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ℎ𝑝-ROBUST MULTIGRID SOLVER ON LOCALLY REFINED MESHES FOR
FEM DISCRETIZATIONS OF SYMMETRIC ELLIPTIC PDES

Michael Innerberger , Ani Miraçi ,
Dirk Praetorius and Julian Streitberger*

Abstract. In this work, we formulate and analyze a geometric multigrid method for the iterative
solution of the discrete systems arising from the finite element discretization of symmetric second-order
linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly
with respect to the polynomial degree 𝑝 ≥ 1 and the (local) mesh size ℎ. We further prove that the
built-in algebraic error estimator which comes with the solver is ℎ𝑝-robustly equivalent to the algebraic
error. The application of the solver within the framework of adaptive finite element methods with
quasi-optimal computational cost is outlined. Numerical experiments confirm the theoretical findings.
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1. Introduction

Numerical schemes for PDEs aim at approximating the solution 𝑢⋆ of the weak formulation with an error below a
certain tolerance at minimal computational cost. Since the accuracy is spoiled by singularities, e.g., in given data or
domain geometry, adaptive finite element methods (AFEMs) employ the loop to obtain a sequence of meshes𝒯𝐿 that
resolve such singularities. For a large class of problems, it is known that AFEM is rate-optimal, i.e., one can construct
an estimator 𝜂𝐿(𝑢⋆

𝐿) from the exact Galerkin solution 𝑢⋆
𝐿 for the discretization error |||𝑢⋆− 𝑢⋆

𝐿||| that decreases with
the largest possible rate with respect to the number elements in 𝒯𝐿; see, e.g., the seminal works [5, 13, 17, 26, 33] or
the abstract overview [12] for ℎ-adaptive FEM with fixed polynomial degree 𝑝.

In practice, the SOLVE module may become computationally expensive (in contrast to all other modules)
when employing a direct solver; see, e.g., [18,22,29] for a discussion of implementational aspects. Thus, usually,
an iterative solver is employed to compute an approximation 𝑢𝐿 of 𝑢⋆

𝐿 on each level, and the exact Galerkin
solution 𝑢⋆

𝐿 is not available. The question of whether the approximations 𝑢𝐿 converge with optimal rate with
respect to the overall computational cost was already treated in the seminal work [33] under some realistic
assumptions about an abstract iterative solver. The recent work [18] employs nested iterations and an adaptive
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stopping criterion to steer a uniformly contractive iterative solver, linking the SOLVE and ESTIMATE module in
the above scheme by an inner loop. Then, it is shown that even the full sequence of iterates converges with
optimal rates with respect to the overall computational cost. For this reason, the design of algebraic solvers that
are uniformly contractive and robust with respect to the discretization parameters is of utmost importance.

The hierarchical structure of AFEM and the very nature of the arising linear systems suggest to use a
multilevel solver; see, e.g., [4, 6–8, 19, 27, 30, 38]. Different adaptive methods integrating a multilevel solver are
possible; see, e.g., [3] for generating local meshes, and [31] for a fully adaptive multigrid method that steers the
local refinement process. In the context of AFEM, the adaptively constructed hierarchy of locally refined meshes
calls for suitable local solvers. We refer to [14] for a multilevel preconditioner on a mesh hierarchy consisting of
one bisection in each step and [21,37] for multiplicative multigrid methods, all of which are robust with respect
to the mesh size ℎ. Though these works allow for higher-order FEM, an analytic and numerical study on the
behavior with increasing polynomial degree was not presented. This aspect is treated, e.g., in [1,9,28,32], which
design iterative solvers that are robust with respect to the polynomial degree 𝑝 on various types of polyhedral
meshes. The recent own work [25] proposes a 𝑝-robust geometric multigrid which comes with a built-in algebraic
error estimator 𝜁𝐿(𝑢𝐿), which is suited perfectly for a posterori steering (i.e., adaptive termination of the
algebraic solver). However, the employed patchwise smoothing associated to every vertex and every level causes
a linear dependence on the number of adaptive mesh levels 𝐿.

In the present work, we modify the solver from [25] and overcome this dependence for locally refined meshes:
we only apply local lowest-order smoothing on patches which change in the refinement step on intermediate
levels, whereas a patchwise (and hence parallelizable) higher-order smoothing on all patches of the finest level is
applied. This solver only needs one post-smoothing step, requires no symmetrization of the procedure (see also
[15]), and, in particular, has no tunable parameters since it utilizes optimal step-sizes on the error-correction
stage. As the main result of the present work, we show that the proposed solver uniformly contracts the
algebraic error |||𝑢⋆

𝐿−𝑢𝐿|||. Moreover, it comes with a built-in estimator 𝜁𝐿(𝑢𝐿), which is shown to be equivalent
to |||𝑢⋆

𝐿 − 𝑢𝐿|||. Throughout, all involved estimates are robust in the discretization parameters ℎ and 𝑝.
As one potential application, we formulate an AFEM algorithm in the spirit of [18] that naturally embeds the

multigrid solver and leverages the solver’s built-in algebraic error estimator 𝜁𝐿(𝑢𝐿) to stop the solver as soon
as the discretization and algebraic error are comparable. Adapting the arguments of [18], we prove that, for
fixed polynomial degree 𝑝, the AFEM algorithm guarantees optimal convergence rates with respect to overall
computational cost.

Using the open-source object-oriented 2D Matlab code MooAFEM [22], we present a detailed numerical
study of both the algebraic solver and the adaptive algorithm, including higher-order experiments and jumping
coefficients.

The outline of this paper reads as follows: Section 2 first poses the model problem and introduces some nota-
tion. Then, we state the proposed multigrid solver (Algorithm 2.1) and formulate our main results on ℎ𝑝-robust
contraction (Thm. 2.5) and algebraic error control (Cor. 2.6). As a potential application, Section 3 formulates
an AFEM algorithm (Algorithm 3.1) which employs nested iteration and an adaptive stopping criterion for
the iterative solver using the built-in a posteriori estimator for the algebraic error. Theorem 3.2 proves opti-
mal computational complexity of the proposed AFEM algorithm. After we confirm the theoretical results by
numerical examples in Section 4, we present proofs of the main results in Section 5. For better readability, we
precede these proofs with three subsections presenting their core arguments: geometric properties of the meshes
𝒯𝐿, an ℎ𝑝-robust stable decomposition combining a local lowest-order multilevel stable decomposition from [37]
with a one-level 𝑝-robust decomposition from [32], and a strengthened Cauchy–Schwarz inequality in the spirit
of [14,21].

2. hp-robust multigrid solver

In this section, we formulate the model problem, the proposed geometric multigrid method, and the main
results, while the proofs are postponed to Section 5.
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2.1. Model problem

For 𝑑∈{1, 2, 3}, let Ω⊂R𝑑 be a bounded Lipschitz domain with polygonal boundary 𝜕Ω. Given 𝑓 ∈ 𝐿2(Ω)
and 𝑓 ∈ [𝐿2(Ω)]𝑑, we consider the second-order linear elliptic diffusion problem

−div(𝐾∇𝑢⋆) = 𝑓 − div𝑓 in Ω,

𝑢⋆ = 0 on 𝜕Ω, (1)

where 𝐾 ∈ [𝐿∞(Ω)]𝑑×𝑑
sym is the symmetric and uniformly positive definite diffusion coefficient. More precisely,

given a conforming simplicial triangulation 𝒯ℎ of Ω into compact simplices, we have 𝐾|𝑇 ∈ [𝑊 1,∞(𝑇 )]𝑑×𝑑 for
all 𝑇 ∈ 𝒯ℎ. For 𝑥 ∈ Ω we denote the maximal and minimal eigenvalue of 𝐾(𝑥) ∈ R𝑑×𝑑

sym by 𝜆max(𝐾(𝑥)) and
𝜆min(𝐾(𝑥)), respectively, and define Λmax := ess sup𝑥∈Ω 𝜆max(𝐾(𝑥)) as well as Λmin := ess inf𝑥∈Ω 𝜆min(𝐾(𝑥)).
With ⟨· , ·⟩𝜔 denoting the usual 𝐿2(𝜔)-scalar product for a measurable subset 𝜔 ⊆ Ω, the weak formulation
of (1) seeks 𝑢⋆ ∈ V := 𝐻1

0 (Ω) solving

⟨⟨𝑢⋆, 𝑣⟩⟩Ω := ⟨𝐾∇𝑢⋆, ∇𝑣⟩Ω = ⟨𝑓, 𝑣⟩Ω + ⟨𝑓 , ∇𝑣⟩Ω =: 𝐹 (𝑣) for all 𝑣 ∈ V. (2)

We note that ⟨⟨·, ·⟩⟩Ω is a scalar product and the induced semi-norm |||𝑢|||2Ω := ⟨⟨𝑢, 𝑢⟩⟩Ω is an equivalent norm on
V. Therefore, the Lax–Milgram lemma yields existence and uniqueness of the weak solution 𝑢⋆ ∈ V. For 𝜔 = Ω,
we omit the index 𝜔 throughout.

To discretize (2), denote for a polynomial degree 𝑝 ≥ 1 and a triangle 𝑇 ∈ 𝒯ℎ the space of all polynomials on
𝑇 of degree at most 𝑝 with P𝑝(𝑇 ) and define

S𝑞(𝒯ℎ) :=
{︀
𝑣ℎ ∈ 𝐶(Ω) : 𝑣ℎ|𝑇 ∈ P𝑞(𝑇 ) for all 𝑇 ∈𝒯ℎ

}︀
with 𝑞 ∈ {1, 𝑝}. (3)

With the definition V𝑝
ℎ := S𝑝

0(𝒯ℎ) := S𝑝(𝒯ℎ)∩𝐻1
0 (Ω), the discrete problem consists of finding 𝑢⋆

ℎ ∈ V𝑝
ℎ such that

⟨⟨𝑢⋆
ℎ, 𝑣ℎ⟩⟩ = 𝐹 (𝑣ℎ) for all 𝑣ℎ ∈ V𝑝

ℎ. (4)

Clearly, the formulation of the discrete problem (4) hinges on the choice of the mesh 𝒯ℎ, which directly influences
the quality of 𝑢⋆

ℎ as an approximation of 𝑢⋆. Note that (4) can be rewritten as a symmetric and positive
definite linear system by introducing a basis of V𝑝

ℎ. However, we opt to work instead with the functional basis-
independent description.

2.2. Mesh and space hierarchy

We suppose that the refinement strategy in the module REFINE is newest vertex bisection (NVB); see, e.g.,
[34, 35] and Figure 1 for an illustration in 2D. Let 𝒯0 be the conforming initial mesh. We refer to [34] for NVB
with admissible 𝒯0 and 𝑑 ≥ 2, to [23] for NVB with general 𝒯0 for 𝑑 = 2, and to the recent work [16] for
NVB with general 𝒯0 in any dimension. Throughout, we suppose that 𝒯0 is admissible. In the 1D case, Aurada
et al. [2] splits each element into two children of half-length and additionally ensures that any two neighboring
elements have uniformly comparable diameter. Let T := T(𝒯0) be the set of all refinements of 𝒯0 that can be
obtained by arbitrarily many steps of NVB.

From now on, suppose that we are given a sequence {𝒯ℓ}𝐿
ℓ=0 ⊂ T of successively refined triangulations, i.e.,

for all ℓ = 1, . . . , 𝐿, it holds that 𝒯ℓ = REFINE(𝒯ℓ−1,ℳℓ−1) is the coarsest conforming triangulation obtained
by NVB, where all marked elements ℳℓ−1 ⊆ 𝒯ℓ−1 have been refined by (at least) one bisection. We note that
NVB-refinement generates meshes that are uniformly 𝛾-shape regular, i.e.,

max
ℓ=0,...,𝐿

max
𝑇∈𝒯ℓ

diam(𝑇 )
|𝑇 |1/𝑑

≤ 𝛾 < ∞, (5a)

and

max
ℓ=0,...,𝐿

max
𝑇∈𝒯ℓ

max
𝑇 ′∈𝒯ℓ

𝑇∩𝑇 ′ ̸=∅

diam(𝑇 )
diam(𝑇 ′)

≤ 𝛾 < ∞. (5b)
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Figure 1. Schematic of 2D NVB refinement pattern: For each triangle 𝑇 ∈ 𝒯 , there is one
fixed refinement edge 𝐸𝑇 indicated by the extra pink line. The pink dots indicate edges that
are marked for refinement. If an element is marked for refinement, at least its refinement edge is
marked for refinement (top). Iterated bisection refines a marked element into 2, 3, or 4 children
(bottom).

Figure 2. Illustration of degrees of freedom (𝑝 = 2) for the space V𝑝
𝐿,𝑧 associated to the patch 𝒯𝐿,𝑧.

where 𝛾 depends only on 𝒯0 and is, in particular, independent of 𝐿 and the meshes 𝒯1, . . . , 𝒯𝐿; see, e.g.,
Theorem 2.1 of [34] for 𝑑 ≥ 2 or [2] for 𝑑 = 1. We note that (5a) implies (5b) for 𝑑 ≥ 2, while (5a) is trivial with
𝛾 = 1 and independent of (5b) for 𝑑 = 1. In addition, we define the quasi-uniformity constant

𝐶qu := min
{︀

diam(𝑇 )/ diam(𝑇 ′) : 𝑇, 𝑇 ′ ∈ 𝒯0

}︀
∈ (0, 1]. (6)

For each mesh 𝒯ℓ, let 𝒱ℓ denote the set of vertices. Given a vertex 𝑧 ∈ 𝒱ℓ, we denote by 𝒯ℓ,𝑧 :=
{︀
𝑇 ∈ 𝒯ℓ : 𝑧 ∈

𝑇
}︀

the patch of elements of 𝒯ℓ that share the vertex 𝑧. The corresponding (open) patch subdomain is denoted
by 𝜔ℓ,𝑧 := interior (

⋃︀
𝑇∈𝒯ℓ,𝑧

𝑇 ) and its size by ℎℓ,𝑧 := max𝑇∈𝒯ℓ,𝑧
ℎ𝑇 := max𝑇∈𝒯ℓ,𝑧

|𝑇 |1/𝑑. Finally, we denote by
𝒱+

ℓ the set of new vertices in 𝒯ℓ and the pre-existing vertices of 𝒯ℓ−1 whose associated patches have shrunk in
size in the refinement step ℓ, i.e.,

𝒱+
0 := 𝒱0 and 𝒱+

ℓ := 𝒱ℓ ∖ 𝒱ℓ−1 ∪
{︀
𝑧 ∈ 𝒱ℓ ∩ 𝒱ℓ−1 : 𝜔ℓ,𝑧 ̸= 𝜔ℓ−1,𝑧

}︀
for ℓ ≥ 1.

While this notation is used in the analysis of the solver below, the presentation of Algorithm 2.1 is more compact
with the abbreviation 𝒩ℓ = 𝒱+

ℓ for ℓ = 1, . . . , 𝐿− 1 and 𝒩𝐿 := 𝒱+
𝐿 for 𝑝 = 1 and 𝒩𝐿 := 𝒱𝐿 otherwise, where we

recall that 𝑝 ∈ N is the fixed polynomial degree of the FEM ansatz functions.
From the definition of the discrete FEM spaces (3) and NVB-refinement, we see that there holds nestedness

V1
0 ⊆ V1

1 ⊆ · · · ⊆ V1
𝐿−1 ⊆ V𝑝

𝐿. (7)

Furthermore, we require the local spaces

V𝑞
ℓ,𝑧 := S𝑞

0(𝒯ℓ,𝑧) for all vertices 𝑧 ∈ 𝒱ℓ and 𝑞 ∈ {1, 𝑝}, (8)

where we use 𝑞 = 1 for ℓ = 0, . . . , 𝐿 − 1 and 𝑞 = 𝑝 for ℓ = 𝐿; see Figure 2 for the illustration of the degrees of
freedom for 𝑝 = 2.
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2.3. Multigrid solver

In the following, we introduce a local geometric multigrid method, which will serve as iterative solver within
the SOLVE module of an adaptive FEM algorithm. Each full step of the proposed multigrid method can be
mathematically described by an iteration operator Φ: V𝑝

𝐿 → V𝑝
𝐿, i.e., given the current approximation 𝑢𝐿 ∈ V𝑝

𝐿,
the solver generates the new iterate Φ(𝑢𝐿) ∈ V𝑝

𝐿.
The main ingredients in the solver construction are an inexpensive global residual solve on 𝒯0 and local

residual solves on all patches 𝒯ℓ,𝑧 for 𝑧 ∈ 𝒱+
ℓ on the intermediate levels ℓ = 1, . . . , 𝐿− 1 and all patches on the

finest level 𝒯𝐿 when 𝑝 > 1. For ease of notation, we define the algebraic residual functional 𝑅𝐿 : V𝑝
𝐿 → R by

𝑣𝐿 ∈ V𝑝
𝐿 ↦→ 𝑅𝐿(𝑣𝐿) := 𝐹 (𝑣𝐿)− ⟨⟨𝑢𝐿, 𝑣𝐿⟩⟩ = ⟨⟨𝑢⋆

𝐿 − 𝑢𝐿, 𝑣𝐿⟩⟩ ∈ R. (9)

To construct the new iterate Φ(𝑢𝐿), levelwise residual liftings of the algebraic error are added to the current
approximation 𝑢𝐿. The same levelwise residual liftings are used to define an a posteriori error estimator 𝜁𝐿(𝑢𝐿)
for the algebraic error, i.e., the solver comes with a built-in estimator.

Algorithm 2.1 (One step of the optimal local multigrid solver). Input: current approximation 𝑢𝐿 ∈ V𝑝
𝐿,

meshes {𝒯ℓ}𝐿
ℓ=0, polynomial degree 𝑝 ∈ N.

Solver step: perform the following steps (i) and (ii):

(i) Global lowest-order residual problem on the coarsest level:
– Compute 𝜌0 ∈ V1

0 by solving

⟨⟨𝜌0, 𝑣0⟩⟩ = 𝑅𝐿(𝑣0) for all 𝑣0 ∈ V1
0. (10)

– Define step-size 𝜆0 := 1.
– Initialize algebraic lifting 𝜎0 := 𝜆0𝜌0 and a posteriori estimator 𝜁2

0 := |||𝜆0𝜌0
2|||.

(ii) Local residual-update: for all ℓ = 1, . . . , 𝐿, do the following steps, where 𝑞 = 1 for ℓ = 1, . . . , 𝐿− 1 and
𝑞 = 𝑝 for ℓ = 𝐿:
– For all 𝑧 ∈ 𝒩ℓ, compute 𝜌ℓ,𝑧 ∈ V𝑞

ℓ,𝑧 by solving

⟨⟨𝜌ℓ,𝑧, 𝑣ℓ,𝑧⟩⟩ = 𝑅𝐿(𝑣ℓ,𝑧)− ⟨⟨𝜎ℓ−1, 𝑣ℓ,𝑧⟩⟩ for all 𝑣ℓ,𝑧 ∈ V𝑞
ℓ,𝑧. (11)

– Define the line-search step-size 𝑠ℓ := (𝑅𝐿(𝜌ℓ)− ⟨⟨𝜎ℓ−1, 𝜌ℓ⟩⟩)/|||𝜌ℓ|||2, with 𝜌ℓ :=
∑︀

𝑧∈𝒩ℓ
𝜌ℓ,𝑧 and the under-

standing that 0/0 := 0 if 𝜌ℓ = 0, and

𝜆ℓ :=

{︃
𝑠ℓ if 𝑠ℓ ≤ 𝑑 + 1 or

[︀
ℓ = 𝐿 and 𝑝 > 1

]︀
,

(𝑑 + 1)−1 otherwise.

– Update 𝜎ℓ := 𝜎ℓ−1 + 𝜆ℓ𝜌ℓ and 𝜁2
ℓ := 𝜁2

ℓ−1 + 𝜆ℓ

∑︀
𝑧∈𝒩ℓ

|||𝜌ℓ,𝑧|||2.

Output: improved approximation Φ(𝑢𝐿) := 𝑢𝐿 + 𝜎𝐿 ∈ V𝑝
𝐿 and associated a posteriori estimator 𝜁𝐿(𝑢𝐿) := 𝜁𝐿

of the algebraic error.

Remark 2.2 (Construction of the new iterate). The construction of Φ(𝑢𝐿) from 𝑢𝐿 by Algorithm 2.1 can be
seen as one iteration of a V-cycle multigrid with no pre- and one post-smoothing step, and a step-size ar the
error correction stage. The smoother on each level is additive Schwarz associated to patch subdomains where the
local problems (11) are defined. This is equivalent to diagonal Jacobi smoothing for 𝑝 = 1 (e.g., on intermediate
levels) and block-Jacobi smoothing for 𝑝 > 1 (e.g., on the finest level). The choice and use of the step-sizes
𝜆ℓ in Algorithm 2.1 (ii) comes from a line-search approach; see, e.g., Lemma 4.3 of [25] and one of the earlier
works [20]. However, if the step-size from the line-search is too large, we use instead a fixed damping parameter
offsetting the 𝑑 + 1 patch overlaps. We note that this case never occurred in practice in any of our numerical
experiments.
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Remark 2.3 (Computational effort and speed of convergence). We note that we apply a patchwise Cholesky
factorization on the finest level. Hence, the computational effort for the local residual solve on the finest mesh 𝒯𝐿

in dependence on the polynomial degree 𝑝 is of order 𝒪(𝑝3𝑑#𝒯𝐿). The presented algorithm is a linear method.
One could symmetrize the procedure by adding one pre-smoothing step to define a preconditioner in the hope
of accelerating convergence with the help of conjugate gradients. However, in our experience, the patchwise pre-
smoothing typically did not yield considerable algebraic error decrease; see, e.g., [15], while still doubling the
number of smoothing operations of a V-cycle. The remaining steps needed to compute the new approximation
stem from classical multigrid solvers (such as intergrid operators). We stress that the overall effort does not
depend on the number of levels 𝐿.

Remark 2.4 (Nested iterations). In the context of adaptive FEM, the solver does not start from an arbitrary
initial guess on each newly-refined mesh but from the final approximation of the previous level (see Algorithm 3.1
below). This will ensure a posteriori error control in each step after initialization as well as optimal computational
cost. From the algebraic solver perspective, such an approach can be seen as a full multigrid method over the
evolving hierarchy of meshes whose number of cycles is determined by the adaptive stopping criterion.

2.4. Main result

This subsection formulates the main results regarding the iterative solver stating the contraction of the
multigrid solver and reliability of the built-in a posteriori estimator of the algebraic error. Both results hold
robustly in the number of levels 𝐿 and the polynomial degree 𝑝.

Theorem 2.5. Let 𝑢⋆
𝐿 ∈ V𝑝

𝐿 be the (unknown) finite element solution of (4) and let 𝑣𝐿 ∈ V𝑝
𝐿 be arbitrary. Let

Φ(𝑣𝐿) ∈ V𝑝
𝐿 and 𝜁𝐿(𝑣𝐿) be generated by Algorithm 2.1. Then, the solver iterates and the estimator are connected

by

|||𝑢⋆
𝐿 − Φ(𝑣𝐿)|||2 ≤ |||𝑢⋆

𝐿 − 𝑣𝐿|||2 − 𝜁𝐿(𝑣𝐿)2. (12)

Moreover, the solver contracts the error, i.e., there exists 0 < 𝑞ctr < 1 such that

|||𝑢⋆
𝐿 − Φ(𝑣𝐿)||| ≤ 𝑞ctr |||𝑢⋆

𝐿 − 𝑣𝐿|||. (13)

Finally, the estimator is a two-sided bound of the algebraic error, i.e., there exists 𝐶rel > 1 such that

𝜁𝐿(𝑣𝐿) ≤ |||𝑢⋆
𝐿 − 𝑣𝐿||| ≤ 𝐶rel 𝜁𝐿(𝑣𝐿). (14)

The contraction and reliability constants 𝑞ctr and 𝐶rel depend only on the space dimension 𝑑, the 𝛾-shape
regularity (5), the quasi-uniformity constant 𝐶qu from (6), Λmax/Λmin, and max𝑇∈𝒯𝐿

‖ div(𝐾)‖𝐿∞(𝑇 )/Λmin.
In particular, 𝑞ctr is independent of the polynomial degree 𝑝, the number of mesh levels 𝐿, and the meshes
𝒯1, . . . , 𝒯𝐿.

Corollary 2.6. The reliability of the estimator in (14) is equivalent to the solver contraction (13). In particular,
this also yields that

|||𝑢⋆
𝐿 − Φ(𝑣𝐿)||| ≤ 𝑞ctr 𝐶rel 𝜁𝐿(𝑣𝐿). (15)

Remark 2.7. We note that (12) holds with equality whenever the step-size criterion 𝑠ℓ ≤ 𝑑 + 1 in Algo-
rithm 2.1(ii) are fulfilled and the construction is thus done by optimal-line search. In such a case, which was
always satisfied in all our numerical tests, a Pythagoras identity in the spirit of Theorem 4.7 from [25] yielding
exact algebraic error decrease is obtained.
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3. Application to adaptive FEM with inexact solver

Given a coarse mesh 𝒯0, we use an adaptive finite element method (AFEM) to generate locally refined meshes
{𝒯𝐿}𝐿∈N tailored to the behavior of the sought solution. In the spirit of [18], Algorithm 3.1 presents such an
approach with an adaptively stopped iterative solver, where Step (Ii) exploits the built-in a posteriori estimator
of the geometric multigrid solver from Section 2.

While we note that the present Algorithm 3.1 and the corresponding Theorem 3.2 are restricted to fixed
polynomial degree 𝑝, the inclusion of the proposed ℎ𝑝-robust iterative solver into the ℎ𝑝-adaptive FEM algorithm
of [11] remains for future research, since the mathematical understanding of ℎ𝑝-adaptive FEM is still widely
open.

Algorithm 3.1 (AFEM with iterative solver).
Input: initial mesh 𝒯0, polynomial degree 𝑝 ∈ N, adaptivity parameters 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, and 𝜇 > 0,
initial guess 𝑢0

0 := 0.
Adaptive loop: repeat the following steps (I)–(III) for all 𝐿 = 0, 1, 2, . . . :

(I) SOLVE & ESTIMATE: repeat the following steps (i)–(iii) for all 𝑘 = 1, 2, 3, . . . :
(i) Do one step of the algebraic solver to obtain 𝑢𝑘

𝐿 ∈ V𝑝
𝐿 and an associated a posteriori estimator 𝜁𝐿(𝑢𝑘−1

𝐿 )
for the algebraic error [︀

𝑢𝑘
𝐿, 𝜁𝐿(𝑢𝑘−1

𝐿 )
]︀

:= SOLVE
(︁
𝑢𝑘−1

𝐿 , {𝒯ℓ}𝐿
ℓ=0, 𝑝

)︁
.

(ii) Compute a posteriori indicators for the elementwise discretization error{︀
𝜂𝐿(𝑇, 𝑢𝑘

𝐿)
}︀

𝑇∈𝒯𝐿
:= ESTIMATE

(︀
𝑢𝑘

𝐿, 𝒯𝐿

)︀
.

(iii) If 𝜁𝐿(𝑢𝑘−1
𝐿 ) ≤ 𝜇𝜂𝐿(𝑢𝑘

𝐿), terminate the 𝑘-loop, set the index 𝑘[𝐿] := 𝑘 and define 𝑢𝐿 := 𝑢
𝑘[𝐿]
𝐿 .

(II) MARK: determine a set of marked elements ℳ𝐿 ⊆ 𝒯𝐿 of (up to the multiplicative constant 𝐶mark) minimal
cardinality that satisfies

𝜃 𝜂𝐿(𝑢𝐿)2 ≤
∑︁

𝑇∈ℳ𝐿

𝜂𝐿(𝑇, 𝑢𝐿)2.

(III) REFINE: generate the new mesh 𝒯𝐿+1 := REFINE(ℳ𝐿, 𝒯𝐿) and define 𝑢0
𝐿+1 := 𝑢𝐿.

Output: sequences of successively refined triangulations 𝒯𝐿, discrete approximations 𝑢𝐿 and corresponding
error estimators (𝜂𝐿(𝑢𝐿), 𝜁𝐿(𝑢𝐿)).

Mesh-refinement is steered by the discretization error estimator. For all 𝑇 ∈ 𝒯ℎ, let 𝜂ℎ(𝑇 ; ·) : V𝑝
ℎ → R≥0 be

the local contributions of the standard residual error estimator defined by

𝜂2
ℎ(𝑇 ; 𝑣ℎ) := ℎ2

𝑇 ‖𝑓 + div(𝐾∇𝑣ℎ − 𝑓)‖2𝑇 + ℎ𝑇 ‖[[𝐾∇𝑣ℎ − 𝑓 ]] · 𝑛‖2𝜕𝑇∩Ω, (16)

where ‖ · ‖𝜔 denote the appropriate 𝐿2(𝜔)-norms. We define

𝜂ℎ(𝒰ℎ; 𝑣ℎ) :=

(︃ ∑︁
𝑇∈𝒰ℎ

𝜂ℎ(𝑇 ; 𝑣ℎ)2
)︃1/2

for all 𝒰ℎ ⊆ 𝒯ℎ and 𝑣ℎ ∈ V𝑝
ℎ.

To abbreviate notation, let 𝜂ℎ(𝑣ℎ) := 𝜂ℎ(𝒯ℎ; 𝑣ℎ).
One important consequence of Theorem 2.5 is optimal convergence of Algorithm 3.1 with respect to compu-

tational complexity. To formulate this mathematically, we define the ordered set

𝒬 :=
{︀

(𝐿, 𝑘) ∈ N2
0 : index tuple (𝐿, 𝑘) is used as loop variable in Algorithm 3.1 and 1 ≤ 𝑘 ≤ 𝑘[𝐿]

}︀
.
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On 𝒬, we define the ordering ≤ by

(𝐿′, 𝑘′) ≤ (𝐿, 𝑘) ⇐⇒ 𝑢𝑘′

𝐿′ is computed earlier than or equal to 𝑢𝑘
𝐿 in Algorithm 3.1.

Furthermore, we introduce the total step counter |·, ·|, defined for all (𝐿, 𝑘) ∈ 𝒬, by

|𝐿, 𝑘| := #
{︀

(𝐿′, 𝑘′) ∈ 𝒬 : (𝐿′, 𝑘′) ≤ (𝐿, 𝑘)
}︀
.

Before we state the theorem, we introduce the notion of approximation classes. For 𝑠 > 0, define

‖𝑢‖A𝑠
:= sup

𝑁∈N0

(︂
(𝑁 + 1)𝑠 min

𝒯opt∈T𝑁 (𝒯0)

(︀
|||𝑢⋆ − 𝑢⋆

opt|||+ 𝜂opt

(︀
𝑢⋆

opt

)︀)︀)︂
, (17)

with Galerkin solution 𝑢⋆
opt and estimator 𝜂opt on the optimal triangulation 𝒯opt ∈ T𝑁 (𝒯0), where T𝑁 (𝒯0) :={︀

𝒯ℎ ∈ T(𝒯0) : #𝒯ℎ −#𝒯0 ≤ 𝑁
}︀
. By reliability (A3) of the estimator, see, e.g., [12], the sum on the right-hand

side of (17) is equivalent to 𝜂opt(𝑢⋆
opt). If ‖𝑢‖A𝑠

< ∞, then we say that rate 𝑠 is possible.
In [18], it is shown that in the case of a contractive solver, convergence rates with respect to degrees of freedom

are equivalent to convergence rates with respect to computational complexity. We abbreviate with cost(𝐿, 𝑘)
the total costs of Algorithm 3.1 defined by

cost(𝐿, 𝑘) :=
∑︁

(𝐿′,𝑘′)∈𝒬
(𝐿′,𝑘′)≤(𝐿,𝑘)

#𝒯𝐿′ .

Theorem 3.2. Let {𝒯𝐿}𝐿∈N0 be the sequence generated by Algorithm 3.1 and define the quasi-error by

∆𝑘
𝐿 :=

⃒⃒⃒⃒⃒⃒
𝑢⋆ − 𝑢𝑘

𝐿

⃒⃒⃒⃒⃒⃒
+ 𝜂𝐿(𝑢𝑘

𝐿) for all (𝐿, 𝑘) ∈ 𝒬.

Then, for all parameters 0 < 𝜃 ≤ 1 and 𝜇 > 0, it holds that

sup
(𝐿,𝑘)∈𝒬

(#𝒯𝐿)𝑠∆𝑘
𝐿 ≃ sup

(𝐿,𝑘)∈𝒬
cost(𝐿, 𝑘)𝑠 ∆𝑘

𝐿 and ∆𝑘
𝐿 → 0 as |𝐿, 𝑘| → ∞. (18)

Furthermore, there exist 0 < 𝜃⋆ ≤ 1, and 𝜇⋆ > 0 such that, for sufficiently small parameters 0 < 𝜃 < 𝜃⋆ and
0 < 𝜇/𝜃 < 𝜇⋆, and for all 𝑠 > 0, it holds that

𝑐opt ‖𝑢‖A𝑠
≤ sup

(𝐿,𝑘)∈𝒬
cost(𝐿, 𝑘)𝑠 ∆𝑘

𝐿 ≤ 𝐶opt max
{︀
‖𝑢‖A𝑠

, ∆0
0

}︀
. (19)

The constants 𝑐opt, 𝐶opt > 0 depend only on the polynomial degree 𝑝, the initial triangulation 𝒯0, Λmax/Λmin,
max𝑇∈𝒯𝐿

‖ div(𝐾)‖𝐿∞(𝑇 )/Λmin, the rate 𝑠, the ratios 𝜃/𝜃⋆ and 𝜇/(𝜃𝜇⋆), and the properties of newest vertex
bisection. In particular, this proves the equivalence

‖𝑢‖A𝑠
< ∞ ⇐⇒ sup

(𝐿,𝑘)∈𝒬
cost(𝐿, 𝑘)𝑠 ∆𝑘

𝐿 < ∞, (20)

which proves optimal complexity of Algorithm 3.1.

Remark 3.3. We note that in Theorem 8 of [18], the constant 𝑐opt > 0 additionally depends on the stopping
index 𝐿 in the case the algorithm terminates after a finite number of mesh levels 𝐿 < ∞ or the estimator
satisfies 𝜂𝐿(𝑢𝐿) = 0. The refined analysis in the recent work [10] removes this dependence.

Remark 3.4. We note that it is also possible to use the same stopping criterion for the algebraic solver as
in Algorithm 2 of [18]. However, since the multigrid solver from Algorithm 2.1 has a built-in estimator for the
algebraic error, we opt for its choice within Algorithm 3.1 instead.
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Proof of Theorem 3.2. We show that Algorithm 3.1 satisfies the requirements of Theorems 4 and 8 from [18].
First note that the standard residual error estimator from (16) satisfies the axioms of adaptivity from [12] and
thus satisfies the assumptions (A1)–(A4) from Theorem 8 of [18]. Furthermore, newest vertex bisection satisfies
the assumptions (R1)–(R3) from Section 2.2 of [18]. For the present setting, the conditions (C1) and (C2) from
Section 2.5 of [18] coincide and are satisfied.

Tracing the role of the stopping criterion for the case (C1) in the proof of Theorem 4 from [18], one sees that
the stopping criterion needs to guarantee that, for all (𝐿, 𝑘) ∈ 𝒬,⃒⃒⃒⃒⃒⃒

𝑢𝑘
𝐿 − 𝑢𝑘−1

𝐿

⃒⃒⃒⃒⃒⃒
≤ 𝜆1 𝜂𝐿

(︀
𝑢𝑘

𝐿

)︀
if 𝑢𝑘

𝐿 = 𝑢𝐿,

𝜂𝐿

(︀
𝑢𝑘

𝐿

)︀
≤ 𝜆−1

2

⃒⃒⃒⃒⃒⃒
𝑢𝑘

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒
else, (21)

for some 𝜆1, 𝜆2 > 0. The upper bound in (14) in Theorem 2.5 as well as contraction (13) show that, for all
(𝐿, 𝑘) ∈ 𝒬, our stopping criterion in Algorithm 3.1 Step (Iiii) leads to

⃒⃒⃒⃒⃒⃒
𝑢𝑘

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒ (13)
≤ (1 + 𝑞ctr)

⃒⃒⃒⃒⃒⃒
𝑢⋆

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒ (14)
≤ 𝐶rel (1 + 𝑞ctr) 𝜁𝐿

(︀
𝑢𝑘−1

𝐿

)︀
≤ 𝜇 𝐶rel (1 + 𝑞ctr) 𝜂𝐿

(︀
𝑢𝑘

𝐿

)︀
if 𝑢𝑘

𝐿 = 𝑢𝐿.

For the remaining case, the contraction (13) leads to

⃒⃒⃒⃒⃒⃒
𝑢⋆

𝐿 − 𝑢𝑘
𝐿

⃒⃒⃒⃒⃒⃒ (13)
≤ 𝑞ctr

⃒⃒⃒⃒⃒⃒
𝑢⋆

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒
≤ 𝑞ctr

⃒⃒⃒⃒⃒⃒
𝑢⋆

𝐿 − 𝑢𝑘
𝐿

⃒⃒⃒⃒⃒⃒
+ 𝑞ctr

⃒⃒⃒⃒⃒⃒
𝑢𝑘

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒
.

This implies ⃒⃒⃒⃒⃒⃒
𝑢⋆

𝐿 − 𝑢𝑘
𝐿

⃒⃒⃒⃒⃒⃒
≤ 𝑞ctr

1− 𝑞ctr

⃒⃒⃒⃒⃒⃒
𝑢𝑘

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒
. (22)

The not met stopping criterion in Algorithm 3.1(Iiii), the lower bound in (14), and (22) show

𝜂𝐿

(︀
𝑢𝑘

𝐿

)︀
< 𝜇−1 𝜁𝐿

(︀
𝑢𝑘−1

𝐿

)︀ (14)
≤ 𝜇−1

⃒⃒⃒⃒⃒⃒
𝑢⋆

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒
≤ 𝜇−1

(︀⃒⃒⃒⃒⃒⃒
𝑢⋆

𝐿 − 𝑢𝑘
𝐿

⃒⃒⃒⃒⃒⃒
+
⃒⃒⃒⃒⃒⃒

𝑢𝑘
𝐿 − 𝑢𝑘−1

𝐿

⃒⃒⃒⃒⃒⃒)︀
(22)
≤ 𝜇−1

(︂
1 +

𝑞ctr

1− 𝑞ctr

)︂ ⃒⃒⃒⃒⃒⃒
𝑢𝑘

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒
= 𝜇−1

(︂
1

1− 𝑞ctr

)︂ ⃒⃒⃒⃒⃒⃒
𝑢𝑘

𝐿 − 𝑢𝑘−1
𝐿

⃒⃒⃒⃒⃒⃒
.

Overall, (21) is satisfied with

𝜆1 = 𝐶rel (1 + 𝑞ctr) 𝜇 and 𝜆2 = (1− 𝑞ctr) 𝜇,

and Theorem 4 of [18] proves full linear convergence, so that, in particular, equation (18) is fulfilled (see the
proof of Theorem 8 from [18] or [10], Cor. 4.2).

The lower bound in (19) follows as in Theorem 8 from [18] or Theorem 4.3 from [10]. For the upper bound
in (19), Theorem 8 from [18] requires that

0 < 𝜆1/𝜃 < 𝜆opt := (1− 𝑞ctr)/(𝑞ctr 𝐶stab)

and

0 < 𝜃′ :=
𝜃 + 𝜆1/𝜆opt

1− 𝜆1/𝜆opt
< 𝜃opt :=

(︀
1 + 𝐶2

stab 𝐶2
drel

)︀−1
,

where 𝐶stab is the stability constant from (A1) and 𝐶drel is the constant from discrete reliability (A4); see, e.g.,
[18]. We define

𝜇⋆ :=
𝜆opt

𝐶rel (1 + 𝑞ctr)
,

and 𝜇/𝜃 < 𝜇⋆ thus implies 𝜆1/𝜃 = 𝐶rel (1 + 𝑞ctr) 𝜇/𝜃 < 𝜆opt. Finally, we choose 𝜃⋆ such that any 0 < ̃︀𝜃 ≤ 𝜃⋆

satisfies 2 ̃︀𝜃
1−̃︀𝜃

< 𝜃opt. Then, 0 < 𝜃 < 𝜃⋆ yields 𝜃′ = 𝜃+𝜆1/𝜆opt
1−𝜆1/𝜆opt

< 2 𝜃
1−𝜃 < 𝜃opt and optimal cost in Theorem 3.2

follows directly from Theorem 8 of [18]. �
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4. Numerical experiments

This section investigates the numerical performance of the proposed multigrid solver of Algorithm 2.1 and the
adaptive Algorithm 3.1. The Matlab implementation of the multigrid solver is embedded into the MooAFEM1

framework from [22]. Throughout, we choose the marking parameter 𝜃 = 0.5 in the adaptive Algorithm 3.1 and
𝑓 = (0, 0)⊤. We introduce the following test case:

– L-shaped domain. Let Ω = (−1, 1)2 ∖
(︀
[0, 1]× [−1, 0]

)︀
with right-hand side 𝑓 = 1 and 𝐾 = 𝐼.

4.1. Contraction and performance of local multigrid solver

We confirm numerically our main results from Theorem 2.5. In order to study the algebraic solver and its built-
in estimator with respect to different polynomial degrees, we take 𝜇 = 10−5 in Algorithm 3.1, thus oversolving
the algebraic problem. Moreover, we stop the adaptive algorithm once the final mesh consists of revision 106

degrees of freedom. Note that thanks to Corollary 2.6 proving the equivalence of the reliability of the algebraic
error estimator with the contraction of the algebraic solver, we indeed only need to investigate numerically the
existence of the 𝑝-robust bound on the contraction of the solver. In Figure 3 (left), we present the maximal
contraction factors on each level 𝐿 of the adaptive algorithm from Algorithm 3.1. We see that the contraction
factors are robust in the polynomial degree 𝑝 with an upper bound of about 0.7 in all our experiments. In
Figure 3 (right), we see that on a fixed number of levels (𝐿 = 10) even for higher-order polynomials their
behavior is clustered around similar values. Moreover, from a purely solver-centric perspective, we see that the
solver variant which employs higher-order smoothing also on the intermediate levels (and not only on the finest
one) as studied in [25] only leads to slight improvements of the contraction constants. Adapting the arguments
of [25], this modified construction can be guaranteed to be contractive with 𝑝-robust, but linearly 𝐿-dependent
contraction bound on the algebraic error. However, this degradation with increasing 𝐿 is not seen in practice,
provided that the patchwise smoothing is done everywhere for level 𝐿 = 1 (as new degrees of freedom are added
on all patches when the polynomial degree is 𝑝 > 1) and local patchwise smoothing is employed in the remaining
levels. We present a comparison of the resulting contraction factors of this approach to Algorithm 2.1 for a fixed
number of level (𝐿 = 10) in Figure 3 (right).

4.2. Optimality of the adaptive algorithm

We take 𝜇 = 0.1 in Algorithm 3.1 and study the decrease of the discretization error estimator 𝜂𝐿(𝑢𝐿),
both in terms of number of degrees of freedom and timing. We remark that the error estimator 𝜂𝐿(𝑢𝐿) on
the final iterates is equivalent to the quasi-error ∆𝐿. After a pre-asymptotic phase, we see in Figure 4 for
different polynomial degrees 𝑝 that the optimal convergence rate −𝑝/2 is recovered both with respect to number
of degrees of freedom and computational time, and the singularity at the reentrant corner (0, 0) is resolved
through local mesh refinement. Furthermore, Figure 5 shows that the proposed multigrid solver behaves faster
than the built-in direct solver (Matlab backslash operator) concerning the time per dof. The displayed timings
include the setup of the linear system, the time for the solver module, computation of estimator, and mesh
refinement. Overall, the numerical experiments in Figure 5 validate the linear complexity of the suggested local
multigrid solver from Algorithm 2.1.

4.3. Numerical performance and insights for jumping coefficients

We consider two additional test cases with jumps in the diffusion coefficient:

– Checkerboard. Let Ω = (0, 1)2 be the unit square and 𝐾 the 2 × 2 checkerboard diffusion with values 1
(white) and 10𝑘 (grey) for fixed 𝑘 = 1, 2, 3, see Figure 6 (left).

– Striped diffusion. Let Ω = (0, 1)2 be the unit square split into 2𝑘 stripes for 𝑘 = 1, 2, 3. The value of 𝐾 on
the 𝑗-th stripe is 10𝑗−1 with 𝑗 ∈ {1, . . . , 2𝑘}, see Figure 6 (right).

1All experiments presented in this paper are reproducible with the openly available software package under https://www.tuwien.
at/mg/asc/praetorius/software/mooafem.

https://www.tuwien.at/mg/asc/praetorius/software/mooafem
https://www.tuwien.at/mg/asc/praetorius/software/mooafem
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Figure 3. Contraction of the algebraic solver. History plot of the contraction factors 𝑞ctr

from (13) for various polynomial degrees 𝑝 with parameter 𝜇 = 10−5 for the presented polyno-
mial hierarchy from (7) in the adaptive algorithm from Algorithm 3.1 stopping once the final
mesh consists of 106 degrees of freedom (left) and the comparison with polynomial hierarchy
motivated by Miraçi et al. [25] with localized smoothing for a fixed number of levels 𝐿 = 10
(right).

Figure 4. Optimality of AFEM on L-shape. The convergence history plot of the discretization
error estimator 𝜂𝐿(𝑢𝐿) with respect to the total computational cost (left) and the cumulative
computational time (right).

In Table 1 and Figure 7, we see the optimal convergence of the discretization estimator with the optimal rate
−1/2 for 𝑝 = 1 as well as −1 for 𝑝 = 2 for both diffusion coefficients regardless of the jump size. We stress that
the discontinuity in the diffusion coefficient does not affect the optimality of the proposed adaptive algorithm
and the iteration numbers remain uniformly bounded as displayed in Table 2.

Both test cases exhibit singularities due to jumps in the diffusion coefficient; however, the jump can be much
higher for two neighboring elements in the checkerboard case. In this case, near the cross point (1/2, 1/2), the
jump is of order 10𝑘 from one element to the next, which coincides with the jump from the highest to the
lowest value of 𝐾 on the whole domain. For the striped test case, the jump between two neighboring elements
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Figure 5. Optimality of the local multigrid solver. History plot of the cumulative computational
time and the relative computational time per degree of freedom for the polynomial degrees 𝑝 = 1
and 𝑝 = 4. We compare the overall time with the direct solve (square) to the overall time of
the AFEM algorithm with the multigrid solver (diamond). In particular, the displayed times
include setup, marking, and mesh refinement.

Figure 6. Adaptively refined meshes. Left: checkerboard diffusion with 𝑘 = 1, polynomial
degree 𝑝 = 1 and #𝒯8 = 603. Right: stripe diffusion with 𝑘 = 2, 𝑝 = 1 and #𝒯8 = 753 (right).

belonging to different “stripes” is of order 10, even if the global jump in the diffusion (for non-neighboring
elements) is of order 102𝑘−1.

This gives us the tools to observe numerically if the performance of our method only depends on local jumps
in the diffusion coefficient.

5. Proofs

Below we present proofs of intermediate results leading to our main Theorem 2.5 of 𝐿- and 𝑝-robust contrac-
tion of the multigrid solver and the 𝐿- and 𝑝-robust two-sided bound of the algebraic error by the built-in a pos-
teriori estimator. We emphasize that this result improves the recent work [25] by removing the 𝐿-dependence.
From an algorithmic point of view, this is done by applying local smoothing only on patches which change in
the refinement step on lowest-order levels instead of on every patch as was the case in [25]. From an analysis
point of view, 𝐿-robustness is achieved thanks to the strengthened Cauchy–Schwarz inequality on bisection-
generated meshes (Prop. 5.7) building on the property that the levelwise overlap of the smoothed patches stays
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Table 1. Mean value of experimental convergence rates of the discretization error estimator
𝜂𝐿(𝑢𝐿) over the cumulative cost in a log–log-plot for polynomial degrees 𝑝 = 1, 2 and diffusion
coefficient numbers 𝑘 = 1, 2, 3.

Checkerboard Stripe
𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2

𝑘 = 1 −0.4961 −0.9877 −0.4956 −1.0116
𝑘 = 2 −0.4960 −0.9946 −0.4969 −0.9670
𝑘 = 3 −0.4960 −0.9826 −0.5095 −0.9766

Table 2. Mean and maximal iteration numbers for polynomial degrees 𝑝 = 1, 2 and diffusion
coefficient numbers 𝑘 = 1, 2, 3.

Checkerboard Stripe
𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2

𝑘 = 1 1 1.0455 (mean), 2 (max) 1 1.0455 (mean), 2 (max)
𝑘 = 2 1 2.3261 (mean), 5 (max) 1 1.0417 (mean), 2 (max)
𝑘 = 3 1 1.1818 (mean), 3 (max) 1 1.0833 (mean), 2 (max)

Figure 7. Optimality of AFEM for jumping diffusion. The convergence history plot of the
discretization error estimator 𝜂𝐿(𝑢𝐿) for polynomial degree 𝑝 = 2 with respect to the total
computational cost for the checkerboard diffusion (left) and the stripe diffusion (right).

uniformly bounded. The next essential ingredient to prove the main result is an ℎ𝑝-stable decomposition on
bisection generated meshes (Prop. 5.5), then one combines the results carefully together with the simple but
crucial observation of uniform boundedness in the number of overlapping patches for a fixed level (Lem. 5.1)
and bounds on the step-sizes and the levelwise solver update (Lem. 5.2).

5.1. Auxiliary results

We start with the simple observation that the number of overlapping patches is uniformly bounded.
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Lemma 5.1 (Finite patch overlap). For all 𝑇 ∈ 𝒯ℓ, there holds

#(𝒱ℓ ∩ 𝑇 ) = 𝑑 + 1. (23)

Therefore, for all 𝑞 ∈ N, it holds that⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒∑︁
𝑧∈𝒱ℓ

𝑣ℓ,𝑧

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

≤ (𝑑 + 1)
∑︁
𝑧∈𝒱ℓ

|||𝑣ℓ,𝑧|||2 for all 𝑣ℓ,𝑧 ∈ V𝑞
ℓ,𝑧. (24)

Similar arguments show that⃦⃦⃦⃦
⃦∇∑︁

𝑧∈𝒱ℓ

𝑣ℓ,𝑧

⃦⃦⃦⃦
⃦

2

≤ (𝑑 + 1)
∑︁
𝑧∈𝒱ℓ

‖∇𝑣ℓ,𝑧‖2 for all 𝑣ℓ,𝑧 ∈ V𝑞
ℓ,𝑧. (25)

Proof. The overlap (23) is clear from the geometry of the elements in the mesh. For all ℓ = 0, . . . , 𝐿, the discrete
Cauchy–Schwarz inequality and (23) lead to⃒⃒⃒⃒

⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒∑︁
𝑧∈𝒱ℓ

𝑣ℓ,𝑧

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

=
∑︁

𝑇∈𝒯ℓ

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒ ∑︁
𝑧∈𝒱ℓ∩𝑇

𝑣ℓ,𝑧

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

𝑇

≤ (𝑑 + 1)
∑︁
𝑧∈𝒱ℓ

|||𝑣ℓ,𝑧|||2.

This concludes the proof. �

Next, we present bounds on the step-size and the levelwise solver update.

Lemma 5.2. For all ℓ ∈ {1, . . . , 𝐿}, we have

|||𝜆ℓ𝜌ℓ|||2 ≤ 𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2. (26)

Moreover, we have upper and lower bounds for the step-sizes,
1

𝑑 + 1
≤ 𝜆ℓ ≤ 𝑑 + 1 for all ℓ = 1, . . . , 𝐿− 1 and

1
𝑑 + 1

≤ 𝜆𝐿. (27)

Proof. Step 1. Proof of (26) if ℓ = 𝐿 or (𝑅𝐿(𝜌ℓ) − ⟨⟨𝜎ℓ−1, 𝜌ℓ⟩⟩)/|||𝜌ℓ|||2 ≤ 𝑑 + 1 for ℓ ∈ {1, . . . , 𝐿 − 1}. From
Step (ii) of Algorithm 2.1, we have that 𝜆ℓ = (𝑅𝐿(𝜌ℓ)− ⟨⟨𝜎ℓ−1, 𝜌ℓ⟩⟩)/|||𝜌ℓ|||2 and thus

|||𝜆ℓ𝜌ℓ|||2 = 𝜆ℓ

𝑅𝐿(𝜌ℓ)− ⟨⟨𝜎ℓ−1, 𝜌ℓ⟩⟩
|||𝜌ℓ|||2

|||𝜌ℓ|||2 = 𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

(𝑅𝐿(𝜌ℓ,𝑧)− ⟨⟨𝜎ℓ−1, 𝜌ℓ,𝑧⟩⟩)
(11)
= 𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2.

Step 2. Proof of (26) in the remaining cases. We use the finite overlap of the patches in Lemma 5.1 to obtain

|||𝜆ℓ𝜌ℓ|||2 =
𝜆ℓ

𝑑 + 1
|||𝜌ℓ|||2

(24)
≤ 𝜆ℓ

𝑑 + 1
(𝑑 + 1)

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2 = 𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2.

Step 3. Proof of (27). For ℓ ∈ {1, . . . , 𝐿 − 1}, the upper bound is guaranteed by definition of 𝜆ℓ. The lower
bound for ℓ ∈ {1, . . . , 𝐿} is trivial if 𝜆ℓ = 1/(𝑑+1). Otherwise, it is a consequence of the finite patch overlap:

𝜆ℓ =
𝑅𝐿(𝜌ℓ)− ⟨⟨𝜎ℓ−1, 𝜌ℓ⟩⟩

|||𝜌ℓ|||2
(11)
=

∑︀
𝑧∈𝒱+

ℓ
|||𝜌ℓ,𝑧|||2

|||𝜌ℓ|||2
(24)
≥ 1

𝑑 + 1
·

This concludes the proof.
�

In the next two subsections, we combine existing results from the literature to obtain a multilevel ℎ𝑝-robust
stable decomposition and a strengthened Cauchy–Schwarz inequality for our setting of bisection-generated
meshes. These will be crucial for the proofs of Theorem 2.5 and Corollary 2.6 in Section 5.4 below.
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5.2. Multilevel hp-robust stable decomposition on NVB-generated meshes

We start by recalling the one-level 𝑝-robust stable decomposition from Sections 3.4 and 4.3 in [32] for 𝑑 = 2
and 𝑑 = 3, respectively.

Lemma 5.3 (𝑝-robust one level decomposition). Let 𝑣𝐿 ∈ V𝑝
𝐿. Then, there exists a decomposition

𝑣𝐿 = 𝑣1
𝐿 +

∑︁
𝑧∈𝒱𝐿

𝑣𝑝
𝐿,𝑧 with 𝑣1

𝐿 ∈ V1
𝐿 and 𝑣𝑝

𝐿,𝑧 ∈ V𝑝
𝐿,𝑧, (28)

which is stable in the sense of ⃦⃦
∇𝑣1

𝐿

⃦⃦2
+
∑︁

𝑧∈𝒱𝐿

⃦⃦⃦
∇𝑣𝑝

𝐿,𝑧

⃦⃦⃦2

≤ 𝐶2
OL‖∇𝑣𝐿‖2. (29)

The constant 𝐶OL depends only on the space dimension 𝑑, the 𝛾-shape regularity (5), and the quasi-uniformity
constant 𝐶qu from (6).

Similarly, we recall the local multilevel decomposition for piecewise affine functions proven in Lemma 3.1
from [37]. In order to present this stable decomposition in a form that is more suitable for our forthcoming
analysis, we add a short proof for completeness.

Lemma 5.4 (ℎ-robust local multilevel decomposition for lowest-order functions). Let 𝑣1
𝐿 ∈ V1

𝐿. Then, there
exists a decomposition

𝑣1
𝐿 =

𝐿∑︁
ℓ=0

∑︁
𝑧∈𝒱+

ℓ

𝑣1
ℓ,𝑧 with 𝑣1

ℓ,𝑧 ∈ V1
ℓ,𝑧, (30)

which is stable in the sense of
𝐿∑︁

ℓ=0

∑︁
𝑧∈𝒱+

ℓ

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦2 ≤ 𝐶2
ML

⃦⃦
∇𝑣1

𝐿

⃦⃦2
. (31)

The constant 𝐶ML depends only on the space dimension 𝑑, the 𝛾-shape regularity (5), and the quasi-uniformity
constant 𝐶qu from (6).

Proof. Let 𝑣1
𝐿 ∈ V1

𝐿. Define 𝑤1
ℓ := (Πℓ−Πℓ−1)𝑣1

𝐿 for ℓ ∈ {0, . . . , 𝐿}, where Π−1 := 0 and Πℓ is the projection to
V1

ℓ from Section 3 of [37]. From Lemma 3.1 of [37], it holds that 𝑤1
ℓ ∈ span

{︀
𝜙ℓ,𝑧 : 𝑧 ∈ 𝒱+

ℓ

}︀
with 𝜙ℓ,𝑧 being the

S1(𝒯ℓ) hat-function at vertex 𝑧 ∈ 𝒱ℓ. We decompose 𝑤1
ℓ =

∑︀
𝑧∈𝒱+

ℓ
𝑣1

ℓ,𝑧 with 𝑣1
ℓ,𝑧 := 𝑤1

ℓ (𝑧)𝜙ℓ,𝑧 ∈ V1
ℓ,𝑧 and thus

obtain

𝑣1
𝐿 =

𝐿∑︁
ℓ=0

(Πℓ −Πℓ−1)𝑣1
𝐿 =

𝐿∑︁
ℓ=0

𝑤1
ℓ =

𝐿∑︁
ℓ=0

∑︁
𝑧∈𝒱+

ℓ

𝑣1
ℓ,𝑧. (32)

For fixed ℓ and 𝑧 ∈ 𝒱+
ℓ , the equivalence of norms on finite-dimensional spaces proves⃦⃦

𝑣1
ℓ,𝑧

⃦⃦
𝜔ℓ,𝑧

≤
∑︁

𝑇∈𝒯ℓ,𝑧

⃦⃦
𝑤1

ℓ (𝑧)𝜙ℓ,𝑧

⃦⃦
𝑇
≤

∑︁
𝑇∈𝒯ℓ,𝑧

⃦⃦
𝑤1

ℓ

⃦⃦
𝐿∞(𝑇 )

|𝑇 |1/2 .
∑︁

𝑇∈𝒯ℓ,𝑧

⃦⃦
𝑤1

ℓ

⃦⃦
𝑇
≃
⃦⃦
𝑤1

ℓ

⃦⃦
𝜔ℓ,𝑧

, (33)

where the hidden constants depend only on 𝛾-shape regularity (5). To obtain stability of the decomposition (32),
we use an inverse inequality on the patches and the stability proved in Lemma 3.7 of [37]:

𝐿∑︁
ℓ=0

∑︁
𝑧∈𝒱+

ℓ

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦2
.

𝐿∑︁
ℓ=0

∑︁
𝑧∈𝒱+

ℓ

ℎ−2
ℓ,𝑧

⃦⃦
𝑣1

ℓ,𝑧

⃦⃦2

𝜔ℓ,𝑧

(33)
.

𝐿∑︁
ℓ=0

∑︁
𝑧∈𝒱+

ℓ

ℎ−2
ℓ,𝑧

⃦⃦
𝑤1

ℓ

⃦⃦2

𝜔ℓ,𝑧
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=
𝐿∑︁

ℓ=0

∑︁
𝑧∈𝒱+

ℓ

ℎ−2
ℓ,𝑧

⃦⃦
(Πℓ −Πℓ−1)𝑣1

𝐿

⃦⃦2

𝜔ℓ,𝑧

[37]

.
⃦⃦
∇𝑣1

𝐿

⃦⃦2
.

This concludes the proof. �

The combination of the two previous lemmas, done similarly in Proposition 7.6 from [24] for a non-local and
hence not ℎ-robust solver, leads to the following ℎ𝑝-robust decomposition.

Proposition 5.5 (ℎ𝑝-robust local multilevel decomposition). Let 𝑣𝐿 ∈ V𝑝
𝐿. Then, there exist 𝑣0 ∈ V1

0, 𝑣ℓ,𝑧 ∈
V1

ℓ,𝑧, and 𝑣𝐿,𝑧 ∈ V𝑝
𝐿,𝑧 such that

𝑣𝐿 = 𝑣0 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

𝑣ℓ,𝑧 +
∑︁

𝑧∈𝒱𝐿

𝑣𝐿,𝑧. (34)

and this decomposition is stable in the sense of

|||𝑣0|||2 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2 +
∑︁

𝑧∈𝒱𝐿

|||𝑣𝐿,𝑧|||2 ≤ 𝐶2
SD |||𝑣𝐿|||2. (35)

The constant 𝐶SD ≥ 1 depends only on the space dimension 𝑑, 𝛾-shape regularity (5), the quasi-uniformity
constant 𝐶qu from (6), and the ratio of Λmax and Λmin.

Proof. Let 𝑣𝐿 ∈ V𝑝
𝐿. We begin with the decomposition of 𝑣𝐿 by (28), then continue with the further decompo-

sition of the lowest-order contribution 𝑣1
𝐿 in a multilevel way (30):

𝑣𝐿

(28)
= 𝑣1

𝐿 +
∑︁

𝑧∈𝒱𝐿

𝑣𝑝
𝐿,𝑧

(30)
=

𝐿∑︁
ℓ=0

∑︁
𝑧∈𝒱+

ℓ

𝑣1
ℓ,𝑧 +

∑︁
𝑧∈𝒱𝐿

𝑣𝑝
𝐿,𝑧

=
∑︁
𝑧∈𝒱0

𝑣1
0,𝑧 +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

𝑣1
ℓ,𝑧 +

∑︁
𝑧∈𝒱+

𝐿

𝑣1
𝐿,𝑧 +

∑︁
𝑧∈𝒱𝐿

𝑣𝑝
𝐿,𝑧.

By defining 𝑣0 :=
∑︀

𝑧∈𝒱0
𝑣1
0,𝑧 ∈ V1

0, 𝑣ℓ,𝑧 := 𝑣1
ℓ,𝑧 ∈ V1

ℓ,𝑧 for 𝑧 ∈ 𝒱+
ℓ and 1 ≤ ℓ ≤ 𝐿−1, and 𝑣𝐿,𝑧 := 𝑣1

𝐿,𝑧+𝑣𝑝
𝐿,𝑧 ∈ V𝑝

𝐿,𝑧

for 𝑧 ∈ 𝒱+
𝐿 and 𝑣𝐿,𝑧 := 𝑣𝑝

𝐿,𝑧 ∈ V𝑝
𝐿,𝑧 for 𝑧 ∈ 𝒱𝐿 ∖ 𝒱+

𝐿 , we obtain the decomposition (34). It remains to show that
this decomposition is stable (35). First, we have for the coarsest level that

‖∇𝑣0‖2
(25)
≤ (𝑑 + 1)

∑︁
𝑧∈𝒱0

⃦⃦
∇𝑣1

0,𝑧

⃦⃦2
.

For the finest level, it holds that∑︁
𝑧∈𝒱𝐿

‖∇𝑣𝐿,𝑧‖2 ≤
∑︁

𝑧∈𝒱𝐿∖𝒱+
𝐿

⃦⃦⃦
∇𝑣𝑝

𝐿,𝑧

⃦⃦⃦2

+ 2
∑︁

𝑧∈𝒱𝐿

(︂⃦⃦
∇𝑣1

𝐿,𝑧

⃦⃦2
+
⃦⃦⃦
∇𝑣𝑝

𝐿,𝑧

⃦⃦⃦2
)︂

≤ (𝑑 + 1)
∑︁

𝑧∈𝒱+
𝐿

⃦⃦
∇𝑣1

𝐿,𝑧

⃦⃦2
+ (𝑑 + 1)

∑︁
𝑧∈𝒱𝐿

⃦⃦⃦
∇𝑣𝑝

𝐿,𝑧

⃦⃦⃦2

.

A combination of the two estimates shows that

‖∇𝑣0‖2 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

‖∇𝑣ℓ,𝑧‖2 +
∑︁

𝑧∈𝒱𝐿

‖∇𝑣𝐿,𝑧‖2
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≤ (𝑑 + 1)

⎛⎝∑︁
𝑧∈𝒱0

⃦⃦
∇𝑣1

0,𝑧

⃦⃦2
+

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦2
+
∑︁

𝑧∈𝒱+
𝐿

⃦⃦
∇𝑣1

𝐿,𝑧

⃦⃦2
+
∑︁

𝑧∈𝒱𝐿

⃦⃦⃦
∇𝑣𝑝

𝐿,𝑧

⃦⃦⃦2

⎞⎠
≤ (𝑑 + 1)

𝐿∑︁
ℓ=0

∑︁
𝑧∈𝒱+

ℓ

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦2
+ (𝑑 + 1)

∑︁
𝑧∈𝒱𝐿

⃦⃦⃦
∇𝑣𝑝

𝐿,𝑧

⃦⃦⃦2

(31)
≤ 𝐶2

ML (𝑑 + 1)
⃦⃦
∇𝑣1

𝐿

⃦⃦2
+ (𝑑 + 1)

∑︁
𝑧∈𝒱𝐿

⃦⃦⃦
∇𝑣𝑝

𝐿,𝑧

⃦⃦⃦2

(29)
≤ max{1, 𝐶2

ML}𝐶2
OL (𝑑 + 1)‖∇𝑣𝐿‖2.

Hence, the decomposition (34) is stable with (𝐶 ′SD)2 := max
{︀

1, 𝐶2
ML

}︀
𝐶2

OL(𝑑 + 1) with respect to the 𝐻1(Ω)-
seminorm. Taking into account the variations of the diffusion coefficient 𝐾, we obtain (35) with the stability
constant 𝐶SD := 𝐶 ′SDΛmax/Λmin. �

5.3. Strengthened Cauchy–Schwarz inequality on NVB-generated meshes

The following results are proved in the spirit of [14, 21]. Note that the setting of this work is similar to [21],
and unlike [14], the underlying adaptive meshes of the space hierarchy are not restricted to one bisection per
level.

For analysis purposes, we introduce a sequence of uniformly refined triangulations indicated by {̂︀𝒯𝑗}𝑀
𝑗=0 such

that ̂︀𝒯𝑗+1 := refine(̂︀𝒯𝑗 , ̂︀𝒯𝑗) and ̂︀𝒯0 = 𝒯0, where refine enforces one bisection per element. According to [34],
admissibility of 𝒯0 ensures that indeed each element 𝑇 ∈ ̂︀𝒯𝑗 is bisected only once into two children 𝑇 ′, 𝑇 ′′ ∈ ̂︀𝒯𝑗+1.
In the following, we will indicate the equivalent notation to Section 2 on uniform triangulations ̂︀𝒯𝑗 with a hat,
e.g., ̂︀V1

𝑗 is the equivalent of V1
ℓ on the uniformly refined mesh ̂︀𝒯𝑗 . The connection of the uniformly refined meshes

and their adaptively generated counterpart requires further notation. For a given level 0 ≤ ℓ ≤ 𝐿 and a given
node 𝑧 ∈ 𝒱ℓ, we define the generation 𝑔ℓ,𝑧 of the patch by the maximum number of times an element of the
patch has been bisected

𝑔ℓ,𝑧 := max
𝑇∈𝒯ℓ,𝑧

log2(|𝑇0|/|𝑇 |) ∈ N0, (36)

where 𝑇0 ∈ 𝒯0 denotes the unique ancestor element of 𝑇 ∈ 𝒯ℓ. Define the maximal generation 𝑀 = max𝑧∈𝒱𝐿
𝑔𝐿,𝑧.

First, we present the following result for uniformly refined meshes and then exploit this for our setting of
adaptively refined meshes.

Lemma 5.6 (Strengthened Cauchy–Schwarz on nested uniform meshes). Let 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑀 , and ̂︀𝑢𝑖 ∈ ̂︀V1
𝑖 as

well as ̂︀𝑣𝑗 ∈ ̂︀V1
𝑗 . Then, it holds that

⟨⟨̂︀𝑢𝑖, ̂︀𝑣𝑗⟩⟩ ≤ ̂︀𝐶SCS 𝛿𝑗−𝑖 ̂︀ℎ−1
𝑗 ‖∇̂︀𝑢𝑖‖‖̂︀𝑣𝑗‖, (37)

where 𝛿 = 2−1/2 and ̂︀𝐶SCS > 0 depends only on the domain Ω, the initial triangulation 𝒯0, Λmax,
max𝑇∈̂︀𝒯𝑀

‖ div(𝐾)‖𝐿∞(𝑇 ), and 𝛾-shape regularity from (5).

Proof. We begin by splitting the domain Ω into elementwise components, applying integration by parts, and
using the Cauchy–Schwarz inequality. Note that the restriction of ̂︀𝑢𝑖 to any element 𝑇 ∈ ̂︀𝒯𝑖 is an affine function,
and hence the second derivatives vanish. Thus, it holds with the outer normal 𝑛 to 𝜕𝑇 that

⟨⟨̂︀𝑢𝑖, ̂︀𝑣𝑗⟩⟩ =
∑︁
𝑇∈̂︀𝒯𝑖

∫︁
𝑇

𝐾∇̂︀𝑢𝑖 · ∇̂︀𝑣𝑗 d𝑥
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=
∑︁
𝑇∈̂︀𝒯𝑖

(︂
−
∫︁

𝑇

div(𝐾∇̂︀𝑢𝑖)̂︀𝑣𝑗 d𝑥 +
∫︁

𝜕𝑇

𝐾∇̂︀𝑢𝑖 · 𝑛 ̂︀𝑣𝑗 d𝑥

)︂
≤
∑︁
𝑇∈̂︀𝒯𝑖

(︁
‖(div𝐾) · ∇̂︀𝑢𝑖‖𝐿2(𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝑇 ) + ‖𝐾∇̂︀𝑢𝑖‖𝐿2(𝜕𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝜕𝑇 )

)︁
.

Due to 𝐾 ∈ 𝑊 1,∞(𝑇 ), the fact that ̂︀𝑢𝑖, ̂︀𝑣𝑗 are piecewise affine, a discrete trace inequality, and ̂︀ℎ−1
𝑖 & 1, we get

⟨⟨̂︀𝑢𝑖, ̂︀𝑣𝑗⟩⟩ .
∑︁
𝑇∈̂︀𝒯𝑖

(︁
‖∇̂︀𝑢𝑖‖𝐿2(𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝑇 ) + ‖∇̂︀𝑢𝑖‖𝐿2(𝜕𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝜕𝑇 )

)︁
.
∑︁
𝑇∈̂︀𝒯𝑖

(︁
‖∇̂︀𝑢𝑖‖𝐿2(𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝑇 ) +

(︁̂︀ℎ−1/2
𝑖 ‖∇̂︀𝑢𝑖‖𝐿2(𝑇 )

)︁(︁̂︀ℎ−1/2
𝑖 ‖̂︀𝑣𝑗‖𝐿2(𝑇 )

)︁)︁
=
∑︁
𝑇∈̂︀𝒯𝑖

(︀
1 + ℎ−1

𝑖

)︀
‖∇̂︀𝑢𝑖‖𝐿2(𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝑇 )

.
∑︁
𝑇∈̂︀𝒯𝑖

̂︀ℎ−1
𝑖 ‖∇̂︀𝑢𝑖‖𝐿2(𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝑇 ).

Moreover, note that due to uniform refinement, we have the equivalence 𝛿𝑗−𝑖 = (2−1/2)𝑗−𝑖 ≃
(︀̂︀ℎ𝑗/̂︀ℎ𝑖

)︀1/2 and̂︀ℎ𝑗 ≤ ̂︀ℎ𝑖. Using the last equation multiplied by 1 = ̂︀ℎ1/2
𝑗
̂︀ℎ−1/2

𝑗 , we derive that

⟨⟨̂︀𝑢𝑖, ̂︀𝑣𝑗⟩⟩ .
∑︁
𝑇∈̂︀𝒯𝑖

(︃̂︀ℎ𝑗̂︀ℎ𝑖

)︃1/2 ̂︀ℎ−1/2
𝑖

̂︀ℎ−1/2
𝑗 ‖∇̂︀𝑢𝑖‖𝐿2(𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝑇 )

.
∑︁
𝑇∈̂︀𝒯𝑖

𝛿𝑗−𝑖 ̂︀ℎ−1
𝑗 ‖∇̂︀𝑢𝑖‖𝐿2(𝑇 )‖̂︀𝑣𝑗‖𝐿2(𝑇 ) ≤ ̂︀ℎ−1

𝑗 𝛿𝑗−𝑖‖∇̂︀𝑢𝑖‖𝐿2(Ω)‖̂︀𝑣𝑗‖𝐿2(Ω).

This concludes the proof. �

The last result enables us to tackle the setting of adaptively refined meshes.

Proposition 5.7 (Strengthened Cauchy–Schwarz on nested adaptive meshes). Consider levelwise functions
𝑣ℓ =

∑︀
𝑧∈𝒱+

ℓ
𝑣1

ℓ,𝑧 ∈ V1
ℓ with 𝑣1

ℓ,𝑧 ∈ V1
ℓ,𝑧 for all 1 ≤ ℓ ≤ 𝐿− 1. Then, it holds that

𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟨⟨𝑣𝑘, 𝑣ℓ⟩⟩ ≤ 𝐶SCS

⎛⎝𝐿−2∑︁
𝑘=1

∑︁
𝑤∈𝒱+

𝑘

⃒⃒⃒⃒⃒⃒
𝑣1

𝑘,𝑤

⃒⃒⃒⃒⃒⃒2⎞⎠1/2⎛⎝𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

⃒⃒⃒⃒⃒⃒
𝑣1

ℓ,𝑧

⃒⃒⃒⃒⃒⃒2⎞⎠1/2

, (38)

where 𝐶SCS > 0 depends only on Ω, the initial triangulation 𝒯0, Λmax/Λmin, max𝑇∈𝒯𝐿
‖ div(𝐾)‖𝐿∞(𝑇 )/Λmin,

and 𝛾-shape regularity (5).

Proof. Let 𝑀 ∈ N. The proof consists of five steps.

Step 1. First note that, for any 0 < 𝛿 < 1 and 𝑥𝑖, 𝑦𝑖 > 0 with 0 ≤ 𝑖 ≤ 𝑀 , there holds

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝛿𝑗−𝑖𝑥𝑖𝑦𝑗 ≤
1

1− 𝛿

(︃
𝑀∑︁
𝑖=0

𝑥2
𝑖

)︃1/2
⎛⎝ 𝑀∑︁

𝑗=0

𝑦2
𝑗

⎞⎠1/2

. (39)
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To see this, we change the summation order accordingly and use the Cauchy–Schwarz inequality to obtain
𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝛿𝑗−𝑖𝑥𝑖𝑦𝑗 =
𝑀∑︁
𝑖=0

𝑀−𝑖∑︁
𝑚=0

𝛿𝑚𝑥𝑖𝑦𝑚+𝑖 =
𝑀∑︁

𝑚=0

𝑀−𝑚∑︁
𝑖=0

𝛿𝑚𝑥𝑖𝑦𝑚+𝑖

≤
𝑀∑︁

𝑚=0

𝛿𝑚

⎡⎣(︃𝑀−𝑚∑︁
𝑖=0

𝑥2
𝑖

)︃1/2(︃𝑀−𝑚∑︁
𝑖=0

𝑦2
𝑚+𝑖

)︃1/2
⎤⎦ ≤ (︃ 𝑀∑︁

𝑚=0

𝛿𝑚

)︃(︃
𝑀∑︁
𝑖=0

𝑥2
𝑖

)︃1/2
⎛⎝ 𝑀∑︁

𝑗=0

𝑦2
𝑗

⎞⎠1/2

.

The geometric series then proves the claim (39).
Step 2. Let 𝑧 ∈ 𝒱𝐿 and 0 ≤ 𝑗 ≤ 𝑀 and recall the patch generation 𝑔ℓ,𝑧 from (36). We introduce the set

Lℓ,ℓ(𝑧, 𝑗) :=
{︀
ℓ ∈

{︀
ℓ, . . . , ℓ

}︀
: 𝑧 ∈ 𝒱+

ℓ and 𝑔ℓ,𝑧 = 𝑗
}︀

with 0 ≤ ℓ ≤ ℓ ≤ 𝐿. (40)

This set allows to track how large the levelwise overlap of patches with the same generation is. Crucially,
the cardinality of these sets is uniformly bounded by

max
𝑧∈𝒱𝐿

0≤𝑗≤𝑀

#(L0,𝐿(𝑧, 𝑗)) ≤ 𝐶lev < ∞; (41)

see, e.g., Lemma 3.1 of [36] in the two-dimensional setting with arguments that transfer to three dimensions.
The constant 𝐶lev solely depends on 𝛾-shape regularity (5).

Step 3. We introduce a way to reorder the patch contributions by generations (36). Note that, for any 0 ≤ 𝑗 ≤
𝑀 , 1 ≤ ℓ ≤ 𝐿−1, and 𝑧 ∈ 𝒱+

ℓ such that 𝑔ℓ,𝑧 = 𝑗, the patch contribution 𝑣1
ℓ,𝑧 ∈ V1

ℓ,𝑧 also belongs to ̂︀V1
𝑗 . Once

the generation constraint is introduced, one can shift the perspective from summing over “adaptive” levels
and associated vertices to summing over “uniform” vertices and only the (finitely many, cf. (41)) levels where
each vertex satisfies the generation constraint, i.e., for 0 ≤ ℓ ≤ ℓ ≤ 𝐿 and 0 ≤ 𝑗 ≤ 𝑀 , the two following sets
coincide

{︀
(ℓ, 𝑧) ∈ N0 × 𝒱𝐿 : ℓ ∈

{︀
ℓ, . . . , ℓ

}︀
, 𝑧 ∈ 𝒱+

ℓ with 𝑔ℓ,𝑧 = 𝑗
}︀

=
{︀
(ℓ, 𝑧) ∈ N0 × 𝒱𝐿 : 𝑧 ∈ ̂︀𝒱𝑗 , ℓ ∈Lℓ,ℓ(𝑧, 𝑗)

}︀
. (42)

Step 4. According to 𝛾-shape regularity (5), all elements in the patch have comparable size depending on 𝐶qu

from (6). If 𝑔ℓ,𝑧 = 𝑗, (at least) one element 𝑇 ⋆ ∈ 𝒯ℓ,𝑧 satisfies 𝑇 ⋆ ∈ ̂︀𝒯𝑗 and it follows that ̂︀ℎ𝑗 ≃ |𝑇 ⋆|1/𝑑 ≃
|𝜔ℓ,𝑧|1/𝑑 ≃ ℎℓ,𝑧. In particular, there exists 𝐶eq > 0 such that̂︀ℎ−1

𝑗 ≤ 𝐶eqℎ
−1
ℓ,𝑧 . (43)

Step 5. We proceed to prove the main estimate (38). The central feature of the following approach is to intro-
duce additional sums over the generations with generation constraints, i.e., there holds for every admissible
ℓ, 𝑘, that

⟨⟨𝑣𝑘, 𝑣ℓ⟩⟩ =
∑︁

𝑧∈𝒱+
ℓ

∑︁
𝑤∈𝒱+

𝑘

⟨⟨𝑣1
𝑘,𝑤, 𝑣1

ℓ,𝑧⟩⟩ =
𝑀∑︁

𝑗=0

𝑀∑︁
𝑖=0

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

⟨⟨𝑣1
𝑘,𝑤, 𝑣1

ℓ,𝑧⟩⟩

=
𝑀∑︁

𝑗=0

𝑗∑︁
𝑖=0

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

⟨⟨𝑣1
𝑘,𝑤, 𝑣1

ℓ,𝑧⟩⟩+
𝑀∑︁

𝑗=0

𝑀∑︁
𝑖=𝑗+1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

⟨⟨𝑣1
𝑘,𝑤, 𝑣1

ℓ,𝑧⟩⟩.

We abbreviate the terms as 𝑆1(ℓ, 𝑘) and 𝑆2(ℓ, 𝑘), respectively. A change of the summation of order 𝑖 and 𝑗
yields for 𝑆1(ℓ, 𝑘) that

𝑆1(ℓ, 𝑘) =
𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

⟨⟨𝑣1
𝑘,𝑤, 𝑣1

ℓ,𝑧⟩⟩.
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Summing 𝑆2(ℓ, 𝑘) over all ℓ and 𝑘 and changing the order of summation, we obtain

𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

𝑆2(ℓ, 𝑘) =
𝑀∑︁

𝑗=0

𝑀∑︁
𝑖=𝑗+1

𝐿−2∑︁
𝑘=1

𝐿−1∑︁
ℓ=𝑘+1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

⟨⟨𝑣1
𝑘,𝑤, 𝑣1

ℓ,𝑧⟩⟩.

Combining these two identities with (42), we see that

𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

(𝑆1(ℓ, 𝑘) + 𝑆2(ℓ, 𝑘)) =
𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝐿−1∑︁
ℓ=1

⟨⟨∑︁
𝑤∈̂︀𝒱𝑖

∑︁
𝑘∈L1,ℓ−1(𝑤,𝑖)

𝑣1
𝑘,𝑤,

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

𝑣1
ℓ,𝑧

⟩⟩

+
𝑀∑︁

𝑗=0

𝑀∑︁
𝑖=𝑗+1

𝐿−2∑︁
𝑘=1

⟨⟨ ∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

𝑣1
𝑘,𝑤,

∑︁
𝑧∈̂︀𝒱𝑗

∑︁
ℓ∈L𝑘+1,𝐿−1(𝑧,𝑗)

𝑣1
ℓ,𝑧

⟩⟩
.

We define the last two terms as 𝑆1 and 𝑆2, respectively. Since the second term 𝑆2 is treated in the same way,
we only present detailed estimations of the first term 𝑆1. The strengthened Cauchy–Schwarz inequality (37)
for functions defined on uniform meshes followed by the patch overlap (24) leads to

𝑆1 ≤ ̂︀𝐶SCS

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖

𝛿𝑗−𝑖
𝐿−1∑︁
ℓ=1

⎛⎜⎝(𝑑 + 1)
∑︁

𝑤∈̂︀𝒱𝑖

⃦⃦⃦⃦
⃦⃦ ∑︁

𝑘∈L1,ℓ−1(𝑤,𝑖)

∇𝑣1
𝑘,𝑤

⃦⃦⃦⃦
⃦⃦

2
⎞⎟⎠

1/2 ∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

̂︀ℎ−1
𝑗

⃦⃦
𝑣1

ℓ,𝑧

⃦⃦
.

The identity (42) and the finite levelwise overlap (41) show

∑︁
𝑤∈̂︀𝒱𝑖

⃦⃦⃦⃦
⃦⃦ ∑︁

𝑘∈L1,ℓ−1(𝑤,𝑖)

∇𝑣1
𝑘,𝑤

⃦⃦⃦⃦
⃦⃦

2

≤
ℓ−1∑︁
𝑘=1

∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

#(L1,ℓ−1(𝑤, 𝑖))
⃦⃦
∇𝑣1

𝑘,𝑤

⃦⃦2≤ 𝐶lev

𝐿−2∑︁
𝑘=1

∑︁
𝑤∈𝒱+

𝑘
𝑔𝑘,𝑤=𝑖

⃦⃦
∇𝑣1

𝑘,𝑤

⃦⃦2
.

The equivalence of mesh sizes from (43) and a Poincaré-inequality prove

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

̂︀ℎ−1
𝑗

⃦⃦
𝑣1

ℓ,𝑧

⃦⃦
≤ 𝐶eq𝐶P

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦
.

A combination of (42) with (25) and (41), followed again by (42), yields⎛⎜⎜⎜⎝
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦
⎞⎟⎟⎟⎠

2

=

⎛⎝∑︁
𝑧∈̂︀𝒱𝑗

∑︁
ℓ∈L1,𝐿−1(𝑧,𝑗)

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦⎞⎠2

≤ (𝑑 + 1) 𝐶lev

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦2
.

Thus, we obtain the bound

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦
≤ (𝑑 + 1)1/2𝐶

1/2
lev

⎛⎜⎜⎜⎝
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ
𝑔ℓ,𝑧=𝑗

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦2

⎞⎟⎟⎟⎠
1/2

.
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Combining all estimates, together with the geometric series bound (39), confirms

𝑆1 ≤ ̂︀𝐶SCS (𝑑 + 1) 𝐶lev 𝐶eq 𝐶P
1

1− 𝛿

⎛⎝𝐿−2∑︁
𝑘=1

∑︁
𝑤∈𝒱+

𝑘

⃦⃦
∇𝑣1

𝑘,𝑤

⃦⃦2

⎞⎠1/2⎛⎝𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

⃦⃦
∇𝑣1

ℓ,𝑧

⃦⃦2

⎞⎠1/2

.

Finally, the result (38) is obtained after summing together with the analogous estimations coming from the
remaining term 𝑆2 and taking into consideration the variations of the diffusion coefficient 𝐾 so that the
result holds for the energy norm. This concludes the proof.

�

5.4. Proof of the main results

For the sake of a concise presentation, we only consider the case 𝑝 > 1. The case 𝑝 = 1 is already covered in
the literature [14,37] and follows from our proof with only minor modifications.

Proof of Theorem 2.5, connection of solver and estimator (12). The proof consists of two steps.

Step 1. We show that there holds the identity⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

− 2

⟨⟨
𝑢⋆

𝐿 − 𝑣𝐿,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟩⟩
= −|||𝜌0|||2 +

𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ|||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2. (44)

Indeed, note that 𝜎ℓ =
∑︀ℓ

𝑘=0 𝜆𝑘𝜌𝑘. By definition of the local lowest-order problems in (10) and (11) as well
as the definition of 𝜌ℓ =

∑︀
𝑧∈𝒱+

ℓ
𝜌ℓ,𝑧, we have⟨⟨

𝑢⋆
𝐿 − 𝑣𝐿,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟩⟩
(9)
= 𝑅𝐿(𝜌0) +

𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

𝑅𝐿(𝜌ℓ,𝑧)
(10)
= |||𝜌0|||2 +

𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

𝑅𝐿(𝜌ℓ,𝑧)

(11)
= |||𝜌0|||2 +

𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

(︀
|||𝜌ℓ,𝑧|||2 + ⟨⟨𝜎ℓ−1, 𝜌ℓ,𝑧⟩⟩

)︀

= |||𝜌0|||2 +
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

(︃
|||𝜌ℓ,𝑧|||2 +

ℓ−1∑︁
𝑘=0

⟨⟨𝜆𝑘𝜌𝑘, 𝜌ℓ,𝑧⟩⟩

)︃

= |||𝜌0|||2 +
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2 +
𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=0

⟨⟨𝜆𝑘𝜌𝑘, 𝜆ℓ𝜌ℓ⟩⟩.

Thus, by expanding the square, we have⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

− 2

⟨⟨
𝑢⋆

𝐿 − 𝑣𝐿,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟩⟩
=

𝐿−1∑︁
ℓ=0

|||𝜆ℓ𝜌ℓ|||2 − 2|||𝜌0|||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2

= −|||𝜌0|||2 +
𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ|||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2.

This proves the identity (44).
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Step 2. Recall that Φ(𝑣𝐿) = 𝑣𝐿 + 𝜎𝐿 = 𝑣𝐿 + 𝜎𝐿−1 + 𝜆𝐿𝜌𝐿. By definition of 𝑅𝐿 in (9) and the choice of 𝜆𝐿 in
Algorithm 2.1, we have

|||𝑢⋆
𝐿 − Φ(𝑣𝐿)|||2 = |||𝑢⋆

𝐿 − (𝑣𝐿 + 𝜎𝐿−1)|||2 − 2 𝜆𝐿 ⟨⟨𝑢⋆
𝐿 − (𝑣𝐿 + 𝜎𝐿−1), 𝜌𝐿⟩⟩+ |||𝜆𝐿𝜌𝐿|||2

= |||𝑢⋆
𝐿 − (𝑣𝐿 + 𝜎𝐿−1)|||2 − 2𝜆𝐿(𝑅𝐿(𝜌𝐿)− ⟨⟨𝜎𝐿−1, 𝜌𝐿⟩⟩) + 𝜆𝐿

∑︁
𝑧∈𝒱𝐿

|||𝜌𝐿,𝑧|||2

(11)
=

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝑢⋆

𝐿 −

(︃
𝑣𝐿 +

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

)︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

− 𝜆𝐿

∑︁
𝑧∈𝒱𝐿

|||𝜌𝐿,𝑧|||2.

For the first term it holds that⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝑢⋆

𝐿 −

(︃
𝑣𝐿 +

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

)︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

= |||𝑢⋆
𝐿 − 𝑣𝐿|||2 +

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

− 2

⟨⟨
𝑢⋆

𝐿 − 𝑣𝐿,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟩⟩
(44)
= |||𝑢⋆

𝐿 − 𝑣𝐿|||2 − |||𝜌0|||2 +
𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ|||2 − 2
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2

(26)
≤ |||𝑢⋆

𝐿 − 𝑣𝐿|||2 − |||𝜌0|||2 −
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2.

Combining the last two estimates with the definition of 𝜁𝐿(𝑣𝐿) in Algorithm 2.1, we obtain

|||𝑢⋆
𝐿 − Φ(𝑣𝐿)|||2 ≤ |||𝑢⋆

𝐿 − 𝑣𝐿|||2 − |||𝜌0|||2 −
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2 − 𝜆𝐿

∑︁
𝑧∈𝒱𝐿

|||𝜌𝐿,𝑧|||2

= |||𝑢⋆
𝐿 − 𝑣𝐿|||2 − 𝜁𝐿(𝑣𝐿)2.

This concludes the proof of (12).

�

Proof of Theorem 2.5, lower bound in (14). The relation between the solver and the estimator given in (12)
shows that 𝜁𝐿(𝑣𝐿) ≤ |||𝑢⋆

𝐿 − 𝑣𝐿|||. �

Proof of Corollary 2.6, equivalence of (13) and (14). We prove that the solver contraction (13) is equivalent to
the upper bound of (14).

First, suppose that (13) holds. Then, we proceed similarly as in the proof of (12) to obtain

|||𝑢⋆
𝐿 − 𝑣𝐿|||2 = |||𝑢⋆

𝐿 − Φ(𝑣𝐿)|||2 −

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ 2

⟨⟨
𝑢⋆

𝐿 − 𝑣𝐿,

𝐿−1∑︁
ℓ=0

𝜆ℓ𝜌ℓ

⟩⟩
+ 𝜆𝐿

∑︁
𝑧∈𝒱𝐿

|||𝜌𝐿,𝑧|||2

(44)
= |||𝑢⋆

𝐿 − Φ(𝑣𝐿)|||2 + |||𝜌0|||2 −
𝐿−1∑︁
ℓ=1

|||𝜆ℓ𝜌ℓ|||2 + 2
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2 + 𝜆𝐿

∑︁
𝑧∈𝒱𝐿

|||𝜌𝐿,𝑧|||2

(13)
≤ 𝑞2

ctr |||𝑢⋆
𝐿 − 𝑣𝐿|||2 + 2 𝜁𝐿(𝑣𝐿)2.

Rearranging this estimate proves the upper bound in (14) with 𝐶2
rel = 2/(1− 𝑞2

ctr) > 1.
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Second, suppose the upper bound in (14). Then, it follows that

|||𝑢⋆
𝐿 − Φ(𝑣𝐿)|||2

(12)
≤ |||𝑢⋆

𝐿 − 𝑣𝐿|||2 − 𝜁𝐿(𝑣𝐿)2
(14)
≤ |||𝑢⋆

𝐿 − 𝑣𝐿|||2 − 𝐶−2
rel |||𝑢

⋆
𝐿 − 𝑣𝐿|||2.

This verifies the solver contraction (13) for 𝑞2
ctr = 1− 𝐶−2

rel ∈ (0, 1) and concludes the equivalence proof. �

Proof of Theorem 2.5, upper bound in (14). We use the stable decomposition of Proposition 5.5 on the algebraic
error 𝑢⋆

𝐿 − 𝑣𝐿 ∈ V𝑝
𝐿 to obtain 𝑣0 ∈ V1

0, 𝑣ℓ,𝑧 ∈ V1
ℓ,𝑧 and 𝑣𝐿,𝑧 ∈ V𝑝

𝐿,𝑧 such that

𝑢⋆
𝐿 − 𝑣𝐿 = 𝑣0 +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

𝑣ℓ,𝑧 +
∑︁

𝑧∈𝒱𝐿

𝑣𝐿,𝑧

and |||𝑣0|||2 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2 +
∑︁

𝑧∈𝒱𝐿

|||𝑣𝐿,𝑧|||2 ≤ 𝐶2
SD |||𝑢⋆

𝐿 − 𝑣𝐿|||2. (45)

Note that 𝜎ℓ =
∑︀ℓ

𝑘=0 𝜆𝑘𝜌𝑘 for all ℓ = 0, . . . , 𝐿; see Algorithm 2.1. We use (45) to develop

|||𝑢⋆
𝐿 − 𝑣𝐿|||2 =

⟨⟨
𝑢⋆

𝐿 − 𝑣𝐿, 𝑣0 +
𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

𝑣ℓ,𝑧 +
∑︁

𝑧∈𝒱𝐿

𝑣𝐿,𝑧

⟩⟩

(9)
(10)
= ⟨⟨𝜌0, 𝑣0⟩⟩+

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

𝑅𝐿(𝑣ℓ,𝑧) +
∑︁

𝑧∈𝒱𝐿

𝑅𝐿(𝑣𝐿,𝑧)

(11)
= ⟨⟨𝜌0, 𝑣0⟩⟩+

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

(⟨⟨𝜌ℓ,𝑧, 𝑣ℓ,𝑧⟩⟩+ ⟨⟨𝜎ℓ−1, 𝑣ℓ,𝑧⟩⟩) +
∑︁

𝑧∈𝒱𝐿

(⟨⟨𝜌𝐿,𝑧, 𝑣𝐿,𝑧⟩⟩+ ⟨⟨𝜎𝐿−1, 𝑣𝐿,𝑧⟩⟩).

Expanding 𝜎ℓ = 𝜌0 +
∑︀ℓ

𝑘=1 𝜆ℓ𝜌ℓ and rearranging the terms finally leads to

|||𝑢⋆
𝐿 − 𝑣𝐿|||2 =

⟨⟨
𝜌0, 𝑣0 +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

𝑣ℓ,𝑧 +
∑︁

𝑧∈𝒱𝐿

𝑣𝐿,𝑧

⟩⟩
+

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

⟨⟨𝜌ℓ,𝑧, 𝑣ℓ,𝑧⟩⟩

+
∑︁

𝑧∈𝒱𝐿

⟨⟨𝜌𝐿,𝑧, 𝑣𝐿,𝑧⟩⟩+
𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟨⟨
𝜆𝑘𝜌𝑘,

∑︁
𝑧∈𝒱+

ℓ

𝑣ℓ,𝑧

⟩⟩
+

𝐿−1∑︁
𝑘=1

⟨⟨
𝜆𝑘𝜌𝑘,

∑︁
𝑧∈𝒱𝐿

𝑣𝐿,𝑧

⟩⟩
.

Note that, until this point, only equalities are used. In the following, we will estimate each of the constituting
terms of the algebraic error using Young’s inequality in the form 𝑎𝑏 ≤ (𝛼/2) 𝑎2 + (2𝛼)−1 𝑏2 with 𝛼 = 4𝐶2

SD,
the strengthened Cauchy–Schwarz inequality, and patch overlap arguments as done in the proof of Lemma 5.1.
Using the fact that 𝜆0 = 1 and the decomposition of the error 𝑢⋆

𝐿 − 𝑣𝐿 = 𝑣0 +
∑︀𝐿−1

ℓ=1

∑︀
𝑧∈𝒱+

ℓ
𝑣ℓ,𝑧 +

∑︀
𝑧∈𝒱𝐿

𝑣𝐿,𝑧,

we see that the first term yields⟨⟨
𝜌0, 𝑣0 +

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

𝑣ℓ,𝑧 +
∑︁

𝑧∈𝒱𝐿

𝑣𝐿,𝑧

⟩⟩
(45)
= ⟨⟨𝜌0, 𝑢⋆

𝐿 − 𝑣𝐿⟩⟩ ≤
1
2
|||𝜆0𝜌0|||2 +

1
2
|||𝑢⋆

𝐿 − 𝑣𝐿|||2.

For the second term, we obtain that

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

⟨⟨𝜌ℓ,𝑧, 𝑣ℓ,𝑧⟩⟩ ≤ 2𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2 +
1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2
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(27)
≤ 2𝐶2

SD (𝑑 + 1)
𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2 +
1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2,

and similarly for the third term

∑︁
𝑧∈𝒱𝐿

⟨⟨𝜌𝐿,𝑧, 𝑣𝐿,𝑧⟩⟩
(27)
≤ 2 𝐶2

SD (𝑑 + 1) 𝜆𝐿

∑︁
𝑧∈𝒱𝐿

|||𝜌𝐿,𝑧|||2 +
1

8𝐶2
SD

∑︁
𝑧∈𝒱𝐿

|||𝑣𝐿,𝑧|||2.

For the fourth term, we have

𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟨⟨
𝜆𝑘𝜌𝑘,

∑︁
𝑧∈𝒱+

ℓ

𝑣ℓ,𝑧

⟩⟩
(38)
≤ 𝐶SCS

⎛⎝𝐿−2∑︁
𝑘=1

∑︁
𝑤∈𝒱+

𝑘

|||𝜆𝑘𝜌𝑘,𝑤|||2
⎞⎠1/2⎛⎝𝐿−1∑︁

ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2
⎞⎠1/2

≤ 2 𝐶2
SCS 𝐶2

SD

𝐿−2∑︁
𝑘=0

∑︁
𝑤∈𝒱+

𝑘

|||𝜆𝑘𝜌𝑘,𝑤|||2 +
1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2

(27)
≤ 2𝐶2

SCS 𝐶2
SD (𝑑 + 1)

𝐿−2∑︁
𝑘=0

𝜆𝑘

∑︁
𝑤∈𝒱+

𝑘

|||𝜌𝑘,𝑤|||2 +
1

8𝐶2
SD

𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2.

Finally, to treat the last term where higher-order terms appear together with a sum over levels, we proceed
similarly as in Proof of Theorem 4.8 from [14] and obtain

𝐿−1∑︁
𝑘=1

⟨⟨
𝜆𝑘𝜌𝑘,

∑︁
𝑧∈𝒱𝐿

𝑣𝐿,𝑧

⟩⟩
=
∑︁

𝑧∈𝒱𝐿

⟨⟨
𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘, 𝑣𝐿,𝑧

⟩⟩

≤ 2𝐶2
SD

∑︁
𝑧∈𝒱𝐿

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

𝜔𝐿,𝑧

+
1

8𝐶2
SD

∑︁
𝑧∈𝒱𝐿

|||𝑣𝐿,𝑧|||2.

For the first term of the last bound, we have that

∑︁
𝑧∈𝒱𝐿

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

𝜔𝐿,𝑧

.

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝐿−1∑︁
𝑘=1

𝜆𝑘𝜌𝑘

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

=
𝐿−1∑︁
𝑘=1

|||𝜆𝑘𝜌𝑘|||2 + 2
𝐿−1∑︁
ℓ=1

ℓ−1∑︁
𝑘=1

⟨⟨𝜆𝑘𝜌𝑘, 𝜆ℓ𝜌ℓ⟩⟩

(38)
≤

𝐿−1∑︁
𝑘=1

|||𝜆𝑘𝜌𝑘|||2 + 2 𝐶SCS

⎛⎝𝐿−2∑︁
𝑘=1

∑︁
𝑤∈𝒱+

𝑘

|||𝜆𝑘𝜌𝑘,𝑤|||2
⎞⎠1/2⎛⎝𝐿−1∑︁

ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝜆ℓ𝜌ℓ,𝑧|||2
⎞⎠1/2

(27)
(26)
≤ (1 + 2 𝐶SCS (𝑑 + 1))

⎛⎝𝐿−1∑︁
ℓ=1

𝜆ℓ +
∑︁

𝑧∈𝒱+
ℓ

|||𝜌ℓ,𝑧|||2
⎞⎠.

Summing all the estimates of the algebraic error components and defining the constant 𝐶2
rel := max{1/2, 𝐶2

SD (𝑑+
1)
(︀
2 + 𝐶2

SCS + 2 𝐶SCS (𝑑 + 1)1/2
)︀
}, we see that

|||𝑢⋆
𝐿 − 𝑣𝐿|||2 ≤

1
2
|||𝜆0𝜌0|||2 +

1
2
|||𝑢⋆

𝐿 − 𝑣𝐿|||2 + 4𝐶2
rel

⎛⎝𝐿−1∑︁
ℓ=1

𝜆ℓ

∑︁
𝑧∈𝒱+

ℓ

|||𝜌ℓ,𝑧|||2 + 𝜆𝐿

∑︁
𝑧∈𝒱𝐿

|||𝜌𝐿,𝑧|||2
⎞⎠
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+
1

4𝐶2
SD

⎛⎝𝐿−1∑︁
ℓ=1

∑︁
𝑧∈𝒱+

ℓ

|||𝑣ℓ,𝑧|||2 +
∑︁

𝑧∈𝒱𝐿

|||𝑣𝐿,𝑧|||2
⎞⎠

(45)
≤ 4𝐶2

rel 𝜁𝐿(𝑣𝐿)2 +
3
4
|||𝑢⋆

𝐿 − 𝑣𝐿|||2.

After rearranging the terms, we finally obtain that

|||𝑢⋆
𝐿 − 𝑣𝐿|||2 ≤ 𝐶2

rel 𝜁𝐿(𝑣𝐿)2. (46)

This proves the upper bound of (14) and thus concludes the proof of Theorem 2.5. �
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[31] U. Rüde, Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30 (1993) 230–248.
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