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A B S T R A C T   

The identification of critical source areas (CSAs) is a key element in a cost-effective mitigation of diffuse 
emissions of phosphorus from agricultural soils into surface waters. One of the challenges related to CSAs is how 
to couple complex, data-intensive fate and transport models with easy-to-use information on field level for 
management purposes at the scale of large watersheds. To fill such a gap and create a bridge between the two 
tasks, this study puts forward the new Particulate PhozzyLogic Index (PPLI) based on the innovative combination 
of the results of a complex watershed model (in this case the PhosFate model) with fuzzy logic. Its main feature is 
the ability to transform the results of diverse scenarios or even models into a final map showing a catchment- 
wide ranking of the possibility of high PP emissions reaching surface waters for all agricultural fields. Further, 
this study enhances the PhosFate model with a new algorithm for the allocation of particulate phosphorus (PP) 
loads entering surface waters to their sources of origin. This is a basic requirement for the identification of critical 
PP source areas and in consequence for a cost-effective implementation of mitigation measures. By means of a 
sensitivity analysis, this study investigates the impacts of storm drains, discharge frequencies and flow directions 
on the designation of CSAs with the help of present-day scenarios for a case study catchment with an area of 
several hundred square kilometres. The upfront model calibration exhibits a Nash-Sutcliffe efficiency (NSE) of 
about 0.95 and a modified Nash-Sutcliffe efficiency (mNSE) of around 0.83. A core result of the sensitivity 
analysis is that the scenarios at least partially disagree on the identified CSAs and suggest that especially open 
furrows at field borders have the potential to lead to deviating outcomes. All scenario results nevertheless 
support the 80:20 rule, which states that about 80% of the phosphorus inputs into the surface waters of a 
catchment originate from only about 20% of its area.   

1. Introduction 

An innovative aspect of the European Union Water Framework 
Directive (European Comission, 2000) is the inclusion of economic 
principles in river basin and water quality management (Martin-Ortega 
and Balana, 2012). In particular, conservation measures must be eval
uated with respect to how cost-effectively they contribute to the 
achievement of the “good status” of water bodies. The effectiveness and 
thus the cost-effectiveness of measures, however, is not uniform and 
strongly depends on the location of their implementation. This 
non-uniformity exists on different scales and ranges from the national to 
the local scale and beyond. 

In the field of diffuse pollution, one can find the concept of critical 
source areas (CSAs) on one of the largest scales, i.e. often the field scale. 
CSAs are commonly defined as those areas within a watershed, which 

contribute disproportionately to the pollution load in surface waters via 
one of many possible transport pathways (e.g. Heathwaite et al., 2005; 
Pionke et al., 2000; Strauss et al., 2007). This concept is especially 
applicable to particulate-bound pollutants, whose emission into water 
bodies is primarily driven by soil erosion. Phosphorus is a classic 
example of such substances. Upon excessive fertilisation, the surplus of 
phosphorus not taken up by crops becomes almost “fixed” in the soil 
through processes of sorption, precipitation, immobilisation and min
eralisation (Tiessen, 2008). 

The transfer of phosphorus strongly bound to particles (particulate 
phosphorus: PP) via soil erosion and surface run-off into surface waters 
represents a major environmental concern, due to its eutrophication and 
water quality impairment potential (Sims and Sharpley, 2005). Differ
ences in e.g. slope, crop cover, agricultural practices and connectivity to 
streams lead to considerable differences in the extent of contributions to 
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the total PP load reaching water bodies. Usually, only a small portion of 
a watershed is responsible for the majority of phosphorus inputs into its 
surface waters (e.g. Kovacs et al., 2012; Strauss et al., 2007; White et al., 
2009). Sharpley et al. (2009) state as a rule of thumb that about 80% of 
the phosphorus inputs into the surface waters of a catchment originate 
from only about 20% of its area. This relationship is also known as the 
80:20 rule or the Pareto principle. 

An early approach to identify such hotspot areas is the Phosphorus 
Index (Lemunyon and Gilbert, 1993), which was originally developed in 
the USA but has found its way to Europe since then (Heathwaite et al., 
2003). By now, there exist several modifications and/or localisations of 
the Phosphorus Index (Buczko and Kuchenbuch, 2007). A general 
advantage of all of them is that they are simple, easy to communicate 
and capable of identifying high-risk regions for a cost-effective imple
mentation of emission mitigation measures (Cherry et al., 2008). 

The separation of source and transport factors and the incorporation 
of hydrologic return periods by Gburek et al. (2000) comprises an 
important modification. Although the Phosphorus Index is still a 
semi-quantitative tool, especially the Iowa Phosphorus Index tries to 
approximate biologically available phosphorus loads entering surface 
waters (Mallarino et al., 2002). Beyond that, with its stronger physical 
basis, the Swedish Phosphorus Index requires more input data and is not 
as easy to calculate as other Phosphorus Indices (Buczko and Kuchen
buch, 2007). 

This leads us to another approach to identify CSAs: semi-empirical/ 
conceptual, spatially distributed soil erosion and phosphorus transport 
modelling. While this approach usually requires even more input data 
and higher calculation efforts, it can be expected to provide more ac
curate results than the Phosphorus Index approach, due to its improved 
quantitative basis. It generally represents a good compromise between 
solely empirical and process based models (Cherry et al., 2008). Ex
amples are the WaTEM/SEDEM (Onnen et al., 2019; Van Oost et al., 
2000; Van Rompaey et al., 2001; Verstraeten et al., 2002) and PhosFate 
(Kovacs et al., 2008, 2012) models. 

However, as it is well pointed out by Ghebremichael et al. (2013), 
one major drawback of this approach is that it is not outright clear how 
to translate model results into catchment-wide risk assessments on 
field-level, i.e. at the lowest spatial unit managed by farmers and thus 
the level at which conservation measures can actually be applied. One 
problem with linking results of hydrological models to prioritisation at 
field scale is that field and farm boundaries do not usually coincide with 
hydrological boundaries. This gap makes the outcome of complex 
catchment-scale models of limited application and use for policy 
makers, farmers and practitioners involved in agri-environmental pro
grammes. We put forward that fuzzy logic could be the key to both 
overcome this shortage and to reduce vagueness in identifying CSAs. 

Fuzzy logic was developed in the mid-sixties of the twentieth century 
and is based on fuzzy sets (Zadeh, 1965). Later it was developed further 
into a theory of possibility (Zadeh, 1978). As possibility theory and 
Phosphorus Index surprisingly share some very basic ideas, we 
hypothesise that the potential of phosphorus loss or movement into 
surface waters from a certain site as it is used by the Phosphorus Index is 
conceptually related to possibility theory. It is yet lacking its theoretical 
foundation in mathematics. Hence, why it is called an index. 

While fuzzy logic has been previously applied successfully to, for 
example, river quality (e.g. Lermontov et al., 2009; Liou et al., 2003), 
groundwater quality (e.g. Rebolledo et al., 2016; Vadiati et al., 2016) 
and landslide susceptibility (e.g. Champati ray et al., 2007; Pourghasemi 
et al., 2012; Tien Bui et al., 2012) analyses, to our knowledge it has not 
been used in the context of the identification of CSAs so far. 

The main research goal of this study is to develop a novel semi- 
empirical “index” for PP based on the combination of spatially distrib
uted models, i.e. PhosFate in our case, with fuzzy logic. As a prerequisite 
to this, we aim to completely redesign and enhance the model’s existing 
algorithm for allocating the PP emissions actually reaching surface 
waters to their respective source areas so that conservation of mass is 

guaranteed under all circumstances. Furthermore, the study conducts a 
sensitivity analysis to determine the impacts of selected uncertain input 
data (flow directions) and model parameters (discharge frequencies) on 
the designation of CSAs in the form of present-day scenarios for a case 
study catchment with an area of several hundred square kilometres. 

2. Material and methods 

2.1. Case study catchment 

The present study was conducted on the catchment of the river Pram 
in the north-western part of the Austrian federal state of Upper Austria. 
According to Zessner et al. (2011), erosion from agricultural land is its 
only relevant source of diffuse PP emissions. The catchment predomi
nantly belongs to the geologic formation Molasse basin and is approxi
mately 380 km2 in size. Only some small parts in the north and 
north-east belong to the crystalline Bohemian Massif. Various types of 
loam with silt loam being the most prominent (nearly 50% of the 
catchment area) dominate its soil surface. Clay is only dominant in about 
5% of the area and sandy soils are not present at all. 

The elevation of about 300 m a. s. l. at the mouth of the river in the 
north-west gradually rises to about 800 m a. s. l. in the south. Annual 
precipitation shows a similar gradient ranging from roughly 900 mm to 
around 1200 mm. The catchment’s major land use type is agricultural 
land covering approximately 70% of the area and can be further divided 
into about 45% arable land and 25% grassland. Other important land 
use types are forests and settlements, which sum up to about 20% and 
almost 10% of the area respectively. Winter grains are cultivated on 
approximately 40% and maize on approximately 30% of the mostly hilly 
arable land. Table 1 lists a few additional catchment properties. 

2.2. PP emission and transport modelling 

2.2.1. The PhosFate model 
Originally created by Kovacs et al. (2008, 2012), the semi-empirical, 

spatially distributed phosphorus emission and transport model PhosFate 
was recently extended by Hepp and Zessner (2019) with a module 
capable of taking into account storm drains at road embankments. It 
models erosion with the help of the (R)USLE (Renard et al., 1997; 
Schwertmann et al., 1987; Wischmeier and Smith, 1978) making use of a 
raster GIS data based single (D8) flow algorithm version of the slope 
length factor (Desmet and Govers, 1996). The PP emission part of the 
model then combines the erosion with the PP content of the top soil and 
a local enrichment ratio of each raster cell in order to calculate local 
gross PP emissions (Kovacs, 2013). 

PP retention in turn is computed via an exponential function of the 
cell residence time and a mass balance equation including terms for the 
inflowing PP load, the local gross PP emission and the local as well as the 
transfer PP retention. The hydraulic radius, among others, is a require
ment for the calculation of the cell residence time and itself involves 
model parameters related to discharge frequency (Kovacs, 2013). With 
the channel as well as overland PP deposition rates and the PP transfer 
coefficient of the storm drains model extension, PhosFate features three 
potential calibration parameters. 

Table 1 
Additional properties of the case study catchment.   

Min. 1st Qu. Median Mean 3rd Qu. Max. 

Slopea in % 0.00 4.59 8.41 10.22 13.50 241.23 
Dischargeb in m3s− 1 0.94 1.87 2.68 4.58 4.23 117.00 
Field size in 104 m2 0.01 0.36 0.90 1.60 2.02 28.16  

a Based on a DEM with 10 × 10 m resolution covering the whole catchment 
area. 

b Period 2008 to 2013 of the gauge 204 867, Pramerdorf/Pram close to the 
outlet with a catchment area of approx. 340 km2 (BMLFUW, 2015). 
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2.2.2. Revised allocation algorithm 
One major output of PhosFate is the calculation of PP cell loads via 

an allocation algorithm. The PP cell loads describe the amount of local 
PP emissions actually reaching surface waters, i.e. the PP cell load of a 
single cell represents its local PP emission minus the cumulated amounts 
of retention taking place in all of its downstream cells (Kovacs, 2013). 
Since the original allocation algorithm of the PhosFate model based on 
transmission coefficients was developed for larger cell sizes (e.g. 100 ×
100 m resolution) than used in this study (10 × 10 m resolution), it was 
necessary to revise it. A major drawback of the original algorithm is that 
conservation of mass is not guaranteed in every single cell, but only on 
the level of zero-order catchments. 

The original algorithm requires a single top-down computation 
starting with the lowest and finishing with the highest flow accumula
tions. Its results are the PP retentions as well as transports. The revised 
algorithm builds on this computation and adds an additional bottom-up 
computation starting with the highest and finishing with the lowest flow 
accumulations to it. Its results are the PP cell loads for which the local 
net PP emissions calculated as local PP emissions minus PP retentions 
constitute the upper PP cell load limits. 

This latter computation in turn involves the calculation of PP cell 
transfers. These are the cumulated amounts of PP entering a cell from 
upstream cells, which are transferred through the cell and actually reach 
a surface water (again minus the cumulated amounts of retention taking 
place in all of its downstream cells). The complete bottom-up compu
tation thus consists of cycles of the following steps, which, however, are 
executed for overland cells only:  

1. Initialising an intermediate cell load either as the transported 
amount of PP entering a surface water (riparian cells – first cycle) or 
as the apportioned cell transfer in the last step of the previous cycle 
(all other cells – subsequent cycles).  

2. Initialising an intermediate cell transfer by setting it equal to the 
previously initialised intermediate cell load.  

3. Updating the intermediate cell load by multiplying it with the ratio 
of the local and the local plus the sum of the inflowing PP transports.  

4. Setting the final cell load utilising the local net PP emission as upper 
limit (minimum of the previously updated intermediate cell load and 
local net PP emission). 

5. Calculating the cell load carry-over as the maximum of the inter
mediate cell transfer minus the final cell load and zero.  

6. Setting the final cell transfer to the previously calculated cell load 
carry-over.  

7. Weighted apportioning of the cell load carry-over to the inflowing 
cells utilising their PP transports as weights. 

2.2.3. Coupling of the PhosFate with the STREAM model 
The STREAM model was designed to simulate overland flow and 

erosion in agricultural catchments (Cerdan et al., 2002a,b; Le Bissonnais 
et al., 2005). Yet it does lack the ability to simulate the emission and 
transport of chemical substances like phosphorus. What makes it 
appealing from the point of view of phosphorus emission and transport 
modelling, though, is its capability to simulate a flow network, which 
accounts for tillage directions among others (Couturier et al., 2013). The 
effect of tillage direction on flow direction has been thoroughly studied 
by Souchere et al. (1998); Takken et al. (2001a,b,c) and depends mainly 
on the angle between tillage direction and topographic slope aspect, 
topographic slope gradient and surface roughness. 

In order to let PhosFate benefit from the last mentioned feature, we 
coupled both models, i.e. we used version 3.7.1 of the STREAM model to 
pre-process the flow direction data handed over to PhosFate. For this, we 
applied a stepwise approach with (i) topographic flow directions only 
(TOPO scenario), (ii) the sole enforcement of tillage directions on 
topographic flow directions for arable land (TILL scenario) and (iii) the 
combined enforcement of tillage directions and open furrows at all field 
borders (sides as well as headlands, which demonstrates an extreme 

case) on topographic flow directions for arable land (FURR scenario). 
Fortunately, field border data was available from a (geo-)database 
related to the Integrated Administration and Control System (IACS) of 
the Common Agricultural Policy (CAP) of the European Union (EU) 
(Hofer et al., 2014). 

As tillage directions are an input parameter to the STREAM model, 
they first had to be derived. This was accomplished by means of mini
mum bounding rectangles with smallest areas enclosing each field and 
the assumption that tillage directions are parallel to the longer sides of 
those rectangles. A sample of 176 fields was then used to compare such 
derived tillage directions to visually determined tillage directions from 
orthophotos. In only about 16% of the cases (29 fields), they deviated by 
more than ±22.5◦. Two more required input parameters are the average 
surface roughness in tillage direction and the average surface roughness 
perpendicular to tillage direction. These were globally set to 1–2 cm and 
2–5 cm, respectively. Slopes were generally calculated in the direction of 
the topographic or enforced D8 flow directions. 

2.2.4. Present-day case study scenarios 
Drained roads and storm drains can be a relevant emission pathway 

into surface waters in Switzerland (Alder et al., 2015; Bug, 2011; 
Doppler et al., 2012; Prasuhn, 2011; Remund et al., 2021). Hepp and 
Zessner (2019) came to the same conclusion for Austria and estimated 
that in the same catchment as examined in this study, about 77% of all 
fields upstream to roads are artificially drained by one or more storm 
drains with a 90% highest posterior density interval (credible interval, 
sometimes also called the Bayesian confidence interval) ranging from 
approximately 54% to almost 100%. They further performed a plausi
bility check of the transfer coefficient of the storm drains model exten
sion accounting for retention in roadside ditches, which delivered a 
result of roughly 0.60, i.e. 60 % of all PP emissions that enter roadside 
ditches and subsequently storm drains are reaching surface waters via 
such bypasses. 

With these introductory words said, the three factors used to define 
the case study scenarios are as follows: (i) transfer coefficients of 0.32, 
0.46 and 0.60 corresponding to 54%, 77% and 100% of 0.60 (TC0.32, 
TC0.46, TC0.60), (ii) discharge frequencies of one (T1) and six years 
(T6) (utilised for the calculation of the hydraulic radius/residence time 
and in turn PP retention) and (iii) the three described STREAM model 
flow direction scenarios, namely, TOPO (topographic flow directions), 
TILL (enforcement of tillage directions) and FURR (tillage directions 
combined with open furrows at all field borders). So all in all 18 sce
narios (three transfer coefficients times two discharge frequencies times 
three flow direction data sets) were modelled and assessed. 

Storm drains at road embankments of almost all asphalt roads were 
taken into account with the help of the storm drains model extension. A 
governmental reference routing dataset provided the necessary road 
data for this (Geoland.at, 2016). The period of the modelled scenarios 
ranged from the year 2008 to the year 2013. Water quality data of seven 
water quality gauges (additionally shown in Fig. 6) could be used to 
calculate mean annual PP river loads using the same methodology as of 
Hepp and Zessner (2019). 

A detailed overview on all input data is provided by Zessner et al. 
(2016a, 2017). Some other notable datasets nevertheless are (i) the 
already mentioned (geo-)database related to the IACS of the CAP of the 
EU contributing detailed information on the cultivated crops, the 
different factors of the USLE as well as the field borders (Hofer et al., 
2014), (ii) a DEM with 10 × 10 m resolution, which served as the main 
input data for the STREAM model, (iii) non-agricultural land use based 
on the digital cadastre map and (iv) top soil characteristics derived from 
the digital soil map of Austria. The latter three datasets were supplied by 
the State Government of Upper Austria. Lastly, data on PP accumulation 
in top soil was extracted from Zessner et al. (2011, 2016b) and Man
ning’s roughness coefficients from Engman (1986). 

Each of the nine T6 scenarios was then calibrated individually under 
a channel deposition rate of zero utilising the previously calculated 
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mean annual PP river loads as targets and the overland deposition rate as 
the only calibration parameter. This more or less reflects long-term 
conditions including in-stream phosphorus stock depletion effects 
caused by major flood events (Zoboli et al., 2015). It can also be 
considered a rather conservative approach for identifying CSAs, as it 
generally leads to lower PP loads from cells farther away from surface 
waters due to higher overland deposition rates. The overland deposition 
rates of the nine T1 scenarios were subsequently adopted from the 
corresponding T6 scenarios thus simulating conditions as if no respec
tive flood/transport event took place in the modelled period of six years. 
In order to achieve this, the discharge frequency related parameters of 
the hydraulic radius calculation are altered accordingly (Liu and De 
Smedt, 2004; Molnár and Ramírez, 1998). 

2.3. Particulate PhozzyLogic Index (PPLI) 

While providing interesting details, a map displaying the PP cell 
loads with, for example, 10 × 10 m resolution is not outright helpful to 
policy makers, who have to decide where to cost-effectively implement 
an emission mitigation measure and where not. This information 
therefore has to be somehow transformed. For this purpose, we first 
calculate the total absolute PP contributions to surface waters for each 
field, i.e. the sum of all PP cell loads of each field with the help of zonal 
statistics and then apply a fuzzy membership function to those results. 

2.3.1. Fuzzy membership function 
A short introduction to fuzzy sets and fuzzy membership functions is 

given by Robinson (2003). Basically, fuzzy membership functions are 
functions turning data sets of arbitrary ranges and scales into fuzzy sets 
consisting solely of values between zero and one, where zero can be 
translated into “not possible” or not a member of a given set and one into 
“perfectly possible” or a member of a given set. All other values between 
zero and one represent a varying degree of possibility or membership in 
a given set. A value of, for instance, 0.7 thus stands for a higher degree of 
possibility or membership in a given set than a value of e.g. 0.4. 

Possibility must not be confused with probability, even though they 
share the same value range. While probabilities are estimated based on 
data as well as certain assumptions and provide confidence intervals, 
possibility, especially due to the subjective choice of fuzzy membership 
functions, is less objective. Nonetheless, once one or more fuzzy mem
bership functions have been chosen, possibility is perfectly objective and 
can even be used to objectively compare expert judgements. This 
approach is particularly interesting and helpful in a sparse data envi
ronment such as in the case of a cost-effective implementation of miti
gation measures against PP inputs into surface waters. 

The fuzzy membership function we have chosen is the so called fuzzy 
large membership function. It has the form 

μ(x) = 1

1 +

(
x

p2

)− p1  

where p1 is the spread and p2 is the midpoint. For the spread, we 
generally put in one, which makes the shape of the function somewhat 
similar to that of a logarithmic function, and for the midpoint, we put in 
a different value for each scenario. These values were calculated so that 
80% of the respective agricultural land received a value of less than 0.5 
and 20% a value of 0.5 or more (Pareto principle, cf. Sharpley et al., 
2009). In this way, the 20% of the total area of agricultural land 
belonging to the fields with the highest absolute PP inputs into surface 
waters received a value of 0.5 or more and are therefore what we 
consider CSAs. Fig. 1 provides examples of fuzzy large membership 
functions with a midpoint of 4 kg yr− 1 PP cell load per field and spreads 
ranging from one to five. 

2.3.2. Final Particulate PhozzyLogic Index creation 
While the application of the described fuzzy large membership 

function to the model results of a single scenario could already be 
referred to as a fuzzy logic based PP index, this is only the first step, since 
multiple fuzzy sets can further be overlaid in order to take into account, 
among others, the uncertainty of input data. A simple technique for this 
is the so-called convex combination (Dubois and Prade, 1985; Kandel, 
1986). In the process of convex combination, each involved fuzzy set can 
be assigned a weight, which makes it a weighted mean operator with 
weights adding up to one. Charnpratheep et al. (1997) also propose a 
modified version of this operator, which sets the overall result to zero in 
case one or more of the combined fuzzy sets are zero. 

As no indication exists that one of our 18 scenarios is more possible 
than another as far as it comes to a single field and we neither favour one 
discharge frequency over the other, we used equal weights to overlay the 
fuzzy sets of all our scenarios with the unmodified convex combination 
operator in order to create the final PPLI. Using the modified operator 
does not contribute to the quality of the result in the absence of a knock- 
out criterion. 

3. Results and discussion 

3.1. STREAM model flow directions 

All in all, the flow direction of about 28% (approx. 440 000 cells) of 
the arable land were altered by enforcing tillage directions on topo
graphic flow directions (TOPO vs. TILL). While comparing TOPO and 
FURR results in a somewhat higher share of about 31% (approx. 
500 000 cells), comparing TILL and FURR only shows a rather small 
share of about 8% (approx. 130 000 cells). This is reasonable, since the 
field borders merely comprise a small portion of the cells representing 
the arable land of the catchment. Additionally, these shares reveal that 
about 5% of the cells were altered two times, first by the TILL and then 
by the FURR scenario. 

Of the roughly 7000 arable fields, nearly 6200 (approx. 88%) are 
affected by at least one cell with altered flow directions due to tillage 
directions and obviously all fields are affected by altered flow directions 
due to open furrows. An example of the resulting flow directions of the 
three scenarios is given in Fig. 2. 

3.2. Calibrated overland deposition rates 

Calibration quality of the nine independently calibrated T6 scenarios 
is altogether very similar. They all exhibit a Nash-Sutcliffe efficiency 

Fig. 1. Examples of fuzzy large membership functions with a midpoint of 4 kg 
yr− 1 PP cell load per field and spreads ranging from one (dark blue curve) to 
five (yellow-green curve). With increasing spread, the function gradually 
transforms itself from a function with a shape similar to that of a logarithmic 
function to one with a shape similar to that of a sigmoid function. The black 
dashed lines shall help illustrate the meaning of the midpoint (possibility of 
0.5). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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(NSE) of about 0.95, a modified Nash-Sutcliffe efficiency (mNSE) of 
around 0.83, a percent bias (PBIAS) of almost zero and a ratio of the root 
mean square error to the standard deviation of measured data (RSR) of 
roughly 0.21 (Krause et al., 2005; Moriasi et al., 2007; Nash and Sut
cliffe, 1970). Fig. 3 shows the observed and modelled yearly PP loads of 

the representative TC0.46-T6-TOPO scenario at the seven water quality 
gauges along the river Pram. Deviations are bigger for smaller loads, 
which is also why the mNSE indicates a poorer performance. Poesen 
(2018) considers scaling up sediment yields from plot to catchment scale 
one of the main challenges in geomorphological research. Particularly 
seen in this light, these results are thus very promising. 

Calibrated overland deposition rates range from 0.91–1.46 ×

10− 3s− 1 and decrease with lower transfer coefficients (1.16–1.46 ×
10− 3s− 1 for 0.60 and 0.91–1.21 × 10− 3s− 1 for 0.32), which is reason
able, as lower inputs into surface waters from fields upstream of roads 
have to be compensated with higher inputs from fields upstream of 
surface waters. Generally, the deposition rates of the FURR scenario 
group are approximately by 0.30 × 10− 3s− 1 lower than those of the 
other two STREAM model scenario groups. 

The lower deposition rates of the FURR scenarios may appear 
counter-intuitive. They are, however, a product of partially lower flow 
accumulations in the interior of the fields and higher flow accumulations 
along the field borders. Apparently, the higher transport potential along 
field borders, which affects rather few cells, does not fully compensate 
the lower transport potential, which affects the comparatively higher 
number of cells of field interiors. Thus, the process of calibration has to 
result in the overall lower deposition rates of the FURR scenario group in 
order to make up for the gap between the modelled and calculated PP 
river loads. 

3.3. PP inputs into surface waters 

Catchment-wide PP inputs into surface waters range from about 
8.0–8.7 Mg yr− 1 for the T1 scenario group and 15.9–16.2 Mg yr− 1 for the 
T6 scenario group. Storm drains at road embankments account for 
approximately one quarter to almost one half of the PP inputs. The 

Fig. 2. Example of the resulting flow directions of the TOPO (top left), TILL (bottom left) and FURR scenario (bottom right). Especially the FURR scenario leads to 
partially more extreme flow accumulations, as it concentrates flow at field borders and limits spillovers to neighbouring fields to cells with a single possible 
downstream path. 

Fig. 3. Observed and modelled yearly PP loads of the representative TC0.46- 
T6-TOPO scenario at the seven water quality gauges along the river Pram. 
The solid black line represents the 1:1 line and the grey dashed lines 30% de
viations from the 1:1 line. 
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respective shares range from 24–29% for the TC0.32 scenarios, 32–37% 
for the TC0.46 scenarios and 39–44% for the TC0.60 scenarios. This is in 
line with findings of Prasuhn (2011) whose ten year long field survey 
resulted in a share of 22% of the total eroded soil. He also states that 
about half of the eroded soil was already retained within the borders of 
the source field though. This share therefore at least has to be doubled in 
order to account for the input into surface waters alone. 

Fields of arable land are predominantly responsible for the 
catchment-wide PP inputs into surface waters (96.6–98.0%). Grassland 
fields (1.1–1.8%) and other land use types (0.9–1.6%) contribute 
insignificant amounts only; hence, our focus lies on arable fields. Table 2 
shows selected percentiles of the sums of yearly PP cell loads per field of 
arable land for two selected scenarios. The distributions are as expected 
very skewed. In the case of the TC0.46-T1-TOPO scenario, 70% of the 
fields contribute less than 0.5 kg yr− 1 PP to the total PP emissions into 
surface waters and even in the case of the TC0.46-T6-TOPO scenario the 
same percentile amounts to as little as nearly 1.1 kg yr− 1 PP. The 
amounts of the higher percentiles are increasing rapidly from there on. 

Individual yearly PP cell loads and transfers of a small area within 
the case study catchment are displayed in Fig. 4 for the TC0.46-T6-TOPO 
scenario. The figure clearly depicts that forests hardly contribute to PP 
emissions into surface waters, but act as important transfer zones for 
upstream PP loads mainly via preferential flow pathways. This finds 
confirmation in the outcomes of tracer experiments conducted e.g. in 
France (van der Heijden et al., 2013) and in Germany (Julich et al., 
2017), which have shown that phosphorus transport in forests occurs 
along preferential flow pathways, largely bypassing the nutrient-poor 
soil matrix of forests. 

3.4. Identified critical source areas 

The number of fields classified as a CSA, i.e. fields with a possibility 
of 0.5 or more, ranges from 1151 to 1233 for all the modelled scenarios. 
14 538 fields, on the other hand, are not classified as a CSA in any of the 
scenarios. This denotes an average of 1196 fields, which in relation to 
the total number of fields of 16 320 constitutes a share of about 7.3%. 
The differences in the number of CSAs can be regarded as negligible 
among the scenarios. 

Furthermore, the median area of fields classified as a CSA in at least 
one scenario is 2.94 × 104 m2 with an interquartile range of 3.30 × 104 

m2. The median area of fields never classified as a CSA is 0.74 × 104 m2 

with an interquartile range of 1.31 × 104 m2. This considerable differ
ence in the median field size and interquartile range explains the relative 
small share of fields regarded as CSAs compared to the approximately 
20% of the total area of agricultural land under consideration. 

A major reason for this percentage mismatch is the choice of the sum 
of all PP cell loads per field as input to the fuzzy large membership 
function, which favours the selection of comparatively large fields. The 
purpose of this choice is the maximisation of the anticipated decrease in 
PP emissions into surface waters per field due to the implementation of 
suitable mitigation measures and, at the same time, the minimisation of 
the number of farmers involved. While other choices like the average of 
all PP cell loads per field may offer a better overall potential cost- 
effectiveness ratio, from a pragmatic perspective it would be likely 
more beneficial to have to convince fewer farmers to participate in a 

catchment-wide water quality protection programme. With potential 
cost-effectiveness ratio, we here refer to the area of arable land taken out 
of production and thus associated with possible monetary compensa
tions in order to reduce PP inputs into surface waters by a given amount. 

The applied fuzzy large membership functions are designed to clas
sify 20% of the total area of agricultural land as CSAs. Depending on the 
scenario, this share is responsible for 79–83% of the total PP inputs into 
surface waters, in line with the general 80:20 rule (Sharpley et al., 
2009). Furthermore, apart from two outliers, all fields classified as a CSA 
in at least one of the scenarios (1782 fields) are arable fields. As a result, 
the 20% share of the total agricultural land classified as a CSA actually 
represents roughly 30% of the total arable land. This nonetheless un
derlines the general principle at work. 

Table 3 shows the number of times as well as the cumulative share in 
which the same field is classified as a CSA. For the TC and T scenario 
groups, the shares of fields classified as a CSA in all of their respective 
scenarios lie, despite their different group sizes, around 50%. For the 
flow direction scenario groups (TOPO, TILL and FURR), the same shares 
account for somewhat more than 60% of the fields. These differing 
shares can be explained by the fact that all flow directions and in turn 
flow accumulations are homogeneous within the flow direction scenario 
groups, but heterogeneous within the other scenario groups. 

So-called UpSet plots allow for a rather easy to interpret visualization 
of multiple intersecting sets (Conway et al., 2017; Lex et al., 2014). Fig. 5 
shows such a plot for a subset of the intersections of the CSAs of all T6 
scenarios. All nine scenarios agree on 816 (46%) of the in total 1782 
fields, which are classified as a CSA at least once. Furthermore, there are 
153 (96 plus 57; 9%) CSA fields where the FURR scenario group makes a 
clear difference. This discrepancy emphasises the importance of 
knowing the relevant preferential flow pathways in a catchment under 
consideration. Another recognisable pattern is that the scenarios with 
lower transfer coefficients (especially TC0.32) differ slightly from those 
with higher transfer coefficients (TC0.46 and especially TC0.60). The T1 
scenarios exhibit a similar pattern, albeit not as distinct as the one of the 
T6 scenarios. 

Evenson et al. (2021) compared the use of five different 
watershed-scale models for the identification of CSAs of phosphorus 
emissions in the 17 000 km2 Maumee River watershed. Their study re
veals that on average only 16–46% of sub-watersheds were identified as 
CSAs by more than one model. This large disagreement is attributable to 
differences in input data, parametrisation and model structure. Based on 
these outcomes, Evenson et al. (2021) conclude that: (i) the share of 
watershed identified as CSAs by the different models can be selected for 
conservation measures with a high level of confidence; (ii) a compre
hensive uncertainty analysis is essential in this field of research to 
enhance understanding and acceptance of modelling results by planners, 
decision makers and farmers. 

All in all, our 18 scenarios perfectly agree on 720 of the 1782 fields 
classified as a CSA. This is a share of about 40%. Therefore, similarly to 
the conclusion of Evenson et al. (2021), emission mitigation measures 
could concentrate on these areas with a high level of confidence. The 
remaining 60% of fields allocated as CSAs are diversely distributed 
among the various possible degrees of scenario intersections. Through 
the set-up of scenarios accounting for different sources of uncertainty, 
this study provides a transparent basis, which allows to understand 
which reasons lead to the different identification of CSAs. By merging 
the information of this screening as well as the uncertainty reasons with 
local knowledge of farmers and practitioners active on the territory, an 
optimal selection of fields could be achieved for the implementation of 
measures. 

Including even more scenarios could push these two numbers even 
further apart, particularly, since each of the assessed scenario groups 
comes with its own limitations. A limitation of the transfer coefficient 
scenario group is for sure the choice of a global transfer coefficient. This 
assumption may not hold, as areas with higher flow accumulations may 
also exhibit higher transfer rates. Another limitation is that the presence 

Table 2 
Selected percentiles of the sums of the PP cell loads per field of arable land in kg 
yr− 1 for two selected scenarios.  

Scenario/ 
percentile 

0.30 0.50 0.70 0.90 0.92 0.94 0.96 0.98 

TC0.46-T1- 
TOPO 

0.01 0.08 0.46 2.27 2.79 3.65 5.04 8.09 

TC0.46-T6- 
TOPO 

0.03 0.24 1.09 4.75 5.98 7.71 10.15 16.28  
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or absence as well as the exact location of individual storm drains re
mains uncertain (Hepp and Zessner, 2019). 

While the erosion part of PhosFate based on the (R)USLE reflects 
average conditions, its transport part has to be adjusted to a specific 
discharge frequency. With longer periods both parts eventually repre
sent average conditions. Especially the T1 scenarios exhibit a mismatch 
in this regard. Increasing the discharge frequency (e.g. from six to one 
year) yet has a similar effect as increasing the overland deposition rate. 
Since the latter acts as calibration and therefore as catch-all parameter 
for, among others, the effects of catchment elements, which cannot be 
represented by the chosen spatial resolution of 10 × 10 m, but where 
retention can take place (e.g. unploughed strips between fields, hedges), 
the former can be used as a proxy for studying the effects of the presence 
or absence of such elements. The global nature of such an increase in 
discharge frequency once more poses a severe limitation, as it mainly 

influences long-distance transport. 
Finally, the limitations of the flow direction scenarios stem from 

limited knowledge on the actual tillage directions, surface roughness in 
and perpendicular to tillage directions and exact locations of open fur
rows capable of concentrating flow. Some or even all of these short
comings may be remedied by better available data or improved methods 
to derive them from existing data in the future. Tillage directions, for 
example, could be more accurately derived for L-shaped fields from field 
border data encompassing every single cultivated crop and not only the 
outer border of all crops in direct vicinity, which are cultivated by the 
same farmer. The latter, unfortunately, applies in this case with the field 
borders currently available. 

Fig. 4. Individual yearly PP cell loads (left) and transfers (right) of a small area within the case study catchment for the TC0.46-T6-TOPO scenario.  

Table 3 
Number of times as well as the cumulative share in which the same field is classified as a CSA shown separately for each of the assessed scenario groups. Please note that 
the scenarios of the TC and flow direction scenario groups each occur only six times (the three scenarios of the respective other group times the two scenarios of the T 
scenario group), while the scenarios of the T scenario group each occur nine times (the three scenarios of the TC scenario group times the three scenarios of the flow 
direction scenario group).  

Scenarios 9 8 7 6 5 4 3 2 1 0  

No. of fields 

TC0.32    857 80 210 100 212 157 14 704 
TC0.46    840 94 183 118 194 174 14 717 
TC0.60    825 97 192 110 205 156 14 735 
T1 815 92 75 141 72 75 133 104 145 14 668 
T6 816 63 80 149 65 87 119 108 118 14 715 
TOPO    928 114 113 96 116 130 14 823 
TILL    927 121 108 100 108 139 14 817 
FURR    924 103 92 99 94 114 14 894  

Cumulative % 

TC0.32    53 58 71 77 90 100  
TC0.46    52 58 70 77 89 100  
TC0.60    52 58 70 77 90 100  
T1 49 55 59 68 72 77 85 91 100  
T6 51 55 60 69 73 79 86 93 100  
TOPO    62 70 77 84 91 100  
TILL    62 70 77 84 91 100  
FURR    65 72 78 85 92 100   
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3.5. The final Particulate PhozzyLogic Index map 

Fig. 6 presents the final PPLI map of the case study catchment. The 
fields coloured violet can be considered the most possible CSAs. Most 
CSA fields are located near the catchment boundary, where the slopes 
are comparably higher, and in the northwest of the catchment. This map 
is the result of only a single option of overlaying multiple fuzzy sets. 
Further options, which should be tested in future research, are, for 
example, the application of different weights or other fuzzy overlay 
operators like the fuzzy gamma operator (Zimmermann and Zysno, 
1980). 

No matter how the different fuzzy sets are combined in the end, such 
a PPLI map can be a significant step forward in practice, since it allows 
each farmer to compare his or her fields to all the other fields within a 
certain catchment. This can be of great help when it comes to evaluating 
if – in the context of the entire catchment – a certain field substantially 
contributes to the overall PP emissions into surface waters or not. 
Furthermore, such a map provides a clear ranking for policy makers and 
could be used as a starting point for developing a state aid programme, 
which promotes the implementation of mitigation measures in a cost- 
effective way. For this purpose, the height of subsidies could even be 
linked to the degree of possibility of a field being a CSA or not. 

Such a map can thus foremost provide a detailed screening for the 
selection of the farmers to be involved in a programme of measures. Yet 
we consider it important that the final decision on the kind and exact 
location of the implemented mitigation measure stays with the farmer, 

as he or she has the best knowledge with respect to local details, which 
are not available for modelling. For example, in many cases only a small 
portion of vegetated buffer strips receives the majority of overland flow 
(Djodjic and Villa, 2015; White and Arnold, 2009), hence, the concept of 
CSAs can even be translated to a single field. Allowing farmers to choose 
from a variety of mitigation measures and combine them in a smart way 
may be capable of significantly improve the implementation quality and 
effectiveness. 

Sharpley et al. (2011), while praising easy-to-use and well under
standable colour-coded maps derived from P Indices, criticise their 
reliability and address the need of considering the spatial complexity of 
watersheds, the heterogeneous response time as well as delayed release 
of legacy PP, which eventually determine the expected effectiveness of 
measures on the long-term. The PPLI map presented here has the same 
traits praised by Sharpley et al. (2011) and conveys information in a 
straightforward and easily interpretable way, but at the same time it 
builds on a much more solid basis, namely on the results of a complex 
fate and transport model. 

More recently, Wang et al. (2020) highlight in their review of 
modelling of phosphorus loss from field to watershed the strong need for 
integrating comprehensive uncertainty analyses in the studies to provide 
a more transparent and robust support to decision makers. Despite the 
above-mentioned limitations, the PPLI map based on the one hand on 
the outcomes of the PhosFate model and on the other hand on the 
overlay of several present-day scenario fuzzy sets, which take into ac
count multiple sources of uncertainty, clearly meets the criteria of the 

Fig. 5. UpSet plot for a subset of the intersections of the CSAs of all T6 scenarios. While the set sizes of the nine sets are presented in the bottom left and their 
intersection sizes in the top right area, the bottom right area provides information about the sets involved (black dots connected with a black line or single black dots) 
in each of the above displayed intersections. 
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advocated way forward in this field of research. 

4. Conclusions 

This study successfully developed a new algorithm for the allocation 
of PP emissions entering surface waters to their respective source areas. 
The algorithm was implemented into the existing semi-empirical, 
spatially distributed phosphorus emission and transport model called 
PhosFate. An innovative aspect of this algorithm is that in comparison to 
the existing one it does guarantee conservation of mass in every single 
cell and not only on the level of zero-order catchments. 

With the help of fuzzy logic, it was then possible to translate these 
model results into a novel Phosphorus Index with a sound theoretical 
foundation in mathematics and a great value for management purposes. 
The novel Particulate PhozzyLogic Index (PPLI) ranks all agricultural 

fields of a potential large catchment with respect to their possibility of 
emitting high PP emissions actually reaching surface waters. Its range of 
possibility lies between zero (“not possible”) and one (“perfectly 
possible”). Possibility values of 0.5 or higher imply that a field belongs 
to the 20% of agricultural land responsible for 80% of the PP inputs into 
surface waters, which is also our definition of CSAs. 

The sensitivity analysis based on 18 scenarios shows that especially 
open furrows at field borders have the potential to cause deviating CSAs. 
A thorough validation of the identified CSAs within a catchment of 
several hundred square kilometres poses a major challenge and future 
research has to be carried out concerning the development of adequate 
validation strategies. While a validation strategy based on a represen
tative sample of fields may be a conceivable option, an indirect strategy 
based on long-term measurements of PP concentrations in a represen
tative sample of small sub-catchments may be a more viable yet also 

Fig. 6. Final PPLI map of the case study catchment: fields with an overall possibility of 0.5 or more, which can be considered the most possible CSAs, are coloured 
violet. A darker tone thereby indicates a higher possibility. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

G. Hepp et al.                                                                                                                                                                                                                                    



Journal of Environmental Management 307 (2022) 114514

10

more approximative choice. 
Another topic of future research should be the advancement of 

methods able to derive the positions of: (i) open furrows and other 
features capable of concentrating flow and (ii) agricultural and civil 
engineering structures (e.g. storm drains) acting as potential short cuts 
for surface run-off on its way to surface waters. In addition, a multi-flow 
version of the presented allocation algorithm, which is not only capable 
to model flow concentration, but also flow divergence may be a relevant 
topic for future research. 

Software availability 

The source code of the enhanced PhosFate model used in this study is 
available on GitHub in the form of an R package called RPhosFate. 
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Einzugsgebieten nach unterschiedlichen Eintragspfaden für strategische Planungen 
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Wien.  

Zessner, M., Hepp, G., Zoboli, O., Mollo Manonelles, O., Kuderna, M., Weinberger, C., 
Gabriel, O., 2016a. Erstellung und Evaluierung eines Prognosetools zur 
Quantifizierung von Maßnahmenwirksamkeiten im Bereich der Nährstoffeinträge in 
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