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Mitigating the impact of dense vegetation on the Sentinel-1 surface soil 
moisture retrievals over Europe
Samuel Massart a, Mariette Vreugdenhila, Bernhard Bauer-Marschallingera, Claudio Navacchia, 
Bernhard Ramla and Wolfgang Wagnera,b

aDepartment of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria; bEODC Earth Observation Data Centre for 
Water Resources Monitoring, Vienna, Austria

ABSTRACT
The C-band Synthetic Aperture Radar (SAR) on board of the Sentinel-1 satellites have a strong 
potential to retrieve Surface Soil Moisture (SSM). Using a change detection model to Sentinel-1 
backscatter, an SSM product at a kilometre scale resolution over Europe could be established in 
the Copernicus Global Land Service (CGLS). Over areas with dense vegetation and high 
biomass. The geometry and water content influence the seasonality of the backscatter 
dynamics and hamper the SSM retrieval quality from Sentinel-1. This study demonstrates the 
effect of woody vegetation on SSM retrievals and proposes a masking method at the native 
resolution of Sentinel-1’s Interferometric Wide (IW) swath mode. At a continental 20 m grid, 
four dense vegetation masks are implemented over Europe in the resampling of the back-
scatter to a kilometre scale. The resulting backscatter is then used as input for the TUWien 
(TUW) change detection model and compared to both in-situ and modelled SSM. This paper 
highlights the potential of high-resolution vegetation datasets to mask for non-soil moisture- 
sensitive pixels at a sub-kilometre resolution. Results show that both correlation and season-
ality of the retrieved SSM are improved by masking the dense vegetation at a 20 m resolution.

HIGHLIGHTS
● Dense vegetation reduces the ability to retrieve surface soil moisture at a kilometre scale 

from Sentinel-1 backscatter which is currently available on the Copernicus Global Land 
Service portal.

● Applying selective masking for vegetation during the resampling phase improves Sentinel-1 
sensitivity to soil moisture.

● A novel vegetation-corrected Sentinel-1 surface soil moisture product is processed over 
Europe for the period 2016–2022 included.

● The Sentinel-1 forest mask improves the Sentinel-1 SSM product correlation and seasonality 
compared to both modelled and in-situ datasets.
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Introduction

Surface soil moisture (SSM) is a key variable controlling 
water and energy flux at the interface of the atmosphere 
and lithosphere (Robock et al., 2000). Defined as the 
water contained in the unsaturated soil surface, SSM 
regulates environmental processes such as precipitation, 
runoff, temperature, and evapotranspiration 
(Seneviratne et al., 2010). Its accurate monitoring is 
valuable for a vast range of environmental applications, 
such as hydrological modelling (Alfieri et al. 2022; Laiolo 
et al. 2016), drought monitoring (Vreugdenhil et al. 2022; 
Yuan et al. 2015), crop management and irrigation (Dari 
et al. 2023; Ge et al. 2011) and flood forecasting (Ford 
and Quiring, 2019; Kim et al. 2019). Over the last dec-
ades, microwave remote sensing became a reliable tech-
nology to estimate soil water content at a global scale 
with high temporal resolution (Peng et al. 2020). 
Exploiting the difference between the dielectric 

properties of soil and water, active microwave retrievals 
are able to provide global SSM data over time with 
a frequency independent from cloud cover and seasonal 
daylight variability (Karthikeyan et al. 2017). As part of 
Copernicus, the European earth observation program, 
ESA’s Sentinel-1A and -1B satellites were launched into 
orbit in 2014 and 2016, respectively. Additionally, 
Sentinel-1C and -1D are in the development phase and 
planned to be launched in this decade ensuring the 
continuation of the mission. In December 2021, 
Sentinel-1B’s mission was ended due to anomalies of 
the instruments on-board. Following the heritage of 
Envisat Advanced Synthetic Aperture Radar (ASAR), 
the Sentinel-1 (S1) constellation (S1) provides unprece-
dented multi-looked ground range resolution of 20 m by 
22 m (Torres et al. 2012). It became apparent that mon-
itoring SSM at near-real-time using the Sentinel-1 satel-
lites has high potential (Hornacek et al. 2012). Building 
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upon the TUW change detection model from Wagner 
et al. (1999), Pathe et al. (2009), and Hornacek et al. 
(2012), Bauer-Marschallinger et al. (2019) developed an 
SSM product based on the linear relationship between 
Sentinel-1 backscatter and soil water content. In this 
algorithm, the Sentinel-1 backscatter is first resampled 
to a 500 m sampling (1 km resolution) and then used as 
input for the TUW change detection model. The product 
showed satisfactory results compared to in-situ measure-
ments and is currently available on the Copernicus 
Global Land Service (CGLS) Website1 over Europe 
from 2015 onward.

One challenge faced when using microwave remote 
sensing data is the decreased sensitivity to soil moist-
ure over dense vegetation (Bauer-Marschallinger et al.  
2019). For upcoming high-resolution Synthetic 
Aperture Radar (SAR) missions like NASA’s NISAR, 
Lal et al. (2023) states that dense vegetation content 
will reduce the ability for the satellite to monitor soil 
moisture. High biomass content leads to backscatter 
saturation and the SAR is not able to penetrate the 
canopy layer. Additionally, most operational soil 
moisture products from microwave observations, 
such as the ESA’s CCI soil moisture2, and SMAP soil 
moisture3 or EUMETSAT’s soil moisture product4, 
mask dense forests and high biomass content.

To retrieve SSM from Sentinel-1, different masking 
approaches have been tested to retrieve SSM from the 
backscatter signal while accounting for vegetation con-
tribution at a kilometre scale. The implementation of 
radiative transfer theory allows to physically model vege-
tation temporal dynamics and thus improve SSM retrie-
vals. These approaches are typically more 
computationally intensive but have shown positive 
improvements at the plot scale (Chatterjee et al. 2020; 
Foucras et al. 2020), or regional scale (Quast et al. 2023). 
Alternatively, machine-learning approaches use the back-
scatter information to retrieve SSM using varying model 
complexity from statistical regression (Nguyen et al.  
2021), supervised ensemble learning (Hajdu et al. 2018) 
or unsupervised neural networks (Hegazi et al. 2021). 
Physical and machine learning-based models show vali-
dation improvements with regard to models that do not 
actively account for vegetation in the backscatter signal. 
However, either these models are not tested over pixels 
with dense forested content; either they show poor vali-
dation over forest pixels when compared to croplands, 
shrublands or grasslands pixels.

The CGLS soil moisture also performs poorly over 
areas with complex vegetation geometry compared to 
both modelled and in-situ soil moisture (Bauer- 
Marschallinger, 2022). Seasonal patterns introduce 
temporal biases due to vegetation changes in the soil 

moisture time series. Where coarse resolution micro-
wave data need to mask entire pixels, the high- 
resolution Sentinel-1 data and the current algorithm 
used for the operational CGLS SSM enable masking 
backscatter at the original resolution of Sentinel-1, i.e. 
before resampling to 500 m.

This paper investigates the impact of vegetation on 
S1 backscatter and subsequent SSM retrievals. The 
study highlights the benefits of masking 20 m resolu-
tion backscatter pixels with low sensitivity to surface 
soil moisture due to dense vegetation. Three different 
vegetation datasets derived from optical or microwave 
data are tested as high-resolution vegetation masks. 
These SSM datasets are validated using in-situ soil 
moisture from the International Soil Moisture 
Network (ISMN) and used to select the best perform-
ing mask. This mask is used to retrieve soil moisture 
over Europe at 500 m (to the same extent as the 
Copernicus Global Land Monitoring (CGLS) SSM 
product), and its performance is evaluated against 
ERA5-Land SSM (Muñoz-Sabater et al. 2021) relative 
to the benchmark of CGLS SSM.

This study shows that by discarding pixels flagged 
with a strong vegetation signal before resampling the 
backscatter to a kilometre scale, Sentinel-1 SSM shows 
better agreement with both, in-situ, and modelled 
SSM. We therefore propose a novel

Sentinel-1 SSM product including dense vegetation 
masking at 20 m resolution.

Materials

Sentinel-1 backscatter and preprocessing

The Sentinel-1 satellites are part of the Copernicus 
Sentinel constellation carrying C-band SAR. 
Compared to older missions (e.g. Envisat ASAR), 
Sentinel-1 is characterized by higher revisit times, 
higher spatial resolution, and continuity in the form 
of Sentinel-1C and Sentinel-1D planned to be 
launched in the next decade (Torres et al. 2012). The 
Sentinel-1 satellites are equipped with C-band SAR 
sensors working at a frequency of 5.405 Hz and mea-
suring both cross- (VV) and co- polarization (VH) 
backscatter. In their IW swath mode, the sensors mea-
sure multi-looked backscatter at a ground range 
detected resolution of 20 m by 22 m resolution, at 
incidence angles from 29° to 46° over flat terrain, 
covering a swath of 250 km. When both Sentinel-1A 
and −1B were operational, revisit time varied between 
1.5 and 4 days over Europe. The backscatter dataset 
used in this study originates from the backscatter 
dataset utilized in the production of CGLS SSM 
(Bauer-Marschallinger et al. 2018).

1https://land.copernicus.eu/global/products/ssm
2https://climate.esa.int/en/projects/soil-moisture/
3https://smap.jpl.nasa.gov/data/
4https://navigator.eumetsat.int/product/EO:EUM:DAT:METOP:SOMO12
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Within the CGLS SSM processing chain, the 
Sentinel-1 data from 2016 to 2021 (included) are 
radiometrically calibrated and terrain corrected using 
the Shuttle Radar Topography Mission (SRTM) 
Digital Elevation Model (DEM) at 90 m resolution. 
The preprocessed data consists of georeferenced σ0 

backscatter and a local incidence angle (θ) at 20 m 
sampling and is stored as datacube in the Equi7Grid 
framework (Bauer-Marschallinger et al. 2014). An 
additional filtering step is added to the VV polarised 
backscatter to discard pixels with extreme backscatter 
values below −20°dB and above −5°dB. The reasoning 
behind this is that high backscatter values likely origi-
nate from cities and other man-made objects that act 
as corner reflectors, low backscatter values are predo-
minantly caused by water bodies and other non-soil 
surfaces.

Sentinel-1 CGLS SSM

The default Sentinel-1 CGLS SSM data, available on 
the CGLS website5, is used as a benchmark. The CGLS 
SSM product is based on the assumption that the 
temporal variability of the backscatter coefficient σ0 

(in decibels) is related to SSM changes in the surface 
soil layer. Vegetation, geometry, and roughness are 
assumed to behave as static, allowing for a simpler 
parametrization, which does not require external data-
sets or iterative adjustments. SSM is calculated by 
scaling backscatter between the driest and wettest 
soil conditions, i.e. the lowest and highest observed 
backscatter at certain incidence angles. For more 
details on the SSM retrievals, we refer to Bauer- 
Marschallinger et al. (2019).

Reference data

International soil moisture network
The International Soil Moisture Network (ISMN) is 
a global soil moisture database providing data from 
more than 2800 stations across 71 networks worldwide 
(as of 1 January 2023). The data is continuously 
updated, harmonised and freely available6 All ISMN 
SSM measurements are subjected to an automated 
quality control using a standardised flagging system 
removing out of range values, geophysical inconsis-
tencies and outliers (Dorigo et al. 2011, 2021). In this 
paper, only the networks fulfilling the following 
requirement are used:

● Sensors located on the European continent. 
(−12°to 42°E and 35° to 72°N)

● Sensors located within the uppermost 10 centi-
metres of the soil.

● If multiple sensors are available at the exact same 
coordinates, only the sensors at the shallower 
depth are considered. If multiple sensors are 
available at equivalent depth, the sensor with 
the highest number of measurement is consid-
ered for the given coordinates.

● Sensors operational for at least 1 year of SSM data 
since the launch of Sentinel-1.

● At least 100 backscatter observations from 
Sentinel-1 are available during the operational 
time-span of the sensor.

● Sensors located within 500 m Sentinel-1 pixels 
displaying a percentage of forest masked between 
10% and 99% (at 20 m sampling). Above 99%, the 
Sentinel-1 data are discarded. Below 10%, the 
impact of the forest masking is marginal on the 
backscatter dynamics as the majority of 
resampled pixel is not dominated by dense 
vegetation.

Table 1 summarizes the number of available stations 
fulfilling the above-mentioned requirements.

ERA5-land surface soil moisture
ERA5-Land is the first operational land reanalysis part 
of the ERA5 series from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) pro-
duced within the Copernicus Climate Change Service 
(C3S), based on a 9 km grid spacing (0.1°x 0.1°), and 
covering a period from 1950 to 2022 included (as of 
1 April 2023) (Muñoz-Sabater et al. 2021). ERA5 Land 
uses Carbon Hydrology-Tiled ECMWF Scheme for 
Surface Exchanges over Land (CHTESSEL) to parti-
tion the water and energy fluxes over land, thus pro-
viding 50 land variables at an hourly temporal 
resolution. The land surface model is driven by 
meteorological forcing from ERA5 including precipi-
tation, air temperature, humidity wind speed, and sur-
face fluxes. The variable selected for the Sentinel-1 
SSM validation is the volumetric soil water at a depth 
of 0–7 cm [m (Baghdadi et al., 2018)/m (Baghdadi 
et al., 2018). ERA5-Land soil moisture was validated 
using in-situ measurements from ISMN between 2010 
and 2018 showing satisfactory results and slight 
improvements compared to its predecessor ERA5- 
Interim (Muñoz-Sabater et al. 2021).

Vegetation datasets

Sentinel-1 based forest map
The Sentinel-1 forest map is derived using both VV- 
and VH-polarised 20 m resolution backscatter from 
2017 (Dostálová et al. 2021). Regions with similar 
vegetation and environmental characteristics were 

5https://land.copernicus.eu/global/products/ssm
6https://ismn.earth/en/.
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manually delineated. For each region, backscatter tem-
poral signature was defined for both coniferous and 
deciduous forests using averaged backscatter every 12  
days over 30 by 30 forested pixels. The seasonality of 
each pixel was then compared to regional prototype 
forest signature (broadleaved, coniferous) and then 
assigned to the most likely signature. High accuracy 
was found over Central and Eastern Europe between 
the Sentinel-1-based forest map and national forests 
map, as well as the Copernicus HRL dataset.

ESA’s WorldCover map
ESA’s WorldCover map is a global land cover map for 
2020 at 10 m sampling based on the synergistic use of 
Sentinel-1 and Sentinel-2. One hundred and six fea-
tures are extracted from Sentinel-1 and Sentinel-2 
based on descriptive statistics (quantiles, range) as 
well as long-term averages. An additional 25 features 
are extracted from auxiliary datasets (Copernicus 
DEM, OpenStreetMap, Global Human Settlement 
Layer, Global Surface Water Explorer, Global 
Mangrove Watch). These features are ingested to 
train a classification algorithm resulting in a 10 m 
sampling land cover map with 11 classes and an over-
all accuracy surpassing 75% (The complete description 
of the algorithm is available in the product user man-
ual on the ESA’s WorldCover website7).

The forested class from the WorldCover map is 
defined as: “any geographic area dominated by trees 
with a cover of 10% or more. Other land cover classes 
(shrubs and/or herbs in the understorey, built-up, per-
manent water bodies, etc.) can be present below the 
canopy, even with a density higher than trees. Areas 
planted with trees for afforestation purposes and 

plantations (e.g. oil palm, olive trees) are included in 
this class. This class also includes tree covered areas 
seasonally or permanently flooded with fresh water 
except for mangroves.”(Zanaga et al., 2022).

Copernicus land monitoring service – tree cover 
density
The Copernicus Tree Cover Density dataset is pro-
vided by the Copernicus Land Monitoring Service 
(CLMS) and is included in the Pan-European High- 
Resolution Layers (HRL). The dataset provides a 10 m 
sampling European map of the proportional crown 
coverage, also defined as the “vertical projection of 
tree crowns to a horizontal earth’s surface”. The data 
is processed using 2018’s Sentinel-2 time series. Fifty- 
nine statistical features are extracted and ingested in 
a random forest classifier with 200 decision-trees. 
First, a binary tree-cover map is produced, and then 
a tree-cover density is attributed to each pixel within 
the tree-cover mask. Validation showed that results are 
stronger over central Europe and lower for Western 
and Southern Europe (Sannier and Pennec, 2017).

CORINE land cover
The CORINE Land Cover (CLC) map is provided by 
the CLMS at a 100 m sampling based on Sentinel-2 
and Landsat-8. The dataset consists in 44 standardized 
land cover classes over Europe. The CLC has 
a minimum feature width of 100 m and a minimum 
mapping unit of 25 ha. The mapping and land cover 
classification is carried out by national experts using 
varying techniques. It follows technical standards and 
nomenclature to provide a harmonized pan-European 
dataset. The CLC map released in 2018 is the fifth 

Table 1. Stations considered for the in-situ validation of the forest mask sentinel-1 SSM.
Network Stations Time-extent Dominant Land Cover

HOBE 35 01.01.2015–10.08.2019 1. Tree cover, needleleaved, evergreen, closed to open (>15%) 
2. Cropland, rainfed

IPE 2 01.01.2015 –25.03.2020 1. Tree cover, needleleaved, evergreen, closed to open (>15%) 
2. Cropland, rainfed

RSMN 5 01.01.2015 –12.31.2022 1. Cropland, rainfed 
2. Urban areas

SMOSMANIA 16 01.01.2015 –01.01.2021 1. Tree cover, needleleaved, evergreen, closed to open (>15%) 
2. Cropland, rainfed 
3. Grasslands

REMEDHUS 2 01.01.2015 –01.01.2022 1. Cropland rainfed 
2. Cropland irrigated or post-flooding

HOAL 3 01.01.2015 –12.31.2021 1. Cropland rainfed
FMI 8 01.01.2015 –12.31.2022 1. Shrub or herbaceous cover, flooded,fresh/saline/brackish water 

2. Mosaic tree and shrub (>50%), herbaceous cover (<50%) 
3. Tree cover, needleleaved, evergreen, closed to open (>15%)

WSMN 2 01.01.2015 –29.02.2016 1. Grassland 
2. Urban areas

TERENO 2 01.01.2015 –06.07.2021 1. Grassland 
2. Cropland rainfed

FR-Aqui 3 01.01.2015 –01.01.2022 1. Tree cover, needleleaved, evergreen, closed to open (>15%)
BIEBRZA_S-1 1 03.04.2015 –01.12.2018 1. Shrub or herbaceous cover, flooded,fresh/saline/brackish water 

2. Grassland

7https://worldcover2020.esa.int/data/docs/WorldCover_PUM_V1.1.pdf
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iteration of the dataset and provides a thematic accu-
racy of >85% (Büttner, 2014). Compared to the ESA 
WorldCover map described in 2.4.2: On the one hand, 
the CLC map provides additional information with 
regard to forest content. Each forested pixel is subdi-
vided into broadleaved, coniferous or mixed forests. 
On the other hand, the dataset is provided at a coarser 
resolution compared to the ESA WorldCover map.

Methods

Vegetation mask standardisation

To integrate the high-resolution vegetation products 
described in Section 2.4 in the resampling processing 
chain, they are converted to binary arrays of forest and 
non-forest pixels. The Sentinel-1 forest mask (S1- 
mask) is created by combining the pixels defined as 
coniferous and broadleaved forest into a binary layer. 
For the ESA’s WorldCover Map, the “Tree cover” land 
cover class is converted into a binary mask (WC- 
masked SSM). The Tree Cover Density Map provides 
continuous crown coverage values. Hence, two binary 
maps are derived based on different percentage 
thresholds, 30%, and 70%, respectively (TC30- 
masked SSM, TC70-masked SSM). All dense forest 
masks are resampled to Equi7Grid standard (Bauer- 
Marschallinger et al. 2014) to match the Sentinel-1 
backscatter data.

Resampling and soil moisture retrievals

Operational SSM estimation at the continental-scale 
demands for robust and efficient retrieval algorithms. 
With respect to the complexity of the SAR signal at the 
native high resolution – with highly dynamic interac-
tions between and within soil and vegetation – 
a downscaling to the kilometric scale increases the 
reliability of the SSM signal, as done e.g. within the 
CGLS product. The resampling of the Sentinel-1 
scenes from the initial 20 m sampling to a 500 m 
pixel spacing decreases uncertainties caused by 
speckle, ground variability from soil roughness, or 
non-soil features. Furthermore, it significantly reduces 
the data volume and allows for a much more efficient 
processing in the near-real-time operations.

However, a suitable masking of the ”raw” back-
scatter observations at the 20 m sampling give the 
possibility to filter for signal components relevant 
to SSM retrieval. The 20 m input backscatter is 
masked with the different dense vegetation masks 
described in 2.4. Any pixels flagged as dense vege-
tation are discarded from the resampling. If more 
than 99% of the pixels are discarded, the resulting 
resampled pixel is classified as “no data”. The 
suitable pixels are arithmetically averaged in the 
linear domain for each Sentinel-1 scene and a 3 by 

3 Gaussian filter is applied to the resampled 500 m 
products to reduce aliasing effects.

The soil moisture is retrieved in the same man-
ner as for the CGLS soil moisture product. To 
obtain SSM observations, each backscatter scene is 
normalized to a common reference angle of 40°. 
Normalizing each data point to a common inci-
dence angle is essential to compare the temporal 
evolution of the backscatter coefficient σ0, as each 
resampled backscatter value is strongly related to 
the incidence angle at which it is observed. To do 
so, the relationship between backscatter coefficients 
and local incidence angles is assumed to be linear 
(Bauer-Marschallinger et al. 2019). The revisit time 
(thus the number of observations) being inhomo-
geneous, some areas only have measurements with 
two distinct local incidence angles making it 
impossible to fit a linear regression Bauer- 
Marschallinger et al. (2019) introduced an alterna-
tive approach to estimate the linear slope (βr) using 
the mean and sensitivity of σ0.

The observed normalized backscatter is then 
scaled between the wet and dry references, which 
define the theoretical extreme soil moisture states 
of a given pixel. The potential of outliers, artifi-
cially extending the wet and dry parameters range, 
is mitigated by selecting the 10th and 90th percen-
tile as wet and dry references. From these percen-
tiles, the 0th and 100th percentile of SSM is then 
linearly interpolated as described in the following 
equations. 

σo
dry ¼ σo

10 �
10
80 � σo

90 � σo
10

� �
(1) 

σo
wet ¼ σo

90 þ
10
80 � σo

90 � σo
10

� �
(2) 

Finally, SSM is extracted for each normalized back-
scatter scene. 

SSM tð Þ ¼
σo tð Þ � σo

dry
σo

wet � σo
dry

(3) 

Evaluation of the masked products

The impact of masking dense vegetation on the 
Sentinel-1 SSM is evaluated in a two-step approach. 
First, a per-station evaluation is done based on in-situ 
soil moisture. Second, the best performing masking 
approach is evaluated over Europe against the ERA5- 
Land SSM product. For the evaluation, the CGLS SSM 
is considered as benchmark, and any improvements or 
deterioration are quantified with respect to this 
dataset.

In-situ evaluation

The selected in-situ stations from 2.3.1 are paired with 
their relative resampled Sentinel-1 pixel. A station is 
included for the validation process if, during the 
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resampling phase, its matching Sentinel-1 pixel had 
between 10% and 99% of its data masked as dense 
vegetation by all three masks. This criterion ensures 
that the resampling correction has an impact on the 
backscatter values. Pixels outside of the 10 − 99% 
masking range either are marginally impacted by the 
vegetation mask or the entire pixel is fully discarded. 
The SSM products are scaled to in-situ soil moisture 
using a mean standard deviation scaling. For each 
suitable station, Pearson correlation coefficients are 
computed. The correlation changes for each in-situ 
station are compared to the percentage of pixels dis-
carded using the Sentinel-1 forest mask to assess the 
effect of the reduction of available pixels during the 
resampling phase.

Large-scale evaluation

To conduct a large-scale evaluation of the SSM pro-
duct, we selected the most skilful vegetation mask 
based on in-situ analysis. The masking approach 
based on the Sentinel 1 forest mask is evaluated 
using the ERA5-Land SSM product across Europe to 
assess potential impacts on the accuracy and reliability 
of the SSM product. Each Sentinel-1 pixel is matched 
to its nearest ERA5-Land pixel. The resolution of 
ERA5 Land is 0.1° by 0.1° meaning that multiple 
Sentinel-1 pixels are matched to a single ERA5-Land 
time series. Each Sentinel-1 scene is matched with the 
temporally closest ERA5-Land observation with 
a maximum masking time difference of 6 hours for 
two observation to be matched. If the ERA5-Land soil 
temperature is below 3°C, the coupled observations 
are discarded. For each resulting time series, Pearson 
correlations are computed. The Sentinel-1 SSM data-
sets are scaled (with mean-standard deviation scaling).

The large-scale evaluation is done both on the full 
time series and per season. For each season, the Pearson 
correlation and bias are computed. To detect if the bias 
is reduced through dense vegetation masking, the abso-
lute values of the biases per season are calculated for the 
benchmark and masked SSM products. If the absolute 
bias from the new product is closer to 0 than the bias of 
the benchmark product, then the vegetation masking 
positively corrects for bias. To estimate the impact of 
climate (and potential seasonal dynamics) on the skill 
of the SSM retrieval, the correlations are spatially 
grouped and averaged for climatic region based on 
the Köppen – Geiger classification.

Results

In-situ evaluation

Figure 1 shows the correlation coefficients with in-situ 
soil moisture for each station, comparing the SSM 
products processed with the vegetation masks to the 

CGLS SSM benchmark. For the majority of the in-situ 
stations the correlation increases regardless of the 
masking approach. The correlation improvement is 
consistently positive when the pixels show an initial 
correlation of ρ > 0.4 compared to the benchmark 
CGLS SSM. However, if ρ is initially low (ρ < 0.4), 
the vegetation masking approach becomes inconsis-
tent. The average correlation for all stations with the 
CGLS SSM is 0.372. Note that the low correlation 
stems from the selection of the stations as we only 
consider stations within pixels with a minimum forest 
content. The addition of croplands and grasslands 
station would likely increase the average correlation. 
The S1-masked and WC-masked SSM products per-
form better, with the same average correlation coeffi-
cient of 0.435. The TC30- and TC70-masked SSM 
products (see Table 2) show also an improvement 
compared to the CGLS SSM benchmark, albeit slightly 
lower than for the S1 and WC-mask, with 0.427 and 
0.416 correlation coefficients, respectively.

The improvement in correlation increases along with 
the percentage of dense vegetation pixels masked within 
the 500 m pixel, as the largest points are located closest 
to the 1:1 line. Larger correlation improvements are 
observed over pixels with high percentages of masked 
vegetation. The networks HOBE and SMOSMANIA are 
good examples where applying a vegetation mask dur-
ing the resampling phase improves Sentinel-1 skills to 
monitor SSM. These two networks are located in humid 
continental climates (Dfb, Cfb) with clear seasonal 
dynamics. In these regions, the forested pixels show 
no clear seasonality in soil moisture dynamics, due to 
the attenuation of the signal by the vegetation. Figures 2 
and 3 show two case studies comparing in-situ soil 
moisture against the CGLS SSM benchmark and the S1- 
masked SSM for a station in France (SMOSMANIA, 
LaGrandCombe) and Finland (FMI, SOD012). The soil 
moisture sensitivity over LaGrandCombe is largely 
improved thanks to the vegetation mask, with improve-
ments in ρ from 0.135 to 0.528. In the S1-masked SSM, 
the sensitivity to seasonal soil moisture dynamics is 
improved, with high soil moisture in winter and low 
soil moisture in summer. This is shown in Figure 2(a) as 
compared to Figure 2(b), where the seasonal dynamics 
that are present in the in-situ soil moisture are not 
represented in the CGLS SSM data. At FMI, there is 
no clear improvement in ρ. In addition, no improve-
ments in seasonal dynamics can be observed and the 
entire winter season is masked. The time series indicates 
that the validation period is constrained from May to 
November due to the low-temperature masks from 
both ERA5-Land and ISMN. During these months, 
the S1 sensitivity to in-situ soil moisture is initially 
low (ρ = 0.157) and is further decreased after masking 
for dense vegetation (ρ = 0.036). For each FMI sensors, 
the initial in-situ correlation is below 0.2 and the per-
centage of masked pixels is high. A decrease in 
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correlation coefficients is observed regardless of the 
masking approach (ṕdefault = 0.190 compared to 
ṕtc70 = 0.156, ṕtc30  = 0.128, and ṕs1 = 0.134). In these 
landscapes, dense vegetation does not seem to be the 
leading cause of low SSM sensitivity and is likely not the 
only source of noise in the observed signal.

Large-scale evaluation

To estimate the sensitivity of S1-masked SSM to sea-
sonal dynamics over Europe the CGLS and S1-masked 
SSM are compared to ERA5-Land SSM. Figure 4 
shows the correlation map between ERA5-Land to 

Figure 1. Comparison of the correlation between ISMN in-situ stations with default SSM and (x-axis) and vegetation masked SSM 
(y-axis) using the 4 different masking approaches. The point coloration denotes to which ISMN network the station belongs. The 
size of the point represents the percentage of 20m pixels selected during the resampling phase to produce the kilometre scale 
product. The plotted points located above the diagonal line indicates that the vegetation mask has a positive impact on the soil 
moisture retrieval.
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Table 2. Performances of the different masking approaches over the ISMN stations.
Avg. Pearson (in-situ) Avg. Pearson (ERA5-Land) Avg. Spearman (in-situ) Avg. Spearman (ERA5-Land)

Benchmark 0.372 0.408 0.383 0.470
WC mask 0.435 0.482 0.445 0.534
TC30 mask 0.427 0.470 0.436 0.522
TC70 mask 0.416 0.453 0.427 0.509
S1 mask 0.436 0.475 0.442 0.524

Figure 2. Comparison of the ISMN in-situ station “LaGrandCombe” from the network SMOS MANIA with: (a) the benchmark CGLS 
sentinel-1 SSM and (b) the vegetation corrected sentinel-1 SSM.

Figure 3. Comparison of the ISMN in-situ station “SOD012” from the network FMI with: (a) the benchmark CGLS sentinel-1 SSM and 
(b) the vegetation corrected sentinel-1 SSM.
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the benchmark CGLS SSM (A) and the S1-masked 
SSM (B). Figure 4(c) shows, for each km scale 
Sentinel-1 pixel, the percentage of 20 m pixels flagged 
and discarded as forested area prior to its resampling. 
Finally, Figure 4(d) shows the difference between 
Figure 4(a,b) The areas coloured in blue indicate 
a positive effect of the dense vegetation masking on 
the S1-masked SSM correlation to ERA5-Land.

Figure 4(a) shows that the CGLS SSM has highest 
correlations over Central and Central-West Europe. 
Lower correlations are found in parts of South-eastern 
Spain and in Scandinavia. For the S1-masked SSM, 
similar spatial patterns are found in the correlation 
map. Figure 4(d) shows that the strongest increases in 
correlation coefficients using the S1-mask are found 
over Central and Northern Europe, parts of Spain, and 
Southern France. When compared to the CLC, these 
areas correspond mostly to coniferous forest and to 
a lesser extent to mixed and broadleaved forests 
(Figure 5). The S1-masked SSM has a significantly 
increased correlation coefficient compared to CGLS 
SSM, with largest improvements over coniferous for-
ests. Dense vegetation masking lowers the impact of 

the different forest types on the SSM retrievals, as the 
masked product displays average ρ above 0.4 
(ṕconifereous,masked = 0.410, ṕbroadleaved, masked = 0.457, 
and ṕmixed,masked = 0.449), as shown in Figure 6.

Figure 7 uses the data shown in Figure 4(a,b) 
mapped to the Köppen-Geiger climate classification. 
The largest increases are observed over the following 
climate types: Dfb (Warm-summer humid continental 
climate), starting from Eastern Germany and encom-
passing most of Eastern Europe, Bsk (Cold semi-arid 
climate) in Central Spain, and finally Csb (and to 
a lesser extent Csa) (Warm/Hot summer 
Mediterranean climate) in Portugal and Northern 
Spain. Overall, the correlation is consistently 
improved across the eco-regions with the exception 
of a very slight degradation over the humid subtropi-
cal climate (Cfa) in Northern Italy and Apulia.

Figure 8 shows the seasonal bias values between 
ERA5-Land, S1-masked SSM, and CGLS SSM (with 
standard deviation scaling to ERA5-Land). The bias 
between the two SSM products with regard to ERA5- 
Land SSM shows an underestimation of soil moisture 
in winter and spring, and an overestimation of soil 

Figure 4. European results of sentinel-1 SSM with the addition of the S1-mask for vegetation.
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moisture in summer. The third row is the difference 
between the absolute biases without and with masking 
for dense vegetation. If the difference in bias is nega-
tive, it means an improvement in bias for the masked 
SSM dataset, i.e. a bias closer to 0. Results show that, 
during winter and summer, masking for vegetation 
reduces the bias, i.e. the respective under- and over-
estimations of SSM are decreased. This indicates that 
seasonality is improved.

Discussion

All soil moisture retrieval algorithms need to account 
for the vegetation contribution in their algorithm. 
Over vegetated soils, the microwave signal is the result 
of soil scattering, attenuation and scattering from the 
vegetation (Ulaby et al., 1986). Depending on the 
density of the vegetation, it is possible to model its 
effect on the soil moisture retrievals. Many approaches 

have been tested to account and correct for vegetation 
scattering and attenuation on the Sentinel-1 backscat-
ter signal at a kilometre scale. Combining data from 
optical (Ma et al. 2020; Madelon et al. 2023) or micro-
wave (Bauer-Marschallinger et al. 2018; Zhu et al.  
2022) sensors, utilizing advanced radiative transfer 
modelling (Mengen et al. 2023; Nguyen et al. 2021), 
or machine learning approaches (Chatterjee et al.  
2020; Foucras et al. 2020), generally lead to improve-
ments over croplands, grasslands and shrublands. 
These studies calibrate their models specifically for 
the aforementioned land covers, but show consistently 
poor soil moisture retrievals over complex vegetation 
structure. For dense and complex vegetation, micro-
wave signals primarily detect dense vegetation geome-
try and seasonal effects. Operational coarse-scale soil 
moisture retrievals resolve this issue by masking soil 
moisture over pixels with dense vegetation (Dorigo 
et al. 2021).

Figure 5. Comparison between broadleaved, coniferous and mixed forest based on the CORINE land cover map (2018).
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Figure 6. Comparison of the change in correlation for the pixels classified as forests in the CORINE land cover map (2018).

Figure 7. Averaged correlation between ERA5-land and S1-SSM (2016–2021 included) for the different köppen-Geiger climate 
regions of Europe. Each box represents the second and third quartile, the horizontal line is the median value and the whiskers 
show the 10th and 90th percentile. If the blue boxes are higher than their red counterpart, it indicates an increase in average 
correlation for the described climate class.
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The approach presented in this paper demonstrates 
the effect of dense vegetation on the soil moisture 
retrieval at high resolution and the potential to 
improve soil moisture retrieval by masking dense 
vegetation pixels at the backscatter level. The improve-
ments in the SSM retrieval can be related to several 
effects: the choice of the vegetation mask and masking 
density, and the environmental variables such as cli-
mate and forest type. These will be discussed in the 
following sections.

Choice of vegetation mask and masking density

The validation against ISMN stations suggests that 
all vegetation-masking approaches have a positive 
impact on the correlation between Sentinel-1 SSM 
and in-situ observations. The four masks aim at 
categorizing the same forest land cover type, and, 
as shown in Figure 1, provide similar correlation 
improvements. The S1-mask (based on Sentinel-1) 
and WC-mask (based on Sentinel-1+Sentinel-2) 
perform slightly better compared to the TC30- 
and TC70-masks (based on Sentinel-2). The masks 
with better performances include Sentinel-1’s VV 

and VH temporal dynamics to infer the vegetation 
content of a pixel. An advantage of using the 
Sentinel-1 based vegetation mask is that the data 
source of the vegetation mask and the soil moisture 
retrieval is the same Figure 1 shows that the 
improvement in correlation is closely related to 
the percentage of pixels that were masked during 
the resampling process. Where less than 10% of the 
pixels are masked, the resampled signal remains 
largely unchanged and the resulting change in cor-
relation is minimal. However, where more than 
50% of the pixels are masked, improvements are 
consistent, with the exception of FMI. The correla-
tion map between ERA5-Land and the S1-masked 
SSM (Figure 4(b)), as well as the correlation 
improvement map in Figure 4(d) shows that, 
while the general spatial patterns of correlation 
remain similar, the impact of dense vegetation is 
reduced in the corrected SSM product. Even over 
pixels where 90% of pixels are discarded during the 
resampling phase, the remaining valid pixels 
resampled to the 500 m scale provide sufficient 
information to produce robust SSM signals that 
show a satisfactory correlation with ERA5-Land.

Figure 8. Summary of the seasonal bias analysis. The first row are the seasonal bias maps between the uncorrected SSM and 
ERA5-land. The second row shows the seasonal bias maps between the vegetation S1-masked SSM and ERA5-land. The third row is 
the absolute difference between the biases for benchmark and S1-masked SSM products (bias improvements).
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Impact of environmental conditions

Improvements of SSM for the different climate classes 
observed over the in-situ stations and ERA5-Land 
show similar patterns. Compared to ERA5-Land, 
Sentinel-1 performs poorly over subarctic climate, as 
it is the only climate type with a ρ below 0.2, even after 
vegetation masking. These results are consistent with 
the in-situ validation and with studies of Sentinel-1 
SSM products over Northern in-situ networks 
(Nativel et al. 2022; Zhu et al. 2022). Low SSM sensi-
tivity over these regions are linked to the subarctic 
climate (Dfc) as ephemeral lakes, and the annually 
low surface temperature are hindering SSM retrievals 
from microwave observations. Radar-based SSM 
retrievals are challenging over these areas as (nearly) 
frozen soils have a very low dielectric constant and are 
linked to a low backscatter. This reduces the ability of 
Sentinel-1 to estimate SSM over such climates 
(Baghdadi et al. 2018; Fayad et al. 2020), and masking 
of these conditions is needed. Long periods of freezing 
temperatures from autumn to spring lead to large data 
gaps, as shown in (Figure 3(a,b)). Because of the large 
data gaps, the forest masking approach does not pro-
vide consistent improvement and overall sensitivity to 
SSM remains low.

The other climate type with challenging SSM retrie-
vals are semi-arid climates, which cover areas in 
southern Europe, particularly Spain and Italy. These 
areas correspond to areas where sub-surface scattering 
occurs as described by (Wagner et al. 2022). Here, the 
dry conditions lead to scattering from deeper soil 
layers, which increases backscatter (Morrison and 
Wagner, 2020), which is interpreted as high soil moist-
ure in the change detection method. Nonetheless, the 
model validation shows improvements over temperate 
climates, with clear seasonal patterns. For instance, 
masking for vegetation over Oceanic, Mediterranean 
climates, and continental humid climate (Cfb, Csb and 
Dfb) shows good improvement when compared to 
both ERA5-Land (Figure 7) and the available ISMN 
networks (SMOSMANIA, HOBE, FR-Aqui and 
HOAL)

Effect of vegetation type

The benchmark CGLS product, especially the areas 
classified as coniferous or mixed forests according to 
the CORINE classification from 2018 (Figure 5), 
(EEA, 2018)show low correlations with ERA5-Land. 
Particularly mixed and coniferous forest benefit from 
masking the dense vegetation as their mean correla-
tions are significantly increased. Multiple reasons can 
lead to the stronger improvement in coniferous forest 
compared to broadleaved forests. First, most conifer-
ous forests in Europe are evergreen. Hence, attenua-
tion of the microwave signal occurs throughout 

the year. Broadleaved forests are mostly deciduous in 
Europe and the sensitivity to soil moisture may be 
higher when no leafs are on the trees. Secondly, forest 
biomass, defined as any biological matter produced by 
woody vegetation likely leads to higher signal attenua-
tion. The integrated assessment of forest biomass in 
Europe provides information about the biomass con-
tent of European forests (Avitabile et al. 2020). 
Coniferous forests typically have a higher biomass 
content and the spatial patterns of Pearson correlation 
from Figure 4 closely follow the spatial patterns of 
forest biomass density. Additionally, according to the 
same report, the only two species whose estimated 
contributions are above 15% to the total European 
forest biomass are Picea sp, and Pinus Sylvestris 
(amongst the most common species in European con-
iferous forests). These results are consistent with the 
assumption that forests with higher biomass and den-
ser vegetation have a stronger impact on the Sentinel-1 
co-polarised backscatter signal.

This study shows that low correlations over forests 
can be resolved using the S1-based forest masking, as it 
can partially mitigate the seasonal bias between ERA5- 
Land and Sentinel-1 soil moisture. Nevertheless, 
vegetation masking does not completely resolve the vege-
tation issue. There is still a persisting bias during sum-
mer, which is likely due to a combination of the non- 
forested vegetation component, and orbit effects, which 
are not fully taken into account by the incidence angle 
normalisation process. Nonetheless, the dense forest 
masking decreases the Sentinel-1 wet bias during sum-
mer and to a lesser extent the dry bias during winter. This 
can be attributed to the low seasonal dynamics observed 
over forest with a dense vegetation, and high biomass, 
which contributes to the Sentinel-1 SSM seasonal bias 
(Dostálová et al. 2018; Rüetschi et al. 2017).

Conclusions

Vegetation water content, biomass density and sur-
face soil moisture affect the temporal behaviour of 
the Sentinel-1 backscatter signal. In this study, we 
tested the potential of masking vegetation in the 
high-resolution backscatter images to reduce the 
impact of forests on the TUW change detection soil 
moisture retrievals, which is used in the CGLS opera-
tional soil moisture product. Results shows that 
masking dense vegetation prior to resampling the 
Sentinel-1 backscatter improves the quality of SSM 
retrievals at the kilometer scale. Four different tree 
cover maps were used for masking and the resulting 
soil moisture products were compared to in-situ soil 
moisture from the International Soil Moisture 
Network between 2016 and 2021. All four masks 
respectively based on Sentinel-1, Sentinel-2 or both 
show similar results, although slightly higher correla-
tions are found using the Sentinel-1-based forest 
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mask. Satisfactory improvements are observed over 
the majority of stations, especially over networks in 
temperate and cold climates with a strong seasonality 
in vegetation and soil moisture. Vegetation masking 
does not lead to improvement over subarctic climates 
and semi-arid to arid climates, due to limitations in 
microwave remote sensing over frozen soils, snow 
covered soils, open water, and in dry areas prone to 
sub-surface scattering. The surface soil moisture pro-
duct based on the backscatter filtered using the 
Sentinel-1 forest mask is then compared to ERA5- 
Land SSM over Europe. Overall, correlations are 
improved over pixels dominated by broadleaved, 
coniferous and mixed forests. The most pronounced 
correlation improvements are observed over conifer-
ous forests, which have the highest aboveground bio-
mass density among the different forest types in 
Europe. Masking for dense vegetation does not fully 
solve the seasonal biases between Sentinel-1 SSM and 
ERA5-Land, which can be attributed to the effects of 
non-forested vegetation and orbit patterns in the 
backscatter signal. While not fully solved, the wet 
and dry biases, during summer and winter respec-
tively, are reduced by the implementation of dense 
vegetation masking.

This paper is another step to disentangling the 
effects of vegetation and SSM on the Sentinel-1 
backscatter. Results suggest that the high resolution 
from Sentinel-1 can be used as an asset to selectively 
mask pixels with dominant vegetation effects on 
Sentinel-1 backscatter signal. This does not only 
apply for the CGLS soil moisture retrieval, as 
demonstrated in this study, but can also be applied 
to other retrieval algorithms. There is potential to 
apply a similar selective mask to reduce signal 
degradation from other sources. Subsurface scatter-
ing in semi-arid to arid-climate, as well as certain 
types of growing crops can also heavily influence the 
backscatter signal and reduce Sentinel-1 backscatter 
SSM sensitivity.
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