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A Robust and Automatic Algorithm for TLS–ALS
Point Cloud Registration in Forest Environments

Based on Tree Locations
Fariborz Ghorbani , Yi-Chen Chen , Markus Hollaus , and Norbert Pfeifer

Abstract—Fusing of terrestrial laser scanning (TLS) and air-
borne laser scanning (ALS) point cloud data has been recog-
nized as an effective approach in forest studies. In this regard,
co-registration of point clouds is considered one of the crucial steps
in the integration process. Co-registering point clouds in forest
environments faces various challenges, including unstable features,
extensive occlusions, different viewpoints, and differences in point
cloud densities. To address these intricate challenges, this study
introduces an automated and robust method for co-registering TLS
and ALS point clouds based on the correspondence of individual
tree locations in forest environments. Initially, the positions of
individual trees in both TLS and ALS data are extracted. Then,
a filtering approach is applied to eliminate positions with low
potential for corresponding matches in the TLS and ALS dataset.
Since larger trees in the TLS data have a higher potential for cor-
responding matches in the ALS data, an iterative process is applied
to identify correspondences between trees in both datasets. After
estimating transformation parameters, the co-registration process
is executed. The proposed method is applied on six datasets with
varying forest complexities. The results demonstrate a high success
rate up to 100% if the starting position of the TLS plots are located
within ∼4 hectares (∼2000 trees). Additionally, the potential of the
proposed method for co-registering TLS data with ALS data across
different search areas and varying number of trees is evaluated in
detail. The outcomes indicate that successful co-registration of TLS
plot with 50 m diameter to ALS data is successful in the best case
within a search radius of approximately 113 hectares (∼60,000 tree
locations) and in the worst case for around 20 hectares (∼10,000
tree locations) depending on the forest complexity.

Index Terms—Forest, individual tree locations, iterative, point
cloud fusion, point clouds, reducing dependency, terrestrial laser
scanning (TLS)–airborne laser scanning (ALS) registration.

I. INTRODUCTION

A S THE proliferation of remote sensing continues, there
is a growing demand for fusing point cloud data collected

from various sensors, platforms, and time frames. In this context,
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point cloud registration plays a crucial role in integrating such
data. The main objective of point cloud registration is to find an
appropriate spatial transformation to establish correspondence
and alignment between two or more sets of three-dimensional
(3-D) point clouds. Point cloud registration has a significant
role in various applications, including 3-D modeling [1], 3-D
change detection [2], object detection [3], robotics [4], and
semantic interpretations of 3-D scenes [5]. A highly significant
application of point cloud registration lies in inventorying forest
patches, in which structural variables of forests, such as tree
positions, tree height, basal area, or stem density, are estimated in
a large sample area by analyzing the point cloud data. Among the
LiDAR systems, airborne laser scanners (ALS) and terrestrial
laser scanners (TLS) are widely employed in the field of forest
management due to their significant capabilities for character-
izing forest environments in 3-D [6].

TLS devices are ground-based statically mounted instruments
that emit laser beams and measure the time it takes for the
laser pulses to return after hitting objects in the forest envi-
ronment. This enables the generation of highly accurate and
detailed point cloud data of the forest structure from various
viewpoints. TLS devices are particularly effective in capturing
fine-scale details of individual trees, including their shape, size,
branching patterns, and foliage density. They are commonly
used in close-range forest surveys and provide clear, accurate,
and rapid information about the structural attributes beneath
the forest canopy, such as diameter at breast height (DBH) [7].
However, obtaining information about the upper canopy using
TLS can be challenging due to occlusion issue and also, it is often
difficult to get precise GPS signal in the forest and therefore
the positional accuracy of the TLS data is limited [8]. ALS,
mounted on manned or unmanned aircraft or helicopters, allows
for rapid coverage of large forested areas. It captures laser pulses
that penetrate the canopy and measure the time it takes for the
reflected pulses to return. This enables the generation of dense
point cloud data, which can be used to extract various forest
attributes, including canopy height, tree density, and vegetation
structure. While ALS provides valuable information about the
upper canopy, its ability to capture detailed information about the
understory remains somewhat limited. The dense foliage and the
complex structure of the understory vegetation pose challenges
in accurately detecting and characterizing the vegetation beneath
the canopy. The penetration of laser pulses through the upper
canopy and the visibility of the understory is dependent on the
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Fig. 1. Visualization of the difference between two-point cloud datasets, ALS (blue) and TLS (red).

density and properties of the vegetation, the used ALS sensor
and the acquisition settings, leading to variations in data quality.
Fig. 1 demonstrates the density difference between TLS and
ALS data and their occlusions.

By integrating ALS and TLS data, the strengths of both
technologies can be leveraged to overcome their respective
limitations and provide a more comprehensive understanding
of forest structure and dynamics. ALS excels in capturing the
upper canopy, providing a broad-scale perspective of the forest
and getting accurate georeferenced data (in different projected
coordinate systems), while TLS is highly effective in captur-
ing fine-scale details of the lower canopy and individual tree
attributes. Point cloud registration is therefore one of the most
important steps in TLS–ALS data integration.

There are three common frameworks for point clouds regis-
tration, which include auxiliary-based, point-based, and feature-
based methods [9]. Despite the extensive use of such methods,
numerous challenges exist in forested environments, which still
hinder the accurate registration of ALS and TLS point clouds.
On the other hand, combined approaches have been proposed
to address these registration issues by utilizing tree positions
as additional data in forested areas [10], [11], [12], [13], [14],
[15]. These methods heavily rely on the effective detection of
tree positions. When dealing with data from both ALS and
TLS platforms in complex forested environments, accurately
determining individual tree locations becomes challenging. One
reason for it is that ALS and TLS have different viewpoints and
thus the detected tree position can differ, e.g., in ALS often the
tree top and in TLS the stem position near the terrain is used as
tree position. Therefore, this article aims to present an automatic
and robust combined approach for ALS and TLS point clouds
registration in complex forested environments and reducing the
dependency on the accuracy of individual tree locations during
the point clouds registration.

A. Related Work

The auxiliary-based registration methods commonly utilize
global navigation satellite systems (GNSS, e.g., GPS), artificial
targets, or color images [16], [17], [18], [19], [20]. Point cloud
registration based on GNSS relies on the consistency of GNSS
reference coordinates in the two-point cloud datasets. However,
in densely forested areas, the GNSS signals are often weak
and noisy due to severe obstruction, which poses challenges in
obtaining accurate coordinates with TLS. Therefore, this method
is not suitable for densely vegetated forest areas. The artificial-
target-based approach involves manually placing targets within
the study area and using them for registration. While this method
has advantages for sparser forest areas, it may not be suitable
for densely vegetated natural forests with complex plant growth
and high canopy cover. ALS platforms may not accurately
measure target positions in natural forests, resulting in improper
registration. In addition, placing and maintaining targets in the
field for an airborne and a terrestrial survey mission involves
additional manual effort and consider more or less simultaneous
data acquisitions. Color information provided by cameras [19]
can be used as other auxiliary data, but obtaining color images
may be time-consuming and the different viewpoints make the
identification of corresponding image features a complicated
task. The second group of point-based registration methods use
a direct method that calculates the transformation model be-
tween two-point cloud datasets. The iterative closest point (ICP)
algorithm is one of the widely used methods in this category
[21], [22]. It requires that the same surfaces (or at least surface
patches) are mapped in the different point clouds. In addition,
the ICP algorithm requires initial estimates of the transformation
parameters to the registration process. If the two-point clouds are
not close to each other, the ICP algorithm may converge to a local
minimum. The forest point cloud data obtained from ALS and
TLS are significantly different, making achieving good initial
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alignment conditions challenging. Therefore, the initial coregis-
tration in forest environments is usually performed by manually
selecting approximate tie points, which is time-consuming and
therefore costly. The third group of feature-based methods work
similarly to target-based methods, using points, lines, or poly-
gons to coregister point clouds. However, these features (such as
building corners, vegetation elements, roads, and traffic signs)
are automatically identified within the LiDAR point clouds using
a feature detector and descriptor [23]. Several methods have been
proposed for detecting 3-D keypoints in point clouds, such as
SIFT [24], local surface patches [25], intrinsic shape signatures
[26], histogram of normal orientations [27], and uniform and
competency-based 3-D keypoint detector [28]. In addition to the
aforementioned keypoint detection methods, 3-D descriptors,
such as FPFH [29], SHOT [30], ROPS [31], binary shape context
[32], and 3-D DAISY [33], are used to describe these keypoints
and are utilized in the process of matching. On the other hand,
some methods extract linear features [34], [35], [36] or planar
features [37], [38], [39] as features from point clouds and use
them in the process of registration. In this type of method, the
transformation is computed by the matched features and this may
be used in voting schemes like RANSAC. Feature-based meth-
ods are widely used in indoor and urban environments where
regular features can be easily identified. Forest environments
exhibit a higher complexity and irregularity level than indoor
and urban environments. The geometric features of trees and
structures within the forest are not easily discernible, making
it challenging to utilize explicit geometric features for data
registration.

Recently, combined approaches for registration of point
clouds in the forest have been proposed to address the lack of
reference features in this environment. Tree stems are one of the
most stable structures in forest environments. Therefore, current
methods for point cloud registration in forest environments have
been developed based on extracting information from tree stems.
These methods often consist of two steps: tree stem mapping and
stem correspondence finding. In the tree stem mapping step, the
spatial positions of tree stems and the information on individual
tree features, such as tree DBH and tree height, are determined.
In the second step, correspondences between tree locations in the
two-point clouds are identified using the spatial positions of trees
and the extracted features. For example, Henning and Radtke
[10] developed a method for tree detection in range images. In
this method, the centers of trees are estimated at multiple heights,
and the directions of these positions are used for registering the
range images. Liang and Hyyppä [11] proposed a method to
register TLS point clouds based on tree positions. Each pair of
tree positions is compared in this method, and not much attempt
has been made to reduce the computational cost. Liu et al. [12]
presented an automatic method for stem mapping in different
scans of TLS data. This method estimates transformation pa-
rameters in 3-D space using stem curvature features at different
heights. Kelbe et al. [13] extracted stem maps from TLS data and
estimated the 3-D transformation parameters using the spatial
locations of the stems in 3-D space and DBH. In their article,
nonmatching triplets of stems were eliminated by evaluating
the similarity between DBH features and features derived from

applying principle component analysis (PCA) to the set of
three location points. Tremblay and Béland [40] proposed an
extension of the Kelbe et al. [13] method to improve the speed of
stem mapping. Instead of using geometric features derived from
PCA, they compared the lengths of stems in a triangle of stem
locations and the trunk diameter at a horizontal height to measure
the similarity between stems. This approach is faster than Kelbe
et al. (2016). Dai et al. [41] proposed a method to enhance the
speed of TLS point cloud registration in forest environments.
This article extracted keypoints using a mode-based analysis of
canopy density and the mean shift algorithm. Then, an initial
alignment was performed by aligning the keypoints. In the
second step, stem locations were identified in each scan, and
their overlaps with the initial alignment were refined. The final
transformation was computed using the selected stems from
the overlapping regions in the scans. This approach aimed to
improve the efficiency of point cloud registration in forested
areas.

While these methods have been developed for point cloud
registration in forest environments, they primarily emphasize
addressing the limitations and characteristics of small-scale
forest environments, focusing on TLS point clouds. They are not
primarily designed for coregistering point clouds obtained from
aerial and terrestrial platforms. Recently, methods have been
proposed that focus on registering point clouds obtained from
aerial and ground-based platforms. Hauglin et al. [42] proposed
a method for registering ALS and TLS data. Their method relies
on the initial position of individual trees obtained from GNSS re-
ceivers. Subsequently, a search algorithm is used to find the best
correspondences for individual trees within the TLS and ALS
data. Polewski et al. [14] utilized the tree positions for registering
ALS data with ground-based photogrammetric point clouds.
In this article, corresponding tree descriptors based on spatial
distance are determined after identifying the tree positions in
both datasets. Finally, the transformation parameters between
the two datasets are estimated. A similar approach is employed
by Polewski et al. [43] for coregistering unmanned aerial vehicle
(UAV) and backpack laser scanner (BLS) point clouds. Guan
et al. [44] proposed an approach for coregistering segmented tree
geometry in ALS, BLS, and TLS point clouds. The method used
in this article is based on establishing correspondences between
angles and areas in triangular irregular networks created between
tree locations in forest plots. Fine registration is performed using
the ICP algorithm. The accuracy of this method depends on the
accurate determination of tree positions, and having complete
trees in both scenes is essential for aligning the two-point clouds.
However, creating such conditions in real-world data can be
challenging. Hyyppä et al. [15] proposed a method based on a
2-D local descriptor for coregistering ALS and handheld laser
scanner point clouds. This article constructs a 2-D local descrip-
tor on the structured tree positions. Olofsson and Holmgren [46]
proposed a method for coreferencing static (TLS) point clouds
and dynamic (ALS) point clouds. They presented a stem diame-
ter weighted linking algorithm and a threshold as quality criteria
of coregistration. These two features are combined to a simul-
taneous location and mapping-based coregistration method. In
2022, Shao et al. [45] proposed a method for coregistering
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Fig. 2. Illustration of tree positions in two datasets in the same coordinate system acquired with TLS (red points) and ALS (blue points). (a) Location of tree
stems with high accuracy and high correspondence level. (b) Location of tree stems with low accuracy and low correspondence level. The patch diameter is around
50 m in both examples.

terrestrial LiDAR (i.e., TLS) and UAV LiDAR data. They first
separated ground points from nonground points through filter-
ing, then aligned the ground points of TLS and UAV data. Next,
the forest canopy in both datasets was projected onto the aligned
ground points, generating a binary canopy image. The canopy
edges were extracted using image processing techniques. 2-D
keypoints were identified on these edges, and image matching
was conducted. Subsequently, the estimated 2-D transformation
parameters were utilized for coarse registration. It should be
noted that in this method, some information may be lost during
the image processing steps, and the dimensions of the study area
are limited to the largest plot size of 40 m × 40 m, which covers
a relatively small area. Zhou et al. [47] presented an automatic
method to fuse TLS and ALS point clouds using feature points
of canopy gap shapes. They initiated the process by extracting
the boundaries of canopy gaps and obtaining feature points
from the canopy gap vectors using the weighted effective area
algorithm. Then, transformation parameters were derived using
the coherent point drift algorithm. Finally, the ICP was applied.
The method used in this article is implemented in the small
plots of point clouds (20 m × 20 m), and includes a limited
number of trees. In addition, the pre-ICP registration accuracy in
one of the plots was reported to have an average of approximately
3.5 m.

B. Research Aims

Although position-based tree methods have been continu-
ously advancing, significant limitations still exist. These meth-
ods rely on accurately determining tree locations, and achiev-
ing high accuracy in tree positioning is crucial for successful
coregistration (e.g., [13]). However, these conditions are not
always attainable in real-world data. Some of the main reasons
for the reduction in the accuracy of tree positioning can be
attributed to the different perspectives of data acquisition in
ALS and TLS sensors, the applied tree detection algorithms
(e.g., local maxima filter based on the CHM for ALS and stem

detection based on TLS data), varying levels of detail in point
cloud data, high forest density, and complexity of tree growth.
Some of these challenges can be seen in Fig. 1.

Fig. 2 illustrates tree positioning in two different datasets,
TLS and ALS. The figure depicts the tree locations in two
scenarios: an ideal state and a complex state where trees feature
patterns deviating from vertical growth. The red points repre-
sent the positions of tree stems in the TLS point cloud data,
while the blue points indicate the locations of tree tops (and
therefore the assumed position of stems) in the ALS point cloud
data. The positions of trees were projected on the DTM, resulting
in 3-D points at ground height. Fig. 2(a) depicts the tree stem
position estimation in both TLS and ALS with appropriate pre-
cision. In this image, most of the tree stem positions in TLS have
corresponding positions in ALS, and the distances between the
corresponding stem positions are minimal. However, Fig. 2(b)
represents the positions of trees extracted in a complex forest
structure. In this example, a significant percentage of tree stem
positions in TLS do not have corresponding location in ALS,
and the distances between some corresponding positions are
relatively large.

On the other hand, the predominant methods for tree localiza-
tion are based on tree stem positions obtained from either TLS
data in different scans or a combination of UAV and TLS or UAV
and MLS data. These data sources cover a limited search radius
of the study area. When our goal is to perform registration of ALS
and TLS point clouds, we are dealing with a large search radius of
the study area in the ALS data. As a result, we encounter diverse
complexities in forested regions, and naturally, the accuracy
of tree localization will vary. However, the search radius to
which the proposed approaches are feasible for implementation
in a large area has not been investigated. These factors pose
challenges to registering ALS and TLS point clouds.

The main contributions of this article are as follows.
1) Presenting a fully automatic and robust approach for

coregistering TLS and ALS point clouds in complex forest
environments based on tree localization.
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Fig. 3. Overview of registration framework for the TLS and the ALS point clouds.

2) Investigating the performance of the proposed method in
point cloud registration for large-area coverage of ALS
data and various plots of TLS data.

The rest of this article is organized as follows. In Section II,
details of the proposed method are presented. In Section III, the
used data are described and the evaluation results of the proposed
method are discussed. Finally, Section IV concludes this article.

II. METHODS

A. Overview

This article presents an automated and robust approach for
registering TLS and ALS point clouds in complex forest envi-
ronments. The proposed method generally employs an iterative
process to find correspondences between the ALS and TLS
datasets based on tree locations. Methods that perform regis-
tration iteratively are more robust against various types of errors
and exhibit good performance in the presence of noise and in-
accuracies [48]. This article presents a proposed method that, in
addition to registering point clouds in complex forest structures,
can also provide high performance in large-scale areas. Fig. 3
shows a flowchart of the proposed method. According to this
figure, in the first step, the locations of the trees are extracted in
both TLS and ALS data. Then, a preprocessing step is applied to
the locations of the extracted trees. Small trees are removed using
DBH information in the TLS data at this stage. To identify the
corresponding tree locations in both TLS and ALS data, a local

triangulations-based approach is adopted to reduce the search
space in the ALS data. In the next step, the proposed method is
presented for registering the locations of trees during an iterative
process. In the following, the details of the proposed method will
be presented.

B. Detection of the Individual Tree Locations

Individual tree locations are extracted from both ALS and
TLS data. For ALS, individual tree locations are detected in
digital surface model (DSM) by a number of local maximum
filters, where a kernel size must be determined for each filter
beforehand according to the forest composition. Filter results of
varying kernel size are then merged and refined by excluding
neighbor points within the predefined distance or points having
too small DSM height. This step ensures that tree locations
represent dominant trees, which are favored for the proposed
approach. For TLS, individual tree locations are detected by
fitting cylindrical or conical shape, posing a higher possibility
of tree stem detection in a scene. This process is widely used
for estimating DBH in forestry application. Along with the
approximation of tree locations, attribute DBH can be given
to each individual tree location to help prioritize starting point
selection for the coregistration purpose.

As requirements related to ALS and TLS data, it should be
noted that the ground points in these data must be known. Various
methods have been proposed to extract ground in forest ALS
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point clouds [49], [50], [51] and TLS point clouds [52], [53],
[54]. This is due to the fact that tree locations are projected
onto terrain surface. Moreover, it is necessary, however, that
the data are acquired with the z-coordinate pointing upwards,
or equivalently that the direction of gravity is known in both
point clouds.

The data processing for tree locations generation was per-
formed via OPALS [55]. OPALS stands for orientation and pro-
cessing of ALS data, developed by Department of Geodesy and
Geoinformation in TU Wien. It provides a complete processing
chain for processing ALS data and several fields of application
including forestry.

C. Preprocessing of Tree Locations

This section aims to apply an approach that increases the
chances of success in the coregistration step. Some trees in the
TLS and ALS data are excluded from the processing to enhance
the accuracy and speed of the coregistration. Small trees with
low height are usually not identified or have high errors in the
tree localization methods applied to ALS data. However, in TLS
data, the positions of small trees can still be identified. This
discrepancy leads to the inability to find corresponding small
trees in the ALS data for those extracted in the TLS data. In this
article, we applied a preprocessing step to the tree stem locations
in TLS. Small trees were removed from the TLS data using DBH
information. To achieve this, small trees were identified based
on a defined threshold on SmallTrees = 0.8× Mean(DBH)
and subsequently eliminated from the processing pipeline. This
threshold was found by empirical analyses.

D. Reducing the Search Space in the ALS Data Using Local
Triangulation

To reduce the computational burden in the coregistration step,
a stage is incorporated, where, instead of processing the entire
ALS data, the focus is on tree locations with a higher potential for
identifying correspondence. This idea is inspired by [56], where
they used initial matches for global matching. Corresponding
triangles between the two sets of triangular structures are utilized
to accomplish this. This approach is easily obtained by calculat-
ing the edge lengths of triangles in both sets. For this purpose,
the 2-D location of the trees in both TLS and ALS data are
considered. A local triangulation is performed on both datasets
independently using the method [56]. In this method, local
triangles are formed by connecting stem positions with k nearest
stem positions. In our implementation, we set k to 20 (according
to [56]) for ensuring sufficient creation of local triangles to
guarantee correspondences between two sets of stem positions.
For each triangle in the TLS data, corresponding triangles in the
ALS data are identified. Upon verifying each pair of triangles
in the TLS and ALS data, the matched pairs of triangles are
preserved as the corresponding potential. In contrast, triangles
in the ALS data that do not match are filtered out. Initially,
the edge lengths in each triangle are sorted in ascending order,
and a similarity metric (Minitial) between triangles tT and tA is
determined by applying a threshold on Minitial according to the

following equation:

Minitial
(
tT , tA

)
=

3∑
i=1

∣∣LT
i − LA

i

∣∣ , ∀ ∣∣LT
i − LA

i

∣∣ < dl (1)

where LT and LA are the lengths of the triangle edges in the
TLS and ALS data of tree locations in meter, respectively. dl
is a threshold value in meter to consider the correspondence
between two triangles. dl is considered 1.5 m in this article. The
value was derived from practical experimentation, considering
the specific accuracy required for this article. Different “dl”
values could influence the search efficiency in subsequent regis-
tration processes. Smaller “dl” values might leading to potential
errors in the registration. Conversely, higher “dl” values might
increase computational load without a significant improvement
in accuracy. This approach removes edges along the convex hull
or from larger forest gaps or clearings. On the other hand, we
find the potential corresponding triangles for the TLS data in
the ALS data in a way that minimizes the difference between
the two triangles. After identifying the initial correspondences,
a portion of tree locations that do not have a matched triangular
structure is removed. However, there are still a considerable
number of outliers among the tree locations, so it is necessary
to identify accurate correspondences through a stable process
and perform coregistration of the point cloud data. Fig. 4 shows
how the search space in ALS data is reduced by the suggested
algorithm. In this figure, local triangulations are constructed
based on the 2-D positions of the trees (depicted as yellow
triangles). For each triangle in the TLS data (represented by
a green triangle), the triangles in the ALS data (illustrated as red
triangles) that have the potential to be matched are identified.
Subsequently, the unmatched tree locations in the ALS data are
eliminated. It should be noted that this method does not require
additional data.

E. Proposed Method for Point Clouds Registration

The point clouds registration methods need to be robust
against various errors and instabilities, which are highly pro-
nounced in complex forest environments. As shown in the
flowchart in Fig. 3, the filtered tree locations from TLS and
ALS datasets are input into the proposed algorithm. The TLS
point cloud is considered as the source and the ALS point cloud
as the target. In this method, the 3-D location of the tree location
at ground height is being used, where ground height represented
by DTM is derived by hierarchical robust interpolation that
classifies ALS and TLS data into terrain and off-terrain [49]. We
have assumed that larger trees are more likely to be accurately
identified in both the TLS and ALS data. The N largest trees
from the tree stem locations in the TLS data are selected as
reliable points using the information of DBH. In this article, the
parameter N = 15 indicates the number of chosen tree locations.
In the next step, three points are randomly selected from the
chosen N tree locations: a primary point (ap), a secondary point
(as), and an auxiliary point (aa). The Euclidean distances among
the three points ap, as, and aa in the 3-D space are calculated
as dps,dpa, and dsa, respectively. A point bp in the ALS data is
selected as the corresponding point to ap. In the next step, the
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Fig. 4. Illustration of the used approach for reducing the search space in ALS data. In the third column, the green triangle is the correct position of the desired
triangle, and the red triangles are the triangles with high similarity potential in the ALS data.

correspondences of points as and aa are searched within the
3-D distances dps and dpa in the ALS data. Finally, triple points
are selected in the ALS data that satisfy the 3-D distances dps,
dpa, and dsa criteria. This process is illustrated in Fig. 5(a)–(d).
Fig. 5(a) illustrates three randomly selected points in the TLS
data and the calculated lengths between them. In Fig. 5(b), the
light blue point represents a randomly selected point in the
ALS data, corresponding to the selected point ap. The search
is conducted to find corresponding points as and aa. Fig. 5(c)
displays the identified candidates, and the length dsa is checked
to determine the edges that match this length. The edges marked
with a dashed line do not match dsa. Fig. 5(d) presents the
triplets that meet the corresponding conditions. Among them,
the corresponding triple 1 is correct, while the corresponding
triple 2 is incorrect.

The transformation parameters between the two-point cloud
datasets are estimated after selecting candidate correspondences.
Then, the best transformation model is used for registration. We
consider a scaling factor of 1 in this article since the measure-
ments obtained from TLS and ALS sensors are acquired with
known scale. The estimated transformation parameters include
three translation parameters and three rotation parameters. The
transformation function used is as follows:⎡

⎣XY
Z

⎤
⎦ = R

⎡
⎣X ′

Y ′

Z ′

⎤
⎦+ T (2)

where the coordinates X, Y, and Z represent the source point
cloud, and X’, Y’, and Z’ represent the target point cloud, T is
the translation vector, and R is the rotation matrix.

To select the best transformation model, two decision criteria
are used. The first criterion involves applying a threshold on the
root mean square error (RMSE) value, and the second criterion
consists in using a threshold on the ratio of RMSEs between two

tree locations recorded in TLS and ALS data. The calculation
of RMSE is as follows:

RMSE =

√∑n
i=1 ‖si − ti‖2

n
. (3)

In the equation, t is the locations of trees in the target point
cloud and s represents the locations of trees in the source point
cloud after applying the proposed registration method. The
distance between the closest locations of the trees is considered
after registration, and on the other hand, only one unique nearest
distance is considered for each location of the tree. n represents
the number of corresponding tree locations between the two
datasets. For the first criteria, the RMSE value should be lower
than a specified threshold (td), indicating an acceptable level
of alignment between the two datasets. The second criterion
for selecting the optimal transformation model is determined by
calculating the RMSE for all possible combinations of candidate
correspondences in each iteration. The RMSE values are sorted,
and the ratio between the two best RMSE values is compared to
a specified threshold (tq). This ratio should exceed the threshold,
indicating that the selected transformation model provides a
significantly better alignment than other potential models. The
reason for using this criterion is to create a unique transformation
that is significantly distinct from other transformation models.
The following equation expresses this process:

Tr1=

{
Selected, if RMSE(Tr1) <td & RMSE(Tr2)

RMSE(Tr1)
>tq

NotSelected, Otherwise
(4)

In (4), Tr1 represents the best transformation model in an
iteration. RMSE (Tr1) and RMSE (Tr2) denote the RMSE
values for the two top-performing transformation models in one
iteration. If the above condition is satisfied, the Tr1 is selected



4022 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 5. Process of identifying the best transformation model. (a) Selecting three random points in the TLS data and calculating the Euclidean distances between
them. (b) Considering a random point in the ALS data (light blue point) and searching for corresponding points in the dps and dpa distance. (c) Searching for the
third point within the dsa distance in the ALS data. (d) Determining possible corresponding triplets in the ALS data that satisfy the distance constraints. (e) Tree
locations after transformation using the correct corresponding triplet. (f) Tree locations after transformation using an incorrect corresponding triplet. (g) True trees
position in both.

as the optimal model. In this article, td = 1.2 m and tq = 1.06
are considered. td and tq were determined based on the specific
characteristics and accuracy requirements for tree positioning
within the experimental area under investigation. The values
were tailored to this particular context, considering the tree
density and precision required for this article. However, we want
to highlight that our approach involved deriving a set of threshold
values tailored for datasets with different characteristics, thereby
underlining their adaptability and generalizability across diverse
conditions. Fig. 5(e)–(g) show a representation of the registration
results between the transformation models obtained from the two
corresponding triplets found in the two datasets. According to
the figure, when the transformation between two tree locations
data is done with correct correspondences [triple 1 in Fig. 5(d)],
the RMSE between two-point clouds will be minimum after
registration [Fig. 5(e)]. However, when the transformation pa-
rameters are derived from incorrect correspondences [triple 2 in
Fig. 5(d)], the RMSE after coregistration will be high [Fig. 5(f)].
We utilize this characteristic to iteratively and stably obtain the
optimal transformation function for point cloud coregistration.

F. Evaluation Criteria

The proposed coregistration process is evaluated using the
metrics of RMSE, root mean square distance (RMSD), and

success rate. In order to assess, the actual transformation pa-
rameters between the TLS and ALS data are available in all
experiments.

The first criterion, RMSE, represents the RMSE value after
the final registration. RMSE is calculated according to (3). It
quantifies the difference between the coregistered trees position
in the TLS and ALS datasets.

The second criterion is RMSD, which is used to assess the
accuracy potential of the employed algorithm. This criterion
calculates the squared root mean distance between the source
point clouds, which have undergone the coregistration algo-
rithm, and their corresponding true positions. If we consider
the source point clouds after applying the registration algorithm
(s) and their corresponding true positions (g), the RMSD value
is calculated as follows:

RMSD =

√∑n
i=0 ‖si − gi‖2

n
(5)

where n is the total number of points in the source point cloud.
The third criterion is the success rate that is used to mea-

sure the success of the coregistration process. This criterion
indicates the proportion of successful coregistration cases and
determines the possibility of entering the secondary coreg-
istration stage (e.g., ICP). The success rate is defined as
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Fig. 6. View of plots. (a) Plot A. (b) Plot B. (c) Plot C.

follows:

Success rate =
Nas

Na
× 100 (6)

where Nas is the number of successful registration and Na is
the total number of tests performed. For each test, the initial
positions of the TLS and ALS point cloud data differ in both
rotation and translation.

III. RESULTS AND ANALYSES

A. Study Area and Data Collection

This article selected the SilviLaser 2021 Benchmark Dataset
[57] as test data, which was acquired during the SilviLaser con-
ference 2021 in Vienna. The campaign took place within Vienna
Woods in Lower Austria in October 2021. The benchmark aims
to demonstrate the different terrestrial system’s capabilities for
capturing 3-D scenes in various forest conditions. The dataset
consists of 1) TLS, MLS, and terrestrial photogrammetric sys-
tems contributed by the participants; and 2) ALS and in-situ
as reference provided by the organization team. Eight forest
plots (plot A1–D2) were installed in the benchmark and six plots
(plot A1–C2) are used in this article, where all plots have TLS
data scanned by the company RIEGL using a RIEGL VZ-400i.
A view of these plots is presented in Fig. 6. Each plot was
formed with a 25-m radius circular area and different tree species
(i.e., spruce, pine, beech, and white fir), forest structures (i.e.,
one layer, multilayer, natural regeneration, and deadwood), and
age classes (∼50–120 years). With respect to ALS data, the
acquisition took place in the end of April 2021. The scanner was
RIEGL VQ-1560 II-S and flight height was between 870 and 720
m above ground level. The average point density is 200 pts/m2

for ALS data and 200 000 pts/m2 for TLS data. These data align
well with the objectives of the article. The dataset includes areas
with regularly grown trees and lower complexity, such as Plot A,
where it is easily possible to determine the locations. In addition,
this dataset comprises areas with irregularly grown trees, high
density, and complexity, posing challenges in determining the
locations of tree stems, such as Plot B and C.

B. Results of Determining the Locations of Tree Stems

In this section, the results of tree identification in different
plots are presented and discussed. Fig. 7 shows the results of
locations extracted from tree stems. The size and specifications
of the data used in Fig. 7 are presented in Table II. In this
figure, the first two columns are point clouds and tree locations
in ALS data, respectively, and the third and fourth are point
clouds and tree locations in TLS data. The fifth column shows
the overlapping region of the tree locations in TLS and ALS
data. The blue points indicate tree locations in the ALS data,
while the red points represent tree locations in the TLS data.
Table I provides the accuracy of matching between ALS and
TLS for the extracted tree stem locations. The corresponding tree
stem locations for each plot were determined based on their true
locations by calculating the Euclidean distance and applying a
threshold limit. In this article, trees with distances less than 1.5 m
were considered as corresponding tree locations. The RMSE
criterion was calculated for the locations of the corresponding
trees in each plot using 3.

In addition, the percentage of tree locations without corre-
spondence in the overlapping areas between TLS and ALS data
is reported for each dataset (Table I). Based on Fig. 7 and Table I,
plot A1 and A2 are classified as good areas, as a majority of
points in both TLS and ALS data correspond to each other,
with an RMSE of approximately 0.45 m for the corresponding
points. However, in plot B, many locations in TLS data do not
correspond and RMSE is around 0.75 m. Other characteristics
of plot B are the similarity of the neighborhood patterns of
trees and a high tree density in the ALS data. On the other
hand, plot C exhibits a high percentage of tree locations without
correspondence in both ALS and TLS data. Consequently, plot
B and plot C can be classified as complex areas.

C. Registration Results of Forest Point Clouds

In this section, we present the registration process results
using the proposed method. The algorithm was implemented
in MATLAB 2022b on a PC with an AMD FX-8350 processor
and 16 GB RAM. The TLS point clouds were considered the
source, and the ALS point clouds as the target in this article. To
evaluate the performance of the proposed algorithm, the TLS
data were transformed using the rotation matrix with angles Rx,
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Fig. 7. Visualization of extracted tree locations.
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TABLE I
ACCURACY OF EXTRACTED TREE LOCATIONS

TABLE II
ACCURACY RESULTS OF THE PROPOSED METHOD

Ry, and Rz (between [0–360] degree), and the translation vector
tx, ty, and tz (between [50–250] m) relative to its true position.
These transformations were applied manually, and the resulting
positions were considered the initial positions of the TLS and
ALS point clouds relative to each other. For each data, 10 initial
positions are generated (initial positions are different in terms of
both rotation and translation viewpoints) and the coregistration
process is repeated 10 times.

Consequently, the true transformation function between the
two-point clouds was known and used for evaluating the results
of the proposed method. Fig. 8 showcases the results of point
cloud registration using the proposed method on different data.
The size and specifications of the data used in Fig. 8 are presented
in Table II. The figure displays an initial position of the TLS
and ALS point clouds, an overview of the point cloud registra-
tion, and registration details at two levels. In addition, Table II
presents the accuracy results of the proposed method on the TLS
and ALS data. The table includes the average RMSE, RMSD (for
successful registration), and success rate. The values presented
in the table are the outcomes of conducting the coregistration
process 10 times for each data, utilizing distinct initial positions
encompassing variations in rotation and translation. According
to Table II, searching the correct location of the TLS plot within
an area of 2–4 ha was successful for all plots and will be
discussed in detail in Section III-G.

D. Potential of TLS and ALS Point Cloud Registration in
Large Areas

In existing article, there has been a lack of focus on evaluating
the effectiveness of registration methods for large areas. Since
ALS data cover a significant portion of the ground surface, it
is crucial to assess the applicability of the proposed registration
method across different spatial search radiuses of ALS data.
In this section, we investigate the performance of the proposed
method for TLS and ALS point cloud registration within vari-
ous limits. To conduct this investigation, zones with different
radii of ALS data are defined. These zones are centered on
the TLS data. Through manual matrix rotation and transla-
tion, initial positions are established for TLS and ALS data.
Subsequently, the proposed method is employed to perform
coregistration between the TLS data and different areas of ALS
data.

Fig. 9 showcases the successful registration of tree locations
in TLS and ALS data using the proposed method, particularly
in the most extensive range of ALS data. In addition, this figure
visually represents tree position locations within the overlapping
region after registration. The blue points indicate the tree loca-
tions in the ALS data, the red points represent the tree locations in
the TLS data after applying the proposed registration method,
and the green points depict the true tree locations in the TLS
data.
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Fig. 8. Point cloud registration results. (a) Initial position of TLS and ALS point clouds. (b) Overview of point clouds registration results. (c) Detailed view of
registration results at the first level (indicated by black dashed line in Figure (b). (d) Further detailed view of registration results at the second level (indicated by
black dashed line in Figure (c).
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Fig. 8. (Continued.)

The results of RMSE and the success rate obtained from the
coregistration process for different search radiuses of ALS data
are presented in Fig. 10. In this article, 10 experiments were
conducted for each radius with various initial positions of the
data in terms of rotation and translation. Fig. 10(a) shows the rise

in the quantity of tree locations in ALS based on various radii.
Fig. 10(b) illustrates the success rate of the proposed method for
all radii. According to these results, the proposed method has
achieved a 100% success rate up to a radius of approximately
100 m for all data. For data A1 and A2, the success rate reaches
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Fig. 8. (Continued.)

100% up to radii of 400 and 500 m, respectively, and the
coregistration process is successful up to a radius of 600 m with
very high success rates (80% and 90%, respectively).

For the other plots, where the localization error of tree
stems is higher, the success rate decreases with increasing

radius. Nevertheless, the proposed method has managed to
successfully perform the coregistration process for plots B1,
B2, C1, and C2 up to radii of 300, 300, 350, and 250
m, respectively. The success rates in these radii are above
50%.
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Fig. 9. Successful tree location registration results for the largest range of ALS
data.

Fig. 10(c) illustrates the average RMSE outcomes for each
radius in experiments where the coregistration process was suc-
cessful. On the other hand, Table III presents the average RMSD
and RMSE metrics for the data with the largest radius where the
coregistration process was successful. This table reports the area
of the successfully registered region and the number of tree stem
positions in that area.

E. Computation Time Performance

This part demonstrates the proposed method’s time perfor-
mance for registering TLS and ALS point clouds. This evalu-
ation assesses the time performance across six plots at various
radii. As depicted in Fig. 11, the time performance of the pro-
posed method is presented for the radius where the registration
is successfully conducted. In this evaluation, the coregistration
process is completed in the shortest time for plot A data and takes
the longest in plot B data. For instance, the time performance
of the proposed method for a radius of 150 m (covering an
approximate 7-ha area) in plots A1, A2, B1, B2, C1, and C2
data are 24, 18, 134, 330, 95, and 98 s, respectively. This value
increases with the expansion of the radius of the area.

F. Comparative Performance

This section provides a comparative analysis of the per-
formance of the proposed method for coregistering complex
forested TLS and ALS point clouds with the approach presented
by Hyyppä [15]. Hyyppä et al. utilized a tree-locations-based
approach for coregistering ALS and backpack data. The MAT-
LAB code implementing their method has been made available
to users.1

The data used in this article (according to Table II) were
employed for this evaluation. Table IV displays the results of
the performance comparison between these two methods. This
assessment demonstrates that the method by Hyyppä et al. [15]
successfully operates on the data of plot A, yielding RMSD
values of 0.22 and 0.15 m for plot A1 and plot A2, respectively.
However, despite its computational efficiency, this method has
not provided successful results when faced with the data of plots
B and C. In contrast, the proposed method has successfully
executed the registration process with appropriate accuracy and
reasonable time across all plots. It should be noted that the time
performance of the by Hyyppä [15] is better.

G. Comparison of Performance With/Without Removing Small
Trees

In this section, a comparison of the proposed method’s per-
formance with and without the removal of small trees has been
conducted. For this evaluation, all plots used in this article have
been utilized. The ALS data were evaluated within areas with
a 100-m radius centered on the TLS data positions. All initial
conditions for comparison, as outlined in the article’s principles,
have been met. Table V displays the results of this evaluation for

1[Online]. Available: https://gitlab.com/fgi_nls/public/2d-registration

https://gitlab.com/fgi_nls/public/2d-registration
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Fig. 10. Accuracy of registration in different areas of ALS data.
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TABLE III
AVERAGE REGISTRATION ACCURACY FOR THE PROPOSED METHOD IN THE DATA WITH LARGE AREAS

Fig. 11. Demonstration of the time performance of the proposed method in different radii.

TABLE IV
COMPARATIVE PERFORMANCE RESULTS

TABLE V
PERFORMANCE OF THE PROPOSED METHOD WITH/WITHOUT REMOVING SMALL TREES
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time performance, RMSE, and success rate metrics. According
to this table, the running time of the proposed method has
significantly decreased, and on the other hand, precision has
improved with the removal of small trees.

H. Discussion

The results have shown that the proposed method can effec-
tively perform point cloud registration between the two sensors,
TLS and ALS, in forest environments with complex structures
(Fig. 8). The details of point cloud registration are also provided
at two levels, indicating the satisfactory accuracy of the proposed
method. Table II provides quantitative results of point cloud
registration accuracy. In this evaluation, the registration process
has been iterated 10 times, and for each test, the initial positions
of TLS vary in terms of rotation and translation. ALS position
was considered fixed. The results indicate that the point cloud
registration accuracy is highly accurate, considering the accu-
racy of trees stem localization. For instance, the RMSE values
for plot A1 and plot A2 are 0.55 and 0.53 m, respectively, while
the RMSE for trees stem positions in the ground truth is 0.45
and 0.44 m (Table I). The RMSE values for plot B1, plot B2,
plot C1, and plot C2 are reported as 0.92, 0.94, 0.77, and 0.74
m, respectively.

On the other hand, the RMSD metric, which represents the
difference between the true and registered positions for all TLS
data in all plots, was calculated. The RMSD values for plot
A1, plot A2, plot B1, plot B2, plot C1, and plot C2 are 0.38,
0.31, 0.90, 0.87, 0.53, and 0.61 m, respectively. The point cloud
registration accuracy among different plots indicates that plot
A has the highest accuracy, while plot B has the lowest. The
lower accuracy of plot B is attributed to errors resulting from
trees stem localization, similar patterns of neighboring trees,
and high tree density, which make it challenging to find correct
correspondences. However, the success rate in all conducted
independent experiments for different rotations and translations
of the two-point clouds is 100%, irrespective of trees stem lo-
calization errors, indicating the proposed method’s high stability
against various errors in the initial data.

The proposed method was evaluated in regions with different
search radiuses of ALS data. The results of coregistering tree po-
sitions to the largest possible area are presented in Fig. 9. Fig. 10
shows the results of RMSE and the success rate obtained from
the coregistration process for various search radiuses of ALS
data. According to this figure, the proposed method achieves a
100% success rate up to approximately 4 ha (containing ∼2000
tree locations) for all data. Given the accurate positioning of
individual trees in data A1 and A2, the success rate reaches
100% up to radii of 400 and 500 m, respectively. Therefore, the
proposed method is capable of performing the coregistration
process successfully in an area of approximately 113 ha. The
average RMSE values for plot A1 and A2 are 0.62 and 0.51,
respectively. Similarly, the average RMSD values for these plots
are 0.53 and 0.46 m, respectively.

Moreover, concerning datasets B1 and B2, as illustrated in
Table I, a notable proportion of tree locations in the TLS
dataset lack corresponding counterparts in the ALS data, and
the determined RMSEs of individual tree positions are 0.75 and

0.80 m, respectively. In these plots, the success rate decreases
with increasing radius. Nevertheless, the proposed method has
been able to perform the registration with a success rate of over
50% for both plots up to an area of approximately 28 ha. Within
28 ha, the average RMSE values for plots B1 and B2 are 0.83
and 0.94 m, respectively. Correspondingly, the average RMSD
values for these two plots are 0.86 and 0.91 m, respectively.

For data C plots, as indicated in Table I, the number of
identified individual tree positions for plots C1 and C2 is 67 and
63, respectively. This suggests that the number of tree positions
in these plots is almost half compared to other plots. In addition,
a significant number of tree positions in the ALS data do not have
corresponding matches in the TLS data. Despite these character-
istics, the proposed method is able to successfully perform the
coregistration process for plot C1 up to an area of approximately
38 ha and for plot C2 up to an area of approximately 20 ha, both
with a success rate above 50%. The reported RMSE and RMSD
values for Plot C1 are 0.99 and 0.51 m, respectively. For Plot
C2, the values are 1.09 m for RMSE and 0.65 m for RMSD.

According to Tables II and III, it can be observed that the
RMSE and RMSD values for the two conducted experiments do
not exhibit significant differences. This is due to the fact that the
tree positions in the plots remain consistent in both experiments,
with the only difference being the extent of increase in the ALS
data in the second experiment. As a result, when the coregistra-
tion process is successfully performed, the RMSE and RMSD
values are close on average in both tests. The main difference
lies in the success rate of the coregistration process, whereas the
area increases, the success rate follows a decreasing trend.

The proposed method was compared to a tree-location-based
approach [15]. According to Table IV, the method by Hyyppä
et al. [15], despite its high computational speed, achieved success
only in the coregistration process for plot A. However, in other
plots where the accuracy of tree positioning is lower, the coreg-
istration process was unsuccessful. In contrast, the proposed
method, by reducing its dependency on tree positioning accu-
racy, managed to provide successful results across all datasets
within a reasonable processing time.

A comparative analysis was conducted between the results of
the proposed method with/without the removal of small trees
in Table V. The findings indicate that removing small trees has
significantly improved the computational performance of the
proposed method, particularly in datasets with higher complex-
ity. Furthermore, the accuracy of registration has demonstrated
enhancement across all datasets following the elimination of
small trees.

IV. CONCLUSION

Point cloud registration in forest environments is always
considered a challenge due to the complex structure of trees
and the limited presence of stable features in these environ-
ments. This article proposed an automatic and robust method
for point cloud registration of TLS and ALS based on trees stem
positions in forest environments. Existing tree-based registration
methods heavily rely on the accuracy of trees stem localization,
which can be challenging in certain forest areas with different
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complexities. Therefore, an approach that is less sensitive to
trees stem localization accuracy is adopted in this article. In
the first step of the proposed approach, a filtering process is
employed to remove small trees in the TLS data that have a low
potential for accurate localization in the ALS data based on their
DBH information.

On the other hand, to reduce the search space in the ALS data,
a point filtering process using local triangulation is applied. In
this process, local triangulations are generated for both the TLS
and ALS data. For each triangular structure in the TLS data,
initial triangles with similar triangular structures in the ALS
data are identified. In contrast, triangles that do not have similar
structures are removed from further computational processes.
This filtering approach helps in reducing the search space and
improving the efficiency of the point cloud registration process.
Next, the proposed method utilizes an iterative approach to
identify stable correspondences between the TLS and ALS
data. The registration process was performed after identifying
initial correspondences and estimating the transformation pa-
rameters. The proposed method was applied on different areas
of TLS and ALS point clouds from forest environments with
varying complexities. The obtained results demonstrated the
satisfactory accuracy of the proposed point cloud registration
method in dealing with complex forest structures. Moreover, the
proposed method has demonstrated its effectiveness in scenarios
where precise tree locations have not been determined, thereby
mitigating the sensitivity to the accuracy of individual tree
location extraction.

The potential of the proposed method in point cloud registra-
tion over a large search radius of ALS data was evaluated. The
method successfully performs the registration process for a plot
with high tree localization accuracy, covering an approximate
search radius of 113 ha and containing around 60 000 tree loca-
tions. In addition, the registration process was also successfully
completed for plots with lower tree localization accuracy and
areas of approximately 20 to 40 ha, which included about 10 000
to 20 000 tree locations.

On the flip side, the suggested method is robust regarding
rotational and translational changes between two-point cloud
datasets. As a result, for practical applications, the requirement
for meticulous absolute positioning is notably diminished during
the collection of TLS data, especially in dense forests where the
GNSS signal is weakened in close proximity to the ground.

The main focus of this article is to increase the robustness and
reduce the sensitivity of point cloud registration to the accuracy
of trees stem localization. As a future research direction, improv-
ing the algorithm’s computing efficiency further is suggested.
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