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Chapter 1

Introduction

This doctoral dissertation consists of a selection of mathematical texts, which are
divided into two parts: Chapter 2, whose title is “Order-theoretic lattices”; and
Chapter 3, whose title is “Number-theoretic lattices”.

The author’s journal article “Lattice properties of partial orders for complex matri-
ces via orthogonal projectors” (hereinafter called Article A) utilized lattice theory,
the core of algebraic logic, in order to prove several results on the geometry of ma-
trices. More specifically, it contains a study of the different geometric structures
that the intervals of complex square matrices get when sorted by three important
partial orders in matrix theory (viz., the left-star order, the star order and the
core order).

Chapter 2 contains Article A in Section 2.1, as well as a complete and finitely
axiomatizable foundation of ultrafinitist mathematics in Subsection 2.2.1 and a
connection between the arithmetical hierarchy and the irrationality measure in
Subsection 2.2.2.

The author’s journal articles “Some properties of the factors of Fermat numbers”
(hereinafter called Article B) and “Some applications of Baaz’s generalization
method to the study of the factors of Fermat numbers” (hereinafter called Arti-
cle C) are part of an ongoing research project on the geometry of numbers, which
had its origin in Baaz’s article “Note on the generalization of calculations” (see
Baaz [1]).

The common procedure in these three articles is the application of a new technique
of extractive proof theory, called Baaz’s generalization method, to different proofs
of compositeness of some concrete Fermat numbers. The information that was
extracted from these proofs led to several new results, among which stands out

11



12 CHAPTER 1. INTRODUCTION

Theorem 3.0.0.1, which is a geometric characterization of the factors of Fermat
numbers in terms of point-lattices and of a new concept called cover.

Chapter 3 contains Article B in Section 3.1 and Article C in Section 3.2, as well as
further investigation on the theory of covers in Subsection 3.3.1, related results on
the factorization of near-square numbers and of Mersenne numbers in Subsection
3.3.2 and Subsection 3.3.3 respectively, an iterative expression of the products of
the first consecutive generalized Fermat numbers in Subsection 3.3.4 and a detailed
study of a new object, called Hervás-Contreras chain, in Subsection 3.3.5.



Chapter 2

Order-theoretic lattices

Algebraic logic is the mathematical field which translates logic into algebra by
transforming logical systems into Lindenbaum–Tarski algebras.

These algebras are often expressed as partially ordered sets in which the exis-
tence of infima and suprema of finite non-empty subsets is ensured, called order-
theoretic lattices or simply lattices (see Section 1 of Article A in Section 2.1).

The most paradigmatic lattices are probably the Boolean algebras (see Section
1 of Article A in Section 2.1), since they are the algebraic counterpart of clas-
sic propositional logic (by identifying conjunctions with infima, disjunctions with
suprema and negations with complements). In addition, they appear in many
other mathematical contexts of central importance, such as finite set theory (by
identifying the intersections of the elements of a power set with infima, the unions
with suprema and the absolute complements with complements) or number the-
ory (because the number of ordered partitions of a positive integer n is 2n−1 or,
equivalently, the cardinality of the power set of a set of n − 1 elements; see OEIS
A000079).

Article A makes use of lattice theory to provide a structural description of the
intervals of complex square matrices when sorted by some important partial orders,
namely the left star order, the core order and the star order (see Section 1
of Article A in Section 2.1).

Remarkably, we have Theorem 2.0.0.1 for the left star order (i.e. Theorem 3.4 of
Article A in Section 2.1).

Theorem 2.0.0.1. If n is any positive integer and B is any complex square ma-
trix of order n, then the interval [O, B] with respect to the left-star order is an

13
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14 CHAPTER 2. ORDER-THEORETIC LATTICES

orthomodular lattice of finite height; which in addition is non-distributive if the
rank of B exceeds two.

For the core order, we have Theorem 2.0.0.2 (i.e. Theorem 3.14 of Article A in
2.1).

Theorem 2.0.0.2. If n is any positive integer and B is any non-zero complex
square matrix of order n, then the interval [O, B] with respect to the core order is
a sublattice of the interval [O, B] with respect to the left-star order.

And for the star order, we have Theorem 2.0.0.3 (i.e. Corollary 3.11 of Article A
in Section 2.1).

Theorem 2.0.0.3. If n and r are any two positive integers such that r ≤ n, and
B is any non-zero complex square matrix of order n and rank r, then the following
statements are equivalent.

1. The interval [O, B] with respect to the star order is a finite lattice.

2. The interval [O, B] with respect to the star order is a Boolean algebra of 2r

elements.

3. The positive singular values of B are pairwise distinct.

We now reproduce Article A, and then continue by showing some related work in
logic.
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ABSTRACT
This paper deals with left star, star, and core partial orders for complex
matrices. For each partial order, we present an order-isomorphism
between the down-set of a fixed matrix B and a certain set (depend-
ing on the partial order) of orthogonal projectors whose matrix sizes
can be considerably smaller than that of the matrix B. We study the
lattice structure and we give properties of the down-sets. We prove
that the down-set of B ordered by the core partial order and by the
star partial order are sublattices of the down-set ordered by the left
star partial order. We analize the existence of supremum and infimum
of two given matrices and we give characterizations of these opera-
tions (whenever they exist). Some of the results given in the paper
are already known in the literature but we present a different proof
based on the previously established order-isomorphism.
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1. Introduction and preliminaries

The set of complex m × n matrices is denoted by Cm×n. The conjugate transpose, range,
and rank of A ∈ Cm×n are denoted by A∗, R(A), and rk(A), respectively. The identity
matrix of order n × n is denoted by In and zero matrices are denoted simply by O.

For each A ∈ Cm×n, there exists a unique matrix X ∈ Cn×m such that AX and XA are
Hermitian, AXA = A, and XAX = X, which is called the Moore-Penrose inverse of A and
it is denoted by A†. We denote byCn

1 the set of all n × n complex matrices that have index
at most 1, that is, rk(A2) = rk(A). If A ∈ Cn

1 then there exists a unique matrix X ∈ Cn×n

that satisfies AX = AA† andR(X) ⊆ R(A), which is called the core inverse of A and it is
denoted by X = A #	. For further properties and applications of these inverses we refer the
reader to [1–9].

This paper deals with some matrix partial orders. Specifically, with the star and the left
star partial orders defined on the set Cn×n of square complex matrices, and with the core
partial order defined on the setCn

1 . The star partial order was introduced by Drazin in [10]
and it has been studied since then by numerous authors. The left star partial order was

CONTACT N. Thome njthome@mat.upv.es Instituto Universitario de Matemática Multidisciplinar, Universitat
Politècnica de València, Valencia 46022, Spain
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2 C. R. CIMADAMORE ET AL.

introduced by Baksalary and Mitra in [11]. Finally, the core partial order was introduced
more recently by Baksalary and Trenkler in [1]. For any A,B ∈ Cn×n, let us recall that (see,
for example, [12–14]):

• the left star partial order is defined by: A
l∗≤ B if and only if A∗A = A∗B and R(A) ⊆

R(B) (or equivalently, A∗A = A∗B and A = BB†A);
• the star partial order is defined by:A

∗≤ B if and only ifA∗A = A∗B and AA∗ = BA∗ (or
equivalently, A†A = A†B and AA† = BA†);

and, for any A,B ∈ Cn
1 :

• the core partial order is defined by: A
#	≤ B if and only if A #	A = A #	B and AA #	 = BA #	

(or equivalently, A∗A = A∗B and BA = A2).

For the sake of completeness we recall some basic definitions of structures defined over a
partially ordered set that are used throughout the article. Recall that a partially ordered set
(poset) (Q,≤) is a lattice if for every x, y ∈ Q both the least upper bound (or supremum)
x ∨ y and the greatest lower bound (or infimum) x ∧ y of {x, y} exist. A lattice is said to be
bounded if it has a first element 0 and a greatest element 1. Two elements a, b of a bounded
lattice are complementary if a ∨ b = 1 and a ∧ b = 0.A complemented lattice is a bounded
lattice in which every element has a complement. An orthogonal lattice Q is a bounded
lattice with a unary operation � that satisfies that x ∧ x� = 0, x ∨ x� = 1, (x ∨ y)� = x� ∧
y�, (x ∧ y)� = x� ∨ y�, x�� = x, for all x, y ∈ Q. An orthomodular lattice is an orthogonal
lattice that satisfies the law ‘if x ≤ y, then y = x ∨ (y ∧ x�)’. A distributive lattice is a lattice
which satisfies either (and hence, as it is easy to see, both) of the distributive laws x ∧ (y ∨
z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). Finally, a Boolean algebra is a
complemented distributive lattice. Every Boolean algebra is an orthogonal lattice but, in
general, the converse is not true. We refer the reader to [15] for more information about
the different structures defined above.

Let Q and R be two posets. It is said that a map φ : Q → R is order-preserving if φ(x) ≤
φ(y) holds in R whenever x ≤ y holds in Q. We say that Q and R are (order-)isomorphic
if there exists a bijection φ from Q to R such that both φ and φ−1 are order-preserving. In
that case, φ is called an order-isomorphism.

The aim of this paper is to study the down-sets [O,B]x = {A | O x≤ A
x≤ B} for each x ∈

{l∗, ∗, #	} and a fixed matrix B. If x = #	 then it is required that B and all the matrices in
[O,B] #	 have index at most 1 accordingly. The structure and properties of these down-sets
were studied by other authors for rectangular matrices and for the wider case of bounded
linear Hilbert space operators. For the case of the left star partial order, [O,B]l∗ was studied
by Cırulis in [16] where it was proved that [O,B]l∗ is a complete orthomodular lattice.
Antezana et al. studied in [17] the star partial order on bounded operators on a Hilbert
space. In particular, from their results, it can be deduced that [O,B]∗ is a lattice. Finally,
in [18], Djikić proved that [O,B] #	 is also a lattice.

Our approach to the study of [O,B]x is different from the authors abovementioned. In
this paper, we prove that [O,B]x is order-isomorphic to a certain ordered set (depending
on the partial order we are dealing with) of orthogonal projectors. Our starting point is
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the characterization given in [19] of matrices which are below a given matrix B by using a
Hartwig-Spindelböck decomposition of B. More precisally, given B ∈ Cn×n (or in Cn

1 for
x = #	), where 0 < r = rk(B) and the r positive singular values σ1, . . . , σr of B are ordered
in decreasing order, we consider a Hartwig-Spindelböck decomposition of B (see [20])
given by

B = U
�
�K �L
O O

�
U∗, (1)

where U ∈ Cn×n is unitary, � = diag (σ1, . . . , σr) ∈ Cr×r, and K ∈ Cr×r and L ∈
Cr×(n−r) satisfy KK∗ + LL∗ = Ir (note that L is absent when r = n). It is worth mention-
ing that this decomposition always exists but it is not necessarily unique, and that B ∈ Cn

1
if and only if K is nonsingular. The predecessors of B are characterized as follows.

Theorem 1.1 ([19, Theorems 4, 8, 16]): Let B ∈ Cn×n (or B ∈ Cn
1 for x = #	) be a nonzero

matrix written as in (1). The following conditions are equivalent.

(1) There exists a matrix A ∈ Cn×n (where A ∈ Cn
1 for x = #	) such that A

x≤ B.
(2) There exists a unique matrix T ∈ Cr×r such that

A = U
�
T�K T�L

O O

�
U∗, (2)

where T2 = T = T∗ and the following conditions hold depending on the partial order:
(a) no extra condition for the left star partial order,
(b) T� = �T for the star partial order, and
(c) T�KT = �KT for the core partial order.

According to Theorem 1.1, we define the following posets that play a crucial role in this
paper.

Definition 1.2: Let B ∈ Cn×n (or B ∈ Cn
1 for x = #	) be a nonzeromatrix written as in (1),

let

(a) τ l∗
�,K = {T ∈ Cr×r | T2 = T = T∗},

(b) τ ∗
�,K = {T ∈ Cr×r | T2 = T = T∗ and T � = � T}, and

(c) τ
#	

�,K = {T ∈ Cr×r | T2 = T = T∗ and T � K T = � K T},

endowed each one with the natural partial order given by

T1 ≤ T2 if and only if T1 = T1T2.

This last relation will be used indistinctly over any of the aformentioned sets.
It is easy to see that T1T2 = T1 implies T2T1 = T1 for any T1,T2 ∈ τ x

�,K . Note that the
set τ l∗

�,K is the set of all orthogonal projectors in Cr×r. It is well-known that if T1 and T2
are orthogonal projectors inCr×r and we consider the partial order ≤ defined above then
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(τ l∗
�,K ,≤) is an orthomodular lattice (see [21, Propositions 1, 2] and [16]) where, for any

T,T1,T2 ∈ τ l∗
�,K , we have that

T1 ∨ T2 = (T1 + T2)(T1 + T2)
† = (T1 + T2)

†(T1 + T2),

T1 ∧ T2 = 2T1(T1 + T2)
†T2 = 2T2(T1 + T2)

†T1,

and the complement of T is

T� = Ir − T.

By Theorem 1.1, for any x ∈ {l∗, ∗, #	}, we clearly have a bijection

φ : [O,B]x → τ x
�,K

defined by φ(A) = T, for every A ∈ [O,B]x and T given as in Theorem 1.1. Further-
more, we prove in Section 2 that φ is an order-isomorphism. Taking advantage of this
order-isomorphism, we study the ordered structure of [O,B]x by means of the poset τ x

�,K .
Matrices T ∈ τ x

�,K are orthogonal projectors and, in addition, it can be proved that the
Moore-Penrose inverse T† and the core inverse T #	 of T are both equal to T. Moreover, all
of them belong to Cr×r (instead of Cn×n), with 0 < r ≤ n, where r can be considerably
smaller than n. So, working with the matrices T ∈ τ x

�,K is easier than using the matrices A
and this fact brings significant advantages.

In Section 3 we investigate the lattice properties of [O,B]x. One of our main goals is
to show that there exists a relation between [O,B]∗, [O,B]l∗, and [O,B] #	. More precisally,
based on the order-isomorphism proved in Section 2, we show that [O,B]x, for each x, is a
lattice; and that [O,B]∗ and [O,B] #	 are sublattices of [O,B]l∗. In addition, we find proper-
ties of [O,B]x, for each partial order. We show that [O,B]l∗ and [O,B]∗ are orthomodular
lattices whose subchains (that is, a subset for which every pair of elements are comparable)
are all finite. We give a necessary and sufficient condition for [O,B]l∗ to be distributive. We
show that if [O,B]∗ is distributive then it is a Boolean algebra. Eagambaram et al. showed
in [22] that [O,B]∗ is a finite lattice if and only if all the positive singular values ofB are pair-
wise distinct.We improve this result by showing that, in that case, not only [O,B]∗ is a finite
lattice but also a Boolean algebra. Additionally, we derive its cardinality. For the left star
and the star partial orders, we prove that if A1

x≤ A2
x≤ B then [A1,A2]x and [O,A2 − A1]x

are order-isomorphic. Assuming that A2 − A1
#	
≤ B, an analogous result is obtained for the

core partial order.
As a last application of the order-isomorphism φ, we study the supremum and the infi-

mum of two given matrices in Cn×n (or in Cn
1 for the core partial order). Xu et al. proved

in [23] that there exists the star supremum of A1 and A2 if and only if A1 and A2 have a
common upper bound. Moreover, an explicit representation of the supremum was estab-
lished (whenever it exists). In [24], Hartwig gave necessary and sufficient conditions for
the existence of the star supremum in rings with involution and found an expression for
that supremum. Later, Djikić gave in [25] a simple necessary and sufficient condition for
the existence of the star supremum for two operators on a Hilbert space. Recently, Djikić
proved in [18] a similar result to that by Xu et al., for the core partial order by giving neces-
sary and sufficient conditions for the existence of the core supremum in a Hilbert space. In
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Section 4, we use the order-isomorphism φ to present a different proof from those given
by Hartwig, Xu et al. and Djikić. Our proof is also valid for the left star partial order. In
addition, we compute the supremum (whenever it exists) by means of the same expression
for the three orders. Finally, we analyse the infimum of two arbitrary matrices. Hartwig
and Drazin proved in [21] that the set of matrices endowed with the star partial order is
a lower semilattice, i.e. for every pair of matrices A1 and A2, there exists A1 ∧ A2. The set
of matrices that have index at most 1 endowed with the core partial order is also a lower
semilattice (see [18]). In Section 4, we compute the infimum of two matrices that have a
common upper bound by means of the same expression for the three orders. We would
like to highlight that the expressions for the infimum and supremum of two matrices in
[O,B]l∗ that we provide are different from those given in [16].

If two matrices B (written as in (1)) and C do not have a common upper bound, we
find an expression of the type (2) for the infimum and the conditions that the associated
orthogonal projectors must satisfy.

2. Isomorphic representation of down-sets

From now on, x will refer to any of the three partial orders we are dealing with, that is,
x ∈ {l∗, ∗, #	}. In the case that x = #	, without mentioning it explicitly, we will regard the
matrices to be in Cn

1 .
In this section we state the order-isomorphism between [O,B]x and τ x

�,K . In order to do
that, for a fixed a Hartwig-Spindelböck decomposition of B, we consider the posets τ x

�,K
and the bijection

φ : [O,B]x → τ x
�,K

defined by φ(A) = T given in Section 1. Note that if T ∈ τ x
�,K then T ∈ Cr

1; O is the least
element and Ir is the greatest element of τ x

�,K . More precisely, we should denote φ by φ�,K
because this map depends on matrices � and K of the decomposition used to factorize the
matrix B. However, to simplify the notation, from now on, we simply denote it by φ.

Theorem 2.1: The posets [O,B]x and τ x
�,K are order-isomorphic. Moreover, the function

rank is preserved under the order-isomorphism φ.

Proof: Let us first prove that φ is order-preserving. For that, let A1
x≤ A2 ∈ [O,B]x both

written as in (2), T1 = φ(A1) and T2 = φ(A2). From A∗
1A1 = A∗

1A2 and taking into
account that T2

1 = T1 = T∗
1 , we have that�

K∗�T1�K K∗�T1�L
L∗�T1�K L∗�T1�L

�
=

�
K∗�T1T2�K K∗�T1T2�L
L∗�T1T2�K L∗�T1T2�L

�
.

Hence we obtain the following system

K∗�T1�K = K∗�T1T2�K, (3)

K∗�T1�L = K∗�T1T2�L, (4)

L∗�T1�K = L∗�T1T2�K, (5)

L∗�T1�L = L∗�T1T2�L. (6)
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Post-multiplicating (3) and (4) by K∗ and L∗, respectively, and then adding both equations
we obtain K∗�T1� = K∗�T1T2�, since KK∗ + LL∗ = Ir. Consequently,

K∗�T1 = K∗�T1T2. (7)

Similarly, from (5) and (6) we obtain

L∗�T1 = L∗�T1T2. (8)

Pre-multiplying (7) and (8) by K and L respectively, and then adding we have T1 = T1T2
and this means that T1 ≤ T2.

Let us suppose now thatT1 ≤ T2 withT1,T2 ∈ τ x
�,K . ByT1 = T1T2 andT2

1 = T1 = T∗
1 ,

it is straightforward to see that A∗
1A1 = A∗

1A2. To prove that A1
x≤ A2, we consider each

partial order separately.
Consider first the star partial order. Then,

A2A∗
1 = U

�
T2�K T2�L

O O

� �
K∗�T1 O
L∗�T1 O

�
U∗ = U

�
T2�

2T1 O
O O

�
U∗.

Since both T1 and T2 commute with �, we have that T2�
2T1 = �2T2T1 = �2T1 =

�2T1T1 = T1�
2T1. Thus, A2A∗

1 = A1A∗
1 . Hence, A1

∗≤ A2.
Consider now x = l∗. From [19, Lemma 14], we know that T2 = T2�(T2�)† since� is

nonsingular. Then, T1 = T2T1 = T2�(T2�)†T1. From [19, Lemma 3], we also know that
A†

2 = U
�

K∗(T2�)† O
L∗(T2�)† O

	
U∗. Now, taking into account this fact, it is easy to see thatA2A

†
2A1 =

A1. So, A1
l∗≤ A2.

Finally, we consider the core partial order. From �KT1 = T1�KT1 and T2T1 = T1 we
have

T1�KT1�K = T2T1�KT1�K = T2�KT1�K

and

T1�KT1�L = T2T1�KT1�L = T2�KT1�L.

Then A2A1 = A2
1 follows. So, A1

#	
≤ A2.

We have proved that [O,B]x is order-isomorphic to τ x
�,K , for every x.

In order to see that φ preserves the rank function, we observe that if A ∈ [O,B]x and
T = φ(A), then

rk(A) = rk(AA∗) = rk
�

T�K T�L
O O

� �
K∗�T∗ O
L∗�T∗ O

��
= rk

�
T�2T∗ O

O O

��
= rk

�
(T�)(T�)∗ O

O O

��
= rk(T�) = rk(T) = rk(φ(A)). �

Remark 2.1: By using a Schur’s factorization of the matrix �K, we have that there exists a
unitarymatrixV and an upper triangular matrix S such that�K = VSV∗. It can be proved
that the sets τ

#	
�,K and ρ

#	
B := {T ∈ Cr×r | T = T2 = T∗ and TST = ST}, ordered by ≤ , are
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Figure 1. The lattice [O, B]x with rk(B) = 2.

order-isomorphic by using the map ϕ : ρ #	
B → τ

#	
�,K defined by ϕ(T) = VTV∗. In practice,

examples can be constructed more easily with a such matrix S instead of using �K.

Remark 2.2: Assume A
x≤ B and A �= B. It is easy to see that rk(A) < rk(B) and so the

maximum length of any subchain in [O,B]x is rk(B) + 1. Moreover, if rk(B) = r and we
consider the projectors Ts = [tij] ∈ Cr×r where

tij =
�
1 if i = j and i ≤ s
0 otherwise

,

for each s ∈ {1, . . . , r}, it is straightforward to see that Ts ∈ τ l∗
�,K , Ts ∈ τ ∗

�,K , and Ts ∈ ρ
#	
B .

Then, we obtain a chain

O < T1 < . . . < Tr = Ir.

with r + 1 elements of maximum length.

Lemma 2.2: Let B1,B2 ∈ Cn×n. If [O,B1]x is order-isomorphic to [O,B2]x then rk(B1) =
rk(B2). Moreover, if rk(B1) = rk(B2) then [O,B1]l∗ is order-isomorphic to [O,B2]l∗.

Proof: Let us suppose that rk(B1) < rk(B2). Then, by using Remark 2.2, we can construct
a chain in [O,B1]x of length rk(B2) + 1 and this contradicts themaximum length of a chain
in [O,B1]x. The second statement is immediate from Theorem 2.1. �

Remark 2.3: For each x ∈ {l∗, ∗, #	}:

(a) if rk(B) = 1, then τ x
�,K = {O, I1}. Hence, [O,B]x is a chain with two elements.

(b) if rk(B) = 2, then rk(T) = 1 for each T ∈ τ x
�,K \ {O, I2}; so every distinct T1,T2 ∈

τ x
�,K \ {O, I2} are incomparable and thus [O,B]x has the aspect presented in Figure 1.

3. Lattice structure of [O,B]x

In this section we investigate the lattice structure of [O,B]x for each x by using the order-
isomorphism φ.We prove that [O,B]∗ and [O,B] #	 are sublattices of [O,B]l∗. For each x, we
analyse the structure of [O,B]x.We show that [O,B]l∗ and [O,B]∗ are orthomodular lattices
whose subchains are all finite. In addition, we give a necessary and sufficient condition for
[O,B]l∗ to be distributive. We also state that if [O,B]∗ is distributive then it is a Boolean
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algebra. Finally, we give necessary and sufficient conditions for [O,B]∗ to be a finite Boolean
algebra.

For the left star and the star partial order, we prove that if A1
x≤ A2

x≤ B then [A1,A2]x

and [O,A2 − A1]x are order-isomorphic. An analogous result is obtained for the core

partial order, provided that A2 − A1
#	
≤ B holds.

We start giving the infimum and the supremum of two matrices in the segment [O,B]x
for the case in which their associated orthogonal projectors commute.

Proposition 3.1: Let T1,T2 ∈ τ x
�,K such that T1T2 = T2T1. Then T1 ∧ T2 = T1T2 and

T1 ∨ T2 = T1 + T2 − T1T2.

Proof: It is clear that (T1T2)
2 = T1T2 = (T1T2)

∗ and it is well-known that T1T2 is the
infimum of T1 and T2 in τ l∗

�,K (see [16]). In addition, if x = ∗, then (T1T2)� = T1�T2 =
�(T1T2); and if x = #	, then (T1T2)�K(T1T2) = T1(T2�KT2)T1 = T1(�KT2)T1 =
(T1�KT1)T2 = �K(T1T2). So, T1 ∧ T2 = T1T2 in τ x

�,K for all x.
It is also known that if T1 and T2 commute then T1 ∨ T2 = T1 + T2 − T1T2 ∈

τ l∗
�,K (see [16]). In addition, if x = ∗, then (T1 + T2 − T1T2)� = �(T1 + T2 − T1T2);

and if x = #	, then (T1 + T2 − T1T2)�K(T1 + T2 − T1T2) = T1�KT1 + T1�KT2 −
T1�KT1T2 + T2�KT1 + T2�KT2 − T2�KT1T2 − T1T2�KT1 − T1T2�KT2 + T1T2�

KT1T2 = �KT1 + T1�KT2 − �KT1T2 + T2�KT1 + �KT2 − �KT2T1 − T2�KT1 −
T1�KT2 + �KT1T2 = �KT1 + �KT2 − �KT1T2 = �K(T1 + T2 − T1T2). Therefore,
T1 + T2 − T1T2 ∈ τ x

�,K for every x. �

As an immediate consequence of the above result and the fact that φ is an order-
isomorphism we have the following result.

Corollary 3.2: Let A1,A2 ∈ [O,B]x be written as in (2) such that T1T2 = T2T1, where Ti =
φ(Ai) for every i ∈ {1, 2}. Then:

(a) A1 ∧ A2 = U
� T1T2�K T1T2�L

O O


U∗ and

(b) A1 ∨ A2 = A1 + A2 − A1 ∧ A2.

We now investigate [O,B]x separately for each order.

3.1. Left star partial order

In this section we show that [O,B]l∗ is an orthomodular lattice of finite height and nondis-
tributive provided that rk(B) ≥ 2. It is worth mentioning that the fact that [O,B]l∗ is
an orthomodular lattice was proved by Cırulis in [16] for the more general case of a
bounded operator X over a complex Hilbert space H, by setting an isomorphism between
every down-set [O,X]l∗ of the set of all bounded linear operators over H and the down-
set [O,PX]l∗ of projectors where PX is the projector onto the closure of the range R(X)

(PX = XX† for X,PX ∈ Cn×n). Our proof is based on the order-isomorphism φ and the
advantage of this technique is that allows us to work with orthogonal projectors whose
sizes can be considerably smaller than those of matrix B itself.
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Our first objective is to show that [O,B]l∗ is a nondistributive lattice if rk(B) ≥ 2. In
order to do that, we have to observe that τ l∗

�,K is exactly the set of all r × r orthogonal
projectors. So, we only need to find an example where the distributive property does not
hold and this example will serve in general.

Example 3.3: Let B be any matrix in Cn×n such that rk(B) ≥ 2 and A1,A2,A3 ∈ [O,B]l∗
such that Ti = φ(Ai) = � Xi O

O O

 ∈ τ l∗

�,K for every i ∈ {1, 2, 3}, where X1 = � 1 0
0 0



, X2 =� 0 0

0 1


, and X3 =

�
1/2 1/2
1/2 1/2

	
. Let us see that A3 ∧ (A1 ∨ A2) �= (A3 ∧ A1) ∨ (A3 ∧ A2).

Indeed, by Proposition 3.1, T3 ∧ (T1 ∨ T2) = T3(T1 + T2 − T1T2) = T3. On the other
hand, by Remark 2.3, (T3 ∧ T1) ∨ (T3 ∧ T2) = O ∨ O = O, since rk(Ti) = 1, for each
i ∈ {1, 2, 3}.

Since τ l∗
�,K is an orthomodular lattice (see [16]), by Theorem 2.1, [O,B]l∗ is an ortho-

modular lattice too and, by considering a rank argument, it is clear that all its subchains are
finite. In this case, it is said that the lattice has finite height.We summarize these reasonings
in the following theorem.

Theorem 3.4: If B ∈ Cn×n then [O,B]l∗ is an orthomodular lattice of finite height. In
addition, if rk(B) ≥ 2 then [O,B]l∗ is nondistributive.

Remark 3.1: Let A1,A2 ∈ [O,B]l∗ be written as in (2), where Ti = φ(Ai) for each i ∈
{1, 2}. Then:

(a) A1 ∧ A2 = U
�

(T1∧T2)�K (T1∧T2)�L
O O



U∗ and

(b) A1 ∨ A2 = U
�

(T1∨T2)�K (T1∨T2)�L
O O



U∗.

Remark 3.2: If rk(B) ≥ 2 then [O,B]l∗ is an infinite lattice. For example, if X =
�

a b
b̄ 1−a

	
,

with a in the real interval [0, 1], b ∈ C, and |b|2 = a − a2, then T = � X O
O O


 ∈ τ l∗
�,K .

Note also that ifA is anymatrix such thatA
l∗≤ B and rk(A) = 2 then, in general, [O,A]l∗

is an infinite lattice order-isomorphic to the one given in Figure 1.

Remark 3.3: Let P,T,Q ∈ Cr×r be orthogonal projectors such that P ≤ T and TQ = O.
It is easy to see that PQ = O.

Lemma 3.5: Let A,A1,A2,B ∈ Cn×n. If A1
l∗≤ A2

l∗≤ B then [O,A2 − A1]l∗ and [A1,A2]l∗

are order-isomorphic. In particular, if A
l∗≤ B then [O,B − A]l∗ and [A,B]l∗ are order-

isomorphic.

Proof: Assume that A1
l∗≤ A2

l∗≤ B and set T1,T2 such that φ(Ai) = Ti, for each i ∈
{1, 2}. If P satisfies P2 = P∗ = P ≤ T2 − T1, by (T2 − T1)T1 = O and Remark 3.3, we
have that PT1 = O. Moreover, T1P = (P∗T∗

1 )∗ = (PT1)
∗ = O. It is easy to see that

P + T1 is idempotent, Hermitian, and T1 ≤ P + T1. Now, again from P ≤ T2 − T1,
we have that P = P(T2 − T1) = PT2 and then (P + T1)T2 = PT2 + T1T2 = P + T1; i.e.
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P + T1 ≤ T2. Thus, the map ϕ : [O,T2 − T1] → [T1,T2] given by ϕ(P) = P + T1 is
well-defined. Let us prove that ϕ is an order-isomorphism. Indeed, let Q ∈ [T1,T2]
and P = Q − T1. Since P(T2 − T1) = (Q − T1)(T2 − T1) = QT2 − T1T2 − QT1 + T2

1 =
Q − T1 − T1 + T1 = Q − T1 = P, we get P ∈ [O,T2 − T1] and ϕ(P) = Q. Thus, ϕ is
surjective. Let P1,P2 ∈ [O,T2 − T1]. Since T1P2 = O and P1T1 = O, we have ϕ(P1) ≤
ϕ(P2) if and only if (P1 + T1)(P2 + T1) = P1 + T1, that is equivalent to P1P2 + T1P2 +
P1T1 + T2

1 = P1 + T1, which simplifies to P1P2 = P1, that is, P1 ≤ P2. Then, ϕ is an
order-isomorphism.

The second statement follows by setting A1 = A and A2 = B. �

Lemma 3.5 allows us to realize the complexity of the down-set [O,B]l∗ when rk(B) ≥ 2.
For instance, if we choose amatrixA such that rk(B − A) = 2 then the Figure 1 will appear
repeated at the top (down-set [A,B]l∗) and at the bottom (down-set [O,B − A]l∗) of the
Hasse diagram of the whole down-set [O,B]l∗.

3.2. Star partial order

We now need the following technical result.

Lemma 3.6 ([3, Theorem 1.4.2]): Let A ∈ Cm×n and B ∈ Cn×p. Then (AB)† = B†A† if
and only if A†ABB∗A∗ = BB∗A∗ and BB†A∗AB = A∗AB.

Theorem 3.7: If B ∈ Cn×n then [O,B]∗ is a sublattice of [O,B]l∗.

Proof: It is immediate that τ ∗
�,K ⊆ τ l∗

�,K . Then [O,B]∗ ⊆ [O,B]l∗.
LetA1,A2 ∈ [O,B]∗.We know thatA1 ∨ A2 andA1 ∧ A2 exist in [O,B]l∗. Nowwe prove

that A1 ∨ A2,A1 ∧ A2 ∈ [O,B]∗. By Theorem 3.4, φ(A1) ∨ φ(A2) and φ(A1) ∧ φ(A2)

exist in τ l∗
�,K . So, we only need to see that (φ(A1) ∨ φ(A2))� = �(φ(A1) ∨ φ(A2)) and

(φ(A1) ∧ φ(A2))� = �(φ(A1) ∧ φ(A2)).
LetT1 = φ(A1) andT2 = φ(A2). Taking into account that�† = �−1 and�∗ = �, the

equalities �†�(T1 + T2)(T1 + T2)
∗�∗ = (T1 + T2)(T1 + T2)

∗�∗, and (T1 + T2)(T1 +
T2)

†�∗�(T1 + T2) = (T1 + T2)(T1 + T2)
†(T1 + T2)�� = (T1 + T2)�� = �∗�

(T1 + T2) imply, by Lemma 3.6, that

(�(T1 + T2))
† = (T1 + T2)

†�−1. (9)

Now, the equalities

(�(T1 + T2))
†�(T1 + T2)�

−1(�−1)∗(�(T1 + T2))
∗

= (T1 + T2)
†�−1�(T1 + T2)�

−1(T1 + T2)
∗

= ((T1 + T2)
†(T1 + T2))

∗(T1 + T2)
∗�−1

= ((T1 + T2)(T1 + T2)
†(T1 + T2))

∗�−1 = (T1 + T2)�
−1

= �−1(�−1)∗(�(T1 + T2))
∗

and
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Figure 2. The Boolean algebra [O, B]∗.

�−1(�−1)†(�(T1 + T2))
∗�(T1 + T2)�

−1 = �−1�(�(T1 + T2))
∗�(T1 + T2)�

−1

= (�(T1 + T2))
∗�(T1 + T2)�

−1,

again by Lemma 3.6 and (9), imply that

((�(T1 + T2))�
−1)† = �(T1 + T2)

†�−1.

Finally, from (T1 + T2)
† = (T1��−1 + T2��−1)† = (�T1�

−1 + �T2�
−1)† =

(�(T1 + T2)�
−1)† = �(T1 + T2)

†�−1, we get that

(T1 ∧ T2)� = 2T1(T1 + T2)
†T2� = 2T1�(T1 + T2)

†�−1T2�

= 2�T1(T1 + T2)
†�−1�T2 = �2T1(T1 + T2)

†T2 = �(T1 ∧ T2)

and

(T1 ∨ T2)� = (T1 + T2)(T1 + T2)
†� = (T1 + T2)�(T1 + T2)

†�−1�

= �(T1 + T2)(T1 + T2)
† = �(T1 ∨ T2).

Hence, [O,B]∗ is a sublattice of [O,B]l∗. �

Proposition 3.8: The lattice [O,B]∗ is an orthomodular lattice of finite height. Moreover, if
[O,B]∗ is distributive then [O,B]∗ is a Boolean algebra.

Proof: Let T ∈ τ ∗
�,K . Let us see that Ir − T ∈ τ ∗

�,K . Indeed, it is clear that (Ir − T)2 = Ir −
T = (Ir − T)∗. Since T� = �T, then (Ir − T)� = �(Ir − T). So Ir − T ∈ τ ∗

�,K . Thus,
τ ∗
�,K is closed under the unary operation of complementation of τ l∗

�,K . Taking into account
Theorems 3.4 and 3.7, we have that τ ∗

�,K is an orthomodular lattice.
If τ ∗

�,K is a distributive lattice then τ ∗
�,K is a Boolean algebra. So, [O,B]∗ is a Boolean

algebra. �

The next example illustrates the existence ofmatrices B such that [O,B]∗ are distributive
lattices.

Example 3.9: Let us consider the matrix B =
� 2 0 0
0 1 0
0 0 0

	
. Some computations give τ ∗

�,K =
{O,

� 1 0
0 0



,
� 0 0
0 1



, I2}. The Hasse diagram associated to [O,B]∗ is given in Figure 2.

Eagambaram et al. showed in [22] that [O,B]∗ is a finite lattice if and only if all the
positive singular values of B are pairwise distinct. The next theorem improves this result
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by showing that, in that case, [O,B]∗ is not only a finite lattice but also a Boolean algebra.
Additionally, we find its cardinality.

Theorem 3.10: Let B ∈ Cn×n\{O}. The lattice [O,B]∗ is a Boolean algebra if and only if all
the positive singular values of B are pairwise distinct.

Proof: Let σ1, σ2, . . . , σr ∈ R+ be pairwise distinct and � = diag(σ1, . . . , σr). If T ∈ τ ∗
�,K

then T = T2 = T∗ and T� = �T. Thus, T = diag(a1, . . . , ar), where aj ∈ {0, 1}. Let
A1,A2,A3 ∈ [O,B]∗ and Ti = φ(Ai), for each i ∈ {1, 2, 3}. Then Ti = diag(ai1, . . . , air),
where aij ∈ {0, 1} for all i. Note that TiTj = TjTi, for any i, j, and all the supremum
and infimum obtained from these projectors also commute with Ti, for all i. Then, by
Proposition 3.1, we have that T1 ∧ (T2 ∨ T3) = T1(T2 + T3 − T2T3) = T1T2 + T1T3 −
T1T2T3 = (T1 ∧ T2) ∨ (T1 ∧ T3). Thus, [O,B]∗ is a distributive lattice and, by Proposi-
tion 3.8, it is Boolean algebra.

Conversely, suppose that � = diag(σ1Ir1 , . . . , σtIrt ) with ri > 1 for some i ∈ {1, . . . , t}.
Let us consider the matrices X1,X2,X3 constructed in Example 3.3 and Yj =

�
Xj O
O O

	
∈

Cri×ri , for every j ∈ {1, 2, 3}. Now, take Tj ∈ Cr×r partitioned in blocks like the matrix
� where the block (i, i) is the matrix Yj and the rest is completed with null matrices of the
corresponding order. Now, we can chooseA1,A2,A3 ∈ [O,B]∗ such that Tj = φ(Aj). Then
A3 ∧ (A1 ∨ A2) �= (A3 ∧ A1) ∨ (A3 ∧ A2). Hence, [O,B]∗ is nondistributive. �

Corollary 3.11: Let B ∈ Cn×n be a nonzero matrix of rank r. The following conditions are
equivalent.

(a) [O,B]∗ is a finite lattice.
(b) All positive singular values of B are pairwise distinct.
(c) [O,B]∗ is a Boolean algebra with 2r elements.

Corollary 3.12: If A,B ∈ Cn×n are nonzero matrices such that all positive singular values
of B are pairwise distinct and A ∈ [O,B]∗\{O}, then all the positive singular values of A are
pairwise distinct as well.

Proof: It follows from Theorem 3.10, because every down-set of a Boolean algebra is a
Boolean algebra too. �

Remark 3.4: (a) If � = σ Ir for some σ ∈ R+ then τ ∗
�,K = τ l∗

�,K . If, in addition, r ≥ 2,
then [O,B]∗ is an infinite nondistributive lattice by Theorem 3.4 and Remark 3.2.

(b) If � = diag(σ1Ir1 , . . . , σtIrt ), for some σ1, . . . , σt ∈ R+, then the condition T ∈ τ ∗
�,K

is equivalent to T = diag(X1, . . . ,Xt) where Xi ∈ Cri×ri and X2
i = Xi = X∗

i for every
i ∈ {1, . . . , t}.

If A
∗≤ B, A1

∗≤ A2
∗≤ B, and we consider the map ϕ defined in the proof of Lemma 3.5,

then we have the following result since ϕ(P) commutes with �.
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Lemma 3.13: Let A,A1,A2,B ∈ Cn×n. If A1
∗≤ A2

∗≤ B then [O,A2 − A1]∗ and [A1,A2]∗

are order-isomorphic. In particular, if A
∗≤ B then [O,B − A]∗ and [A,B]∗ are order-

isomorphic.

3.3. Core partial order

We now investigate the lattice structure of [O,B] #	 for any B ∈ Cn
1 . Once again, we take

advantadge of the order-isomorphism φ to prove that [O,B] #	 is a sublattice of [O,B]l∗.
Inspired by some examples, we highlight that the behaviour of the core partial order
is rather different from the others. For instance, [O,B] #	 is not necessarily an orthogo-

nal lattice (see Example (c)). Moreover, under the natural assumptions A1
#	
≤ A2

#	
≤ B and

A2 − A1
#	
≤ B, we demonstrate that [A1,A2]

#	 and [O,A2 − A1]
#	 are order-isomorphic.

Theorem 3.14: If B ∈ Cn
1\{O} then [O,B] #	 is a sublattice of [O,B]l∗.

Proof: It is immediate that τ
#	

�,K ⊆ τ l∗
�,K . Then [O,B] #	 ⊆ [O,B]l∗.

Let A1,A2 ∈ [O,B] #	. We know that A1 ∨ A2 and A1 ∧ A2 exist in [O,B]l∗. Now we
prove that A1 ∨ A2,A1 ∧ A2 ∈ [O,B] #	. By Theorem 3.4, φ(A1) ∨ φ(A2) and φ(A1) ∧
φ(A2) exist in τ l∗

�,K . So, it remains to prove:

(a) (φ(A1) ∨ φ(A2))�K(φ(A1) ∨ φ(A2)) = �K(φ(A1) ∨ φ(A2)) and
(b) (φ(A1) ∧ φ(A2))�K(φ(A1) ∧ φ(A2)) = �K(φ(A1) ∧ φ(A2)).

Indeed, let T1 = φ(A1) and T2 = φ(A2).
Replacing the supremum expressions in (a), we have

(T1 + T2)(T1 + T2)
†�K(T1 + T2)(T1 + T2)

†

= ((T1 + T2)(T1 + T2)
†T1�KT1 + (T1 + T2)(T1 + T2)

†T2�KT2)(T1 + T2)
†

= (T1�KT1 + T2�KT2)(T1 + T2)
† = �K(T1 + T2)(T1 + T2)

†.

So, (T1 ∨ T2)�K(T1 ∨ T2) = �K(T1 ∨ T2). Therefore, (a) is proved.
To show (b), notice first that:

T1(T1 + T2)
†T2�KT1(T1 + T2)

†T2 = T1(T1 + T2)
†(T2�KT2)(T1 + T2)

†T1

= T1(T1 + T2)
†�KT1(T1 + T2)

†T2 (10)

and

T1(T1 + T2)
†T2�KT1(T1 + T2)

†T2 = T2(T1 + T2)
†(T1�KT1)(T1 + T2)

†T2

= T2(T1 + T2)
†�KT1(T1 + T2)

†T2. (11)

By adding (10) and (11),

2T1(T1 + T2)
†T2�KT1(T1 + T2)

†T2 = (T1 + T2)(T1 + T2)
†�KT1(T1 + T2)

†T2
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Figure 3. The Boolean algebra [O, B] #	.

= (T1 + T2)(T1 + T2)
†T1�KT1(T1 + T2)

†T2 = T1�KT1(T1 + T2)
†T2

= �KT1(T1 + T2)
†T2.

Then, (T1 ∧ T2)�K(T1 ∧ T2) = �K(T1 ∧ T2). Thus, (b) is proved. �

Remark 3.5: (a) [O,B] #	 may be a nondistributive lattice. For example, if �K = σ Ir, for
some σ ∈ C, then τ

#	
�,K = τ l∗

�,K .
(b) The next example is constructed by using the set ρ

#	
B defined in Remark 2.1 and it

shows that [O,B] #	 may be a Boolean algebra. Indeed, consider the matrix

B =
�
�K �L
O O

�
=

⎡⎢⎢⎣
3/2 −1/2 0

√
6/2

−1/2 3/2 0
√

6/2
0 0 −1 0
0 0 0 0

⎤⎥⎥⎦
where

�K =
⎡⎣ 3/2 −1/2 0

−1/2 3/2 0
0 0 −1

⎤⎦ = VSV∗, V =
⎡⎣ √

2/2
√
2/2 0

−√
2/2

√
2/2 0

0 0 1

⎤⎦ and

S =
⎡⎣2 0 0
0 1 0
0 0 −1

⎤⎦ .

Some computations lead to ρ
#	
B = {diag(a1, a2, a3) | ai ∈ {0, 1}} and

τ
#	

�,K = {VTV∗ | T ∈ ρ
#	
B } = {O,Vdiag(1, 0, 0)V∗� �� �

φ(A1)

,Vdiag(0, 1, 0)V∗� �� �
φ(A2)

,

Vdiag(0, 0, 1)V∗� �� �
φ(A3)

, I3 − φ(A3)� �� �
φ(A4)

, I3 − φ(A2)� �� �
φ(A5)

, I3 − φ(A1)� �� �
φ(A6)

, I3}.

The associated Hasse diagram of [O,B] #	 is given in Figure 3.
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Figure 4. The lattice [O, B] #	.

(1) [O,B] #	 may be a non-Boolean distributive lattice as the following example shows.
Consider B = �

�K �L
O O



where � = 2I3,

K =
⎡⎣1/2 −1/2 0

0 1/2 0
0 0 1

⎤⎦ , and L =
⎡⎣1/2 1/2 0

0 1/2
√

2/2
0 0 0

⎤⎦ .

Some computations lead to

τ
#	

�,K =

⎧⎪⎨⎪⎩O, diag(1, 0, 0)� �� �
φ(A1)

, diag(1, 1, 0)� �� �
φ(A2)

, diag(0, 0, 1)� �� �
φ(A3)

, diag(1, 0, 1)� �� �
φ(A4)

, I3

⎫⎪⎬⎪⎭ ,

and the associated Hasse diagram of [O,B] #	 is given in Figure 4.

As we can observe in the last example, not always B − A
#	
≤ B holds whenever A

#	
≤ B.

When B − A
#	
≤ B, the following result is valid.

Lemma 3.15: Let A,A1,A2,B ∈ Cn
1 . If A1

#	
≤ A2

#	
≤ B and A2 − A1

#	
≤ B then [A1,A2]

#	 and

[O,A2 − A1]
#	 are order-isomorphic. In particular, if A,B − A

#	
≤ B then [O,B − A] #	 and

[A,B] #	 are order-isomorphic.

Proof: Take ϕ as in Lemma 3.5. Let us see that ϕ is surjective. Since T1 ≤ T2
where T1,T2 ∈ τ

#	
�,K , from (T2 − T1)�K(T2 − T1) = �K(T2 − T1), we obtain that

�KT1 = T1�KT2. Now, considerT1 ≤ Q ≤ T2. Then (Q − T1)�K(Q − T1) = Q�KQ −
Q�KT1 − T1�KQ + T1�KT1. But Q�KT1 = QT1�KT1 = T1�KT1 = �KT1 and T1�

KQ = T1�KT2Q = �KT1Q = �KT1. So, Q�KQ − Q�KT1 − T1�KQ + T1�KT1 = �

KQ − �KT1 − �KT1 + �KT1 = �KQ − �KT1 = �K(Q − T1). The rest of conditions
for ϕ to be an order-isomorphism can be proved as in Lemma 3.5. �

4. Supremum and infimum of two arbitrary matrices

In this section we first demonstrate that there exists the supremum (for all three partial
orders) of two given matrices A1 and A2 if and only if A1 and A2 have a common upper
bound. Our main tools are Theorems 3.4, 3.7, and 3.14. In addition, we find an expression
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for this supremum. Secondly, we analyse the infimum of two given matrices. In the case
where the matrices have a common upper bound, we obtain an expression for their infi-
mum. If two matrices B and C do not have a common upper bound, we already know that
B ∧ C exists for the three partial orders (see [16, 18, 21]). If B is written as in (1) then the
infimum can be written as in (2) and we find the conditions that the associated orthogonal
projector must satisfy.

Theorem 4.1: Let B ∈ Cn×n be a nonsingular matrix, and A1,A2 ∈ [O,B]x such that S =
A1 ∨ A2 ∈ [O,B]x. If A1,A2

x≤ �B, for some�B ∈ Cn×n, then S
x≤ �B.

Proof: Let T1 = φ(A1) and T2 = φ(A2). The fact that B is nonsingular yields that B =
U�KU∗ and Ai = UTi�KU∗, for every i ∈ {1, 2}, with L = O and KK∗ = In. By Theo-
rems 3.4, 3.7, or 3.14, depending on the corresponding partial order x, and by Remark 3.1
we know that S = U(T1 + T2)(T1 + T2)

†�KU∗.
Since Ai

x≤ �B, we have that A∗
i Ai = A∗

i �B. Then UK∗�Ti�KU∗ = UK∗�TiU∗�B and
consequently

Ti�KU∗ = TiU∗�B.
Taking into account this last fact,

S∗S = UK∗�(T1 + T2)(T1 + T2)
†�KU∗ = UK∗�(T1 + T2)

†(T1 + T2)�KU∗

= UK∗�(T1 + T2)
†(T1 + T2)U∗�B = S∗�B. (12)

Now we need to study each order separately.

• From Ai
∗≤ �B we know that AiA∗

i = �BA∗
i . Then UTi��TiU∗ = �BUK∗�TiU∗ and

consequently U�2Ti = �BUK∗�Ti. Since �T = T�, for every T ∈ τ ∗
�K , and (T1 +

T2)(T1 + T2)
†(T1 + T2) = T1 + T2, we have

SS∗ = U(T1 + T2)(T1 + T2)
†��(T1 + T2)(T1 + T2)

†U∗

= U�2(T1 + T2)(T1 + T2)
†U∗ = �BUK∗�(T1 + T2)(T1 + T2)

†U∗ = �BS∗

and by (12), we get S
∗≤ �B.

• If Ai
l∗≤ �B then Ai = �B�B†Ai. So, UTi�KU∗ = �B�B†UTi�KU∗. Thus, UTi = �B�B†UTi.

Then

S = U(T1 + T2)(T1 + T2)
†�KU∗ = �B�B†U(T1 + T2)(T1 + T2)

†�KU∗ = �B�B†S

and from (12) we obtain that S
l∗≤ �B.

• Finally, if Ai
#	≤ �B then A2

i = �BAi. Thus, U(Ti�KTi)�KU∗ = �BUTi�KU∗ or equiva-
lently U�KTi = �BUTi. Taking into account that T1 ∨ T2 ∈ τ

#	
�,K , we have

S2 = U((T1 + T2)(T1 + T2)
†�K(T1 + T2)(T1 + T2)

†)�KU∗

= U�K(T1 + T2)(T1 + T2)
†�KU∗ = �BU(T1 + T2)(T1 + T2)

†�KU∗ = �BS.
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Therefore, by (12), we have that S
#	≤ �B. �

Let us observe that if�B ∈ Cn×n (or�B ∈ Cn
1 for the core partial order) then there exists

a nonsingular matrix B such that�B x≤ B. Indeed:

• If x = l∗ and�B = U
�

�K �L
O O



U∗, then it is enough to consider B = U

�
�K �L
O In−r



U∗.

• If x = ∗ then consider a singular value decomposition of �B given by�B = U
�

� O
O O



V∗

and we can choose B = U
�

� O
O In−r

	
V∗.

• If x = #	 and we consider again�B = U
�

�K �L
O O



U∗ then, by Baksalary and Trenkler [1,

Lemma 3], we can take B = U
�

�K �L
O In−r



U∗.

Proposition 4.2: Let A1,A2 ∈ Cn×n (or A1,A2 ∈ Cn
1 for the core partial order). Then, A1 ∨

A2 exists if and only if A1 and A2 have a common upper bound. In that case, A1 ∨ A2 =
(A1A

†
1 + A2A

†
2)

†(A1 + A2).

Proof: The first statement is immediate from Theorem 4.1 taking into account that if A1
and A2 have a common upper bound�B then there exists a nonsingular matrix B such that�B x≤ B, for all partial order x. For the second statement, assume thatA1,A2 have a common
upper bound and take B a nonsingular matrix such that A1,A2 ≤ B. Consider a Hartwig-
Spindelböck decomposition of B given by B = U�KU∗, where U,K ∈ Cn×n are unitary
and � = diag(σ1, . . . , σn) ∈ Cn×n. Let T1 and T2 be the orthogonal projectors such that
φ(Ai) = Ti, for each i, that is Ai = UTi�KU∗. Then,

A1 ∨ A2 = U(T1 ∨ T2)�KU∗ = U(T1 + T2)
†(T1 + T2)�KU∗

= U(T1 + T2)
†U∗U(T1 + T2)�KU∗ = (U(T1 + T2)U∗)†U(T1 + T2)�KU∗

= (UT1U∗ + UT2U∗)†(A1 + A2).

From KK∗ = In, by using the facts that � is nonsingular and Ti�(Ti�)† = Ti for each i
(see [19, Lemma 14]), we have that

UTiU∗ = UTi�KU∗UK∗(Ti�)†U∗ = AiA
†
i .

Hence, A1 ∨ A2 = (A1A
†
1 + A2A

†
2)

†(A1 + A2). �

Proposition 4.3: Let A1,A2 ∈ Cn×n (or A1,A2 ∈ Cn
1 for the core partial order). If A1 and

A2 have a common upper bound then A1 ∧ A2 = 2A1A
†
1(A1A

†
1 + A2A

†
2)

†A2.

Proof: Proceeding as in the proof of the Proposition 4.2, consider a nonsingular matrix
B and a Hartwig-Spindelböck decomposition B = U�KU∗ such that Ai

x≤ B and Ti the
orthogonal projectors such that φ(Ai) = Ti. Then, Ai = UTi�KU∗, AiA

†
i = UTiU∗, and

(A1A
†
1 + A2A

†
2)

† = U(T1 + T2)
†U∗. By Theorems 3.4, 3.7 or 3.14, depending on the

corresponding partial order x, we have that A1 ∧ A2 = U(T1 ∧ T2)�KU∗ = U2T1(T1 +
T2)

†T2�KU∗ = 2UT1U∗U(T1 + T2)
†U∗UT2�KU∗ = 2A1A

†
1(A1A

†
1 + A2A

†
2)

†A2. �
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In general, if B and C do not have a common upper bound, we know that there exists
B ∧ C for the three partial orders. If B is written as in (1) and we write C = U

�
C1 C2
C3 C4

	
U∗,

where C1 ∈ Cr×r, then for the infimum J = B ∧ C there exists T ∈ τ x
�,K such that J =

U
� T�K T�L

O O


U∗. It is straightforward to see that J∗J = J∗C if and only if T�K = TC1

and T�L = TC2. Moreover, R(J) ⊆ R(C) if and only if R(T) ⊆ R([C1 C2]). Indeed,
R(J) = R(JJ†) = UR(

�
T�(T�)†

O

	
). Thus,R(J) ⊆ R(C) if and only ifR

��
T�(T�)†

O

	�
⊆

R
��

C1 C2
C3 C4

	�
, and this is equivalent toR(T) ⊆ R ([C1 C2]) because� is nonsingular and

soR(T�(T�)†) = R(T�) = R(T).
For the star partial order we have that JJ∗ = CJ∗ if and only if T� = (C1K∗ + C2L∗)T

and (C3K∗ + C4L∗)T = O.
Finally, for the core partial order we obtain that CJ = J2 if and only if C1T = �KT and

C3T = O.
We summarize the last reasoning in the following proposition.

Proposition 4.4: Let B,C ∈ Cn×n (or B,C ∈ Cn
1 for the core partial order) where B is writ-

ten as in (1) and C as above. Then the infimum is given by B ∧ C = U
� Tm�K Tm�L

O O


U∗,

where Tm is the maximum of the following set.

(a) For the left star partial order,

{T ∈ τ l∗
�,K |T�K = TC1,T�L = TC2,R(T) ⊆ R([C1 C2])}.

(b) For the star partial order,

{T ∈ τ ∗
�,K |T�K = TC1,T�L = TC2,

T� = (C1K∗ + C2L∗)T, (C3K∗ + C4L∗)T = O}.
(c) For the core partial order,

{T ∈ τ
#	

�,K |T�K = TC1,T�L = TC2,C1T = �KT,C3T = O}.
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2.2 Related work
We now show some work which goes in the opposition direction, by bringing alge-
braic notions (or, more specifically, number-theoretic notions) to logic.

2.2.1 An ultrafinitist version of Peano arithmetic
Let k be any integer exceeding one. The following joint work with Grigorii
Stepanov presents an ultrafinitist version of Peano arithmetic which is obtained
by modifying its proper axioms: the k-th modular arithmetic, which is denoted
by PAk and defined in Table 2.1 (note that Si(0) denotes the i-th iteration of the
function letter S to the constant 0 and the notation ψ(z), where ψ is any formula
and z any variable, indicates that z occurs free in ψ) (the propositional logical
axioms, the equality axioms and the proper axioms of Peano arithmetic can be
found in Hamilton [7, Section 4.1, Section 5.2 and Section 5.4]; and the first-order
logical axioms can be found in Mendelson [13, Subsection 2.3.1]).

Note that the theories PA and PAk share the same language (viz., relation letters,
function letters and constants).

Lemma 2.2.1.1. Given any formula ϕ(x), PAk proves ∀x ϕ(x) if and only if PAk

proves [ϕ(0) ∧ ϕ(S(0)) ∧ . . . ∧ ϕ(Sk−1(0))].

Proof. The direct implication is immediate. For the converse implication, note that
the logical axioms, Axiom M2 and the rule ∀x ∀y [x = y ⇒ [ϕ(x) ⇔ ϕ(y)]] yield
that PAk proves ∀x [[ϕ(x) ⇔ ϕ(0)]∨ [ϕ(x) ⇔ ϕ(S(0))]∨ . . .∨ [ϕ(x) ⇔ ϕ(Sk−1(0))]],
so it also proves ∀x [[ϕ(0) ∧ ϕ(S(0)) ∧ . . . ∧ ϕ(Sk−1(0))] ⇒ ϕ(x)] and therefore it
proves ∀x ϕ(x) too (by applying modus ponens with the hypothesis).

A consequence of Lemma 2.2.1.1 is Corollary 2.2.1.2, which ensures total quantifier
elimination for every formula.

Corollary 2.2.1.2. For every formula ϕ, there exists a formula ψ without variables
(neither free nor bounded; so, in particular, ψ is quantifier-free) such that PAk

proves [ϕ ⇔ ψ].

Proof. The result follows by first transforming any eventual occurrence of an ex-
istential quantifier in ϕ into an occurrence of an universal quantifier, by means of
the rule [∃x α(x) ⇔ ¬∀x ¬α(x)] (where α(x) is any formula); and then replacing
any eventual subformula of the form ∀x β(x) (where β(x) is any formula) with
the corresponding formula [β(0) ∧ β(S(0)) ∧ . . . ∧ β(Sk−1(0))], by means of Lemma
2.2.1.1.
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Peano arithmetic k-th modular arithmetic
Inference rules Generalization (i.e. universal quantification) and modus ponens
Relation letters = (equality, binary)
Function letters + (sum, binary), · (product, binary), S (successor, unary)
Constants 0 (zero)
Logical axioms (let α, β, γ, δ(x) [α ⇒ [β ⇒ α]]
and ε be formulas such that ε [[α ⇒ [β ⇒ γ]] ⇒ [[α ⇒ β] ⇒ [α ⇒ γ]]]
contains no free occurrences [[¬α ⇒ ¬β] ⇒ [β ⇒ α]]
of x, and let t be a term which [∀x δ(x) ⇒ δ(t)]
is free for x in δ(x)) [∀x [ε ⇒ α] ⇒ [ε ⇒ ∀x α]]
Equality axioms t = t
(let t, u and v be terms) [u = v ⇒ v = u]

[[t = u ∧ u = v] ⇒ t = v]
[u = v ⇒ t + u = t + v]
[u = v ⇒ u + t = v + t]
[u = v ⇒ t · u = t · v]
[u = v ⇒ u · t = v · t]

[u = v ⇒ S(u) = S(v)]
Proper axioms ∀x ∀y [S(x) = S(y) ⇒ x = y]
(let ϕ(x) be a formula) ∀x x + 0 = x

∀x ∀y x + S(y) = S(x + y)
∀x x · 0 = 0

∀x ∀y x · S(y) = (x · y) + x
∀x ¬S(x) = 0 ∀x [S(x) = 0 ⇔

x = Sk−1(0)] (Axiom M1)
[[ϕ(0) ∧ ∀x [ϕ(x) ⇒ ϕ(S(x))]] ⇒ ∀x [x = 0 ∨ x = S(0) ∨ . . . ∨
∀x ϕ(x)] (induction principle) x = Sk−1(0)] (Axiom M2)

Table 2.1: A comparison between PA and PAk.

Theorem 2.2.1.3 shows that Axiom M2 and the induction principle are interchange-
able in PAk, but Axiom M2 was preferred in order to evidence that PAk is finitely
axiomatizable (i.e. its set of proper axioms is finite), while PA is recursively
axiomatizable (i.e. its set of proper axioms is recursively enumerable).

Theorem 2.2.1.3. Axiom M2 and the induction principle are interchangeable in
PAk.

Proof. Let T be the theory obtained by replacing Axiom M2 with the induction
principle in PAk, and let α(x) be the formula

k−1�
i=0

[x = Si(0)].

Obviously T proves α(0). The formula [α(x) ⇒ α(S(x))] is equivalent to�
¬α(x) ∨

k−1�
i=0

[S(x) = Si(0)]
�
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or, in other words, to �
¬α(x) ∨

k�
i=1

[S(x) = Si(0)]
�

(by Axiom M1). And this last formula is equivalent to [¬α(x)∨α(x)] (by successor
cancellation), which is a tautology that T proves. Thus T proves ∀x α(x) (by
applying the induction principle), i.e. Axiom M2. Now, let ϕ(x) be any formula.
It is clear that PAk proves the tautology��

ϕ(0) ∧
k−1�
i=0

[ϕ(0) ⇔ ϕ(Si(0))]
�

⇒
k−1�
i=0

[ϕ(Si(0))]
�

;

which can be written as��
ϕ(0) ∧

k−1�
i=0

[ϕ(Si(0)) ⇒ ϕ(Si+1(0))]
�

⇒
k−1�
i=0

[ϕ(Si(0))]
�

(by Axiom M1). Therefore, PAk proves [[ϕ(0) ∧ ∀x [ϕ(x) ⇒ ϕ(S(x))]] ⇒ ∀x ϕ(x)]
(by Lemma 2.2.1.1), i.e. the induction principle.

Theorem 2.2.1.4 shows that the k-th modular arithmetic possess completeness.

Theorem 2.2.1.4. The theory PAk is complete.

Proof. The proof goes by induction on the number of quantifiers. The base case
consists of quantifier-free formulas without free variables; which PAk clearly de-
cides. Now, let n be any non-negative integer. In addition, suppose that, for every
non-negative integer i and every formula ψ(x) with exactly n quantifiers and whose
only free variable is x, PAk decides ψ(Si(0)); and let ϕ(x) be any formula with
exactly n quantifiers and whose only free variable is x.

Case 1: ∀x ϕ(x) is true Then PAk proves [ϕ(0) ∧ ϕ(S(0)) ∧ . . . ∧ ϕ(Sk−1(0))] (by
induction hypothesis) and therefore it also proves ∀x ϕ(x) (by Lemma 2.2.1.1).

Case 2: ∀x ϕ(x) is false Then there is some non-negative integer r such that PAk

proves ¬ϕ(Sr(0)) (by induction hypothesis), so it also proves ∃x ¬ϕ(x) or, equiv-
alently, ¬∀x ϕ(x).

Case 3: ∃x ϕ(x) is true Then there is some non-negative integer r such that PAk

proves ϕ(Sr(0)) (by induction hypothesis) and therefore it also proves ∃x ϕ(x).

Case 4: ∃x ϕ(x) is false Then PAk proves [¬ϕ(0) ∧ ¬ϕ(S(0)) ∧ . . . ∧ ¬ϕ(Sk−1(0))]
(by induction hypothesis), so it also proves ∀x ¬ϕ(x) (by Lemma 2.2.1.1) or, in
equivalently, ¬∃x ϕ(x).
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2.2.2 A Diophantine measure of complexity
This work connects two complexity measures, one from logic (viz., the arithmetical
hierarchy) and another from number theory (viz., the irrationality measure).

The generating function in variable z of a sequence s of non-negative integers,
which is denoted by GF(s(n); z), is the expression �∞

n=0(s(n)zn) (see Weisstein
[23]).

For example, GF(n2; z) is equal to z(z + 1)/(1 − z)3.

And the characteristic function of a set S of non-negative integers, which is
denoted by χS, is the unary operation on the set of non-negative integers which
maps every non-negative integer n into one, if n belongs to S; and into zero
otherwise (cf. Weisstein [19]).

For example, if S is the set of even non-negative integers and n is a non-negative
integer, then χS(n) equals (1 + (−1)n)/2.

Now, let Φ denote the function from the set of sets of non-negative integers to
the interval [0, 1] which maps every set S of non-negative integers into the number
GF(χS(n); 1/2)/2.

For example, the number GF(χ∅(n); 1/2)/2 (resp., GF(χZ≥0(n); 1/2)/2) is equal
to �∞

n=0(0/2n)/2 (resp., �∞
n=0(1/2n)/2) or, in other words, to zero (resp., one). As

a more interesting example, consider GF(χP (n); 1/2), where P is the set of primes;
which is called the prime constant and whose value is approximately 0.4146825
(see OEIS A051006).

A set S of non-negative integers is said to be cofinite if, and only if, Z≥0\S is
finite (see Halpern [6, Section 2.2]).

For example, the set of positive integers is cofinite because {0} is finite.

The function Φ is not injective because finite and cofinite sets share their images
via Φ.

For example,

GF(χ{0}(n); 1/2)/2 = (1/20)/2 = 1
2 = 1

2

∞�
n=1

(1/2n) = GF(χZ>0(n); 1/2)/2

and
GF(χ{0,3,4,5}(n); 1/2)/2 = 39

64 = GF(χZ≥0\{1,2,5}(n); 1/2)/2.

Proposition 2.2.2.1. The function Φ is surjective.

https://oeis.org/A051006
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Proof. Let x be any positive real number which does not exceed one. The binary
expansion of x induces a set of positive integers S such that �∞

n=1(χS(n)2−n) = x,
which is equivalent to �∞

n=0(χS(n)(1/2)n+1) = x. And the latter equality can be
written as GF(χS(n); 1/2)/2 = x.

The irrationality measure of a real number x, which is denoted by µ(x), is the
infimum of the set

{a ∈ R>0 : {(p, q) ∈ Z2 : 0 < |x − p/q| < 1/qa} is finite}

if it exists and ∞ otherwise (see Weisstein [24]).

For example, the irrationality measure of a real number equals one if and only if it
is rational. In addition, the irrationality measure of any algebraic number whose
degree exceeds one is two (see Weisstein [24]); result which is known as Roth’s
theorem and whose proof-theoretic analysis is one of the origins of extractive
proof theory (cf. Kohlenbach [10, Section 1]).

An arithmetic progression is an integer sequence of the form (an+b)∞
n=0, where

a and b are any two integers such that a is not zero (cf. Weisstein [18]).

For example, (1 − 20n)∞
n=0 is an arithmetic progression.

The arithmetical hierarchy measures the complexity of a set S of non-negative
integers by counting the minimum number of quantifier alternations that a formula
ϕ(x) in the language of Peano arithmetic must have in order to define S; i.e. in
order to be such that the set of non-negative integers such that ϕ(Sn(0)) is true
(in the standard model of Peano arithmetic) is S (see Enderton [4, Section 5.1]).

It might be interesting to study how the arithmetical hierarchy and the irrationality
measure interrelate via Φ. As an example, we have Proposition 2.2.2.2.

Proposition 2.2.2.2. Given any set S of non-negative integers, µ(Φ(S)) equals
one if and only if S is a finite union of finite sets of non-negative integers and
image sets of arithmetic progressions of non-negative terms.

Proof. The statement that µ(Φ(S)) equals one is equivalent to the rationality of
the number Φ(S), which holds true if and only if χS is eventually periodic. And
this happens if and only if S is a finite union of finite sets of non-negative integers
and image sets of arithmetic progressions of non-negative terms.
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Chapter 3

Number-theoretic lattices

Given any R-basis (v⃗, w⃗) of R2, the point-lattice or number-theoretic lat-
tice generated by (v⃗, w⃗), which is denoted by L(v⃗, w⃗), is the set {mv⃗ + nw⃗ :
m and n are integers} (cf. Hardy & Wright [8, Section 3.5]). And given any vector
u⃗ of R2 and any point-lattice L, the set {u⃗ + l⃗ : l⃗ ∈ L} is denoted by u⃗ + L.

For example, (0, 32/7) belongs to (1, −1) + L((−2, 2), (3, 11/7)) because (0, 32/7)
equals (1, −1) + 2(−2, 2) + (3, 11/7).

The cover of any two integers a and b which exceed one, which is denoted by
C(a, b), is the set of pairs (x, y) of non-negative rational numbers such that ax + by

is an integer multiple of ab + 1.

For example, (0, 32/7) belongs to C(5, 128) because 5 · 128 + 1 = 641 | 225 + 1 =
50 + 12832/7.

The reason to add the conditions a > 1 and b > 1 in the definition of cover is
to avoid an “excess” of points which would probably fog the theory: for example,
every rational number x is such that 1 · 5 + 1 factors 1x + 53.

Given any non-negative integer n, the n-th Fermat number is the number 22n +1
(see Křížek et al. [11, Chapter 1]). The first five Fermat numbers are 3, 5, 17, 257,
65537 (see OEIS A000215); and notice that they are prime. However, the existence
of any other prime Fermat number is currently unknown (see OEIS A019434).

Given any non-negative integer n, let F(n) denote the set��
1

−1

�
+ L

�� −2
2

�
,

�
2 ⌊α(n)⌋ − 1

2α(n) − 2 ⌊α(n)⌋ + 1

���
∩ Q2

≥0,

where α(n) equals 2n−1/(n + 2).
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https://oeis.org/A000215
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Baaz [1] developed a technique of extractive proof theory, now known as Baaz’s
generalization method, which is re-explained in Section 2 of Article C in Section
3.2. This procedure was exemplified by means of a pioneer application to the
factorization of Fermat numbers, Proposition 8 of Article C (see also Baaz [1,
Theorem 15]), which led, through the realization of Article B and Article C, to
a geometric characterization of these (i.e. Theorem 11 of Article C). And this
characterization can be now nicely stated, in terms of point-lattices and covers, as
Theorem 3.0.0.1.

Theorem 3.0.0.1. Given any two integers m > 1 and n > 2, the number m2n+2+1
is a factor of the n-th Fermat number if and only if F(n) is a subset of C(m, 2n+2).

We now reproduce Article B and Article C, and then continue by showing some
further results.
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3.1 Article B
This is an Accepted Manuscript of an article published by the University of Pri-
morska in The Art Of Discrete And Applied Mathematics on 15/Nov/2022, avail-
able online: https://adam-journal.eu/index.php/ADAM/article/view/1473.

Corrections:

1. in the statement of Lemma 2.4, the number i must exceed one;

2. in the statement of Theorem 2.3, the number n must exceed two (otherwise
n − ν2(n + 2) becomes zero and Lemma 2.4 is no longer applicable);

3. the proof of Theorem 2.3 misses a final sentence such as “The thesis follows
by applying Lemma 2.4.”;

4. Lemma 2.4 (and its proof) should appear therefore just before the definition
of dyadic valuation and

5. in the statement of Theorem 2.5, the number i must exceed one and the
number n must exceed two.

https://adam-journal.eu/index.php/ADAM/article/view/1473
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Abstract

This article reports some recent progress from an ongoing research project on the fac-
tors of Fermat numbers; most notably a necessary condition for a given value to be a factor
and a characterization of the prime ones.
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1 Introduction
The numbers of the form 22

n

+1, where n is a non-negative integer, are called Fermat num-
bers. Because of their quick growth, computing their factors is a challenge (only the first
twelve are fully factored at the present time) and to characterize them is thus interesting.
Remarkably, the so-called Pépin’s test (see Weisstein [12]) has been utilized in order to
prove the compositeness of 22

20

+1 (see Buell & Young [14]) and of 22
24

+1 (see Crandall
et al. [3]), although no prime factor is yet known.

Section 2 is the one that properly revolves around characterizations of factors of Fermat
numbers. The first main result (viz., Theorem 2.1) is a sufficient condition for a given
value to be a factor of a Fermat number. It was obtained by applying Baaz’s generalization
method (see Baaz [1]) to a proof of the fact that 1071 · 26+2 +1 | 226 +1 that a participant
of the Mersenne Forum, nicknamed Literka, published on a web page at some point prior to
March 25, 2012 (although the website is currently unavailable, it is possible to find a backup
in the Way Back Machine). The condition also happened to be necessary, provided that the

*The author thanks Jinyuan Wang for his numerous contributions to this article, including the formula
n− v2(n+ 2) from Theorem 2.3. Supported by FWF Austria (project numbers P31063 and P31955).

E-mail address: lorenzo.sauras@tuwien.ac.at (Lorenzo Sauras-Altuzarra)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/
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candidate is prime or the Fermat number is squarefree (viz., Theorem 2.2). In addition,
the study of the positive integers of the form k2r + 22

n−2r(n+2) led to the observation that
10712·4 +22

6−2·4(6+2) = 10712
3

+1 and to another subsequent necessary condition (viz.,
Theorem 2.3).

Section 3 analyzes several sequences that are useful in order to study Fermat numbers.
Section 4 presents a sequence that might share some properties with the sequence of

Fermat numbers.
For the sake of brevity, throughout this text the notation “a ≡

n
b” is preferred over the

standard one of “a ≡ b (mod. n)”.

2 Divisibility conditions
Observe that 1 · 25− 6 · 4 = 19 · 4− 3 · 25 = 1 and 252 +42 (which equals 641) is a prime
factor of 22

5

+ 1, of 22
5 − (6 · 25 + 1 · 4)2, and of 22

5 − (3 · 4 + 19 · 25)2; and recall the
so-called Diophantus’ identity (see Bernstein [2, Fact 2.4.7]): (ac + bd)2 + (bc − ad)2 =
(a2 + b2)(c2 + d2), for every complex number a, b, c, and d.

Theorem 2.1. If a, b, c, d, and n are integers such that n is non-negative, (bc− ad)2 = 1,
and c2 + d2 | 22n − (ac+ bd)2, then c2 + d2 | 22n + 1.

Proof. Since (bc−ad)2 = 1, it follows that (ac+bd)2 ≡
c2+d2

−1 (by applying Diophantus’

identity) and therefore 22
n ≡

c2+d2
−1 (by applying that c2 + d2 | 22n − (ac+ bd)2).

Theorem 2.2. If c, d, and n are integers such that n is non-negative, c2 + d2 | 22n + 1,
and c2 + d2 is prime or 22

n

+ 1 is squarefree, then there exist integers a and b such that
(bc− ad)2 = 1 and c2 + d2 | 22n − (ac+ bd)2.

Proof. If c2 + d2 is prime or 22
n

+ 1 is squarefree, then gcd(c,−d) = 1 (by applying that
c2 + d2 | 22n + 1) and hence there exist integers a and b such that bc + a(−d) = 1 (by
applying Bézout’s lemma; see Křı́žek et al. [6, Theorem 1.3]); from which follows that
(bc− ad)2 = 1. In addition, Diophantus’ identity implies that c2 + d2 | (ac+ bd)2 +(bc−
ad)2; which yields that c2 + d2 | 22n + 1 − (ac + bd)2 − (bc − ad)2 (by applying that
c2+d2 | 22n+1) and therefore c2+d2 | 22n−(ac+bd)2 (by applying that bc−ad = 1).

The dyadic valuation of a positive integer n, denoted by ν2(n), is the maximum non-
negative integer v such that 2v | n. It satisfies the property ν2(mn) = ν2(m) + ν2(n), for
every positive integer m (see the Encyclopedia of Mathematics [4]).

Observe that 38019230 · 211+2 + 1 (i.e. 319489 · 974849) is a factor of 22
11

+ 1 and of
380192302

11(2j−1) + 1, for every positive integer j.

Theorem 2.3. If k and n are positive integers such that k2n+2 + 1 | 22n + 1, then
k2n+2 + 1 | k2n−ν2(n+2)(2j−1) + 1, for every positive integer j.

Proof. Since ν2(2n−ν2(n+2)(2j−1)(n+2)) = ν2(2
n−ν2(n+2))+ν2(2j−1)+ν2(n+2) =

n−ν2(n+2)−0+ν2(n+2) = n, it follows that there exists an odd positive integer d such
that 2nd = 2n−ν2(n+2)(2j − 1)(n + 2) and therefore 22

n−ν2(n+2)(2j−1)(n+2) = 22
nd =

(22
n

)d ≡
k2n+2+1

(−1)d = −1 (by applying that k2n+2 + 1 | 22n + 1).
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The converse implication of Theorem 2.3 does not hold: 4278255361 is not a factor of

22
3

+ 1 but divides
�
4278255361−1

23+2

	23−ν2(3+2)(2j−1)
+ 1, for every positive integer j.

Lemma 2.4. Given positive integers i, j, k, and n, k2n+2+1 | k2i−1(2j−1)+1 if and only
if k2n+2 + 1 | 22i−1(2j−1)(n+2) + 1.

Proof. Let

r =
1− (−k2n+2)2

i−1(2j−1)

1− (−k2n+2)
=

2i−1(2j−1)−1�
l=0

�
(−k2n+2)l

	
,

which is an integer, and notice that

22
i−1(2j−1)(n+2) + 1− (k2n+2 + 1)r = 22

i−1(2j−1)(n+2)(k2
i−1(2j−1) + 1).

Theorem 2.5 ensures the uniqueness of the exponent n− ν2(n+ 2) in Theorem 2.3.

Theorem 2.5. If i, j, k, and n are positive integers such that k2n+2 + 1 | 22n + 1 and
i− 1 ̸= n− ν2(n+ 2), then k2n+2 + 1 ∤ k2

i−1(2j−1) + 1.

Proof. Let r be the odd positive integer such that

2i−1(2j − 1)(n+ 2) = r2i−1+ν2(n+2).

Let m and M be the minimum and the maximum of {n, i−1+ν2(n+2)}, respectively. Let
d be a factor of 2r2

m

+1 such that d > 1. Because of m < M (by applying that i−1 ̸= n−
ν2(n+2)), 2r2

M

= (2r2
m

)2
M−m ≡

d
(−1)2

M−m

= 1 and consequently d | 2r2M −1. Notice

that d ∤ 2r2
M

+ 1 (by applying that consecutive odd numbers are coprime), from which
follows that gcd(2r2

m

+ 1, 2r2
M

+ 1) = 1; that is to say, 2r2
n

+ 1 and 2r2
i−1+ν2(n+2)

+ 1

are coprime. Now, k2n+2 + 1 | k2n−ν2(n+2)(2j−1) + 1 (by applying Theorem 2.3); so
k2n+2+1 | 22n−ν2(n+2)(2j−1)(n+2)+1 = 2r2

n

+1 (by applying Lemma 2.4) and therefore
k2n+2 + 1 ∤ 22

i−1(2j−1)(n+2) + 1 = 2r2
i−1+ν2(n+2)

+ 1 (by applying the coprimality of
2r2

n

+ 1 and 2r2
i−1+ν2(n+2)

+ 1). In other words, k2n+2 + 1 ∤ k2
i−1(2j−1) + 1 (by again

applying Lemma 2.4).

3 Some useful sequences
Let p (resp., q) be the (increasing) enumeration of primes (resp., prime factors of Fermat
numbers). The first eight terms of the sequence q are 3, 5, 17, 257, 641, 65537, 114689,
and 274177 (see OEIS A023394, but be aware that the sequence is indexed from 1 instead
of from 0 there).

Recall that Ω and ω are the functions that map every positive integer into its number
of prime factors counted with and without multiplicity, respectively. For example, Ω(1) =
ω(1) = 0, Ω(12) = 3, and ω(12) = 2. The only known terms of the sequence of numbers
of the form Ω(22

n

+ 1), where n is a non-negative integer, are 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4,
and 5 (see OEIS A046052). It is not known if this sequence is monotonic. In addition, it
is not known if Fermat numbers are squarefree (i.e. if the sequence of numbers of the form
ω(22

n

+ 1), where n is a non-negative integer, is the same sequence).
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Given a non-negative integer n, let x(n) be the only non-negative integer a such that
q(n) | 22a + 1. For example, x(0) = 0 because q(0) = 3 | 3 = 22

0

+ 1. The uniqueness
of a is guaranteed by Goldbach’s theorem on Fermat numbers, which asserts that Fermat
numbers are pairwise coprime (see Křı́žek et al. [5], Theorem 4.1). The first eight terms of
the sequence x are 0, 1, 2, 3, 5, 4, 12, and 6 (see OEIS A023395, but be aware that the se-
quence is indexed from 1 instead of from 0 there). Note that the pairwise coprimality of the
Fermat numbers induces a permutation of the non-negative integers (see OEIS A343767).

The ordinal transform of a sequence s is the sequence whose n-th term is the cardinality
of the set {i ∈ {0, . . . , n} | s(i) = s(n)}, for every non-negative integer n. The first 27
terms of the ordinal transform of x are 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1,
4, 2, 1, 1, 1, and 1. Note that, given a non-negative integer n, ω(22

n

+ 1) is the cardinality
of the set {i ∈ N | x(i) = n}.

Euler proved that, if a is a non-negative integer and f is a factor of 22
a

+ 1 such that
f > 1, then ν2(f − 1) > a. In particular, ν2(q(n) − 1) > x(n), for every non-negative
integer n. Lucas proved later that, if in addition a > 1, then ν2(f−1) > a+1. In particular,
ν2(q(n) − 1) > x(n) + 1, for every integer n such that n > 1. See Weisstein [10]. The
first 27 terms of the sequence of numbers of the form ν2(q(n) − 1) − x(n) − 1, where n
is a non-negative integer, are 0, 0, 1, 4, 1, 11, 1, 1, 1, 1, 6, 1, 1, 3, 1, 3, 1, 2, 5, 3, 1, 1, 1, 2,
2, 1, and 2. The results by Euler and Lucas imply that they are non-negative and, from the
third on, positive.

Observe that q(5) = (2 − 1)2 + 214(20 + 30)2 = (2 − 1)2 + 214p(0)2, q(10) =
(27−1)2+28(24+34)2 = (27−1)2+28p(24)2, and q(13) = (211−1)2+212(26+32)2 =
(211− 1)2+212p(20)2; and recall that a Pythagorean prime is a prime of the form 4n+1,
where n is a positive integer.

Proposition 3.1. If n is a positive integer, then there exist unique positive integers c and d
such that c is odd, d is even, and c2 + d2 = q(n).

Proof. Since q(n) > 3 = 22
0

+ 1 (by applying that n is positive), it follows that
ν2(q(n) − 1) > x(n) > 0 (by applying the above result by Euler). That is to say, q(n)
is a Pythagorean prime, which ensures the existence of positive integers u and v such that
u2+v2 = q(n) (by applying Fermat’s two squares theorem; see Shoup [8, Theorem 2.34]).
If u and v were both even or both odd, then u2 + v2 would be even, but it is odd. Take c to
be the odd number in {u, v} and d the other one.

In fact, any factor of a Fermat number, except 1 and 3, is the sum of two squares (by
applying Proposition 3.1 and the fact that the set of integers that are the sum of two squares
is closed under multiplication, see OEIS A001481). However, the uniqueness cannot be
ensured; observe for example that 22

5

+1 = q(4)q(11) = 1+655362 = 204492+622642.
Given a non-negative integer n, let c(n) and d(n) be the positive integers such that

c(n) is odd, d(n) is even, and c(n)2 + d(n)2 = q(n + 1). The first 26 terms of the
sequence c are 1, 1, 1, 25, 1, 217, 89, 167, 985, 127, 409, 25, 2047, 2279, 7295, 12455,
19425, 34815, 55297, 243047, 424231, 704935, 755681, 1640929, 607847, and 1548319.
The first 26 terms of the sequence d are 2, 4, 16, 4, 256, 260, 516, 540, 68, 1552, 2556,
3692, 4672, 6356, 3248, 3556, 21176, 1472, 58560, 107020, 101500, 387036, 1462840,
236920, 2028748, and 2049336; and the first 26 terms of the sequence ν2 ◦ d are 1, 2, 4, 2,
8, 2, 2, 2, 2, 4, 2, 2, 6, 2, 4, 2, 3, 6, 6, 2, 2, 2, 3, 3, 2, and 3.

Proposition 3.2. If n is a positive integer, then ν2(d(n)) > 1.
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Proof. Since ν2(q(n + 1) − 1) > x(n + 1) + 1 ≥ 2 + 1 (by applying that n is positive
and the above result by Lucas), it follows that ν2(q(n + 1) − 1) ≥ 4. That is to say,
ν2(c(n)

2 + d(n)2 − 1) ≥ 4; which is equivalent to c(n)2 ≡
16

1 − d(n)2. Notice that the

parity of d(n) implies that d(n) ≡
4
0 or d(n) ≡

4
2. Let d be the positive integer such that

2d = d(n). If d(n) ≡
4
2, then d ≡

4
1; from which follows that d(n)2 = 4d2 ≡

4·4
4 · 1 and

thus c(n)2 ≡
16

1− d(n)2 ≡
16

1− 4 ≡
16

13: impossible, because 13 is not a quadratic residue

modulo 16. Therefore d(n) ≡
4
0; i.e. ν2(d(n)) > 1.

The first 26 terms of the sequence of numbers of the form sgn(d(n)−c(n))+1
2 , where sgn

is the signum function and n is a non-negative integer, are 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, and 1.

Given a non-negative integer n, let m(n) be the smallest prime factor of 22
n

+ 1 (see
OEIS A093179). An analysis of the algorithms described by Wang [9] suggests the inter-
est of the sequence y, whose n-th term is the minimum non-negative integer a such that
22

n−a < m(n), for every non-negative integer n. The first 14 terms of the sequence y are
0, 0, 0, 0, 0, 23, 46, 73, 206, 491, 999, 2030, 4080, and 8151.

Conjecture 3.3. The sequence y(n) is asymptotically equivalent to 2n.

The first 14 numbers of the form 2n−y(n)−ν2(m(n)−1), where n is a non-negative
integer, are 0, 0, 0, 0, 0, 2, 10, 46, 39, 5, 13, 5, 2, and 25.

Conjecture 3.4. Given a non-negative integer n, ν2(m(n)− 1) ≤ 2n − y(n).

4 A related sequence
Given an integer b such that b > 1, the numbers of the form bb

n

+ 1 (which is denoted
by Fb(n)), where n is a non-negative integer, are called base-b Fermat numbers (see OEIS
A129290). Given a non-negative integer n, let z(n) be the number Fp(n+1)(1)

Fp(n+1)(0)
; which

is equal to p(n+1)p(n+1)+1
p(n+1)+1 or, equivalently, to

�p(n+1)−1
k=0

�
(−p(n+ 1))k

	
. The first five

terms of the sequence z are 7, 521, 102943, 23775972551, and 21633936185161; i.e. p(3),
p(97), p(29)p(155), p(8)p(23)p(45)p(5907), and p(1590)p(2295)p(7770).

Problem 4.1. Are the terms of z pairwise coprime? If this is the case, compute some terms
of the induced permutation of the non-negative integers.

Problem 4.2. Is every term of z squarefree?

Let lh(n) be the length (i.e. the number of digits) of a given non-negative integer n.
Note that lh(n) = ⌊log10(n)⌋+ 1 if n is positive. Observe now that the first five numbers
of the form

�n
i=0

��
p(n+1)
p(i)

��
, where n is a non-negative integer, are 1, 3, 6, 11, and 14

(see OEIS A342173, but be aware that the sequence is indexed from 1 instead of from 0
there).

Theorem 4.3. Given a non-negative integer n,
�n

i=0

��
p(n+1)
p(i)

��
≤ lh(z(n)).
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Proof. Let n be a non-negative integer such that n > 1000 (it is possible to check with a
computer that the thesis holds if n ≤ 1000). It is known that

3n
n>18
< (log(n) + log(log(n))− 1)n

n>1
< p(n− 1)

n>5
< (log(n) + log(log(n)))n (4.1)

(see Weisstein [13] and Rosser & Schoenfeld [7, Theorem 3]). Thus,

1

p(n− 1)
<

1

3n
(4.2)

1000�
i=0

�
1

p(i)



= 2.457537428 < 2.495489954 =

1001�
i=1

�
p(n+ 1)

3i



(4.3)

n+1�
i=1

�
1

i



< 0.57721 . . .+

1

2(n+ 1)
+ log(n+ 1)(see Weisstein [11]). (4.4)

n�
i=0

��
p(n+ 1)

p(i)

�

≤

n�
i=0

�
p(n+ 1)

p(i)



(4.2),(4.3)

<

n+1�
i=1

�
p(n+ 1)

3i




=
p(n+ 1)

3

n+1�
i=1

�
1

i



(4.4)
<

p(n+ 1)

3

�
0.57721 . . .+

1

2(n+ 1)
+ log(n+ 1)



n>0
< p(n+ 1)(1 + log(n+ 1))/3

(4.1)
< (log(n+ 2) + log(log(n+ 2)))(n+ 2)(1 + log(n+ 1))/3

n>331
< (log(n+ 2)

+ (3/ log(10)− 1) log(n+ 2))(n+ 2)(1 + log(n+ 1))/3

= log(n+ 2)(n+ 2)(1 + log(n+ 1))/ log(10)

n>10
< log(n+ 2)(n+ 2) log10(log(n+ 2)(n+ 2))

n>18
< ((log(n+ 2) + log(log(n+ 2))− 1)(n+ 2)− 2)·

log10((log(n+ 2) + log(log(n+ 2))− 1)(n+ 2))
(4.2)
< (p(n+ 1)− 2) log10(p(n+ 1))

= log10(p(n+ 1)p(n+1)−2)

<
�
log10(p(n+ 1)p(n+1)−2)

�
+ 1

= lh(p(n+ 1)p(n+1)−2)

< lh

�
p(n+ 1)p(n+1) + 1

p(n+ 1) + 1



= lh(z(n))
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[12] E. W. Weisstein, Pépin’s Test, MathWorld – A Wolfram Web Resource, https://mathwo
rld.wolfram.com/PepinsTest.html.

[13] E. W. Weisstein, Rosser’s Theorem, MathWorld – A Wolfram Web Resource, https://ma
thworld.wolfram.com/RossersTheorem.html.

[14] J. Young and D. A. Buell, The twentieth Fermat number is composite, Math. Comp. 50 (1988),
261–263, doi:10.1090/S0025-5718-1988-0917833-8, https://doi.org/10.1090/S0
025-5718-1988-0917833-8.



54 CHAPTER 3. NUMBER-THEORETIC LATTICES



3.2. ARTICLE C 55

3.2 Article C
This is a pre-copyedited, author-produced version of an article accepted for publi-
cation in the Journal of Logic and Computation following peer review. The version
of record:

• Lorenzo Sauras-Altuzarra,

• Some applications of Baaz’s generalization method to the study of the factors
of Fermat numbers,

• Journal of Logic and Computation,

• 2022,

• exac056

is available online at: https://doi.org/10.1093/logcom/exac056.

Correction: the phrase “for geometric configurations” at the very end of Section
2.2 should be replaced with “for some geometric configurations”.
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Some applications of Baaz’s generalization
method to the study of the factors of Fermat
numbers

LORENZO SAURAS-ALTUZARRA, Institut für Diskrete Mathematik und
Geometrie, TU Wien, Wiedner Hauptstrasse 8-10/104, A-1040, Vienna, Austria.
E-mail: lorenzo.sauras@tuwien.ac.at

Abstract
This paper revisits a method of generalization of proofs of universal sentences that was introduced by Baaz and provides
several applications to the study of the factors of Fermat numbers; remarkably an improvement of his sufficient condition for
a given value to be one of such factors.

Keywords: Fermat prime, Pépin’s test, proof analysis, proof generalization, proof mining, universal formula

1 Introduction

The present article is divided into two main parts. The first one (viz., Section 2) consists on a small
summary of concepts from first-order logic that is necessary afterwards, some words on the ideas
behind the development of Baaz’s generalization method, a brief description of the method itself
and a little discussion about two of its possible extensions. The second one (viz., Section 3) collects
three properties of Fermat numbers (including an apparently new one, Proposition 3); provides three
applications of Baaz’s generalization method to the study of the factors of such numbers (viz.,
Theorem 7, Theorem 14 and Theorem 15); and introduces the concept of cover, in terms of which
the main result of the article (viz., Theorem 11) is formulated.

2 Baaz’s generalization method

2.1 Preliminaries in first-order logic

Recall that, in a mathematical statement, every variable must be declared by using a universal
quantifier or an existential quantifier (i.e. a phrase such as ‘for every’, denoted by ∀; or a phrase
such as ‘for some’, denoted by ∃).

A sentence is a mathematical statement. For example, ‘For every nonnegative integer n, if n is even
and n > 2, then, for some nonnegative integers p and p̂, p and p̂ are prime and their sum equals n.’
is a sentence (known as Goldbach’s conjecture, see Weisstein (16)).

The notion of formula is the generalization of the concept of sentence that allows nonquantified
variables. For example, ‘For some nonnegative integer n, m equals n.’ is a formula.

A prenex formula is a formula in which the quantified variables are quantified at the very
beginning. It is always possible to compute a prenex formula equivalent to a given formula (see
Hamilton (6, Proposition 4.28)). For example, a prenex version of Goldbach Conjecture is ‘For
every nonnegative integer n, for some nonnegative integers p and p̂, if n is even and n > 2, then p
and p̂ are prime and their sum equals n.’.

Vol. 00, No. 0, © The Author(s) 2022. Published by Oxford University Press. All rights reserved.
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2 Applications of Baaz’s generalization method

A universal formula (resp., existential formula) is a prenex formula in which the quanti-
fied variables are universally (resp., existentially) quantified. For example, ‘For all nonnegative
integers a and b, a + b = b + a.’ is a universal sentence (the commutative rule for the
addition).

A quantifier-free formula is a formula in which no variable is quantified. It is consequently a
particular case shared between universal formulas and existential formulas. For example, ‘641 | 232+
1.’, which does not even have variables, is a quantifier-free sentence.

Universal quantifiers can be replaced with existential quantifiers (and vice versa) by
applying the rule [∀xP(x) ⇔ ¬∃x¬P(x)]. For example, ‘For every nonnegative integer
n, n + 0 = n.’ is equivalent to ‘There does not exist a nonnegative integer n such that
n + 0 �= n.’.

An existential quantifier can be eliminated by defining new relations (in particular, new operations
(and, in particular, new constants)). For example, ‘For some nonnegative integer k, 641k = 232 + 1.’
can be transformed into ‘641 | 232 + 1.’ by defining the divisibility relation (denoted by |). This
process is known as Skolemization.

Sometimes it is also possible to eliminate universal quantifiers (resp., existential quantifiers) by
bounding the quantified variable and writing a conjunction (resp., disjunction) instead. For example,
‘For every nonnegative integer n, if n < 2, then n is not prime.’ can be transformed into ‘0 is not
prime and 1 is not prime.’.

2.2 Motivation

‘Suppose you want to teach the commutative rule for addition, then 0 + 4 = 4 + 0 is a bad
example, since it also illustrates another rule (that 0 is neutral). Also 1 + 1 = 1 + 1 is a bad
example, since it illustrates the rule a = a. But 2 + 1 = 1 + 2 is an excellent example, since
you can actually prove it: 2 + 1 = (1 + 1) + 1 = 1 + 1 + 1 = 1 + (1 + 1) = 1 + 2. It is a
much better example than 987 + 1989 = 1989 + 987.’ — Zeilberger, Opinion 65 (available at
his website).

In mathematics, examples are very important, but not all of them are equally good. Intuitively,
the more an example ref lects the potential of a theorem, the better it is. In fact, if an example
sufficiently represents the essence of a theorem, then it can be almost as instructive as the proof
itself.

Mathematical teaching through examples has many endorsements, notably Babylonian mathemat-
ics, which mainly consisted of collections of examples (see Van der Waerden (10, Chapter 3)); or the
so-called Gelfand’s principle, which asserts that every new definition/result in a mathematical text
should be accompanied by a nontrivial but minimally simple example.

Baaz’s generalization method (see Baaz (1)) is based on this idea of extracting general
information from a concrete example: given an example (i.e. an instance) E of a certain uni-
versal sentence T , it generates another universal sentence t(E), with its corresponding proof.
A subsequent comparison between T and t(E) may show how well E ‘approximates’ T (t(E)

might be a particularization, a generalization or an equivalent form of T). The ideal scope of
this algorithm are problems that are solved only for particular cases. That is to say, problems
in which T is conjectural, incomplete or simply unknown; but instances E are proved: t(E) may
be then (instanced to) a partial answer to the question. Two examples of this kind of problem
are the kissing number problem, which is only solved for certain dimensions (see Weisstein
(17)); and the rational distance problem, which is only solved for geometric configurations (see
Weisstein (19)).
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Applications of Baaz’s generalization method 3

2.3 Description

Baaz’s generalization method generalizes proofs of universal sentences. Table 1 provides a succinct
explanation of this procedure (see Baaz (1) for a fully detailed explanation), accompanied by an
application to a proof of 641 | 232 + 1 (which is due to Bennet and Kraïtchik (see Křížek et al. (7, p.
39)) (note that 232 + 1, with ten digits, is a relatively ‘big’ number and it made sense to search for a
small proof that 641 divides it; especially in times in which there were no computers). Although it is
a quantifier-free sentence, it is sufficient to explain the algorithm because in any proof of a universal
sentence the variables are fixed from the very beginning and therefore they can be treated as con-
stants. In other words, free parameters are allowed; albeit this is not the case of the example shown.

The main interest of this method is possibly the fact that it allows to perform generalizations in
a systematic way by keeping track of (a large amount of) variables that occur simultaneously rather
than sequentially, task that is typically difficult for a human.

Note that step 3 allows certain freedom: the existence of the unifications simply follows from
the existence of the proof to be generalized; however, they are not necessarily unique, and different
outputs can be obtained depending on the chosen unification. For example, the formulas uv = w and
xy = z can be unified as αβ = γ by taking (u, v, w, xy−t, xt, z) �→ (α, β, γ , α, β, γ ) or as αβ = γ

by taking (u, v, w, x, y, z) �→ (αβ−δ , αδ , γ , α, β, γ ).

2.4 Two possible extensions

A usual kind of generalization to which Baaz’s generalization method might be extended is the
generalization of relations. It can be achieved by considering relations as (quantifiable) variables (i.e.
by working with second-order logic) and then applying the procedure. For example (this example is

inspired by Ramanujan’s problem ‘Solve x =
�

1 + 2


1 + 3
�

1 + 4√
. . ..’, see Berndt et al. (2)),

‘ n(n + 2) = n
�

1 + (n + 1)(n + 3)� �� �
[0]

[0]⇒

n(n + 2) = n
�

1 + (n + 1)
√

1 + (n + 2)(n + 4)
[0]⇒

n(n + 2) = n


1 + (n + 1)
�

1 + (n + 2)
√

1 + (n + 3)(n + 5)’

could be generalized as

‘ n(n + 2) = nG((n + 1)(n + 3))� �� �
[0]

[0]⇒

n(n + 2) = nG((n + 1)G((n + 2)(n + 4)))
[0]⇒

n(n + 2) = nG((n + 1)G((n + 2)G((n + 3)(n + 5))))’;

by abstracting the unary operation (i.e. sequence) (
√

1 + n)∞n=0 into any unary operation G satisfying
the corresponding condition [0].

Another one is the generalization of conjunctions/disjunctions. For example (here the notation
‘a ≡

n
b’ was preferred over the standard one ‘a ≡ b (mod n)’ for the sake of compactness),

‘
�

2n ≡
8

0 ∨ 2n ≡
8

2 ∨ 2n ≡
8

4 ∨ 2n ≡
8

6
�

’
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4 Applications of Baaz’s generalization method

TABLE 1. Description of Baaz’s generalization method.

Baaz’s generalization method Example

Input: proof of a universal sentence (in the form of
a tree of quantifier-free formulas) (it may be then
necessary to first perform some techniques (such as
Skolemizations) on the inputed nodes to ensure that
they indeed become quantifier-free).

Input:
• 641 | 54 + 24� �� �

641

⇒ 641 | 54228 + 232 ⇒

641 | (54228 − 1) + (232 + 1). [0]

• 5 · 27 + 1� �� �
641

| 54228 − 1
[0]⇒ 641 | 232 + 1.

�
1. For every leaf (i.e. node without predecessors),
replace every constant with a variable (without repeat-
ing them) (there is no need to keep the operations, but
keep the rest of the relations).

1.
• 641 | 641 �→ a0 | b0.
• 5 · 27 + 1 | 54228 − 1 �→ c0 | d0.

2. For every implication, replace every constant with
a variable (without repeating them) (keep the opera-
tions that are necessary to justify the step and the rest
of the relations).

2.
• [641 | 54 +24 ⇒ 641 | 54228 +232] �→
[a1 | b1 + c1 ⇒ a1 | b1d1 + c1d1].
• [641 | 54228 + 232 ⇒ 641 | (54228 −
1) + (232 + 1)] �→ [a2 | b2 + c2 ⇒
a2 | (b2 − d2) + (c2 + d2)].
• [[641 | (54228 − 1) + (232 + 1) ∧
641 | 54228 − 1] ⇒ 641 | 232 + 1] �→
[[a3 | b3 + c3 ∧ a3 | b3] ⇒ a3 | c3].

3. Minimize the number of variables, by simultane-
ously unifying all pairs of formulas that are assigned
to the same node (all the relations (and, in particular,
all the operations) must be kept).

3.
• {a0 | b0, a1 | b1 + c1} �→ A | D + B.
• {a1 | b1d1 + c1d1, a2 | b2 + c2} �→
A | DC + BC.
• {a2 | (b2−d2)+(c2+d2), a3 | b3+c3} �→
A | (DC − E) + (BC + E).
• {c0 | d0, a3 | b3} �→ A | DC − E.

Output: a generalized proof (and, in particular, a
generalized theorem, whose hypotheses are the gener-
alized leaves and whose thesis is the generalized root).

Output:
• A | D + B ⇒ A | DC + BC ⇒
A | (DC − E) + (BC + E). [0]

• A | DC − E
[0]⇒ A | BC + E. �

(generalized theorem: if A | D + B and
A | DC − E, then A | BC + E).

could be generalized as

‘
�
(i + 1)n ≡

(i+1)3
(i + 1)0 ∨ . . . ∨ (i + 1)n ≡

(i+1)3
(i + 1)((i + 1)2 − 1)

�
’.
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Applications of Baaz’s generalization method 5

3 Study of the factors of Fermat numbers

3.1 Some properties of Fermat numbers

Given a nonnegative integer n, the value 22n + 1 is known as the n-th Fermat number. For example,
232 + 1, which has been mentioned in Section 2, is the fifth Fermat number.

Due to their fast growth (only the first twelve ones are fully factored so far), to calculate
factors of Fermat numbers is challenging; and analyzing their properties is consequently interesting.
Notably, the so-called Pépin’s test (see Weisstein (18)) has been used in order to demonstrate the
compositeness of 2220 + 1 (see Young & Buell (20)) and of 2224 + 1 (see Crandall et al. (3)); but no
prime factor is currently known.

Many results about factors of Fermat numbers assume them to be in the form m2n+2 + 1 because
of Theorem 1 (see Lucas (8)).

THEOREM 1
Given an integer n > 1 and a factor r of the n-th Fermat number, there exists a nonnegative integer
m such that m2n+2 + 1 = r.

For example, 5 · 25+2 + 1 is a factor of the fifth Fermat number (see Table 1).
Proposition 2 (see Weisstein (13)) states another property of Fermat numbers that is necessary

later on.

PROPOSITION 2
If n is a nonnegative integer, then

�n
k=0(2

2k + 1) equals 22n+1 − 1.

For example, (220 + 1)(221 + 1) = 15 = 221+1 − 1.
Finally, Proposition 3 reveals a connection with Ramanujan’s problem above. Let F be the

sequence (k
√

1 + (k + 1)(k + 3))∞k=0.

PROPOSITION 3
If n is a nonnegative integer, then

�n
k=0(2

2k + 1) equals Fn+1(1).

PROOF. By induction on n. Note that F(k) is equal to k(k + 2), for every nonnegative integer k.
Case 0 The number

�0
k=0(2

2k + 1) is equal to 3 or, equivalently, to 1(1 + 2).
Case n Induction hypothesis.
Case n + 1 The number Fn+2(1) is equal to F(Fn+1(1)) or, equivalently, to F(

�n
k=0(2

2k + 1)) (by

applying the induction hypothesis). This value is equal to F(22n+1 − 1) (by applying Proposition 2);
which is equal to (22n+1 − 1)(22n+1 + 1) or, in other words, to

�n+1
k=0(2

2k + 1) (by applying again
Proposition 2). �

For example, (220 + 1)(221 + 1) = 15 = 3
√

1 + (3 + 1)(3 + 3) = F(3) =
F(1

√
1 + (1 + 1)(1 + 3)) = F(F(1)) = F1+1(1).

3.2 Covers

Let the cover of a pair of integers a > 1 and b > 1 be the set of pairs of nonnegative rationals x and
y such that ax + by is (an integer) multiple of ab + 1. Note that, if x (resp., y) is positive, then its
denominator divides the maximum positive integer m such that a (resp., b) is an m-th power.

For example, (4, 4/7) belongs to the cover of 5 and 27 because 5 · 27 + 1 divides (and, in fact,
equals) 54 + 24 (see Table 1).
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6 Applications of Baaz’s generalization method

FIGURE 1. Some points of the cover of 116503103764643 and 27+2.

Pairs of integers whose cover contains the element (2, 2) already appeared in the literature. For
instance, Problem 6 at the 29th International Mathematical Olympiad (see Engel (5, p. 127)) asked
the contestants to prove that, if a and b are positive integers such that ab + 1 divides a2 + b2, then
(a2 + b2)/(ab + 1) is a perfect square.

The computational visualization of subsets of covers of some pairs of small integers led to the
following experimental result.

CONJECTURE 4
For every two integers a > 1 and b > 1, there exist bivariate linear polynomials with rational
coefficients p and q such that any element of the cover of a and b equals (p(u, v), q(u, v)), for some
integers u and v.

Geometrically, Conjecture 4 means that covers are determined by the intersection of two families

of parallel straight lines: indeed, the system of linear equations
�

x = p(u, v)
y = q(u, v)

is equivalent to�
y = αx + β + γ u
y = δx + � + φv

for certain rationals α, β, γ , δ, � and φ. See for instance Figure 1, in which

some points of the cover of 116503103764643 and 27+2 are displayed (the reason to choose this
example was the fact that 116503103764643 · 27+2 + 1 is a factor of the seventh Fermat number).

Recall now the following result about summation of geometric series, Proposition 5 (see Weisstein
(15)).

PROPOSITION 5
If r is a complex number different than 1 and n is a nonnegative integer, then

�n
k=0(r

k) = (rn+1 −
1)/(r − 1).

In regard to Conjecture 4, Proposition 6 provides some insightful information.

PROPOSITION 6
If a, b and k are positive integers such that a > 1, b > 1 and k is odd; and (x, y) is an element of the
cover of a and b, then (kx, ky) is also an element of the cover of a and b.
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Applications of Baaz’s generalization method 7

PROOF. It suffices to check that the value (akx + bky)/(ax + by) is an integer: indeed, it is
equal to b(k−1)y((−ax/by)k − 1)/(−ax/by − 1) (by applying that k is odd) or, in other words, to
b(k−1)y �k−1

i=0 ((−ax/by)i) (by applying Proposition 5); which is clearly an integer. �
For example, (4, 4/7) has been shown to be an element of the cover of 5 and 27; so (12, 12/7)

must be another of its elements. And indeed, (512 + 212)/(5 · 27 + 1) equals 380881.
Let f be the sequence (2n−1/(n + 2)�)∞n=0. The generalization obtained in Table 1 can be refined

into Theorem 7.

THEOREM 7
If m, n and r are nonnegative integers such that m > 1, r ≤ f (n) and (2r, 2n/(n + 2) − 2r) belongs
to the cover of m and 2n+2, then m2n+2 + 1 is a factor of the n-th Fermat number.

PROOF. If r equals 0, then the result is immediate. Assume therefore that r is positive and let A =
m2n+2 + 1, B = 22n−2r(n+2), C = 22r(n+2), D = m2r and E = 1. The number

�2r−1
k=0 ((−m2n+2)k)

equals (DC − E)/(−A) (by applying Proposition 5), so A divides DC − E and, in addition, A divides
D + B (by hypothesis). Hence, A divides BC + E (by the generalization obtained in Table 1); that is
to say, m2n+2 + 1 is a factor of the n-th Fermat number. �

For example, it is easier to check that 1184 · 29+2 + 1 is a factor of 11842·12 + 229−2·12(9+2)

(75 digits) than to check that it is a factor of the ninth Fermat number (155 digits).
The assumptions m > 1 and r ≤ f (n) in Theorem 7 are necessary to respect the conditions of

the definition of cover (note that if r were strictly greater than f (n), then 2n/(n + 2) − 2r would be
negative).

Baaz (1, Theorem 15) obtained Proposition 8, which is an immediate particularization of
Theorem 7, as a result of generalizing a different proof of 641 | 232 + 1 (which is due to Kraïtchik,
see Křížek et al. (7, p. 39)).

PROPOSITION 8
If m, n and r are nonnegative integers such that m > 1, r ≤ f (n) and m2n+2 + 1 equals m2r +
22n−2r(n+2), then m2n+2 + 1 is a factor of the n-th Fermat number.

For example, 5 · 27 + 1 is equal to 52·2 + 225−2·2(5+2) and a factor of the fifth Fermat number.
Note that Theorem 7 is equivalent to Theorem 9 (by taking u = f (n) − r).

THEOREM 9
If m, n and u are nonnegative integers such that m > 1, u ≤ f (n) and (−2u + (2f (n) − 1)1 + 1, 2u +
(2n/(n + 2) − 2f (n) + 1)1 − 1) belongs to the cover of m and 2n+2, then m2n+2 + 1 is a factor of
the n-th Fermat number.

Recall Theorem 10, also known as binomial theorem (see Weisstein (12)).

THEOREM 10
If x and y are complex numbers and n is a nonnegative integer, then (x+y)n equals

�n
k=0

��n
k



xn−kyk



.

Theorem 9 leads to the main result of the article, Theorem 11.

THEOREM 11
Given integers m > 1 and n > 3, m2n+2 + 1 is a factor of the n-th Fermat number if and only if
the cover of m and 2n+2 contains all the pairs of the form (−2u + (2f (n) − 1)v + 1, 2u + (2n/(n +
2) − 2f (n) + 1)v − 1), where u is an integer such that (−2n−1/(n + 2) + f (n) − 1/2)v + 1/2 ≤ u ≤
(f (n) − 1/2)v + 1/2 and v is a positive integer.
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8 Applications of Baaz’s generalization method

PROOF. Note that 2u + (2n/(n + 2) − 2f (n) + 1)v − 1 and −2u + (2f (n) − 1)v + 1 are nonnegative,
which implies that (−2n−1/(n + 2) + f (n) − 1/2)v + 1/2 ≤ u ≤ (f (n) − 1/2)v + 1/2. Their sum,
2nv/(n + 2), is also nonnegative; so v is nonnegative. If v were equal to 0, u would be equal to 1/2
(by applying the previous bounds), which is impossible because u is an integer. Thus, v is positive.
⇒) By induction on v. Let d = m2n+2 + 1.
Case 1 Note that, in this case, u ≤ f (n). If u equals f (n), then Case 1 is equivalent to the hypothesis
that d is a factor of the n-th Fermat number. Assume therefore u < f (n). Since d is a factor of the
n-th Fermat number, d is also a factor of

22n + 1 +
2(f (n)−u)−1�

k=0

		
2(f (n) − u)

k

�
d2(f (n)−u)−k(−1)k

�
;

which equals 22n + (d − 1)2(f (n)−u) (by applying Theorem 10). Hence, d divides
22n−2(f (n)−u)(n+2) + m2(f (n)−u) (by applying that d is odd); that is to say,
(−2u + (2f (n) − 1)1 + 1, 2u + (2n/(n + 2) − 2f (n) + 1)1 − 1) belongs to the cover of m and 2n+2.
Case v Induction hypothesis.
Case v + 1 The number (2n+2)2u+(2n/(n+2)−2f (n)+1)(v+1)−1 is equal to
(2n+2)2u+(2n/(n+2)−2f (n)+1)v−1(2n+2)2n/(n+2)−2f (n)+1; which is congruent to
−m−2u+(2f (n)−1)v+1(2n+2)2n/(n+2)−2f (n)+1 (mod d) (by induction hypothesis). It suffices then to
check that (2n+2)2n/(n+2)−2f (n)+1 is congruent to m2f (n)−1 (mod d) (it is an integer because n > 3).
And indeed, (2n+2)2n/(n+2)−2f (n)+1 is equal to
(2n+2)2·0+(2n/(n+2)−2f (n)+1)1−12n+2, which is congruent to −m−2·0+(2f (n)−1)1+12n+2 (mod d) (by
applying Case 1). This number equals −m2f (n)−1(m2n+2), which is congruent to m2f (n)−1 (mod d).
⇐) The particular case in which u = f (n) and v = 1 yields that (0, 2n/(n + 2)) belongs to the cover
of m and 2n+2 or, equivalently, that m2n+2 + 1 is a factor of the n-th Fermat number. �

For example, (15, 121/9) (i.e. (−2 · 6 + (2f (7) − 1)2 + 1, 2 · 6 + (27/(7 + 2) − 2f (7) + 1)2 − 1))
belongs to the cover of 116503103764643 and 27+2 (see Figure 1).

Proposition 12, originally conjectured by the author and later extended and proved by Wang (see
Sauras-Altuzarra (9, Theorem 2.3 and Lemma 2.4)), can be now obtained from Theorem 11. Recall
that the dyadic valuation of a positive integer n, denoted by ν2(n), is the maximum nonnegative
integer v such that 2v divides n (see the Encyclopedia of Mathematics (11)). For example, the dyadic
valuation of 12 is 2.

PROPOSITION 12
If j, m and n are positive integers such that m > 1, n > 3 and m2n+2 +1 is a factor of the n-th Fermat
number, then it also divides m2n−ν2(n+2)(2j−1) + 1 and 22n−ν2(n+2)(2j−1)(n+2) + 1.

PROOF. Let v = (2j−1)(n+2)/2ν2(n+2), u2 = (f (n)−1/2)v+1/2 and u1 = u2−2n−1v/(n+2) (note
that u1 and u2 satisfy the bounds from the statement of Theorem 11; in fact, they are coincident).
The value v is an odd integer, so u2 is an integer. In addition, ν2(n + 2) ≤ n − 1 (indeed, even if
n + 2 were a r-th power of 2 for some integer r > 2, then ν2(n + 2) = r ≤ 2r − 3 = n − 1), so
2n−1v/(n + 2) is an integer and consequently u1 is an integer too. The value m2n+2 + 1 is a factor
of the n-th Fermat number, so (−2u1 + (2f (n) − 1)v + 1, 2u1 + (2n/(n + 2) − 2f (n) + 1)v − 1)

and (−2u2 + (2f (n) − 1)v + 1, 2u2 + (2n/(n + 2) − 2f (n) + 1)v − 1) belong to the cover of m and
2n+2 (by applying Theorem 11) or, equivalently, (2n−ν2(n+2)(2j − 1), 0) and (0, 2n−ν2(n+2)(2j − 1))
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Applications of Baaz’s generalization method 9

belong to the cover of m and 2n+2. In other words, m2n+2 + 1 divides m2n−ν2(n+2)(2j−1) + 1 and
22n−ν2(n+2)(2j−1)(n+2) + 1. �

For example, 1071 · 26+2 + 1, which is a factor of the sixth Fermat number, is also a factor of
107126−ν2(6+2)(2·1−1) + 1 and of 226−ν2(6+2)(2·1−1)(6+2) + 1.

3.3 Other generalizations

Recall Theorem 13, also called Fermat’s little theorem (see Weisstein (14)).

THEOREM 13
If a is a positive integer and p is a prime that does not divide a, then p divides ap−1 − 1.

Theorems 14 and 15 characterize the prime factors of a Fermat number and of the product of
arbitrarily many initial Fermat numbers, respectively. They were initially obtained as sufficient
conditions, after applying Baaz’s generalization method to another proof of 641 | 232 + 1 (which
is due to Broda, see Dickson (4, Chapter XV)), and Wang later proved that they are also necessary
(see OEIS A308695 and A332416).

THEOREM 14
Given integers m > 0, n > 1 and p such that p is prime and equal to m2n+2 + 1, p divides the n-th
Fermat number if and only if (22n + 1)p does not divide 2p−1 − 1.

PROOF. ⇒) The value p divides the n-th Fermat number. That is to say, −22n
is congruent to 1 (mod

p); so (−22n
)k is congruent to 1 (mod p), for every nonnegative integer k. Hence,

�4m−1
k=0 ((−22n

)k)

is congruent to 4m (mod p); i.e. (2m2n+2 − 1)/(−22n − 1) is congruent to 4m (mod p) (by applying
Proposition 5). Thus, p does not divide (2m2n+2 − 1)/(−22n − 1) (by applying that 0 < 4m < p);
from which follows that (22n + 1)p does not divide 2m2n+2 − 1 or, in other words, that (22n + 1)p
does not divide 2p−1 − 1.
⇐) The value p is a prime factor of 2p−1 − 1 (by applying the fact that p is a prime that does not
divide 2 and Theorem 13), 22n + 1 also divides 2p−1 − 1 (because 2p−1 − 1 is equal to 2m2n+2 − 1
or, equivalently, to

�m−1
k=0 ((22n+2

)k)
�n+1

k=0(2
2k + 1) (by applying Proposition 2 and Proposition 5)),

but (22n + 1)p does not divide 2p−1 − 1; so p must divide the n-th Fermat number. �
For example, (225 + 1)(5 · 25+2 + 1) does not divide 25·25 − 1.

THEOREM 15
Given integers m > 0, n > 1, p and P such that p is prime, p equals m2n+2 + 1 and P equals�n+1

k=0(2
2k + 1), p divides P if and only if Pp does not divide 2p−1 − 1.

PROOF. ⇒) The value p divides P, which equals 22n+2 − 1 (by applying Proposition 2). That is to
say, 22n+2

is congruent to 1 (mod p); so (22n+2
)k is congruent to 1 (mod p), for every nonnegative

integer k. Hence,
�m−1

k=0 ((22n+2
)k) is congruent to m (mod p); i.e. (2m2n+2 − 1)/(22n+2 − 1) is

congruent to m (mod p) (by applying Proposition 5). Thus, p does not divide (2m2n+2 −1)/(22n+2 −1)

(by applying that 0 < m < p); from which follows that p(22n+2 − 1) does not divide 2m2n+2 − 1 or,
in other words, that Pp does not divide 2p−1 − 1 (by applying again Proposition 2).
⇐) The value p is a prime factor of 2p−1 − 1 (by applying the fact that p is a prime that does not
divide 2 and Theorem 13), P also divides 2p−1 − 1 (because 2p−1 − 1 is equal to 2m2n+2 − 1 or,
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10 Applications of Baaz’s generalization method

equivalently, to
�m−1

k=0 ((22n+2
)k)P (by applying Proposition 2 and Proposition 5)), but Pp does not

divide 2p−1 − 1; so p must divide P. �
For example, 1 ·22+2 +1 equals 222 +1 and

�1+1
k=0(2

2k +1)(1 ·22+2 +1) does not divide 222+2 −1.
See Sauras-Altuzarra (9) for other applications of Baaz’s generalization method to the study of

the factors of Fermat numbers.
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3.3 Related work
We now present some other results and problems which are related to covers,
Fermat numbers, point-lattices and computation of large prime numbers.

3.3.1 Covers
This work consists of further results on covers, distinguishing among general re-
sults, results which are related to the factorization of Fermat numbers and results
in which the analyzed points have special forms.

3.3.1.1 General results

Theorem 3.3.1.1 (i.e. Proposition 6 of Article C in Section 3.2) indicated that any
non-empty cover contains infinitely many points, but it was still unknown if every
cover is non-empty.

Theorem 3.3.1.1. Let a, b and k be any three positive integers such that a and b
exceed one and k is odd. Let (x, y) be any point of C(a, b). Then (kx, ky) is also a
point of C(a, b).

For example, if k is any odd positive integer, then the point (4k, 4k/7) belongs to
C(5, 128).

The Euler phi-function, which is denoted by φ, is the unary operation on the set
of positive integers which maps every positive integer n into the number of positive
integers that do not exceed n and are coprime with n (see Rosen [15, Section 6.3]).

For example, φ(9) and φ(25) equal 6 and 20 respectively.

Theorem 3.3.1.2 is known as Euler’s theorem (see Rosen [15, Theorem 6.14]).

Theorem 3.3.1.2. If a and m are any two integers such that m exceeds one and
is coprime with a, then aφ(m) is congruent to one modulo m.

For example, 2φ(9), which equals 64, is congruent to one modulo nine.

René Schoof applied Theorem 3.3.1.2 in order to obtain Theorem 3.3.1.3 (pers.
comm.), which shows in particular that indeed no cover is empty.

Theorem 3.3.1.3. If a and b are any two integers exceeding one, then��
1

−1

�
+ L

�� −2
2

�
,

�
φ(ab + 1)

0

���
∩ Q2

≥0 ⊆ C(a, b).



70 CHAPTER 3. NUMBER-THEORETIC LATTICES

Proof. First notice that one equals gcd(a, a + 1), i.e. gcd(n, a(b − 1) + a + 1)
or, equivalently, gcd(a, ab + 1). Now, let i and j be positive integers such that
1 − 2i + φ(ab + 1)j ≥ 0. Then a1−2i+φ(ab+1)j + b−1+2i is an integer congruent to
a−1+2i(a1−2i(aφ(ab+1))j +b−1+2i) and hence congruent to 1+(ab)−1+2i modulo ab+1
(by applying Euler’s theorem (i.e. Theorem 3.3.1.2), which is applicable because a
and ab + 1 are coprime). In other words, it is congruent to 1 + (−1)−1+2i modulo
ab + 1; which is zero.

For example, φ(18 · 29 + 1) equals 522; and indeed (521, 1) belongs to C(18, 29).

Still, some important questions about covers remain open, specially Conjecture
3.3.1.4 (i.e. Conjecture 4 of Article C in Section 3.2).

Conjecture 3.3.1.4. For every two integers a and b exceeding one, there is some
vector u⃗ of Q2 and some Q-basis (v⃗, w⃗) of Q2 such that (u⃗ + L(v⃗, w⃗)) ∩Q2

≥0 equals
C(a, b).

Given any two coprime integers a ̸= 0 and m > 1, the multiplicative order
of a modulo m, which is denoted by ordm(a), is the minimum positive integer k
such that ak is congruent to one modulo m (note that it exists because of Euler’s
theorem, i.e. Theorem 3.3.1.2) (cf. Rosen [15, Section 9.1]).

And a primitive root modulo any integer m exceeding one is any non-negative
integer r which is coprime with m and for which ordm(r) equals φ(m) (cf. Rosen
[15, Section 9.1]).

For example, 3 and 8 are primitive roots modulo 25 because they are coprime with
25 and their multiplicative order modulo 25 is φ(25) (that is, 20).

Given any three integers m > 1, n > 0 and r ≥ 0 such that m is coprime with n
and r is a primitive root modulo m, there is a unique k ∈ {1, . . . , φ(m)}, which
is known as the discrete logarithm of n to the base r modulo m, such that rk

is congruent to n modulo m (cf. Crandall & Pomerance [2, Subsection 6.4.1] and
Rosen [15, Section 9.4]).

For example, the discrete logarithms of 24 and of 8 to the base 3 modulo 25 are 9
and 10 respectively because 310 ≡ 24 (mod 25) and 39 ≡ 8 (mod 25).

By means of the previous concepts, Mabud Sarkar obtained another partial answer
to Conjecture 3.3.1.4, Theorem 3.3.1.5 (pers. comm.).

Theorem 3.3.1.5. If a and b are any two primitive roots modulo ab + 1 exceeding
one, and c and d are the discrete logarithms of ab and b to the base a modulo ab+1
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respectively, then ��
c
0

�
+ L

��
2c
0

�
,

�
d
1

���
∩ Q2

≥0 ⊆ C(a, b).

Proof. Let i and j be any two non-negative integers. Then −1 ≡ (−1)2i+1 ≡
(ab)2i+1 ≡ (ac)2i+1 (mod ab + 1), so −(ad)j ≡ ac(2i+1)+dj (mod ab + 1) or, equiva-
lently, 0 ≡ ac(2i+1)+dj + bj (mod ab + 1).

For example, if a = 3 and b = 8, then a and b are primitive roots modulo ab + 1;
and the discrete logarithms of ab and b to the base a modulo ab + 1 are 10 and 9
respectively. Theorem 3.3.1.5 ensures then that��

10
0

�
+ L

��
20
0

�
,

�
9
1

���
∩ Q2

≥0 ⊆ C(a, b).

Other pairs (a, b) satisfying the conditions of Theorem 3.3.1.5 are (2, 2), (2, 6),
(3, 3), (6, 2), (6, 10), (8, 3) and (10, 6).

Daniele Parisse observed the following connection with other area of number theory
(pers. comm.). Let Pillai(a, b, c, r, s; u, v, x, y) denote the expression (−1)urax +
(−1)vsby−c, where all the involved parameters are positive integers. When a, b, c, r
and s are given, and a and b exceed one, the equation Pillai(a, b, c, r, s; u, v, x, y) = 0
is known as the generalized Pillai equation (see Scott & Styer [16]). Proposition
3.3.1.6 is then immediate.

Proposition 3.3.1.6. Given any four positive integers a, b, x, y such that a and
b exceed one, the point (x, y) belongs to C(a, b) if and only if there is some positive
integer k such that Pillai(a, b, k(ab + 1), 1, 1; 2, 2, x, y) = 0.

3.3.1.2 The case of the factors of Fermat numbers

Proposition 3.3.1.7, whose proof is essentially due to Jinyuan Wang (pers. comm.),
determines all the solutions of the Diophantine equation from Proposition 8 of
Article C in Section 3.2. Matthias Baaz reported that apparently Georg Kreisel
had another unpublished proof of Proposition 3.3.1.7 (pers. comm.).

Proposition 3.3.1.7. Given any three non-negative integers m > 1, n and r ≤
⌊2n−1/(n + 2)⌋ such that

m2r + 22n−2r(n+2) = m2n+2 + 1, (3.1)

either r = 0, in which case n > 1 and m = 22n−n−2, or r = 2, in which case
(m, n) = (5, 5).
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Proof. Let us discuss the possible cases.

Case 1: r = 0 Then 1 + 22n = m2n+2 + 1 (by Equality 3.1), which does not hold if
n < 2 (because m > 1) and implies that m = 22n−n−2 otherwise.

Case 2: r > 0

• Case 2.1: 22n−2r(n+2) = 1 Then 2n −2r(n+2) = 0, so r = 2n−1/(n+2) (because n
is non-negative). Note that n > 2 (because r is a non-negative integer). Equality
3.1 implies that m2n/(n+2) = m2n+2, and consequently m = 2(n+2)2/(2n−n−2) (be-
cause m > 1): impossible, because (n + 2)2/(2n − n − 2) is not a positive integer
if n > 2.

• Case 2.2: 22n−2r(n+2) > 1

• • Case 2.2.1: m = 2 Then 22r + 22n−2r(n+2) = 2n+3 + 1 (by Equality 3.1), so
0 belongs to {2r, 2n − 2r(n + 2)} (because 2n+3 + 1 is odd) and consequently
2n − 2r(n + 2) = 0 (because r > 0): impossible, because 22n−2r(n+2) > 1.

• • Case 2.2.2: m > 2

• • • Case 2.2.2.1: n = 0 Then r = 0 (because r ≤ ⌊2n−1/(n + 2)⌋): impossible,
because r > 0.

• • • Case 2.2.2.2: n > 0 We have that 22n−2r(n+2)−1 = m(2n+2−m2r−1) (by Equal-
ity 3.1 and the condition r > 0), so m(2n+2 − m2r−1) > 0 (because 22n−2r(n+2) > 1)
and consequently 2n+2 > m2r−1 (because m > 1). Thus 2n+2 > 22r−1 (because
m > 2), so n + 2 > 2r − 1 or, equivalently, r < (n + 3)/2. In addition, we have
that (22n−1−r(n+2) − 1)(22n−1−r(n+2) + 1) = m(2n+2 − m2r−1) (because n > 0), so
22n−1−r(n+2) − 1 < max(m, 2n+2 − m2r−1) (because, if a, b, c, d are any four non-
negative integers such that a < b and ab = cd, then a < max(c, d)) and therefore
n ≤ 6 (see the cases below). And an easy computation reveals that, if n ≤ 6, then
no integer m > 2 satisfies Equality 3.1, with the exception of 5 when (n, r) = (5, 2).

• • • • Case 2.2.2.2.1: 22n−1−r(n+2) ≤ m We have seen that 2n+2 > m2r−1, which in
this case implies that 2n+2 > 2(2n−1−r(n+2))(2r−1) and therefore n+2 > 2n−1−r(n+2)
(because r > 0). Then (r+1)(n+2) > 2n−1 and hence ((n+3)/2+1)(n+2) > 2n−1

(because r < (n + 3)/2); which only holds if n ≤ 6.

• • • • Case 2.2.2.2.2: 22n−1−r(n+2) ≤ 2n+2 − m2r−1 Then 22n−1−r(n+2) + m2r−1 ≤
2n+2, so 22n−1−r(n+2) + 22r−1 ≤ 2n+2 (because m > 2) and it is easy to verify that
this inequality only holds if n ≤ 6.

Conjecture 3.3.1.8, which is a slight modification of Theorem 3.0.0.1, also seems
to be true.
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Conjecture 3.3.1.8. Given any two integers m > 1 and n > 2, the number
m2n+2 + 1 is a factor of the n-th Fermat number if and only if F(n) equals
C(m, 2n+2).

For example, 5 · 128 + 1 and 52347 · 128 + 1 are the prime factors of the fifth
Fermat number and apparently C(5, 128) = C(52347, 128) = F(5). The equality
C(63, 128) = C(65, 128) also seem to hold, although 63 · 128 + 1 and 65 · 128 + 1 do
not factor any Fermat number (see OEIS A307843).

3.3.1.3 Points of special forms

Theorem 3.3.1.9, whose proof is immediate, is known as Aurifeuillean factor-
ization (see Riesel [14, Appendix 6]) or Lucas formula (see Křížek et al. [11]).

Theorem 3.3.1.9. If n is any non-negative integer, then the number 24n+2 + 1
equals (22n+1 − 2n+1 + 1)(22n+1 + 2n+1 + 1).

For example, 4 + 1 equals (2 − 2 + 1)(2 + 2 + 1).

As an application of Theorem 3.3.1.9, we get Proposition 3.3.1.10.

Proposition 3.3.1.10. If n is any positive integer, then the point (0, 4n + 2)
belongs to C(4n − 2n, 2) and to C(4n + 2n, 2).

Proof. The numbers 22n+1 − 2n+1 + 1 and 22n+1 + 2n+1 + 1 factor 24n+2 + 1 (by
applying Theorem 3.3.1.9) or, in other words, the numbers (4n − 2n)2 + 1 and
(4n + 2n)2 + 1 factor 1 + 24n+2; which is equivalent to say that the point (0, 4n + 2)
belongs to C(4n − 2n, 2) and to C(4n + 2n, 2).

For example, the point (0, 6) belongs to C(2, 2) and to C(6, 2).

Note that, given any two integers b ̸= 1 and n ≥ 2, the number ((−b)n−1−1)/(b+1)
is also an integer because it is equal to −((−b)n−1 − 1)/((−b) − 1) or, equivalently,
to − �n−2

k=0((−b)k) (by applying Proposition 5 of Article C in Section 3.2).

Proposition 3.3.1.11. If b and n are any two integers such that b ≥ 2, n ≥ 3, n
is odd and (b, n) ̸= (2, 3), then

(0, n) ∈ C
�

(−b)n−1 − 1
b + 1 , b

�
.

Proof. The number �n−1
k=0((−b)k) is an integer; and it is equal to

(−b)n − 1
(−b) − 1

https://oeis.org/A307843


74 CHAPTER 3. NUMBER-THEORETIC LATTICES

(by applying Proposition 5 of Article C in Section 3.2) or, equivalently, to (1 +
bn)/(1 + b) (because n is odd). Therefore, (1 + bn)/(1 + b) is a factor of 1 + bn and
it equals

(−b)n−1 − 1
b + 1 b + 1

(again because n is odd); so the thesis holds.

For example, the point (0, 3) belongs to C(2, 3).

The condition (b, n) ̸= (2, 3) in Proposition 3.3.1.11 was imposed to avoid the case
((−b)n−1 − 1)/(b + 1) = 1.

In addition, Jinyuan Wang obtained Proposition 3.3.1.12 (pers. comm.).

Proposition 3.3.1.12. If n is any integer exceeding one, then the point (1, n)
belongs to C(n, n + 2).

Proof. By applying the binomial theorem (i.e. Theorem 10 of Article C in Section
3.2), the following equalities hold:

n1 + (n + 2)n

n(n + 2) + 1 =

n + ((n + 1) + 1)n

(n + 1)2 =

1
(n + 1)2

�
n +

n�
i=0

��
n

i

�
(n + 1)i

��
=

1
(n + 1)2

�
n + 1 + n(n + 1) +

n�
i=2

��
n

i

�
(n + 1)i

��
=

1
(n + 1)2

�
(n + 1)2 +

n�
i=2

��
n

i

�
(n + 1)i

��
=

1 +
n�

i=2

��
n

i

�
(n + 1)i−2

�
,

which is an integer.

For example, the point (1, 11) belongs to C(11, 13). But note that the point (1, n),
where n is any integer exceeding one, may belong to other covers apart from
C(n, n + 2); for example, (1, 260) belongs to C(18, 29).
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The Legendre symbol is the function from the Cartesian product of the set of
integers with the set of odd primes to the set {−1, 0, 1} which maps every pair
(a, p) into the only element of the codomain that is congruent to a(p−1)/2 modulo
p; element which is denoted by (a | p) (cf. Weisstein [25]).

For example, (22 | 7) equals one because 223 ≡ 1 (mod 7).

The following result, Theorem 3.3.1.13, was conjectured by the author and proved
by Jinyuan Wang (pers. comm.).

Theorem 3.3.1.13. If n is any odd positive integer such that 2n + 1 is prime,
then the point (n, n) belongs to C(2, n).

Proof. Let k be any non-negative integer such that 2k + 1 equals n, which exists
because n is an odd positive integer; and let p = 2n + 1.

The Legendre symbol is a completely multiplicative function on its left argument,
so ((p−1)/2 | p)(−2 | p) is equal to (1−p | p). And, by applying basic properties of
the Legendre symbol, (1−p | p) = (1 | p) = 1; from which follows that ((p−1)/2 | p)
is equal to (−2 | p).

We want to show that −2n (i.e. −2(p−1)/2) is congruent to nn (i.e. ((p−1)/2)(p−1)/2)
modulo p, which is equivalent to −(2 | p) = ((p − 1)/2 | p) or, in other words, to
−(2 | p) = (−2 | p). And this equality is equivalent to −22k+1 ≡ (−2)2k+1 (mod
p); which is clearly true.

3.3.2 Factorization of near-square numbers
Given any two integers n ≥ 0 and r, the n-th near-square number of shift r is
the number n2 − r (cf. Weisstein [26]).

For example, if n is a positive integer, then the n-th Fermat number is a near-
square number of shift −1 because it equals (22n−1)2 − (−1).

Vasile Brînzănescu observed that the equality (bc − ad)2 = 1 from Theorem 2.2
of Article B in Section 3.1 resembles the definition of special linear group (pers.
comm.). This observation led to Theorem 3.3.2.1 on the factorization of near-
square numbers of shift −1, obtained in collaboration with Gergely Harcos.

Theorem 3.3.2.1. Given any integer m and any prime p, the number p divides
m2 +1 if and only if there exist Gaussian integers u and v such that vv = p | m2 −
ℜ(uv)2 and � ℑ(u) ℜ(u)

−ℑ(v) ℜ(v)

�
∈ SL(2,Z). (3.2)
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Proof. First of all, note that Condition 3.2 is equivalent to the equality ℑ(uv) = 1
(because one is equal to ℑ(u)ℜ(v) + ℜ(u)ℑ(v) or, in other words, to ℑ((ℜ(u) +
ℑ(u)ι)(ℜ(v) + ℑ(v)ι))).

Now, for the direct implication, observe that, in Z[ι], p divides (m + ι)(m − ι); but
it divides neither m + ι nor m − ι. Hence p is not a Gaussian prime, which yields
the existence of non-invertible Gaussian integers r and s such that rs equals p.
Therefore, we have that pp = pp = rsrs = rrss; so p is equal to rr (because rr
and ss are rational integers). We also have that p2 = N(p) = N(rr) = N(r)N(r),
which implies that N(r) = N(r) = p and thus r and r are Gaussian primes. Let
v be the greatest common divisor of p and m + ι in Z[ι], which belongs to {r, r}
(because r and r are Gaussian primes and rr = p | (m + ι)(m − ι)), and let u
be the Gaussian integer such that uv = m + ι. Then vv = p | m2 − ℜ(uv)2 and
ℑ(uv) = 1, as desired.

For the converse implication, let k be ℜ(uv). Then uv equals k + ι (because
ℑ(uv) = 1), so p | uup = uuvv = uvuv = k2 + 1 (because vv = p). We have in
addition that p divides m2 − k2, so p is a divisor of (m2 − k2) + (k2 + 1) or, in
other words, of m2 + 1.

As an example for Theorem 3.3.2.1, set m = 5, p = 2, u = 5 − 4ι and v = 1 + ι.

3.3.3 Factorization of Mersenne numbers
This joint work with Jinyuan Wang explores the problem of the factorization of
Mersenne numbers, i.e. numbers of the form 2n −1, where n is any non-negative
integer (see OEIS A000225); and recall that Proposition 2 of Article C in Section
3.2 shows a very important connection between Fermat numbers and Mersenne
numbers.

It is also worth mentioning the following generalization of the Mersenne numbers
and of many other important sequences: given any two integers P and Q such
that P 2 ̸= 4Q the Lucas sequence of the first (resp., second) kind, which is
denoted by Un(P, Q) (resp., Vn(P, Q)), is the sequence x such that x(0) = 0 (resp.,
x(0) = 2), x(1) = 1 (resp., x(1) = P ) and x(n + 2) = Px(n + 1) − Qx(n) for every
non-negative integer n.

Theorem 3.3.3.1 shows that Lucas sequences have a very nice closed form (see the
Encyclopedia of Mathematics [17]).

Theorem 3.3.3.1. If n, P and Q are any three integers such that n ≥ 0 ̸=
P 2 −4Q, and α and β are the numbers (P +

√
P 2 − 4Q)/2 and (P −√

P 2 − 4Q)/2

https://oeis.org/A000225
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respectively, then Un(P, Q) and Vn(P, Q) equal (αn − βn)/(α − β) and αn + βn

respectively.

For example, if n is any non-negative integer, then Un(3, 2) is equal to the n-
th Mersenne number; and the sequence (Uk(1, −1))∞

k=0 is the famous Fibonacci
sequence (see Křížek et al. [11, Remark 10.12]).

Let D denote the function from the non-negative integers to the set of sets of
positive integers which maps every non-negative integer i into the set of positive
integers n such that n2i − 1 divides 2n − 1. We now study the sequence D, dis-
tinguishing between the observations on general terms and observations on the
second term.

3.3.3.1 General terms

Proposition 3.3.3.2 characterizes when the a term of D contains a power of the
form 22j , where j is any non-negative integer.

Proposition 3.3.3.2. Given any two non-negative integers i and j, 22j belongs to
D(i) if and only if i + j ≤ 2j.

Proof I. The statement follows from the fact that

222j − 1
(22j )2i − 1 =

22j −j−i−1�
k=0

�
2k2j+i



holds if and only if i + j ≤ 2j (by applying Proposition 5 of Article C in Section
3.2).

Proof II. The statement follows from the fact that

(22j )2i − 1 = 22i+j − 1 =
i+j−1�
k=0

(22k + 1) |
2j−1�
k=0

(22k + 1) = 222j − 1

holds if and only if i + j ≤ 2j (by applying Proposition 2 of Article C in Section
3.2).

However, D(0) and D(1) contain elements that are not of the form 22j ; for example
62 and 64 belong to D(0) ∩ D(1). The existence of elements of D(2) that are not
of the form 22j is currently unknown (see OEIS A247219).

Conjecture 3.3.3.3. If i is any non-negative integer, then D(i) contains some
element which is not of the form 22j .

https://oeis.org/A247219
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A similar situation is the following one: if a positive integer n is a power of three,
then n factors 2n + 1 (see OEIS A006521); but the converse is not always true
(171 is a counterexample).

Proposition 3.3.3.4. If i is any non-negative integer, then D(i + 1) ⊆ D(i).

Proof. Let n be any positive integer. The number (n2i − 1)(n2i + 1) is equal to
n2i+1 − 1. Therefore, if n2i+1 − 1 divides 2n − 1, then by transitivity n2i − 1 also
divides 2n − 1.

Conjecture 3.3.3.5. If i is any non-negative integer, then D(i + 1) ̸= D(i).

Unfortunately, currently it is not even known if D(3) differs from D(4).

Proposition 3.3.3.6. If j, u and v are any three non-negative integers such that
u ≤ 2j − j < v, then D(v) ̸= D(u).

Proof. u ≤ 2j − j < v implies that 22j ∈ D(u)\D(v) (by applying Proposition
3.3.3.2), so D(v) ̸= D(u).

Now we need a property of the multiplicative orders, Lemma 3.3.3.7.

Lemma 3.3.3.7. If a, n and r are any three integers such that r is positive and
n exceeds one, is coprime with a and divides ar − 1, then ordn(a) divides r.

Proof. Suppose the contrary. Then there are two positive integers b and c such
that b ordn(a) + c = r and c < ordn(a) (because, by definition, ordn(a) < r).
Consequently,

1 ≡ ar = ab ordn(a)+c = (aordn(a))bac ≡ 1bac = ac (mod n)

(because n divides ar −1); which contradicts the fact that ordn(a) is the minimum
positive integer k such that n divides ak − 1.

For example, 25 is coprime with 3 and divides 320 − 1; and ord25(3) equals 20.

Given any integer m > 1, a modular multiplicative inverse of any integer a
modulo m is any integer x such that ax is congruent to one modulo m; and it
exists if and only if a and m are coprime (cf. Rosen [15, Section 4.2]).

For example, 9 is a modular multiplicative inverse of 7 modulo 31 because 7 ·9 ≡ 1
(mod 31).

Theorem 3.3.3.8. Given any odd integer n > 1, gcd(n, ordn(2)) = 1 if and only
there exist integers i ≥ 0 and j > 0 such that n | gcd(2j − 1, j2i − 1).

https://oeis.org/A006521
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Proof. For the direct implication, let w be a modular multiplicative inverse of
ordn(2) modulo n (which exists because gcd(n, ordn(2)) = 1), let i be any non-
negative integer and let j be the number ordn(2)w. Then 2j is equal to (2ordn(2))w

and hence congruent to one modulo n. And j2i is also congruent to one modulo
n (because j equals ordn(2)w and w is a modular multiplicative inverse of ordn(2)
modulo n), from which follows that n divides gcd(2j − 1, j2i − 1).

Now, let us prove the contrapositive equivalent of the converse implication; that
is, if gcd(n, ordn(2)) > 1, then, for every two integers i ≥ 0 and j > 0, the number
n does not divide gcd(2j − 1, j2i − 1).

Indeed, let i and j be any two non-negative integers such that j is positive; and
suppose that n divides gcd(2j −1, j2i −1). Then n divides 2j −1, so ordn(2) divides
j (by also considering that j is positive and n is an odd integer which exceeds one;
and then applying Lemma 3.3.3.7) and thus gcd(n, ordn(2)) divides j.

We have that gcd(j, j−1) = 1 (because every integer is coprime with its successor),
so

gcd

	j,
j2i−1�
h=1

(j) − 1

 = 1

or, equivalently, gcd(j, j2i −1) = 1. Thus gcd(gcd(n, ordn(2)), j2i −1) = 1 (because
gcd(n, ordn(2)) divides j).

We also have that n divides gcd(n, j2i − 1) (because n divides gcd(2j − 1, j2i − 1)),
so gcd(n, ordn(2)) divides gcd(n, j2i − 1) and therefore gcd(n, ordn(2)) divides
gcd(gcd(n, ordn(2)), j2i − 1). Consequently, gcd(gcd(n, ordn(2)), j2i − 1) > 1 (be-
cause gcd(n, ordn(2)) > 1); which is impossible because gcd(gcd(n, ordn(2)), j2i −
1) = 1.

For example, 5 is coprime with ord5(2) (which equals 4) and divides gcd(24 −
1, 421 − 1) (which equals 15).

3.3.3.2 The second term

Recall, from Section 2 of Article B in Section 3.1, the notion of dyadic valuation
and its notation ν2; and let G denote the sequence (gcd(2n − 1, n22 − 1))∞

n=0.

We need to make use of Lemma 3.3.3.9 (see Graham et al. [5, Exercise 38 from
Chapter 4]).

Lemma 3.3.3.9. If a, b, m and n are any four integers such that a is coprime with
b, a exceeds b and 0 ≤ m < n, then gcd(am −bm, an −bn) equals agcd(m,n) −bgcd(m,n).
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For example, 20 is coprime with 11 and gcd(203 − 113, 204 − 114) equals 20 − 11.

Proposition 3.3.3.10. Given any integer n > 2, the number G(2n) is equal to
22ν2(n)+2 − 1.

Proof. It is easy to check that (G(2k))5
k=3 is equal to (15, 65535, 15) or, equivalently,

to (22ν2(k)+2 − 1)5
k=3.

Now suppose that n exceeds five; and note that gcd(24n, 24n − 1) = 1 (because
every integer is coprime with its successor).

We have that G(2n) =

gcd(22n − 1, 24n − 1) =

gcd(22n − 24n, 24n − 1) =

gcd(24n(22n−4n − 1), 24n − 1) = (because n > 3)

gcd(22n−4n − 1, 24n − 1) = (because gcd(24n, 24n − 1) = 1)

2gcd(2n−4n,4n) − 1 = (by applying that n > 5 and Lemma 3.3.3.9)

2gcd(2n,4n) − 1 =

2gcd(2n,2ν2(n)+2i) − 1 = (by denoting by i the odd part of n)

22min(n,ν2(n)+2) − 1 =

22ν2(n)+2 − 1 (see the proof of Proposition 12 of Article C in Section 3.2).

For example, G(26) = 255 = 221+2 − 1 = 22ν2(6)+2 − 1.

Proposition 3.3.3.11. Any positive integer n such that G(2n) equals one is a
multiple of three.

Proof. Suppose that n is equal to 3k+1 or to 3k+2, for some non-negative integer
k. Then 16n4 is equal to (6k +2)4 or to (6k +4)4, which in both cases is congruent
to one modulo three. And 22n is equal to 43k+1 or to 43k+2, which is in both cases
also congruent to one modulo three. Therefore three divides gcd(22n −1, 16n4 −1),
which contradicts the fact that G(2n) equals one.

The first 15 positive integers n such that G(2n) equals one are 27, 57, 93, 117,
147, 159, 177, 195, 201, 237, 267, 279, 327, 357 and 387.

Theorem 3.3.3.12 is known as Dirichlet’s theorem on arithmetic progres-
sions (see Hardy & Wright [8, Theorem 15]).
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Theorem 3.3.3.12. Given any two coprime integers a > 0 and b, the arithmetic
progression (an + b)∞

n=0 has infinitely many prime terms.

For example, the arithmetic progression (20n + 1)∞
n=0 has infinitely many prime

terms; such as 20 · 2 + 1, 20 · 3 + 1 and 20 · 5 + 1.

Proposition 3.3.3.13. There are infinitely many primes p for which G(2p − 1)
exceeds one.

Proof. Let n and p be any two positive integers such that 21n+8 is a prime number
equal to p (they exist because of Dirichlet’s theorem of arithmetic progressions,
i.e. Theorem 3.3.3.12). Then G(2p−1) is equal to gcd(242n+15 −1, (42n+15)4 −1),
so seven divides G(2p−1) (because (23)14n+5 and (42n+15)4 are congruent to one
modulo seven) and therefore G(2p − 1) exceeds one.

The first 15 primes p such that G(2p − 1) exceeds one are 29, 71, 113, 197, 239,
281, 293, 373, 449, 491, 617, 659, 683, 701 and 743.

Conjecture 3.3.3.14. There are infinitely many primes p such that G(12p−7) >
G(12p − 6) = 1.

The first 15 primes p such that G(12p − 7) > G(12p − 6) = 1 are 821, 1217, 1721,
2797, 3271, 4591, 6311, 6521, 6991, 7451, 8231, 9049, 9161, 9511 and 9781.

3.3.4 Products of consecutive generalized Fermat numbers
A generalized Fermat number is a number of the form b2n + 1, where b is
any integer exceeding one and n is any non-negative integer (cf. Křížek et al.
[11, Remark 8.4]). Notice that we have already seen a result on the factorization
of generalized Fermat numbers, namely Theorem 2.3 of Article B in Section 3.1;
which can be re-stated as Theorem 3.3.4.1.

Theorem 3.3.4.1. Given any three integers f > 1, j > 0 and n > 2 such that
f is a factor of the n-th Fermat number, the number f is also a factor of the
generalized Fermat number

�
f − 1
2n+2

�2n−ν2(n+2)(2j−1)

+ 1.

For example, 5 · 27 + 1 divides the fifth Fermat number and (5r)25 + 1, for every
odd positive integer r.
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Proposition 3 of Article C in Section 3.2 can be generalized into the following
iterative expression of the products of the first consecutive generalized Fermat
numbers, Theorem 3.3.4.2.

Theorem 3.3.4.2. If b is an integer exceeding one, n is a non-negative integer
and s is the sequence ((k + 2)k)∞

k=0, then

2n+1−1�
k=0

�
bk


=

n�
k=0

�
b2k + 1


= sn+1(b − 1)

b − 1 = b2n+1 − 1
b − 1 .

Proof. The equality �2n+1−1
k=0 (bk) = (b2n+1 − 1)/(b − 1) is a direct application of

Proposition 2 of Article C in Section 3.2.

The equality �n
k=0(b2k + 1) = (b2n+1 − 1)/(b − 1) holds because b2n+1 − 1 = (b2n +

1)(b2n − 1) = (b2n + 1)(b2n−1 + 1)(b2n−1 − 1) = . . . = (b2n + 1)(b2n−1 + 1) . . . (b2n−n +
1)(b2n−n − 1).

The equality (sn+1(b−1))/(b−1) = (b2n+1 −1)/(b−1) can be obtained by induction,
by first noticing that s0+1(b−1) = (b+1)(b−1) = b20+1 −1 and secondly connecting
the equalities sn+2(b−1) = s(sn+1(b−1)) and s(b2n+1 −1) = (b2n+1 +1)(b2n+1 −1) =
b2n+2 − 1 by means of the induction hypothesis.

For example,

3�
k=0

�
17k


=

1�
k=0

�
172k + 1


= s2(16)

16 = 1722 − 1
16 = 5220.

3.3.5 Hervás-Contreras chains
A lesser twin prime is a prime p such that p + 2 is also a prime. The cardinality
of the set of lesser twin primes is currently unknown (see Weisstein [29]).

Computing factors of Fermat numbers can be regarded as a particular case of the
more general problem of computing large primes. Hervás-Contreras observed the
very interesting sub-sequence 11, 311, 18311, 1518311 and 421518311 of lesser twin
primes (see OEIS A350246), which incidentally produces a relatively easy way of
obtaining titanic primes (i.e. primes of at least 1000 digits, see Weisstein [28]);
as it will be exemplified in Subsubsection 3.3.5.5.

3.3.5.1 Technical results

The digit sum of a positive integer is the sum of its digits, and it is denoted by
ds (see Weisstein [22]).

https://oeis.org/A350246
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For example, ds(18311) equals 14.

Lemma 3.3.5.1. A positive integer is divisible by three if and only if its digit sum
is congruent to zero, three or six modulo nine.

Proof. It is well-known that any positive integer n is divisible by three if and only
if ds(n) is so. And this is case if and only if ds(n) is congruent to some element of
{0, 3, 6} modulo nine.

Lemma 3.3.5.2. If n is any positive integer, then ds(n+2) is congruent to ds(n)+
2 modulo nine.

Proof. It is well-known that any positive integer is congruent to its digit sum
modulo nine, so n + 2 ≡ ds(n + 2) (mod 9) and, by again applying this fact,
ds(n) + 2 ≡ ds(n + 2) (mod 9).

The concatenation of two positive integers a and b is denoted by a||b (see Weisstein
[20]).

For example, 3||11 equals 311.

Lemma 3.3.5.3. If p is any lesser twin prime exceeding five and n is any positive
integer such that n||p is also a lesser twin prime, then n is a multiple of three.

Proof I. Suppose that n is not a multiple of three. Then ds(n) is congruent modulo
nine to some element i of {1, 2, 4, 5, 7, 8} (by applying Lemma 3.3.5.1). And the
numbers p and n||p are primes which exceed three, so ds(p) and ds(n||p) are
congruent modulo nine to some elements j and k of {1, 2, 4, 5, 7, 8}, respectively
(by again applying Lemma 3.3.5.1).

Let A and B be the sets {(2, 2, 4), (2, 5, 7), (2, 8, 1), (5, 2, 7), (5, 5, 1), (5, 8, 4),
(8, 2, 1), (8, 5, 4), (8, 8, 7)} and {(1, 1, 2), (1, 4, 5), (1, 7, 8), (4, 1, 5), (4, 4, 8), (4, 7, 2),
(7, 1, 8), (7, 4, 2), (7, 7, 5)}, respectively. The number ds(n||p) equals ds(n)+ds(p),
so k ≡ i + j (mod 9) and therefore (i, j, k) belongs to the union of A and B.

Case 1: (i, j, k) belongs to A Then ds((n||p) + 2) is congruent modulo nine to
ds(n||p) + 2 (by applying Lemma 3.3.5.2) or, in other words, to k + 2; which
in this case is congruent to zero, to three or to six modulo nine. Hence (n||p) + 2
is divisible by three (by applying Lemma 3.3.5.1), which contradicts the fact that
(n||p) + 2 is a prime exceeding three.

Case 2: (i, j, k) belongs to B Then ds(p+2) is congruent modulo nine to ds(p)+2
(by applying Lemma 3.3.5.2) or, in other words, to j + 2; which in this case is
congruent to zero, to three or to six modulo nine. Hence p + 2 is divisible by three
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(by applying Lemma 3.3.5.1), which contradicts the fact that p + 2 is a prime
exceeding three.

The following alternative proof is essentially due to José-Antonio Hervás-Contreras
(pers. comm.).

Proof II. Let l be the number of digits of p.

The number n||p is prime and equal to 10ln + p.

Therefore, 10ln + p ≡ 1 (mod 3) or 10ln + p ≡ 2 (mod 3); from which follows that
10ln + p + 2 ≡ 0 (mod 3) or 10ln + p + 2 ≡ 1 (mod 3).

But 10ln + p is a lesser twin prime, so 10ln + p + 2 is prime and thus the only
possibility is 10ln + p + 2 ≡ 1 (mod 3); which implies that 2 · 10ln + 2p + 4 ≡ 2
(mod 6).

The condition that p exceeds five yields that p ≡ 5 (mod 6) (see the comment
from the 11th of May of 2013 at OEIS A001359), so 2 · 10ln ≡ 0 (mod 6).

Hence, 10ln ≡ 0 (mod 3); and consequently n ≡ 0 (mod 3).

Lemma 3.3.5.3 proves Conjecture III from the 21th of December of 2021 at OEIS
A001359.

Note that there are positive integers n and p such that three divides n and n||p is
a lesser twin prime but p is not, consider for example the case in which n = 3 and
p = 47.

3.3.5.2 General observations

Given any positive integer n, a tuple (t1, . . . , tn) of positive integers is said to be
a Hervás-Contreras chain for a lesser twin prime p exceeding five if and only if
tk|| . . . ||t1||p is also a lesser twin prime, for every k ∈ {1, . . . , n}.

For example, (3, 18, 15, 42) is a Hervás-Contreras chain for 11.

Proposition 3.3.5.4 is a direct consequence of Lemma 3.3.5.3.

Proposition 3.3.5.4. Every term of a Hervás-Contreras chain is a multiple of
three.

Note that, given any lesser twin prime p exceeding five, there are infinitely many
positive integers n such that n||p (i.e. n10l +p, where l is the number of digits of p)
is prime (by applying Dirichlet’s theorem on arithmetic progressions, i.e. Theorem
3.3.3.12). Conjecture 3.3.5.5 is a strengthening of this fact.

https://oeis.org/A001359
https://oeis.org/A001359
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Conjecture 3.3.5.5. Given any lesser twin prime p exceeding five, there are in-
finitely many positive integers n such that n||p is also a lesser twin prime.

In particular, Conjecture 3.3.5.5 claims that Hervás-Contreras chains can always
be prolonged.

The weakening of Conjecture 3.3.5.5 which claims the existence of at least one n
(instead of infinitely many) is Conjecture I from the 21th of December of 2021 at
OEIS A001359.

Conjecture 3.3.5.6 claims however that arbitrarily prolonging Hervás-Contreras
chains without increasing the number of digits of some of the new terms is impos-
sible.

Conjecture 3.3.5.6. Given any lesser twin prime p exceeding five and any positive
integer r, there is some positive integer m such that any Hervás-Contreras chain
for p whose length is at least m has some term of more than r digits.

For example, any Hervás-Contreras chain for 11 of length two, such as (3, 18), has
some term of more than one digit.

Conjecture 3.3.5.7. If k is any positive integer, then there are infinitely many
lesser twin primes p such that (3k)||p is also a lesser twin prime.

In particular, Conjecture 3.3.5.7 asserts that every multiple of three appears in
infinitely many Hervás-Contreras chains.

The weakening of Conjecture 3.3.5.7 which claims the existence of at least one p
(instead of infinitely many) is Conjecture II from the 21th of December of 2021 at
OEIS A001359.

The level of a lesser twin prime p exceeding five is the length of the longest Hervás-
Contreras chain that reaches p and zero if there is none (or, more formally, if, for
every positive integer n and every lesser twin prime q exceeding five, p is not equal
to n||q).

For example, the level of 17 is 0 because no Hervás-Contreras chain reaches it and
the level of 61888833612624911111117 is 8 because the longest Hervás-Contreras
chain that reaches it is (111, 111, 249, 6, 12, 336, 888, 618).

Figure 3.1 displays some lesser twin primes of different levels.

Observe that, if Conjecture 3.3.5.5 holds, then there are infinitely many lesser twin
primes of each level.

The first 50 lesser twin primes p exceeding five of level 0 are 11, 17, 29, 41, 59, 71,
101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 347, 419, 431, 461, 521, 569,

https://oeis.org/A001359
https://oeis.org/A001359
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41

641 2141

15641

Figure 3.1: Some lesser twin primes of different levels.

599, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1277, 1289, 1301,
1319, 1427, 1451, 1481, 1487, 1607, 1619, 1667, 1697, 1721, 1787 and 1871.

3.3.5.3 Hervás-Contreras forests

A forest is a graph whose connected components are trees (cf. Diestel [3, Section
1.5]).

Hervás-Contreras [9] paid special attention to Hervás-Contreras chains whose terms
have the same number of digits, which led to the following concept.

Given any lesser twin prime p exceeding five and any positive integer r, let the
Hervás-Contreras forest of p and r be the forest FH(p, r) which is obtained
by merging all the Hervás-Contreras chains for p in which every term has exactly
r digits; as exemplified in Figure 3.2 and Figure 3.3 (for simplicity, instead of
writing the full numbers (e.g. 42 17 and 90 42 17), we write only the terms of the
Hervás-Contreras chains (e.g. 422

1 and 902
2); where the subscript indicates the term

and the superscript indicates the tree).

Conjecture 3.3.5.6 yields that, if the number of digits is fixed, then the Hervás-
Contreras forests cannot be arbitrarily large.

For example, the longest branches of FH(17, 2) are of length 6.

Another interesting question is Problem 3.3.5.8 on which kinds of shapes the trees
from the Hervás-Contreras forests can take.

Problem 3.3.5.8. What class of trees do the connected components of the Hervás-
Contreras forests form?
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391
1
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2

811
3

601
2

211
3 391

3

422
1
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2
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3
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4

332
3

902
2 962

2

722
3

272
4

602
5

542
6

722
5 812

5

Figure 3.2: The forest FH(17, 2) (part 1 of 2).

3.3.5.4 Some similar problems

Given any positive integer n, a tuple of primes (p1, . . . , pn) is said to be a Cun-
ningham chain if and only if pk+1 equals 2pk +1, for every positive integer k < n
(cf. Weisstein [21]).

For example, (2, 5, 11, 23, 47) is a Cunningham chain.

Conjecture 3.3.5.6 resembles Theorem 3.3.5.9 (see Löh [12, Section 1]).

Theorem 3.3.5.9. If p is any prime and f is the sequence (2n+1)∞
n=0, then there

is some positive integer m such that fm(p) is composite.

For example, if f is the sequence (2n + 1)∞
n=0, then f 5(2) (i.e. 95) is composite.

Given any positive integer n, let the forest of prime decimal descendants of
n be the biggest forest FP (n) which can be obtained by appending digits to the
right, starting from n and under the condition that every new number is prime;
as exemplified in Figure 3.4.
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4
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5
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2

333
3
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1
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2
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3
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2
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3

394
4
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2
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3

334
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5 904

5

274
6 394

6

Figure 3.3: The forest FH(17, 2) (part 2 of 2).

Another statement which resembles Conjecture 3.3.5.6 is Conjecture 3.3.5.10 on
the existence of a global upper-bound to the size of the forests of prime decimal
descendants.

Conjecture 3.3.5.10. there is some positive integer m such that, for every pos-
itive integer n, the length of any branch of any tree of FP (n) is upper-bounded by
m.

Lu conjectured that, if n is any positive integer, then the number of vertices of
FP (n) is upper-bounded by 83 (see OEIS A346979); which would imply Conjecture
3.3.5.10. Ratushnyak conjectured in addition that, if p is any prime, then the
number of vertices of FP (p) is upper-bounded by 40 (see OEIS A214342).

Problem 3.3.5.11 poses the question of which kinds of shapes the trees from the
forests of prime decimal descendants can take, in correspondence with Problem
3.3.5.8.

Problem 3.3.5.11. What class of trees do the connected components of the forests

https://oeis.org/A346979
https://oeis.org/A214342
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53 59

593

5939

59393

593933

5939333

59393339

59399

593993

599

Figure 3.4: The forest FP (5).

of prime decimal descendants form?

For example, Figure 3.4 shows that the singleton graph (i.e. the graph which has
a single vertex, see Weisstein [27]) belongs to the class of trees that the connected
components of the forests of prime decimal descendants form.

3.3.5.5 Computation of titanic primes

The generation of Hervás-Contreras forests is, apparently, not very hard from a
computational point of view; which provides in particular a reasonable method for
calculating titanic primes.

For example, the prime 2958270 1216143 1761123 3938925 4492917 1364220 2349657
4647687 1647525 1804998 3513576 1932348 2100459 1041771 2593878 3385542 2413764
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4538508 5962971 1999497 1788375 1008042 3126972 2075523 3830547 4507380 1377654
2974935 2301855 3231174 3474906 6242973 3440235 2262138 1992303 2554431 1687920
1388025 1966770 1929618 1708806 1814376 1035954 2253180 1021818 2365269 2972505
3314070 2735712 1467468 2006169 3319458 1888350 1084587 3168327 2288223 2128833
3097125 1197645 1190931 3477006 1104564 1062366 1764999 2349660 1720455 1536618
1385961 1115646 1259502 2147508 3326766 1178982 2705901 1080714 1250160 1131351
1160409 1201917 1631001 1206663 1755225 1044393 1195347 1515930 1726017 2722275
1075104 1040481 1473210 2168298 1897107 1970853 1293804 2186904 1412232 1059834
1520847 1679784 1100325 1863591 1170660 1121262 1153293 1618737 1097898 1197219
1262100 2233488 1896357 1290885 1285395 1107192 1613235 1242639 1132545 1640016
1403988 1347363 1066677 1054788 1272795 1167558 1496904 1271424 1425228 1488843
1042692 1241601 1062768 1028637 1017636 1015497 1084104 1175787 1054602 1163256
1098006 1123422 1103280 1071165 1092666 1017600 1069140 1030389 1102191 1038156
1304601 1059432 1063242 1020987 1111164 1001496 1043073 1082610 1032780 1009092
1225644 1002834 1154049 1077201 1028250 1034412 1006500 1022352 1001265 1049562
1015926 1026258 1078080 1031073 1000284 1008459 1008648 1001043 1033776 1003884
1004328 1009908 1001601 1002849 1005267 1002606 1002453 1000041 1000026 1000524
1000053 17, of 1318 digits, was obtained after computing a branch of FH(17, 7);
concluding in particular the calculation started in Hervás-Contreras [9].

But even more generally, it seems easy to find titanic primes simply because many
integers of three produce a prime when concatenated to some lesser twin prime.

For example, we can choose a lesser twin prime p and a positive integer n and then
randomly trying small positive integers k until the value 10150n +(3k +2)10100n +p
happens to be prime: this procedure quickly found that 10150·100 + (3 · 74192 +
2)10100·100 + 11, of 15001 digits, is prime.

Given any lesser twin prime p exceeding five and any positive integer r, let A(p, r)
denote the set of positive integers n of exactly r digits and such that n||p is also
a lesser twin prime. In order to study the aforementioned phenomena, one of the
concrete questions that can be considered is Problem 3.3.5.12.

Problem 3.3.5.12. Given any lesser twin prime p exceeding five, evaluate

lim
r

� |A(p, r)|
|A(p, r + 1)|

�
.

For example, |A(11, 6)|/|A(11, 7)| equals 12651/99646; a rational number which is
approximately equal to 0.12695 and whose period has exactly 49822 digits .
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