
Topology Discovery within the
Bitcoin Network

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Jakob Rosenblattl, BSc
Registration Number 01527437

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Univ.Lektorin Dipl.-Ing. Dr.techn. Johanna Ullrich, BSc

Vienna, 24th December, 2023
Jakob Rosenblattl Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jakob Rosenblattl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Dezember 2023
Jakob Rosenblattl

iii

Danksagung

Ich möchte mich herzlich bei all jenen bedanken, die mich bei der Fertigstellung dieser
Arbeit unterstützt haben.

Zunächst gilt Johanna Ullrich großer Dank für ihre wertvollen Ideen und Ratschläge.
Ich danke für ihre scheinbar unerschöpfliche Geduld sowie für ihr Vertrauen in meine
Kompetenz und Selbstständigkeit. Dank geht auch an meinen Betreuer Edgar Weippl.

Weiters bedanke ich mich bei meinem Kollegen Markus Maier, der mir Zugang zur
virtuellen Maschine für die Durchführung meiner Simulationen verschafft und mir bei
technischen Problemen weitergeholfen hat. Durch die erhöhte Rechenleistung konnte ich
die Qualität meiner Arbeit bedeutend steigern.

Ganz besonders möchte ich mich bei meinen Eltern bedanken. Ohne eure Unterstützung
wäre mein Studium nicht möglich gewesen und diese Arbeit wäre nicht zustande gekommen.
Ich habe mich immer schon auf euch verlassen können. Danke, dass ihr mir mein ganzes
Leben lang nicht nur finanziell, sondern auch seelisch und tatkräftig beiseitegestanden
seid.

v

Abstract

Bitcoin is the first decentralised digital currency, which to this day has a significant
impact on the body of scientific literature, the global economy and to a certain extent
even climate change. The topology of its underlying network is largely hidden; however,
knowledge of it could on the one hand provide valuable insights into the state of the
system and on the other hand aid in attacks against the network. Previous research on
topology inference is either no longer applicable due to countermeasures implemented in
the reference client or is otherwise impractical.

In this thesis we present a method for finding the degree of a target Bitcoin node as
well as the network addresses of a subset of its peers. Our technique exploits the gossip
protocol around ADDR messages and consists of (1) connecting monitor nodes to as much
of the Bitcoin network as possible, (2) sending ADDR messages containing unique marker
addresses to target nodes, (3) recording the recurrence of each marker address at any
monitor node, and (4) analysing the recorded samples. We estimate node degrees from
the fraction of recurred marker addresses and calculate the probability of connection
between two nodes from the delays between sending markers to one and receiving the
same markers from the other node.

We validated our techniques against simulated traffic data. Our degree estimation
method was nearly unbiased and produced errors showing a standard deviation of 1.5 in
an idealised model and errors showing a standard deviation of 3.6 in a more realistic one,
although in both models the standard deviation of relative errors amounted to only 5 %.
Using conservative classifier sensitivities, our connection inference method performed
with a precision of 40 % and a recall of 99.8 % in the idealised model and both precision
and recall of 56 % in the more realistic one. Using optimal sensitivities at the risk of
overfitting, precision and recall come out to be 94 % and 98 % in the former model and
83 % and 47 % in the latter model.

These findings suggest that cheap and moderately successful topology inference may be
possible in the real Bitcoin network. More research is required to assess the effectiveness
of our approach in greater detail. Nonetheless, Bitcoin developers are advised to consider
adapting current countermeasures or implementing new ones if they want to ensure that
the Bitcoin network topology remains obscured.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1

2 Background 5
2.1 Bitcoin . 5
2.2 Mathematical Concepts . 11
2.3 Related Work . 16

3 Methodology 19
3.1 Data Collection . 19
3.2 Mathematical Description . 20
3.3 Simulation . 26

4 Results 29
4.1 Random Attachment Model . 29
4.2 Degree Distribution Model . 38

5 Discussion 49
5.1 Validation and Analysis . 49
5.2 Limitations . 51
5.3 Implications . 52
5.4 Future Research . 52

6 Conclusion 55

List of Figures 57

List of Tables 59

Bibliography 61

ix

CHAPTER 1
Introduction

Bitcoin is a decentralised digital currency. Its white paper titled Bitcoin: A Peer-to-
Peer Electronic Cash System [Nak08] was published by an unknown party under the
pseudonym Satoshi Nakamoto in 2008, making it the first of its kind. It allows for direct
transactions between Bitcoin users without the need for a central authority or trusted
mediator, thus eliminating reliance on financial institutions or national governments. As
a consequence, Bitcoin can offer high degrees of independence, security, freedom and—if
used carefully—pseudonymity and even anonymity.

Since its inception Bitcoin has accrued considerable academic attention, media coverage
and controversies. Over the years, Bitcoin’s popularity for investment has increased
drastically, reaching a market capitalisation of $1 trillion for the first time [coi]. In 2021
El Salvador became the first country to adopt Bitcoin as legal tender [Del21]. As both
its demand and value increased, more and more effort was exerted into a process called
mining, which refers to a computationally intensive task that allows for the creation of
new bitcoins. In recent years bitcoin mining reached a scale large enough to motivate
scientific investigations on its potential environmental impact. In 2022 it was estimated
to be responsible for 65.4 megatonnes of CO2 per year, representing 0.19 % of global
emissions [DVGKS22].

In order to make use of Bitcoin, one has to run a Bitcoin client implementation, the
most popular being Bitcoin Core, and thereby take part in the Bitcoin network. Every
transaction issued by a client is broadcast to the entire network. Over time transaction
records are collected and compiled into blocks. These blocks are logically chained together,
forming a data structure called the block chain. Each Bitcoin client maintains its own
copy of the block chain. Every time a network node creates a new block, it is broadcast
to the entire network, allowing for the constant synchronisation of the block chain within
the network. This way the block chain can serve as a public ledger through which every
network node can confirm the balance of any other network node.

1

1. Introduction

An important technical aspect of Bitcoin is the quality of its underlying network. As
the title of the white paper gives away already, Bitcoin builds on a peer-to-peer (P2P)
network of Bitcoin clients. The defining characteristic of a P2P network is that all
nodes have the same role in the sense that they are equally privileged and capable,
i.e. there is no hierarchical or role-based structure as would be the case in client-server
network application designs, for example. In a P2P network, connected network nodes
are said to be peers of each other. The topology of the network refers to the arrangement
of connections between the nodes. Knowing this arrangement would help researchers
and developers to assess the health of the Bitcoin network with regards to fairness,
robustness and performance [DSBPS+19]. However, Bitcoin Core is designed to leak
as little information as possible that would allow for discovering a node’s peers or the
number thereof. Bitcoin tries to hide its topology due to the risk of abuse. Knowledge
on the topology of the network could aid attackers in performing certain kinds of attacks
on individual nodes or larger parts of the network. One such attack is called eclipse
attack, where an adversary tries to monopolise all connections to and from a victim
node [HKZG15].

An early landmark paper in the field of Bitcoin network topology discovery was published
by Biryukov et al. [BKP14] in 2014. Their main goal was not primarily topology discovery
but rather deanonymisation of Bitcoin users (i.e. linking public keys to network addresses),
for which topology inference was a necessary step. They achieved the latter by exploiting
mechanisms related to ADDR and GETADDR messages implemented in Bitcoin Core. In the
protocols of the Bitcoin network ADDR messages are used to exchange network addresses
(e.g. IPv4, IPv6 or onion addresses) of network nodes so that Bitcoin clients can establish
connections to each other in order to participate in the network and thus the Bitcoin
system as a whole. When a Bitcoin client receives an ADDR message from one of its peers
under the right conditions, it relays the contained network addresses by packing them
into new ADDR messages and sending them to some of its other peers, which in turn will
repeat the process. This type of protocol is called a gossip protocol and together with
ADDR messages they would form a recurring theme in research following this publication.
However, in response to this paper, countermeasures have been implemented into the
reference client, rendering their methods ineffective.

In 2015 Miller et al. [MLP+15] published a different topology inference method that
also exploited ADDR messages. Again, Bitcoin Core was patched soon after to disable
this kind of attack. In 2016 Neudecker et al. [NAH16] presented a timing-based traffic
analysis technique for topology inference. The idea was to observe the propagation of
INV messages1 and to calculate the probability of connection between two clients given
the set of related message timings. As will be discussed in detail later, this is the type of
inference technique the legacy of which we try to continue in this thesis. The authors
validated their methods in the real Bitcoin network, where their classifier achieved both
precision and recall over 40 %. As a countermeasure for this attack, Bitcoin Core was
patched to introduce random delays between relays of INV and ADDR messages, as the

1Used for notifying peers about new data objects. Short for inventory.

2

latter could also be used for this technique. The researchers found this countermeasure
to be effective—however, this finding will be challenged by the results of our evaluations
presented later in this thesis.

In 2019 Grundmann et al. [GNH19] presented two novel approaches for topology inference,
neither of which would exploit ADDR message gossip. In experiments on connection
inference the more effective of their methods could achieve a precision of 71 % and a recall
of 87 % for the cost of 99 transaction fees at the time. Delgado-Segura et al. [DSBPS+19]
published their inference technique called TxProbe in the same year, which exploits
mechanisms regarding the handling of certain transaction records. Their method was
able to achieve precision and recall over 90 %. However, as they could not rule out that
their technique is disruptive to the Bitcoin system, they used the Bitcoin testnet2 for
their evaluations. Nevertheless, due to their reported success the Bitcoin developers
implemented a type of connection called block-relay-only, over which no transaction
record or network address relay can occur. This countermeasure protects connections
of such type from being found using inference methods relying on the gossip protocol
for the corresponding message type. In 2021 Grundmann et al. [GBH21] were able to
observe a spam wave of ADDR messages of unknown origin moving through the network.
Using the recorded data they were able to estimate the node degree distribution of part
the network, which we will make use of in our research.

Our work aims to answer the question whether the ADDR gossip protocol can be exploited
using active traffic analysis techniques in order to discover the topology of the Bitcoin P2P
network despite current countermeasures implemented in Bitcoin Core. We hope that our
findings may serve as a basis for future measurements that seek to assess (1) characteristics
of the network related to fairness, robustness and performance and (2) the effectiveness
of employed countermeasures. With our connection inference technique we aim to reach
precision and recall of at least 40 %, which is what Neudecker et al. [NAH16] have
previously achieved using analyses of timing data from gossip-related traffic.

In this thesis we present a method to estimate the number of peers of a target Bitcoin
client, i.e. its node degree in the network, as well as a method to infer whether two
clients are connected via a full-relay connection, i.e. any connection other than one of
type block-relay-only. Both techniques draw their input data from the same actively
collected sample of ADDR messages. In order to collect samples, nodes under our own
control—so-called monitor nodes—have to connect to the target nodes and all other
nodes of which we want to determine if they are connected to a specific target. Then,
these monitors send ADDR messages containing unique marker addresses to the targets,
which proceed to relay them to their peers. For degree estimation, we consider the
fraction of marker addresses that each target directly relays the connected monitor nodes,
as this fraction correlates with the target’s total number of peers. For inferring the
existence of a full-relay connection between a target and another observed Bitcoin client,

2The Bitcoin testnet is a network parallel to the Bitcoin network used for testing purposes. It uses a
distinct alternative block chain containing transactions of bitcoins that are not designed to carry any
value.

3

1. Introduction

we consider the time it took the marker address to travel over two or more relays from the
target through the network and finally back to a monitor. This approach is taken from
the 2016 paper by Neudecker et al. [NAH16]. However, in our adaptation we use different
stochastic relationships to calculate the connection probability and we have to defeat
the topology discovery countermeasures implemented since then. In order to validate
our methods and not to disturb the Bitcoin network, we wrote a computer simulation
of the data collection process and used the generated samples as ground-truth for our
evaluations.

This thesis contributes to the body of knowledge surrounding Bitcoin network topology
discovery in these points:

• We give a concise summary of previous attempts to infer node degrees and net-
work links and state if and how each of them have been mitigated by specific
countermeasures implemented in Bitcoin Core.

• We formally define techniques to infer node degrees and network links in the Bitcoin
P2P network using active traffic analysis on recorded ADDR messages.

• We evaluate our methods using cross-validation on simulated network traffic, deter-
mine inference accuracy and highlight other notable findings.

• We discuss limitations of ADDR-gossip-based traffic analysis and outline potential
for future research.

The remainder of this thesis is structured as follows. Chapter 2 explains all relevant
features of the Bitcoin P2P network as well as mathematical concepts used to define
our theoretical framework and techniques. Chapter 3 describe the methodology of our
work, including the relay data collection process, formal models of the network and its
behaviour, statistical methods for topology inference, and the purpose and function of
our simulations. Chapter 4 presents the results of cross-validating our topology inference
methods against simulated network traffic. Chapter 5 discusses the significance and
limitations of these results and outlines potential for further refinement and evaluations.
Finally, chapter 6 concludes by giving a summary of our findings as well as their impact
and by pointing out opportunities for future research.

4

CHAPTER 2
Background

This chapter will present the background information necessary to understand our
methods and the context of this research. Section 2.1 helps to motivate this thesis by
explaining how Bitcoin works with special emphasis on the relay mechanism responsible
for the propagation of network addresses through the network. Section 2.2 deals with
concepts in the fields of graph theory and probability theory, particularly probability
distributions and statistical inference. Section 2.3 gives an overview of related work
surrounding the topic of topology inference with regards to the Bitcoin P2P network and
how techniques and countermeasures have evolved over time.

2.1 Bitcoin
Bitcoin is a decentralised digital currency. As such, it allows for electronic payments
between two parties without the need for central financial institutions or trusted third
party mediators. Furthermore, if used carefully, it can provide anonymity to its users to
a certain extent. Bitcoin is implemented as a peer-to-peer (P2P) network protocol using
cryptographic proof-of-work to enable practically irreversible transactions.

These transactions are assembled into blocks and recorded in a distributed data structure
called the block chain, which serves as a public ledger. Any Bitcoin client may choose
to maintain an up-to-date copy of the block chain by constantly synchronising its local
version with the copies of its peers.

In Bitcoin, transactions are digital records that transfer ownership of bitcoins (BTC)
between Bitcoin users. Whenever a Bitcoin user wants to perform a transaction, he or
she has to specify (1) a set of recipients along with the amount of BTC each of them
is to receive (transaction outputs), and (2) a set of references to previous transactions
through which he or she has received the BTC that shall be transferred (transaction
inputs). Notice how each transaction input references a transaction output of an earlier

5

2. Background

transaction. The inputs must sum up to at least the sum of the outputs and no input
is allowed to reference an output that is already referenced by some other input of a
transaction found on the block chain. That is, any output of any transaction can only be
used once, meaning there is no double spending. Furthermore, the inputs must be signed
by the sender. Every user owns a key pair, where the public key—also known as the
user’s Bitcoin address—serves as his or her identity in transactions and the private key
serves as a means of providing authenticity through signing documents, e.g. transaction
inputs. As a result, a Bitcoin user’s wealth amounts to the total of BTC he or she has
accrued as transaction outputs towards him or her that have not yet been used. Those
are called unspent transaction outputs.
The next step in completing the transaction is for the Bitcoin client to broadcast the
newly created transaction record to its peers. Whenever a client receives a transaction
from a peer, it will validate it by checking if the outputs are covered by the inputs and
whether the signatures are valid. Only if the transaction is valid, the client will proceed
to relay it to its peers, which in turn will validate and broadcast the transaction (except
for those clients which have received and broadcast this exact transaction record before).
By means of this flooding mechanism, the new transaction propagates quickly through
(almost) the entire network.
Recent transactions are collected and assembled into blocks by network nodes called
miners. Each block contains a reference to a previous block, thereby creating a chronolog-
ically ordered chain of blocks—the block chain. A block must contain a number, called
the nonce, such that the hash value of the block is smaller than a certain limit. Finding
a right nonce is done by guessing and checking and requires computational power. This
system is called proof-of-work as anyone can easily compute the block’s hash and prove
that work has been carried out in order to find a fitting nonce. Once the miner has found
a nonce, through which the block’s hash value is admissible, it appends the block to its
local copy of the block chain and broadcasts it to its peers, which will do the same if the
block is valid. In each block, miners are allowed to include a transaction that transfers
a predetermined block reward in BTC to themselves without transaction input. This
process of assembling valid blocks and creating new BTC under the expense of hashing
power is called mining.
Bitcoin clients view the longest available chain of blocks, which is the chain with the
most accumulated proof-of-work, as the true history of events. Note that it is not feasible
for a dishonest individual or group to forge an alternative consistent block chain that
is longer than any other unless they control more hashing power than the rest of the
network combined. This is because even altering one transaction in the block chain alters
the enclosing block’s hash, which necessitates finding a new nonce. Since each block
contains the hash of its predecessor, the forger would have to repeat this process for
every following block. When only a minority of hashing power works on an alternative
block chain, it will never catch up with the currently longest one, on which most of the
network’s hashing power is expended.
Miners race each other in finding the next block. If multiple miners each find a different

6

2.1. Bitcoin

valid block then the first miner to broadcast its own block has the best chances of reaping
the block reward as only one of these blocks will end up in the longest chain and its own
block had a head start by being broadcast earliest. Note that a miner implicitly accepts
a new block found by another miner by treating it as the latest block in the chain and
thus by building upon it. The miner ceases to search for the right nonce for its current
block candidate and instead assembles a new block containing the hash of the block that
the other miner just published. When a miner does not accept a block published by
some other node, e.g. because it is invalid due to containing transactions using bitcoins
that have been spent already, it decides to continue where it left off, namely building
on the longest chain excluding this block. However, if a miner rejects building upon
a valid new block, it effectively forks the chain by creating a separate branch, called
a fork. Assuming most other miners (in terms of collective hash power) do not reject
valid blocks but accept and build upon them, the new fork will not become the longest
branch, causing all other impartial clients to disregard its transactions and block rewards.
Therefore, miners can only hope to win block rewards by accepting new valid blocks as
soon as possible in order not to lose any time in the search for the newest block.

Bitcoin’s most popular client implementation is called Bitcoin Core1. For the remainder
of this thesis all Bitcoin client behaviour is assumed to follow the implementation of
Bitcoin Core 24.12.

2.1.1 P2P Network

The Bitcoin network is a peer-to-peer (P2P) network, meaning that there is no need for
central nodes providing special services. Each Bitcoin client represents a node in the
network having the same privileges like any other node. It does not have to be connected
to some central server but instead relies on a set of peers to receive or broadcast new
information from or to the rest of the network, respectively. Peers try to keep each
other up-to-date regarding, for example, the state of the block chain, new transactions,
network addresses in the P2P network, etc. Information propagates through the network
by means of message flooding or a gossip protocol, where each node relays information it
has not yet received to a selection of its peers, which in turn will do the same.

Bitcoin Core, which is the most popular Bitcoin client implementation, distinguishes
between six types of connections, called inbound, manual, feeler, outbound-full-relay,
block-relay-only and addr-fetch. The latter five may sometimes collectively be referred
to as outbound connections. When a client seeks to build another link to the network,
it reaches out to a new network node and tries to establish a connection. If the other
node accepts, the client gained a new peer over an outbound connection. When the
client accepts an incoming connection request, however, the connection to the new peer
is considered to be inbound. The outbound-full-relay connection type represents ordinary
long-term links without special purpose. As a security measure, Bitcoin Core added

1https://bitcoincore.org/
2https://github.com/bitcoin/bitcoin/tree/24.x

7

https://bitcoincore.org/
https://github.com/bitcoin/bitcoin/tree/24.x

2. Background

the block-relay-only connection type, which—in contrast to the former type—does not
allow the relay of transaction and network address records. All other types, sometimes
collectively referred to as full-relay connections, allow for such relays in order to facilitate
information exchange via gossip. By default a Bitcoin Core client tries to maintain 2
block-relay-only connections, 8 outbound-full-relay connections and a maximum of 125
connections in total.

ADDR Relay Mechanism

Due to Bitcoin’s decentralised nature and P2P network, clients cannot simply look up the
network addresses of all nodes that are currently online by querying a dedicated server.
Instead, peers inform each other about network addresses of active nodes using so-called
ADDR messages. Each such message contains up to one thousand network addresses of
other Bitcoin clients. There are three principal reasons for sending an ADDR message:

1. Advertising one’s own address. As clients want to make themselves known in
the network, they periodically send their own network addresses in ADDR messages
to their peers, which will relay them further into the network.

2. Responding to a peer’s request. Clients can request a set of known network
addresses from peers using GETADDR messages.

3. Address gossip. In the Bitcoin P2P network there is a relay mechanism for
ADDR messages in place, which is designed to enable efficient, effective and secure
propagation of network addresses.

When relaying contents from an ADDR message, clients have to follow a certain procedure
to avoid network contention and giving away the identity of their peers as will be
discussed in subsection 2.1.2. Algorithm 2.1 showcases an abstraction of a thread
processing incoming and outgoing messages for each peer, including the relay procedure,
as implemented by Bitcoin Core.

Lines 5 to 15 show the processing of a received ADDR message. If a message of such type
is received from a peer that is not a block-relay-only peer, then for each address in the
message the client will choose up to two peers to which to relay the address in a new
ADDR message if the following criteria are met:

• The address’ time stamp is less than 10 minutes into the past. Note that the data
structure for network addresses in the Bitcoin P2P protocol contains a time stamp
in order to determine its “age”.

• The original ADDR message is not the response to a recent GETADDR request.

• The original ADDR message contains 10 or less addresses.

8

2.1. Bitcoin

Algorithm 2.1: ADDR relay algorithm
1 while not interrupted do
2 foreach peer do

// process one received message
3 message ← next message from message queue for incoming messages from

peer;
4 if message is of type ADDR ∧ peer does not have connection type

BLOCK_RELAY then
// relay addresses in message

5 foreach address in message do
6 save address as address known by peer;
7 if address is younger than 10 minutes ∧ message is not a reply to a

GETADDR request ∧ message contains not more than 10 addresses
∧ address is routable then

8 n ← if address is reachable then 2 else randomly 1 or 2;
9 candidates ← peers that are neither the originator of message or

have connection type BLOCK_RELAY;
10 relay_peers ← deterministically random subset of candidates of

size min(|candidates|, n);
11 foreach peer in relay_peers do
12 push address onto the message queue for peer;
13 end
14 end
15 end
16 end
17 process message appropriately to its type;

// send messages
18 if peer has connection type other than BLOCK_RELAY ∧ peer’s Poisson

process timer expired then
19 update Poisson process timer for peer;
20 message ← new ADDR message containing all addresses queued for

peer that are not believed to be known by peer;
21 send message;
22 save all addresses in message as known by peer;
23 end
24 send messages of other types;
25 end
26 end

9

2. Background

• The address is deemed routable, i.e. it is a network address publicly routable on
the global internet.

The client will try to choose exactly two peers to which to relay the currently processed
address if it is reachable, randomly one or two otherwise. A network address is reachable
to a client if the client is on the network to which the address belongs. For example,
IPv6 or Onion addresses are not reachable to IPv4-only nodes. Possible candidates for
relay are all peers that are neither the originator nor block-relay-only peers. Of these,
one or two are chosen using a source of randomness that stays constant for 24 hours for
any given address. Note that because of this, the same one or two relay peers will be
chosen for any network address in a 24 hour window3. However, once a client sends a
network address to a peer, the client will henceforth assume that this peer knows the
address and will not send it again. After the appropriate peers have been selected, each
address is pushed onto each of these peers’ message queues.

Lines 18 to 21 show how queued addresses are collected and sent to peers. No address
relay will take place for block-relay-only peers. Bitcoin Core does not immediately relay
addresses from ADDR messages but retains them such that address relays mimic a Poisson
process, where the number of relays for a given peer in a certain amount of time in
seconds follows a Poisson distribution with rate parameter λ = 1/30. As a result there is
on average one relay every thirty seconds from one peer to another. The inter-arrival
times, i.e. the time spans between relays, follow an exponential distribution with the
same rate parameter. This Poisson process is achieved by maintaining a timer for each
peer that holds a timestamp indicating when the next ADDR message may be sent. As
soon as there are network addresses to be relayed and the timer has expired, it is updated
by adding a random value x to the current time where x stems from a random number
generator producing exponentially distributed numbers with rate parameter λ = 1/30.
Queued network addresses not believed to be known by the peer are then bundled into a
new ADDR message and sent to the peer by another thread as soon as possible.

2.1.2 Topology Discovery

The topology of a network refers to the arrangement of its nodes and connections. A
network’s topology can be described on multiple levels of abstraction and by different
metrics. For example, a network’s topology could roughly be known by its class (ring,
star, mesh topology, etc.), by its node degree distribution or by the exact adjacency
matrix of the underlying network graph.

The Bitcoin P2P network protocol is designed to reveal as little information as possible
about the topology of its network. Adversaries could use such information in order to
partition the network [NAH15], perform eclipse attacks [DW13, HKZG15, NKMS16] or
for deanonymisation [BKP14], i.e. linking public keys from transactions to IP addresses.

3The selection may change if the set of peers change but not necessarily.

10

2.2. Mathematical Concepts

Bitcoin’s flooding and gossip mechanisms have been shown to be instrumental in infer-
ring connections between nodes [BKP14, MLP+15, NAH15, NAH16, DSBPS+19]. As
countermeasures, Bitcoin Core implemented exponential delays between relays of net-
work addresses in 20154 to mitigate timing-based traffic analysis attacks and added the
block-relay-only connections, which do not allow the relay of transactions and network
addresses, in order to mitigate the risk of all peers of a node being found by an adversary
in 20195 (refer back to 2.1.1 for details).

2.2 Mathematical Concepts

2.2.1 Graph Theory
Definitions and terminology within the field of graph theory are not entirely congruent
among authors. In the following, we will present formulations that seem to be used in
most publications around computer networks and further in modern textbooks on graph
theory [DSS10, GYA18, BJG18].

In discrete mathematics a graph is given by a set of elements called vertices (also called
points or—especially in the context of computer networks—nodes) that are put into
pairwise relation by a set of so-called edges (also called lines). A graph G = (V, E) is
defined as an ordered pair consisting of a set of vertices V and a set of edges E ⊆ [V]2,
where [A]k denotes the set of all subsets of set A and natural number k. A directed graph
or digraph has two additional mappings init : E → V and ter : E → V that determine
the initial vertex and the terminal vertex of every edge [DSS10, GYA18]. Edges in
directed graphs are also called arcs or directed edges. Alternatively to using init and ter,
a directed graph can be given by a set of edges E ⊆ V × V , where each edge e = (u, v) is
and ordered pair (tuple) of some initial vertex u and terminal vertex v [BJG18]. The
latter will be the assumed definition of directed graphs for the remainder of this thesis.

Two vertices u, v are adjacent to each other if they are part of the same edge, i.e. if
{u, v} ∈ E for undirected graphs or {(u, v), (v, u)} ∩ E ̸= ∅ for directed graphs. Adjacent
vertices are called each other’s neighbours. A directed edge e with the same initial and
terminal vertex is called a loop, i.e. e = (v, v) for some vertex v. The degree (also called
valency) of a vertex is equal to the number of its neighbours. In a directed graph the
in-degree deg+ v of a vertex v is equal to the number of edges where v is the terminal
vertex, and the out-degree deg− v is equal to the number of edges where v is the initial
vertex. A walk of length k in a graph G is an alternating sequence v0e0v1e1 . . . ek−1vk of
vertices and edges from G with ej = vjvj+1 for j < k. A path is a walk in which each
vertex is unique, i.e. it occurs exactly once. Walks and paths may be called directed
walks and directed paths, respectively, in the context of directed graphs. The degree
sequence (d1, d2, . . . , dn) of a Graph G with n vertices is the sequence containing the
degree of each vertex in G in non-decreasing order. For any given undirected graph

4https://github.com/bitcoin/bitcoin/pull/7125
5https://github.com/bitcoin/bitcoin/pull/15759

11

https://github.com/bitcoin/bitcoin/pull/7125
https://github.com/bitcoin/bitcoin/pull/15759

2. Background

G = (V, E) with |E| = m, the probability of any two distinct vertices u, v ∈ V being
adjacent is approximately given by [ZHK+23]

P ({u, v} ∈ E) ≈ deg u deg v�
(deg u deg v)2 + (m − deg u − deg v + 1)2 . (2.1)

Graphs are a common abstraction for computer networks. The underlying graph of a
network is given by the set of network nodes as the graph’s set of nodes (or vertices)
and by the set of (long-term) connections between nodes as the graph’s set of edges.
Typically these network graphs are undirected but may instead be directed in case
the network protocol defines unidirectional connections. Note that as clients of most
computer networks will not hold connections to themselves, analogously their underlying
graphs will not contain loops.

2.2.2 Probability Theory
This section will briefly touch on terms and methods from probability theory and Bayesian
inference required for understanding the remainder of this thesis. However, the scope of
these prerequisites are limited to established concepts commonly discussed in textbooks
on probability theory [BT08] and machine learning [GBC16].

Random Variables and Probability

We will first introduce the term sample space as any set that contains all possible
outcomes of a certain statistical experiment, which can be any observable real-world
process. A subset of the sample space is called event. An event occurs if the outcome
of the experiment is an element of the event. The probability for an event A of some
sample space Ω ⊇ A to occur is written as P (A), where P is called a probability measure.
A random variable X is a mapping from a sample space Ω to a measurable space E. For
the sake of simplicity, we will let random variables always map to R. The distribution
PX of X is defined as

PX(A) := P (X ∈ A) (2.2)

where X ∈ A is short for X−1(A) = {ω ∈ Ω | X(ω) ∈ A}. Note that we may also write
X = x instead of X ∈ {x}.

For example, when flipping a coin, one might interpret the outcome as a random variable
on Ω = {H, T} with X(H) = 0, X(T) = 1 and thus PX(X = H) = PX(0) = P ({H}) = 0.5
as well as PX(X = T) = PX(1) = P ({T}) = 0.5.

The cumulative distribution function (CDF) of some random variable X is defined as:

FX(x) := P (X ≤ x), x ∈ R (2.3)

12

2.2. Mathematical Concepts

A random variable X is called discrete if its sample space is finite or countably infinite,
in which case its CDF is a step function. Its probability mass function (PMF) is then
given by

pX(x) = P (X = x), (2.4)

which describes the probability of occurrence for each individual outcome ω ∈ Ω with
x = X(ω).

A random variable X is continuous if its CDF is a continuous function on R. Its probability
density function (PDF) is then given by

fX(x) = d
dx

FX(x), (2.5)

which describes the probability density at point x. Note that for any continuous random
variable X we have P (X = x) = 0. However, probabilities for X taking on a value in a
given interval (a, b] can be calculated as follows:

P (a < X ≤ b) = P (X ∈ (a, b]) = FX(b) − FX(a) =
� b

a
fX(t)dt (2.6)

Probability Distributions

There are multiple well-studied and common families of probability distributions that
random variables may exhibit. For example, if the outcomes for some random variable X
are equally likely to occur, it is said to follow a uniform distribution written X ∼ U(a, b)
with population parameters a, b being the limits of the image of X. Let X denote the
number of pips shown by a die after it has been rolled then X ∼ U(1, 6) with pX(x) = 1/6.

A discrete random variable X follows a Poisson distribution X ∼ Pois(λ) if its PMF is
given by

pX(k) = λke−λ

k! , (2.7)

where k is the number of arrivals in a fixed-sized interval and λ > 0 is the rate parameter,
which is equal to the PMF’s mean, i.e. the expected value of the distribution. A Poisson-
distributed random variable models a Poisson process. Arrivals in such a process are
randomly distributed within their space and independent of each other. For example,
the number of chewing gums on a stretch of pavement or the number of calls in a call
centre within any constant time span may each form a Poisson processes.

The intervals between arrivals, called inter-arrival times, follow another fundamental
distribution, called the exponential distribution. A continuous random variable X follows
an exponential distribution X ∼ Exp(λ) if its PDF is given by

13

2. Background

fX(x) =
�

λe−λx, x ≥ 0,

0, otherwise,
(2.8)

where x is the interval between arrivals in the Poisson process and λ > 0 is the rate
parameter. The mean or expected value of an exponential distribution is 1/λ. Analogous
to the above examples for Poisson processes, the distances between chewing gums along
a pavement or the times between calls in a call centre may be exponentially distributed.

The sum of k ≥ 1 independent exponentially distributed random variables each with
rate parameter λ constitutes another continuous random variable that follows an Erlang
distribution. A continuous random variable X follows an Erlang distribution X ∼ Erl(k, λ)
if its PDF is given by

fX(x) = λkxk−1e−λx

(k − 1)! , (2.9)

where k is the shape parameter and λ > 0 is the rate parameter. The mean or expected
value of an Erlang distribution is k/λ. An Erlang distribution with constant shape
parameter k may be referred to as an Erlang-k distribution with the rate as its only
population parameter. For example, the PDF of an Erlang-2 distributed continuous
random variable X ∼ Erl-2(λ) is given by

fX(x) = λ2xe−λx. (2.10)

Finally, a discrete random variable X ∼ Hyp(N, K, n) follows a hypergeometric distribu-
tion if its PMF is given by

pX(k) =
�K

k

��N−K
n−k

��N
n

� , (2.11)

where N ∈ N∗ is the population, K ∈ N∗, K ≤ N is the number of success states,
n ∈ N∗, n ≤ N is the number of trials and k ∈ N∗, is the number of successes among
trials. The hypergeometric distribution can be illustrated by the following urn experiment.
An urn contains N balls (population), of which K are red (success states) and N − K
are black. If n balls (trials) are randomly drawn from the urn without replacement then
the number k of red balls drawn (successes) follows a hypergeometric distribution.

Point Estimation

In some real-world applications the family of the probability distribution of some random
variable of a system may be known (or assumed) but not the exact population parameter(s).
When sample data are available, the unknown parameters can be estimated using a

14

2.2. Mathematical Concepts

method called point estimation. Based on the sample data, a “best guess” for the
parameter, called point estimate (or simply estimate), is calculated.

One of the most basic forms of point estimation is known as maximum likelihood (ML)
estimation, in which the maximum likelihood estimate of the unknown parameter is the
value that makes the sample data “most likely”, which is to say it maximises a likelihood
as defined by a likelihood function.

Let X ∼ D(θ) and x = (x1, x2, . . . , xn) be a sequence of realisations (sample data) of the
random variable X. Then the likelihood function for the population parameter θ ∈ Θ for
a parameter space Θ is defined as

L(θ | x) =
n�

i=1
fX(xi | θ), (2.12)

where fX(x | θ) is the PMF (if X is discrete) or PDF (if X is continuous) of X dependent
on the population parameter θ. The maximum likelihood estimate θ̂ML is then the
population parameter under which the likelihood is maximal:

θ̂ML = arg max
θ∈Θ

L(θ | x) (2.13)

Note that the likelihood L(θ | x) does not give the probability of θ being the true value
of the unknown population parameter related to sample x. In this case it only provides a
means of comparison between population parameters in order to find the most “likely”
or “plausible” one given the sample data and assumed distribution family. However,
using Bayes’ theorem, the so-called a posteriori probability or simply posterior can be
calculated from a prior probability distribution on the parameter space and sample data,
also called evidence. Given the prior PMF g on the parameter space Θ and evidence
x = (x1, x2, . . . , xn) from the random variable X with probability distribution fX(x | θ),
the posterior probability distribution h is defined as

h(θ | x) = fX(x | θ)g(θ)
fX(x) =

�n
i=1 fX(xi | θ)g(θ)	

θ′∈Θ
�n

i=1 fX(xi | θ′)g(θ′) . (2.14)

Analogously to ML estimation, the maximum a priori (MAP) estimate is the value for
the parameter θ that maximises its posterior probability given the evidence. It is given
by

θ̂MAP = arg max
θ∈Θ

L(θ | x)g(θ). (2.15)

15

2. Background

Binary Classification

Binary classification refers to the task of labelling elements of a set with one of two labels,
thereby dividing them into two classes. Typically, the objective is to predict which class
any given instance truly belongs to. Most commonly, binary classification problems are
expressed as yes-no questions concerned with whether an instance of a population is truly
of a given type or not. In these cases, the condition of an instance is either “positive”
or “negative” and a function called the binary classifier tries to predict the condition of
a given instance. Common examples for binary classification include medical tests and
spam detection.

We refer to instances where both condition and prediction are positive as true positives.
When both condition and prediction are negative, they are referred to as true negatives.
False negatives are positive instances (falsely) predicted to be negative and false positives
are negative instances (falsely) predicted to be positive.

Commonly used metrics to assess the quality of a binary classifier in terms of the above
outcomes are precision and recall, defined as

precision = TP
TP + FP (2.16)

and

recall = TP
TP + FN (2.17)

where TP is the number of true positives, FP is the number of false positives and FN
is the number of false negatives. Note that TP + FP equals the number of positive
predictions and TP + FN equals the number of positive instances. Therefore, the measure
of precision is the fraction of positive predictions that are correct and the measure of
recall is the fraction of positive instances that are correctly predicted. If both of these
measures are valued equally, then their harmonic mean called F1 score defined as

F1 = 2 · precision · recall
precision + recall (2.18)

may serve as a single value to represent the quality of a classifier.

2.3 Related Work
A number of methods for topology discovery to various extents have been presented
in the past. However, some have been mitigated by Bitcoin Core developers through
implementation of countermeasures, and some require transmitting valid transactions,
which renders them costly and impractical.

16

2.3. Related Work

In 2014 Biryukov et al. [BKP14] showed how an attacker can deanonymise Bitcoin users,
i.e. link a public key from a recent transaction to the network address of the node that
originally issued the transaction. To this end they also established methods to find links
between nodes and estimate the number of connections an individual client maintains at
a specific point in time. In their paper they showed that links can be found by listening
for ADDR messages broadcast by nodes which recently joined the network in order to
announce their presence. Another method would be to send a set of marker addresses to
a node A and then checking—by use of GETADDR messages—if the portion of marker
addresses known by some other node B corresponds to the number of peers of A. The
latter number can be estimated by sending a set of marker addresses to A and recording
the number of marker addresses directly relayed back to the attacker. From this number
the most likely peer count can be estimated. However, since then the behaviour of Bitcoin
Core has changed to a point where these methods are no longer applicable6,7.

Miller et al. [MLP+15] published a paper on discovering the public Bitcoin P2P network
topology and influential nodes in 2015. Using their infrastructure CoinScope in tandem
with their topology discovery technique AddressProbe they showed that only about 2 % of
nodes represented three-quarters of the mining power at the time. AddressProbe exploited
a mechanism in Bitcoin Core where time stamps of (propagated) addresses enabled the
reconstruction of the relay path, ultimately allowing for inferring links between reachable
nodes. This behaviour has since been patched8, making AddressProbe as described in
that paper no longer applicable.

In 2016 Neudecker et al. [NAH16] presented a topology inference model for flooding P2P
networks. They applied this method to the Bitcoin P2P network by analysing observed
propagation delays of INV messages. Using an analytical propagation delay model, they
formulated the probability distribution of shortest path lengths between two peers v1, v2
given a set of observed time spans between sending INV messages to v1 and receiving
them from v2. Thus, under the assumption of correctness of their model, the probability
of connection between any two nodes can be calculated. They validated their findings
with their own ground truth nodes in the real Bitcoin network and achieved both recall
and precision over 40 %. However, these findings only apply to a previous version of
Bitcoin Core when message propagation did not mimic a Poisson process9.

Grundmann et al. [GNH19] described two approaches for topology inference in 2019. The
first one exploits the accumulation of transaction records during transaction gossip but
proved costly and performed poorly in experimental validation. The second one uses the
fact that clients will drop recently received transactions that conflict with earlier ones,
i.e. double spending transactions. In an experimental setup the authors could achieve a
recall of 87 % and a precision of 71 % for a total cost of 99 transaction fees.

6https://github.com/bitcoin/bitcoin/pull/18991
7https://github.com/bitcoin/bitcoin/pull/19763
8https://github.com/bitcoin/bitcoin/pull/5860
9https://github.com/bitcoin/bitcoin/pull/7125

17

https://github.com/bitcoin/bitcoin/pull/18991
https://github.com/bitcoin/bitcoin/pull/19763
https://github.com/bitcoin/bitcoin/pull/5860
https://github.com/bitcoin/bitcoin/pull/7125

2. Background

In the same year Delgado-Segura et al. [DSBPS+19] presented their topology reconstruc-
tion technique TxProbe. It leverages the way Bitcoin Core handles orphan transactions,
which are transactions whose input transactions have not (yet) arrived. The authors
reported precision and recall of their technique to be over 90 %. However, as they could
not conclusively rule out that TxProbe may disrupt the network, experiments have only
been conducted on the Bitcoin testnet. This paper motivated the Bitcoin Core developers
to implement the block-relay-only connection type, which does not allow for transaction
and network address gossip10.

In 2021 Grundmann et al. [GBH21] used data gathered from a spam wave of ADDR
messages from an unknown actor in order to calculate the number of neighbours of each
connected peer. They based their calculations on the equations described in the 2014
paper by Biryukov et al. [BKP14] and validated their findings using ground truth nodes.
This way they were able to reconstruct the node degree distribution of reachable peers in
the Bitcoin P2P network. Note that any future such ADDR wave will not have the same
effect due to a network address rate limit added after this incident11.

10https://github.com/bitcoin/bitcoin/pull/15759
11https://github.com/bitcoin/bitcoin/pull/22387

18

https://github.com/bitcoin/bitcoin/pull/15759
https://github.com/bitcoin/bitcoin/pull/22387

CHAPTER 3
Methodology

The method of topology inference in the Bitcoin P2P network will be presented in three
sections. First, section 3.1 will describe how researchers or adversaries can gather samples
of messages on which traffic analysis will be performed. Second, section 3.2 will map the
network and its behaviour to a formal model, allowing for a mathematical description
and analysis of node degree estimation and connection inference. Third, section 3.3 will
explain the purpose, design and functionality of the computer simulation that has been
written in order to simulate the process of data collection and topology inference.

3.1 Data Collection
Since our technique for topology discovery will be a kind of active traffic analysis using
only the Bitcoin P2P protocol, we will have to connect our own clients to the existing
network, which have to be capable of at least the relevant subset of the protocol. The
data to be analysed consist solely of sent and received ADDR messages. Nodes controlled
by the researcher or adversary performing the task of data collection are called monitor
nodes. These are responsible for sending fake but reachable1 so-called marker addresses
to the target node, which is the Bitcoin network node of which peers and the number
thereof are to be inferred.

We call the sending of a marker address by a monitor to a target an injection. After
such injection, the target will relay the marker address to two peers as a part of the
gossip protocol. The address may thus multiply and spread through the network along
what we will call relay paths where each node in a path is known as a hop. Eventually,
a marker address may recur when a Bitcoin node receives this address and relays it to
a monitor. Every recurrence yields knowledge of the first (the target) and last hop as
well as the delay between injection and recurrence since we know what unique marker

1as defined in 2.1.1

19

3. Methodology

address has been injected to which target and which Bitcoin node has finally sent it back
to a monitor. Note that when the target relays an injected marker address directly back
to another monitor node, it is both the first and last hop in the relay path.

Monitor nodes could be configured to accept inbound connections in order to attempt to
discover at least part of the peers of an otherwise unreachable Bitcoin node. However, it
cannot be guaranteed that a node will open a full-relay connection to a monitor. While
a Bitcoin Core client announces whether it seeks to establish a block-relay-only or a
different type of connection, monitor nodes are assumed to ignore all incoming connection
requests in this thesis.

3.2 Mathematical Description
3.2.1 Network Model
The Bitcoin P2P network can be modelled as a directed graph G = (V, E), where the
set of vertices V represents the set of reachable2 network nodes and the set of directed
edges E represents the set of full-relay connections between pairs of network nodes. It
holds that (u, v) ∈ E if and only if node u maintains an outbound-full-relay connection
to node v and consequentially node v maintains an inbound connection to node u. Since
our method of inferring connections between nodes cannot determine their directions,
we will use the underlying undirected graph as the Bitcoin network model, i.e. where
{u, v} ∈ E if and only if u maintains any type of full-relay connection to v for all pairs
of nodes u, v ∈ V .

Recall that a standard Bitcoin client will relay addresses received through ADDR messages
to peers over potentially any type of connection except for the block-relay-only connection
type. Given that our probing and inference method relies on precisely this network address
relay mechanism and block-relay-only connections play no part in network address gossip,
there is currently no hope of finding block-relay-only links. Therefore, these connections
are not part of the network model and are not depicted in the graph abstraction of the
Bitcoin P2P network.

From the definition of the network graph model it follows that the degree deg v of a
node v is equal to the number of its full-relay connections minus the number of inbound
connection where the peer holds a block-relay-only connection to v. However, as monitor
nodes and their connections will be introduced in the course of data collection, these
have to be considered as well. Formally, the set of network nodes V is extended by the
set of monitor nodes and the set of network connections E is extended by all connections
that involve a monitor node. The number of monitor nodes to which any Bitcoin node
v is connected will be denoted by degm v. Note that deg v will continue to refer to the
degree of v within the graph excluding monitor nodes and edges, because ultimately only
this degree is what attackers and researchers are trying to infer and not the number

2reachable in the sense that their network addresses are known and that they are not configured to
reject incoming connection requests

20

3.2. Mathematical Description

of connections they themselves established. However, as will prove practical in later
sections, we will introduce the relay degree degr v = deg v + degm v of a node v denoting
the number of all potential candidates for network address relay, namely the number of
peers excluding block-relay-only peers.

While useful for the purposes of this thesis, our network model comes with several
limitations. Firstly, it is consistent and entirely static, whereas the real Bitcoin P2P
network is of dynamic nature with network nodes joining and leaving constantly. However,
research has shown that the churn rate among reachable nodes is moderately high and
relatively stable at around 5 to 6 % per day [ECP21]. Secondly, tying in with the
previous point, the short-lived feeler and addr-fetch connections are not differentiated from
outbound-full-relay connections. Typically, when it comes to the Bitcoin network topology,
attackers and researchers are mostly concerned with long-standing connections, i.e.
outbound-full-relay, block-relay-only and manual connections as well as their symmetric
inbound counterparts. Lastly, we assume every node in the network to behave like Bitcoin
Core 24.1 in all aspects relevant to this study.

3.2.2 Relay Model
In the attempt to find both the number and the identity of peers of a targeted Bitcoin
network node, the ADDR relay mechanism as implemented by Bitcoin Core serves as the
central source of information. Whenever a monitor node sends an ADDR to a targeted
Bitcoin node, there are two types of random variables that can be observed: 1. the number
of addresses that the target relays directly to other monitors and 2. the delay between
injection and recurrence of each marker address. Note that some marker addresses may
never recur and that the aforementioned delay is only relevant if a monitor receives the
marker address by a node other that the target.

Degree Estimation

Probabilistically finding the degree of a node in the network graph—in other words
finding the number of peers of a reachable Bitcoin client—can be performed by point
estimation. To this end, an attacker gathers a sample of data by repeatedly sending
ADDR messages containing unique marker addresses to the targeted node and observing
part of its relay behaviour. The number of peers of this client is a parameter of the
distribution of the values in the collected sample. Finally, the attacker can estimate the
degree of the node, in other words the number of peers, using ML or MAP estimation on
the sample.

Let v be the target node and let it be connected to at least two monitor nodes, i.e.
degm v > 1. Recall that upon receiving a message of type ADDR, a Bitcoin Core client will
take part in network address gossip by relaying the contained addresses to a subset of its
peers, provided the preconditions as described in 2.1.1 are met. The implemented relay
mechanism causes the client to randomly choose min(degr v − 1, 2) full-relay peers for
relay of each address contained in that message excluding the originator of the message.

21

3. Methodology

Note that the number of connections deg v maintained by any Bitcoin Core instance v is
never meant to be below 8. When a Bitcoin Core process starts, it tries to establish 8
outbound-full-relay connections as soon as possible. Whenever an outbound-full-relay
peer disconnects, the client tries to find another node to which such a connection can
be established. It can also reasonably be assumed that any node accepting two monitor
connections has at least one other full-relay connection (and likely many more). Therefore,
for the purposes of this thesis min(degr v − 1, 2) = 2 can reasonable be assumed for any
reachable node v even if only two monitors are connected, i.e. degm v = 2.

After the client has chosen the relay peers for a certain address, it proceeds to schedule
and send the address enclosed in an ADDR message unless it thinks the chosen peer knows
of the address already. The latter can be the case if the client has recently received that
address from the chosen peer or if the client has recently sent that address to it.

Assume one of the monitor nodes injects a sequence of ADDR messages containing fresh
network addresses into a target node v. The higher the fraction of monitors among the
full-relay peers of the target, i.e. the higher the ratio degm v : degr v, the higher the
average portion of monitor clients among the relay peers chosen by v. Put more precisely:
Let the discrete random variable X denote the number of monitor clients among the
peers chosen for relay by v for an address that is to be relayed. Then X follows the
hypergeometric distribution

X ∼ Hyp(degr v − 1, degm v − 1, min(degr v − 1, 2)), (3.1)

where the distribution’s population degr v − 1 is the number of eligible peers, the number
of success states degm v − 1 is the number of monitors connected to v excluding the
injecting monitor, and the number of trials min(degr v − 1, 2) is the number of chosen
relay peers, which is 2 in all relevant cases. Therefore, the probability mass function for
X parameterised by the degree of the target deg v = d (for d ∈ N∗, d > 1) is given by

pX(k | d) =
�degm v−1

k

�� d
2−k

��degr v−1
2

� , (3.2)

where degr v = d + degm v is dependent on the assumption deg v = d. With a sample
S = (k0, k1, . . . , kn) of n observations, where each element is a realisation of X, i.e. the
number of marker addresses directly relayed to another monitor following an injection,
the ML estimate d̂ML is given by

d̂ML = arg max
d∈N

n�
i=0

log pX(ki | d). (3.3)

Under the assumption of a prior distribution of node degrees in the Bitcoin network, the
MAP estimate can be calculated instead. Let pd(d) be the probability mass function of
the prior distribution of node degree d then the MAP estimate d̂MAP is given by

22

3.2. Mathematical Description

d̂MAP = arg max
d∈N

n�
i=0

pX(ki | d)pd(d). (3.4)

The prior degree distribution may be taken from the work of Grundmann et al. [GBH21]
(see 2.3).

Edge Prediction

Predicting connections between any two reachable clients is done similarly to estimating
a client’s number of peers: First sample data are collected by injecting marker addresses
and listening for their recurrences. Then ML or MAP estimation is performed using the
sample data as evidence. However, in this case timing data are extracted from the sample
and recurrences are only accepted from nodes other than the target node itself. Also,
instead of point estimation, the task of finding out whether {u, v} ∈ E or {u, v} /∈ E for
the network graph G = (V, E) is more commonly called binary classification and the
function trying to predict if {u, v} ∈ E on the basis of collected data samples is called a
Bayes classifier.

In order to maximise the number of identified peers of a target node, the monitor nodes
have to be connected to as many reachable nodes as possible, since without any prior
knowledge any reachable node could be a peer of the target. Every time a monitor
sends a marker address to a target, the latter has the option to choose a monitor or a
non-monitor peer for each of the two relays. When it chooses a monitor, this information
can be used for degree estimation as described in 3.2.2 but not for edge prediction. If it
chooses a non-monitor peer, there are again two options. The peer could either relay the
marker address to a monitor or relay it further into the network. If the peer chooses the
second option, the marker address may take a path of several nodes through the network
before finally ending up at a monitor if it recurs at all. In both cases the delay between
injection and recurrence of this marker address can be recorded for each pair of target
node and final hop and used as evidence for the classifier. In theory if target u and node
v are connected, a certain fraction of marker addresses are bound to be relayed from
u over v to a monitor. The delays exhibited by relays along this path follow a known
distribution that could not be observed if u and v were not connected.

As previously mentioned, a Bitcoin Core instance does not immediately relay network
addresses from received ADDR messages. Instead, it holds a timer for each peer and only
if the timer expires, scheduled network addresses are bundled into an ADDR message (or
multiple messages if more than 1,000 addresses need to be sent) and relayed. After every
such expiry, the timer is updated by a number drawn from an exponential distribution
with mean λ = 30 seconds. This causes the delays for individual relays between any two
peers to follow the same exponential distribution.

Let u be the target node and v be one of its peers, i.e. {u, v} ∈ E for network graph
G = (V, E). Further, let monitor node m be connected to target u and monitor node

23

3. Methodology

m′ be connected to node v, i.e. {(m, u), (m′, v)} ⊂ E. We will denote the fact that an
injection has caused a relay path (m, u, v, m′) (called direct path) by u → v and we will
denote the fact that an injection has caused a relay path with at least one extra hop
between u and v (called indirect path) by u ↛ v.

Let X be the random variable denoting the delay δ between injection into target u and
recurrence from node v ≠ u of a marker address within the network graph G = (V, E).
The delay observed from a direct path, in other words the delay between the target node
receiving a marker address, relaying it to a peer and that peer relaying it to a monitor,
is the sum of two such exponential distributions known as an Erlang-2 distribution.
Therefore, X under the condition u → v follows the Erl-2(30) distribution with probability
density function

fX(δ | u → v) = λ2δe−30δ. (3.5)

The probability density function for X under the sole condition of the target and the final
hop being connected is the sum of the probability density for the delay under condition of
a direct relay path multiplied by the prior probability of the relay path being direct and
the probability density for the delay under condition of an indirect relay path multiplied
by the prior probability of the relay path being indirect:

fX(δ | {u, v} ∈ E) = fX(δ | u → v)P (u → v) + fX(δ | u ↛ v)P (u ↛ v) (3.6)

Given a set of observed delays between a target and a potential peer, the likelihood of
these nodes being full-relay peers is determined by the equality

L({u, v} ∈ E | ∆) =
�
δ∈∆

fX(δ | {u, v} ∈ E) (3.7)

and analogously the likelihood of them not being full-relay peers by

L({u, v} /∈ E | ∆) =
�
δ∈∆

fX(δ | {u, v} /∈ E). (3.8)

Using these likelihoods we can now calculate the posterior probability for connection
under the assumption of some prior probability P ({u, v} ∈ E) for nodes u and v to be
connected using

P ({u, v} ∈ E | ∆) = L({u, v} ∈ E | ∆)P ({u, v} ∈ E)
P (∆) , (3.9)

where

24

3.2. Mathematical Description

P (∆) = L({u, v} ∈ E | ∆)P ({u, v} ∈ E) + L({u, v} /∈ E | ∆)P ({u, v} /∈ E). (3.10)

Finally, we can define the Bayes classifier that labels a pair of nodes given the corre-
sponding data set as either “positive” (i.e. connected) or “negative” (i.e. disconnected).
Additionally, we parameterise it by a confidence or certainty threshold t, which may let
us trade precision for recall and vice versa:

C(∆u,v; t) =
�

“positive” if P ({u, v} ∈ E | ∆u,v) > t

“negative” otherwise
. (3.11)

Note that while a threshold of 50 % should theoretically minimise the chance of misclas-
sification, it might not lead to an optimal balance between precision and recall as will be
shown in Chapter 4.

If no prior probability for connection is known, we can simply assume the existence of a
connection to be as probable as its absence and hope that a large enough sample ∆ can
be gathered to make accurate predictions nonetheless. This is in line with the frequentist
interpretation of statistics and leads to what we will call the frequentist classifier. If,
however, we can assume a prior connection probability and incorporate it into the
posterior calculation, then we might achieve better prediction quality while requiring
less data. Using this informed prior distribution within the Bayesian interpretation of
statistics, we arrive at the true Bayes classifier. Note that strictly speaking our frequentist
classifier is a Bayes classifier as well but we chose this terminology to refer to the fact
that it does not make use of an informed prior probability.

The probability densities fX(δ | u ↛ v) and fX(δ | {u, v} /∈ E) as well as the probabilities
P (u → v) and P (u ↛ v) will not be analytically derived but extracted from simulations
described in 3.3. The prior edge probability P ({u, v} ∈ E) = 1 − P ({u, v} /∈ E) is
approximately given by [ZHK+23]

P ({u, v} ∈ E) ≈ deg u deg v�
(deg u deg v)2 + (|E| − deg u − deg v + 1)2 . (3.12)

The degrees of u and v can either be inferred as described in 3.2.2 or assumed to be the
average degree determined by Grundmann et al. [GBH21].

Before moving on to the next section, it should be noted that confounding factors like
CPU time and network latency are not taken into account. Instead, the entire time span
between sending an ADDR message and receiving a marker address from that message is
assumed to be wholly due to delays deliberately introduced through the implementation
of the relay mechanism. While part of these confounders could possibly be accounted for
in the classification process, we will view them as negligible considering how short these
delays typically are compared the client’s intentionally caused delays.

25

3. Methodology

3.3 Simulation

In the course of this thesis a simulation of the Bitcoin network’s behaviour regarding the
ADDR gossip protocol has been developed. Specifically, it simulates the data collection
process described in 3.1 and provides samples structurally identical to what one might
expect from an experimental setup involving the actual Bitcoin network. All the relevant
data structures and functions from the C++ source code of Bitcoin Core have been
adapted and transferred into the source code of the simulation. The software is written
in Python 3.11 using the popular packages NumPy, SciPy, Pandas and NetworkX.

The purpose of this endeavour is threefold:

1. It is used to generate empirical probability distributions for fX(δ | u ↛ v) and
fX(δ | {u, v} /∈ E) as well as the empirical prior probabilities for P (u → v) and
P (u ↛ v) in order to perform edge prediction.

2. It provides a way to evaluate and adapt our methods without having to interact
with and potentially disturb the real Bitcoin network.

3. It serves as a proof of concept for our presented method.

First, a directed graph data structure representing the Bitcoin P2P network is generated.
Its vertex set represents all Bitcoin clients and monitor nodes and its edge set represents
outbound-full-relay and block-relay-only connections between the network nodes. Al-
though the simulation can be performed on almost any directed graph without loops, we
evaluated our methods on two base graphs of particular interest as described in 3.3.1.
Then ADDR gossip is initiated by having the monitor nodes inject marker addresses
into the network. Each client emulates the relay behaviour of Bitcoin Core and thus a
cascade of message relays along the edges of the network is triggered. During this stage
all message data are recorded for later evaluation. Once the simulation has concluded,
the raw data are compiled and stored to disk. These traffic data can then be used for
node degree estimation and edge prediction as if collected from the real Bitcoin network.
The predictions are validated against ground truth knowledge on the simulated network
topology.

Note that this approach inherits all limitations discussed in the prior section of this
chapter. Most notably, the network is assumed to be completely static, i.e. the set of
nodes and the set of edges remains constant, and no message exchange is simulated that
is not originally caused by a monitor node. Furthermore, the topology and behaviour of
the simulated network may considerably deviate from the real Bitcoin network. Either
refining the network model and with it the simulation or further analysing the implications
of these simplifications is outside the scope of this thesis and left for future research.

26

3.3. Simulation

3.3.1 Graph Generation
For the purposes of this thesis, ADDR relay simulations have been performed on the basis
of two different graph generation procedures. Although these methods only differ in the
number of unreachable nodes and the distribution of connections between the reachable
and unreachable portion of the network, they lead to noticeably different results as will
be discussed in chapter 4.

The employed graph generation procedures are based on two different sources of prior
knowledge on the Bitcoin network. One of them (used in the random attachment model,
see section 4.1) replicates the number of reachable and unreachable nodes as reported by
Bitnodes3, whereas the other (used in the degree distribution model, see section 4.2) tries
to match the node degree distribution within the reachable portion of the network as has
been reported by Grundmann et al. [GBH21] in 2021.

Both graph generation procedures start by creating the reachable portion of the network
as a random uniform k-out graph without loops where k = 10 under the constraint that
deg v ≤ 125 for all reachable nodes v. The value k = 10 and the constraint deg v ≤ 125 are
chosen in analogy to Bitcoin Core, which requires maintaining exactly 2 block-relay-only
and exactly 8 outbound-full-relay connections, and allowing no more than 125 connections
in total. The number of reachable nodes is set to 17,000, which is roughly what Bitnodes
reports at the time of this writing [bit]. 10 reachable nodes are chosen uniformly at
random to represent the target nodes, of which degrees and neighbours are to be inferred.

The next step is to add unreachable nodes to the current graph of reachable nodes.
This is done in one of two ways. The first one is to add 28,000 nodes—as is again
reported by Bitnodes—and then randomly pick 10 reachable nodes as outbound peers
for each unreachable node. These kinds of graphs define what will be called the random
attachment model. The second way to add and connect unreachable nodes is to first
determine the number of unreachable nodes under the assumption of each one having
exactly 10 outbound peers and requiring the degree distribution among reachable nodes
as estimated by Grundmann et al. [GBH21], and then to randomly choose the outbounds
for each unreachable node without breaking these premises. Graphs computed with this
methods define the degree distribution model.

Next, two outbound connections of each node will be determined to be of type block-
relay-only. Finally, 20 monitor nodes are added to the graph and each of them will be
connected to as many reachable nodes as possible without exceeding the connection limit
in the simulated Bitcoin clients. The number of connections that each monitor node can
hold is not limited in this simulation.

3https://bitnodes.io/

27

https://bitnodes.io/

CHAPTER 4
Results

This chapter will present the results from our simulations using two different network
graph models, called random attachment model and degree distribution model, which
will be discussed separately in sections 4.1 and 4.2, respectively. Our degree estimation
and edge prediction methods have been evaluated under each model using leave-one-out
cross-validation (LOOCV) on 10 samples. During LOOCV each sample is chosen to
be the validation set once, leaving 9 samples as training sets. The latter provide relay
duration distributions for both connected and disconnected pairs of nodes, such that the
likelihood and posterior probability for connection between target and some monitored
node given their set of relay durations can be computed. These values represent the
classifier’s confidence in two nodes being adjacent given the collected evidence. Note
that degree estimation does not require a training phase since the relationship between
the observed relay behaviour and the degree of a given node is assumed to be exactly as
described in 3.2.2. Results are averaged over all validations for each model.

4.1 Random Attachment Model
In the random attachment model the simulation is run on a network graph consisting
of 17,000 reachable and 28,000 unreachable nodes connected at random. Refer to 3.3.1
for details on the generation procedure. This type of graph represents a simple and
predictable yet likely naïve abstraction of the Bitcoin P2P network. In the following
we will outline the composition of the generated network, statistics about the simulated
network traffic, and present the cross-validation results.

4.1.1 Network and Traffic Statistics
Figure 4.1 shows the average degree distribution among all reachable nodes and target
nodes. Because the reachable portion of the graph is generated as a random uniform

29

4. Results

0

250

500

750

1000

1250

A
b
so
lu
te

F
re
q
u
en

cy
Reachable Nodes

20 30 40 50 60

Node Degree

0.0

0.2

0.4

0.6

0.8

1.0

A
b
so
lu
te

F
re
q
u
en

cy

Target Nodes

Figure 4.1: Degree frequency distribution among reachable and target nodes

10-out graph, the corresponding node degree distribution resembles a balanced bell
shape with mean and standard deviation of around 36.47 and 5.15, respectively. The
highest recorded node degree was 65, which is why all 20 monitors could connect to every
reachable node without exceeding the connection limit of 125. Although the shape of the
rather uneven degree distribution among the target nodes differs significantly from the
previous bell-curve distribution, the target node degrees exhibit similar statistics with
mean and standard deviation of 36.80 and 5.55, respectively.

Recall that a Bitcoin Core client refuses to relay the addresses in a previously received
ADDR message if the peer which sent the message has exceeded the rate limit or if the
encompassing ADDR message contained more than 10 addresses. These mechanisms are
relevant to our research as they restrict the ADDR message gossip necessary for data
collection. In order to avoid network congestion, wasting marker addresses and possibly
skewing training data, a dedicated monitor node injects marker addresses into all targets
in a round-robin fashion, waiting 0.75 seconds between any two consecutive injections.
This delay has been chosen because each node is assumed to require 30 seconds per relay
to one full-relay peer on average. Since each node is also assumed to have at least 8
full-relay peers and to relay each address to 2 full-relay peers in parallel, the minimum
required injection delay for a single target amounts to 2·30

8 = 7.5 seconds. Interspersing

30

4.1. Random Attachment Model

Table 4.1: Number of received and dropped marker addresses

Received Rate Limited Payload Too Large
Per Client 1,086 0.049 0.117
Total 48,888,846 2,210 5,247

Table 4.2: Number of injected and recurred marker addresses

Injected markers Recurred markers
Period [min]
15 1,200 1,295,602
55 4,400 7,901,036
95 7,600 14,100,711
135 10,000 20,065,056

injections for 10 targets thus yields the aforementioned delay of 0.75 seconds.

Table 4.1 shows the average number of addresses transmitted to network clients and how
many of those were not relayed due to either the rate limit or message size limit with
regards to ADDR gossip. With less than one thousandths of addresses left unrelayed, it
can be said that in these simulations network traffic contention was low. However, since
no “background” ADDR gossip was simulated and instead only the one introduced by
monitor nodes using marker addresses, the inter-injection interval of 0.75 seconds cannot
be deemed sufficient to prevent reaching the ADDR message throughput capacity of the
real Bitcoin network.

In order to assess how the amount of available data affects the quality of degree estimation
and edge prediction, each validation was performed four times, using either only the first
15, 55, 95 or 135 minutes of measurement data. Table 4.2 lists the average number of
injected and the average number of recurred marker addresses within each period. We
can infer that a single injected marker address may multiply during ADDR gossip so that
on average around 2,000 copies travel through the network and end up at monitor nodes.
After the initial 15 minutes of data collection, each additional 40 minutes yielded between
roughly 66 to 60 million additional recurrences, diminishing with increased simulation
time.

Note that not every marker address which found its way back to a monitor node
corresponds to exactly one data point for both degree estimation and edge prediction. In
the case of degree estimation, each injection maps to exactly one data point, namely the
number of monitor nodes—either 0, 1 or 2—among the peers which the target determined
to be the relay recipients. In the case of edge prediction, every recurrence of a marker
address where the node that relayed the marker to a monitor is not also the target into
which the marker has originally been injected corresponds to one data point, namely
the delay between injection and recurrence of this marker address. Therefore no marker

31

4. Results

Table 4.3: Number of datapoints for degree estimation and edge prediction

Degree Estimation Edge Prediction
Per Instance Total Per Instance Total

Period [min]
15 120 1,200 7 1,294,677
55 440 4,400 46 7,898,189
95 760 7,600 82 14,095,966
135 1,000 10,000 118 20,058,859

address recurrence can be part of both degree estimation and edge prediction input
data. Table 4.3 gives the average number of data points for both inference techniques by
measurement period. In the context of degree estimation the word “instance” refers to
the target nodes, while in the context of edge prediction it refers to pairs of nodes where
one of them is a target node and the other is any monitored client.

Part of the purpose of this ADDR gossip simulation was to study the distribution of time
spans between injection of a marker address into a target peer and recurrence of the
same address via some other observed node dependent on whether these two nodes are
neighbours through a full-relay connection or not. Figure 4.2 shows the Gaussian kernel
density estimates (KDEs) on different subsets of the relay duration data gathered from
the simulations. The plot at the top shows the KDEs of the delays separated by whether
they stem from pairs connected by full-relay connections or not, whereas the bottom plot
shows the KDEs of the delays recorded from full-relay connected pairs, split by relay
path length. Recall that a direct relay path contains exactly two relays and implies a
full-relay connection while an indirect relay path does not.

Notice how the relay durations produced by full-relay connected pairs exhibit a discernibly
different distribution than the one produced by pairs that are either disconnected or
connected via a block-relay-connection. Comparing direct and indirect recurrences from
full-relay connected pairs of nodes, it becomes intuitively clear that the difference we
observed in the densities above are due to the portion of relay paths taking the direct
route back to a monitor node without any nodes in between the observed pair. As
expected, the KDE of durations from direct paths approach the probability density of
the Erlang-2 distribution. On average, about 20 % of observed relay paths from full-relay
connected pairs of nodes were direct. Indirect paths from full-relay connected nodes and
paths from disconnected or block-relay-only connected nodes seem to produce effectively
indistinguishable delay distributions. These empirical probability density functions allow
for the calculation of the likelihood of full-relay connection between a pair of nodes given
a sequence of observed relay durations.

An interesting observation that can be made on the simulated relay data is that the mean
relay path durations do not scale linearly with their corresponding path lengths. Since
a relay path of length n contains n consecutive relays that each follow an exponential

32

4.1. Random Attachment Model

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

P
ro
b
a
b
il
it
y
D
en

si
ty

Connection Type

Full-relay

Block-relay-only or None

0 100 200 300 400 500 600 700 800

Relay Duration [s]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

P
ro
b
a
b
il
it
y
D
en

si
ty

Relay Path Type

Direct

Indirect

Figure 4.2: Gaussian kernel density estimates for total relay durations

distribution with λ = 30 seconds, one might expect the mean total duration of a relay
chain of length n to be the expected value of the Erlang-n distribution. However, as
can be seen in figure 4.3, the expected mean duration for paths of length n seem to
increasingly overestimate the observed value for increasing n. This can be explained by
the fact that relay paths with shorter relay times “crowd out” relay paths with longer
ones. Once a marker address has arrived at a Bitcoin client, there is no more chance for
the same marker address to be relayed further if it arrives again at the same client over a
path containing longer delays later because in this simulation Bitcoin clients do not relay
the same address twice. In other words, relay chains with longer relay times are likely to
be extinguished early because the marker addresses have already permeated through the
network over relays that have been much quicker solely by chance. Ultimately, what this
observation proves is that relays are not truly independent of each other as assumed in
our inference techniques. However, since our techniques are mainly reliant on relay paths
of length 1 or 2, this circumstance is effectively of no relevance.

33

4. Results

4 8 12 16 20

Path Length (Number of Relays)

120

240

360

480

600
R
el
ay

D
u
ra
ti
o
n
[s
]

Expected

Observed

Figure 4.3: Empirical mean relay durations compared to expected values of corresponding
Erlang distributions

4.1.2 Degree Estimation

Table 4.4 shows the mean and standard deviation of absolute1 and relative errors for each
degree estimator by measurement period, averaged over all 10 evaluations. After only
15 minutes of measurement amounting to 120 data points per target, both estimators
produced a mean error within one node degree. This mean error converges towards 0
with increasing amounts of data, meaning neither estimator seems to be biased towards
systematically over- or underestimating. The ML estimator, which disregards knowledge
on the prior node degree distribution in the network, consistently outperformed the MAP
estimator in terms of mean error likely due to the fact that the degree distribution of the
randomly selected sets of targets did not end up being very close to the degree distribution
of the remaining reachable portion of the network graph (see figure 4.1). However, the
ML estimates do showcase a higher average standard deviation from the true degrees
than the MAP estimates. Again, with increasing amounts of data the standard deviation
of errors seem to decrease, ending up at around 1.37 for MAP estimation and 1.53 for
ML estimation as well as at a standard deviation of relative errors of around 0.05 using
the entire data set containing 10,000 data points from 135 minutes of probing.

1In the sense of “not relative”, also simply “error”. Not to be confused with the mean or standard
deviation of the absolute values of the errors

34

4.1. Random Attachment Model

Table 4.4: Degree estimation errors

Absolute Relative
Mean STD Mean STD

Period [min]

15 MAP -0.690000 3.061266 -0.012269 0.101907
ML 0.010000 4.217746 -0.000065 0.138399

55 MAP -0.530000 1.988669 -0.012755 0.065817
ML -0.250000 2.305326 -0.008799 0.074859

95 MAP -0.300000 1.422783 -0.006959 0.048555
ML -0.150000 1.667752 -0.005455 0.055897

135 MAP -0.320000 1.370973 -0.008008 0.048355
ML -0.130000 1.525029 -0.004784 0.050213

4.1.3 Edge Prediction
Figure 4.4 shows the average precision, recall and F1 score of edge prediction depending
on the certainty threshold above which an instance is labelled positive, i.e. above which
a pair of nodes are predicted to be peers over a full-relay connection. Three features are
immediately apparent:

1. With limited data the Bayes classifier, which takes the prior connection probability
into account, performs much better in terms of F1 score at moderate thresholds
around 0.5 compared to the frequentist classifier. The latter requires much less
supporting evidence before labelling an instance positive, which trivially improves
recall but comes at the cost of precision due to the increasing number of false
positives.

2. With increasing amounts of data the recall score tends to stay high for both classifiers
even with strict thresholds close to 1. This means that existing connections between
monitored clients are likely to be found given sufficient data. In other words,
existing connections are unlikely to be falsely omitted.

3. With increasing amounts of data the recall curve decreases steeply just below the
threshold of 1 while the precision curve increases steeply just above the threshold of
0. Precision remains nearly linear with only a small positive slope in the threshold
range between 0.01 and 0.99, after which it increases very steeply again until the
threshold value 1. This is because with growing evidence the classifier tends to map
negative instances (disconnected node pairs) to ever smaller certainties and positive
instances (connected node pairs) to ever greater certainties, such that relatively few
instances are assigned certainty values closer to 0.5 than to either 0 or 1. Table 4.5
summarises this effect. The reason neither classifier can achieve their maximum
precision until using certainty thresholds extremely close to 1 is due to false positives

35

4. Results

Table 4.5: Mean connection certainty values

Bayesian Frequentist
Negative Positive Negative Positive

Period [min]
15 0.001626 0.754702 0.216450 0.952677
55 0.001670 0.989744 0.009530 0.998680
95 0.002079 0.999366 0.004382 0.999726
135 0.002070 0.999976 0.003560 1.000000

with extremely high connection probability estimates. These are negative instances
that seem to produce deceptively “positive looking” data samples, i.e. there are
observed pairs of disconnected clients that produce an unexpectedly high number
of short delays. Interestingly, this problem cannot be solved by collecting more
data points since those will only cause the calculated probability for connection to
rise instead of fall.

Figure 4.5 shows the same plots from figure 4.4 but limited to the evaluations using the
full 135 minutes of data collection and thresholds above 1 − 10−14. For each measurement
period and classifier table 4.6 shows (1) the threshold at which the F1 score becomes
maximal, (2) precision and recall at that threshold, and (3) the maximum value for
the F1 score. We can see that with increasing thresholds up to 1 precision continues to
increase, i.e. negative instances are correctly identified, whereas recall decreases only
slightly, meaning higher thresholds come at only a slight cost of falsely omitting positive
instances.

Like mentioned before, the sharp increase in precision is due to some disconnected
node pairs consistently producing short delay values, thus mapping to a high connection
probability estimate. This fact combined with the low prevalence of 0.093 % has significant
detrimental impact on the precision metric.

In order to better understand these false positives we can analyse the relay paths produced
by the simulations in terms of their hop counts and durations. Figure 4.6 shows their
frequency distributions for negative and positive instances as well as for negative instances
falsely labelled positive by the Bayes classifier even using thresholds greater than or equal
to the value optimising for F1 score. Notice how the delay distributions for negative and
positive instances closely resemble the KDEs computed from the training sets shown in
figure 4.2. However, we can also see that the delay distribution of some of the negative
instances much rather resembles that of the positive ones, resulting in false positives and
thus a reduction in the measure of precision. The corresponding distribution of path
lengths exhibits a noticeable spike at length 3, which is non-existent in the path length
distribution of the remaining negative instances. This spike at path length 3 causes a

36

4.1. Random Attachment Model

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

15 min

Performance Metrics

F1 Score

Precision

Recall

15 min

Performance Metrics

F1 Score

Precision

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

55 min

Performance Metrics

F1 Score

Precision

Recall

55 min

Performance Metrics

F1 Score

Precision

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

95 min

Performance Metrics

F1 Score

Precision

Recall

95 min

Performance Metrics

F1 Score

Precision

Recall

0.0 0.2 0.4 0.6 0.8 1.0

Threshold (Frequentist)

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

135 min

Performance Metrics

F1 Score

Precision

Recall

0.0 0.2 0.4 0.6 0.8 1.0

Threshold (Bayesian)

135 min

Performance Metrics

F1 Score

Precision

Recall

Figure 4.4: Performance metrics for edge prediction
37

4. Results

−0.001 0.199 0.399 0.600 0.799 0.999

Threshold (Frequentist)

×10−13 + 10× 10−1

0.8

0.9

1.0
P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

Performance Metrics

F1 Score

Precision

Recall

−0.001 0.199 0.399 0.600 0.799 0.999

Threshold (Bayesian)

×10−13 + 10× 10−1

Performance Metrics

F1 Score

Precision

Recall

Figure 4.5: Performance metrics for edge prediction around maximal F1 score

Table 4.6: Performance metrics for edge prediction at maximal F1 score

Threshold F1 Score Precision Recall
Period [min] Classifier

15 Bayesian 0.996031 0.626973 0.681302 0.581360
Frequentist 1.000000 0.627036 0.694521 0.572338

55 Bayesian 1.000000 0.875263 0.903255 0.849929
Frequentist 1.000000 0.874042 0.904185 0.846845

95 Bayesian 1.000000 0.940702 0.953230 0.928806
Frequentist 1.000000 0.923672 0.885743 0.965375

135 Bayesian 1.000000 0.958481 0.937635 0.980690
Frequentist 1.000000 0.907222 0.836741 0.991276

similar delay distribution as the spike at path length 2 (direct relays implying full-relay
connection) of relay paths from positive instances, ultimately confusing the classifier.

4.1.4 Computational Performance

Ten simulations were executed in parallel on a virtual machine with an Intel®Xeon®Gold
6230 2.10 GHz CPU and 512 GB of RAM. Network generation took 16 seconds on
average. Each simulation completed in a mean duration of 35 minutes and performed
18,052 virtual message passings per second on average.

4.2 Degree Distribution Model
The degree distribution model is similar to the previous random attachment model in
all aspects except for the underlying network graph. In this model the network also
consists of 17,000 reachable nodes as well as 20 monitors and 10 targets. However, with

38

4.2. Degree Distribution Model

0.00

0.05

0.10

0.15

0.20

R
el
a
ti
v
e
F
re
q
u
en

cy

Negative Instances Negative Instances

0.00

0.05

0.10

0.15

0.20

R
el
a
ti
v
e
F
re
q
u
en

cy

Positive Instances Positive Instances

5 10 15 20 25 30 35

Path Length (Number of Relays)

0.00

0.05

0.10

0.15

0.20

R
el
a
ti
v
e
F
re
q
u
en

cy

False Positive Instances

0
12
0

24
0

36
0

48
0

60
0

Relay Duration [s]

False Positive Instances

Figure 4.6: Frequency distributions of path lengths and durations of recorded relays

39

4. Results

0

250

500

750

1000

1250

A
b
so
lu
te

F
re
q
u
en

cy
Reachable Nodes

30 40 50 60 70 80 90 100 110 120

Node Degree

0.0

0.2

0.4

0.6

0.8

A
b
so
lu
te

F
re
q
u
en

cy

Target Nodes

Figure 4.7: Degree frequency distribution among reachable and target nodes

an average number of 123,247 unreachable nodes the network graphs end up considerably
larger. For details on the network generation procedure for this model, refer back to 3.3.1.

4.2.1 Network and Traffic Statistics

Figure 4.7 shows the average degree distribution among all reachable nodes and target
nodes. Due to the number of reachable nodes already having 125 connections, only 14,487
of them would accept connection requests from monitors and end up being monitored.

With a total of 444,971,598 marker addresses receptions within the entire network as can
be seen in table 4.7, the degree distribution model generated much more network traffic
than the previous random attachment model, where only a total of 48,888,846 address
receptions were recorded. Furthermore, this time around 7 % of received addresses were
not relayed due to either the rate limiting or ADDR message payload size limit.

As was shown with the random attachment model, table 4.8 presents the average number
of injected and recurred marker addresses recorded over the first 15, 55, 95 and 135
minutes of simulated network activity. Although the total number of marker address
receptions is more than 7 times greater than in the previous model, monitor nodes in

40

4.2. Degree Distribution Model

Table 4.7: Number of received and dropped marker addresses

Received Rate Limited Payload Too Large
Per Client 3,173 0.016 223
Total 444,971,598 2,210 31,215,495

Table 4.8: Number of injected and recurred marker addresses

Injected markers Recurred markers
Period [min]
15 1,200 2,761,227
55 4,400 13,008,569
95 7,600 22,779,752
135 10,000 31,691,324

Table 4.9: Number of datapoints for degree estimation and edge prediction

Degree Estimation Edge Prediction
Per Instance Total Per Instance Total

Period [min]
15 120 1,200 19 2,760,759
55 440 4,400 89 13,007,116
95 760 7,600 157 22,777,322
135 1,000 10,000 218 31,688,157

the degree distribution model only received around 1.6 times the number or marker
addresses.

Table 4.9 shows more specifically the number of usable data points for degree estimation
and edge prediction. Note how each injection again leads to one data point for degree
estimation but we see a 1.8-fold increase in the mean number of data points per instance
for edge prediction.

Figure 4.8 shows the Gaussian KDEs of the empirical relay distributions. The top plot
shows the curves for full-relay connected and disconnected pairs of nodes while the
bottom plot shows the curves for the durations of relay paths of length 2 (direct relay)
and of paths having lengths greater than 2 (indirect relay) for full-relay connected pairs
of nodes. Compared to the KDEs from the random attachment model the difference
between the delay distribution of connected nodes and that of disconnected nodes is
much less pronounced. This is largely due to the overall higher node degrees in the
reachable portion of the network, causing fewer relays to take place directly form target
to observed node and finally to a monitor node. About 3.5 % of relays recorded from
connected pairs were direct as opposed to 20 % in the previous model.

41

4. Results

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125
P
ro
b
a
b
il
it
y
D
en

si
ty

Connection Type

Full-relay

Block-relay-only or None

0 100 200 300 400 500 600 700 800

Relay Duration [s]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

P
ro
b
a
b
il
it
y
D
en

si
ty

Relay Path Type

Direct

Indirect

Figure 4.8: Gaussian kernel density estimates for total relay durations

As with the relay data from the simulations in the random attachment model, we can
observe for all recorded relay chains that the longer they are, the more they fall short
regarding total relay duration compared to the expected value of the corresponding
Erlang distribution. This time this effect is much stronger, as can be seen in figure 4.9.

4.2.2 Degree Estimation
Table 4.10 shows the mean and standard deviation of absolute and relative errors for each
degree estimator by measurement period. Due to the higher dispersion of node degrees in
the reachable portion of the network and thus among the target nodes, degree estimation
becomes a significantly more difficult task as is evident in the much higher standard
deviations of errors compared to the results from the random attachment model. The
mean errors seem to converge to 0 with increasing amounts of data, suggesting neither
estimator is biased, although we will not give an analysis of the statistical significance
of these findings. Unlike the results from the previous model, where both estimators
performed similarly after 135 minutes of measurement, with a standard deviation of
about 3.6 the MAP estimator performed noticeably better than the ML estimator with a
standard deviation of about 7.5. While the standard deviation of absolute errors of the
MAP estimator increased by a factor of 2.7 compared to the random attachment model,

42

4.2. Degree Distribution Model

4 8 12 16 20

Path Length (Number of Relays)

120

240

360

480

600

R
el
ay

D
u
ra
ti
o
n
[s
]

Expected

Observed

Figure 4.9: Empirical mean relay durations compared to expected values of corresponding
Erlang distributions

Table 4.10: Degree estimation errors

Absolute Relative
Mean STD Mean STD

Period [min]

15 MAP 0.210000 10.154902 -0.000826 0.142112
ML -2.510000 15.089685 -0.033807 0.177979

55 MAP -0.350000 6.458835 -0.006063 0.087424
ML -1.440000 9.801629 -0.019148 0.114840

95 MAP -0.240000 3.946647 -0.006624 0.058200
ML -1.250000 7.937623 -0.016967 0.091475

135 MAP -0.020000 3.647560 -0.001712 0.053106
ML -0.230000 7.504723 -0.004176 0.085736

the standard deviation of relative errors only increased by a factor of about 1.1. In the
case of the ML estimator, we see an increase of 4.9 and 1.7, respectively. The reason
for the milder increase in dispersion of relative errors than in the dispersion of absolute
errors when comparing this model to the previous one is that the target nodes in the
degree distribution model have on average 2.3 times as many peers with 5.9 times higher
standard deviation than in the random attachment model. This makes the task of point
estimation generally more difficult when measured in terms of mean errors.

43

4. Results

Table 4.11: Mean connection certainty values

Bayesian Frequentist
Negative Positive Negative Positive

Period [min]
15 0.000668 0.189075 0.383759 0.699533
55 0.000923 0.455799 0.167384 0.812279
95 0.001180 0.602290 0.114599 0.871433
135 0.001231 0.661752 0.086628 0.883968

4.2.3 Edge Prediction
In order to evaluate the quality of edge prediction and find the optimal threshold
parameter, metrics of precision, recall and F1 score have been calculated and are presented
in figure 4.10. The following observations can be made:

1. Similarly to the evaluation using the random attachment model, the Bayes classifier
performs much better than the frequentist classifier at moderate thresholds.

2. Increasing amounts of data substantially improve overall recall. However, in this
model at comparable thresholds both classifiers perform significantly worse than
in the previous model. After 135 minutes of measurement, the Bayes classifier’s
recall drops to around 0.7 at a relatively low threshold of 0.2, meaning that using
this already lenient threshold only 70 % of connections between targets and the
remaining monitored clients could be identified. Note, however, that recall does
not drop below 46 % until very strict thresholds above 0.999975 are used.

3. Again similarly to the performance evaluation of the random attachment model,
precision and recall of the Bayes classifier change sharply around thresholds close
to 0 and 1 whereas much softer change can be seen for a large range of threshold
values in between. Table 4.11 shows that generally an increase in evidence allows
the classifiers to “divide” negative and positive instances more and more clearly.
The exception is that the Bayes classifier increases the mean certainty value for
negative instances with an increasing number of data points although this value
should decrease. This phenomenon might be caused by underestimating the prior
probability of connection, such that even disconnected pairs of nodes produce
delays that tend to increase the posterior probability of the existence of a full-relay
connection. Despite this unexpected observation, the mean posterior probability
for negative instances amounts to only 0.1231 % at most.

Analogous to the previous evaluation, we present classifier scores symmetrically around
the threshold where F1 is maximal in figure 4.11 for each classifier using all measurement
data. Table 4.12 lists the numerical values of the scores at said thresholds for varying

44

4.2. Degree Distribution Model

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

15 min

Performance Metrics

F1 Score

Precision

Recall

15 min

Performance Metrics

F1 Score

Precision

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

55 min

Performance Metrics

F1 Score

Precision

Recall

55 min

Performance Metrics

F1 Score

Precision

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

95 min

Performance Metrics

F1 Score

Precision

Recall

95 min

Performance Metrics

F1 Score

Precision

Recall

0.0 0.2 0.4 0.6 0.8 1.0

Threshold (Frequentist)

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

135 min

Performance Metrics

F1 Score

Precision

Recall

0.0 0.2 0.4 0.6 0.8 1.0

Threshold (Bayesian)

135 min

Performance Metrics

F1 Score

Precision

Recall

Figure 4.10: Performance metrics for edge prediction
45

4. Results

−8 −6 −4 −2 0

Threshold (Frequentist)

×10−9 + 1

0.2

0.4

0.6

0.8

1.0
P
er
fo
rm

a
n
ce

M
et
ri
c
V
a
lu
e

Performance Metrics

F1 Score

Precision

Recall

5 6 7 8 9 10

Threshold (Bayesian)

×10−5 + 9.999× 10−1

Performance Metrics

F1 Score

Precision

Recall

Figure 4.11: Performance metrics for edge prediction around maximal F1 score

Table 4.12: Performance metrics for edge prediction at maximal F1 score

Threshold F1 Score Precision Recall
Period [min] Classifier

15 Bayesian 0.494815 0.240866 0.347054 0.185127
Frequentist 0.999841 0.240252 0.355509 0.181984

55 Bayesian 0.972392 0.453151 0.619442 0.358529
Frequentist 0.999997 0.451626 0.666394 0.343143

95 Bayesian 0.995591 0.531097 0.622063 0.464717
Frequentist 1.000000 0.531013 0.658161 0.448002

135 Bayesian 0.999975 0.594079 0.826156 0.465765
Frequentist 1.000000 0.590355 0.824362 0.461642

measurement periods. Comparing to table 4.6 from the section on the evaluation in the
random attachment model it can be seen that with regards to F1 score edge prediction
seems much less feasible in this model. Here both classifiers performed worse even when
using all available data (on average 218 delays per node pair) compared to in the other
model using only data of the first 15 minutes of measurement (on average 7 delays per
node pair). Presumably, the most important factor causing this drop in F1 score is the
much lower rate of observed direct relays between connected node pairs (3.5 % as opposed
to 20 %). To a lesser degree, the slightly lower prevalence of full-relay connected nodes
(0.084 % as opposed to 0.093 %) may contribute as well.

Figure 4.12 shows the frequency distribution of path lengths (i.e. number of relays
between target and monitor) and of total relay durations for negative and positive
instances as well as for those falsely labelled positive by the Bayes classifier using the
entire data set. For classification the threshold at which the F1 score becomes maximal
has been used. Effectively all the observations made on figure 4.6 in section 4.1 apply
here as well.

46

4.2. Degree Distribution Model

0.00

0.02

0.04

0.06

0.08

R
el
a
ti
v
e
F
re
q
u
en

cy

Negative Instances Negative Instances

0.00

0.02

0.04

0.06

0.08

R
el
a
ti
v
e
F
re
q
u
en

cy

Positive Instances Positive Instances

5 10 15 20 25 30 35

Path Length (Number of Relays)

0.00

0.02

0.04

0.06

0.08

R
el
a
ti
v
e
F
re
q
u
en

cy

False Positive Instances

0
12
0

24
0

36
0

48
0

60
0

Relay Duration [s]

False Positive Instances

Figure 4.12: Frequency distributions of path lengths and durations of recorded relays

47

4. Results

4.2.4 Computational Performance
As before, ten simulations have been carried out in parallel on the same virtual machine.
This time, network generation was 2.6 times slower, taking 42 seconds on average. With
373 minutes on average, simulation times were over 10 times longer. The rate of processed
messages per second dropped by 41 % down to 10,633 on average due to the increase in
network size.

48

CHAPTER 5
Discussion

Detailed knowledge on the topology of the Bitcoin P2P network could provide valuable
insights for researchers on the health and robustness of the network and help devel-
opers make informed design decisions. However, it could also enable adversaries to
partition the network [NAH15], perform eclipse attacks [DW13, HKZG15, NKMS16]
or deanonymise [BKP14] users. Previously proposed topology inference techniques
are either no longer applicable due to changes in the Bitcoin reference client [BKP14,
MLP+15, NAH16], incur monetary costs [GNH19] or may possibly be disruptive to the
network [DSBPS+19]. This thesis set out to develop a topology discovery technique for
the Bitcoin P2P network using active traffic analysis. In particular our methods exploit
the gossip protocol used for propagating network addresses of Bitcoin clients. By sending
marker addresses to target nodes, observing part of the resulting relay behaviour and
performing statistical analysis, both the target’s number of peers and their addresses in
the network can be inferred to varying degrees of accuracy. The main findings of our
evaluations are discussed below.

5.1 Validation and Analysis

5.1.1 Degree Estimation
Our evaluations suggest that estimating the degrees of individual Bitcoin nodes by
exploitation of the ADDR gossip protocol can be performed with good accuracy using
relatively few resources. In the more complex and likely more realistic degree distribution
model the standard deviation of relative errors was 18 % with ML estimation and 14 %
with MAP estimation after 15 minutes of monitoring amounting to 120 data points per
target (one injection providing one data point). These measures of dispersion drop to
9 % and 5 %, respectively, when 1,000 data points from 135 minutes of measurement are
used. While it is clear that knowledge of the prior degree distribution, which is used in

49

5. Discussion

the MAP estimator, leads to more accurate results using less data, even the uninformed
ML estimator shows considerable performance. Although these results are not detailed
enough to allow for extrapolating the quality of our technique with growing data sets,
it may be reasonable to assume that even longer measurement periods lead to more
accurate predictions. Note that this degree estimation technique—as opposed to our edge
prediction technique—scales with the number of targets, such that estimating the degree
of an individual Bitcoin node only requires a few monitor connections to this node.

5.1.2 Edge Prediction
Edge prediction proved to be a much more difficult task. In the somewhat idealised
random attachment model our technique proved reliable regarding correctly predicting
full-relay connections where such are indeed present, i.e. both the frequentist and the
Bayes classifier showed a recall of 100 % using only 55 minutes of measurement data
amounting to an average of 46 data points per node pair (one data point being one
marker address recurrence) at precision values above 20 %. For almost the entire certainty
threshold range, the frequentist classifier’s F1 score stayed above 0.3 and that of the
Bayes classifier above 0.4. As noted in section 4.1, the reason for the precision curves
remaining stagnant until extremely high certainty thresholds is due to the combination
of the low prevalence of full-relay connections and some disconnected pairs producing
deceptively positive looking relay durations (see figure 4.4). The precise reason for the
latter phenomenon remains unexplored. The most plausible explanation so far seems
that the arrangement of connections (including monitors) around these node pairs is
simply such that the probability of getting relay paths of length 3 is increased, while the
probability of getting longer ones is decreased. These situations may arise if the following
conditions are met:

• The target has few reachable peers such that it is relatively likely to relay a marker
address to one of its unreachable peers.

• Each of the target’s unreachable peers has a large number of (necessarily reachable)
peers that are connected to a large number of monitors.

For node pairs that fulfil these criteria, monitors will record samples containing a
disproportionate number of relay paths of length 3. These cause a distinctive peak in the
delay distribution which is very similar to the one found in the delay distribution from
truly connected pairs, ultimately confusing the classifier. Unfortunately, gathering more
data from these instances cannot solve the problem of misclassification because they
would only continue to produce the same deceptive relay duration samples. In theory,
however, connected and disconnected pairs do seem to be linearly separable, as choosing
just the right threshold leads to an F1 score of about 0.91 (precision = 0.84, recall = 0.99)
for the frequentist classifier and an F1 score of about 0.96 (precision = 0.94, recall = 0.98)
for the Bayes classifier. Finally, these results show that while prior knowledge on the

50

5.2. Limitations

edge probability is valuable when there is little data, the qualities of the two classifiers
converge with increasing amounts of data.

When looking at the edge prediction results for the degree distribution model using the
Bayes classifier, we observe the more typical trade-off between precision and recall in
binary classification problems. At a certainty threshold of 0.2, the classifier surpasses an
F1 score of 0.4, which continues to slowly increase. The frequentist classifier performs
poorly except at very high thresholds even if the input comprises the entire data set.
Nonetheless, we see that for optimal thresholds the frequentist classifier, reaching an
F1 score of about 0.59 (precision = 0.82, recall = 0.46), performs practically the same
as the Bayes classifier, reaching approximately the same F1 score (precision = 0.83,
recall = 0.47). However, it must be noted that the threshold intervals in which the
classifiers perform their best are extremely narrow for both classifiers and for both
network models and would be unknown in a real world setting. We can observe similarly
deceptive negative instances causing false positives even for very high thresholds as has
been discussed above for the random attachment model.

5.1.3 Independence of Relay Processes
The simulations show that ADDR relays are not actually independent stochastic processes.
Due to the fact that Bitcoin clients do not relay the same network address to the same
peers in a certain time frame, relay chains containing longer delays are relatively unlikely
to accumulate more hops because each potential future recipient is likely to have already
received this address via some relay chain containing shorter delays. Therefore, estimating
the relay path length k given its total delay δ by determining which k minimises the
absolute difference between δ and the mode of the Erlang-k distribution will lead to
underestimation (refer back to figures 4.3 and 4.9). While these findings may be relevant
for future research, this circumstance does not practically affect our techniques.

5.2 Limitations
Limitations apply to our methodology by design and to the results discussed above due
to simplifying assumptions and abstractions in our models.

• There is no hope of uncovering connections of type block-relay-only as Bitcoin Core
excludes these connections from ADDR message gossip entirely.

• Because our techniques are based on active traffic analysis, they require maintaining
connections to the target nodes and in the case of edge prediction also to their
peers. Since potentially any two nodes of which at least one is reachable could
be peers and since ADDR messages can only be collected from monitored clients,
monitor nodes must connect to as many Bitcoin clients as possible if all connections
(with the exception of block-relay-only connections) between observable clients are
to be found. This is problematic because unless unreachable clients try to establish

51

5. Discussion

full-relay connections to monitor nodes of their own accord, unreachable nodes
cannot be targeted and unreachable peers of target nodes cannot be discovered.
Thus, large parts of the Bitcoin network topology remain unknown even if inference
accuracy were perfect. One could make the case that any particularly interesting
subset of the network is likely to be mostly comprised of reachable nodes but those
might not accept incoming connection requests from monitor nodes either due to
exhaustion of open connection slots; or they might accept only few monitors as new
peers, such that only few marker address recurrences take place, which drastically
limits inference quality.

• Our simulations did not account for any network traffic other than the ADDR gossip
caused by marker address injections from monitor nodes. When applying our
technique to the real Bitcoin network, it would likely be necessary to increase
the interval between injections in order to keep traffic congestion low. Although
background ADDR gossip activity in the Bitcoin network could be estimated by
recording samples using regular Bitcoin Core instances, any interaction with the
Bitcoin network was deemed outside the scope of this thesis and left for future
research.

• While the Bitcoin network graph is subject to constant change due to nodes leaving
and joining, our methods assume a perfectly static graph. The longer the ADDR
probing procedure takes, the more likely it is that a target’s degree or set of peers
changes, causing inconsistent evidence and skewed results.

5.3 Implications
The results of our evaluations provide proof of concept and suggest that both inferring
the number of peers as well as the existence of connections between given Bitcoin
clients leveraging the ADDR gossip protocol is feasible with substantial accuracy despite
implemented countermeasures. Although limitations apply and immediate success in
exhaustively mapping the Bitcoin network’s topology using our methods and models are
unlikely, refining these techniques and conducting investigations in controlled realistic
settings seems to be a promising endeavour. Furthermore, if the network’s true topology is
to remain hidden, Bitcoin developers may be required to add additional countermeasures
to existing protocols and to Bitcoin Core.

5.4 Future Research
The above discussion leads to several questions and tasks for future research. The next
logical step would be to design and implement a framework for controlling ground-truth
Bitcoin Core instances and monitor nodes in order to collect ground-truth data and
evaluate our methods on them. Using this framework, the effects of background network
traffic and network churn could be more closely studied, as well as statistics on ADDR relays

52

5.4. Future Research

including delay distributions under varying conditions. By running super nodes, which
advertise their own addresses and accept all incoming connection requests, one might
be able to maintain connections to a considerable portion of the otherwise unreachable
Bitcoin network, making more complete analyses possible. Finally, by refining models
and statistical methods—possibly by taking other protocols or even side-channels into
account—inference accuracy may be further improved. In particular, finding a way to
distinguish connected pairs from disconnected ones that produce samples containing
unusually high proportions of relay chains of length 3 as discussed in section 5.1.2 would
drastically improve classification precision.

Future studies interacting with the real Bitcoin network may have to deal with several
challenges. Depending on the scope of measurements, a large pool of marker addresses
must be available. Recall that every injected marker address must be unique for the
duration of a measurement so that it can be uniquely traced. Additionally, marker
addresses should be unique in the entire network in order not to inhibit ADDR gossip,
since a node may dedicate the same peer for relaying the same address within a 24-hour
time frame while refusing to relay it more than once. Due to the fact that Bitcoin
Core deems any two IPv4 addresses to be different as long as they are associated with
different ports, a single IPv4 address may provide one marker address per available
port, i.e. potentially 65,536 marker addresses. However, for repeated very large scale
measurements, this may in fact not be enough. Furthermore, maintaining a large number
of ground-truth and monitor nodes may incur significant bandwidth and computational
overhead. Another aspect to consider would be that super nodes may over time be
detected, raise suspicion and ultimately lead to network nodes avoiding and rejecting
them. Finally, experimenting on the Bitcoin network may incur ethical problems and
care must be taken not to be disruptive and cause harm to individual network nodes or
the network as a whole.

53

CHAPTER 6
Conclusion

Being able to observe the topology of the Bitcoin P2P network would on the one hand
enable adversaries to perform certain attacks on individual clients or the network at
large but would on the other hand aid in assessing the network’s resilience, fairness and
performance. Previous topology inference approaches have either been mitigated by
countermeasures implemented in the Bitcoin reference client or are otherwise impractical.

In this thesis, we have developed active traffic analysis techniques exploiting the gossip
protocol around ADDR messages, which are used to publish and propagate network
addresses of Bitcoin clients, in order to infer (1) the number of peers of an observed target
client and (2) the existence of a full-relay connection from a target to some other observed
client. In validations using simulated network traffic our degree estimation method
proved to be nearly unbiased while having produced mean errors showing a standard
deviation of 1.5 in an idealised model and mean errors showing a standard deviation of
3.6 in a more realistic one. When using relative errors instead, these metrics come out
to be approximately 5 % in both models. Using conservative classifier sensitivities, our
connection inference method was able to predict network links with a precision of 40 %
and a recall of 99.8 % in the idealised model and both precision and recall of 56 % in the
more realistic one. Using the ideal classifier sensitivities with regard to the generated
data sets, precision and recall come out to be 94 % and 98 % in the former model and
83 % and 47 % in the latter model.

The effectiveness of our approach is limited by the fact that connections of type block-
relay-only prohibit any ADDR gossip, thereby making themselves completely invisible to
our analyses. Also, it is not entirely clear how these simulation-based evaluations would
carry over to attempts in the real Bitcoin network. Nonetheless, our results suggest
the possibility of success in real settings. Therefore, Bitcoin developers are advised to
consider adapting current countermeasures or implementing new ones if they want to
ensure that the Bitcoin network topology remains obscured.

55

6. Conclusion

Our evaluations show that topology finding is theoretically possible with substantial
accuracy. In order to definitely prove the effectiveness of our methods, experiments within
the real Bitcoin network using controllable ground-truth nodes are required. Additionally,
future research on identifying patterns in ADDR message traffic might further increase
the quality of connection inference.

56

List of Figures

4.1 Degree frequency distribution among reachable and target nodes 30
4.2 Gaussian kernel density estimates for total relay durations 33
4.3 Empirical mean relay durations compared to expected values of corresponding

Erlang distributions . 34
4.4 Performance metrics for edge prediction 37
4.5 Performance metrics for edge prediction around maximal F1 score 38
4.6 Frequency distributions of path lengths and durations of recorded relays . 39
4.7 Degree frequency distribution among reachable and target nodes 40
4.8 Gaussian kernel density estimates for total relay durations 42
4.9 Empirical mean relay durations compared to expected values of corresponding

Erlang distributions . 43
4.10 Performance metrics for edge prediction 45
4.11 Performance metrics for edge prediction around maximal F1 score 46
4.12 Frequency distributions of path lengths and durations of recorded relays . 47

57

List of Tables

4.1 Number of received and dropped marker addresses 31
4.2 Number of injected and recurred marker addresses 31
4.3 Number of datapoints for degree estimation and edge prediction 32
4.4 Degree estimation errors . 35
4.5 Mean connection certainty values . 36
4.6 Performance metrics for edge prediction at maximal F1 score 38
4.7 Number of received and dropped marker addresses 41
4.8 Number of injected and recurred marker addresses 41
4.9 Number of datapoints for degree estimation and edge prediction 41
4.10 Degree estimation errors . 43
4.11 Mean connection certainty values . 44
4.12 Performance metrics for edge prediction at maximal F1 score 46

59

Bibliography

[bit] https://bitnodes.io/nodes/all/. (accessed May 17, 2023).

[BJG18] Jørgen Bang-Jensen and Gregory Gutin. Classes of directed graphs, vol-
ume 11. Springer, 2018.

[BKP14] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymi-
sation of clients in bitcoin p2p network. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, pages 15–29,
2014.

[BT08] Dimitri Bertsekas and John N Tsitsiklis. Introduction to probability, vol-
ume 1. Athena Scientific, 2008.

[coi] https://coinmarketcap.com/currencies/bitcoin/. (accessed
Dec. 21, 2023).

[Del21] Merlin Delcid. El Salvador buys bitcoin as the digital currency becomes
legal tender. https://edition.cnn.com/2021/09/06/business/
bitcoin-price-el-salvador-intl-hnk/index.html, 2021. (ac-
cessed Dec. 21, 2023).

[DSBPS+19] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton,
Andrew Pachulski, Andrew Miller, and Bobby Bhattacharjee. Txprobe:
Discovering bitcoin’s network topology using orphan transactions. In
Financial Cryptography and Data Security: 23rd International Conference,
FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers 23, pages 550–566. Springer, 2019.

[DSS10] Reinhard Diestel, Alexander Schrijver, and Paul Seymour. Graph theory.
Oberwolfach Reports, 7(1):521–580, 2010.

[DVGKS22] Alex De Vries, Ulrich Gallersdörfer, Lena Klaaßen, and Christian Stoll.
Revisiting bitcoin’s carbon footprint. Joule, 6(3):498–502, 2022.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation in the
bitcoin network. In IEEE P2P 2013 Proceedings, pages 1–10. IEEE, 2013.

61

https://bitnodes.io/nodes/all/
https://coinmarketcap.com/currencies/bitcoin/
https://edition.cnn.com/2021/09/06/business/bitcoin-price-el-salvador-intl-hnk/index.html
https://edition.cnn.com/2021/09/06/business/bitcoin-price-el-salvador-intl-hnk/index.html

[ECP21] Jean-Philippe Eisenbarth, Thibault Cholez, and Olivier Perrin. A com-
prehensive study of the bitcoin p2p network. In 2021 3rd Conference on
Blockchain Research & Applications for Innovative Networks and Services
(BRAINS), pages 105–112. IEEE, 2021.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[GBH21] Matthias Grundmann, Max Baumstark, and Hannes Hartenstein. Estimat-
ing the peer degree of reachable peers in the bitcoin p2p network. arXiv
preprint arXiv:2108.00815, 2021.

[GNH19] Matthias Grundmann, Till Neudecker, and Hannes Hartenstein. Exploiting
transaction accumulation and double spends for topology inference in bit-
coin. In Financial Cryptography and Data Security: FC 2018 International
Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March
2, 2018, Revised Selected Papers 22, pages 113–126. Springer, 2019.

[GYA18] Jonathan L Gross, Jay Yellen, and Mark Anderson. Graph theory and its
applications. Chapman and Hall/CRC, 2018.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse
attacks on bitcoin’s peer-to-peer network. In 24th {USENIX} Security
Symposium ({USENIX} Security 15), pages 129–144, 2015.

[MLP+15] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave Levin,
Neil Spring, and Bobby Bhattacharjee. Discovering bitcoin’s public topology
and influential nodes.(2015). Cited on, page 54, 2015.

[NAH15] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. A simulation
model for analysis of attacks on the bitcoin peer-to-peer network. In 2015
IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 1327–1332. IEEE, 2015.

[NAH16] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. Timing anal-
ysis for inferring the topology of the bitcoin peer-to-peer network. In 2016
Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pages 358–367. IEEE,
2016.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized business review, 2008.

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn
mining: Generalizing selfish mining and combining with an eclipse attack.

62

In 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 305–320. IEEE, 2016.

[ZHK+23] Michael Zietz, Daniel S Himmelstein, Kyle Kloster, Christopher Williams,
Michael W Nagle, and Casey S Greene. The probability of edge existence
due to node degree: a baseline for network-based predictions. bioRxiv,
pages 2023–01, 2023.

63

	Abstract
	Contents
	Introduction
	Background
	Bitcoin
	Mathematical Concepts
	Related Work

	Methodology
	Data Collection
	Mathematical Description
	Simulation

	Results
	Random Attachment Model
	Degree Distribution Model

	Discussion
	Validation and Analysis
	Limitations
	Implications
	Future Research

	Conclusion
	List of Figures
	List of Tables
	Bibliography

