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Abstract

We examine the linear regression problem in a challenging high-dimensional setting with
correlated predictors to explain and predict relevant quantities, with explicitly allowing
the regression coefficient to vary from sparse to dense. Most classical high-dimensional
regression estimators require some degree of sparsity. We discuss the more recent concepts
of variable screening and random projection as computationally fast dimension reduction
tools, and propose a new random projection matrix tailored to the linear regression problem
with a theoretical bound on the gain in expected prediction error over conventional random
projections.
Around this new random projection, we built the Sparse Projected Averaged Regression
(SPAR) method combining probabilistic variable screening steps with the random projection
steps to obtain an ensemble of small linear models. In difference to existing methods, we
introduce a thresholding parameter to obtain some degree of sparsity.
In extensive simulations and two real data applications we guide through the elements of this
method and compare prediction and variable selection performance to various competitors.
For prediction, our method performs at least as good as the best competitors in most settings
with a high number of truly active variables, while variable selection remains a hard task for
all methods in high dimensions.

Keywords High-Dimensional Regression · Dimension Reduction · Random Projection · Screening

1 Introduction

The recent advances in technology have allowed more and more quantities to be tracked and stored, which has
lead to a huge increase in the amount of data, making available datasets more complex and larger than ever,
both in dimension and size. We consider a standard linear regression setting, where the response variable is
given by

yi = µ+ x′
iβ + εi, i = 1, . . . , n. (1)

Here, n is the number of observations, µ is a deterministic intercept, the xis are iid observations of p-
dimensional covariates or predictors with common covariance matrix Σ ∈ Rp×p, β = (β1, . . . , βp)′ ∈ Rp is
an unknown parameter vector and the εis are iid error terms with E[εi] = 0 and constant Var(εi) = σ2

independent from the xis. We are interested in studying the case where p > n or even p ≫ n.

ar
X

iv
:2

31
2.

00
13

0v
1 

 [
st

at
.M

E
] 

 3
0 

N
ov

 2
02

3

https://orcid.org/0000-0003-0893-3190
https://orcid.org/0000-0002-9613-7604
https://orcid.org/0000-0002-8014-4682


SPAR A Preprint

Most of the literature dealing with this setting imposes certain sparsity assumptions on the regression
coefficient β [see, e.g., Fan and Lv, 2010]. It is very unlikely to obtain theoretical guarantees without
additional assumptions. For example, Wainwright [2019] show that there is no consistent estimator when p/n
is bounded away from 0 for general β.
We explicitly do not want to impose any sparsity assumption and allow the number of active variables
a = |{j : βj ≠ 0, 1 ≤ j ≤ p}| to be larger than n up to a fraction of p, and we are interested in methods
with good prediction ability which are also able to identify the true active variables. Recent work addressing
both a sparse and dense setting in high-dimensional regression include Silin and Fan [2022] and Gruber and
Kastner [2023].
Although many classical methods, like partial least squares (PLS), principal component regression (PCR),
Elastic Net [Zou and Hastie, 2005] or adaptive LASSO [Zou, 2006], could still be applied in the investigated
setting, Hastie et al. [2009, Chapter 18] mention that such methods designed for p < n might behave differently
in high dimensions.
A more recent tool for dimension reduction in the high-dimensional regression setting is the idea of variable
screening, where a subset of variables is selected for further analysis or modeling, and the other variables
are disregarded. A seminal work in this field is Sure Independence Screening (SIS) by Fan and Lv [2007],
where the variables with highest absolute correlation to the response are selected. Other important papers
include Forward Regression Screening [Wang, 2009] and High-Dimensional Ordinary Least Squares Projection
[HOLP; Wang and Leng, 2015].
Another tool used for dimension reduction in statistics and machine learning is random projection. Random
projection first came up in the area of compression to speed up computation and save storage. Possible
applications are low-rank approximations [Clarkson and Woodruff, 2013], data reduction for high n [e.g.
Geppert et al., 2015], or data privacy [e.g. Zhou et al., 2007]. It has also been applied to project the predictors
to a random lower dimensional space in linear regression models to obtain predictive models, see e.g Maillard
and Munos [2009] and Guhaniyogi and Dunson [2015]. Thanei et al. [2017] discuss the application of random
projection for column-wise compression in linear regression problems and give an overview of theoretical
guarantees on generalization error.
Even though many papers include desirable theoretical asymptotic properties for these random dimension
reduction techniques, it might be beneficial in practice to combine information of multiple such reductions
in practice in order to account for the uncertainty in the random reductions. Targeted Random Projection
[TARP; Mukhopadhyay and Dunson, 2020] combines a probabilistic screening step with random projection
and averages over multiple replications of this procedure to obtain predictions.
Our main contributions in this work are threefold.

• We propose a new random projection designed for dimension reduction in linear regression, which
takes the variables’ effect on the response into consideration, and give a theoretical bound on the
expected gain in prediction error compared to a conventional random projection.

• Using this new random projection, we build the Sparse Projected Averaged Regression (SPAR)
method, which combines an ensemble of screened and projected linear models and adds sparsity by
introducing a threshold parameter.

• In a broad simulation study across six different covariance structures and three different levels of
sparsity, we benchmark this new approach against an extensive collection of existing methods and
point out possible performance gains.

The paper is organized as follows. Section 2 introduces the methodology with one section dedicated to variable
screening and one to the new random projection, before we combine them in one method. An extensive
simulation study is presented in Section 3. Section 4 illustrates the proposed method on two real world
datasets (rat eye gene expression and angles of face images), and Section 5 concludes.

2 Methods

In this section, we first introduce the concept of variable screening and motivate the use of HOLP over SIS for
this purpose. Then, we present conventional random projections before proposing our own random projection
tailored to dimension reduction for linear regression and giving a theoretical bound on the performance gain
in expected prediction error. Finally, we discuss how to combine these two concepts and propose our own
algorithm.
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The following notation is used throughout the rest of this paper. For any integer n ∈ N, [n] denotes the
set {1, . . . , n}, In ∈ Rn×n is the n-dimensional identity matrix and 1n ∈ Rn is an n-dimensional vector of
ones. From model (1), we let X ∈ Rn×p be the matrix of centered predictors with rows {xi − x̄ : i ∈ [n]} and
y = (y1 − ȳ, . . . , yn − ȳ)′ ∈ Rn the centered response vector, where x̄ = 1

n

∑n
i=1 xi ∈ Rp, ȳ = 1

n

∑n
i=1 yi ∈ R.

Furthermore, X.j = (X1j , . . . , Xnj)′ ∈ Rn denotes j-th columns of X.

2.1 Variable Screening

The general idea of variable screening is to select a (small) subset of variables, based on some marginal utility
measure for the predictors, and disregard the rest for further analysis. In their seminal work, Fan and Lv
[2007] propose to use the vector of marginal empirical correlations w = (w1, . . . , wp)′ ∈ Rp, wj = Cor(X.j , y)
for variable screening by selecting the variable set Aγ = {j ∈ [p] : |wj | > γ} depending on a threshold γ > 0,
where [p] = {1, . . . , p}. Under certain technical conditions, where p grows exponentially with n, they show
that this procedure has the sure screening property

P(A ⊂ Aγn
) → 1 for n → ∞ (2)

with an explicit exponential rate of convergence, where A = {j ∈ [p] : βj ̸= 0} is the set of truly active
variables. These conditions imply that A and Aγn

contain less than n variables. One of the critical conditions
is that, on the population level for some fixed i ∈ [n],

min
j∈A

|Cov(yi/βj , xij)| ≥ c (3)

for some constant c > 0, which rules out practically possible scenarios where an important variable is
marginally uncorrelated to the response.
If we want a screening measure for marginal variable importance considering the other variables in the
model, one natural choice in a usual linear regression model with p < n would be the least-squares estimator
β̂ = (X ′X)−1X ′y. The Ridge estimator β̂λ = (X ′X + λIp)−1X ′y, can be seen as a compromise between
the two, since limλ→0 β̂λ = β̂ and limλ→∞ λβ̂λ = X ′y. It can also be used in the case p > n and has the
alternative form (see Lemma 2)

β̂λ = X ′(λIn +XX ′)−1y, (4)
which is especially useful for saving computational complexity for very large p, since the inverted matrix only
has dimension n× n, bringing down the computational complexity to O(n2p) [Wang and Leng, 2015]. If we
now let λ → 0, assuming rank(XX ′) = n and therefore p > n, we end up with the HOLP estimator from
Wang and Leng [2015]

β̂HOLP = X ′(XX ′)−1y = lim
λ→0

β̂λ, (5)

which is also the minimum norm solution to Xβ = y (see Lemma 3). Kobak et al. [2020] show that the
optimal Ridge penalty for minimal mean-squared prediction error can be zero or negative for real world
high-dimensional data, because low-variance directions in the predictors can already provide an implicit Ridge
regularization.

This motivates choosing the absolute values of the tuning-free coefficient vector β̂HOLP for variable screening.
Under similar conditions as in Fan and Lv [2007], but without assumption (3) on the marginal correlations
to the response, and allowing p > c0n with c0 > 1 to grow at any rate, Wang and Leng [2015] show that
β̂HOLP also has the sure screening property. Furthermore, they show screening consistency of the estimator
for exponential growth of p, meaning that

P
(

min
j∈A

|β̂HOLP,j | > max
j /∈A

|β̂HOLP,j |
)

→ 1 for n → ∞ (6)

at an exponential rate. This means that, asymptotically, the a = |A| highest absolute coefficients of β̂HOLP
correspond exactly to the true active variables.
In another work, Wang et al. [2015] derive and compare the requirements for SIS and HOLP screening to
have the strong screening consistency

min
j∈A

|β̂j | > max
j /∈A

|β̂j | and sign(β̂j) = sign(βj) ∀j ∈ A, (7)

3
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where β̂ is an estimator of the true β. Both methods are shown to be strongly screening consistent with large
probability when the sample size is of order n = O

(
(ρa+ σ/τ)2 log(p)

)
, where τ = minj∈A |βj | measures the

signal strength and ρ = maxj∈A |βj |/τ measures the diversity of the signals. However, for SIS the predictor
covariance matrix Σ needs to satisfy the restricted diagonally dominant (RDD) condition given in Wang et al.
[2015, Definition 3.1], which is related to the irrepresentable condition (IC) of Zhao and Yu [2006] for model
selection consistency of the LASSO. This excludes certain settings, while for HOLP only the condition number
κ of the covariance matrix enters the required sample size as a constant, meaning it is always screening
consistent for a large enough sample size.

In the calculation of β̂HOLP there might be a problem when p is close to n or XX ′ is close to degeneracy,
which can lead to a blow-up of the error term. In the discussion, Wang and Leng [2015] recommend to use
the Ridge coefficient β̂λ = X ′(λIn +XX ′)−1y with penalty λ =

√
n+ √

p in this case to control the explosion
of the noise term.
So far, we have shown theoretical foundations for HOLP and SIS screening. Now we also want to look at
the practical performance in a quick simulation example. The simulation study provided in Wang and Leng
[2015] focuses on correctly selecting a sparse true model, while we are also interested in the HOLP estimator
being almost proportional to the true regression coefficients β for later application in the random projection.
Therefore, we simulate data similar to later in Section 3.1 from the following example used throughout this
section.
Example 1. We generate data from (1) with multivariate normal predictors xi ∼ N(0,Σ) and normal errors
εi ∼ N(0, σ2), where we choose n = 200, p = 2000, a = 100, µ = 1, and Σ = ρ1p1′

p + (1 − ρ)Ip has a compound
symmetry structure with ρ = 0.5 and eigenvalues λ1 = 1 − ρ+ pρ, λj = 1 − ρ, j = 2, . . . , p. The first a = 100
entries of β are uniformly drawn from ±{1, 2, 3} and the rest are zero. The error variance σ2 is chosen such
that the signal-to-noise ratio is ρsnr = β′Σβ/σ2 = 10.

We compare variable screening based on the marginal correlations, HOLP, Ridge with proposed penalty
λ =

√
n + √

p and Ridge with λ chosen by 10-fold cross-validation. Figure 1a shows density estimates of
the absolute coefficients estimated by these four methods for truly active and non-active variables for 100
replicated draws of the data. In Figure 1b we evaluate the selection process of the four methods when
selecting the k variables having the highest absolute estimated coefficients and let k vary on the x-axis. We
show the precision and recall of this selection, as well as the ratio of correct sign for truly active predictors
included in the selection and the correlation of the corresponding true coefficients to the estimates, averaged
over the 100 replications. We see that HOLP and Ridge with penalty λ =

√
n+ √

p better separate the active
and non-active predictors and achieve better results for precision, recall, true sign recovery and correlation
to the true coefficient compared to Ridge with cross-validated penalty and correlation-based screening. In
Figure 1a, we see that the absolute coefficients of cross-validated Ridge are much smaller than HOLP and
Ridge with λ =

√
n+ √

p, meaning the λ suggested by cross-validation is much higher. In comparison, the
choice λ =

√
n+ √

p even leads to quite similar results as HOLP, which can be interpreted as Ridge with
λ = 0.

2.2 Random Projection

Random projection is used as a dimension reduction tool in high-dimensional statistics by creating a random
matrix Φ ∈ Rm×p with m ≪ p and using the reduced predictors zi = Φxi ∈ Rm for further analysis. When
applying it to linear regression, we would wish that the reduced predictors still have most of the predictive
power and that β ∈ span(Φ′), such that the true coefficients can still be recovered after the reduction.
Random projections first became popular after Johnson and Lindenstrauss [1984], hereafter abbreviated by JL,
who proved the existence of a linear map that approximately preserves pairwise distances for a set of points
in high dimensions in a much lower-dimensional space. Many papers followed, giving explicit constructions of
a random matrix Φ ∈ Rm×p satisfying this JL property with high probability. The classic construction is
setting the elements of this matrix Φij

iid∼ N(0, 1) [Frankl and Maehara, 1988], but also sparse versions with
iid entries

Φij =
{

±1/
√
ψ with prob. ψ/2

0 with prob. 1 − ψ
, (8)

for 0 < ψ ≤ 1 can satisfy the property after appropriate scaling. Achlioptas [2003] gave the results for ψ = 1
or ψ = 1/3, and even sparser choices such as ψ = 1/√p or ψ = log(p)/p were later shown to be possible with
little loss in accuracy of preserving distances [Li et al., 2006].
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Figure 1: Comparison of screening based on marginal correlations, HOLP, Ridge with λ =
√
n + √

p and
Ridge with cross-validated λ in the setting n = 200, p = 2000, a = 100,Σ = 0.5 · 1p1′

p + 0.5 · Ip and ρsnr = 10,
where (a) shows density estimates of absolute estimated coefficients for active and non-active predictors of
100 draws of the data, and (b) shows precision, recall, and sign recovery and correlation of estimates to the
true coefficients averaged over 100 replications, where the vertical line at a = 100 indicates the true number
of active variables

In this section, we propose a new random projection matrix tailored to the regression problem. We start
from a sparse embedding matrix Φ ∈ Rm×p,m ≪ p from Clarkson and Woodruff [2013], which can be used to
form a random projection with the JL property and is obtained in the following way.

Definition 1. Let h : [p] → [m] be a random map such that for each j ∈ [p] : h(j) = hj
iid∼ Unif([m]). Let

B ∈ Rm×p be a binary matrix with Bhj ,j = 1 for all j ∈ [p] and remaining entries 0, where we assume
rank(B) = m. Let D ∈ Rp×p be a diagonal matrix with entries dj ∼ Unif({−1, 1}), j ∈ [p] independent of h.
Then we call Φ = BD a CW random projection.

Each variable j is mapped to a uniformly random goal dimension hj with random sign. We assume that each
goal dimension k ∈ [m] is attained by h for some variable j ∈ [p], which leads to rank(B) = m. Otherwise we
just discard this dimension and reduce m by one. When using this random projection for our linear regression
problem (1), variables in the same goal dimension should not have signs conflicting their respective influence
on the response, and, in general, we would wish for β ∈ span(Φ′) such that the true coefficients β ∈ Rp can
be recovered by the reduced predictors zi = Φxi when modeling the responses as their linear combination
yi ≈ z′

iγ = x′
iΦ′γ, γ ∈ Rm.

Lemma 4 shows that for a CW random projection Φ with general diagonal entries dj ∈ R, the projection of a
general β ∈ Rp to the row-span of Φ given by β̃ = PΦβ = Φ′(ΦΦ′)−1Φ β can be explicitly expressed as

β̃j = dj ·
∑

k:hk=hj
dkβk∑

k:hk=hj
d2

k

.

Therefore, we propose to set dj = c ·βj for some constant c ∈ R. We obtain β̃ = β and therefore β ∈ span(Φ′).
The following theorem shows that we can improve the mean square prediction error when using these diagonal
elements proportional to β instead of using random signs.
Theorem 1. Assume we have data (yi, xi), i = 1, . . . , n from the model

yi = x′
iβ + εi, i = 1, . . . , n, (9)

5
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where xi
iid∼ N(0,Σ) with 0 < Σ ∈ Rp×p, p > n and the εis are iid error terms with E[εi] = 0 and constant

Var(εi) = σ2 independent of the xis, and we want to predict a new observation from the same distribution
ỹ = x̃′β + ε̃ independent from the given data. For a smaller dimension m < n− 1, let Φrs = BDrs ∈ Rm×p

be the CW random projection with random sign diagonal entries and Φpt = BDpt ∈ Rm×p the CW random
projection with diagonal entries dpt

j = cβj for some constant c > 0 proportional to the true coefficient β. We
assume that for each i ∈ [m] there is a j ∈ h−1(i) = {k ∈ [p] : h(k) = i} with βj ̸= 0. Otherwise, in order
to retain rank(Φpt) = m, we set ji = min(h−1(i)) and dpt

ji
= Unif({−1, 1}) · minj:dpt

j
̸=0 |dpt

j | for each i ∈ [m]
where it does not hold.
For X ∈ Rn×p with rows {xi}n

i=1 and y = (y1, . . . , yn)′ ∈ Rn, let Zrs = XΦ′
rs ∈ Rn×m and Zpt = XΦ′

pt ∈
Rn×m be the reduced predictor matrices and ŷrs = (Φrsx̃)′(Z ′

rsZrs)−1Z ′
rsy and ŷpt = (Φptx̃)′(Z ′

ptZpt)−1Z ′
pty

the corresponding least-squares predictions. Then,
E[(ỹ−ŷrs)2] − E[(ỹ − ŷpt)2] ≥ CTh1 > 0, (10)

CTh1 = ∥β∥2
[
λp(1 − 2m

p
)
]

+ a

p− 1mλpτ
2(1 − m+ 1

p− 1 + O(p−2)), (11)

where A = {j ∈ [p] : βj ̸= 0} is the active index set, a = |A| is the number of active variables, τ =
minj:βj ̸=0 |βj | is the smallest non-zero absolute coefficient and λp > 0 is the smallest eigenvalue of Σ.

The proof can be found in Appendix A.
Remark 1. • This theorem shows that when using a conventional random projection from Definition 1

for least-squares regression, the expected squared prediction error is much smaller when using diagonal
elements proportional to the variables’ true effect to the response as opposed to the conventional
random sign, and gives an explicit conservative lower bound on how much smaller it has to be at
least.

• In practice, the true β is unknown, but in Section 2.1 we saw that β̂HOLP asymptotically recovers
the true sign and order of magnitude with high probability, and has high correlation to the true β,
meaning it is ’almost’ proportional to the true β. So we propose to use β̂HOLP as diagonal elements
of our projection. See Remark 2 in Appendix A for a short note on the implications on the error
bound, the relaxation of distributional assumptions and the full-rank adaption of Φpt.

• Note that this bound is non-asymptotic and valid for any allowed m,n, p, a (up to the quadratic order
in p), and it does not depend on the signal-to-noise ratio ρsnr or the noise level σ2, because they have
the same average effect on the error for both random projections.

In the following, we want to verify above considerations and the obtained bound by evaluating the prediction
performance of different projections in a small simulation example, where we use the setting from Example 1
again. When Φ ∈ Rm×p is the selected random projection matrix, we fit an ordinary least-squares model
to the responses yi on the reduced predictors zi = Φxi to obtain predictions for ntest = 100 new predictor
observations. These predictions are evaluated by the mean squared prediction error MSPE. We set the reduced
dimension to the true number of active variables m = a = 100 and compare Φ chosen Gaussian with iid N(0, 1)
entries, Sparse from (8) with ψ = 1/3, and the following three versions from our Definition 1: SparseCW
with standard random sign diagonal elements, SparseCWSign with dj = sign(β̂HOLP,j) and SparseCWHolp
with dj = β̂HOLP,j . Additionally, we look at regression with HOLP, which uses the full predictors, and
two oracles SparseCWSignB from Definition 1 with dj = sign(β) and SparseCWBeta with dj = βj with
the full-rank adaptions proposed in Theorem 1. Figure 2 shows prediction performance of these different
projections and HOLP for 100 replications. We also plot the theoretical lower bound CTh1 from Theorem 1
from the best oracle to SparseCW with random signs and see that the difference is actually higher. The
conventional random projections stay well above this bound, while our proposed random projections using
the HOLP-coefficient manage to stay within the bound to the oracle’s performance. SparseCWHolp is able
to produce predictions that are as good as the ones from the HOLP model using all variables, and for both
the oracle and our proposed random projection using the sign-information instead of the coefficients performs
similar but slightly worse.

2.3 Combination of Screening and Random Projection

Previous work by Mukhopadhyay and Dunson [2020] in this area showed that it can be beneficial to combine
these two tools for dimension reduction by using a probabilistic variable screening step first, keeping only

6
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Figure 2: Comparison of prediction performance of different conventional projections, our proposed projection
using the HOLP coefficient or its signs, HOLP and the oracle projections using the true β or its signs for 100
replications of the setting of Example 1 with n = 200, p = 2000,m = a = 100 and Σ = 0.5 · 1p1′

p + 0.5 · Ip

the more important ones, and then performing random projection on these remaining variables. Repeating
these steps many times and averaging results can reduce dependence on the random projection and increase
prediction performance. After explaining their methods in more detail, we will propose our adaptions of the
procedure and investigate different combinations of screening and random projection and the effect of the
number of screened variables.
In more detail, Mukhopadhyay and Dunson [2020] propose to include each variable with probability

qj = |Cor(xij , yi)|ν
maxk |Cor(xik, yi)|ν

, ν > 0, some i ∈ [n]

with ν = (1 + log(p/n))/2, and use a random dimension m ∼ Unif({2 log(p), . . . , 3n/4}) for a general sparse
projection of type (8). With this choice, the variable with highest marginal importance is always included
and the number of screened variables is not directly controlled. There is no explicit discussion on the number
of models used, but Guhaniyogi and Dunson [2015] report that the gains are diminishing after using around
100 models for averaging.
Instead, we propose to set the number of screened variables to a fixed multiple of the sample size c · n
(independent of p), and drawing the variables with probabilities proportional to their marginal utility
based on the HOLP-estimator pj ∝ |β̂HOLP,j |, as well as using slightly smaller goal dimensions m ∼
Unif({log(p), . . . , n/2}) to increase estimation performance of the linear regression in the reduced model, and
our proposed random projection from Definition 1 with the entries of β̂HOLP corresponding to the screened
variables as diagonal elements. These steps are explained more rigorously in Section 2.4.
We go back to our data setting from Example 1 and want to examine the effects of the number of marginal
models for different combinations of variable screening and random projection for our proposed adapta-
tions. Figure 3 shows the effect of the number of models used on the average prediction performance over
100 replications and compares the following four methods: screening to n/2 variables based on β̂HOLP
(Scr_HOLP), random projections with SparseCW matrix (RP_CW) and our proposed SparseCWHolp
matrix (RP_CWHolp), and first screening with β̂HOLP to 2n variables and then using the SparseCWHolp
random projection (ScrRP). When we use just one model, the screening methods deterministically select the
variables with highest marginal importance |β̂HOLP,j |, j = 1, . . . , p, otherwise they are drawn with probabilities
pj ∝ |β̂HOLP,j |, as previously mentioned. We can see that the combination of screening and random projection

7
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yields the best performance and the effect of using more models diminishes at around 20 models already for
this method.
In Figure 4 we look at the effect of the number of screened variables c · n on prediction performance, where
we compare just screening (Scr_HOLP) to the combination of screening with random projection (ScrRP)
as above for fixed number of models M = 20, and we show again averages over 100 replications. For just
screening we use the HOLP estimator from Section 2.1 as the subsequent regression method when c ≥ 1, and
in case the system is close to degeneracy we add a small ridge penalty λ = 0.01 to the OLS estimate. We see
that the screening still has bad performance for c close to 1, because the sample covariance of the selected
predictors is close to singularity. For small and large ratio’s it achieves better prediction performance. When
combining the screening with the random projection, c does not have such a huge impact, and we can achieve
lower prediction errors where the best results are achieved for 2 ≤ c ≤ 4.
So far, every variable selected once in the screening step will have some contribution in the final regression
coefficient, so when we choose a smaller number of used models and ratio c, there will be less variables
involved, and in the following Section 2.4 we will use a thresholding step to actively set less important
contributions to 0 to obtain some level of sparsity.
When combining the predictions of different models, there are many different ways to choose their respective
model weights, such as AIC [Burnham and Anderson, 2004], prediction error (leave-out-one or cross-validation),
true posterior model weights in a Bayesian approach or dynamic model weights in time series modeling
[Gruber and Kastner, 2023]. Also, we could try to use a subset of all models considering their performance
according to their weight and also the diversity of the combined models [Reeve and Brown, 2018]. However,
across all our efforts in this area, the simple average across all models turned out to yield the best predictions
most consistently for different settings. This observation was already reported in the literature as the forecast
combination puzzle [Claeskens et al., 2016].
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Figure 4: Average effect of number of screened variables on mean squared prediction error of only screening
compared to screening plus random projection before fitting linear regression model for 100 replications of
the setting of Example 1 with n = 200, p = 2000,m = r = 100 and Σ = 0.5 · 1p1′

p + 0.5 · Ip

2.4 Sparse Projected Averaged Regression (SPAR)

The considerations of the previous sections lead us to propose the following algorithm for high-dimensional
regression where p > n.

1. standardize inputs X : n× p and y : n× 1

2. calculate β̂HOLP = X ′(XX ′)−1y

3. For k = 1, . . . ,M :

• draw 2n predictors with probabilities pj ∝ |β̂HOLP,j | yielding screening index set Ik =
{jk

1 , . . . , j
k
2n} ⊂ [p]

• project remaining variables to dimension mk ∼ Unif{log(p), . . . , n/2} using Φk : mk × 2n from
Definition 1 with diagonal elements di = β̂HOLP,jk

i
to obtain reduced predictors Zk = X.Ik

Φ′
k ∈

Rn×mk

• fit OLS of y against Zk to obtain γk = (Z ′
kZk)−1Z ′

ky and β̂k, where β̂k
Ik

= Φ′
kγ

k and β̂k
Īk

= 0.

4. for a given threshold λ > 0, set all entries β̂k
j with |β̂k

j | < λ to 0 for all j, k

5. combine via simple average β̂ =
∑M

k=1 β̂
k/M

6. choose M and λ via 10-fold cross-validation by repeating steps 1 to 5 (but with using the original
index sets Ik and projections Φk) for each fold and evaluating the prediction performance by MSE
on the withheld fold; choose either

(Mbest, λbest) = argminM,λM̂SE(M,λ), (12)

9
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or
(M1-se, λ1-se) = argminM,λ{|{j : β̂j(M,λ) ̸= 0}| : M̂SE(M,λ) ≤

M̂SE(Mbest, λbest) + se(M̂SE(Mbest, λbest))}. (13)

7. output the estimated coefficients and predictions for the chosen M and λ

We use the following notation in step 3. For a vector y ∈ Rn and an index set I ⊂ [n], Ī denotes the
complement, yI ∈ R|I| denotes the subvector with entries {yi : i ∈ I}, and for a matrix B ∈ Rn×m,
BI. ∈ R|I|×m denotes the submatrix with rows {Bi. : i ∈ I} and similarly for a subset of the columns.
The standardization in step 1 helps to stabilize computation and makes the estimated regression coefficients
comparable for variable selection. The thresholding step 4 introduces sparsity to the otherwise dense estimator,
because many variables will be selected by the random screening at least once. After this step, we only keep
the most significant contributions, where the threshold-level can be selected via cross-validation. We can
select the λ which achieves the smallest MSE, or the λ which leads to the least estimated active predictors,
but still has MSE within one standard error of the best MSE. The number of marginal models M could also
be chosen via cross-validation (after specifying a maximum number), but in practice (e.g. Figure 3) we saw
that the effect of M deteriorates once it is high enough, and it suffices to set M = 20.

3 Simulation Study

This section compares different aspects of our proposed SPAR method to several competitors in an extensive
simulation study. First, we explain the data generation setting including six different covariance structures
and coefficient settings, ranging from sparse (few truly active variables) to dense (many active variables).
Then, we define the used evaluation measures and list all considered competitors, before presenting the results
in Section 3.4.

3.1 Data Generation

We generate n = 200 observations from a linear model
yi = µ+ x′

iβ + εi, i = 1, . . . , n, (14)
where µ is a deterministic constant, the xi ∼ Np(0,Σ) follow an iid p-variate normal distribution, and
εi ∼ N(0, σ2) are iid error terms independent from the xis. The covariance matrix Σ of the predictors and
the coefficient vector β ∈ Rp×p will change depending on the simulation setting. The mean is set to µ = 1
and the error variance σ2 is chosen such that the signal-to-noise ratio ρsnr

ρsnr = Var(µ+ x′β)
Var(ε) = β′Σβ

σ2

is equal to 10. We choose p = 2000 as a high number of variables and consider the following different
simulation settings for Σ. The choice of the number of truly active variables a and their coefficients β will be
explained below.

1. Independent predictors: Σ = Ip.
2. Compound symmetry structure: Σ = ρ1p1′

p + (1 − ρ)Ip, where we set ρ = 0.5.
3. Autoregressive structure: The (i, j)-th entry is given by Σij = ρ|i−j| and we choose ρ = 0.9. This

structure is appropriate if there is a natural order among the predictors and two predictors with
larger distance are less correlated, e.g. when they give measurements over time.

4. Group structure: Similarly to scheme II in Mukhopadhyay and Dunson [2020], Σ follows a block-
diagonal structure with blocks of 100 predictors each, where the first half of the blocks has the
compound structure from setting 2 and the second half has the AR structure from setting 3. Only
the very last block has identity structure corresponding to independent predictors within that block,
and the predictors between different blocks are independent.

5. Factor model: Inspired by model 4.1.4. in Wang and Leng [2015], we first generate a p× k factor
matrix F with k = a and iid standard normal entries, and then set Σ = FF ′ + 0.01 · Ip. Here,
dimension reduction of the predictors will be useful, because most of the information lies within the
k-dimensional subspace defined by F .

10
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6. Extreme correlation: Similarly to example 4 in Wang [2009], we create each predictor variable xi the
following way.
For i = 1, . . . , n, let zij ∼ N(0, 1) be iid standard normal variables for j = 1, . . . , p and wij ∼ N(0, 1)
iid standard normal variables for j = 1, . . . , a independent of the zijs. We then set

xij =
{

(zij + wij)/
√

2 j ≤ a

(zij +
∑a

k=1 zik)/
√
m+ 1 j > a

.

We vary a between a sparse a = 2 log(p), medium a = n/2 + 2 log(p) and dense a = p/4 choice (rounded to
closest integer). For settings 1 to 5, the positions of the non-zero entries in β are chosen uniform random
(without replacement) in [p] and these entries are independently set as (−1)u(4 log(n)/

√
n+ |z|), where u is

drawn from a Bernoulli distribution with probability of success parameter p = 0.4 and z is a standard normal
variable. This choice was taken from Fan and Lv [2007], such that the coefficients are bounded away from 0
and vary in sign and magnitude.
In setting 6, we choose the first a predictors to be active with βj = j for j = 1, . . . ,m and
βk = 0 for k > a. In this setting it is extremely difficult to find any true active predictor,
since the marginal correlation of any active predictor xj , j ≤ a to the response is way smaller
than that of any unimportant predictor xk, k > a. In fact, the exact ratio between them is
(j/a) · 2−3/2 · (a+ 1)−1/2 < 1 for j = 1, . . . , a.
For each setting we generate n = 200 observations and evaluate the performance on ntest = 100 further test
observations. For setting 4, we also consider p = 500, 10000, n = 100, 400 as well as ρsnr = 1, 5, and each
setting is repeated nrep = 100 times. In the following section we will introduce the used error measures.

3.2 Error Measures

We evaluate prediction performance on ntest = 100 independent observations via relative mean squared
prediction error

rMSPE =
ntest∑
i=1

(ŷtest
i − ytest

i )2
/ ntest∑

i=1
(ytest

i − ȳ)2, (15)

which is also used and motivated in Silin and Fan [2022]. This measure scales the mean squared error by the
error of a naive estimator β̂ = 0, which can also achieve a small mean squared error in some high-dimensional
settings, in the sense that it is close to zero for growing sample size and dimension. Therefore, this measure
gives an interpretable performance measure relative to the naive estimator β̂ = 0 and we want to achieve
rMSPE < 1 as small as possible.
For the evaluation of variable selection, which is a hard task in this high-dimensional setting, we let A ⊂ [p]
denote the index set of truly active variables of size |A| = a. Then, precision, recall, and F1 score are defined
as

precision =
∑p

j=1 I{βj ̸= 0, β̂j ̸= 0}∑p
j=1 I{β̂j ̸= 0}

, (16)

recall =
∑p

j=1 I{βj ̸= 0, β̂j ̸= 0}∑p
j=1 I{βj ̸= 0}

=
∑

j∈A I{β̂j ̸= 0}
a

, (17)

F1 = 2 · precision · recall
precision + recall . (18)

High precision and high recall are both worth striving for, however, there are rarely methods that excel in
both. The F1 score combines these two into one measure to evaluate a method’s ability to identify true active
variables. Furthermore, we also report the estimated number of active predictors for the different methods.

3.3 Competitors

We compare the following set of methods.

1. HOLP [Wang and Leng, 2015]
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2. AdLASSO using 10-fold CV [Zou, 2006],
3. Elastic Net with α = 3/4 using 10-fold CV [Zou and Hastie, 2005],
4. SIS [Fan and Lv, 2007, screening method]
5. TARP [Mukhopadhyay and Dunson, 2020, random projection method],
6. SPAR CV with fixed M = 20 and both best λ and 1-se λ

HOLP is a method for a non-sparse, i.e. dense, setting, because all estimated regression coefficients are
non-zero, and does, therefore, not perform any variable selection. The TARP method, in the way it is
provided, does not return estimated regression coefficients, but in principle each variable that is selected at
least once in the screening will have non-zero coefficient and the method is therefore not suitable for variable
selection as well. Methods 2 to 4 do perform variable selection and return sparse regression coefficients. They
will by marked by dotted boxes in the following Figures.
We also implemented PLS, PCR and Ridge, but we omit them from the results for a more compact overview.
They all resulted in a prediction performance similar to HOLP, or slightly worse, and they are also all dense
methods not useful for variable selection.
All methods were implemented in R [R Core Team, 2022] using the packages glmnet [Friedman et al.,
2010, AdLASSO and ElNet], SIS [Saldana and Feng, 2018], and the source code available online on https:
//github.com/david-dunson/TARP for TARP. Our proposed method is implemented in the R-package SPAR
available on github (https://github.com/RomanParzer/SPAR).

3.4 Results

First, we look at the prediction results of the competing methods for the six different covariance settings and
sparse, medium and dense setting for the active variables with fixed n = 200, p = 2000, ρsnr = 10 in Figure 5.
We see that the overall performance depends heavily on the covariance setting, and the signal-to-noise ratio
alone does not quantify the difficulty of a regression problem. In the ’independent’ covariance setting with
many active predictors, all methods barely outperform the naive estimator β̂ = 0 with a rMSPE close to
one, while in other covariance settings the errors are much lower. In general, we see that the sparse methods,
especially AdLASSO and ElNet, perform well in sparse settings, but not in settings with more active variables.
On the other hand, the HOLP method performs well in all dense settings, but is much worse than other
methods in sparse settings. Our proposed SPAR method seem to be less dependent on the active variable
setting and can provide useful predictions in all three cases, with slightly better results in more dense cases.
Figure 6 shows precision, recall and F1 score of all competitors (except TARP, see remark in Section 3.3)
for the same covariance structures and medium setting for the active variables. The sparse methods do
achieve higher precision, while the dense methods reach higher recall. However, no method achieves a good
combined F1 score in most settings, which suggests that variable selection in high dimensions is a very hard
task. Interestingly, the ’extreme’ covariance setting is the only setting where some methods achieve good F1
scores. This setting was designed to make it hard for methods using marginal correlations of predictors to
the response, and we can see that SIS does not select any true active variables. However, SIS and TARP,
which also relies on marginal correlations, still achieve acceptable prediction performance for many active
variables in this covariance setting in Figure 5. These results also suggest that SPAR behaves more like a
dense method. For completeness, Figures 13 and 14 in the appendix show the results for the same covariance
settings, but for sparse and dense active variable settings. One interesting result is that ’SPAR 1-se’ is the
only method with a high F1 score in the dense ’extreme’ covariance setting.
Next, we take a closer look at the most general ’group’ covariance setting with medium active variables
and look at the effect of changing p, n or ρsnr. Figure 7 shows that all methods achieve increasingly better
performance measures when p is decreasing. A similar effect can be seen for increasing n and for increasing
signal-to-noise ratio ρsnr (see Figures 15 and 16 in Appendix), where both versions of SPAR are always among
the best methods for prediction.
Figure 8 shows the average computing times in the ’group’ covariance setting. All used methods scale quite
well with p, where SIS and HOLP take the least time to compute. Even with the cross-validation procedure,
our SPAR method takes similar computing time to well-established methods such as AdLASSO.
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Figure 5: Relative mean squared prediction errors of the competing methods, where the sparse methods are
marked by dotted boxes, for the six different covariance settings and sparse, medium and dense setting for
the active variables for nrep = 100 replications (n = 200, p = 2000, ρsnr = 10)
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Figure 6: Precision, recall and F1 score of the competing methods, where the sparse methods are marked
by dotted boxes, for the six different covariance settings and medium setting for the active variables for
nrep = 100 replications (n = 200, p = 2000, ρsnr = 10)
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Figure 9: Relative mean squared prediction errors of the competing methods, where the sparse methods are
marked by dotted boxes, on the two rat eye gene expression datasets for nrep = 100 random training/test
splits

4 Data Applications

In this section, we now want to apply our proposed SPAR method and the same competitors to two real
world high-dimensional regression problems, where one could be regarded as a sparse problem and the other
one as rather dense. For both applications we randomly split the data into training set of size 3n/4 and test
set of size n/4 (rounded) for evaluation and repeat this process nrep = 100 times.

4.1 Rateye Gene Expression

This dataset was obtained for a study by Scheetz et al. [2006]1, where they collected tissues from eyes of
n = 120 rats and measured expression levels of 31042 (non-control) gene probes. One of these genes, TRIM32,
was identified as an additional BBS (Bardet-Biedl syndrome, multisystem human disease) gene [Chiang et al.,
2006]. It is now interesting to model the relation of all other genes to TRIM32 in order to find other possible
BBS genes. Since only a few genes are expected to be linked to the given gene, this can be interpreted as a
sparse high-dimensional regression problem [Huang et al., 2006]. Similarly to Huang et al. [2006] and Scheetz
et al. [2006], we only use genes that are expressed in the eye and have sufficient variation for our analysis.
A gene is expressed, if its maximum observed value is higher than the first quartile of all expression values
of all genes, and has sufficient variation, if it exhibits at least two-fold variation. For us, p = 22905 filtered
genes meet these criteria to be used in our analysis. This dataset is also available in the R-package flare [Li
et al., 2022] with a different subset of p = 200 genes, where all but 3 are also contained in our filtered version.
The selection process is not described in any more detail, but all 200 selected genes have higher marginal
correlation to TRIM32 than three quarters of all available genes.
Figure 9 shows the prediction performance for these two versions of the dataset, where HOLP, TARP and
‘SPAR best’ perform best on the bigger dataset. Interestingly, the sparse methods achieve better performance
on the smaller version of the dataset compared to the full filtered dataset, while the others are able to reach
better prediction performance from the bigger dataset.
Table 1 shows the median number of active variables of the competing methods on these data applications,
confirming the simulation results that our SPAR method uses more active variables than sparse methods.
Evaluating variable selection in this real world application, where the truth is unknown, is very difficult. In

1The dataset is publicly available in the Gene Expression Omnibus repository www.ncbi.nlm.nih.gov/geo (GEO
assession id: GSE5680)
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Figure 10: Relative mean squared prediction errors of the competing methods, where the sparse methods are
marked by dotted lines, on the face angle dataset for nrep = 100 random training/test splits

the Appendix Section C, we compare which genes are selected by each of our competitors. Our ’SPAR best’
method offers a compromise of strong prediction performance on the same level as the best methods, with
some level of sparsity, since it used only around 3200 of the 22905 genes on average. The fact that any sparse
method, even just using the one standard error rule instead of the best λ in the cross-validation in SPAR for
more sparsity, achieves worse prediction performance, raises the question whether this problem is actually
sparse. In simulated sparse settings, the sparse methods always performed better than the rest.

4.2 Face Images

The second dataset originates from Tenenbaum et al. [2000]2 and was also studied, among others, in Guhaniyogi
and Dunson [2016]. It consists of n = 698 black and white face images of size p = 64 × 64 = 4096 and the
faces’ horizontal looking direction angle as response. The bottom left plot in Figure 11 illustrates one such
instance with the corresponding angle. For each training/test split, we exclude pixels close to the edges and
corners, which are constant on the training set. This example was previously used for non-linear methods in
(low-dimensional) manifold regression, but in a linear model many pixels together carry relevant information,
making this a rather dense regression problem.
Figure 10 shows our prediction performance results for this dataset. Here, HOLP and ‘SPAR best’ yield the
lowest prediction error, while AdLASSO and SIS perform substantially worse than the others. Their number
of active predictors used seems to be just too low to capture the information of the faces’ looking direction,
see Table 1.
For this dataset, we can also nicely illustrate the estimated regression coefficients and their contribution to a
new prediction for our method SPAR with threshold λ selected by the one-standard-error rule. We apply our
method once on the full dataset except for two test images, thus n = 696. The top of Figure 11 shows the
positive (left) and negative (right) estimated regression coefficients of the pixels. It yields almost symmetrical
images, which is sensible, and highlights the contours of the nose and forehead. For the prediction of a new
face image, we can define the contribution of each pixel as the pixel’s regression coefficient multiplied by the
corresponding pixel grey-scale value of the new instance. In the bottom right we visualize these contributions
for one of the two new test instances on the bottom left. The sum of all these contribution (plus a ’hidden’
intercept) yields the prediction of ŷ = 34.8 for the true angle y = 35.2.

2Isomap face data can be found online on https://web.archive.org/web/20160913051505/http://isomap.
stanford.edu/datasets.html
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Table 1: Median number of active predictors for all methods on data applications across nrep = 100 random
training/test splits

Method rateye rateye200 face
HOLP 22905.0 200.0 3890.0
AdLASSO 46.0 10.0 19.0
ElNet 24.0 19.0 113.5
SIS 5.0 4.0 6.0
SPAR CV best 3203.5 193.0 3482.5
SPAR CV 1se 1038.5 95.5 2422.0

Figure 12 illustrates the threshold selection of our SPAR method for this application, where we see the mean
squared error estimated by cross-validation and the corresponding error band on the top, and the implied
number of active variables on the bottom, over a grid of λ-values (displayed as rounded to three digits). With
almost the same estimated prediction error, the ‘SPAR 1-se’ method uses over 1000 pixels less than ‘SPAR
best’. For the previous data application, the difference is even more severe, as shown in Table 1.

5 Summary and Conclusions

In this paper, we introduced a new ’data-informed’ random projection aimed at dimension reduction for
linear regression, which uses the HOLP estimator [Wang and Leng, 2015] from variable screening literature,
together with a theoretical result showing how much better we can expect the prediction error to be compared
to a conventional random projection.
Around this new random projection, we built the SPAR ensemble method with a data-driven threshold
selection introducing sparsity. We propose two different choices for this threshold. Firstly, the value providing
the smallest cross-validated MSE, and secondly, the value leading to the sparsest coefficient while still
achieving a similar cross-validated MSE. The first one should be chosen when purely predictions are of
interest. In case we want to interpret the model and identify important variables, the second version should
be prefered. SPAR is able the bridge the gap between sparse and non-sparse methods to some extent, since it
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achieves similar performance to the best non-sparse methods in medium and dense settings and beats them
in sparse settings. However, as shown in our simulations, in very sparse settings, the data and MSE-driven
threshold selection leads to too many active variables, and sparse methods end up performing better both for
prediction and variable selection. How to modify the method to detect the right degree of sparsity is an open
problem, if such a degree can even be determined in real-world problems. In non-sparse high-dimensional
settings, we saw that no method performed well overall for variable selection, indicating the difficulty of this
task.
This methodology can be extended to non-linear (or robust) regression by employing non-linear (or robust)
methods, such as generalized linear models or Gaussian processes, in the marginal models instead of OLS.
Possible future work also includes finding a similar adaption of conventional random projections useful for
classification tasks.
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Appendix A Lemmas and Proof of Theorem 1

This section states and proves Lemmas 2, 3 and 4 mentioned in Section 2, and gives a detailed proof of
Theorem 1 and Lemma 5 needed in the proof.
Lemma 2. Let X ∈ Rn×p be a fixed matrix and y ∈ Rn a vector. Then, the Ridge estimator for λ > 0 has
the following alternative form suitable for the p ≫ n case.

β̂λ := (X ′X + λIp)−1X ′y = X ′(λIn +XX ′)−1y (19)

Proof. Using the Woodbury matrix inversion formula
(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,

where A, U , C and V are conformable matrices, we have for any penalty λ > 0

β̂λ := (X ′X + λIp)−1X ′y =

= 1
λ

(
Ip − 1/λ ·X ′(In + 1/λ ·XX ′)−1X

)
X ′y =

= 1
λ
X ′y − 1

λ
X ′(λIn +XX ′)−1XX ′y ± 1

λ
X ′(λIn +XX ′)−1λy =

= 1
λ
X ′y − 1

λ
X ′ (λIn +XX ′)−1(XX ′ + λIn)︸ ︷︷ ︸

=In

y + 1
λ
X ′(λIn +XX ′)−1λy =

= X ′(λIn +XX ′)−1y.

Lemma 3. Let X ∈ Rn×p be a fixed matrix with rank(XX ′) = n (implying p > n) and y ∈ Rn a vector. Then,
the minimum norm least-squares solution argminβ∈Rp,s.t.Xβ=y∥β∥ is uniquely given by β̂ = X ′(XX ′)−1y.

Proof. Obviously, β̂ = X ′(XX ′)−1y satisfies Xβ̂ = y. For any β̃ ∈ Rp with Xβ̃ = y we have

∥β̃∥2 = ∥β̂ + β̃ − β̂∥2 = ∥β̂∥2 + ∥β̃ − β̂∥2 + 2 · β̂′(β̃ − β̂) =
= ∥β̂∥2 + ∥β̃ − β̂∥2︸ ︷︷ ︸

≥0

+2 · y′(XX ′)−1 X(β̃ − β̂)︸ ︷︷ ︸
=0

≥ ∥β̂∥2,

with equality if and only if β̃ = β̂.

Lemma 4. Let Φ ∈ Rm×p be a CW random projection from Definition 1 with general diagonal elements
dj ∈ R and β ∈ Rp. Then, the projected vector β̃ = PΦβ for the orthogonal projection PΦ = Φ′(ΦΦ′)−1Φ onto
the row-span of Φ is given by

β̃j = dj ·
∑

k:hk=hj
dkβk∑

k:hk=hj
d2

k

. (20)

Proof. We can split the projection in
PΦβ = Φ′(ΦΦ′)−1Φβ = D(B′(ΦΦ′)−1B)(Dβ).

The matrix ΦΦ′ = BD2B′ ∈ Rm×m is diagonal with entries {
∑

l:hl=i d
2
l : i ∈ [m]}, because each variable is

only mapped to one goal dimension. Then, for j, k ∈ [p] we have

(B′(ΦΦ′)−1B)jk =
{

0 hj ̸= hk

1/(
∑

l:hl=hj
d2

l ) hj = hk
.

Putting it together, we get

β̃j = dj ·
p∑

k=1
I{hk = hj} · dkβk∑

l:hl=hj
d2

l

= dj ·
∑

k:hk=hj
dkβk∑

k:hk=hj
d2

k

.
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Lemma 5. Let h : [p] → [m] be a random map such that for each j ∈ [p] : h(j) = hj
iid∼ Unif([m]), and let

A ⊂ [p] be a subset of indizes with a = |A| > 1. Then,

E[ |A ∩ h−1(hj) \ {j}|
|h−1(hj)| ] = a− I{j ∈ A}

p− 1 ·
(

1 − m

p
(1 − (m− 1

m
)p)

)
, (21)

E[ |A ∩ h−1(hj) \ {j}|
|h−1(hj)|2 ] = m

a− I{j ∈ A}
p− 1 ·

( 1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)
, (22)

where h−1(k) = {j ∈ [p] : h(j) = k} is the (random) preimage set for k ∈ [m].

Proof. The first random variable |A ∩ h−1(hj) \ {j}|/|h−1(hj)| (random in h) has the distribution of X1/(1 +
X1 +X2), where X1 ∼ Binom(aj , 1/m), aj = a− I{j ∈ A} corresponding to the active variables (except j)
and X2 ∼ Binom(p− 1 − aj , 1/m) independent of X1 corresponding to the inactive variables.

Note that for any x1, x2 ∈ N x1/(1 + x1 + x2) =
∫ 1

0 x1s
x1+x2ds and, by Fubini’s theorem, we can interchange

the integral and expectation to obtain

E[ X1

1 +X1 +X2
] =

∫ 1

0
E[X1s

X1 ]E[sX2 ]ds.

By using the moment-generating-function of a binomial variable and the dominated convergence theorem to
interchange the derivative and the expectation, we get

E[sX2 ] =
(m− 1

m
+ 1
m
s
)p−1−aj

,

E[(X1 + 1)sX1 ] = ∂

∂s
E[sX1+1] = ∂

∂s
s
(m− 1

m
+ 1
m
s
)aj

=

=
(m− 1

m
+ 1
m
s
)aj

+ s
aj

m

(m− 1
m

+ 1
m
s
)aj−1

,

=⇒ E[X1s
X1 ] = E[(X1 + 1)sX1 ] − E[sX1 ] = s

aj

m

(m− 1
m

+ 1
m
s
)aj−1

.

Putting the results together and using partial integration, we obtain

E[ X1

1 +X1 +X2
] =

∫ 1

0
s
aj

m

(m− 1
m

+ 1
m
s
)aj−1(m− 1

m
+ 1
m
s
)p−1−aj

ds =

= aj

p− 1 ·
(

1 − m

p
(1 − (m− 1

m
)p)

)
.

Similarly, the second random variable |A∩h−1(hj)\{j}|/|h−1(hj)|2 has the distribution of X1/(1+X1 +X2)2.
We will use a similar approach to Cribari-Neto et al. [2000] to obtain a fourth-order approximation.
By use of the Gamma-function and similar arguments to the first case, we can write

x1

(1 + x1 + x2)2 =
∫ ∞

0
x1te

−(1+x1+x2)tdt

for any x1, x2 ∈ N, and

E[ X1

(1 +X1 +X2)2 ] =
∫ ∞

0
te−tE[X1e

−X1t]E[e−X2t]dt. (23)

By use of the moment-generating-functions we get

E[e−X2t] =
(m− 1

m
+ 1
m
e−t

)p−1−aj

,

E[X1e
−X1t] = E[ ∂

∂t

(
−e−X1t

)
] = − ∂

∂t
E[e−X1t] = − ∂

∂t

(m− 1
m

+ 1
m
e−t

)aj

=

= aj

(m− 1
m

+ 1
m
e−t

)aj−1 1
m
e−t.

22



SPAR A Preprint

Plugging this into (23) and using the variable substitution e−r = m−1
m + 1

me
−t and the definition g(r) =

− log(m(e−r − m−1
m ))me−r yields

E[ X1

(1 +X1 +X2)2 ] = aj

∫ ∞

0

1
m
te−2t

(m− 1
m

+ 1
m
e−t

)p−2
dt =

= aj

∫ − log( m−1
m )

0
− log(m(e−r − m− 1

m
))m(e−r − m− 1

m
)e−(p−1)rdr =

= aj

∫ − log( m−1
m )

0

(
1 − m− 1

m
er

)
g(r)e−(p−1)rdr. (24)

From Cribari-Neto et al. [2000] we use the facts that for δ < min(1,− log( m−1
m ))

g(r) = m2r
[
1 + m− 3

2 r + O(r2)
]
, (25)∫ δ

0
rke−(p−1)rdr = Γ(k + 1)

(p− 1)k+1 + O(e−(p−1)δ), (26)∫ − log( m−1
m )

δ

g(r)e−(p−1)rdr = O(e−(p−1)δ). (27)

On r < δ we use the Taylor expansion er = 1 + r + O(r2) to obtain from (24)

E[ X1

(1 +X1 +X2)2 ] = aj

[
m2

∫ δ

0

(
r

1
m

+ r2(−m− 1
m

+ m− 3
2m ) + O(r3)

)
e−(p−1)rdr+

O(e−(p−2)δ)
]

=

= ajm
[ 1

(p− 1)2 + 2(−(m− 1) + (m− 3)/2)
(p− 1)3 + O(p−4)

]
=

= m
aj

p− 1 ·
( 1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)
.

Proof of Theorem 1. For a general CW projection Φ = BD, reduced predictors Z = XΦ′, and a prediction
ŷ = (Φx̃)′(Z ′Z)−1Z ′y = (Φx̃)′(Z ′Z)−1Z ′Xβ + (Φx̃)′(Z ′Z)−1Z ′ε we get the expected squared error (w.r.t
x̃, ε̃, and ε given X and Φ)

E[(ỹ − ŷ)2|X,Φ] = E[
(
x̃′(Ip − Φ′(Z ′Z)−1Z ′X)β + ε̃− x̃′Φ′(Z ′Z)−1Z ′ε

)2
|X, ε,Φ] = (28)

= E[β′(Ip −X ′XΦ′(ΦX ′XΦ′)−1Φ)x̃x̃′(Ip − Φ′(ΦX ′XΦ′)−1ΦX ′X︸ ︷︷ ︸
:=P

)β (29)

+ ε̃2 + ε′XΦ′(ΦX ′XΦ′)−1Φx̃x̃′Φ′(ΦX ′XΦ′)−1ΦX ′ε|X,Φ] = (30)
= β′(Ip − P )′Σ(Ip − P )β + σ2 (31)

+ E[ε′XΦ′(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′ε|X,Φ], (32)

where we used that the mixed terms have expectation 0. The third term has conditional expectation given Φ

E[ε′XΦ′(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′ε|Φ] =

= E[tr
(

(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′εε′XΦ′
)

|Φ] =

= σ2 · tr
(
E[(ΦX ′XΦ′)−1|Φ]ΦΣΦ′

)
,

where we used the facts that tr(AB) = tr(BA) for matrices A,B of suitable dimensions, E[εε′] = σ2 · In

and ε is independent of X and Φ. For fixed Φ, the matrix XΦ′ has a centered matrix normal distribution
with among-row covariance In and among-column covariance ΦΣΦ′ ∈ Rm×m. Therefore, ΦX ′XΦ′ has a
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Wishart distribution with scale matrix ΦΣΦ′ ∈ Rm×m and n degrees of freedom, and (ΦX ′XΦ′)−1 has an
Inverse-Wishart distribution resulting in the expectation E[(ΦX ′XΦ′)−1|Φ] = (ΦΣΦ′)−1/(n−m− 1) and,
continuing above calculations, we obtain

E[ε′XΦ′(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′ε] = σ2 · m

n−m− 1 .

Since the expectations of the second and third term in (31) and (32) do not depend on Φ or the respective
diagonal elements, they will cancel when computing the difference in (10) and we only need to consider
the first term β′(Ip − P )′Σ(Ip − P )β = (β − Pβ)′Σ(β − Pβ). The plan is to find an upper bound on its
expectation when using diagonal elements proportional to the true coefficient and a lower bound when using
random signs as the diagonal elements.
Lower bound for random signs: Let λ1 ≥ · · · ≥ λp > 0 be the ordered eigenvalues of Σ and P rs

X =
Φ′

rs(ΦrsX
′XΦ′

rs)−1ΦrsX
′X. Then,

E[(β − P rs
Xβ)′Σ(β − P rs

Xβ)] ≥ λp · E[∥β − P rs
Xβ∥2]. (33)

Let P rs
Φ = Φ′

rs(ΦrsΦ′
rs)−1Φrs and β̃rs = P rs

Φ β be the orthogonal projection. Then, we have

∥β − P rs
Xβ∥2 = ∥β − β̃rs∥2 + ∥β̃rs − P rs

Xβ∥2︸ ︷︷ ︸
≥0

≥ ∥β − β̃rs∥2,

because β̃rs − P rs
Xβ ∈ span(Φ′

rs) and β − β̃rs ⊥ span(Φ′
rs).

Using the explicit form of β̃rs from Lemma 4 and independence of the map h and diagonal elements
dj

iid∼ Unif({−1, 1}), we get

E[β̃rs
j ] = E[dj ·

∑
k:hk=hj

dkβk

|h−1(hj)| ] = βj · E[ 1
|h−1(hj)| ]. (34)

Since we always have j ∈ h−1(hj) and the other goal dimensions are independently drawn uniformly at
random, the cardinality of this set has distribution |h−1(hj)| ∼ 1 + Binom(p− 1, 1/m). Cribari-Neto et al.
[2000] showed that the inverse moments are then given by

E[ 1
|h−1(hj)| ] = m

p
(1 − (m− 1

m
)p),

E[ 1
|h−1(hj)|2 ] = m2

(p− 1)2 + (m− 3)m2

(p− 1)3 + O(p−4).

Plugging this into (34) yields

βjE[β̃rs
j ] = β2

j · m
p

(1 − (m− 1
m

)p) ≤ β2
j · m

p
,

E[(β̃rs
j )2|h] = E[

∑
k:hk=hj

∑
l:hl=hj

dkdld
2
jβkβl

|h−1(hj)|2 |h] =

=
∑

k:hk=hj
β2

k

|h−1(hj)|2 ≥ τ2 |A ∩ h−1(hj)|
|h−1(hj)|2 ,

where τ = minj:βj ̸=0 |βj |. Using Lemma 5 we get for βj ̸= 0 (or j ∈ A)

E[(β̃rs
j )2] ≥ τ2E[ |A ∩ h−1(hj)|

|h−1(hj)|2 ] = τ2E[ 1 + |A ∩ h−1(hj) \ {j}|
|h−1(hj)|2 ] =

= τ2
[ m2

(p− 1)2 + (m− 3)m2

(p− 1)3 + O(p−4)+

m
a− 1
p− 1 ·

( 1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)]

≥

≥ τ2
[
m

a

p− 1 ·
( 1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)]
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and, for βj = 0 (or j /∈ A)

E[(β̃rs
j )2] ≥ τ2E[ |A ∩ h−1(hj)|

|h−1(hj)|2 ] = τ2E[ |A ∩ h−1(hj) \ {j}|
|h−1(hj)|2 ] =

= τ2
[
m

a

p− 1 ·
( 1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)]
.

Now we can find a lower bound on the expected squared norm as

E[∥β − β̃rs∥2] = E[
p∑

j=1

(
βj − β̃rs

j

)2
] =

p∑
j=1

β2
j − 2βjE[β̃rs

j ] + E[(β̃rs
j )2] ≥ (35)

≥ ∥β∥2 ·
(

1 − 2m
p

)
+ τ2ma( 1

p− 1 − m+ 1
(p− 1)2 + O(p−3)). (36)

Upper bound for true coefficient:
The additional assumption on the diagonal elements proportional to the true coefficient ensures that Φpt has
full row-rank. From Lemma 4, we see that β̃pt = P pt

Φ β for P pt
Φ = Φ′

pt(ΦptΦ′
pt)−1Φpt still equals

β̃pt
j =



cβj ·
∑

k:hk=hj
(cβk)βk∑

k:hk=hj
c2β2

k

= βj βj ̸= 0

0 ·
∑

k:hk=hj
(cβk)βk∑

k:hk=hj
c2β2

k

= 0 βj = 0,∃k ∈ h−1(hj) : βk ̸= 0

dj ·
∑

k:hk=hj
dk

=0︷︸︸︷
βk∑

k:hk=hj
d2

k

= 0 βj = 0,∀k ∈ h−1(hj) : βk = 0

,

the true coefficient β in every case, implying β = P pt
Φ β ∈ span(Φ′

pt). As a short remark, here we see that the
choice of diagonal elements {dk : k ∈ h−1(hj)} in the third case have no influence on the projection, as long
as at least one is non-zero.
Similarly to before, we need to bound the expectation of (β − P pt

X β)′Σ(β − P pt
X β), where P pt

X =
Φ′

pt(ΦptX
′XΦ′

pt)−1ΦptX
′X. Since β ∈ span(Φ′

pt), we have β = P pt
X β and, therefore,

E[(β − P pt
X β)′Σ(β − P pt

X β)] = 0. (37)
Finally, we can put the results together to obtain

E[(ỹ − ŷrs)2] − E[(ỹ − ŷpt)2] = E[(β − Prsβ)′Σ(β − Prsβ)]−
E[(β − Pptβ)′Σ(β − Pptβ)] ≥

≥ ∥β∥2λp(1 − 2m
p

) + a

p− 1mλpτ
2(1 − m+ 1

p− 1 + O(p−2)).

Remark 2. • When using diagonal elements just almost proportional to the true β, we can obtain the
upper bound

E[(β − P pt
X β)′Σ(β − P pt

X β)] ≤ λ1 · E
[
∥β − β̃pt∥2 ·

(
1 + ∥P pt

X ∥2
)]
, (38)

where ∥P pt
X ∥ is the spectral norm induced by the euclidean norm growing bigger when X ′X is further

away from the idendity. As long as ∥β − β̃pt∥2 is small enough such that this upper bound remains
smaller than the obtained lower bound for random sign diagonal elements, we still have a theoretical
guarantee for an average gain in prediction performance.

• We assumed E[yi] = 0,E[xi] = 0 for notational convenience in the proof. With a general center
E[xi] = µx and intercept µ ̸= 0 as in (1), we can just use the centered X and y and the proof will
work in a similar way for the same bound, but also needs to consider the estimation of the intercept
µ̂ = ȳ − (Φx̄)′(Z ′Z)−1Z ′y for both Z = Zrs, Zpt and Φ = Φrs,Φpt.
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• The assumption of multivariate normal distribution for the predictors allows us to explicitly cal-
culate E[(ΦX ′XΦ′)−1|Φ]ΦΣΦ′ from the Inverse-Wishart-distribution, but we could also allow any
distribution, for which this expression does not depend on the choice of Φ.

• In the proof, we can see that the concrete adaption of diagonal elements to retain rank(Φpt) = m
is irrelevant, as long as there is at least one non-zero dj with j ∈ h−1(i) for each i ∈ [m]. Our
proposed adaption aims at adding minimal noise when we can not choose the diagonal elements
exactly proportional to the true β (e.g. when we only use the sign information), while keeping Φrs
not just full rank but also well-conditioned.
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Figure 13: Precision, recall and F1 score of the competing methods, where the sparse methods are marked by
dotted boxes, for the six different covariance settings and sparse setting for the active variables for nrep = 100
replications (n = 200, p = 2000, ρsnr = 10)

Appendix B Additional Figures for Simulation Results in Section 3.4

Here, we include the additional figures for the simulation results mentioned and explained in Section 3.4.
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Figure 14: Precision, recall and F1 score of the competing methods, where the sparse methods are marked by
dotted boxes, for the six different covariance settings and dense setting for the active variables for nrep = 100
replications (n = 200, p = 2000, ρsnr = 10)
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Figure 15: Performance measures of the competing methods, where the sparse methods are marked by
dotted boxes, for ’group’ covariance setting, medium setting for the active variables and n = 100, 200, 400 for
nrep = 100 replications (p = 2000, ρsnr = 10)
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Figure 16: Performance measures of the competing methods, where the sparse methods are marked by dotted
boxes, for ’group’ covariance setting, medium setting for the active variables and ρsnr = 1, 5, 10 for nrep = 100
replications (n = 200, p = 2000)
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Table 2: Ratios of genes selected by the row method that were also selected by the column method and
their estimated number of truly active variables on the full filtered rat eye gene expression dataset with
p = 22905, n = 120

HOLP AdLASSO ElNet SIS SPAR best SPAR 1se SPAR Top10 numAct
HOLP 1.000 0.002 0.001 0.000 0.179 0.058 0.000 22905
AdLASSO 1.000 1.000 0.154 0.000 0.538 0.462 0.077 39
ElNet 1.000 0.200 1.000 0.133 0.367 0.300 0.000 30
SIS 1.000 0.000 0.800 1.000 0.600 0.600 0.000 5
SPAR best 1.000 0.005 0.003 0.001 1.000 0.326 0.002 4107
SPAR 1se 1.000 0.013 0.007 0.002 1.000 1.000 0.007 1337
SPAR Top10 1.000 0.300 0.000 0.000 1.000 1.000 1.000 10

Appendix C Gene Selection in Section 4.1

In this section, we look at variable selection for the rateye gene expression dataset from Section 4.1. We
consider the six previous methods, as well as selecting the 10 genes with highest absolute coefficient estimated
by ’SPAR 1-se’, called ’SPAR Top10’ in the following. Table 2 shows the ratio of selected genes that were
also selected by the other methods (in the columns) for each method (in the rows). We see that there are no
big overlaps between the genes selected by the three sparse methods. For example, only 20% of the 30 genes
selected by ElNet are also selected by AdLASSO, and out of the 5 genes selected by SIS, not a single one is
selected by AdLASSO, while 4 are selected by ElNet. With ’SPAR 1-se’, we also include 46.2%, 30% and 60%
of the genes selected by AdLASSO, ElNet and SIS, respectively, and 3 of the top 10 genes are also selected
by AdLASSO. Since the truth is unknown in this application, it is hard to judge, which variable selection can
be trusted the most.
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