for the individual immunity level.

The effect of vaccination on immunity is not immediate. Like newly infected individuals,
vaccinated individuals gain immunity over time, until their immunity level reaches a maximum,
possibly depending on the immunity level before vaccination. After that, the immunity level slowly
decreases in the same way as that of all susceptible individuals with the same immunity level (Goel
et al. [2021]).

Therefore, we augment the model by an additional compartment, representing the newly vac-
cinated individuals acquiring immunity after vaccination. Similarly as for susceptible and infected
individuals, the size of this compartment is counted separately for each immunity level over time,
and is denoted by V (t, ω). The process of acquiring immunity from vaccination (in a relatively
short period after the vaccination) is modeled in a similar way as the increase of immunity during
illness, namely by the equation

ω̇(t) = h(ω(t)), ω(τ) = ξ, t ≥ θ, (4.1)

where ξ ∈ [0, 1] is the initial immunity level at the time of vaccination τ . The function h(ω) :
[0, 1]→ [0,∞), represents how fast immunity is built up at the current immunity level ω. Presum-
ably, it is a decreasing function, with h(0) > 0 and h(1) = 0, that is, with similar properties as the
function g.

When reaching their individual maximum immunity level, newly vaccinated individuals leave
the compartment of the vaccinated and are counted as susceptible individuals with the attained
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new immunity level. This means that their decrease of immunity will change in the same manner
as for susceptible individuals of the same immune level. The transition process from vaccinated to
susceptible occurs with a rate r(ω), so that 1/r(ω) is the average duration of increase of immunity
depending on the current immunity level.

Since the vaccinated individuals behave in their activities as susceptible, the infectiousness of
the environment, D(t), takes the form

D(t) =
cI
∫ 1

0 i(ω)I(t, ω) dω

cI
∫ 1

0 I(t, ω) dω + c
∫ 1

0 (S(t, ω) + V (t, ω)) dω
. (4.2)

The overall model with vaccination takes the form

∂

∂t
S(t, ω) +

∂

∂ω
(f(ω)S(t, ω)) = − (cD(t)σ(ω) + v(t, ω))S(t, ω) + ρ(ω)I(t, ω) + r(ω)V (t, ω),(4.3)

∂

∂t
I(t, ω) +

∂

∂ω
(g(ω)I(t, ω)) = cD(t)σ(ω)(S(t, ω) + V (t, ω))− (ρ(ω) + µ(ω))I(t, ω), (4.4)

∂

∂t
V (t, ω) +

∂

∂ω
(h(ω)V (t, ω))) = − (cD(t)σ(ω) + r(ω))V (t, ω) + v(t, ω)S(t, ω), (4.5)

with initial conditions

S(0, ω) = S0(ω), I(0, ω) = I0(ω), V (0, ω) = 0, ω ≥ 0. (4.6)

and boundary conditions

S(t, 1) = 0, I(t, 0) = 0, V (t, 0) = 0, t ≥ 0. (4.7)

4.2 Optimal vaccination policies

In this subsection we use the model involving the vaccination rate v(t, ω) to formulate an optimal
control problem reflecting the desire of acting in an rational way. There is a number of reasonable
objectives considered in the literature, involving burden on hospitals, number of sick individuals,
cost of policy measures, direct or indirect economic losses due to the disease, e.g., work absenteeism,
etc. (see e.g. Bloom et al. [2020], Caulkins et al. [2021]). We focus on the following three objectives
posed on a fixed time-horizon [0, T ]:

(i) the total number of deaths; on average this number represents also the total number of sick
people, hence it also reflects the economic cost of the epidemics in absence of additional restrictive
measures such as partial lock-down (not employed anymore in most of the countries after 2022);

(ii) the social tension created by the pressure that people experience when the vaccination
effort is high; the decision makers, i.e. governments have to take into account this social tension,
especially in countries in which vaccination is obligatory or semi-obligatory due to the need of
vaccination certificates for many activities;

(iii) the cost of vaccination, which is perhaps less significant than the first two especially in
public health emergency situations.

The first objective is clearly contradictory to the other two. Therefore, in the spirit of Pareto’s
approach, we define the weighted aggregated objective to be minimized as

J(v) :=

∫ t

0

∫ 1

0
µ(ω)I(t, ω) dω dt+ α

∫ t

0

∫ 1

0
v(t, ω)2 dω dt+ β

∫ t

0

∫ 1

0
v(t, ω)S(t, ω) dω dt (4.8)
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Here, α ≥ 0 and β ≥ 0 are weighting parameters. The optimization is subjected to the constraints
(4.2)–(4.7) and the control constraint v(t, ω) ≥ 0.

The optimal control problem (4.2)–(4.8) is non-standard, due to the presence of first order PDEs
with different characteristic equations. We do not deeply investigate, in this paper, issues as
existence of a solution, necessary optimality conditions, convergence of numerical methods, etc.
As seen in Appendix, even the proof of existence of a solution of system (4.2)–(4.7) for a fixed
control v is non-straightforward. However, due to the linear-convex form of the objective functional
and the structure of the equations (4.3)–(4.5), one may expect that an optimal solution exists and
the optimal control is Lipschitz continuous. Although this is far not enough to claim convergence
of our numerical approach, the results of the numerical experiments we have made (see the next
section) and the pertaining sensitivity analysis support such a claim.

The numerical approach we employ is the so-called direct method in optimal control, which
consists of direct discretization of the equations and the objective functional in time and space
(for ω), as briefly described in Subsection 5.1.

5 Numerical experiments

In the following section we provide several purely illustrative numerical experiments for the evolu-
tion of the model dynamics with and without vaccination. Moreover, we also analyze the impact
of optimal vaccination policies among sub-populations with differing immunity level.

5.1 Numerical approximation

In order to obtain numerical solution to (4.2)–(4.7) we use the so called upwind scheme which is
of first order accuracy, see LeVeque [2002]. We can write equation (4.3) in the following way:

∂

∂t
S(t, ω) +

∂

∂ω

(
f(ω)S(t, ω)

)
= FS

(
t, ω,D(t), Z(t, ω)), (5.1)

with the initial/boundary conditions (4.6) and (4.7). Here, Z(t, ω) :=
(
S(t, ω), I(t, ω), V (t, ω)

)
and

FS is the right-hand side of (4.3).
In order to describe the numerical scheme, we define a mesh ωj , j = 1, ...,M + 1, in the ω-

dimension with step size ∆ω = ωi+1 − ωi. Respectively, in t-dimension we construct also a mesh
ti, i = 1, ..., N + 1, with step size ∆t = ti+1 − ti. The upwind scheme is the following:

S(ti+1, ωj)− S(ti, ωj)

∆t
= −f(ωj)

(S(ti, ωj+1)− S(ti, ωj)

∆ω

)
+ FS(ti, ωj , D(ti), Z(ti, ωj)), (5.2)

for i = 1, ..., N and j = 1, ...,M . From the boundary condition (4.7) we have that S(ti, ωM+1) = 0,
for every grid point ti.

The numerical scheme has to take also the sign of the functions f, g and h into consideration.
For the equations (4.4)–(4.6) we have to change f with g or h, the numerator on the right-hand
side to I(ti, ωj)−I(ti, ωj−1) or V (ti, ωj)−V (ti, ωj−1), and account for the zero boundary condition
(4.7).

A necessary condition for the convergence of the numerical upwind scheme is the Courant–
Friedrichs–Lewy condition (CFL), see Courant [1967]. In our case this conditions is resolved to
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u∆t
∆ω ≤ C < 1, where u = maxω{f(ω), g(ω), h(ω)} and C is the Courant number for the problem.
We tested the numerical scheme with various step sizes that satisfy the CFL condition in order to
check consistency in the results.

5.2 Model parameters

The parameters used for numerical experiments are described in form of a baseline scenario, which
varies later on in order to analyze the sensitivity with respect to some parameters. All parameter
values are chosen for illustrative purposes only and do not refer to a specific disease. While the
present work describes a general model and analyzes some of its properties, substantial empirical
work remains to be done in order to apply it to observed data.

We choose the initial distribution of the population compartments to be consistent with the
boundary conditions provided in (2.7), respectively (4.7). For the distribution of the susceptible
population at time zero, we take a linear function in the ω variable. It has a maximum at ω = 0
and it is decreasing to zero at ω = 1. The susceptible population at the first moment is chosen to
be 95% of the whole initial population. In a similar manner, for distribution of the initial infected
population a parabola is chosen with a maximum at ω = 0.5 and zero at the boundary immunity
levels ω = 0 and ω = 1. The infected population at time zero is 5% of the total initial population.
All numerical simulations have zero vaccinated people at the start.

The parameters and functions for modeling contact rates, infectiousness, recovery and mortality
are summarized in Table 1.

Model parameters and functions

contact rate of susceptibles c 8

contact rate of infected individuals cI 3

susceptibility σ(ω) (1.5− ω)3

recovery ρ(ω), r(ω) 120ω
1.3

40

infectiousness i(ω) 0.3(1− 0.9ω)

mortality µ(ω) 0.01(1− ω)

immunity decrease (susceptibles) f(ω) −0.005ω

immunity increase (infected individuals) g(ω) 0.04(1− ω)

immunity increase (vaccinated individuals) h(ω) 0.02(1− ω)

convex cost parameter α 0.00001

administration cost parameter β 0.0005

Table 1: Parameters and functions used in the numerical examples, ω ∈ [0, 1].

Table 1 also shows the specific functions f , g and h, which are chosen as linear functions
such that their sign determines the gaining or loosing immunity over time. Figure 3.1 shows the
resulting characteristic curves for solving (2.2) and (2.1).

5.3 Numerical results without vaccination

We start with numerical simulations for the model without vaccination in the baseline case.
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Figure 5.1 gives an overview of the development of the epidemic over the simulation horizon.
Figure 5.1a shows the first wave of the epidemic plus the emergence of a second wave. Here the
numbers of individuals in the compartments of susceptible and infected individuals are aggregated
over all immunity levels ω. Figure 5.1b shows the development of the average immunity level for
susceptible and infected individuals, weighted by the sizes of subgroups with different immunity
level. In addition, the average immunity level of newly infected and newly recovered individuals is
shown. In particular, one can observe an increase of the average immunity level in all compartments
after the peak of the number of infected individuals in the first plot 5.1a. In the compartment of
susceptible individuals the average immunity increases due to the inflow of recovered individuals,
until the number of infected individuals becomes very low again.

(a) Total number of susceptible and infected in-
dividuals

(b) Change of average immunity in time for dif-
ferent groups

Figure 5.1: Evolution of epidemiological population groups without vaccination

(a) Change of the distribution of susceptible in-
dividuals

(b) Change of the distribution of infected indi-
viduals

Figure 5.2: Evolution of susceptible and infected individuals without vaccination
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(a) Change of the distribution of newly infected
individuals

(b) Change of the distribution of newly recovered
individuals

Figure 5.3: Evolution of newly infected and newly recovered individuals

Figures 5.2 shows the time dependence of the distribution of immunity levels within the epi-
demiological groups: the susceptible and infected individuals and the newly infected and recovered
individuals. For each point in time (on the horizontal axis), the related vertical cut pictures the
distribution of immunity levels as a density, i.e. the integral over the immunity levels is one. The
bright yellow spots on the graphs correspond to higher concentration of individulas with given
immunity and the dark blue color corresponds to a lower concentration.

The groups of newly infected/newly recovered individuals at each time are described by the
corresponding transition rates between the compartments of susceptible and infected individuals.
As these rates have instantaneous magnitudes we also plot the time dependent normalized distri-
bution of the immunity levels for the groups of newly infected and newly recovered in figure 5.3.
One expected difference between the newly infected and newly recovered individuals, as shown
previously, is the higher immunity level of the latter. Moreover the distribution of immunity lev-
els for the newly infected is a slightly distorted version of the distribution for the susceptibles,
where the newly infected individuals come from. The distribution of immunity levels within the
newly recovered individuals on the other hand is concentrated at the highest levels of immunity,
seen within the compartment of infected individuals, which includes individuals with increasing
immunity until recovery.

In order to observe the long term equilibrium behaviour of the model, we simulate the scenario
where there is no mortality µ(ω) = 0, and run the simulations for a longer period. In figure 5.4a
we see the obtained behaviour numerically for running the simulation with µ(ω) = 0 for 16000
days. An oscillatory behaviour is observed with declining amplitude suggesting convergence to an
equilibrium. In figure 5.4b is shown the decrease of the group of infected individuals when the
contact rate cI of infected individuals is reduced to 0.1. For this value the expression in proposition
3.2 is satisfied and we observe convergence to an infection-free equilibrium.
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(a) Evolution of susceptible and infected in-
dividuals, long-term estimation

(b) Evolution of infected individuals, low
contact rate cI = 1.2

Figure 5.4: Evolution of epidemiological groups with no mortality rate

5.4 Simulations with constant vaccination

Although the vaccination rate v(t, ω) is modeled to depend on time t and immunity level ω, we
consider first the special case of constant vaccination: at every point in time and for every immunity
level we vaccinate susceptible individuals with the same intensity.

Results for different constant vaccination intensities are shown in Figure 5.5 where the number
of vaccinated individuals can be seen in 5.5a. Due to the varying number of susceptibles over time,
the number of vaccinated individuals also changes over time. In figure 5.5b one can observe the
numbers of infected individuals, depending on the vaccination rate. Choosing v(t, ω) = 0.2 drives
the number of infected individuals to almost zero.

(a) Number of newly vaccinated individuals
for different vaccination intensities

(b) Number of infected individuals ob-
tained after different vaccination intensities

Figure 5.5: Evolution of epidemiological population groups with constant vaccination
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5.5 Optimal vaccination

We obtain numerically the optimal vaccination policy by solving the formulated problem in Sub-
section 4.2. We minimize the number of deaths with an additional vaccination cost. The objective
function is directly discretized over the same mesh that was used for equations (4.3) – (4.6). Af-
terwards we utilize an optimization procedure to obtain numerically optimal solution. For the
discrete optimization problem we choose the SQP optimization solver provided by the MATLABs
Optimization Toolbox.

For illustration we chose α = 0.00001 and β = 0.0005, as shown in Table 1.
Figure 5.6 shows the effect of the vaccine strategy in the baseline case. In addition to the overall

numbers of susceptible and infected individuals, the yellow line in 5.6a indicates the total number
of individuals in the vaccinated group. These are individuals who are in the process of acquiring
immunity due to the vaccination. As expected, the overall level of infected individuals is greatly
reduced compared to the baseline case without vaccination in figure 5.1a. In figure 5.6 we see
the average immunity of all epidemiological population groups. Comparing the previous plot 5.1b
and 5.6b, the average immunity of the different compartments does not change significantly. This
suggest that the vaccination efforts do not change the qualitative effect of the infection within the
population, but affects the group of the vaccinated individuals and the overall infection numbers.

(a) Number of susceptible and infected in-
dividuals

(b) Average immunity within the epidemi-
ological population groups

Figure 5.6: Evolution of epidemiological population groups with optimal vaccination applied

The optimal vaccination policy is analyzed in Figure 5.7. Figure 5.7a shows the optimal
total number of newly vaccinated individuals. Due to the finite horizon of the optimal control, the
vaccination is terminated before the end of the simulation period. However, the optimal vaccination
policy is not only a matter of the overall level and timing of vaccination. Figure 5.7b shows the
distribution of the application of vaccines to individuals with differing immunity level over time.
The abrupt change at the end of the horizon is due to the stop of vaccination. It can be seen that,
at the beginning, vaccination tends to be given to individuals with lower immunity level than the
average immunity level in the susceptible group. The levels of immunity of vaccinated individuals
catch up with the average immunity level of susceptible individuals after around 150 days, and
then follow the general decrease of the average level of immunity. Figure 5.8 shows the increase of
the total number of deaths. The optimal vaccination shows a visible reduction of the number of
deaths.
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(a) Number of newly vaccinated individuals
(b) Normalized distribution of the newly vacci-
nated individuals and average immunity of the
susceptible group

Figure 5.7: Administered vaccines, i.e. newly vaccinated individuals and comparison with the
average immunity level of susceptible

Figure 5.8: Comparison between the proportion of deaths resulting from no vaccination and ap-
plication of optimal vaccination

The objective (4.8) puts together several aims, the number of deaths and two kinds of vacci-
nation costs. All these aims are relevant for decision making in public health, but also are con-
tradicting. In order to formulate the overall objective, weights are applied, modeling the relative
importance of the individual aims.

While the analysis of the optimization problem so far is targeted on the analysis of one (”stan-
dard”) choice for these weights, it is possible to go deeper by analyzing the efficient (or Pareto)
frontier of costs and deaths: Iterating over the possible weight combination one gets for each cost
the minimum number of deaths that can be achieved by vaccination.

As the vaccination cost in our case is composed of two parts, we vary only the administration
cost in order to plot an efficient frontier curve (holding fixed the other parameters of the baseline
case). We range the parameter β in the objective from 0.001 to 0.02, we calculate the optimal
vaccination policy, and estimate the corresponding administration vaccination cost. In figure 5.9,
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the vaccination administration cost is compared to the percentage of increase or decrease in the
number of deaths relative to the baseline case with the standard choice of weights. The more one
goes to the left, the more costly becomes additional reduction of the number of deaths. The more
one goes to the right, the more additional deaths will occur per monetary unit saved.

Figure 5.9: Vaccination administration cost compared to the relative increase of the number of
deaths for the besaline case

In practice, any vaccination policy has to be revised after some time, in order to catch up with
new information. In particular, the improved medical understanding of the disease, changes in the
death rates, new variants of the pathogens may emerge and enhanced vaccines may be developed.
In terms of control, a new optimization is done after some time with updated information, which
is known as Model Predictive Control in the literature.

Following such an approach, we may solve the optimization problem on a relatively short
horizon, e.g., t = 400 days in the baseline case, apply the obtained solution during an even shorter
time horizon, say 70 days, then update the model parameters and the current real state of the
epidemic, solve the problem on the next 400 days horizon, and so on.

Such an approach only works well, if the results with different planning horizons do not vary
too much over the shorter time period (here 70 days). This is tested in Figure 5.10, which shows
the dependence of the optimal vaccination policy on the chosen time horizon [0, t] on which the
optimization problem is solved. The left plot indicates that the total number of optimally vacci-
nated people is practically independent of the time horizon over the first 70 to 100 days. More
relevant, the same applies (even on a longer horizon) to the aggregated (in ω) vaccination effort
(the right Figure 5.10). So it seems to be reasonable to apply Model Predictive Control.

5.6 Comparative analysis

An interesting case for model sensitivity is the effect of parameter changes for the objective function
values. As contact rate plays a significant role in pathogen transmission, we estimate the mortality
and vaccination cost for different contact rates. Using the baseline values for c = 8 and cI = 3,
we multiply these parameters by a factor ranging from 0.8 to 1.25. For each parameter value
we estimate the optimal vaccination policy and compare the respective objective function values.
Comparison is made also between the mortality and vaccination cost parts in the cost objective.
In Figure 5.11, the x-axis shows the values for the contact rate c and on the y-axis are the obtained
values of the objective function using the respective optimal vaccination policy. In the first plot
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(a) Number of vaccinated individuals for
different time horizons

(b) Aggregated optimal control trajectories
for different time horizons

Figure 5.10: Dependence of the optimal vaccination policy on the time horizon [0, t], t =
400, 500, 600

5.11a the lowest mortality cost is for the contact rate c = 8.8 and in the second plot 5.11b the
highest vaccination cost occurs for c = 8.4. From the two plots one can observe that lower
contact rate does not necessary mean lower mortality. As the contact rate increases, the optimal
vaccination efforts also increase up to a point. The vaccination leads to lower mortality rates, but
we can also observe from figure 5.11b, that the vaccination cost for highest values of the contact
rate is reduced. This fact can be explained by the effect of herd immunity. With higher contact
rate more people obtain immunity from infection and the effect of vaccination is relatively smaller.

(a) Total number of deaths for different
contact rates

(b) Vaccination cost for different contact
rates

Figure 5.11: Objective function components for different contact rates
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6 Discussion

In this work we develop an epidemiological model that explicitly embeds the effects of waning
immunity after infection or vaccination. The basic model with dynamic immunity is formulated
as a system of two PDEs of first order. The model is mathematically challenging because the
transport flows in the equations are different from each other. Systems of this type seem not
to be investigated in the literature. Existence of a global solution is proved in the paper, and
its asymptotic behaviour is investigated. In a second step we embed vaccination strategies and
formulate an optimal control problem with the following three objectives: the total number of
deaths, the social tension created by the pressure that people experience when the vaccination
effort is high, and the costs of vaccination. Using plausible scenarios of vaccination, numerical
results provide insights into the dynamics of the epidemiological populations involved including the
waning immunity without and with vaccination. With respect to the optimal vaccination strategy
the model provides insights into the influence of different contact rates between individuals on the
number of deaths or the vaccination costs. An interesting fact, for example, is that vaccination
efforts and herd immunity act in a certain sense as substitutes: above a threshold value of the
contact rate, further increase of the contact rate leads to lower vaccination level. Moreover, one
can determine the efficient frontier between vaccine administration (direct and indirect) costs and
the number of deaths.

As already mentioned in the introduction the epidemiological model presented here that de-
scribes the development of immunity at the epidemiological population level differs substantially
from previous approaches (White and Medley [1998]; Rouderfer and Becker [1994]; Barbarosa
and Röst [2015]; Ehrhardt et al. [2019]). It has a broader potential for inclusion of heterogeneity
aspects especially about immunity and more generally applicable results. Moreover, the model is
used to investigate optimal control policies.

Although the model has some striking features such as the description and coupling of the
elicitation of immune responses to the epidemiological process it can only be considered as a first
step towards a more detailed description of the immune responses and their waning over time.
The model captures the immune response in a general manner as a whole and does not distinguish
between antibody and cellular immune responses and their differing dynamical characteristics such
as the time delay between the two and their strength depending on the infectious disease one may
explore. There is still substantial clinical and epidemiological empirical work to be done where
relevant immuno-epidemiological data could feed this type of models. Nevertheless, the model
shows that a mathematical description of these dynamical processes is possible and this may lead
to better understanding of the processes themselves and the evaluation of associated interventions.

Appendix: Proof of Theorem 3.1

Since the horizon T may change in the subsequent considerations, at some places we use the notation ΓT := [0, T ]× [0, 1]. The
space of all continuous functions from a set X ⊂ Rn to R or R2 (the l1-norm will be used in the latter) is denoted by C(X),
with the usual norm denoted by ‖ · ‖C(X). The spaces L1(0, T ) and L∞(0, T ) are defined as usual. Further, L(X) ⊂ C(X) is
the subspace of all Lipschitz continuous functions with Lip(x) denoting the Lipschitz constant of x ∈ L(X). We abbreviate

F =

(
FS

F I

)
Z =

(
S
I

)
or Z = (S, I), etc.

The existence theorem presented below will be formulated in the terms of a general function F in the equations (3.3),
(3.4), and with a general relation between the functions D and (S, I). Namely, instead of equation (2.3) we consider a general
relation between Z and D:

D = D(Z), D : domD := {Z ∈ L(ΓT ) : Z ≥ 0} → L1(0, T ), (6.1)
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where D has the following properties: there exists constants a > 1 and LD such that

D(Z)(t) ≥ 0, (6.2)

|D(Z1)(t)−D(Z2)(t)| ≤ LD max
ω∈[0,1]

|Z1(t, ω)− Z2(t, ω)|, (6.3)

|D(Z)(t)| ≤ a− 1, for a.e. t ∈ [0, T ], Z, Z1, Z2 ∈ domD. (6.4)

Keeping in mind the specific form of the functions FS and F I in (3.1), (3.2), we assume in the general case that there exist
constants M and L such that

|F (t, ω, d, s, i)| ≤Ma(|s|+ |i|), (6.5)

|F (t, ω, d, s, i)| − F (t1, ω1, d1, s1, i1)| ≤ La
(
(|s|+ |i|)(|t− t1|+ |ω − ω1|+ |d− d1|) + |s− s1|+ |i− i1|

)
(6.6)

for all t, t1 ∈ [0, 1], ω, ω1 ∈ [0, 1], d, d1, s, s1, i, i1 ∈ R with |d|, |d1| ≤ a − 1. Moreover, the following property is fulfilled: for
any d ≥ 0, (t, ω) ∈ Γ

FS(t, ω, d, 0, i) ≥ 0 ∀i ≥ 0, F I(t, ω, d, s, 0) ≥ 0 ∀s ≥ 0. (6.7)

Theorem 6.1. Let the functions f, g, S0, I0 satisfy the Standing Assumptions (at the beginning of Subsection 3.1). Let, in
addition, the conditions , (6.2)–(6.4) and (6.5)–(6.7) be fulfilled. Then there exists T > 0, independent of the particular initial
data (S0, I0), such that the system (3.3), (3.4), (6.1) has a nonnegative Lipschitz continuous continuous solution (S, I) on
ΓT .

Proof. 1. We begin with some preliminary facts and notations. Due to the properties of f and g, the functions (γ, s)→ ωf [γ](s)
and (γ, s) → ωg [γ](s) are continuously differentiable on a neighborhood of ΓT × [0, T ] (T > 0 is arbitrary). Denote by λω a
common Lipschitz constant of these functions on Γ1 × [0, 1]. Moreover, the functions Γ1 3 γ → γf (γ) and Γ1 3 γ → γg(γ) are
Lipschitz continuous and we denote by λγ a common Lipschitz constant. We remind that ωf [γ](t), ωg [γ](t) ∈ [0, 1] for every
γ ∈ Γ1 and t ∈ [0, 1].

Let us fix the number T > 0 such that

T ≤ min

{
1,

1

4Lλω a
,

1

2La

}
. (6.8)

Notice that T does not depend on the initial data (S0, I0).
Let us fix a D ∈ L∞(0, 1) with ‖D‖L∞ + 1 ≤ a. Set

λ := max
{

4λγ , 8ae2Ma(2M(1 + λγ) + Lλω)
}

(6.9)

and define the set

KT,a :=
{
Z = (S, I) ∈ L(ΓT ) : Lip(Z) ≤ (‖Z0‖C(0,1) + Lip(Z0))λ, (6.10)

‖Z‖C(Γt) ≤ 2e2Mat‖Z0‖C(0,1) ∀t ∈ [0, T ], (2.6) and (2.7) are satisfied
}
.

On KT,a we define the mapping F[D] as

FS[D](Z)(γ) :=

∫ t

τf (γ)
FS(s, ωf [γ](s), D(s), Z(s, ωf [γ](s))) ds+ S̄0(γf (γ)), (6.11)

FI[D](Z)(γ) :=

∫ t

τg(γ)
F I(s, ωg [γ](s), D(s), Z(s, ωg [γ](s))) ds+ Ī0(γg(γ)), (6.12)

where γ = (t, ω) ∈ ΓT . In the next three parts of the proof we shall prove that KT,a is a nonempty complete metric space,
F[D] maps KT,a to KT,a, and F[D] is contractive.

2. Let us prove that KT,a is not empty. For γ ∈ ΓT we set S#(γ) := S̄0(γf (γ)) and I#(γ) := Ī0(γg(γ)) (representing the
evolution of the initial/boundary data if F ≡ 0). Since Z0 ∈ L(0, 1) and S0(1) = I0(0) = 0, the function S̄0 is Lipschitz
continuous with Lip(S̄0) = Lip(S0). Thus Lip(S#) ≤ Lip(S0)Lip(γf ) = Lip(Z0)λγ . The same applies to I#, thus the first
inequality in the definition of KT,a is fulfilled by Z#. The second inequality is also fulfilled since ‖Z#‖C ≤ ‖Z0‖C . The
conditions (2.6) and (2.7) are apparently also fulfilled, thus KT,a 6= ∅.

Due to the uniform Lipschitz property in the definition of the set KT,a, it is a complete metric space in the metric induced
by the norm in C(ΓT ).

3. (Invariance of KT,a.) Obviously for γ = (0, ξ) we have FS
[D]

(Z)(γ) = S̄0(γf (0, ξ)) = S0(ξ), and for γ = (τ, 1) we have

FS
[D]

(Z)(γ) = S̄0(γg(τ, 1)) = S̄0(τ, 1) = 0, thus FS
[D]

(Z) satisfies the side conditions in (2.6) and (2.7). The same applies to

FI
[D]

(Z).
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Fix an arbitrary Z ∈ KT,a. Using (6.5), we have for any γ = (t, ω) ∈ ΓT

|FS[D](Z)(γ)| ≤ |S̄0(γf (γ))|+
∫ t

τf (γ)
Ma(|S(θ, ωf [γ](θ))|+ I(θ, ωf [γ](θ))|) dθ

≤ ‖Z0‖C +

∫ t

τf (γ)
2Mae2Maθ‖Z0‖C dθ.

Then

|F[D](Z)(γ)| ≤ 2‖Z0‖C
(

1 + 2Ma

∫ t

0
e2Maθ dθ

)
= 2‖Z0‖Ce2Ma t.

Thus F[D](Z) fulfills the growth condition in the definition of KT,a.

For any Z ∈ KT,a, γ1 = (t1, ω1), γ2 = (t2, ω2) ∈ ΓT we have

|FS[D](Z)(γ1)−FS[D](Z)(γ2)| ≤ |S̄0(γf (γ1))− S̄0(γf (γ2))|

+
∣∣∣ ∫ t1

τf (γ1)
FS(θ1, ω

f [γ1](θ), D(θ), z1(θ)) dθ −
∫ t2

τf (γ2)
FS(θ, ωf [γ2](θ), D(θ), z2(θ)) dθ

∣∣∣,
where zi(θ) := S(θ, ωf [γi](θ)). Denote [τ ′, τ ′′] := [τf (γ1), t1] ∩ [τf (γ2), t2]. Then we split the above integrals into three parts
(in each of the integrals only two parts may be non-degenerate). The integration in the first part is on an interval of length
|τf (γ1)−τf (γ2)| ≤ λγ |γ1−γ2|, and in the third part – of length |t1− t2| ≤ |γ1−γ2|. In view of (6.5) and the growth condition
in the definition of KT,a, the integrands can be mojorated by Ma(2e2Ma‖Z0‖C(0,1)). Then the sum of these integrals is at

most 4Ma(1 + λγ)e2Ma‖Z0‖C(0,1))|γ1 − γ2|. The integral on [τ ′, τ ′′] can be estimated by

∫ τ ′′

τ ′
|FS(θ1, ω

f [γ1](θ), D(θ), z1(θ))− FS(θ, ωf [γ2](θ), D(θ), z2(θ))| dθ

≤
∫ τ ′′

τ ′
L
(
a
(
2e2Ma‖Z0‖C(0,1)

)
|ωf [γ1](θ)− ωf [γ2](θ)|+ a |z1(θ)− z2(θ)|

)
dθ

≤ TLλωa
(

2e2Ma‖Z0‖C(0,1) + (‖Z0‖C(0,1) + Lip(Z0))λ
)
|γ1 − γ2|,

where we make use of (6.5), the growth condition and the Lipschitz property in the definition of KT,a. Combining the obtained
estimations and using the same estimations for FI

[D]
(Z), we obtain that

|F[D](Z)(γ1)−F[D](Z)(γ2)| ≤
(

2λγLip(Z0) + 8Ma(1 + λγ)e2Ma‖Z0‖C(0,1)

+ 2TLλωa
(
2e2Ma‖Z0‖C(0,1) + (‖Z0‖C(0,1) + Lip(Z0))λ

)
|γ1 − γ2|

=
(

(2λγ + 2TLλωaλ)Lip(Z0) +
(
4ae2Ma(2M(1 + λγ) + Lλω) + 2TLλωaλ

)
‖Z0‖C(0,1)

)
|γ1 − γ2|

≤
[(1

2
+

1

2

)
λLip(Z0) +

(1

2
+

1

2

)
λ ‖Z0‖C(0,1)

]
|γ1 − γ2| ≤ λ (Lip(Z0) + ‖Z0‖C(0,1))|γ1 − γ2|,

where in the last inequality we have used (6.8) and (6.9). This completes the proof of the invariance of KT,a.

4. (Contractivity of F[D].) For Z,Z1 ∈ KT,a we have, using (6.6) and (6.8),

|FS[D](Z)(γ)−FS[D](Z1)(γ)| ≤
∫ t

τf (γ)
La|Z(s, ωf [γ](s))− Z1(s, ωf [γ](s))| ds

≤ TLa‖Z − Z1‖C(ΓT ) ≤
1

2
‖Z − Z1‖C(ΓT ).

According to the Banach contraction mapping theorem, for any function D ∈ L∞(0, T ) with ‖D‖L∞ + 1 ≤ a, there exists
a unique (S, I) = (S[D], I[D]) ∈ KT,D that solves the system (3.3)–(3.4).

5. (Properties of (S[D], I[D]).) So far we have proved that there exists T > 0 such that for any D ∈ L∞(0, 1) with
‖D‖L∞ + 1 ≤ a, the system (3.3)–(3.4) has a unique continuous solution Z[D] = (S[D], I[D]) on ΓT . Here T is independent
of Z0. Moreover, Z[D] is a Lipschitz continuous function with a constant λ∗ := (‖Z0‖C(0,1) + Lip(Z0))λ ≤ 2Lip(Z0)λ (see
(6.9) and (6.10)).
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For a fixed D as above, we shorten the notation Z[D] = (S[D], I[D]) to Z = (S, I). For any γ = (τ, ξ) ∈ Γf the function

zS [γ](t) := S(t, ωf [γ](t)) satisfies (due to the identities ωf [t, ωf [γ](t)](s) = ωf [γ](s) and γf (ωf [γ](t)) = γ) the relation

zS [γ](t) =

∫ t

τ
FS(s, ωf [γ](s), D(s), zS [γ](s), I(s, ωf [γ](s))) ds+ S̄0(γ),

and an analogical equation is satisfied by zI [γ′](t) := I(t, ωg [γ′](t)), γ′ ∈ Γg . Differentiating these relations, we obtain the
following ODEs satisfied by the Lipschitz functions zS [γ] and zI [γ′] on [0, T ]:

żS [γ](t) = FS(t, ωf [γ](t), D(t), zS [γ](t), I(t, ωf [γ](t))), γ ∈ Γf , (6.13)

żI [γ′](t) = F I(t, ωg [γ′](t), D(t), S(t, ωg [γ′](t)), zI [γ′](t)), γ′ ∈ Γg (6.14)

(the so-called equations representing the solution along the characteristic lines). One can inversely express S(t, ω) = zS [γf (t, ω)](t)
and similarly for I.

Now we shall prove that if D is non-negative, then (S, I) is also non-negative, making use of the property (6.7). Denote

p(t) := min
{

0, min
ω∈[0,1]

S(t, ω)
}
, q(t) := min

{
0, min
ω∈[0,1]

I(t, ω)
}
.

We have p(0) = q(0) = 0 and both functions are Lipschitz continuous. Let [0, tp] be a maximal sub-interval of [0, T ] such that
p(t) = 0 for all t ∈ [0, tp]. Similarly, let [0, tq ] be the maximal interval on which q(t) = 0. If tp < tq ≤ T , then for every γ ∈ Γf
and t ∈ [0, tq ] we have I(t, ωf [γ](t)) ≥ 0, hence FS(t, ωf [γ], 0, I(t, ωf [γ](t))) ≥ 0. Then, by a standard argument, the set s ≥ 0
is invariant with respect to (6.13) on [0, tq ] for any γ ∈ Γf , thus zS [γ](t) ≥ 0 on [0, tq ]. This contradicts the definition of tp
and implies tq ≤ tp. Similarly we can prove that tp ≤ tq , thus tp = tq =: t̄.

Assume that t̄ < T and take an arbitrary γ ∈ Γf and t ∈ (t̄, T ]. Consider two cases:

(i) zS [γ](t) ≥ 0;
(ii) zS [γ](t) < 0.

In the second case there is a minimal number t′ ∈ [0, t) such that zS [γ](s) < 0 on (t′, t]. Since ZS [γ](t̄) ≥ p(t̂) = 0, we have
that t′ ∈ [t̄, t) and zS [γ](t′) = 0. In the expressions below we skip the first three arguments of FS , namely, s, ωf [γ](s), D(s),
since they stay the same in all formulas. We have

zS [γ](t) =

∫ t

t′
FS(zS [γ](s), I(s, ωf [γ](s))) ds

=

∫ t

t′

(
FS(zS [γ](s), I(s, ωf [γ](s)))− FS(0, I(s, ωf [γ](s)))

)
ds

+

∫ t

t′
FS(0, I(s, ωf [γ](s))) ds

≥ −
∫ t

t′
La|zS [γ](s)| ds−

∫
Q
Ma|I(s, ωf [γ](s))| ds,

where Q := {s ∈ [t′, t] : FS(s, 0, I(s, ωf [γ](s))) < 0}. Notice that according to (6.7), I(s, ωf [γ](s)) < 0 on this set, hence
−|I(s, ωf [γ](s))| = I(s, ωf [γ](s)) ≥ q(t). Also −|zS [γ](s)| = zS [γ](s) ≥ p(s). Then

zS [γ](t) ≥ La
∫ t

t′
p(s) ds+Ma

∫
Q
q(s) ds ≥ C

∫ t

t′
(p(s) + q(s)) ds ≥ C

∫ t

t̄
(p(s) + q(s)) ds,

where C := amax{L,M}. Combining the two cases we obtain that

zS [γ](t) ≥ min
{

0, C

∫ t

t̄
(p(s) + q(s)) ds

}
= C

∫ t

t̄
(p(s) + q(s)) ds,

Since γ ∈ Γf is arbitrary, this inequality implies

p(t) ≥ C
∫ θ

t̄
(p(s) + q(s)) ds. (6.15)

By the same argument, a similar inequality is fulfilled by q. Summing the two inequalities we obtain that

p(t) + q(t) ≥ 2C

∫ t

t̄
(p(s) + q(s)) ds, t ∈ [t̄, T ].
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Since p and q are Lipschitz continuous non-positive functions, we conclude that p(t) + q(t) = 0 on [t̄, T ], hence also on [0, T ].
Then (6.15) implies that p(t) = 0 and similarly q(t) = 0. This proves the nonnegativity of S and I.

The next step is to proof that the solution (S[D], I[D]) of (3.3)–(3.4) on [0, T ] depends in a Lipschitz way on D in a sense
that will become clear in the next lines. For any two functions D1, D2 ∈ L∞(0, 1) with ‖D1‖L∞ , ‖D2‖L∞ ≤ a − 1, denote
∆(t) := supω∈[0,1] |Z[D1](t, ω)− Z[D2](t, ω)|. For any γ = (t, ω) ∈ ΓT we have from (6.6) that

|S[D1](γ)− S[D2](γ)| ≤ L
∫ t

τf (γ)

(
A(s) |D1(s)−D2(s)|+ a

∣∣Z[D1](s, ωf [γ](s))− Z[D2](s, ωf [γ](s))
∣∣) ds,

where A(s) := |Z[D1](s, ωf [γ](s))| ≤ 2e2Ma‖Z0‖C , according to the growth condition in the definition of KT,a. A similar
inequality holds for I. Summing the two, and taking the supremum in ω ∈ [0, 1] on the left-hand side, we obtain that

∆(t) ≤ 2L

∫ t

τf (γ)

(
2e2Ma‖Z0‖C |D1(s)−D2(s)|+ a∆(s)

)
ds.

Using the Grünwal inequality we obtain that

∆(t) ≤
∫ t

τf (γ)
e2aL(t−s)4Le2Ma‖Z0‖C |D1(s)−D2(s)| ds ≤ LZ‖D1 −D2‖L1(0,t),

where LZ := 4Le2aLT+2aM‖Z0‖C . This inequality gives the meaning of the Lipschitz property of Z[D].

6. (End of the proof of Theorem 6.1.) Define the set

NT := {D ∈ L1(0, T ) : 0 ≤ D(t) ≤ a− 1, t ∈ [0, T ]}.

Then the solution Z[D] of (3.3)–(3.4) exists or every D ∈ NT and we may define

G(D) = D(Z[D]), D ∈ NT .

Due to the properties of D and NT the latter is invariant with respect G. Apparently, it is a complete metric space. We shall

show that the mapping G is contractive with respect to the norm ‖D‖N :=
∫ T
0 e−tN |D(t)| dt, where N > 2LDLZ . Indeed,

‖G(D1)− G(D2)‖N =

∫ T

0
e−tN |D(Z[D1])(t)−D(Z[D2])(t)| dt

≤ LD

∫ T

0
e−tN max

ω∈[0,1]
|Z[D1](t, ω)− Z[D2](t, ω)| dt

≤ LDLZ

∫ T

0
e−tN‖D1 −D2‖L1(0,t) dt

≤ LDLZ

∫ T

0
|D1(s)−D2(s)|

∫ T

s
e−tN dtds

≤
LDLZ

N

∫ T

0
|D1(s)−D2(s)|e−sN =

LDLZ

N
‖D1 −D2‖N

≤
1

2
‖D1 −D2‖N .

Thus G is a contraction on NT hence it has a fix point D. Obviously the pair (Z[D], D) satisfies the system (3.3), (3.4), (6.1).
Moreover, Z[D] ∈ KT,a is a Lipschitz function, which completes the proof of Theorem 6.1. �

Now, we continue with the proof of Theorem 3.1 concerning the specific system (2.3)–(2.7). The conditions (6.5)–(6.7) are
apparently fulfilled in this case. Inspecting the proof of Theorem 6.1 we see that the conditions (6.2)–(6.4) are not used in
parts 1–5 (they are only used in part 6). We have proved (in parts 1–5) that for any D ∈ L∞(0, T ) with 0 ≤ D(t) ≤ a− 1 for
a.e. t ∈ [0, T ], there exists a non-negative Lipschitz continuous solution Z[D] ∈ KT,a of (3.3)–(3.4), hence of (2.4)–(2.7). The
existence of Z[D] was obtained due to the contractivity of the operator F[D] on KT,a. Hence, Z[D] can be considered as the
uniform limit of the sequence of functions {Zk} generated by

Zk+1 = F[D](Zk), Z0 = Z#.
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Notice that due to (6.5) and the definition of F[D] we have

‖Zk+1‖C ≤ TMa‖Zk‖C + ‖Z0‖C ,

which implies the estimate

‖Zk‖C ≤ 2‖Z0‖C , provided that T ≤
1

2Ma
. (6.16)

Further, we shall choose T satisfying the last inequality, in addition to (6.8).
Denote by Ω0 the set of points in (0, 1) on which S0 or I0 is non-differentiable, together with the points ω = 0 and ω = 1.

Denote
Γ# := {γ ∈ ΓT : ξf (γ) ∈ Ω0 or ξg(γ) ∈ Ω0} = {ωf [(ξ, 0)](t), ωg [(ξ, 0)](t) : ξ ∈ Ω0, t ∈ [0, T ]}.

This set consists of finite number of curves in ΓT . Observe that the assumption f ′, g′ < 0 on (0, 1) implies that the set
Γ̄T = ΓT \ Γ# consists of finite number of open sets, further called facets. We remind that γf (γ) and γg(γ) have Lipschitz
derivatives in a neighborhood of ΓT . Then the function Z0(γ) = Z#(γ) = (S̄0(γf (γ)), Ī0(γg(γ))) is differentiable with a
Lipschitz derivative on each facet of Γ̄T \Γ#. In addition, for every γ ∈ ΓT the functions s 7→ σ(ωf [γ](s)) and s 7→ σ(ωg [γ](s))
are differentiable and have Lipschitz derivatives on every of the finite number of intervals for s in which the argument of σ
belongs to one facet. The same applies to the functions ρ and µ. Thanks to the properties mentioned in this paragraph, we
can differentiate Zk+1 with respect to γ ∈ Γ̄T using (6.11)–(6.12). Skipping the cumbersome details, we obtain the following
relations:

Lip#
(∂Zk+1

∂γ

)
≤ c1 + c2Lip#

( dS0

dω

)
+ TcLip#

(∂Zk
∂γ

)
,

where Lip#(Q) is a common Lipschitz constant of a function Q on each facet of Γ̄T (for Q : Γ̄T → R2 which is Lipschitz on

every facet), Lip#
(

dS0

dω

)
is the Lipschitz constant of dS0

dω
on each of the intervals of its existence, c1 and c2 are constants

(which may depend on Lip(D) and ‖Z0‖C), c is a constant which is independent of Z0 and D with 0 ≤ D ≤ a − 1. The

derivation of this recurrent inequality also uses the fact that F[D] is an affine mapping of Z. Since Lip#
(

dS0

dω

)
is finite, we

obtain inductively that for every k

Lip#
(∂Zk+1

∂γ

)
≤
(
c1 + c2Lip#

( dS0

dω

)) k∑
j=0

(Tc)j ≤ 2
(
c1 + c2Lip#

( dS0

dω

))
,

provided that T ≤ c/2. We add the last condition to (6.16) and (6.8). The choice of T is still independent of the initial
distribution Z0 and the particular D. For the limit Z[D] of Zk we obtain

Lip#
(∂Z[D]

∂γ

)
≤ 2
(
c1 + c2Lip#

( dS0

dω

))
.

Since every horizontal and every vertical line intersects Γ# only finite number of times, the partial derivatives of Z[D] in each
of the variables (t, ω) exist, except a finite number of points, for every value of the other variable.

Using the obtained differentiability properties of the solution (S[D], I[D]), we may employ (3.5) to estimate

d

dt

∫ 1

0
(S[D](t, ω) + I(t, ω)) dω = −

∫ 1

0
µ(ω)I[D](t, ω) dω ≥ −‖µ‖L∞(0,1)

∫ 1

0
I[D](t, ω) dω,

hence ∫ 1

0
(S[D](t, ω) + I[D](t, ω)) dω ≥ 1− ‖µ‖L∞(0,1)

∫ t

0

∫ 1

0
I[D](t, ω) dω dt ≥ 1− T‖µ‖L∞(0,1) ≥

1

2
,

where, if necessary, we choose the number T even smaller, so that T‖µ‖L∞(0,1) ≤ 1/2 (still being independent of the distribution

of the initial data). The inequality
∫ 1
0 I[D](t, ω) dω ≤ 1 used above, follows from the obtained decrease of

∫ 1
0 (S[D](t, ω) +

I[D](t, ω)) dω starting from value 1 at t = 0. So we obtain that∫ 1

0
(cII[D]((t, ω) + cS[D](t, ω)) dω ≥

1

2
min{cI , c} > 0. (6.17)

Now we return to conditions (6.2)–(6.4). The first and the last are apparently fulfilled for the mapping D defined by (2.3)
(with the convention that D(0) = 0). Condition (6.3) is not fully used in the proof of Theorem 6.1 (part 6). What is used, is
the inequality

|D(Z[D1])(t)−D(Z[D2])(t)| ≤ LD max
ω∈[0,1]

|Z[D1](t, ω)− Z[D2](t, ω)|, D1, D2 ∈ NT .

Due to (6.17) (which holds for every D ∈ NT ) and the specific form of D, a constant LD does exist such that the last inequality
is fulfilled. For the same reason, D(Z[D])(·) is Lipschitz continuous for every D ∈ NT , uniformly in D. Thus the fixed point
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D of G (which defines a solution Z[D] of (2.3)–(2.7)) is also Lipschitz continuous. Hence, Z[D] has the desired differentiability
property.

It remains to prove that the solution (S, I,D) can be extended to [0,∞). We have proved that in exists on [0, T ] and that

T is independent of particular distribution of S0 and I0, given that
∫ 1
0 (S0(ω) + I0(ω)) dω = 1. Taking new initial data

S̃0(ω) = S(T, ω)/β, Ĩ0(ω) = I(T, ω)/β with β =
∫ 1
0 (S(T, ω) + I(T, ω)) dω (so that the new initial data are normalized),

we may apply the obtained existence result: a solution (S̃, Ĩ, D̃) exists on [0, T ]. Observe that the system (2.3)–(2.5) is
homogeneous of first order. Then (S(T + t, ω), I(T + t, ω), D(T + t)) := (βS̃(t, ω), βĨ(t, ω), βD̃(t)) is a continuation of the
solution on [0, 2T ]. The process can be infinitely continued. This concludes the proof of Theorem 3.1.
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