
Technical Report

The MDM-CPPS Framework:
GitOps-enabled Multi-Domain Modeling

in Cyber-Physical Production Systems
Engineering

Report No.: CDL-SQI 2024-01
Issued: 2024-01-22

Felix Rinker 1,2

Kristof Meixner 1,2

Diana Vysoká 1,2

Stefan Biffl 1,2

1 Institute of Information Systems Engineering, TU Wien, Vienna, Austria
2 CDL for Security &Quality Improvement in the Production System

Lifecycle, TU Wien, Vienna, Austria

QSE -Quality Software Engineering
Quality Software Engineering | Faculty of Informatics | TU Wien

Abstract

Engineering Cyber-Physical Production Systems (CPPSs) requires the collaboration of engineers

from different domains. Usually, engineers work in domain-specific work environments. The

management of such domain-specific views and the artifact exchange between them is challenging

because of diverging concepts. To improve the overall engineering process a holistic view of the

engineering concepts and commonmodel should be established. In this paper, we introduce a method

for Multi-Domain Modeling for CPPS (MDM-CPPS) that allows engineers to define local concepts in

a distinct view and negotiate a holistic view based on common concepts in a collaborative effort.

The method then allows to independently change the properties in the domain-specific views and

merge them back in a structured process based on DevOps and GitOps practices. To this end, we

provide an architecture that incorporates a toolchain consisting of a Domain-specific Language

(DSL) for modeling domain-specific concepts and common concepts by a Language Server Protocol

(LSP) supported editor, and services to generate domain-specific views on the common model as

well as delta comparison and merge capabilities automated by a continuous integration pipeline.

Changes to the domain-specific model are semantically analyzed and the impact on other domains is

calculated before the changes are seamlessly integrated into the common model. The change impact

resolving process is managed using issues and their workflow in an issue tracker and a Git-based

source code repository. We follow the Design Science methodology to address the challenges of

the multi-domain modeling in CPPS, introduce and evaluate the MDM-CPPS method, and propose

the MDM-CPPS architecture and toolchain. We evaluated our method and architecture with a

feasibility study based on a use case from the industry. The proposed MDM-CPPS approach provides

a) the means of common system understanding, b) a reduced effort of change coordination by using

DevOps practices, such as GitLab continuous integration functionality, and c) the management of

assets of the CPPS project using GitOps practices.

ii

Contents

Contents iii

1 The MDM-CPPS Framework 1
1.1 Introduction . 1

1.2 Background & Related Work . 2

1.3 Multi-Domain Modeling for CPPS . 3

1.4 Feasibility Study on an Illustrative Use Case . 9

1.5 Discussion . 13

1.6 Conclusion & Future Work . 14

A Annex: Acronyms 17

B Annex: List of references 19

Bibliography 21

iii

The MDM-CPPS Framework 1
1.1 Introduction

Cyber-Physical Production Systems (CPPSs), such as highly automated car manufacturing plants, have
gained significant interest over the past decade. Such systems use the latest information and communica-

tion technology to interact autonomously with the physical assets to manufacture customized products

from a product portfolio with modern production techniques [13, 9].

Designing and building the intended CPPSs involves engineers from multiple domains, such as

functional, mechanical, electrical, and automation engineering (cf. use case Position-and-Screw Robot
Cell [17]). Therefore, it requires accurate and reliable modeling of the domain-specific concepts to define

common concepts to foster a shared understanding [7] for improving engineering quality and lowering

effort.

However, due to diverging domain concepts, finding common concepts that support the collaborative

engineering of assets is challenging. Based on the use case Position-and-Screw Robot Cell and the related

work Traceable Multi-view Model Transformation (TMvMT) [17] and Multi-view Change Management

(MvCM) [16] we identify challenges that hinder efficient Multi-Domain Modeling (MDM) for CPPSs. In

the following, we discuss and categorize them according to the DevOps4CPPS challenges [10]:
Multi-disciplinary → C1. Domain-specific concepts and views result in an insufficient common system

understanding. Usually, engineering disciplines work with domain-specific concepts, modeling languages,

and tools. Improving the overall system understanding requires a process to get domain experts together

to build an initial set of common concepts.

Agility→ C2. High effort to coordinate changes and their impact across multiple domains. Heteroge-
neous engineering teams often start their work with incomplete information that is elaborated over

time. Tracking changes in these domains and calculating the impact on other disciplines requires a

multi-domain change coordination process.

Integration → C3. Scattered and heterogeneous domain knowledge hinders a holistic system view.
Heterogeneous software landscapes and communication systems require complicated update processes.

Tool suites in CPPS engineering often provide restricted data management support beyond their limited

scope. A holistic view of the engineering concepts, model, and system should be established to improve

the overall engineering process quality.

This paper introduces a method for multi-domain CPPS modeling that allows engineers to define

local concepts in a distinct view and negotiate a holistic view of the common concepts in a collaborative

effort. The method allows us to independently change the properties in the domain-specific model and

merge them back in a structured process based on GitOps to the common model.

We design a toolchain with a Domain-specific Language (DSL) for modeling domain-specific concepts

and common concepts using a Language Server Protocol (LSP) supported editor. We provide services

to generate domain-specific views of the common model, delta comparison, and merge capabilities.

1

1. The MDM-CPPS Framework

Changes to the common model are semantically analyzed, and the impact on other domains is calculated.

The change impact resolving process is managed using issues and their workflow in an issue tracker

and a Git-based source code repository.

We follow the Design Science methodology to address the challenges of improving the multi-domain

modeling efficiency in CPPS engineering. We evaluate our method and toolchain in a feasibility study

on a use case from the car manufacturing industry.

The remainder of this work is organized as follows: Section 1.2 discusses related work on system and

knowledge modeling, multi-domain change management, and Dev- and GitOps for CPPS. In Section 1.3,

we present the solution approach to organizing multi-domain engineering projects and conducting

domain-specific change management in CPPS organizations. In Section 1.4, we describe the application

of the method to an industry use case and discuss our results. Finally, we conclude our work and give

an outlook on future work in Section 1.6.

1.2 Background & Related Work

This section summarizes relevant related work in the the fields of Multi-domain Systems Modeling,
Multi-domain Change Management, Knowledge Representation & Knowledge Graphs and DevOps and
GitOps for CPPS.

1.2.1 Multi-Domain Systems Modeling

In Cyber-Physical Production System (CPPS) engineering, domains’ multi-disciplinary nature and

technical divergence require the explicit specification of the system knowledge, dependencies, and

relations between different system view [21]. System and domain knowledge can be efficiently modeled

using the Product-Process-Resource (PPR) notation [18] for which the VDI 3682[1] provides a visual and

formal representation. The PPR-DSL [12] provides a Domain-specific Language (DSL) that complements

the notation.

Wortmann et al. conducted a systematic mapping study on state-of-the-art modeling languages

for CPPSs [22]. They propose combining such model-based approaches with DevOps practices, e.g.,

integrating models analogously to code, as known from software engineering. We will implement the

seamless model-based integration in our approach as described in the Multi-view Modeling Framework

(MvMF) [17].

1.2.2 Multi-Domain Change Management

[16] proposed the Multi-view Change Management (MvCM) workflow for CPPS that enables engineers

to implement changes to the CPPS while tracking the impact on other engineering domains. We

proposed using Pull Requests to integrate changes from different domains, as described in [11]. Pull

Requests are not an out-of-the-box part of the Git technology but state-of-the-art in Git-based source

code repositories, such as GitHub, GitLab, or Bitbucket. The critical point here is to ensure that (other)

domain engineers review the new implementation to ensure consistency and that the recent changes do

not have a negative impact on the different parts of the CPPS. To support the engineers in conducting

such a review, we will build on top of the related work to 1) implement the conceptual workflow on an

actual use case and 2) implement semantic analysis functionality that identifies impacted assets of the

CPPS, before the changes are integrated into the common model.

Xie and Ma [23] address a similar issue, focusing on complex engineering projects in collaborative

domains, in which engineering change propagation is usually conducted manually without a systematic

consistency examination. To address the issue, they propose an engineering constraint modeling method

that supports the engineers in change evaluation results and conflict suggestions during engineering

change implementation. It also helps identify the admissible value ranges of constraint parameters

to accept design changes quickly or identify potential design conflicts based on a feature parameter

association map that provides an evaluation context.

2

1.3. Multi-Domain Modeling for CPPS

1.2.3 Knowledge Representation & Knowledge Graphs

Arenas, Gutierrez, and Sequeda [2] define Knowledge Graphs as "a software object (artifact) that represents
(codifies), integrates and produces knowledge." To implement knowledge graphs, graph databases such as

Neo4j, ArangoDB or GraphDB can be used. We will use Neo4j
1
in our system design. Hildebrandt et al.

have proposed an approach to build ontologies for CPPS that could later be stored in a graph database

as a knowledge graph[8].

In the CPPS engineering, domain-specific representations of the production assets need to be

integrated into a holistic view. Grangel et al. [6] propose a knowledge-graph-based approach for

semantically integrating manufacturing data. The proposed Bosch Industry 4.0 Knowledge Graph

uses Common Concepts (CCs) to describe relations and semantically integrate data from different data

sources.

Rinker et al. proposed a Multi-Domain Engineering Graph (MDEG) to represent production knowl-

edge as a graph [16]. MDEG uses Common Concept Glossary as an approach to establish a holistic

cross-domain understanding of the CPPS assets and their characteristics. We will use the MDEG model

to represent the knowledge graph to describe the industrial use case.

1.2.4 DevOps & GitOps for CPPS

DevOps practices have recently gained interest in the Model-Driven Engineering (MDE) and CPPS

community. Süß et al. describe that MDE tooling is not designed to participate in DevOps pipelines,

which makes the adoption of MDE in the industry more difficult [19]. Their work describes how they

apply DevOps practices to enable MDE adoption.

GitOps is a software development and deployment methodology that applies Git-based project

repositories as single source of truth for infrastructure and application code. This methodology aims

to increase efficiency, reliability, and traceability by applying version control features, such as branch-

ing, merging, and continuous integration/continuous deployment (CI/CD) pipelines[4]. We base our

architecture on the GitOps methodology, using branching, merging, and continuous integration.

Halilaj et al.[7] proposed amethod to collaboratively define a cross-domain vocabulary and consensus

among experts from different domains using a Git-based workflow. The complexity of the process to

achieve this goal is increased with the number of people involved and the variety of the systems to

be integrated. Defining such cross-domain vocabulary is part of our project setup phase, in which the

engineers create domain Concept Glossaries and Common Concept Glossary.

1.3 Multi-Domain Modeling for CPPS

In this section, we propose a) the Multi-Domain Modeling for CPPS (MDM-CPPS) method to combine

domain-specific concepts and models into an integrated engineering model and b) the MDM-CPPS

architecture to automate the MDM-CPPS method in agile multi-domain modeling environments.

1.3.1 MDM-CPPS Method

The Multi-Domain Modeling (MDM) method for Cyber-Physical Production System (CPPS) engineering

consists of two phases, the project setup phase and the multi-domain change management phase, which
are explained in the following sections. The project setup phase allows CPPS engineers to define their

local concepts in a distinct view and negotiate a holistic view of their common concepts collaboratively.

The multi-domain change management phase defines a coordinated process to integrate changes from

the domain-specific view into the common view.

1

Neo4j: https://neo4j.com

3

https://neo4j.com

1. The MDM-CPPS Framework

W
or
ks
pa
ce
s

Planning

Project Setup

Realization

common-concepts
glossary

mc1

common
model cm1

quality concepts
glossary

qc2

Commissioning

mv1

quality-view
model

mechanical-view
model

mechanical
concepts glossary

Time

qc1

cc1

qv1

mc2

Figure 1.1: Project Setup Phase of the MDM-CPPS Method.

1.3.2 Multi-Domain Modeling for CPPS – Project Setup

The project setup phase is divided into the three activities planning, realization, and commissioning.
Figure 1.1 shows this phase and the activities, which we detail in the following.

Planning. In the planning activity, the engineers set up local workspaces for each domain within the

project. These domain-specific workspaces serve as dedicated environments for concept development

for the domain-specific teams. Within these spaces, they define and work in distinct glossaries on local
concepts tailored to the unique requirements of their domains. For instance, Fig. 1.1 shows mechanical
and quality concept glossaries, labelsmc1 in the mechanical and qc1 in the quality workspace, for the CPPS
engineering project. An example would be the mechanical definition of the attributes of a screwdriver.

These defined concepts can also evolve throughout domain-specific discussions (Fig. 1.1 labels mc2 and
qc2).

Furthermore, those workspaces have the flexibility to accommodate additional domain-specific

models.

Realization. In the realization activity, a lead engineer first sets up a common workspace. This way,
the engineer employs a shared hub to ensure effective collaboration for an integrated engineering team,

where each domain involved in the engineering of the CPPS must be represented. These concepts

represent a taxonomy that can be well modeled in a knowledge graph. Then, in a negotiation process,

within the integrated team, the engineers agree on and describe common concepts for the CPPS in

a Common Concept Glossary (Fig. 1.1 label cc1 in the common concepts workspace) from their local

concepts. For example, they agree on a taxonomy for screwdrivers, differentiating between electric and

pneumatic screwdrivers and their attributes relevant to the particular domains. Additionally, relations

can be defined on the concept, common concept, and asset level. A relation defines a dependency between

attributes of two dependent objects. Afterward, they map the previously defined local concepts from

their glossaries to the common concepts in the Common Concept Glossary in a Git-based workflow [7].

This includes, e.g., transformations of values between the different domains, like the electrical power

calculation to actual revelations.

4

1.3. Multi-Domain Modeling for CPPS

In a second activity, the lead engineer, supported by the integrated team, creates a common model

of the CPPS (label cm1 in the common concepts workspace), e.g., the functional view, that is iteratively

refined. This workspace now contains essential assets, including common concepts and a unified model

based on a Single Underlying Model (SUM) [20]. This agreed-on SUM forms the basis for the engineering

project, ensuring consistency and coherence across domains.

Commissioning. In the commissioning activity, the domain-specific models (Fig. 1.1 labels qv1 and
mv1 in the local workspaces) are derived based on the local concepts, containing only domain-specific

assets. This view allows teams to focus on domain-specific concerns while aligning with the overarching

project structure.

Changing attributes of the local concepts and merging them back to the common model requires a

coordinated change management process described in the next section.

1.3.3 Multi-Domain Modeling for CPPS – Engineering and Change Management

Figure 1.2 shows the engineering and change management phase, with the engineering, merge request &
review, and merge activities, which are explained in the following.

W
or
ks
pa
ce
s

Engineering

Engineering and Change Management

Merge Request & Review

common
model

cm1'

Merge

mechanical-
view model

Time

cm1 cm2

mv1

diff model

change request
model

Is
su

e
Tr

ac
ke

r

mv2mv1.1

diff

Review Task
quality-

view model

qv2

Change Request Issue

Semantic Analysis

Merge RequestMechanical
Engineer

Quality
Engineer

Figure 1.2: Engineering and Change Management Phase of the MDM-CPPS Method.

Engineering. Throughout the engineering activity, initiated by a change request specified in an issue

in an issue tracker, the engineers of the respective domain work in their workspace adapting the

domain-specific model. Each of these changes creates a new version of the local model in their particular

workspace. For instance, the mechanical engineers change the attributes of a screwdriver (Fig. 1.2 label

mv1 to mv1.1 in the mechanical workspace). This step is relatively untouched by the activities in the

other domain workspaces.

Merge Request & Review. The merge request & review activity comprises several steps. For the

following explanation, we differentiate between the initiating and affected domains.

5

1. The MDM-CPPS Framework

The engineers of the initiating domain aim at merging their local changes into the common model
(Fig. 1.2 label cm1), which comes from the project setup phase. For the MDM-CPPS method, we employ

an extended concept of the pull request (later referenced as merge request due to its naming in GitLab)

of the Git Workflow for Change Management from related work [15].

First, the method requires the engineers to create a merge request in the issue tracker. Second, a diff
model (label diff) is calculated from the local model of the initiating domain, and the latest version of

the common model (labels mv1.1 and cm1), to examine the changes. This way, the domain engineers can

check their changes with the common model.
Then, for each of the domains involved in the project, a semantic change impact analysis investigates

if the change affects their local model. Therefore, a change request model (Fig. 1.2 label cm1’) must be

calculated regarding the common model and the diff model (Fig. 1.2 labels cm1 and diff) that is used to

investigate whether concepts of the local models are affected. This means that for each local concept,

the common concepts need to be identified, and from these, the local concepts linked to the common

concepts need to be found. Then, for each of the involved domains, a change request modelis created
based on the semantic change impact analysis. For the affected domains, change review tasks are created
and assigned to the engineers of the affected domains.

Finally, the consent and acceptance of that change are discussed and decided upon within the change
review and merge request issues. If the affected domains accept the change, it will be merged into the

common model in the merge activity. However, if the change is declined, the engineers of the initiating

domain need to address rework tasks, considering the comments and decisions made during the review

process.

Merge. In the merge activity, the change request model (Fig. 1.2 label cm1’) are merged into the common
model (label cm1) creating a new version (label cm2). In the second step, the changed values in the

common model are propagated to the initiating domain model and the affected domain models (labels

mv2 and qv2).

1.3.4 Multi-Domain Modeling for CPPS – Semantic Analysis

This subsection specifies how the semantic analysis is carried out in the context of the Merge Request &
Review activities.

Change identification. To identify changes to the assets, e.g., a screwdriver, we compare the contents

of the common model with the contents of the given domain-specific model. We define a set of assets in

the common model as Acm and a set of assets in local domain views as Ad, where ad is a member of Ad

and acm is a member of set Acm. First, we iterate through the elements of Ad and find a corresponding

element in Acm by its qualified name q. Once we find both elements, we compare the list of attribute

values.

If the value of an attribute in ad defined in a domain-specific model does not correspond to the value

of an attribute in acm, then add the old value, new value, q of the attribute, change type CHANGE and

qualified name q of ad to the change set. Should the attribute not be present in the domain-specific or

common model, this situation is considered faulty since we do not allow deletion or adding attribute

values to assets.

Semantic analysis. To conduct the semantic analysis, we first build a knowledge graph G = (V,E),
where concepts, common concepts, and assets belong to the set of vertices V , and dependency relations

form the graph’s edges E.

We define Ca,v as a set of changes, from the change identification step, that includes a pair p of asset

a and an attribute value v, notated as p = (a, v). For each changed attribute value v and its parent asset

a, we traverse the knowledge graph and find the relation R, in which v is either the start or end node.

We then return a resulting set of impacted assets and their attribute values Ia,v .

6

1.3. Multi-Domain Modeling for CPPS

Table 1.1: Formal notations

Symbol Description
R Relation

ccfrom Common Concept as a starting node of a relation

ccto Common Concept as an ending node of a relation

CC set of Common Concepts

ACCfrom Set of assets that represent a Common Concept defined as a starting node of a relation

ACCto Set of assets that represent a Common Concept defined as an ending node of a relation

cfrom Concept as a starting node of a relation

cto Concept as an ending node of a relation

We only traverse the knowledge graph to depth=1, and we are only interested in immediately

impacted assets and their attribute values.

Semantic Relation handling. In semantic analysis, we described how we use relations between

assets to identify impact. In realization part of the project setup phase, we propose a definition of relations

on the concept and common concept level.

First, to semantically differentiate these relations in the engineering and change management phase,
we define two types of semantic links: Common Model Semantic Links, that are allowed in the common

model; and (Common) Concepts Semantic Links, that are allowed in common concept and concept

glossaries. To interpret (common) concepts dependencies on the object level of the common model, we

transform the (Common) Concept Semantic Links to Common Model Semantic Link based on the following

rules using notations shown in Table 1.1:

Link between common concepts (and attributes of the concepts they inhabit): given a relationR between

Common Concept ccfrom and Common Concept ccto. For both common concepts, we find the set of

assets ACCfrom and ACCto that represent the starting and ending common concepts defined in the

relation R. We build a cartesian product of ACCfrom and ACCto and for each pair p = (accfrom, accto),
where accfrom owns the attribute defined as starting attribute of R and accto owns the attribute defined
as ending attribute of R, we finally create Common Model Semantic Links between the elements of the

eligible pairs of the cartesian product.

Link between concepts (and attributes they own): We proceed similarly as in the case of links between

common concepts, but first, we find the set of common concepts CCfrom that inhabit the cfrom and set

of common concepts CCto that inhabit cto in R. Then, we create a cartesian product of CCfrom x CCto.

For each resulting pair p = (ccfrom, ccto) of the cartesian product, we find a set of assets that represent a

ccfrom and ccto. Finally, we proceed as in the case of links between common concepts.

1.3.5 MDM-CPPS Architecture

To automate the MDM-CPPS method, we propose the MDM-CPPS architecture design that is depicted

in Fig. 1.3 and contains three main components: a) the MDM-CPPS Framework b) the IDE Ecosystem c)

the GitLab Ecosystem.

The system design is an advancement of the Multi-view Modeling Framework (MvMF) [17] that is

inspired by the Eclipse Modeling Framework (EMF) [5]. However, since EMF is strong coupled with

Eclipse
2
a setup in custom software solutions is hindered [3]. In the following, the components of the

envisioned system are described in detail:

MDM-CPPS Framework. The framework provides functionality for describing multi-domain CPPS

projects using the MDM-CPPS Domain-specific Language (DSL) and graph-based analyses and change

management using the MDM-CPPS Multi-Domain Engineering Graph (MDEG) API.

2

Eclipse: https://www.eclipse.org

7

https://www.eclipse.org

1. The MDM-CPPS Framework

Project Repository

IDE Ecosystem

VSCode Ecosystem

MDM-CPPS
DSL LSP

MDM-CPPS DSL

CG Files PPR FilesCCG Files

Issue Tracker

Task Runner

GitLab Ecosystem

MDM-CPPS MDEG API

MDM-CPPS

DSL Model

Model

Comparer

MDEG
Model Mapper

MDM-CPPS

xtext Model

MDEG
Model

Domain

View Generator

DSL

Parser / Writer

Semantic
Analyzer

MDM-CPPS Framework

MDEG
 Controller

Semantic
 Analyzer Controller

Model

Merger

Diff Files Neo4j

MDEG
 Repository

Issue
Tracker Webhook

Issue
Tracker Client

MDM-CPPS
IDE

Figure 1.3: System Design of the MDM-CPPS Change Analysis and Management System.

MDM-CPPS DSL. To enable a formal description of a CPPS, we propose the MDM-CPPS DSL compo-

nent. Each of the subcomponents is described below.

MDM xtext Model. The xtext grammar definition is an extension of the Product-Process-Resource

(PPR) DSL [12], that formally defines the language for domain-specific concept and common concept

modeling, PPR asset definition based on common concepts, relation modeling between the aforemen-

tioned objects.

MDM-CPPS DSL Model. The DSL model extends the PPR DSL [12] data model with domain-specific

concept and common concept modeling entities.

Model Comparer. The comparer clones the Project Repository, containing the common and domain-

specific workspaces, to the local file system. To identify changes made in a domain-specific model

compared to the common model, the DSL Parser parses the domain-specific view file and the common

model in two instances of a MDM-CPPS DSL Model. Finally, the comparer compares the domain-specific

model against the common model and returns a collection of changes as a Diff file.
Model Merger. The merger applies the changes from the Diff file to the common model.

DSL Parser / Writer. This subcomponent provides functionality to read and write MDM-CPPS DSL
files. The parser is realized by Antlr Parser Generator

3
that is based on MDM xtext Model. The writer is

a custom solution implemented by us that prints the MDM-CPPS DSL Model to domain-specific files in

the domain workspace.

Domain View Generator. The generator reads the concept, common concept, and common model

files using DSL Parser and generates domain-specific view files based on the MDM-CPPS DSL Model.

MDM-CPPS MDEG API. The MDM-CPPS MDEG API component enables further semantic analysis

of the data described in the MDM-CPPS DSL files. It exposes APIs to build a knowledge graph based on

DSL data and APIs to interact with it. We describe the API’s components below.

MDEG Model. This model contains entities to build a multi-domain engineering graph in Neo4j

with appropriate relation references and database-related annotations.

MDEG Model Mapper. To represent the data described in MDM-CPPS DSL in a knowledge graph,

we map the DSL domain model (MDM-CPPS DSL Model) to the graph domain model (MDEG Model).

MDEG Controller. This controller enables the creation of an MDEG knowledge graph based on the

MDM-CPPS DSL files.

MDEG Repository. The repository is the data access layer that establishes a connection with the

graph database and runs queries on it.

Semantic Analyzer. The analyzer calls the Model Comparer of the component MDM-CPPS DSL to

identify the changes in domain-specific models compared to the common model. For each element of the

identified change collection, the analyzer looks for impacted assets and their attributes in the knowledge

3

Antlr Parser Generator: https://www.antlr.org

8

https://www.antlr.org

1.4. Feasibility Study on an Illustrative Use Case

graph. Finally, it returns the change and its corresponding change impact information. Alternatively, it

can use the Issue Tracker Client to create review tasks for the impacted elements.

Semantic Analyzer Controller. This controller enables semantic analysis based on the MDM-CPPS

DSL files. The controller calls the Semantic Analyzer.
Issue Tracker Client. The client is called by Semantic Analyzer to create review tasks in the issue

tracker as proposed by [15]. In our solution, we use GitLab
4
as an open-source issue tracker, as it

provides REST API to interact with it. Once the review tasks are created, the client links them to the

initial change request task to ensure change traceability. The freshly created review tasks are also

referenced in the merge request created manually by an engineer for the initial change request.

Issue Tracker Webhook. To propagate the changes of the review tasks to our backend so that the

Issue Tracker Client can track the status changes in the corresponding merge request, we expose an issue
webhook that is triggered by the issue events in GitLab. To propagate the merge request changes to our

backend, once the merge request is merged, we expose a merge request webhook, which GitLab triggers

on merge request events. Then, the Issue Tracker Client calls Model Merger to merge model changes

from domain-specific views to the common model and pushes it to the Project Repository.

IDE Ecosystem. The Integrated Development Environment (IDE) ecosystem is an environment for

source-code editors, such as the VSCode Ecosystem5
, and language servers that implement the Language

Server Protocol (LSP)
6
. TheMDM-CPPS xtext Model defines the syntax and grammar for the MDM-CPPS

DSL. The MDM-CPPS DSL LSP implements the LSP for this model and provides support for syntax

validation and completion. The VSCode Ecosystem provides a plugin infrastructure for extending its

functionality. The MDM-CPPS IDE plugin provides the integration of the MDM-CPPS DSL into the

VSCode Ecosystem as source-code editor.

GitLab Ecosystem. To implement our solution, we need a tool ecosystem that supports Git-based

repositories and issue tracking, in our case, GitLab. It is also necessary that the ecosystem provides

APIs to interact with it. GitLab enables us to create merge requests that trigger the CI/CD pipeline with

various tasks running on the source files. These pipelines are executed by the Task Runner.
Project Repository. The project files are located in the Git-based project repository. Each domain

workspace contains Concept Glossary files with concepts and domain-specific view PPR files. The

common workspace contains Common Concept Glossary file with common concepts and a common

model PPR file.

Issue Tracker. The change requests, requirements, and other tasks are defined as issues in the

GitLab Issue Tracker.
Task Runner. Once a merge request is created to merge domain-specific model changes to the

common model, the GitLab CI/CD Pipeline is run to create a fresh knowledge graph using MDEG
Controller and then calls Semantic Analyzer, which analyzes the impact of the changes in domain-specific

view files and finally creates review tasks in the Issue Tracker.

1.4 Feasibility Study on an Illustrative Use Case

For the evaluation of the Multi-Domain Modeling for CPPS (MDM-CPPS) method, we adapted the Fasten
Screw &Measure process, shown in Fig. 1.4, of the Position-and-Screw Robot Cell use case [17]. We assume

a car body with an inserted dashboard in this use case. A screwdriver on a robot arm needs to fasten the

screws and measure the result for accuracy and torque. The result of the process is a dashboard fixed to

the car body.

The Electric Screwdriver and Robot are examples of common concepts instantiated as resources, with

attributes and dependency links to other resources or processes. We will showcase the MDM-CPPS
4

GitLab: https://gitlab.com
5

VSCode: https://code.visualstudio.com
6

LSP Protocol: https://microsoft.github.io/language-server-protocol

9

https://gitlab.com
https://code.visualstudio.com
https://microsoft.github.io/language-server-protocol

1. The MDM-CPPS Framework

Screwdriver
Controller

M.Torque

Fasten Screw
& Measure

Robot
Car Body with

Dashboard

Electric
Screwdriver

Drive

M.Pos_accuracy

Bit

Robot Controller

Transformer

A.Motion_accel

Q.Req_torque
Q.Req_pos_accuracy

Car Body with
screwed on
Dashboard

Products &
Process

Main CPPS
Resources

CPPS Sub-
Resources

Automation
Resources

Quality
Concepts

Mechanical
Concepts

Electrical
Concepts

Automation
Concepts

E.Power_cons
A.Screw_curve

E.Current_supply

M.Bit_type

Stakeholder
Views

Property-Property Dependency Reference

Process ResourceProduct Process-Resource

Product-Process

Resource-Resource
Property

Property-Domain Source Reference

Property-Property Value Reference

± 2%

± 2%

Figure 1.4: Multi-Domain Engineering Graph of the process Fasten Screw & Measure: with dependency

links, based on [17]

method’s functionality during the change request & review phase (cf. Sec. 1.3.3) with two types of

links: Semantic relations, e.g., M.Torque references to the values M.Bit_type and A.Screw_curve for
change impact analysis. Value references between attribute values, e.g., Q.Req_torque and M.Torque
value equality with tolerance range.

In the following, we describe the project setup and engineering and change management phases
utilizing the process Fasten Screw & Measure (cf. Fig. 1.4).

1.4.1 Project Setup Phase

This Section evaluates the project setup phase for the use case. First, domain-specific concepts are defined

and consolidated into common concepts. Then, the common model is created based on the common

concepts, and cross-domain dependencies are defined between assets and their attributes.

Concept definition. (cf. Section 1.3.1 - planning). Domain-specific concepts are defined in Concept
Glossary files located in the domain workspaces with a file extension .cg. Concepts have an ID and two

fields; name and attributes. Attributes are also defined in the domain Concept Glossary having a

name, defaultValue, type, and unit field. Listing 1 shows a Concept Glossary definition of the

mechanical domain. It starts with the glossary id definition MechanicalConcepts. Then, the concept
c_m_electric_screwdriver with its name Electric Screwdriver and the attribute torque is defined.

Common Concept definition. (cf. Section 1.3.1 - realization). Common Concepts (CCs) are defined

in a Common Concepts Glossary file in the common workspace with the file extension .ccg. The Common
Concepts Glossary is specified with a unique ID, a name, and version field. A CC has a unique

ID and the two fields name and inhabits, where the latter is a list of concepts inhabited by a CC.

Listing 2 shows the CC with id cc_electric_screwdriver that inhabits the mechanical specific concept

c_m_electric_screwdriver and the electrical specific concept c_e_electric_screwdriver.

Common Model modeling. (cf. Section 1.3.1 - realization). Product-Process-Resource (PPR) assets

are modeled in a Common Model file in the common workspace with the file extension .ppr. The Common
Model has also an identification header with a unique ID, a name, and a version field. Product, Process

10

1.4. Feasibility Study on an Illustrative Use Case

1 ID MechanicalConcepts {
2 name: "Mechanical Domain Concepts Glossary"
3 version: 1.0.0
4 }
5 Attribute torque {
6 name: "torque"
7 defaultValue: 0.0
8 type: "Number"
9 unit: "Nm"
10 }
11 Concept c_m_electric_screwdriver {
12 name: "Electric Screwdriver"
13 attributes: torque
14 }

Listing 1: Illustrative Concept definition Electric Screwdriver with attribute torque for the mechanical

domain.

1 ID CommonConceptGlossary {
2 name: "Common Concept Glossary"
3 version: 1.0.0
4 }
5 CommonConcept cc_electric_screwdriver {
6 name: "Electric Screwdriver"
7 inhabits:
8 MechanicalConcepts.c_m_electric_screwdriver,
9 ElectricalConcepts.c_e_electric_screwdriver
10 }

Listing 2: Illustrative negotiated Common Concept definition Electric Screwdriver, summarizing related

Concepts from the mechanical and electrical domain.

or Resource assets starts with an unique ID and have at least two fields name and field represents,
where the latter refers to a CC.

Listing 3 shows the defined resourcewith id electric_screwdriver that represents the CC cc_electric_screwdriver
and thus also specifies the domain-specific attributes mechanical torque and electrical power_consumption.

1 ID PositionScrewDashboard_Model {
2 name: "Model Fasten Screw and Measure Use Case"
3 version: 1.1.0
4 }
5 Resource electric_screwdriver {
6 name: "Electric Screwdriver"
7 represents: CommonConceptGlossary.cc_electric_screwdriver
8 children: bit
9 parents: robot
10 requires: drive
11 ElectricalConcepts.power_consumption: 0.0
12 MechanicalConcepts.torque: 0.0
13 }

Listing 3: PPR Common Model definition Electric Screwdriver representing the Common Concept Electric
Screwdriver with attributes power_consumption and torque.

Relation definition. Each of the Concept, CC and Common Model files can contain relations. A

Relation is defined with a unique ID followed by the field from, which indicates the starting node of

the relation, which is a combination of an asset and its attribute. Next, the field to describes the target

11

1. The MDM-CPPS Framework

and consists of a combination of an asset and its attribute specification, indicating the end node of the

relation. The definition field indicates the relation type between the attribute values.

Listing 4 shows the relation with id relation6_screwing_tension. The from field links to the common
model asset electric_screwdriver mechanical attribute torque. The to field links to the common model
asset screwdriver_controller automation attribute screw_curve. The example shows that the two attributes

can be linked depending on each other using dependency definition. Alternatively, we could use

propagate as definition to indicate that the value of one attribute should be propagated to the other

attribute based on some value mapping or transformations of the relation. This functionality is currently

only conceptually defined, based on the reactive links concept [14], and will be realized in future work.

1 Relation relation6_screwing_tension {
2 from: electric_screwdriver -> MechanicalConcepts.torque
3 to: screwdriver_controller -> AutomationConcepts.screw_curve
4 definition: "dependency"
5 }

Listing 4: PPR Relation definition for the dependency between the quality and the mechanical attribute

torque.

Domain-specific View generation. To enable domain engineers to implement their change requests

in a domain-specific context, domain-specific view files are generated. Domain-specific view files start

with a comment generated based on the common model. The ID is the unique identifier of this model

and also includes a name and a version field. All domain-specific assets and relations are included.

PPR assets are inherited into a local file with its full qualified name (e.g. PositionScrewDash-
board_Model.electric_screwdriver cf. Listing 5) including the field represents and a list of domain-

relevant attributes. The fields children, parent, excludes, implements, requires are

optional. We ignore the name and abstract flag as we do not allow change of these fields in domain-

specific views. Additionally, the value of the attributes is inherited from the common model. If the

attribute value is missing in the model, we inherit the attribute’s default value from the domain concept

definition.

Listing 5 shows the generated domain-specific view file for the mechanical domain. A mechanical en-

gineer changes the domain-specific attributemechanical torque to the value 10.0, in the cc_electric_screwdriver.

1 // Generated from 'FastenScrewDashboard_Model' with version 1.1.0
2 ID MechanicalView {
3 name: "Generated Mechanical View based on 'FastenScrewDashboard_Model'"
4 version: 0.1.0
5 }
6 Resource FastenScrewDashboard_Model.electric_screwdriver {
7 name: "Electric Screwdriver"
8 represents: CommonConceptGlossary.cc_electric_screwdriver
9 children: FastenScrewDashboard_Model.bit
10 parents: FastenScrewDashboard_Model.robot
11 MechanicalConcepts.torque: 10.0
12 }

Listing 5: Mechanical View Model with Resource Electric Screwdriver with mechanical attribute torque,
as result of the domain-specific view generation.

Additionally, if relations are defined in the common model, we use the following logic to inherit

them to domain-specific view files: given a relationRwith two assetsAfrom andAto and their attributes

p1 and p2. If both attributes are defined in the domain concepts file, then inherit this relation to the

domain-specific view file. If at least one of the attributes is not defined in the domain concept file, the

relation is not inherited.

12

1.5. Discussion

1.4.2 Engineering & Change Management Phase

To enable the Engineering & Change Management Phase, we utilize the Section 1.4.1 results. In the

engineering phase, attribute values are changed in domain-specific view models (e.g. using the MDM-
CPPS IDE and based on change request documented in the Gitlab Issue Tracker). For example, in the

mechanical view, the torque value of the electric screwdriver is changed from 0.0 to 10.0 (cf. List. 5).

When the task in the change request is fulfilled, the change can be propagated to the common model.

Domain-to-Common Model comparison. To propagate a change to the common model using

merge request, the semantic differences between the domain view model and the common model are

calculated using the Model Comparer. The resulting diff model is stored as json object in a temporal

diff file in the domain workspace. A diff object is, for instance, an attribute change indicated by the

changeType field and the related attribute with the attribute field. The parent element is referenced

with the pprAsset field. The valueOld and valueNew fields contain the new and old values.

1 {"diffs": [{
2 "pprAsset": "FastenScrewDashboard_Model.electric_screwdriver",
3 "valueOld": 0.0,
4 "changeType": "CHANGE",
5 "attribute": "MechanicalConcepts.torque",
6 "valueNew": 10.0
7 }]

Listing 6: Difference Model with an attribute value change of torque in the mechanical domain.

Listing 6 shows the diff model of the torque value change. The pprAsset FastenScrewDash-
board_Model .electric_screwdriver is the connecting reference between the domain view and the common

model. oldValue and newValue showing the value change from 0.0 to 10.0 for the attribute
MechanicalConcepts.torque.

Knowledge Graph generation. To enable the semantic analysis of the change impact on other

domains, the common model is mapped to a Multi-Domain Engineering Graph (MDEG) using theMDEG
Model Mapper and instantiated in a graph database using Neo4j.

Figure 1.5 shows the knowledge graph instance of the resource Electric Screwdriver (yellow) and
Bit (yellow), the underlying common concepts (purple), the related mechanical concepts (red) with the

attributes torque (left-blue) and bit type (right-blue). The value of an attribute is an instance (brown) and

the connection between the attribute and the resource. Figure 1.5 also shows the CCG_DEPENDS_ON

edge between torque and bit type. These blue nodes are attributes defined in the Concept Glossary,

and the glossary contains a relation between these two attributes. To transform this edge to the asset

level, we create a new edge between the brown value instance of the blue attribute nodes and call it

PPR_DEPENDS_ON.

1.5 Discussion

The Multi-Domain Modeling (MDM) method for Cyber-Physical Production System (CPPS) introduced

in this paper offers three pillars for cross-domain engineering of CPPS for agile production systems engi-

neering. Specifically, we investigated how to automate the change management process of engineering

changes that span through several domains. The evaluation was conducted on an automotive industry

use case in the scope of a feasibility study. Based on model examples and comprehensive screencasts of

selected parts of the prototype system, we demonstrated that the newly proposed method is feasible

and efficiently applicable to the selected use case.

The first pillar, the project setup, enables the CPPS specification using MDM-CPPS DSL, and the files

are structured in a Git-based Project Repository, that we manage using GitLab. GitLab is the central

13

1. The MDM-CPPS Framework

Figure 1.5: Multi-Domain Engineering Graph in Neo4j showing the resource Electric Screwdriver
and its child resource Bit, including the relations on concept (CCG_DEPENDS_ON) and asset

(PPR_DEPENDS_ON) level.

enabler in our proposal to apply GitOps practices. Using the Git branches for each dedicated change

request, on which engineers from multiple domains collaborate and resolve review tasks, enables

traceability and historicization of the MDM-CPPS files.

The second pillar of our method, engineering and change management, enables automation of the

engineering change management and information-system-supported change review process based on

merge requests, applying Git Workflow. Application of GitLab’s merge requests enables us to integrate

the Traceable Multi-view Modeling Transformations, as we run a custom model integration pipeline

that analyzes the impact of fresh changes and integration of the domain-specific changes to the common

model once the implementation is ready to be merged. This fosters the idea of GitOps in CPPS by using

Git-based repositories always to have the single truth source of the CPPS configuration.

This pillar integrates semantic analysis of the engineering changes, encompassing the proposed

method’s third pillar.

The method addresses the identified challenges from Section 1.1, as it provides common system

understanding in (Common) Concept Glossaries and common model (C1). The effort to coordinate

changes and their impact is reduced by automation via the Task Runner and its pipeline (C2). The

Project Repository with the domain workspaces provides a holistic system view and single-point data

management (C3).

The traditional document-based approach is suitable forminor changes and non-complex engineering

systems. However, large engineering projects in agile CPPS engineering require fast and precise

implementation and consequential analysis of changes to minimize negative impact.

Therefore, we expect the MDM-CPPS method to require the necessary one-time effort for the project

setup, including defining domain concepts, common concepts, and the common model. Then, provi-

sioning of the information system that facilitates and automates the MDM-CPPS method is necessary.

Once these pre-requirements are finalized, we expect the method to reduce the coordination and change

management effort.

1.6 Conclusion & Future Work

Complex engineering environments, such as car manufacturing plants, require a stakeholder’s coordi-

nation of engineering assets from multiple domains to keep their products competitive in a changing

14

1.6. Conclusion & Future Work

market. To implement a change to such a complex engineering system, it is essential that experts from

various domains can work simultaneously on their changes without negatively impacting other domains

while keeping the system consistent in each domain-specific model.

The novelty of this paper is a method for modeling CPPS from multi-domain perspectives supported

by: a) a realization of the Multi-view Change Management (MvCM) Workflow[15] using a Git-based

source code repository, in our case GitLab; b) a Visual Studio Code extension for multi-domain system

modeling environment; c) an extension of the TraceableMulti-viewModeling Transformation Framework

[17] to a MDM-CPPS framework providing a Domain-specific Language (DSL) for modeling the CPPSs

and services for change management and impact analysis of a change on a knowledge graph. This

functionality is driven by an issue tracker system and automated by an open source CI/CD environment,

in our case GitLab, to provide an end-to-end toolchain for systems engineering. As described in Section

1.5, we addressed the challenges from Section 1.1 and provided means for engineers in multidisciplinary

environments to coordinate multi-domain modeling activities efficiently.

Future Work. As a next step, we plan to investigate cases where the engineering change impacts

other domains that cannot be reworked to meet the desired criteria in different domains. A promising

extension to our solution can be reactive links [14] incorporated into the relations in our knowledge

graph. Additionally, we plan to integrate risk-related aspects, such as Failure Mode and Effects Analyses

(FMEAs), to the MDEG to enable validation of the attribute value based on specified ranges in the risk

analysis to minimize production risks.

Acknowledgments

The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for

Digital and Economic Affairs and the National Foundation for Research, Technology and Development

is gratefully acknowledged.

15

Annex: Acronyms A
CC Common Concept. 3, 10, 11

CPPS Cyber-Physical Production System. ii, 1–5, 7, 8, 13–15

DSL Domain-specific Language. ii, 1, 2, 7–9, 15

EMF Eclipse Modeling Framework. 7

FMEA Failure Mode and Effects Analysis. 15

IDE Integrated Development Environment. 9

LSP Language Server Protocol. ii, 1, 9

MDE Model-Driven Engineering. 3

MDEG Multi-Domain Engineering Graph. 3, 7–9, 13, 15

MDM Multi-Domain Modeling. 1, 3, 13

MDM-CPPS Multi-Domain Modeling for CPPS. ii, 3–9, 13–15

MvCM Multi-view Change Management. 1, 2, 15

MvMF Multi-view Modeling Framework. 2, 7

PPR Product-Process-Resource. 2, 8–12

SUM Single Underlying Model. 5

TMvMT Traceable Multi-view Model Transformation. 1

17

Annex: List of references B

19

Bibliography

[1] VDI Guideline 3682 Formalised Process Descriptions., 2015.

[2] Marcelo Arenas, Claudio Gutierrez, and Juan F. Sequeda. Querying in the age of graph databases

and knowledge graphs. page 2821–2828, 2021.

[3] Don S. Batory and Najd Altoyan. Aocl : A Pure-Java Constraint and Transformation Language for

MDE. In Proceedings of the 8th International Conference on Model-Driven Engineering and Software
Development - Volume 1: MODELSWARD,, pages 319–327, Setúbal, Portugal, 2020. SCITEPRESS.

[4] Florian Beetz and Simon Harrer. Gitops: The evolution of devops? IEEE Software, 39(4):70–75,
2022.

[5] Hugo Bruneliere, Jokin Garcia Perez, Manuel Wimmer, and Jordi Cabot. Emf views: A view

mechanism for integrating heterogeneous models. In International Conference on Conceptual
Modeling, pages 317–325. Springer, 2015.

[6] Irlán Grangel-González, Felix Lösch, and Anees ul Mehdi. Knowledge Graphs for Efficient Integra-

tion and Access of Manufacturing Data. In ETFA, volume 1, pages 93–100, 2020.

[7] Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Steffen Lohmann, and Sören Auer.

Git4voc: Collaborative vocabulary development based on git. Int. J. Semantic Comput., 10(2):167–
192, 2016.

[8] Constantin Hildebrandt, Aljosha Köcher, Christof Küstner, Carlos-Manuel López-Enríquez, An-

dreas W. Müller, Birte Caesar, Claas Steffen Gundlach, and Alexander Fay. Ontology Building for

Cyber-Physical Systems: Application in the Manufacturing Domain. IEEE Trans Autom. Sci. Eng.,
17(3):1266–1282, 2020.

[9] Eeva Järvenpää, Niko Siltala, Otto Hylli, and Minna Lanz. Implementation of capability matchmak-

ing software facilitating faster production system design and reconfiguration planning. Journal of
Manufacturing Systems, 53:261–270, 2019.

[10] István Koren, Felix Rinker, Kristof Meixner, Jasminka Matevska, and Jörg Walter. Challenges and

opportunities of devops in cyber-physical production systems engineering. In ICPS, pages 1–6.
IEEE, 2023.

[11] Stephan Krusche, Mjellma Berisha, and Bernd Bruegge. Teaching code review management using

branch based workflows. In Proceedings of the 38th International Conference on Software Engineering
Companion, ICSE ’16, page 384–393. Association for Computing Machinery, 2016.

[12] Kristof Meixner, Felix Rinker, Hannes Marcher, Jakob Decker, and Stefan Biffl. A Domain-Specific

Language for Product-Process-Resource Modeling. In ETFA, 2021.

[13] László Monostori. Cyber-physical Production Systems: Roots, Expectations and R&D Challenges.

Procedia CIRP, 17:9–13, 2014.

21

Bibliography

[14] Cosmina Cristina Ratiu, Wesley K. G. Assunção, Rainer Haas, and Alexander Egyed. Reactive links

across multi-domain engineering models. In 25th MODELS, pages 76–86. ACM, 2022.

[15] Felix Rinker, Sebastian Kropatschek, Thorsten Steuer, Kristof Meixner, Elmar Kiesling, Arndt Lüder,

Dietmar Winkler, and Stefan Biffl. Efficient Multi-view Change Management in Agile Production

Systems Engineering. In 24th ICEIS, pages 134–141, 2022.

[16] Felix Rinker, Kristof Meixner, Laura Waltersdorfer, Dietmar Winkler, Arndt Lüder, and Stefan Biffl.

Towards Efficient Generation of a Multi-Domain Engineering Graph with Common Concepts. In

ETFA, pages 1–4, 2021.

[17] Felix Rinker, Laura Waltersdorfer, Kristof Meixner, Dietmar Winkler, Arndt Lüder, and Stefan Biffl.

Traceable multi-view model integration: A transformation pipeline for agile production systems

engineering. SN Comput. Sci., 4(2):205, 2023.

[18] Miriam Schleipen, Arndt Lüder, Olaf Sauer, Holger Flatt, and Jürgen Jasperneite. Requirements

and concept for plug-and-work. at-Automatisierungstechnik, 63(10):801–820, 2015.

[19] Jörn Guy Süß, Samantha Swift, and Eban Escott. Using devops toolchains in agile model-driven

engineering. Softw. Syst. Model., 21(4):1495–1510, aug 2022.

[20] Christian Tunjic and Colin Atkinson. Synchronization of projective views on a single-underlying-

model. In Proceedings of the 2015 Joint MORSE/VAO Workshop on Model-Driven Robot Software
Engineering and View-based Software-Engineering, pages 55–58, 2015.

[21] Birgit Vogel-Heuser, Markus Böhm, Felix Brodeck, Katharina Kugler, Sabine Maasen, Dorothea

Pantförder, Minjie Zou, Johan Buchholz, Harald Bauer, Felix Brandl, et al. Interdisciplinary engineer-

ing of cyber-physical production systems: highlighting the benefits of a combined interdisciplinary

modelling approach on the basis of an industrial case. Design Science, 6:e5, 2020.

[22] Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel Wimmer. Modeling languages

in Industry 4.0: an extended systematic mapping study. Software and Systems Modeling, 19(1):67–94,
2020.

[23] Yanan Xie and Yongsheng Ma. Well-controlled engineering change propagation via a dynamic

inter-feature association map. Research in engineering design, 27(4):311–329, 2016.

22

	Contents
	The MDM-CPPS Framework
	Introduction
	Background & Related Work
	Multi-Domain Modeling for CPPS
	Feasibility Study on an Illustrative Use Case
	Discussion
	Conclusion & Future Work

	Annex: Acronyms
	Annex: List of references
	Bibliography

