
Integration von Worst-Case
Optimal Join Algorithmen in

Spalten-Orientierte Datenbanken

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Martin Ledl, BSc
Matrikelnummer 01634019

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Mitwirkung: Dipl.-Ing. Dr.techn. Matthias Lanzinger

Wien, 20. Dezember 2021
Martin Ledl Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Integration of Worst-Case Optimal
Join Algorithms into

Column-Stores

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Martin Ledl, BSc
Registration Number 01634019

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Assistance: Dipl.-Ing. Dr.techn. Matthias Lanzinger

Vienna, 20th December, 2021
Martin Ledl Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Martin Ledl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Dezember 2021
Martin Ledl

v





Danksagung

Ich möchte mich an dieser Stelle recht herzlich bei meinem Betreuer Univ.Prof. Mag.rer.nat.
Dr.techn. Reinhard Pichler für die Hilfe zu Fragen aus dem Bereich der Datenbanktheo-
rie bedanken. Weiters hat mir Ihr konstruktives Feedback zu den diversen Kapiteln
und Ausarbeitungen dieser Arbeit sehr dabei geholfen, das Hintergrundwissen sowie
meine Ausarbeitung und Ergebnisse verständlich zu verschriftlichen. Mein Dank gilt
auch Dipl.-Ing. Dr.techn. Matthias Lanzinger, der mich auf das Thema dieser Arbeit
aufmerksam gemacht hat und der mich vor allem bei der Evaluierung der Ergebnisse
unterstützt hat. Abschließend möchte ich mich recht herzlich bei meinen Eltern Aloisia
und Josef Ledl bedanken, die mich während meines Studiums bedingungslos unterstützt
haben.

vii





Acknowledgements

At this point I would like to thank my supervisor Univ.Prof. Mag.rer.nat. Dr.techn.
Reinhard Pichler for the provided help to questions in the field of database theory.
Furthermore, your constructive feedback on various chapters and elaborations helped me
a lot to write background knowledge, the contribution of this thesis as well as its results
in an understandable way. Special thanks further go to Dipl.-Ing. Dr.techn. Matthias
Lanzinger, who drew my attention to the topic of this thesis and who supported me in
various belongings, especially with the evaluation of this work. Finally, I would like to
thank my parents Aloisia and Josef Ledl, who supported me unconditionally during my
studies.

ix





Kurzfassung

Business Intelligence und andere analytische Systeme müssen mit immer größer werden-
den Datenmengen umgehen und Abfragen so schnell wie möglich beantworten können.
Die Auswertung von Joins ist eine zentrale Herausforderung für Datenbanksysteme, um
gestellte Abfragen effizient beantworten zu können. Diese Anforderung hebt die Notwen-
digkeit von Optimierungen des Berechnungsprozesses von Datenbankabfragen hervor.
Deshalb wurde viel Forschung in diesem Bereich betrieben, um Konzepte zur ressourcen-
schonenden und laufzeiteffizienten Berechnung von Join-Abfragen zu entwickeln.
Der Forschungsbereich von Spalten-orientierten Datenbanksystemen hat eine neue Da-
tenbankarchitektur hervorgebracht, die Mängel von traditionellen Zeilen-orientierten
Systemen verbessern soll. Diese Systeme zerteilen Datenbanken vertikal und speichern
Spalten unabhängig voneinander. Über Jahrzehnte wurden viele Konzepte erforscht
und entwickelt, die die Effizienz von Spalten-orientierten Datenbanksystemen verbes-
sern. Ein anderer Forschungsbereich, der sich mit Abfragen-Optimierung beschäftigt,
erforscht Worst-Case Optimal Joins. Dieser Bereich hat theoretische Konzepte und Al-
gorithmen hervorgebracht, die enge Laufzeitgrenzen auf Join-Algorithmen definieren.
Beide Forschungsbereiche haben, unabhängig voneinander, erfolgreiche Arbeit im Zu-
sammenhang Join-Optimierung geleistet. Diese Arbeit ist die Erste, die das Potenzial
der Join-Optimierung erforscht, die aus einer Kombination von Konzepten aus beiden
Forschungsbereichen folgt.
Weiters diskutiert diese Arbeit Forschungsergebnisse aus beiden Bereichen und stellt
einen Ansatz zur Integration von Worst-Case Optimal Join Algorithmen vor. Der Inte-
grationsprozess diskutiert den Abfragen-Compiler eines spezifischen Spalten-orientierten
Datenbanksystems sowie die manuelle Übersetzung eines Worst-Case Optimal Join Al-
gorithmus in die interne Sprache des Systems. Abschließend behandelt diese Arbeit
die Integration dieser manuellen Übersetzung in den Compiler des Systems, sowie die
experimentelle Auswertung des daraus resultierende Datenbanksystems.
Diese Auswertung hat gezeigt, dass unser System die getesteten natürlichen Join-Abfragen
effizienter auswertet als das originale Datenbanksystem, wenn eine Schräglage in den
Daten vorliegt. Weiters hat sich die Laufzeitdifferenz zwischen den beiden evaluierten
Systemen, mit zunehmender Tabellengröße, erhöht. Die Arbeit belegt ebenfalls, dass
unser System Abfragen auf Datenbanken mit Tabellengrößen auswerten kann, die zu Spei-
cherfehlern beim originalen System führen. Diese Auswertung unterstreicht die praktische
Relevanz von Worst-Case Optimal Joins im Kampf gegen Schräglagen in Daten.
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Abstract

Business intelligence and analytical systems have to handle an increasing amount of
data and require to be capable of answering queries as fast as possible. Therefore, the
evaluation of joins has become a major challenge to be tackled by any database system in
order to efficiently evaluate queries. To that end, plenty of research has been conducted
to introduce concepts to compute join queries in a resource and runtime efficient way.
The research area of column-oriented database systems aims for overcoming shortcomings
of traditional row-wise systems by designing a new database architecture from scratch.
Such column-stores vertically partition a database and store columns independently of
each other. Furthermore, various techniques that enhance performance of column-oriented
database systems have been introduced in this field over the past decades. Another
research area that aims for optimizing query performance deals with worst-case optimal
joins. Theoretical concepts and algorithms that define tight bounds on join algorithms’
runtime have been introduced in this field. Both research areas successfully came up
with join optimization concepts independently of each other. Since a combination of
concepts from both fields yield great potential for further performance optimization, this
thesis aims for integrating worst-case optimal joins into column-stores and is the first
work to perform and evaluate such combination.
Moreover, this thesis discusses research conducted in both areas and introduces a way of
integrating worst-case optimal join algorithms into column-oriented database systems
based on the outlined knowledge. The integration process discusses the query compiler
of a specific column-store system and the manual translation of a class of worst-case
optimal join algorithms into its internal language. Finally, the result of the manual
translation is integrated into the column-store’s query compiler and the resulting system
is experimentally evaluated against the original system.
The experimental evaluation showed that our system outperforms the original one on a
given set of natural join queries in settings with skewed data. Moreover, the difference
in runtime performance between both systems continuously increased with higher input
relation sizes. This thesis further showed that the column-store with worst-case optimal
join algorithm integrated can evaluate natural join queries with big input relation sizes
which cause memory allocation errors for the original systems. Finally, the evaluation
underlines the practical potential of worst-case optimal join algorithms for fighting skew
in input data.
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CHAPTER 1
Introduction

An increasing number of business intelligence and analytical systems are essential to
various domains of today’s life. These systems are required to process an increasing
amount of data and have to serve growing database workloads, which inevitably lead to
performance problems. Moreover, the structure of data to be queried can impact the
overall query performance. Therefore, querying skewed data can have severe performance
implications for database systems. Due to these circumstances, there has been a pressing
need for performance enhancement in query processing and many promising concepts
have been developed to tackle these challenges. Furthermore, a lot of interdisciplinary
research has been conducted over the last decades to improve the overall performance
of database systems. Two interesting research areas in this context are column-oriented
database systems and Worst Case Optimal Join (WCOJ) algorithms, which both have
independently achieved great performance benefits for query processing.

Joins represent key operations in every database system and their evaluation is
expensive. Therefore, enhancing performance of join operations will be beneficial for the
overall query performance. Thus, research in the field of worst-case optimal joins aims
for defining tight bounds on join algorithms’ runtime. Ngo et al. [NRR13] state that
traditional join plans are suboptimal, because join queries are evaluated by obtaining the
best pairwise join plan. WCOJ algorithms, which evaluate conjunctive queries in time
that matches the worst-case output size of the query, lead to provably asymptotically
better performance than the pairwise join paradigm [Ngo18]. Moreover, the performance
of WCOJ algorithm depends on the input relations of the query. Ngo et al. [NRR13]
introduced a class of WCOJ join algorithms that has a recursive structure. Their
Generic-Join algorithm 3.1 tightly bounds the runtime of a query to the maximum
output size and is a generalization of two worst-case optimal join algorithms which
are the Leapfrog Triejoin [Vel14] and an algorithm proposed by Ngo et al. [NPRR12].
This Generic-Join algorithm 3.1 aims for evaluating Multi-Way-Joins in a worst-
case optimal manner and is proven to be asymptotically better than pairwise join
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1. Introduction

evaluation. Therefore, the relevance of WCOJ algorithms to commercial and academic
data management and analytical systems increased, since such systems have to deal with
big amounts of data and query performance becomes more and more crucial [Ngo18].
Furthermore, quite a number of notable implementations and integration of WCOJ
algorithms have been carried out in the area of database system research. Aberger et al.
[ALT+17] introduced EmptyHeaded, which is a relational engine for graph processing
as well as LevelHeaded [ALOR17], which is an in-memory query processing engine
that is not restricted to graphs. Both engines evaluate queries according to the WCOJ
approach. Besides that, Freitag et al. [FBS+20] present an implementation of a class of
WCOJ algorithms into their UMBRO DBMS.

Another approach to tackle the increasing amounts of data is to introduce a database
paradigm that empowers to efficiently deal with data-intensive applications. To that
end, column-oriented database systems, also known as column-stores, have been designed
to efficiently handle big amounts of data. The column-store architecture has been
built from scratch to enhance performance of analytical systems and column-stores
are therefore designed in a fundamentally different way than row-oriented database
systems. Column-stores compose various features to increase performance on data-
intensive workloads. A fundamental difference to row-stores is that column-oriented
database systems vertically partition a database and store columns separately instead of
row-wise tuples. This column-at-a-time storage pattern has the advantage that only
attributes relevant to the query need to be loaded from disk instead of entire rows. This
enables vectorized processing and column-stores further aim for applying operations on
cache-line size blocks of data in order to reduce cache misses and disk reads as well as to
utilize modern Central Processing Units (CPUs). Column-stores benefit from compiler
optimization techniques, since vectorized operations can be implemented as tight loops
over arrays, for instance. Such pieces of code suit compiler optimizations well, which
can lead to performance enhancements on modern CPUs through Single Instruction
Multiple Data (SIMD) parallelism, for example. Moreover, some column-stores are able
to store compressed data and directly operate on such data. An important architectural
feature of column-stores with respect to join processing is late materialization, where
the construction of tuples within the query execution is delayed to the latest possible
point during execution. To that end, operators in column-stores produce and maintain
position lists that can be utilized for materialization. [ABH+13]

Specific column-store implementations can be found in the academic and commercial
area. One popular open-source system, developed in academia, is MonetDB [IGN+12].
MonetDB is actively used in health-care, telecommunications and science nowadays and
integrates many design concepts and architectural features that are typical for column-
oriented database systems. MonetDB was designed for data warehouse applications
and is leveraged in high-performance business intelligence and data mining applications.
[IGN+12]

Column-stores and WCOJ algorithms are two promising concepts for enhancing
performance of query processing. Both research areas provide concepts that successfully
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led to more efficient systems dealing with data-intensive tasks independently of each
other. Nevertheless, the traditional pairwise join evaluation paradigm of column-stores
can cause performance drawbacks for data-intensive workloads with skewed data. A
promising approach to tackle this problem, that has not been researched yet, is the
integration of WCOJs into column-oriented database systems. Furthermore, the potential
benefits of combining concepts from both research areas has not been investigated yet.
Integrating WCOJs into column-oriented database systems is promising due to the
column-at-a-time nature and architectural features of column-oriented database
systems. Moreover, column-stores capable of evaluating joins in a Multi-Way manner
as introduced by WCOJ algorithms promise to answer queries more efficiently in settings
with skewed data.

The goal of this thesis is to show that the integration of WCOJ algorithms into
column-stores leads to increased query performance. The contribution of this work
answers an open question of Ngo et al. [NRR13] from the database systems research area.
Their open question is about whether the algorithmic ideas presented in their survey can
gain runtime efficiency in database systems. Furthermore, the potential performance
benefits of combining the two introduced research fields is evaluated on a specific set
of queries. This evaluation points out the potential power of column-stores capable of
computing joins according to the WCOJ approach. Moreover, the impact of skew is
discussed and it is shown that the performance difference between a column-store with
pairwise join evaluation and one with WCOJ algorithms integrated will increase with
increasing amount of input data as well as increasing skew in the input data.

In order to be able to integrate WCOJs into column-oriented database systems, a
fundamental knowledge base of both research areas has been established by conducting
literature reviews in both fields. Moreover, the integration is carried out on the example of
the MonetDB column-store and in order to find the most efficient way of integrating a class
of WCOJ algorithms into the system, it has been analyzed through reverse engineering.
This helps to understand the original query compiler’s structure and encourages to
choose the most suitable integration possibility. The class of WCOJ algorithms to be
integrated is given by the Generic-Join algorithm 3.1 that needs to be translated
manually into a MonetDB Assembly Language (MAL) program, which is MonetDB’s
internal language. At first, a direct translation is carried out which will be improved
upon based on the corresponding evaluation results. The integration process is based
on the knowledge about MonetDB’s query compiler and the translated Generic-Join
algorithm 3.1. The result are two MonetDB systems, one with direct translation and
the other one with optimized translation integrated. Performance benchmarks of these
systems are conducted and the results are compared to the original MonetDB system in
order to point out performance benefits resulting from integrating WCOJ algorithms into
column-stores. Finally, the impact of skew in data is evaluated. The resulting system
and its evaluation has been made publicly available on Github and can be accessed under
https://github.com/mledl/MonetDB_WCOJ.

This thesis is structured as follows. Chapter 2 introduces fundamental knowledge
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1. Introduction

about column-oriented database systems and discusses important features and concepts
applied in column-stores. Furthermore, the MonetDB column-store and its internal MAL
code are visited. Chapter 3 covers fundamental knowledge about concepts in the area
of WCOJs and discusses the Generic-Join algorithm 3.1 that will be integrated into
MonetDB. Moreover, Chapter 4 is having a look at related work and outlines the structure
of MonetDB’s query compiler. Additionally, the translation of the Generic-Join
algorithm 3.1 into a MAL program is discussed in detail. Finally, the integration of this
class of WCOJ algorithms in order to compile queries into the translated MAL code is
pointed out. Chapter 5 aims for discussing the results obtained from running benchmarks
on the respective systems resulting from the integration process. Moreover, the results
are compared to a baseline which is given by the original MonetDB system.

4



CHAPTER 2
Column-oriented Database

Systems

This chapter aims for giving an introduction into column-oriented database systems,
which are also referred to as column-stores. This includes a comparison of column-oriented
database systems to more traditional row-oriented database systems and a discussion
of typical architectures. Moreover, this chapter explores different advanced features of
column-stores that cause important performance benefits. Besides giving an overview
of column-oriented database systems in general, MonetDB [Monb], a specific column-
store implementation, is discussed in more detail. Since MonetDB is a very well known
column-store in academia, the integration of worst-case optimal joins, which is elucidated
in Chapter 4, has been carried out using this specific system.

2.1 Row-oriented DBMS vs. Column-oriented DBMS
Column-oriented as well as row-oriented database systems are two different architectural
approaches of a database system with the purpose to store, manipulate, maintain and
access various kinds of data. In general, both concepts aim for serving similar purposes,
but differ in system design and technical implementation of database related features.
The column-store architecture has been designed from scratch to enhance performance of
analytical systems. The main fundamental difference to a row-oriented database system
is the storage model. Traditional row-oriented systems store data one row at a time as
shown in Table 2.1. Thus, when querying the table there is only a single data object
that holds the table’s rows which means that it also stores/loads attributes that are not
needed to serve a given query. In contrast to that, column-stores vertically partition
a database and store the columns separately instead of row-wise tuples as shown in
Table 2.2 and 2.3. In a column-oriented database system, each attribute is stored as an
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2. Column-oriented Database Systems

Name Gender Salary Job
Andi m 1510 Caretaker
Joana f 2000 Software Engineer
Sally f 1770 Farmer

Markus m 1920 Teacher

Table 2.1: Physical storage layout of row-oriented DBMS.

Name
Andi
Joana
Sally

Markus

Gender
m
f
f
m

Salary
1510
2000
1770
1920

Job
Caretaker

Software Engineer
Farmer
Teacher

Table 2.2: Physical storage layout of column-oriented DBMS with virtual ids.

independent data object in order to prevent the system from loading an unnecessary
amount of data. [ABH+13]

Facing a column-store with columns as shown in Table 2.2, a query to obtain the
average salary of females would only need to load the columns Gender and Salary
from storage to answer the query. A traditional row-oriented system is just capable of
loading whole rows and therefore has to transfer attributes that are not required as well.
Since, reading data from storage is an expensive operation in general and the amount
of attributes and data to be processed has been increasing over the past years, this
operation has become a performance bottleneck of database systems. Thus, there are
queries and workloads for which column-stores tend to be more efficient than row-stores,
since they only load the required attributes as independent data blocks from storage.
This motivates to briefly look at settings where column-oriented database systems are
beneficial and on the other hand where traditional row-stores are more suitable.

Column-stores outperform row-stores when a larger number of records is accessed,
since the data transfer time from storage will dominate the overall seek time. However,
inspecting the combination of submitted query and physical storage layout more precisely,
it can be obtained that row-stores dominate column-stores on queries that just access a
few rows with many attributes, because a column-oriented database system has to search
for various columns and load all of them, whereas a row-oriented database system can
load the required rows at once. [ABH+13]

2.2 Internals and Advanced Features
This section aims for introducing internal concepts that are of importance to an efficient
column-oriented database system. Furthermore, advanced features that lead to perfor-
mance increase of column-stores and which have to be kept in mind when integrating
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2.2. Internals and Advanced Features

Name
1 Andi
2 Joana
3 Sally
4 Markus

Gender
1 m
2 f
3 f
4 m

Salary
1 1510
2 2000
3 1770
4 1920

Job
1 Caretaker
2 Software Engineer
3 Farmer
4 Teacher

Table 2.3: Physical storage layout of column-oriented DBMS with explicit ids.

worst case optimal joins into a column-oriented database system are discussed. Abadi et
al. [ABH+13] elaborate on efforts to introduce some of these techniques to traditional
row-oriented database systems. The researchers conclude that these ideas can just be
fully beneficial for column-stores due to their completely different design.

2.2.1 Explicit IDs vs. Virtual IDs

A relation in a column-oriented database system is represented by n columns and each
column has tuple identifiers in order to obtain which entries belong to the same record
across all columns of a relation. Such identifiers can be either explicit ids as shown in
Table 2.3 or virtual/implicit ones as shown in Table 2.2. Explicit ids are represented
through an additional id column per attribute that increases the data size on disk and
will therefore lead to additional effort when reading data from storage. To overcome
this issue, modern column-oriented database systems use the tuple’s position within
the column as a virtual id. To achieve this, some column-stores like MonetDB store
attributes as dense arrays and elements belonging to the same record are located at the
same index in each of a relation’s attributes. [IGN+12]

2.2.2 Late Materialization

As discussed in the previous section, column-oriented database systems mainly differ
from row-oriented database systems in their physical storage layout. Nevertheless, they
are similar at the view and logical level and therefore column-stores need to present a
query’s output through data tuples too. To this end, column-oriented database system
apply a materialization strategy to combine the separately stored columns into data
tuples to determine intermediate results. Moreover, a column-store requires some kind of
materialization strategy to serve a query when more than one attribute of a relation is
accessed in order to present the output as data tuples.

The main variation between materialization strategies is the point within a query
plan when columns are combined into data tuples. This tuple reconstruction takes
advantage of explicit or virtual tuple identifier, introduced in Section 2.2.1, to obtain
matching positions within multiple attributes and stitch together the intermediate data
tuples. Furthermore, column-stores mainly apply either an early materialization or a late
materialization strategy. Early materialization combines columns into data tuples when

7



2. Column-oriented Database Systems

an intermediate representation is required or even before, whereas late materialization
delays tuple reconstruction as long as possible.

The late materialization strategy has two main performance advantages. First, values
within columns are stored contiguously in memory using appropriate data structures.
For instance, MonetDB [IGN+12] stores a single column as array in the C programming
language. This empowers the system to apply compression algorithms such as Run
Length Encoding (RLE) on columns in order to shrink the required memory footprint.
Moreover, late materialization enables column-stores to only construct relevant tuples.
Another advantage is that such column-oriented data structures can be looped through
faster than using tuple iterators. That way entire cache lines are filled with values of
the same column which maximizes efficiency, because only relevant data is kept in cache.
This is important due to the fact that the bandwidth between CPU and memory has
become a bottleneck in modern systems [ABH+13]. Additionally, column-stores can
take advantage of vectorized processing of columns which is enabled by modern CPUs.
[AMDM07] Figure 2.1 depicts a simple example MAL code of a query with selection,
projections and a join operation and graphically illustrates how materialization using
position lists works. Furthermore, it shows how the output tuples are constructed by
materializing the corresponding columns. A detailed discussion of MAL code snippets is
given in Section 2.3.5.

2.2.3 Joins
Joins are crucial operations to any database system, because they are the most expensive
ones in query processing. Therefore, join operations yield a great potential for performance
improvements and have to be dealt with appropriately to provide efficient query processing.
Join performance in column-oriented database systems is tightly coupled to the applied
materialization strategy. A join operation in a column-store with early materialization
works similar to one in a row-store, because using early materialization, tuples are stitched
together and then passed to the join operator. This yields similar performance as a join
operation in a row-oriented database system.

To achieve the expected higher performance in a column-oriented database system
are making use of a late materialization strategy, the structure of the resulting position
lists needs to be considered. In general, any join algorithm in column-stores outputs
a set of position pairs representing positions in the corresponding input relations for
which the join predicate matches. Figure 2.1 shows how joins and materialization are
handled on behalf of a simple example within a column-store system. The query is given
through a set of MAL instructions. The resulting left position list will be sorted and
the right one will be unsorted for many join algorithms, but there are also algorithms
that output two unsorted position lists. Since, many join algorithms are implemented to
iterate over the left input relation of the join in order, the left output joinResultRb
will be sorted. The right result joinResultSb will be unsorted, because it results from
matches between the left and right input relation of the join. Such unsorted position list
can lead to performance bottlenecks whenever other columns of the joined relation are

8



2.2. Internals and Advanced Features

Figure 2.1: Example of materialization and join processing based on sample MAL code
from MonetDB with relations R(a,b) and S(b,c) modified from [ABH+13].

required right after the join. To materialize a column using an unsorted list of positions,
the storage needs to be accessed randomly instead of sequentially as it would be done
with a sorted position list. The shortcoming here is that most storage devices suffer from
larger random access time which can significantly slow down the database system.

To overcome this storage access bottleneck, some column-stores use a hybrid materi-
alization strategy. In difference to late materialization, the hybrid strategy materializes
all relevant columns of the right relation instead of just the ones that make up the join

9



2. Column-oriented Database Systems

predicate. Relevant columns can be for example the ones that need to be materialized
after the join as well as the predicate column. The left relation just passes the join
predicate column to the join operator. This operation results in a set of tuples for
the right relation and a position list for the left one which can be utilized in order to
materialize other relevant columns of the left relation. Using hybrid materialization,
tuples need not be constructed from unsorted position lists. [ABH+13]

2.2.4 Vectorized Processing

Database textbooks mainly mention two strategies for query execution which are tuple-
at-a-time pipelining (Volcano-Style iterator model) and materialization. In systems that
apply tuple-at-a-time pipelining, a single tuple is propagated through the query plan
tree at a time. This has the advantage of minimizing intermediate results. Whereas in
systems that apply the materialization strategy, query operators fully read inputs from
storage and write results to it. Thus, every query operator fully reads its entire input and
generates an intermediate result from it. This materialization strategy aims for making
operators and their interaction simple as well as more CPU efficient, since operators are
applied to the input at once and the full result is written to storage and consumed by
another operator. Nevertheless, this efficiency is gained at the cost of potentially huge
intermediate results which can be an issue for data-intensive applications. MonetDB
implements such materialization strategy through its Binary Association Table (BAT)
algebra, which is discussed in Section 2.3. [ABH+13]

Another query execution strategy that has been introduced in the field of column-
oriented database systems is vectorized execution. Vectorized execution bridges the gap
between tuple-at-a-time pipelining and materialization. Instead of propagating a single
tuple through the query plan tree as in tuple-at-a-time pipelining, a vector of N tuples
is handled at once. At data processing level, operators use primitive functions that
are capable of processing data in such vector-at-a-time manner. Processing a vector of
size N at once instead of the full input avoids the materialization of large intermediate
results. Moreover, each operator processes N tuples at the same time which enables this
strategy to benefit from operators looping over arrays which can benefit from compiler
optimizations.[ABH+13]

Integrating vectorized processing into column-stores introduces various advantages to
the database system. Choosing the vector size N wisely can increase cache locality, since
vectors required for answering a query will fit into the CPU cache and therefore decrease
the number of additional memory access. Furthermore, vectorized primitive functions
are realized as tight loops over arrays for data processing and are therefore target of very
efficient compiler optimizations like the generation of SIMD instructions. Abadi et al.
[ABH+13] discuss more interesting advantages of vectorized execution in column-stores
as well as the application of vectorized processing in row-store systems. [ABH+13]
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2.2.5 Data Compression
Abadi et al. [AMF06] mention the application of data compression schemes as a big
advantage of column-stores. Column-oriented database systems are capable of dealing
with a single attribute/column at a time. This enables the application of different
compression schemes in a quite natural way, whereas row-oriented database systems
would have to extract attributes from multiple tuples which makes compression more
complicated. Column-oriented database systems natively support the compression of
attributes across multiple tuples. Moreover, column-stores generally achieve higher
compression ratios than row-stores, because consecutive attribute elements are often
similar to each other whereas neighboring attributes in tuples of row-oriented systems are
not. These two properties encourage the applicability of various compression algorithms.
One well-known example is Run Length Encoding (RLE) where repeating values are
expressed by pairs of value and run-length. A discussion of various compression algorithms
has been done by Abadi et al. in [ABH+13] and [AMF06]. Apart from that, column-stores
can take advantage of modern CPU’s super-scalar properties by applying vectorized code
for decompression to increase the system’s efficiency. Additionally, CPU overhead is
reduced, since iterating over a page of columns tends to be more efficient than iterating
over a page of tuples. Another quite common way to improve CPU performance is to
make database operators work directly on compressed data, which makes decompression
obsolete for some operators. [AMF06]

A query execution engine capable of operating on compressed data can improve
performance by more than an order of magnitude and therefore compression-aware systems’
performance benefits overwhelm other techniques that realise factor-wise improvements.
This performance gain originates from a combination of decreased memory I/O (since
the system has to read less data) and the fact that systems working on compressed data
get rid of the need for decompression. Operators that directly work with compressed
data need to be implemented with overall common properties of compression algorithms
in mind in order to support various compression schemes. As an example of operating on
compressed data, think of numeric data that has been compressed using RLE. Summing
up, RLE can be replaced with a product of the specific value and the corresponding
run-length which reduces a certain number of additions to just a single multiplication.
This example shows that the execution engine has to be aware of the applied compression
scheme to perform the most suitable operation. [ABH+13]

To sum up, compression of attributes in column-stores as well as operating on
compressed data can lead to significant performance improvements. Implementing
compression the right way in column-oriented database systems is key to leverage the
potential performance benefits. [ABH+13]

2.2.6 Database Cracking
Database systems maintain non-discriminative indices that serve tuple localization pur-
poses. Workload-specific knowledge and additional idle time is required for establishment
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and maintenance of such indices. Without workload-specific information, a database
system would have to generate every possible index to gain maximal data access response
performance which is infeasible. To achieve reasonable data access response times, indices
need to be created upfront. Moreover, keeping indices up-to-date comes at additional
performance costs as well.To boost performance, Idreos et al. [IKM07] introduce the idea
of database cracking, also known as adaptive indexing, in the field of column-stores. The
central idea of database cracking is to dynamically build and maintain a discriminative
cracker index during processing of a query. This means that each query is processed,
the corresponding result set is returned and as side effect columns relevant to the query
are cracked into smaller pieces according to the query’s predicates. The cracker index
assembles all these smaller chunks and just holds data that has already been touched by
a previous query. Furthermore, future queries will benefit from knowledge introduced by
earlier ones and physically stored data will be self-organized with respect to the query
workload. This self-organization property of column-stores together with the fact that
a cracker index only composes data that has been touched by queries is significantly
beneficial for data access response time. [IKM07]

Read-only queries can obviously benefit from database cracking, however queries that
perform updates (insert, update or delete) on columns need to be handled carefully, since
cracking is carried out on a copy of the original column. Therefore, it is crucial for the
database system to maintain the original as well as the cracker column in sync while
performing such update operations. Idreos et al. [IKM07] introduce a way to handle
updates within cracking architectures on the example of MonetDB. Due to the fact that
the original columns maintain the insertion order, updates are translated into appending
any new tuples in general. Whereas MonetDB maintains delta tables that represent
pending insertions, deletions and updates. Original columns are updated on transaction
commit according to these delta tables. Cracking columns and index are modified by
cracking optimizer that merge delta tables into the query plan, which is also supported
by corresponding MAL operations.

Idreos et al. [IKM07] integrate a database cracking architecture on top of the MonetDB
column-store. If a range query is processed on an attribute for the first time, the involved
column is copied and referred to as cracker column of the corresponding attribute. All
reorganization (cracking) of an attribute is performed on its cracker column and the
original column keeps its insertion state. This allows fast tuple reconstruction using the
original column and is therefore used for efficient projection handling, since the column is
in insertion order. Cracker columns on the other hand are most suitable for performing
fast value selections, because these operations can select whole matching cracked pieces
of columns.

Figure 2.2 depicts an example of how cracking of a single column is handled in their
implementation. Query Q1 is the first to access column A and therefore a new cracker
column is instantiated and partitioned according to the two query predicates. Cracked
pieces contain values in the range specified by a predicate. The result of Q1 is then
returned as a view of the second piece at no additional costs. The query Q2 benefits from
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Figure 2.2: Example of cracking a single column using database cracking with MonetDB.
[IKM07]

already present knowledge in the cracker index and the system only has to adjust the
first and third pieces in-place in order to update the cracker column A. The result of Q2
is a column slice covering pieces 2-4 and again, without additional costs. This underlines
the power of database cracking and the importance of knowledge about earlier queries to
future ones. [IKM07]

To conclude the section on advanced features and internals of column-oriented database
systems, it is important to understand that modern column-stores are composed of way
more architectural features than just the column-oriented storage layout. Modern column-
stores like MonetDB and C-Store [SAB+05] pioneered many features that have been
discussed in this section and combine many of the introduced design principles. These
systems proposed a complete redesign of database kernels with decades of DBMS research
in mind. [ABH+13]

2.3 MonetDB

The aim of this section is to introduce the column-store system MonetDB [Monb],
to discuss its architecture and the concrete implementation of internals mentioned in
Section 2.2. More specifically, this section discusses the different building blocks of
MonetDB, explores the internal relational algebra representation of a query as well
as the MonetDB execution model. MonetDB is an open-source system that is very
popular in the academic field and plenty of major research on column-stores has been
conducted on that specific column-oriented database system. Due to its popularity and
relevance to academia, this work aims for showing the suitability of WCOJ algorithms
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for column-stores on the example of MonetDB in Chapter 4 and 5. To that end, the
MonetDB system is outlined in more detail in this section.

2.3.1 Introduction
MonetDB is an open-source DBMS that has been developed by the Centrum Wiskunde
& Informatica (CWI) database research group in Amsterdam since 1993 [BMK09]. A
variety of different architectural features that boost column-store performance have
been introduced, while working and researching in the field of column-oriented database
systems. Many of the resulting concepts have been integrated into MonetDB. Among
others, important research has been conducted on different optimization techniques like
optimizing column-stores for modern hardware (CPUs) [MBK02] [BKM08], database
cracking / adaptive indexing [IKM07], vectorized execution and lightweight compression
[BZN05] to name some.

The amount of research done on column-stores on the example of MonetDB shows the
importance of this particular system for academia. Moreover, MonetDB has been around
for more than two decades and was designed primarily for data warehouse applications.
Therefore, it has to deal with large databases in order to efficiently query a huge amount
of data to serve business intelligence and analytical systems. MonetDB’s architecture can
be divided into three layers as shown in Figure 2.3. Research and innovations on each
of the three layers led to significant performance improvements over more traditional
row-wise DBMS. Important innovations include vertical fragmentation of storage layout,
database cracking, query optimization at runtime and a query execution architecture
that is optimized for modern CPUs. [IGN+12]

2.3.2 Physical Storage Layout
MonetDB vertically fragments relational tables and stores each attribute as an independent
table with columns <surrogate, value>. These separated tables are referred to as BATs.
The surrogate column represents the Object Identifier (OID) which is also called the
head column. The second column, referred to as tail, stores the actual attribute values.
Furthermore, OIDs represent the position of the corresponding value within a column.
This is possible, since OIDs follow a dense ascending sequence of numbers. The positional
encoding has the positive effect that the surrogate column need not be materialized
and that tuples belonging to the base BAT can be reconstructed by the values’ position
within a column. Table representation of attributes with and without surrogate column
is depicted in Table 2.3 and Table 2.2. Positions within base BATs represent the insertion
order. The concept of OIDs in column-stores has already been discussed in Section 2.2.1.

Due to the fact, that the OID column need not be materialized, these BATs can be
represented as typed C arrays and a collection of them internally represents a relation
within MonetDB. Such columns are internally stored as memory mapped files. Addition-
ally, MonetDB applies a late materialization strategy and therefore, intermediate results
are materialized at the latest possible time. Ivanova et al. [IKNG10] introduce a recy-
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cling architecture which aims for reusing intermediate BATs. The column-at-a-time
storage layout in combination with late materialization enable bulk processing, which
makes use of vectorized and cache optimized operations to minimize query evaluation
overhead. [IGN+12]

2.3.3 System Architecture
MonetDB’s system architecture is composed of three layers which are frontend, backend
and the kernel. A schematic picture of each layer’s responsibilities is shown in Figure 2.3.
The original MonetDB implementation is a fully-fledged relational DBMS with client
interfaces for JDBC, ODBC and Application Programming Interfaces (APIs) for pro-
gramming languages such as C, Python, Java and some more. This implementation
provides a Structured Query Language (SQL) frontend following the SQL:2003 standard.
Furthermore, MonetDB’s query execution engine is designed to exploit the columnar
storage pattern as well as to make use of CPU features and cache systems of modern
hardware [BKM08]. In addition to that, the basic MonetDB system provides the possi-
bility to add new data types and algorithms to the system by implementing extension
modules, that can be developed in C programming language or MAL. This empowers
developers and researchers to implement functionality that goes beyond the traditional
SQL approach. [IGN+12] In the following, the three different architectural layers and
their responsibilities will be discussed.

Frontend

The frontend layer is specific to the supported query language and the user-specific
data model. Figure 2.3 depicts the standard SQL frontend. Nevertheless, there can
be compiler frontends for various query languages developed on top of the MonetDB
column-store. Boncz et al. [BGvK+06] introduce MonetDB/XQuery which is a database
system that fully supports the W3C XQuery language for XML.

The main requirements a frontend has to satisfy are the translation of submitted
queries from query language to MAL and to map the user-space data model to BATs.
The overall process follows the 3 steps depicted in Figure 2.3. At first, the query is parsed
and transformed into some internal relational algebra representation in case of the SQL
frontend. The relational algebra representation of the query is further optimized using
domain-specific rules which aim for reducing the amount of data that has to be processed.
Finally, the optimized representation is compiled into a set of MAL instructions and
handed over to MonetDB’s backend. Since the backend takes generated MAL code, it is
compatible with any frontend generating such. [IGN+12]

Backend

The backend layer is composed of a MAL optimization framework, a MAL interpreter
and an interface to communicate with the kernel to access BATs. The optimization
framework consists of multiple modules which are arranged into different pipelines. The
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pipeline to be used can be configured before system startup. These optimizers target
programming language specific optimizations rather than database query specific ones
and aim for transforming the MAL program into a more efficient, but equivalent version.
Moreover, the optimizer modules need to be shared between different frontends which
is enabled by a common binary-relational algebra backend. The pipelining structure
enables to chain optimization modules in different orders and to add newly introduced
modules into the right spot in the optimization process. [IGN+12]

Kernel

The kernel layer, also referred to as Goblin Database Kernel (GDK), is a C library
that provides Atomicity, Consistency, Isolation and Durability (ACID) properties on a
Decomposed Storage Model (DSM) [Mon21] and highly optimized implementations of
binary relational algebra operators that are utilized to process BATs. These operators
are capable of performing operational optimizations which aim for deciding on the actual
implementation of an operator or algorithm to be used. This decision is based on the
input’s properties and due to bulk processing evaluation, each operator accesses the whole
input and can obtain important properties for performing operational optimizations. For
example, a join operator can decide whether to execute a merge-join if attributes are
sorted or stick with a simple hash-join instead. [IGN+12]

The GDK makes use of main-memory database algorithms that are built on virtual-
memory Operating System (OS) primitives and multi-threaded parallelism. It provides
various facilities, like GDK routines for session management, BAT routines to define
primitive operators and BAT Buffer Pool (BBP) routines to manage BBPs. Moreover,
the kernel provides routines to manipulate primitive types, utilize the heap and access
inserted as well as deleted elements within a transaction. The relational model is mapped
to BATs (vertical fragmentation) in order to achieve data independence and better
performance by utilizing techniques such as operator-at-a-time processing for instance.
[Mon21]

Additionally, a MonetDB backend that acts as an BAT algebra virtual machine is
depicted in Figure 2.4. This BAT algebra virtual machine can posses a variety of different
frontend modules on top, which support various data models and query languages.
Moreover, Figure 2.4 shows a sample application of the BAT algebra operator select
on a small table that consists of the two columns name and age. Each attribute consists
of virtual, dense surrogates and a memory-mapped values array. The name attribute’s
string values are handled as simple memory-mapped array where each entry relates to the
positional offset within the memory-mapped strings. This means that the second string
value starts at offset of length of first string entry. Furthermore, the applied select
operation produces a new dense array of matching positions in the targeted relation.
These positions can be used to reconstruct the matching tuples. Moreover, making use
of arrays in virtual memory exploits the fast in-hardware address-to-disk-block mapping
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Figure 2.3: MonetDB’s three layered architecture with SQL Frontend.

which is implemented in a CPU’s Memory Management Unit (MMU). This results in a
O(1) positional database lookup mechanism. [BKM08]

2.3.4 Relational Algebra
Since the contribution of this work focuses on SQL as query language, this subsection
explores the internal representation of SQL queries using relational algebra. Therefore,
Listing 2.1 shows the representation of the triangle query in relational algebra. This
query representation can be interpreted as a logical plan on how the query will be
processed and represented as statement tree internally in the query compiler. Tree
nodes represent algebraic operators and edges between them indicate data dependencies
between operators. During compilation, this tree structure is recursively traversed and the
algebraic operators are translated into the corresponding sequence of MAL instructions.
Query compilation is discussed in more detail in Chapter 4. [Mon21]

MonetDB makes use of a bulk query algebra, a simplified form of the traditional rela-
tional set algebra, in order to allow faster implementation on modern hardware [BKM08].
Besides the algebraic operators table, join and project used for representing the
triangle query in Listing 2.1, there are the basic operators select, group by and
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Figure 2.4: MonetDB’s backend as BAT algebra virtual machine [BKM08].

topN. [Mon21] Listing 2.1 depicts a logical plan which serves the translation of a query
into a MAL program. In the following, the main algebraic operators are discussed.

table The table operator aims for reading columns of a single relation from storage.
To that end, the specific table is referenced via its name and the schema it belongs
to. Moreover, the square brackets are used to specify the columns to be read.

join The join operator is used representative for the family of join operations, since Mon-
etDB can decide at runtime which concrete join implementation to use. The operator
takes two relations as well as the attributes to be joined on. Multi-Way-Joins
are broken down into a sequence of Two-Way-Joins which results in nested join
operators.

project The main purpose of the project operator is to apply operations on input
columns, specified within squared brackets. This operator can also be used to sort
data and to rename columns as well. In Listing 2.1, the project operator specifies
the columns r.a, r.b and s.c as the ones used for result reconstruction after
nested join operations.

group by The group by operator is used to perform aggregation on multiple columns
using a specified aggregation function.

select The select operator is applied in order to filter columns based on specified
predicates.

topN The topN operator specifies to only take the top n tuples from the result.
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p r o j e c t (
| j o i n (
| | j o i n (
| | | t a b l e ( " sys " . " s " ) [ " s " . " b " , " s " . " c " ] COUNT ,
| | | t a b l e ( " sys " . " t " ) [ " t " . " a " , " t " . " c " ] COUNT
| | ) [ " s " . " c " = " t " . " c " ] ,
| | t a b l e ( " sys " . " r " ) [ " r " . " a " , " r " . " b " ] COUNT
| ) [ " r " . " b " = " s " . " b " , " r " . " a " = " t " . " a " ]
) [ " r " . " a " , " r " . " b " , " s " . " c " ]

Listing 2.1: Relational algebra representation of a query which is actually the triangle
query introduced in Section 3.1.2.

2.3.5 Query Execution & MonetDB Assembly Language (MAL)
MonetDB’s GDK is programmed in MAL and represents an abstract machine. MAL is
built around a closed low-level, two-column relational algebra that operates on BATs. To
make MonetDB support n-ary relational algebra plans, such n-ary plans are translated into
an equivalent two-column BAT algebra which can then be compiled into MAL programs
that also operate on two-columns. A MAL program is a sequence of simple MAL
instructions and every BAT algebra operator maps to such an instruction. Furthermore,
any MAL instruction is only capable of handling simple expressions and therefore said to
have zero degree of freedom, however they can be parametrized if necessary. In order
to follow MonetDB’s operator-at-a-time evaluation strategy, where each operation is
completely processed over the entire input as well as to support evaluation of complex
expressions, the system applies so-called bulk processing. To that end, complex operations
are converted into a sequence of simple BAT algebra operations which perform simple
operations on an entire column and can therefore be transformed into simple MAL
instructions. [IGN+12] [BMK09]

Due to this way of handling complex expressions together with the array representa-
tion of BATs, each BAT algebra operation can be mapped to simple array operations.
Thus, each BAT algebra operator can be implemented using simple array operations as
shown in Listing 2.2. Since BAT algebra operators are implemented as tight for-loops,
instruction cache misses are reduced and the system benefits from high instruction locality.
Furthermore, this approach takes advantage of compiler optimizations as well. [BMK09]

BAT algebra operator :
R: bat [ : oid , : o id ] := s e l e c t (B: bat [ : oid , : i n t ] , V: i n t )

C−Code :
f o r ( i = j = 0 ; i < n ; i++)

i f (B. t a i l [ i ] == V) R. t a i l [ j ++] = i ;

Listing 2.2: Example of C implementation of BAT algebra operator select from
[BMK09].
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MAL programs are specifications of dataflow behaviour or intended computation,
but the language was not introduced to be treated as a primary programming language.
Moreover, a program’s evaluation depends on the execution paradigm in a scenario. MAL
programs can be either interpreted as an ordered sequence of assembler instructions or
as a representation of a dataflow graph. [Monc]

MonetDB’s type system is extensible to serve a wide range of database kernels and
application requirements. It supports a set of hardwired scalar types which can be dealt
with by the kernel without function call overhead. These types are bit, bte, sht, int,
lng, hge, oid, flt, dbl and str. Furthermore, a set of user-defined types is already
implemented and can be extended using MonetDB’s type extension mechanism. MAL
is a strongly typed language with exception of the polymorphic type any_1 which is
resolved at runtime. [Monc]

Moreover, MAL instructions are assignments where an expression on the right side
of the assignments returns multiple results to the variables on the left side of it. They
are organized into MAL modules, also known as namespaces. This organisation in
namespaces leads to significant improvements for type resolution as well as performance
improvements during the optimization phase. In general, an instruction signature is
composed of the MAL module and the instruction name itself. Listing 2.3 depicts an
example signature for the thetaselect instruction within the algebra MAL module.
[Monc]

Namespaces that are relevant to this work are algebra, group, iterator and
bat. The algebra module is a set of the most common algebraic BAT manipulation
commands and all operators take parameter values without causing side effects, but
produce new resulting values. The bat module composes commands required to manage
BATs, such as creating new ones or attaching values to an existing one for instance.
Additionally, the group module contains operators to craft and perform statistical
operations on groups of BATs. This is very important to serve datamining purposes and
among others, the group module can be used to retrieve as distinct values of a BAT.
Finally, the iterator module combines functionalities to break down BATs into smaller
pieces and iterate over them. [Monc]

2.3.6 Selection of Important MAL Instructions
Integrating WCOJ algorithms into MonetDB as discussed in Chapter 4 requires the
manual translation of the relational algebra algorithm from Algorithm 3.1 into a MAL
program in the first place. In a successive step, the MonetDB compiler needs to be
modified in a way that it generates MAL code that follows the WCOJ approach of
Algorithm 3.1. Thus, it is important to understand the MAL syntax in order to be able
to choose the most suitable MAL instructions to translate certain lines of pseudocode
into. To that end, the code listings in the remaining section will introduce the most
important BAT algebra operators through small code examples.
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a lgebra . t h e t a s e l e c t (b : bat [ : any_1 ] , s : bat [ : o id ] , va l : any_1 , op : s t r )
: bat [ : o id ]

X_78 : bat [ : o id ] := a lgebra . t h e t a s e l e c t (bindRB : bat [ : s t r ] , tidR : bat [ : o id ] ,
X_71 : s t r , "==": s t r ) ;

Listing 2.3: Signature of a thetaselect MAL instruction with example usage.

Listing 2.3 shows the signature of the thetaselect instruction and its example
usage. The listed version of the algebra module’s thetaselect takes two BATs and
two additional parameters. The two BATs are data columns with polymorphic values
of type any_1 and a candidate list. The two later parameters specify the value to be
selected within the data column as well as the comparison operator to be applied. In
the concrete example, the result is a BAT of OIDs which represent each position within
bindRB that is equal to the value specified by variable X_71.

mvc : i n t := s q l . mvc ( ) ;
tidR : bat [ : o id ] := s q l . t i d (mvc : int , " sys " : s t r , " r " : s t r ) ;
bindRB : bat [ : s t r ] := s q l . bind (mvc : int , " sys " : s t r , " r " : s t r , " b " : s t r , 0 : i n t ) ;
projRB : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( tidR : bat [ : o id ] , bindRB : bat [ : s t r ] ) ;

Listing 2.4: Example of projecting attribute B of relation R.

Listing 2.4 depicts how to access the attribute B of relation R. The instruction
sql.mvc() can be used to retrieve the multi-version catalog context which is
required for correct statement dependencies. This for example means, that an sql.bind
has to be executed before a sql.update in concurrent execution. The instruction
sql.tid(mvc,"sys","r") creates a BAT that represents the tuple identifiers of table
R which is associated with schema sys. A materialized BAT is returned if tuples have been
deleted or the column has been cracked, otherwise tuple identifiers represent a continuous
sequence. The instruction bindRB := sql.bind(mvc,"sys","r","b",0) binds
the cache id of column b’s BAT to the MAL variable bindRB. Finally, the instruction
algebra.projection(tidR,bindRB) projects bindRB onto tidR and the result
is a materialized BAT projRB. [Mon21]

Note that the algebra.projection operation can have duplicate entries, whereas
the relational algebra projection π returns a set of distinct values.

X_78 : bat [ : o id ] := a lgebra . t h e t a s e l e c t (bindRB : bat [ : s t r ] , tidR : bat [ : o id ] ,
X_71 : s t r , "==": s t r ) ;

X_80 : bat [ : s t r ] := a lgebra . p ro j e c t i o np a t h (X_78 : bat [ : o id ] , tidR : bat [ : o id ] ,
bindRB : bat [ : s t r ] ) ;

Listing 2.5: Example of projecting two position lists at once.

The code example in Listing 2.5 performs two projections on BAT bindRB in one
go. The benefit of executing algebra.projectionpath with two position lists over
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individually executing algebra.projection for each position list is the fact that
algebra.projectionpath’s intermediate column representations are very likely to
not being materialized. This can lead to mentionable performance improvement. [Mon21]

C_81 : bat [ : o id ] := a lgebra . i n t e r s e c t ( projRB : bat [ : s t r ] , projSB : bat [ : s t r ] ,
n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t , f a l s e : b i t , n i l : lng ) ;

d istB : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_81 : bat [ : o id ] , projRB : bat [ : s t r ] ) ;

Listing 2.6: Example of intersecting two BATs and projecting the result.

The code snippet in Listing 2.6 shows how to intersect two BATs. The operator
algebra.intersect takes two columns and performs a set intersection on them. In
the example, the BATs projRB and projSB are intersected and only the resulting posi-
tion list for projRB is returned. Projecting this position list onto projRB finally returns
a new BAT distB that holds the intersection of attributes B of relations R and S. [Mon21]

b a r r i e r (h : oid , t : s t r ) := i t e r a t o r . new( distB : bat [ : s t r ] ) ;
/∗ some MAL i n s t r u c t i o n s ∗/
redo (h : oid , t : s t r ) := i t e r a t o r . next ( distB : bat [ : s t r ] ) ;

e x i t (h : oid , t : s t r ) ;

Listing 2.7: Example of iterating through every single value of a BAT.

Listing 2.7 shows how loops can be implemented in MAL code. This code construct
is essential to integrate the concept of WCOJ algorithms into MonetDB, because the
Generic-Join algorithm of Algorithm 3.1 requires the compiled MAL code to iterate
through the values of certain columns. Loops can be realized by combining the control
flow modifiers BARRIER, EXIT and REDO. The modifiers BARRIER and EXIT represent a
guarded statement block and REDO is a conditional flow modifier that continues execution
of the loop after the corresponding BARRIER statement for a potential next value if
iterator.next returns a numeric value ≥ 0, a non-empty string or a value different
from nil. Entering the loop through BARRIER follows the same conditions. Loops
in MAL can be nested where each level of hierarchy is identified by its primary target
variable which is t in Listing 2.7. The EXIT modifier marks the end of the loop and is
reached if REDO returns no further valid value for another follow-up iteration. [Monc]

(X_65 : bat [ : o id ] , C_66 : bat [ : o id ] ) := group . groupdone ( projB : bat [ : s t r ] ) ;
d i stB : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_66 : bat [ : o id ] , projB : bat [ : s t r ] ) ;

Listing 2.8: Example of projecting a BAT containing only distinct values.

The code snippet in Listing 2.8 depicts an example of how to obtain a BAT distB
containing all the distinct values of BAT projB. The module group provides differ-
ent grouping operations and the example makes use of the operation groupdone in
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order to obtain a BAT of positions of unique values within projB. This BAT is rep-
resented by the second assigned variable C_66. Finally, the resulting position list can
be used to project the distinct values of projB to the new BAT distB by executing
algebra.projection. [Mon21]

X_110 : bat [ : s t r ] := a lgebra . p r o j e c t (C_66 : bat [ : o id ] , t : s t r ) ;

Listing 2.9: Example of projecting a single string value to a position BAT.

Listing 2.9 shows a special case of the more general algebra.projection oper-
ation which projects values of a BAT, specified by a position list, to a new one. In
difference to that, algebra.project takes a BAT of positions and a single scalar value
and creates a new BAT of the specified position list’s shape and projects the scalar value
to each position. [Mon21] This operation will be essential to the reconstruction process
of resulting BATs when integrating the Generic-Join algorithm 3.1 into the MonetDB
system.

tmpC : bat [ : s t r ] := bat . new( n i l : s t r ) ;
tmpC : bat [ : s t r ] := bat . append (tmpC : bat [ : s t r ] , X_110 : bat [ : s t r ] , t rue : b i t ) ;

Listing 2.10: Example of creating string BAT and append another column to it.

Another relevant concept in MAL is the creation of a new BAT. Listing 2.10 shows
how partial results can be combined into a final result by making use of MonetDB’s
bat module. A new typed BAT can be created by calling the bat.new operator and
specifying its type via a parameter. To append one BAT to another one, the bat module
provides an append operator. It is important to note, that any result is assigned to a
new BAT in MAL. Since this behaviour is not compatible with looping over a column’s
values and appending partial results to the same BAT in each iteration, a new append
operator that assigns the result to the same variable has to be introduced. The variable
tmpC represents a BAT that combines its original values and the appended values from
X_110. [Mon21]

2.3.7 Optimization
MonetDB’s optimization framework covers multiple tiers and is designed modularly in
order to be extendible with domain specific optimizer rules. More specifically, there are
two different points in the query execution process where optimization takes place.

The first point of optimization is targeting the relational algebra representation
of a query. This first group of optimizations are domain-specific strategic
optimizers which aim for reducing the amount of data that has to be processed while
executing the query. With respect to the relational algebra representation of a SQL query,
such optimizations could be exploiting indices for efficient join processing or pushing
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down selections in the execution order. These optimizations are applied in the MonetDB’s
frontend layer and result in an optimized logical query plan.

The optimized logical plan is then translated into a MAL program on which the second
optimization part is applied. This second optimizations are tactical optimizations
that are performed on the compiled MAL code itself and merely focus on programming
language specific improvements. The MAL code optimization modules are arranged
in pipelines that are composed of a sequence of multiple modules. This sequence can
be rearranged and extended to further advance the MAL specific optimizations. The
MonetDB documentation on MAL optimizers [Mona] discusses the different optimization
strategies realized in the system. [IGN+12]
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CHAPTER 3
Worst Case Optimal Joins

The aim of this chapter is to introduce the overall concept of WCOJ algorithms as well
as the theoretical research on (tight) bounds on the output size of a join from which
these algorithms have been derived. This chapter starts of with introducing how joins
are processed in traditional DBMS in order to underline the fundamental difference
in comparison to WCOJs. Furthermore, the general concept of WCOJs is discussed
and advances in research on bounding the worst-case output size of a query are stated.
Additionally, this chapter investigates how algorithms have been crafted that follow these
proven bounds. Finally, this chapter discusses an algorithm from Ngo et al. [NRR13]
that unifies a great amount of research on WCOJs and which is the fundamental basis
for the contribution of this work. This algorithm is depicted in Algorithm 3.1 and its
integration into column-oriented database systems will be outlined in Chapter 4.

3.1 Important Notation
This section introduces important notation with respect to join processing and WCOJ
algorithms. The following definitions of queries and query representations will be used in
the following sections and chapters of this work.

3.1.1 Hypergraph

Any natural join query Q can be modelled using a hypergraph H = (V, E), where V
denotes the set of vertices and E the set of hyperedges E ⊆ 2V\{∅}. The set V of vertices
corresponds to the attributes and the set E of hyperedges represents the relations RF

involved in the join. For each hyperedge F ∈ E there exists a relation RF on attribute set
F . [NRR13] An example hypergraph representation of the triangle query Q� is depicted
in Figure 3.1.

25



3. Worst Case Optimal Joins

3.1.2 Triangle Query
The triangle query Q� is the simplest cyclic query one can construct from naturally
joining three relations with two attributes each. Due to its simplicity, the triangle
query is most frequently considered when explaining ideas on WCOJ algorithms in
research [NRR13][Vel14][Ngo18][NPRR12]. The query below shows the triangle query
with relations R(A, B), S(B, C) and T (A, C) and attributes A, B, and C.

Q� = R(A, B) 54 S(B, C) 54 T (A, C)

The triangle query Q� will be used for demonstration and explanation purposes through-
out this work. The triangle query Q� can be represented as hypergraph H = (V, E) where
V = {A, B, C} and E = {R, S, T }. Thus, each relation like R(A, B) will be interpreted
as a hyperedge {A, B} on the argument list’s variables.

B

A

C

R

S

T

Figure 3.1: Hypergraph representation of the triangle query Q�.

3.1.3 Fractional Edge Cover
The term fractional edge cover is important in the area of WCOJ, because major
proposed bounds in this research field use this concept for their formulations and proofs.
Ngo et al. [NRR13] define a fractional edge cover using a polyhedron as follows.

Given a hypergraph H = (V, E) and let x = (χF )F ∈E be any point in the following
polyhedron: �

x|
�

F :v∈F

χF ≥ 1, ∀v ∈ V , x ≥ 0
�

Every point x following this definition is referred to as a fractional edge cover of
the hypergraph H.

Grohe [Gro13] gives a constructive textbook definition of the terms fractional
edge cover and fractional edge cover number as well as how the query’s
structure can be used to obtain non-trivial bounds on the result’s size. This definition is
given as follows.

Let D be a database instance with relations R1, ..., Rm and Q be a natural join
query, then the idea is to bound the size of the output of the query Q(D) in terms of
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the input relations’ sizes Ni = |Ri(D)|. If a single relation Ri contains all attributes
relevant to the query Q then the output size is bounded by |Q(D)| ≤ Ni. Instead of one
relation containing all attributes, imagine a set of k relations Ri1 , ..., Rik

are containing
all attributes relevant to query Q, then the output size is bounded by |Q(D)| ≤ �k

j=1 Nij .
The relations Ri1 , ..., Rik

are referred to as an edge cover of query Q.

To find the edge cover yielding the best bound, Grohe [Gro13] describes an integer
linear program in variables x1, ..., xm where xi = 1 implies that relation Ri is part of the
edge cover. This integer linear program for a query Q taking attributes A1, ..., An is
defined as the following minimization problem.

min
�

i

xi ∗ log(Ni)

where
�

i:AjofRi

xi ≥ 1, ∀j ∈ {1, ..., n}

xi ∈ {0, 1} : ∀i ∈ {1, ..., m}

(3.1)

A solution to this integer linear program is a vector x = (x1, ..., xm) ∈ {0, 1}m and
for every such solution the following bounds holds.

|Q(D)| ≤
m�

i=1
Nxi

i = 2
	

i
xi∗log(Ni)

The edge cover number of query Q in database D is the optimal solution of the
integer linear program above, which is formalized as ρ(Q, D) = 	

i xi ∗ log(Ni). By
replacing the integrability constraint xi ∈ {0, 1} with 0 ≤ xi, the solution vector of the
program becomes rational and such a rational solution x = (x1, ..., xm) ∈ Qm is called
a fractional edge cover of query Q. Likewise, the value of an optimal solution
ρ∗(Q, D) = 	

i xi ∗ log(Ni) is referred to as fractional edge cover number of the
query Q. Since, the definitions above are based on the hypergraph representation of
a query Q it holds that ρ(Q, D) = ρ(H(Q), D) and ρ∗(Q, D) = ρ∗(H(Q), D) [AGM08].
For further examples of fractional edge covers of different queries see Ngo et al.
[NRR13].

3.2 Traditional Join Processing
The evaluation of relational database queries is a well-studied area in the database theory
and systems fields. Especially, a great amount of research has been conducted on the
evaluation of relational joins as well as various query optimization techniques over the
past decades. Chapter 2 discusses many different techniques applied in column-store
systems which contributed to the emerge of column-oriented database system.

Two important factors that drove research on query evaluation were the improvements
on computing hardware and the drastic increase of data volumes to be store and processed
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by DBMSs. Additionally, increasing complexity in relational data has led to the need
for more sophisticated query evaluation strategies and algorithms. Since, relational join
evaluation is known to be the most computational intensive part in the query processing
pipeline, various optimization techniques and algorithms have been proposed in research
and are applied by traditional DBMSs that can be found in everyday systems. Graefe
[Gra93] already published a survey in 1993 which discusses many join algorithms that
are still core components of up-to-day systems. These algorithms include Nested Loop
Joins, Hash Joins and Merge Joins which are elaborated in the following.

3.2.1 Nested Loop Joins
A Nested Loop Join algorithm is the simplest join algorithm for binary matching.
Computing the Nested Loop Join for the simple natural join query R 54 S, the
algorithm iterates through all elements of the outer relation R and scans the inner input
relation S for matching elements. The algorithm’s name comes from its structure, because
the matching is implemented as two nested loops, one iterating the outer and the other
the inner relation. Advantages of this algorithm are its simplicity and that it can compute
the cartesian product and any Theta-join of two relations. The big drawback of Nested
Loop Joins is their poor performance, because for every element of the outer relation
the whole inner relation is scanned for matches. Assuming that both relations are large
with input size n, then the runtime of a simple Nested Loop Join is in O(n2). Due
to this poor performance, this algorithm is commonly not applied in database systems,
but often used for demonstration purposes.

Due to the algorithm’s simplicity there is a lot of room for improvements. For single
match operations, like intersections, iterating the inner relation can be terminated after
finding the first match for a given element of the outer relation. Moreover, a Block
Nested Loop Join algorithm increases performance by scanning the inner relation
for each page of the outer one. This decreases the number of scans on the inner relation.
Furthermore, scans of the inner input can be slightly boosted by scanning the inner
relation alternatingly forward and backward. This approach would reuse the last page of
the previous scan and would save read per inner scan. [Gra93]

3.2.2 Merge Joins
The Merge Join or Sort Merge Join algorithm joins two relations R and S and
requires that both relations are sorted on the join attribute. Sorting the join columns
groups all tuples by the join column’s value and therefore partitions the relation. The
merging step exploits this partitioning of both relations involved in a join. Thus, both
relations are compared partition-wise when merging which avoids scanning relation R
multiple times. [RG03]

The sorting of join attributes is the key consideration of this approach. Additional
performance can be gained if the Merge Join algorithm operates on already sorted
inputs, since no additional costs for sorting are required. Furthermore, it is not always
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necessary to explicitly sort the join columns, because there might be some intermediate
representation of the relation or join column which is already sorted accordingly. If
multiple relations are joined on the same columns using the Merge Join algorithm,
each intermediate result is sorted at the join attribute and successive Merge Joins can
exploit this property to perform further joins efficiently. [Gra93]

Computing the Merge Join for the natural join query R 54 S where R is of size m
and S of size n, sorting both relations on the join column would be in O(m ∗ log(m)) and
O(n ∗ log(n)) respectively. Merging the two sorted relations is in O(m + n) if at least
one of the relations is duplicate free. It is obvious that performing a Merge Join is
most suitable if at least one input is already sorted. Thus, database systems can decide
dynamically which concrete algorithm to be used according to relation’s properties and
the data flow. [RG03]

3.2.3 Hash Joins
The Hash Join algorithm’s idea is to build an in-memory hash table for the smaller
input relation, referred to as build input, and probes this hash table against the other
input relation called the probing input. If the hash table fits in memory, the algorithm
works without the necessity for temporary files and additional disk reads. [Gra93]

Similar to the Merge Join, the Hash Join algorithm aims for partitioning the
input relations on the join attribute. This partitioning is achieved by hashing both
relations on the join column using the same hash function. That way, it can be assured
that tuples in partition j of one relation can only be joined with tuples in partition j of
the other relation. For performing the join, a partition of the smaller relation is read
and the corresponding partition of the other relation is scanned for matches. Due to
partitioning the relations, the partitions are only scanned once during the join process.
[RG03]

To evaluate the Hash Join algorithm’s costs, the build and probing phase need to
be examined separately. During the build phase, both relations have to be scanned and
partitioned. Assuming the natural join query R 54 S where R is of size m and S of size
n this phase can be done in O(m + n). Moreover, under the assumption that loaded
partitions will not exceed the memory size during probing and each partition is only
scanned once, the probing phase is also in O(m + n) and so is the overall Hash Join
algorithm. [RG03]

3.2.4 Joining Multiple Relations
The previously discussed join algorithms can be used to combine two relations at a
time. Joining two relations is referred to as Two-Way-Join. However, conjunctive
queries in general require to combine more than two relations during query evaluation.
Ramakrishnan and Gerke [RG03] describe that the textbook way of evaluating join
queries across multiple relations is to obtain the best pairwise join plan from the set
of all possible join plans. Possible join plans for the triangle query Q� are shown in
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Figure 3.2. Any of the three join plans in Figure 3.2 runs in time Ω(N2), since any
of the joins R 54 S, R 54 T and S 54 T produce quadratic effort. The third relation is
joined using a semi-join, because all attributes are already included in the former join
and therefore joining the third relation produces linear effort. Joining relations in the
most suitable order leads to stronger bounds on the output size, thus to more efficient
join evaluation. To take advantage of the best possible join order, query optimizer and
cost functions are used to rate join plans. Joining multiple relations is further referred to
as Multi-Way-Join.

54

54

R S

T

54

54

R T

S

54

54

S T

R

Figure 3.2: The three possible pairwise join plans for the triangle query Q�.

3.2.5 Major Join Processing Approaches
Ngo et al. [NRR13] discuss a query’s structural information as well as making use of
cardinality information as the two major approaches for join processing. These two ways
have been used independently and could not be united into a more powerful approach so
far. Grohe and Marx [GM14] as well as Atserias, Grohe and Marx [AGM08] introduced
tight bounds on the output size of a query as a function of the sizes of input relations.
These bounds are further referred to as AGM bound and combine a query’s structural
information with the cardinality information. The AGM bound is discussed in more
detail in Section 3.3. Moreover, Ngo [Ngo18] surveys and discusses research on more
general constraints which can be of great interest to DBMSs. These are functional
dependencies and degree constraints.

Structural Information The term structural information covers a query’s struc-
tural properties such as bounded width or acyclicity. Such properties are very
important to theoretical, algorithmic concepts that have been applied in database
systems. For example, Yannakakis [Yan81] describes different algorithms for various
problems on acyclic queries. A lot of research on structural information
corresponds to various definitions of width and describes how far a query is away
from being acyclic. A query is tractable, which means that there exists a polynomial
time algorithm that evaluates the query, if the used notion of width is bounded by
a constant. The runtime of structural approaches is O(Nw+1 ∗ log(N)) where w
describes the notion of width and N the summarized input size. [NRR13]
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Cardinality Information The term cardinality information covers a query’s
quantitative aspects. Structural approaches summarize the sizes of the query’s
input relations in a single number instead of taking various potentially different
input sizes into account. Cardinality information is of great importance, because
commercial DBMSs mainly focus on cardinality aspects of a query. Cardinality
information is important for obtaining the most suitable join plan when process-
ing a Multi-Way-Join, since the individual sizes of relations need to be considered.
Furthermore, without putting enough focus on structural information as
well, any join-project plan will be slower by a polynomial in the data size than
the best possible one. [NRR13] Cardinality information or cardinality
constraint can be formalized as an assertion |RF | ≤ NF for any F ∈ E , which
is roughly speaking a constraint on the input size of a certain relation [Ngo18].

Functional Dependencies Functional dependencies, also referred to as FD constraints,
are very widespread in DBMSs. Simple functional dependencies are of the form
A → B where A and B are variables. In general, the meaning of FD constraints
is defined over relations between two sets of variables which are X and Y . Such
FD constraints state that, if bindings in the set X of variables are fixed, there is
at most one binding for every such variable in the other set Y . Since functional
dependencies are more general than cardinality constraints, the AGM bound does
not cover them. To handle FD constraints, Gottlob et al. [GLVV12] extend the
AGM bound and showed that their bound is tight if all functional dependencies
are simple ones. [Ngo18]

Degree Constraints Degree constraints describe a class of constraints that are more
general than FD constraints. Such constraints ensure that for any fixed binding of
variables in set X, there is at most a certain number of bindings of variables in set
Y . Therefore, degree constraints are a generalization of functional dependencies
and cardinality constraints, since cardinality constraints are degree constraints with
an empty set X. [Ngo18]

To obtain the best possible join-project plan, it is necessary to combine structural
information with cardinality information of a query which is done by the
AGM bound. The theoretical research of Ngo et al. [NRR13], which proposes a class of
WCOJ algorithms that is implemented in this work, takes cardinality constraints
into account. The more general FD and degree constraints have been introduced briefly,
since (future) research will aim for finding appropriate algorithms covering them.

3.2.6 Limitation of Traditional Join Plans

Traditional database systems try to obtain the best pairwise join-project plan when
dealing with Multi-Way-Joins. Figure 3.2 depicts the three possible join-project plans
for the triangle query Q�, which are:
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1. (R 54 S) 54 T
2. (R 54 T ) 54 S
3. (S 54 T ) 54 R

Ngo et al. [NRR13] point out the suboptimality of such traditional join plans by
providing a family of instances for which any of the traditional join plans from Figure 3.2
produces a too large intermediate result and therefore runs in Ω(n2). The general family
of instances for m ≥ 1 is defined as follows:

R = {a0} × {b0, ..., bm} ∪ {a0, ..., am} × {b0}
S = {b0} × {c0, ..., cm} ∪ {b0, ..., bm} × {c0}
T = {a0} × {c0, ..., cm} ∪ {a0, ..., am} × {c0}

Figure 3.3 shows a graphical representation of such an instance with m = 4. Any
relation R, S and T of the described family of instances is of size N = 2 ∗ m + 1 and the
output size of the query is |Q�| = 3 ∗ m + 1. In contrast to that, any pairwise join has a
size of N = m2 + m. Therefore, any join plan from Figure 3.2 has a runtime in Ω(n2) for
a large m. [NRR13]

The main cause for pairwise join plans to be suboptimal is skewed data. Figure 3.3
clearly shows a heavily skewed example instance towards the white dotted data values
which represent a0, b0 and c0 respectively. The remaining chapter aims for introducing
bounds and algorithms that provide an optimal way of avoiding and dealing with skew.
The provided family of instances is very important to this work, because it is an illustrative
example of a situation where WCOJs tremendously outperform traditional ways of join
processing. The evaluation described in Chapter 5 revisits this family of instances.

Figure 3.3: Illustration of suboptimal join-project only plans of the triangle query Q�
with m = 4 from Ngo et al. [NRR13].
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3.3 Worst-Case Optimal Joins
The term WCOJ algorithms refers to a class of join algorithms whose runtime match
the worst-case output size of a query [Ngo18]. The concepts and techniques behind
WCOJ algorithms originated from decades of research in different fields including graph
theory, information theory, constraint satisfaction, geometric inequalities and database
theory. The combination of different research from these areas led to new classes of
join algorithms that evaluate Multi-Way-Joins in time proportional to the worst-case
output size of the query. This query computation has been shown to be asymptotically
better than pairwise evaluation [NRR13] [NPRR12] [Vel14]. In order to illustrate the
power of WCOJ algorithms, consider the triangle query Q�. Ngo [Ngo18] introduces
an entropy argument from which he derives the AGM bound for the triangle query
Q�. Moreover, a runtime bound is presented based on the fractional edge cover
number which illustrates the connection between WCOJ algorithms and fractional
edge covers.

The entropy argument of Ngo [Ngo18] for the triangle query Q� is defined using a
distribution Domain(A)×Domain(B)×Domain(C) where triples (a, b, c) are uniformly
selected from the query’s output. Let H be an entropy function of this distribution, then
H[X] describes the entropy of the marginal distribution on variables X ⊆ {A, B, C}.
Based on this definition, Ngo [Ngo18] shows that H[A, B, C] ≤ log2 |Q�|, H[A, B] ≤
log2 |R|, H[B, C] ≤ log2 |S| and H [A, C] ≤ log2 |T | holds. Furthermore, he shows that if
for any coefficients α, β, γ ≥ 0

H[A, B, C] ≤ α ∗ H[A, B] + β ∗ H[B, C] + γ ∗ H[A, C] (3.2)

holds for all entropy functions H, then the following output size bound can be derived
for the triangle query Q�:

|Q�| ≤ |R|α + |S|β + |T |γ (3.3)

Furthermore, Ngo [Ngo18] shows that Equation 3.2 holds iffα + β ≤ 1, β + γ ≤ 1 and
α + γ ≤ 1 for α, β, γ ≥ 0 hold and presents a special case of the AGM bound for the
triangle query Q� as follows:

log2 |Q�| ≤ min{α ∗ log2 |R| + β ∗ log2 |S| + γ ∗ log2 |T |
s.t.α + β ≤ 1, β + γ ≤ 1, α + γ ≤ 1; α, β, γ ≥ 0} (3.4)

The Inequalities 3.3 and 3.4 clearly show that the bound depends on the fractional
edge cover of the query. To discuss the runtime of WCOJ algorithms on the example
of the triangle query Q�, consider a database instance D where N = max{|R|, |S|, |T |}
and ρ∗(H(Q�, D)) = (α∗, β∗, γ∗) be an optimal solution to Inequality 3.4. Then, the
triangle query Q� can be evaluated in Õ(N + |R|α∗ ∗ |S|β∗ ∗ |T |γ∗) where Õ hides a
potential log factor in N . Thus, the runtime is proportional to the size of the database
and an optimal solution of the fractional edge cover of the joined relations. Note
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that the presented bound only takes cardinality constraints into account. Ngo [Ngo18]
discusses the general case where degree constraints apply.

To analyze how the runtime bound is related to the fractional edge cover of
the query hypergraph, lets consider (α∗, β∗, γ∗) to either be (0, 1, 1) or (1

2 , 1
2 , 1

2). In case
of (0, 1, 1) the runtime is in Õ(|R|α∗ ∗ |S|β∗ ∗ |T |γ∗) = Õ(|S| ∗ |T |) modulo preprocessing
time Õ(N), similar to the runtime of the traditional join plan R 54 (S 54 T ). The instance
(1

2 , 1
2 , 1

2) leads to an optimal bound for Inequality 3.4 if the product of sizes of any two
relations involved in the triangle query is greater than the size of the third relation. Then,
the runtime is bound by Õ(N +

�|R| ∗ |S| ∗ |T |) which is the worst-case optimal runtime.
[Ngo18]

The following section discusses theoretical research on studying the worst-case output
size of a query. Moreover, it introduces first algorithmic concepts that have been derived
from formal proofs of such bounds.

3.3.1 Fundamental Research on Bounds and Algorithms
Ngo’s survey [Ngo18] gives a great overview on milestones in the history of bounding the
worst-case output size of a query and deriving algorithms from the corresponding proofs.
It discusses various results from defining bounds on a query’s output size and algorithms
that emerged from these approaches. The survey introduces various milestones that led
to the Generic-Join algorithm 3.1 from Ngo et al. [NRR13] and beyond.

The first known approach, related to defining worst-case optimal bounds on a query’s
output size, is the Loomis-Whitney inequality [LW+49] which is a geometric inequality
shown in 1949. In terms of geometry, the Loomis-Whitney inequality bounds the measure
of an n-dimensional set in terms of its (n−1)-dimensional projections onto the coordinate
hyperplanes [NPRR12]. Ngo et al. [NRR13] formulate Loomis-Whitney queries LWn

from this geometric inequality where for every i ∈ [n] there exists a relation R[n]\i.
Less formally, in a Loomis-Whitney query every atom contains all but one variable.
Furthermore, the Loomis-Whitney query is a generalization of the triangle query since
Q� = LW3 and therefore, applying the discrete form of Loomis-Whitney inequality
states |Q�| =

�|R| ∗ |S| ∗ |T | which is also discussed by Ngo et al. [NRR13].

In 1981, Alon [Alo81] aimed for determining the maximum number of subgraphs G
isomorphic to H, for two graphs G and H . Roughly speaking, the number of occurrences
of a subgraph H within a larger graph G has been studied. Thus, Alon [Alo81] researched
the worst-case output size in the area of graph theory and obtained a tight asymptotic
bound on the number of subgraphs. In case of the triangle query Q�, this bound has the
same asymptotic behaviour as Loomis-Whitney’s which is in Θ(N 3

2 ), where the tables
sizes are given by N = |R| = |S| = |T |. Moreover, Ngo [Ngo18] formulates Alon’s bounds
using the factional edge cover number of hypergraph H as Θ(Nρ∗(H)).

Another milestone has been achieved by Bollobás and Thomason [BT95] in 1995. The
researchers proved a generalization of Loomis-Whitney’s results from 1949. Ngo [Ngo18]
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discusses the connection between the most general bound by Bollobás and Thomason
[BT95] and the AGM bound [AGM08]. Moreover, the equivalence between the AGM
bound and the geometric inequality from Bollobás and Thomason [BT95] has been shown
by Ngo et al. [NPRR12] in 2012. The most important result of Bollobás and Thomason
to the area of WCOJ algorithms was their inductive proof using Hölder’s inequality
from which the recursive algorithms by Ngo et al. in [NPRR12] and [NRR13] have been
developed and analyzed.

Furthermore, main contributing research to the establishment of WCOJ algorithms
were Grohe and Marx [GM06] [GM14] and Atserias et al. [AGM08] whose bound is
known as the AGM bound. Grohe and Marx [GM06] [GM14] introduce a new notion
of width, called the fractional hypertree width by combining the hypertree
width with the fractional edge cover number. They apply the fractional
hypertree width in the context of Constraint Satisfaction Problems (CSPs) to de-
fine and prove new bounds. They showed that CSPs with bounded fractional
hypertree width can be solved in polynomial time. Moreover, the researchers proved
that the maximum possible number of solutions of a sub-problem defined within a bag of
a tree decomposition is bound by O(Nρ∗(Q)) using Shearer’s lemma and they state an
almost worst-case optimal join-project plan which runs in O(Nρ∗(Q)+1) [Ngo18].

The AGM bound of Atserias et al. [AGM08] makes use of the fractional edge
cover number in order to define bounds on the size of conjunctive queries in terms of
the size of its input relations. The researchers present a proof of this worst-case optimal
bound and also show that this bound is asymptotically tight. Furthermore, they state
that join-project plans that result from fractional edge covers, and therefore
stuck to the AGM bound, are better than join plans. Additionally, they proved that there
exist arbitrary large join queries Q and database instances D such that any join-only
plan requires Ω(NΩ(log(|Q|)) to compute Q(D) whereas a join-project plan evaluates Q(D)
in O(N3).

The research of Ngo et al. [NPRR12] from 2012 builds on the results of Atserias et
al. [AGM08] and aims for obtaining algorithms that follow these worst-case optimal
bounds. They present multiple results that are of interest to database theory and systems
research. First, the researchers showed that for some queries any join-project plan is
polynomially slower than the optimal bound. Moreover, they present an algorithm that
achieves asymptotically worst-case optimal running times for any join query. In the first
place, Ngo et al. [NPRR12] prove that the AGM inequality, as given in Lemma 3.1, is
equivalent to the discrete version of the geometric inequality of Bollobás and Thomason
[BT95] and then focused on the Loomis-Whitney inequality which is a special case of
the one by Bollobás and Thomason. The researchers developed a worst-case optimal
algorithm for join queries that are Loomis-Whitney instances with n ≥ 3. This class of
queries contains the triangle query Q� and more general queries. Furthermore, they
developed this algorithm to handle any instance of natural join queries. Moreover, their
algorithm provides a constructive proof of the AGM bound without using Shearer’s
inequality. The key idea of the presented algorithm is the partitioning of join key values
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on each side of the join into heavy and light ones. A value of a join attribute is said to
be heavy if its fan-out is big enough so that joining all such join attributes would violate
the size bound. Such violation would be a size above N

3
2 for example. [NPRR12]

Unfortunately, the algorithm and its analysis provided by Ngo et al. [NPRR12] are
very complicated and not easy to implement. Interestingly, engineers at the commercial
database system LogicBlox [AtCG+15] noticed an implementation of this complicated
class of WCOJ algorithms using their framework. Benchmarks of this approach compared
to LogicBlox’s work-horse join algorithm called Leapfrog-Triejoin (LFTJ) revealed
that their Leapfrog-Triejoin can achieve the same runtime and even outperforms
the algorithm of Ngo et al. [NPRR12] on some test problems. Driven by these benchmark
results, Veldhuizen [Vel14] analyzed the complexity of Leapfrog-Triejoin, which
has already been implemented in 2009, and showed that this algorithm is worst-case
optimal up to a logarithmic factor in the data size. Furthermore, Veldhuizen proved that
Leapfrog-Triejoin is worst-case optimal for finer-grained classes of queries than the
algorithm of Ngo et al. [NPRR12] and published these findings in 2014.

The simplicity of Veldhuizen’s Leapfrog-Triejoin and the results of Ngo et al.
[NPRR12] from 2012 lead to the establishment of the Generic-Join algorithm of Ngo
et al. [NRR13]. The researchers underline how they bridge the gap between structural
information of a query and cardinality constraints. Moreover, they analyzed the AGM
bound and constructed the Generic-Join algorithm, depicted in Algorithm 3.1, from
this analysis. This rather simple and natural recursive join procedure is integrated into
a column-store system in this work. Therefore, this historical outline collected various
interdisciplinary research that led to the establishment of this Generic-Join algorithm.

Beyond bridging the gap between structural information and cardinality constraints
of a query which this work is built upon, there is research on more general constraints as
discussed in Section 3.2.5.

3.3.2 AGM Bound
The major result of Atserias et al. [AGM08] as well as of Grohe and Marx [GM14] [GM06]
is a tight bound on a join query’s output size in terms of the sizes of the individual input
relations and the fractional edge cover number. Thus, the AGM bound unifies
the structural properties and cardinality constraints of a query into a single tight bound.
Atserias et al. [AGM08] define the AGM bound for any join query Q as given in 3.1.
The bound addresses how large Q(D) can get in terms of |D| in the worst-case.

Lemma 3.1 ([AGM08]). Let Q be a join query with schema σ and D let be an instance
of σ. Then for any fractional edge cover (χR : R ∈ σ) of Q it holds that

|Q(D)| ≤
�
R∈σ

|R(D)|χR .

Atserias et al. [AGM08] as well as Ngo et al. [NRR13] present proofs of the AGM
bound applying Shearer’s inequality. It has to be noted that in the proof of the AGM
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inequality from Lemma 3.1 the fractional edge cover need not necessarily be
optimal. Atserias et al. [AGM08] further present a proof that is based on the linear
program presented in Equation 3.1 (without taking the sizes of input relations into
account) and the duality argument for linear programs. Moreover, they show that the
upper bound of the AGM inequality from Lemma 3.1 is tight as given in Lemma 3.2.

Lemma 3.2 ([AGM08]). Let Q a join query with schema σ and let (χR : R ∈ σ) be
an optimal fractional edge cover of Q. Then for any N0 ∈ N there exists an
instance D of σ s. t. |D| ≥ N0 and

|Q(D)| ≥
�
R∈σ

|R(D)|χR .

Atserias et al. [AGM08] state that due to the AGM bound and the fact that it is tight
(see Lemma 3.1 and Lemma 3.2), for any join query Q and every database instance D, the
query’s output size on database instance D is bounded by |Q(D)| ≤ |D|ρ∗(Q). Moreover,
there are arbitrarily large database instances D such that |Q(D)| ≥ |D|ρ∗(Q) ∗ |Q|−1

holds. Based on the AGM bound and their results, the researchers claim that a class
of join queries having a bounded fractional edge cover number is equivalent to
the fact that queries from that class can be evaluated in polynomial time by an explicit
join-project plan.

In order to profess on the AGM bound, lets consider the following two edge covers
for the triangle query Q� from Figure 3.1.

1. χR = χS = χT = 1
2

2. χR = χS = 1, χT = 0

Both edge covers are valid because for each it holds that 	
i:AjofRi

xi ≥ 1, ∀j ∈
{1, ..., n}. Having a look at attribute B, this condition for the first cover is χR + χS =
1
2+ 1

2 = 1 ≥ 1 and for the second one evaluates to χR+χS = 1+1 = 2 ≥ 1. Comparing both
covers under the AGM bound, the first cover gives a bound of |Q�| ≤ �|R| ∗ |S| ∗ |T |,
whereas the second one states a bound of |Q�| ≤ |R| ∗ |S|. Under the assumption that
all relations have a size of at most N , the first edge cover gives a tight upper bound of
N

3
2 , while the second one gives a worse bound of N2.

The AGM bound and the above example clearly show the bound’s connection to the
sizes of the individual input relations. In order to minimize the right hand side of the
AGM inequality given in Lemma 3.1 the linear program in Equation 3.1 needs to be
solved optimally and such optimal solution is referred to as fractional edge cover
number ρ∗(Q, D). Then, this inequality can be denoted by |Q| ≤ 2ρ∗(Q,D). [NRR13]
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3.3.3 From Theoretical Bounds to Algorithms
The historic outline of fundamental research on worst-case optimal bounds and algorithms
clearly shows that current algorithms and bounds result from years of interdisciplinary
research. Early geometric inequalities such as the one of Loomis-Whitney [LW+49] or
its generalized version by Bollobás and Thomason [BT95] originated from bounding
problems in the area of geometry. Atserias et al. [AGM08] study how large the output
size of a join query can get with respect to its input relations in the worst-case. To
formalize this problem, the researchers defined and proved tight bound on the output
size of a query which is given in Lemma 3.1. Moreover, their proof is based on Shearer’s
entropy inequality. However, no algorithm could be derived from such non-constructive
proof of the AGM inequality that achieves these optimal bounds.

Ngo et al. [NPRR12] introduce a worst-case optimal algorithm that yields a construc-
tive proof of the AGM bound instead of making use of the information theoretic Shearer’s
inequality. At first the researchers showed the equivalence between the AGM inequality
and the inequality by Bollobás and Thomason [BT95]. This equivalence implies that
the Loomis-Whitney inequality is a special case of the AGM inequality. Based on that
knowledge, the researchers describe an algorithm for Loomis-Whitney instances and in
another iteration a more general algorithm for all join queries from which they prove the
AGM inequality.

Another constructive proof of the AGM bound was given by Ngo et al. [NRR13]. The
researchers obtained the query decomposition lemma, given in Lemma 3.3 from
the recent, but complicated algorithmic approach of Ngo et al. [NPRR12] from 2012 and
present a correctness proof. Furthermore, they applied this lemma to inductively prove
the AGM inequality. This inductive proof structure paved the way to a class of recursive
join algorithms which they called Generic-Join and which is given in Algorithm 3.1.
All these efforts of deriving algorithms that run within the presented optimal bounds
require a constructive proof in order to formulate algorithmic procedures for them.

3.4 Worst-case Optimal Join Algorithms
This section aims for discussing the recursive Generic-Join algorithm 3.1 introduced
by Ngo et al. [NRR13] and how it is handling skew in the input data of a join query.
Besides the most general Generic-Join algorithm, the researchers discuss their ba-
sic ideas through introducing two algorithms that are worst-case optimally bounded.
These algorithms are referred to as The Power of Two Choices and Delaying of
Computation and are introduced on the example of the triangle query Q�. Neverthe-
less, these two algorithms can be used to compute more general natural join queries when
not specified explicitly for the triangle query Q�. The ideas behind these algorithms are
an optimal way of dealing with skew in the input relations of a join query. As already
mentioned in this chapter, the techniques presented here are closely related to geometry.
Moreover, the algorithms break with the pairwise evaluation of Multi-Way-Joins by
dealing with them in one go. Furthermore, Ngo et al. [NRR13] describe and analyzes
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the algorithm from Ngo et al. [NPRR12] and the Leapfrog-Triejoin [Vel14] using
their simplified framework and state that both join algorithms are a special case of their
Generic-Join algorithm 3.1.

3.4.1 Heaviness of Attribute Values
In order to deal with skewed data, Ngo et al. [NRR13] discuss a classification of attribute
values into light and heavy ones. The idea behind taking a value’s heaviness into account
is to handle nodes of low and high skew using different techniques. This separation is
important, because heavy values have a larger fan-out than lighter ones and can therefore
lead to larger intermediate results. An example of such a heavy value is illustrated in
Figure 3.3. The value a0 has a high fan-out and is therefore an example of skew. The
researchers discuss two different approaches of handling light and heavy values on the
example of the triangle query Q� and construct two algorithms for this query that follow
their observations.

3.4.2 The Power of Two Choices
Ngo et al. [NRR13] introduce an algorithm on the example of the triangle query Q�
called The Power of Two Choices which treats heavy and light values differently.
They define an attribute value ai to be heavy in context of the triangle query Q� if

|σA=ai(R 54 T )| ≥ |Q�[ai]| (3.5)

where
Q�[ai] := πB,C(σA=ai(Q�)). (3.6)

Note that these definitions can be analogously made for values bi and ci of attributes B
and C. Moreover, this approach requires the relations to be indexed and an estimation of
the values’ heaviness before computing the results. The inequality 3.5 defines a value to
be classified as heavy if it contributes more to the intermediate relation R 54 T than to the
overall output size of the query. To evaluate the join for heavy values ai, for each tuple
(b, c) ∈ S it will be checked if (ai, b) ∈ R and (ai, c) ∈ T . Since this strategy just scans
relation S, the computation of Q�[ai] can be done in linear time. On the other hand,
light values are treated the other way around. At first, the join σA=ai(R) 54 σA=ai(T ) is
evaluated and the results are filtered by probing against values in S.

Ngo et al. [NRR13] formulate an algorithm that estimates a value’s heaviness and
then applies the above strategies for computing the output. Moreover, they prove that the
algorithm is in O(N 3

2 ) for |R| = |S| = |T | = N and state that their Generic-Join al-
gorithm 3.1 is a generalization of the The Power of Two Choices algorithm beyond
triangles.

3.4.3 Delaying of Computation
Another approach to distinguish between heavy and light values is introduced by Ngo
et al. [NRR13] through their Delaying of Computation algorithm which has been
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depicted on the example of the triangle query Q� as well. Instead of trying to estimate
the heaviness of any value ai before computing the join, this algorithm aims for gradually
reducing skew while constructing the query’s solution. This reduction can be achieved
by intersecting the same attributes across multiple relations, which results in pairwise
intersections for the triangle query Q�.

In the first step, Delaying of Computation obtains a candidate set of bj that
can occur in an output tuple (ai, bj , c) with value ai by computing the intersection Lai

B =
πB(σA=ai(R)) ∩ πB(S). Next, for any b ∈ Lai

B a candidate set of ck is computed following
the same approach which results in a set L

ai,bj

C = πC(σB=bj (S)) ∩ πC(σA=ai(T )). Finally,
each combination of values from these set are added to the result. The computation of
candidate sets for bj and ck aim for reducing the skew towards computing the answer to
a given query.

Ngo et al. [NRR13] show that the Delaying of Computation algorithm has
the same worst-case optimal runtime as the The Power of Two Choices algorithm.
Both algorithms combine ideas of handling skew in the input relations into recursive
algorithms that are special instances of the general Generic-Join algorithm 3.1.

3.4.4 Generic-Join Algorithm
The Generic-Join algorithm 3.1 describes a class of recursive join algorithms that has
been constructed from an inductive proof of the AGM inequality as given in Lemma 3.1
using the query decomposition lemma stated in Lemma 3.3. The Power of
Two Choices as well as the Delaying of Computation algorithm are two special
instances that have been introduced on the example of the triangle query Q� of this
general algorithm. These two specific algorithms have been discussed to introduce the
idea of recursively computing Multi-Way-Joins and crafting the resulting tuples using
candidate sets of attributes.

Furthermore, Veldhuizen’s Leapfrog-Triejoin [Vel14] and the algorithm of Ngo
et al. [NPRR12] from 2012 are specific instances of the Generic-Join algorithm 3.1.
Ngo et al. [NRR13] state that it has been straightforward to design the Generic-Join
algorithm 3.1 from their proof of the query decomposition lemma given in Lemma
3.3 and the query decomposition from Equations 3.8 and 3.9 which they applied in the
inductive step of their constructive AGM inequality proof.

In order to prove the AGM inequality constructively, Ngo et al. [NRR13] introduce the
query decompositon lemma 3.3. Roughly speaking, this query decomposition
lemma can be interpreted as follows. Facing a partition V = I

�
J of the original query

hypergraph’s vertices that partitions the hypergraph into sets I and J . Then, the set
L =54F ∈EI

πI(RF ) represents an intermediate result of the original query corresponding
to its sub-query belonging to partition I. Any intermediate tuple tI ∈ L needs to be
further enriched with attribute values corresponding to the sub-query defined by partition
J , which can occur in an output tuple together with tI . Moreover, the semi-join RF � tI

ensures that only attributes of relation RF contribute to the fractional edge cover

40



3.4. Worst-case Optimal Join Algorithms

number, that can occur in an output tuple together with tI . This situation is formalized
by the left-hand side of Inequality 3.7. Therefore, the inequality defined within the query
decomposition lemma states, that the fractional edge cover number calcu-
lated following the partitioning approach is at most as large as the one calculated without
partitioning the hypergraph.

Furthermore, the major components of the query decomposition lemma can be
found in the Generic-Join algorithm 3.1. This algorithm is designed to recursively
partition the original query hypergraph and reconstruct output tuples by only considering
attribute values that can occur in output tuples, together with intermediate tuples tI .
Therefore, major components of the Generic-Join algorithm 3.1 have been derived
from the query decomposition lemma.

Lemma 3.3 (Query Decomposition Lemma). Let Q =54F ∈E RF be a natural join query
represented by a hypergraph H = (V, E), and let x be any fractional edge cover for H.
Further, let V = I

�
J be an arbitrary partition of V such that 1 ≤ |I| < |V| and let

L =54F ∈EI
πI(RF ). Then the following inequality holds.�

tI∈L

�
F ∈EJ

|RF � tI |χF ≤
�

F ∈E
|RF |χF (3.7)

Note that a specialized form of the query decomposition lemma for the triangle
query Q� has been implicitly applied in the The Power of Two Choices algorithm.

Query Decomposition

Query decomposition can be used in order to decompose a given query according to any
given partition of its hypergraph’s vertices and represent the original query in terms of
these partitions. Ngo et al. [NRR13] make use of query decomposition to recursively
craft the resulting tuples in their Generic-Join algorithm 3.1 and define this query
decomposition as follows.

Let V = I
�

J be an arbitrary partition of V such that 1 ≤ |I| < |V| and let
L =54F ∈EI

πI(RF ). Then, for each tuple tI ∈ L a new join query can be defined as

Q[tI ] :=54F ∈EJ
πJ(RF � tI). (3.8)

Based on these new join queries, the original query Q can be written as

Q =



tI∈L

(tI × Q[tI ]). (3.9)

The proofs of the query decomposition lemma and the AGM inequality using
query decomposition are explained by Ngo et al. [NRR13] in great detail. Moreover, the
researchers show by induction that the runtime of the Generic-Join algorithm 3.1 is
Õ(m ∗ n ∗ �

F ∈E |RF |χF ) where Õ is hiding a potential log factor. They further note, that
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Algorithm 3.1: Generic-Join(54F ∈E RF ) [NRR13]
Input: Query Q, Hypergraph H = (V ; E)

1 Q ← ∅;
2 if |V| = 1 then
3 return ∩F ∈ERF ;
4 end
5 Pick I arbitrarily such that 1 ≤ |I| < |V|;
6 L ← Generic-Join(54F ∈EI

πI(RF ));
7 for every tI ∈ L do
8 Q[tI ] ← Generic-Join(54F ∈EJ

πJ(RF � tI));
9 Q ← Q ∪ {tI} × Q[tI ];

10 end
11 return Q;

the algorithm of Ngo et al. [NPRR12] from 2012 is an instance of the Generic-Join
algorithm 3.1 where it takes any J ∈ E and I = V − J and solves the sub-queries Q[tI ]
differently. Additionally, they show that this algorithm matches The Power of Two
Choices algorithm. Furthermore, the Leapfrog-Triejoin algorithm [Vel14] is also
an instance of the Generic-Join algorithm 3.1 where V = [n] and I = 1, ..., n − 1.
[NRR13]
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CHAPTER 4
Integrating Worst-Case Optimal

Joins into Column-Stores

The aim of this chapter is to discuss the integration of a class of WCOJ algorithms into
column-oriented database systems. More specifically, the Generic-Join algorithm 3.1
that has been discussed in Chapter 3 is integrated in the MonetDB column-store which
has been introduced in Chapter 2. This chapter starts with a discussion of related
database system research that aims for utilizing WCOJ algorithms. Related work can
cover integration efforts similar to this work, the introduction of new query processing
engines, or even discussions on suitable data structures that can be leveraged to implement
classes of WCOJ algorithms. After looking at related research, the methods applied
in order to integrate the Generic-Join algorithm 3.1 into the MonetDB system are
introduced. Furthermore, this chapter takes a look into MonetDB’s query compiler to
deeply understand the compilation process of a query into a sequence of MAL instructions.
The obtained knowledge is important for the integration part of this work, because
MonetDB’s query compiler needs to be modified in a way that the generated MAL code
follows the Generic-Join algorithm 3.1.

The key contribution of this chapter is to present a sequence of MAL instructions that
is equivalent to the Generic-Join algorithm 3.1. This conversion will be discussed
on the example of the triangle query Q�. Moreover, MonetDB’s query compiler will
be modified to generate MAL programs that process Multi-Way-Joins in a worst-
case optimal manner. This work focuses on the evaluation of natural join queries, since
research discussed in this work presents WCOJ techniques for natural join queries. Finally,
technical obstacles are discussed that were encountered during the integration process.
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4.1 Related Work

This section discusses research that introduces ideas on how to integrate a class of WCOJ
algorithms into database engines. To that end, Aberger et al. [ALT+17] present a
high-performance graph-processing engine called EmptyHeaded that supports a query
language similar to Datalog. EmptyHeaded handles Multi-Way-Joins according
to a class of WCOJ algorithms and the researchers state that their engine outperforms
comparable specialized graph processing engines up to three orders of magnitude on
PageRank and graph pattern queries, for example. It even outperforms low-level systems,
where users have to write imperative low-level code, which tends to be more efficient
than high-level systems using a simpler query language. Aberger et al. [ALT+17] state
that their main contribution is a novel architecture consisting of a query compiler that
represents a logical query plan using Generalized Hypertree Decomposition (GHD) instead
of a traditional relational algebra. Moreover, their execution engine exploits low-
level data layout in order to increase SIMD parallelism. The combination of these
two concepts enables EmptyHeaded to match the proposed worst-case optimal bounds.
Additionally, the researchers mention that the application of GHD comes with additional
bookkeeping information that is exploited to bound the size of intermediate results.
Finally, they discuss how their optimizer deals with skew at several granularity levels
by selecting set layouts and intersection algorithms according to data characteristics at
runtime.

Besides their research on the EmptyHeaded engine, Aberger et al. [ALOR17] in-
troduce an in-memory query processing engine called LevelHeaded that aims for
evaluating both, business intelligence and linear algebra workloads efficiently. They
compare popular engines with respect to their performance on business intelligence versus
linear algebra workloads and show that their LevelHeaded engine performs well in
both worlds. In order to unify these query workloads in the LevelHeaded engine,
Aberger et al. [ALOR17] introduce a novel WCOJ query architecture. LevelHeaded’s
architecture composes three major techniques. First, LevelHeaded translates generic
SQL queries to hypergraphs, more specifically to GHDs. This eliminates attributes,
since only key columns of SQL queries are added to the GHDs. Moreover, they discuss
heuristics applied in order to obtain the best GHD representation. Besides this selection
mechanism, the researchers introduce a technique to further push down selections below
joins to boost performance. Furthermore, Aberger et al. [ALOR17] introduce a new
cost-based optimizer that obtains the most suitable attribute order similarly to obtaining
the best possible join order in traditional query optimizers. The researchers describe their
cost heuristics and claim that choosing different attribute orders can result in an order of
magnitude performance difference on the same query. The third introduced technique is
a query execution optimizer for group by operators. They claim that this optimizer
leads to resistance against skew for group by operations. Combining these techniques
into an WCOJ query architecture, LevelHeaded outperforms other relational engines
on linear algebra queries by at least a magnitude of order. Moreover, LevelHeaded
is among the top 31% of best-of-the-breed solutions for business intelligence and linear
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algebra queries combined.

Freitag et al. [FBS+20] present an implementation of WCOJ algorithms into their
UMBRO DBMS that has been developed by their research group. The researchers claim,
that their approach can be implemented in any general-purpose DBMS that supports
hybrid transactional as well as analytical workloads. They identify two major shortcomings
that prevent WCOJ algorithms finding their way into general-purpose DBMSs. First,
they require suitable indices on all permutations of attributes that can take part in a join,
which implies great maintenance and storage overhead. Secondly, Multi-Way-Joins
perform worse than pairwise joins if there are no growing intermediate results. Thus,
Freitag et al. [FBS+20] argue that an implementation of a WCOJ algorithm in a general-
purpose DBMS needs an optimizer that only introduces Multi-Way-Joins if they are
beneficial to the query evaluation. Moreover, such an implementation has to be capable
of dynamically building and maintaining performant index structures without the need
of persisting them to disk. To that end, the researchers introduce a hash-based WCOJ
algorithm that does not rely on precomputed indices. Their algorithm exploits a hash
trie data structure that aims for storing tuples in a trie based on the hash values of their
join attributes. These hash tries can be dynamically built in linear time. Furthermore,
the researchers introduce a heuristic query optimizer that generates hybrid query plans,
which combine pairwise joins with Multi-Way-Joins, and take cardinality estimations
into account. Their results show, that their proposed algorithm outperforms binary join
plans as well as other systems with integrated WCOJ algorithms.

A recent paper of Navarro et al. [NRR20] from 2020 analyzes that the implementation
of WCOJ algorithms requires enhanced indexing structures. Such implementations
require additional data structures, heavily indexed databases or clever heuristics to
compute the most suitable evaluation path given index structures. An example of such
a heuristic is given by Aberger et al. [ALOR17] which is utilized to obtain the best
possible attribute order. Thus, a gain of flexibility in attribute processing leads to
heavier data structures and bigger storage footprints. To tackle these concerns, Navarro
et al. [NRR20] aim for developing optimal join algorithms that are counterfeiting this
additional storage requirements and that are independent of any attribute order. Their
key contribution is a representation of input relations as point sets in n-dimensional
grids. This representation is realized using quadtrees, which require an almost optimal
amount of space. Furthermore, the researchers show that WCOJ algorithms can be
derived directly from this representation of input relations. Moreover, they briefly discuss
the evaluation of the triangle query Q� using the Generic-Join algorithm 3.1 and
introduce how their quadtrees (qdags) handle this query. This is done by dividing the
output space, which is a grid of size N3, into 8 subgrids of size

�
N
2

�3 and recursively
evaluate each subgrid for the given query. Moreover, the researchers introduce their
qdags as well as lazy qdags data structures that benefit from regularities in grids of a
relation. Navarro et al. [NRR20] state, that their WCOJ algorithm is a competitive
alternative to existing ones and further mention that their qdags representation is much
more space efficient than existing index structures.
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4.2 Methodology
This section elaborates on the methods used for integrating the Generic-Join algo-
rithm 3.1 into MonetDB. Moreover, it gives a structured overview of what methods
utilized in the integration process, including a brief introduction to each one. Different
methodological approaches have to be combined in order to gain knowledge about the
MonetDB compiler’s structure and code as well as to translate the Generic-Join
algorithm 3.1 into MAL code and to integrate this algorithm into MonetDB’s query
compiler.

1. Literature Review
Background information and fundamental knowledge about column-oriented database
systems, especially MonetDB, and WCOJ algorithms has been discussed in Chap-
ter 2 and Chapter 3 respectively. This literature review builds a foundation of
knowledge from both domains, which are combined in this work. Moreover, good
theoretical understanding is necessary to successfully integrate WCOJ algorithms
into column-oriented database systems.

2. Reverse Engineering
MonetDB [Monb] provides a rich amount of user-specific documentation. Moreover,
its architecture and internal concepts as well as MAL [Monc] are well documented.
Nevertheless, the documentation is lacking information on how to get developers
started with extending the MonetDB system, especially how a query is translated
into a sequence of MAL instructions. Therefore, main concerns before being able
to start integrating the Generic-Join algorithm 3.1 are to reverse MonetDB’s
source code, understand the compiler’s internal representation of a query and how
queries are translated in MAL code. This knowledge will be essential to actually
being able to integrate the WCOJ algorithm into MonetDB.

3. Translation of the Theoretical Algorithm to MAL Code
The Generic-Join algorithm 3.1 is represented using different relational algebra
operators that have to be translated into equivalent MAL instructions. Based on
the knowledge obtained in the reverse engineering step, the translation is crucial to
estimate the integration’s feasibility. This translation is carried out on the example
of the triangle query Q�. The manual conversion of relational algebra operators
utilized in the Generic-Join algorithm 3.1 to MAL instructions tries to be as
direct as possible in the first place. Finally, improvements are introduced based on
the evaluation of this direct translation.

4. Integration of the Theoretical Algorithm into the Query Compiler
The Generic-Join algorithm 3.1 is finally integrated into the MonetDB query
compiler. Taking the gained knowledge from reverse engineering and manual
translation into account, MAL features required for integrating the class of WCOJ
algorithms into MonetDB need to be implemented and query optimizers need to
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be adapted and extended accordingly. Furthermore, binary join evaluation has
to be replaced with the Multi-Way approach introduced by the Generic-Join
algorithm 3.1.

4.3 MonetDB Query Compiler
This section aims for giving a brief overview of how MonetDB compiles a given query into
a MAL program. The discussion focuses on the internal representation of a query using an
operator tree, where each operator produces a statement tree structure. Furthermore, the
data structures used internally are outlined. This section does not shed a light on the query
parser, since this work does not alter MonetDB’s existing one. However, the integration
of a class WCOJ algorithms into MonetDB requires adapting the translation process
in order to implement the join processing schema introduced by the Generic-Join
algorithm 3.1. The core of this translation process is a tree of operators that corresponds
to the relational algebra representation, as shown in Listing 2.1. This operator tree
is traversed, and each operator node generates a statement tree or a list of such that
corresponds to the set of MAL instructions represented by that operator node. To outline
this translation process, the operator tree as well as the statement trees will be discussed
on the example of the triangle query Q�. Note that the major insights outlined in this
section have been obtained during the reverse engineering process of MonetDB’s source
code.

4.3.1 Query Translation Process
The following outlines MonetDB’s query translation process under the assumption that
the query has already been parsed and that it is represented using a combination of
appropriate data structures. Moreover, implementation details are discussed in order to
point out how a single operator can result in a sequence of MAL instructions and to
elaborate on how information is passed through the translation process. Furthermore,
the discussion aims for obtaining the most suitable possibility for replacing MonetDB’s
pairwise join processing with the Multi-Way-Join processing schema introduced by
WCOJ algorithms. The second desirable outcome is a way of replacing the join translation
semantics and still being capable of utilizing any other operator without the need for
adaptation.

The query translation logic mainly resides in the rel_bin.c file of MonetDB’s
source code, since it contains the logic to traverse the operator tree and translate the
parsed query into a MAL program. Nodes within this operator tree are represented by
a C struct called sql_rel, which is shown in Listing 4.1. Besides a number of integer
flags which are partly described in the source code, there is the op property of enum type
operator_type, which describes the operator’s type. Such types follow the naming
convention op_<operator>. Figure 4.1 shows the operator tree of the triangle query
Q�, where nodes are reference by operator types (e.g. op_basetable). The three
basetable operators correspond to the relations R, S and T which are joined in a pairwise
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fashion, as also shown in Figure 4.1. Furthermore, the binary tree structure is established
by making use of the void pointers l and r which define either a pointer to the left or
right child node or address data to be accessed in leave nodes of the tree. Moreover, exps
represents a pointer to a list of expressions utilized by some operators during translation,
p can represent properties relevant to the optimizer and nrcols describes the number
of columns involved.

typedef struct r e l a t i o n {
s q l _ r e f r e f ;
operator_type op ;
void ∗ l ;
void ∗ r ;
l i s t ∗ exps ;
int n r c o l s ;
unsigned int

f l a g : 1 6 ,
card : 4 ,
dependent : 1 ,
d i s t i n c t : 1 ,
p roce s sed : 1 ,
outer : 1 ,
grouped : 1 ,
s i n g l e : 1 ,
used : 2 ;

void ∗p ;
} s q l _ r e l ;

Listing 4.1: MonetDB’s sql_rel data structure which represents an operator tree’s
nodes. [Mon21]

op_project

op_join

op_join

op_basetable op_basetable

op_basetable

Figure 4.1: MonetDB’s internal representation of the triangle query Q� as operator tree.

The operator tree is traversed in postorder and each tree node is executing operator
specific functions in order to translate the current node given by an object of type
sql_rel, as given in Listing 4.1 into a sequence of MAL instructions. The key data
structure for this operator-wise translation is internally referred to as stmt and is shown

48



4.3. MonetDB Query Compiler

in Listing 4.2. There are statements of different types following the naming convention
st_<type> (e.g. st_bat, st_tid, st_result, etc.). Moreover, properties op1, op2
and op3 are used to link to child statements. Due to the fact that most statement types
just make use of op1 and op2, many operator nodes return a binary tree of statements as
result (e.g. op_basetable). Providing such concatenation of statements to subsequent
operators or parent nodes in the operator tree enables to transport context about the
translation through the whole process. Another important property of the stmt data
structure is op4 which can represent other types and is mainly utilized to address a
list of statements. Operators can generate such statement lists during translation of
multiple expressions or columns. This is done for instance in case of op_basetable
when multiple columns of a single table are projected.

Moreover, the properties tname and cname relate to a table’s and column’s name,
respectively. These fields can be important in situations, where a specific attribute
needs to be obtained, as well as for debugging purposes. The nr property describes
the number of the generic variable identifier the statement is assigned to (e.g. X_100).
Furthermore, the fields tvar and hvar are used for list iterations, as shown in Listing 2.7.
tvar represents the temporal variable assignment per iteration, and hvar relates to the
corresponding oid value. Thus, tvar describes the value itself (e.g. a string value) and
hvar its position within the iterated column. Additionally, the cand statement pointer
can be utilized by operators as an optional candidate list.

The discussion about statements has been related to sharing translation context be-
tween subsequent operators so far. The context propagation is one of the main concerns
this work has to deal with when modifying MonetDB’s query compiler. In order to outline
the full picture, we will briefly introduce how MonetDB manages MAL instructions that
have been produced by an operator. The main connection between a stmt object, which
aims for representing translation context and the generated MAL instructions, is the q
property of type InstrPtr. The source file sql_statement.c contains a collection
of functions that generate specific MAL instructions and return corresponding statement
objects for context propagation. Each such function creates a new InstrPtr object
by invoking newStmt or newStmtArgs. These functions can be parameterized with
the MAL module and the corresponding instruction to be created. Moreover, the first
parameter is the backend’s MalBlkPtr instance, which abstractly represents the set of
generated MAL instructions. Newly created instructions are added to this MalBlkPtr
instance and can also be modified or accessed using predefined functions. This data
structure represents the current state of the generated MAL program, and optimizations
are also carried out on it. Furthermore, the MAL interpreter utilizes this data structure
during execution.

typedef struct stmt {
st_type type ;
struct stmt ∗op1 ;
struct stmt ∗op2 ;
struct stmt ∗op3 ;
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stmtdata op4 ;

unsigned int
n r c o l s : 2 ,
key : 1 ,
aggr : 1 ,
p a r t i t i o n : 1 ,
reduce : 1 ;

struct stmt ∗cand ;

int f l a g ;
int nr ;
int tvar ;
int hvar ;

const char ∗tname ;
const char ∗cname ;
I n s t r P t r q ;

} stmt ;

Listing 4.2: MonetDB’s stmt data structure which is used to represent statements.
[Mon21]

4.3.2 Compiling the Triangle Query Q�

The previous section discussed the translation process of a given query into a MAL
program and describes the key data structures used in this process. This section outlines
the translation process on the example of the triangle query Q� and discusses how
natural joins are compiled with respect to this example.

The following explanation assumes that there exists a database with relations
R(A, B), S(B, C) and T (A, C) running in MonetDB and that the triangle query Q�
has been submitted to query this database. After the system has parsed the query, the
query is transformed into an operator tree represented through nodes of type sql_rel,
as described in the previous section. Figure 4.1 shows the resulting operator tree that
is traversed in postorder during the translation process. Therefore, the operators are
implemented in a way that they aim for translating their child nodes first, since they
serve as input. This is realised by invoking the traversal logic on the l and r pointer
of the current node. Following this recursive traversal logic, the first operator node to
be translated is the left op_basetable of the second op_join node. This basetable
operator generates MAL instructions which load the corresponding table’s columns. The
resulting MAL sequence for column b of relation R is shown in line 2 to 4 of Listing 2.4.
Note that this is the optimized version of the resulting instructions, since intermediate
MAL code for basetable operations contains delta operations to realise cracking. If
delta operations are not required, the optimization pipeline removes them. Moreover,
Figure 4.2 illustrates a statement of type st_list that results from translating the
basetable operator for relation T (A, C). This list contains statement trees for columns A
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and C with three cascading st_join nodes. The deepest st_join statement, which
takes two st_bat statements as input, produces a delta instruction between these two
BATs. One of the BATs relates to the original column and the other represents introduced
updates. The st_join node above binds the column of interest based on the table
identifier, and the top level st_join statement generates a projection instruction that
projects the column values and assigns the resulting BAT to a new variable.

st_list

st_join
t.a

st_join
t.a

st_join
t.a

st_bat
t.a

st_bat
t.a

st_tid

st_join
t.c

st_join
t.c

st_join
t.c

st_bat
t.c

st_bat
t.c

st_tid

Figure 4.2: Resulting statement structure of type st_list after translating the basetable
operator for relation T .

Note that the other two basetable operator nodes perform the same operations on the
remaining columns R and S respectively. Continuing with the triangle query example, the
next operator node to be considered is the deepest op_join node. This operator aims for
performing a natural join between relations T and S, since the example query naturally
joins all relations. Thus, the relations T and S are joined on attribute C. As shown in
Figure 4.1 the deepest op_join node has two child nodes of type op_basetable which
generate MAL code in order to load columns of relations T and S. These two child nodes
are input to the join operator node, which aims for generating MAL instructions based
on the context provided by the child nodes’ resulting statement structure. Figure 4.3
depicts the resulting statement tree structure after executing this join operator. The
st_result and the top level st_join statement have been generated by the current
join operator. Based on the context of its input nodes, the join operator decides on the
most suitable and efficient type of join to be translated to (e.g. equi-join, semi-join, etc.).
This translation is represented by the top level st_join node, as shown in Figure 4.3.
The st_result node serves materialization purposes of the join result and generates
a projection instruction if required. As already introduced in the previous section, the
statement tree structure from Figure 4.3 is the result of the corresponding op_join node
and serves to propagate translation context to the parent operator node. Besides that,
the corresponding InstrPtr pointer aims for storing information about the generated
MAL instructions in the backend’s MalBlkPtr data structure. The MAL instructions
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resulting from translation of the discussed join are given in Listing A.1 on lines 13 to 15.

st_result

st_join

st_join
t.c

st_join
t.c

st_bat
t.c

st_bat
t.c

st_tid

st_join
s.c

st_join
s.c

st_bat
s.c

st_bat
s.c

st_tid

Figure 4.3: Resulting statement structure after translating the join operator for relations
S and T .

The top level op_join operator node takes the resulting statement tree structure
of the first pairwise join of relations S and T as well as the statement tree structure
of the result of the basetable operator on relation R as inputs. The structures are
given in Figure 4.3 and Figure 4.2 respectively. The resulting statement tree structure
follows the same approach as discussed for the first join operation. Projections are
generated according to the same logic, since each join operator is translated using the
same methods given in the rel_bin.c source file. Many code fragments aim for looping
over a statement of type st_list or expressions defined by the sql_rel structure.
This is a recurrent pattern throughout the implementation of different operators, because
many operators produce position lists as a result, such as the join operator does. Each
attribute of the corresponding relation is iterated over in loops and projected on such a
BAT of OIDs in order to obtain the join’s materialized result. This has to be done since
any attribute is managed and stored as separate BAT.

After translating both pairwise join operators into a sequence of MAL instructions,
the translation process continues with the op_project operator in the root node of
the operator tree, as shown in Figure 4.1. The root node of type op_project serves
various purposes in general. First, it initiates the translation of its child. This process
has been discussed on the example of the triangle query Q� in this section. Moreover,
it aims for generating MAL code to select the top n results, as well as code to specify
the order of results. Furthermore, this operator can generate MAL code that calculates
distinct results.

The insights into MonetDB’s query translation logic provided in this section build
the foundation for planning the integration process of a class of WCOJ algorithms
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given by the Generic-Join algorithm 3.1. The discussed example query underlines
the feasibility of integrating the new way of join processing into MonetDB while still
supporting any other SQL feature out of the box. The following sections of this chapter
introduce and discuss an integration approach that replaces the pairwise join evaluation
with Multi-Way-Join processing, as introduced by WCOJ algorithms.

4.4 Integrating the Generic-Join Algorithm into
MonetDB

The aim of this section is to discuss the integration process of WCOJ algorithms into
column-oriented database systems on the example of the Generic-Join algorithm 3.1
and the MonetDB column-store. In order to understand the difficulties encountered
during the integration process, implementation challenges are outlined. These challenges
compose problems that need to be solved in order to enable MonetDB to translate a
given SQL query into a sequence of MAL instructions following the Generic-Join
algorithm 3.1. Furthermore, the translation of relational algebra operators applied in the
Generic-Join algorithm 3.1 into sequences of MAL instructions are discussed in great
detail. A direct translation is carried out and evaluated in the first place. Based on the
obtained results, certain parts of the direct translation are optimized. Finally, MonetDB’s
query compiler and optimizer are adapted in order to make the column-store generate
MAL programs that follow the Generic-Join algorithm 3.1. Newly introduced and
adapted data structures as well as adapted query optimizer and code generators are
outlined.

4.4.1 Integration Challenges
This section briefly discusses the main obstacles encountered during the overall integration
process of the Generic-Join algorithm 3.1 into MonetDB. This problem discussion is
important in order to point out concepts that need to be supported by the column-store,
as well as introduce features that have to be integrated into MonetDB. The following
gives an overview of challenges to be tackled for a successful integration.

1. Reverse Engineering of MonetDB’s Codebase
A very time-consuming but essential challenge to be tackled was to gain knowledge
about MonetDB by reversing its codebase. The main focus during the reverse
engineering process was to understand the SQL frontend code and how queries are
translated into a sequence of MAL instructions. A question of special interest is
whether all MAL features required for realising the Generic-Join algorithm 3.1
are already supported by the MonetDB query compiler or not. Another point of
great importance is the possibility of just changing the way joins are handled during
translation while still supporting any other SQL feature without the need for code
adaptations. Moreover, the extension modules algebra, bat and group have to
be explored in order to be able to pick the most suitable MAL instructions during
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the translation process and to understand which code constructs are possible. Due
to the fact that MAL code optimizer are leveraged in order to transform a MAL
program into a more efficient one, it is important to get to know the corresponding
optimizer pipeline and its modules. This is of great interest, since newly introduced
code constructs might be wrongly optimized due to the optimizer’s lack of knowledge
about this new code construct. For instance, an empty bindings optimizer would
remove temporal variables if they are not explicitly supported. To sum up, the
reverse engineering process aims for gaining knowledge about the translation of
a SQL query into a MAL program in order to be able to introduce new code
constructs and to adapt existing behaviour.

2. Debugging mserver5
Since MonetDB’s codebase needs to be modified and new concepts have to be
introduced during the integration process, it is of importance to be able to debug
the corresponding source code. To that end, knowledge about the programs, which
MonetDB is composed of, is required. These programs are monetdb, monetdbd
and mserver5. Since query compilation and execution is done by the mserver5
program, the ability to debug this application is required. Unfortunately, the official
MonetDB documentation [Monb] does not state a suitable debugging configuration.
Thus, different configurations have been obtained during reverse engineering and
were used to understand the meaning of certain variables and settings. Listing 4.3
depicts the most suitable debug configuration for the purposes of this work. The
placeholder path/to/db relates to the location of the database to be started.

mserver5 −−dbpath=path/ to /db
−−s e t monet_vault_key=path/ to /db / . vaultkey
−−s e t monet_mod_path=/usr / l o c a l / l i b /monetdb5
−−s e t gdk_nr_threads=24
−−s e t max_clients=64
−−s e t sq l_opt imizer=de fau l t_pipe

Listing 4.3: Debug configuration of mserver5.

3. Different Way of Translating Joins
The original MonetDB query compiler has been discussed in Section 4.3 in general,
and specific data structures were pointed out on the example of the triangle query
Q�. The operator tree in Figure 4.1 illustrates the pairwise evaluation of joins.
However, integrating a class of worst-case optimal joins into this translation process
needs to replace this pairwise evaluation with a different approach that allows
to generate MAL code that features the Multi-Way-Join processing behaviour
of WCOJ introduced by the Generic-Join algorithm 3.1. Furthermore, one
important goal of the integration process is to replace the join translation logic,
while still supporting the original implementation of any other query language
feature. This is desirable, since there will not be any need to adapt their original
implementation, which reduces the overall implementation overhead of this work.
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The new way of translating joins requires a suitable data structure that represents
a query’s hypergraph and transports all necessary information needed to translate
natural join queries according to the Generic-Join algorithm 3.1. Moreover,
the new translation logic has to be able to deal with the stmt data structure, as
described in Section 4.3. Particularly, it has to consume statement tree structures
that result from basetable operator nodes and produce a suitable statement structure
in order to support any kind of parent operator node.

4. Generate MAL Code with Loops
MAL provides the possibility of looping over every single entry of a BAT by utilizing
the control flow operators BARRIER, REDO and EXIT together with the iterator
module, as shown in Listing 2.7. This language construct is essential for this work,
because the Generic-Join algorithm 3.1 needs to iterate over each resulting
tuple tI ∈ L in the results of the first recursive call on partition I and then
recursively construct the output for each such tuple tI ∈ L with respect to partition
J . MonetDB provides different optimizations [Mona] to transform a MAL program
into a more efficient version of it, but none of these optimizations requires loops.
Therefore, MonetDB’s SQL frontend does not provide statements that generate
loop specific MAL instructions. To that end, a big challenge was to equip MonetDB
with statements that generate loops, as shown in Listing 2.7. Moreover, these MAL
constructs need to be integrated in the query compilation process in order to be
capable of generating the nested loop structure that results from the recursive calls
presented in the Generic-Join algorithm 3.1.

5. Introduce Temporary Variables in MonetDB
The construction of output tuples for a given query according to the Generic-Join
algorithm 3.1 can be obtained in line 9 of the algorithm. The corresponding MAL
code version requires multiple nested loops, where each nested loop corresponds to
an attribute that is joined when calculating a query’s result, as shown in Listing A.3
of Appendix A. This nested loop structure calculates the output tuples by iterating
over the distinct attribute values respectively and concatenates attribute values
of outer loops with the joined attribute values of inner ones. One crucial aspect
about this nested loop structure is, that every single iteration of an outer loop
needs to append corresponding intermediate results of the inner loops to BATs.
Such intermediate results can be calculated using temporal variables, as shown in
line 40 and 41 of Listing A.3 in Appendix A. To that end, the MonetDB query
compiler as well as its optimizer need to be extended in order to support temporal
variables whose scope belongs to a given loop.

6. Reuse Variable Identifiers
The original MonetDB generates MAL programs where the result of any MAL
instruction is assigned to a new variable identifier. This suits its original compilation
approach, which does not generate loops. The Multi-Way-Join evaluation
schema of the Generic-Join algorithm 3.1 introduces the need for iterating
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over single values of a given BAT. Moreover, each iteration’s result has to be
appended to a result BAT. Thus, such append operations require the possibility
to append results to the same BAT in each iteration and therefore break with
MonetDB’s assignment policy. This has to be considered during the adaptation of
methods that generate specific instructions which need to reassign the result to an
existing variable. Moreover, this reassignment behaviour in combination with loops
introduce local scopes within the nested loops which needs to be considered during
the integration process as well.

4.4.2 Translating the Generic-Join Algorithm into MAL
Instructions

The aim of this section is to discuss the most suitable and efficient MAL instructions that
can be used to translate parts of the Generic-Join algorithm 3.1 into. The translation
is committed to select MAL instructions that closely correspond to the relational algebra
operators utilized in the formulation of the Generic-Join algorithm 3.1. Based on
this direct translation in combination with the corresponding evaluation from Chapter 5,
improvements are introduced and discussed. It is expected that improvements will be
required, since algorithms formulated using relational algebra tend to utilize operators
which are handy for formalization purposes. The efficiency of such operators in a real
system is a completely different concern. Thus, the direct translation approach will
include MAL instructions which are not beneficial for the efficiency of the resulting
program and need to be replaced with more efficient alternatives (e.g. replace cross
product with a more efficient set of MAL instructions).

The following discusses the translation of the Generic-Join algorithm 3.1 line by
line and presents sequences of MAL instructions that closely correspond to the given
line of relational algebra notation. At first, the most direct translation is discussed and
afterwards potential improvements are described.

Direct Translation

In the first step of translating the Generic-Join algorithm 3.1 into a MAL program, a
direct translation approach is carried out. This means, that the pseudocode instructions
are translated into the closest corresponding MAL instructions. As already introduced,
this can have specific performance implications. Furthermore, code segments that impact
the data flow are discussed in order to point out how they are translated even though
there is no one to one translation to existing MAL instructions. Listing A.2 in Appendix A
shows the MAL program that results from this direct translation.

if |V| = 1
The given line of code depicts the termination condition of the recursive structure
of the Generic-Join algorithm 3.1. This condition holds whenever there is just
a single attribute left in the set of vertices V. The number of attributes in V
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is decreasing with recursion depth, since each recursive call of Generic-Join
further partitions the provided query in two sub-hypergraphs of this given query.
Whenever |V| = 1 holds, the execution of one of the two recursive calls with respect
to partitions I and J is terminated. The result of this termination is the intersection
of any columns over all relations that correspond to the single attribute left in V.
Furthermore, the termination condition need not be translated into MAL code, but
tells the query compiler to generate the intersection of all columns belonging to
this single attribute in the right place.

return ∩F ∈ERF

This return statement is executed whenever the termination condition |V| = 1
holds. Due to the fact that Generic-Join contains two recursive function calls,
the overall execution can be illustrated using a tree structure. Facing such a tree
representation of function calls, the given return statement is called in leave nodes
of such tree. The overall structure of this tree and its depth is determined by the
applied partition strategy in order to divide the set of vertices V into two sets I
and J .

Besides these control flow aspects that affect the nested loop structure of the re-
sulting MAL program, the intersection of multiple columns across various relations
that belong to the single attribute in V is of importance. Since queries usually
join multiple relations on various attributes, the resulting MAL sequence requires
cascading the intersection of multiple columns. Moreover, the MAL instruction
algebra.intersect supports intersecting two BATs and produces BATs of
OIDs representing matching positions within the corresponding inputs. This MAL
instruction can generate the resulting BATs for the left, right or both input BATs.
Since algebra.intersect just supports pairwise intersections, the translated
MAL code cascades multiple intersection instructions. Moreover, intermediate
BATs of OIDs need to be projected in order to obtain an intermediate result that
can further be involved in a pairwise intersection with another column. Listing 4.4
shows an example sequence of MAL instructions that intersects three columns.
Note that group.groupdone needs to be applied to the final result BAT of the
cascaded intersections, since individual columns might contain duplicated values
that would not be eliminated during intersection and projection.

1 interRTA : bat [ : o id ] := a lgebra . i n t e r s e c t ( projRA : bat [ : s t r ] ,
projTA : bat [ : s t r ] , n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t ,
f a l s e : b i t , n i l : lng ) ;

2 projInterRTA : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( interRTA : bat [ : o id ] ,
projRA : bat [ : s t r ] ) ;

3 interA : bat [ : o id ] := a lgebra . i n t e r s e c t ( projUA : bat [ : s t r ] ,
projInterRTA : bat [ : s t r ] , n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t ,
f a l s e : b i t , n i l : lng ) ;

4 pro j InterA : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( interA : bat [ : o id ] ,
projUA : bat [ : s t r ] ) ;
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5 (X_111 : bat [ : o id ] , C_112 : bat [ : o id ] ) :=
group . groupdone ( pro j InterA : bat [ : s t r ] ) ;

6 distA : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_112 : bat [ : o id ] ,
pro j InterA : bat [ : s t r ] ) ;

Listing 4.4: MAL code snippet of intersecting three columns that correspond to
attribute A. This snippet can result from translating "return ∩F ∈ERF " into MAL.

Pick I arbitrarily such that 1 ≤ |I| < |V|
This line of pseudocode aims for partitioning the given hypergraph representation
of a query into two sub-hypergraphs HI = (I, EI) and HJ = (J, EJ). Therefore, a
subset of vertices I is selected arbitrarily according to the condition 1 ≤ |I| < |V|
and J is a complementary subset to I such that V = I

�
J . The applied partitioning

strategy impacts the resulting nested loop structure, because recursive calls handle
both (sub-)hypergraphs separately. Integrating the Generic-Join algorithm 3.1
into a database system in a way that it achieves the best performance would require
an optimal partitioning. Finding the most suitable partitioning strategy can depend
on the database system itself, on the submitted query and other parameters. Thus,
integrating such optimal partitioning strategy requires great effort and is outside
the scope of this work.
For that reason, this work utilizes the same partitioning strategy for every query
under the assumption that the selected strategy does not have major performance
implications. In general, there will be performance differences which cannot be
easily estimated upfront. These potential variations are neglected by this work, since
the main focus is on the overall integration of WCOJ algorithms. The partitioning
strategy applied by this work always picks I such that |I| = 1. During partitioning,
the vertices of the current query hypergraph are sorted in descending order of
their degrees, and the vertex of the highest degree will be selected. Thus, the
set I consists of the attribute that appears in the most relations of the current
sub-hypergraph. If there are multiple such attributes with the same highest degree,
one of them will be arbitrarily selected. Since, V is partitioned into sets I and J , J
contains all remaining vertices except the one with the highest degree.

L ← Generic-Join (�
F ∈EI πI(RF ))
This line of pseudocode depicts the first recursive call of the Generic-Join
method. The parameter represents the sub-query related to partition I in relational
algebra notation. Each recursive call defines the structure of the resulting MAL code,
and the distribution of sub-hypergraphs is controlled by the applied partitioning
strategy. The compiled MAL code of this work is always structured the same
way, since a partitioning strategy is used that picks |I| = 1 as introduced in the
previous paragraph. Moreover, the fact that |I| = 1 makes the recursive call L ←
Generic-Join (54F ∈EI

πI(RF )) meets the condition |V| = 1 in any case, because the
set I represents the set of vertices V that corresponds to the given recursive call
of the Generic-Join function. As a result, each recursive method call taking
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the sub-hypergraph related to partition I as parameter will intersect all columns
that relate to the single attribute in I. The resulting code is shown in Listing 4.4.
Note that when choosing another partitioning strategy that also allows partitions
where |I| > 1, this recursive call would not immediately translate into cascading
intersections in any case. Such settings would generate nested loops for recursive
calls on the sub-hypergraph related to partition I.

for every tI ∈ L
The given for-loop aims for iterating over each value tI present in the result L
of the previously discussed recursive call on the sub-hypergraph corresponding to
partition I. Listing 4.5 depicts how loops can be realized using MAL instructions.
A new iterator on set L is defined using iterator.new that initially assigns
values to variables tIoid and tI. The BARRIER dataflow modifier indicates the
start of a loop and the REDO dataflow modifier assigns new values to tIoid and
tI respectively and continues execution of the next loop iteration. If there are no
further values present, the loop is exited. Furthermore, the value that corresponds
to the current iteration can be accessed via the variable tI, as given in Listing 4.5.
This variable will be utilized for constructing corresponding results by recursively
calculating tuples that appear in the output tuple, together with the value referenced
by tI.

The most important fact to be considered when translating loops is, that the
loop’s header and footer need to be transformed independently. Therefore, the
given line of pseudocode just compiles into line 1 of Listing 4.5. Moreover, lines
containing the REDO and EXIT dataflow modifiers have to be generated at a later
point in the translation process. Since the loop block is the last code block in
the Generic-Join algorithm 3.1, the MAL loop’s footer instructions can be
generated right before returning from the current function call. Furthermore, each
nested loop, except the outermost one in this direct translation, requires allocating
a temporal BAT upfront that will be utilized to propagate intermediate results
produced by the translation of the cross product {tI} × Q[tI ] to the encapsulating
loop respectively.

1 tmp : bat [ : s t r ] := bat . new( n i l : s t r ) ;
2 b a r r i e r ( t I o i d : oid , t I : s t r ) := i t e r a t o r . new(L : bat [ : s t r ] ) ;
3 // f u r t h e r ( nested ) mal code
4 // r e s u l t r e c o n s t r u c t i o n us ing tmp bat
5 redo ( t I o i d : oid , t I : s t r ) := i t e r a t o r . next (L : bat [ : s t r ] ) ;
6 e x i t ( t I o i d : oid , t I : s t r ) ;

Listing 4.5: MAL code snippet iterating over all values tI in L.
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Q[tI ] ← Generic-Join (�
F ∈EJ πJ(RF � tI))
The given line of pseudocode represents the second recursive call, which handles the
sub-hypergraph corresponding to partition J . The specified parameter describes the
sub-hypergraph belonging to partition J . In comparison to the first recursive call
L ← Generic-Join (54F ∈EI

πI(RF )), the second one performs a semi-join operation
between each relation RF , where F ∈ EJ , and the value tI ∈ L of the current
iteration. Note that partition J results from the chosen partitioning strategy. In the
case of this work, J composes all attributes present in V except the attribute that
occurs most frequently across all relations involved. The main challenge that has to
be tackled with respect to generation of MAL code is the translation of πJ(RF � tI)
for any F ∈ EJ . This sequence of relational algebra states that the semi-joins of any
relation RF , where F ∈ EJ present in the hypergraph, and the value tI ∈ L of the
current iteration have to be calculated. Furthermore, the projection of attributes in
J on the respective results need to be evaluated. Due to the vertical fragmentation
of column-stores, projections have to be carried out on each column that will be
used in later parts of the generated code separately.

Listing 4.6 depicts an example of how to translate the relational algebra statement
πJ(RF � tI) for any F ∈ EJ into a sequence of MAL instructions. The example’s
setting is given by tI = tupleB, J = {A, C} and EJ = {R, S}. One obstacle
encountered during manual translation of the given line of pseudocode was, that
the algebra module’s operators are applied on BATs, whereas the iterator returns
the raw typed value (e.g. a single value of type string). In order to calculate the
discussed semi-join RF � tI , the raw value tI needs to be transformed into a BAT
that just contains this single entry. This is done by allocating a new BAT and
appending the single value to it, as shown in line 1 and 2 of Listing 4.6. Moreover,
lines 4 and 5 of Listing 4.6 depict the calculation of RS � t{B} on the example of the
triangle query Q�. In line 4, the column B of relation S and t{B} are semi-joined.
Note that the semi-join is replaced with an intersection instruction by MonetDB’s
optimization pipeline, since intersecting a column with another that just holds a
single element is more efficient than performing a semi-join. The result is a list of
matching positions for relation S that can further be utilized to project the result
of the semi-join to the other attributes of relation S. Such a projection is carried
out in line 5 of Listing 4.6. Furthermore, it is important to understand that the
semi-join operation aims for shrinking the size of BATs by just selecting values that
can occur together with value tI in an output tuple.

1 X_70 : bat [ : s t r ] := bat . new( n i l : s t r ) ;
2 tupleB : bat [ : s t r ] := bat . append (X_70 : bat [ : s t r ] , X_69 : s t r , t rue : b i t ) ;
3
4 X_73 : bat [ : o id ] := a lgebra . i n t e r s e c t ( projSB : bat [ : s t r ] ,

tupleB : bat [ : s t r ] , n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t ,
t rue : b i t , n i l : lng ) ;

5 semiSC : bat [ : s t r ] := a lgebra . p ro j e c t i on pa th (X_73 : bat [ : o id ] ,
t idS : bat [ : o id ] , bindSC : bat [ : s t r ] ) ;

6 X_79 : bat [ : o id ] := a lgebra . i n t e r s e c t ( projRB : bat [ : s t r ] ,
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tupleB : bat [ : s t r ] , n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t ,
t rue : b i t , n i l : lng ) ;

7 semiRA : bat [ : s t r ] := a lgebra . p ro j e c t i o np a t h (X_79 : bat [ : o id ] ,
tidR : bat [ : o id ] , bindRA : bat [ : s t r ] ) ;

Listing 4.6: MAL code snippet to calculate the relational algebra statement
πJ (RF �tI) for any F ∈ EJ where tI = tupleB, J = {A, C} and EJ = {R, S}. This
example depicts one iteration of the outermost loop of the compiled triangle query
shown in Listing A.2.

The given line of pseudocode represents the core idea behind Multi-Way-Joins
which is to increase performance by decreasing the number of join candidates. This
is realised by the discussed semi-join operation in combination with the recursive
structure of the Generic-Join algorithm 3.1.
The discussed translation introduces potential performance drawbacks in comparison
to the original MonetDB implementation. First, allocating a new BAT at each
iteration for wrapping raw values in order to be able to utilize instructions of the
algebra module introduces additional memory overhead and a certain number of
avoidable calls of the bat.append instruction. Moreover, one of the intersection’s
input columns only holds a single value and there might be a more efficient way of
obtaining column entries that can occur in an output tuple together with the given
value.

Q ← Q ∪ {tI} × Q[tI ]
The given line of pseudocode calculates the cross product between a set that
just contains the value tI of the current iteration and the result Q[tI ] of the
recursive call in the previously discussed line of pseudocode. The resulting tuples
are added to the result set Q using the union operator. The major challenge with
translating this relational algebra statement is to correctly calculate the columns
of the resulting relation throughout the nested loop structure of the generated
MAL code. Studying the Generic-Join algorithm 3.1 reveals that Q[tI ] can be
assigned in two different situations which will be handled differently in the final
MAL code. The first situation is encountered in leave nodes of the function call tree
resulting from the recursive calls to the Generic-Join algorithm 3.1. For calls
corresponding to leave nodes, it holds that |V| = 1 and therefore Q[tI ] ← ∩F ∈EI

RF .
The second situation to be considered occurs whenever a recursive function call
returns that corresponds to any intermediate node of the function call tree. The
challenge of this case is to properly propagate intermediate results from nested
loops to its encapsulating loop in order to simulate the union operator of the given
line of pseudocode using a set of MAL instructions.
First, Q[tI ] ← ∩F ∈EI

RF appears to be a straightforward case, since the conversion
of the relational algebra statement ∩F ∈ERF to MAL instructions has already
been discussed. Moreover, the given situation only occurs in function calls where
|V| = 1. Moreover, ∩F ∈ERF has already been translated to MAL code following the
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cascading structure introduced in Listing 4.4. Next, the given tuple reconstruction
pseudocode has to be converted into a sequence of MAL instructions that calculates
the cross product between the result of Q[tI ] ← ∩F ∈EI

RF and the current iterator
value tI . Based on the result of the cross product, the corresponding output BAT
of the current loop’s attribute, as well as the BAT that propagates the intermediate
results belonging to the attribute of the encapsulating loop, need to be updated.
Listing A.2 shows a MAL program that calculates the result of the triangle query
Q� for input relations R(A, B), S(B, C) and T (A, C). The innermost loop of
this MAL program is shown in lines 38-58, and it iterates over unique values of
attribute C that can occur in an output tuple together with the current iterator
value belonging to attribute B. Furthermore, lines 46-49 show the translation of
∩F ∈EI

RF where I = {A} and EI = {R, T} and the projection of its distinct result
is assigned to variable X_111. Lines 51-55 depict the MAL instructions used for
tuple reconstruction in the current case. At first, the cross product of X_111 and
the tuple of the current iteration for attribute C is evaluated. Then, the result
corresponding to attribute A is projected to variable X_114 in line 52. Moreover,
algebra.project is utilized to project the raw value of the current iteration to
a BAT having as many rows as the result of the cross product in line 53. After
projecting the resulting columns, these intermediate results are appended to the
corresponding BATs in lines 54 and 55. Note that the identifier atmp in line 54
is used to propagate the intermediate results for attribute A to the encapsulating
loop.

The intersection scenario has been discussed in great detail. The second case, where
MAL code needs to deal with tuple reconstruction, occurs when the Generic-Join
algorithm 3.1 regularly returns set Q as given in line 11 of the algorithm. This return
statement is invoked right after the tuple reconstruction logic of the recursively
called Generic-Join method. Thus, returning from the second recursive call in
line 8 of the Generic-Join algorithm 3.1 can result in consecutive MAL code
sequences that serve tuple reconstruction and define the current loop’s footer before
returning from the call. The main challenge to be tackled in this scenario is the
fact that the encapsulating loop requires intermediate results of a specific attribute
calculated by its nested loop. This propagation of intermediate BATs is realized
through the introduction of temporal variables per loop. That way, the scope of
such local variables is restricted to the loop it has been defined in. Listing A.2
depicts such temporal variable in line 38. The identifier atmp represents a BAT that
is assigned a fresh BAT in every iteration of the encapsulating loop. Furthermore,
the intermediate results of attribute A are appended to atmp for all iterations
of the inner loop in line 54. Since the inner loop (line 39-58) iterates over all
distinct values in C that can occur in an output tuple with the current value of the
encapsulating loop, it produces the result BAT for attribute C in line 55. After
the inner loop terminated for a given iteration of the encapsulating one, the cross
product of the intermediate BAT atmp and the value of the current iteration of
the encapsulating loop is calculated. The construction of the output BATs per
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attribute follows the schema discussed in the previous scenario. Due to the selected
partitioning strategy of this work, tuple reconstruction is carried out in a cascading
manner for queries that join multiple relations.
The introduced direct translation of tuple reconstruction might have one massive
performance drawback, which is the algebra.crossproduct instruction. The
cross product is calculated between a BAT with multiple rows and another one
with just a single row. In general, the cross product is a very expensive operation
and there might be more efficient ways to retrieve the same results without utilizing
the algebra.crossproduct instruction. Moreover, replacing the cross product
with some equivalent, but more efficient logic might require further adaptations of
the overall translation of the tuple reconstruction process.

Improved Translation

The previous section discussed a direct translation of the Generic-Join algorithm 3.1.
In the direct case, MAL instructions are selected that closely correspond to the relational
algebra operators used in the Generic-Join algorithm 3.1. As already pointed out,
this might not be the most efficient implementation of this class of WCOJ algorithms for
MonetDB. Chapter 5 evaluates the direct translation in comparison to the performance
of the original MonetDB system and points out that improvements over the presented
direct translation are required. Therefore, this section investigates and discusses potential
performance bottlenecks of the direct translation. Furthermore, alternative ways of
translating certain lines of the Generic-Join algorithm 3.1 are introduced and outlined
in detail.

Q[tI ] ← Generic-Join (�
F ∈EJ πJ(RF � tI))
This line of pseudocode introduces a set of MAL instructions that evaluates the
given semi-join operation. This code snippet is shown in Listing 4.6 and utilizes
the algebra.intersect instruction instead of calculating a semi-join, since it
is an equivalent and more efficient solution. Interpreting the semi-join RF � tI

according to the column-oriented database system paradigm reveals, that the semi-
join operator can be realized using a combination of selection and projection. Due
to the vertical fragmentation of column-stores, the intersection operation utilized
in the direct translation calculates the intersection between the single value BAT
representing tI and the corresponding column of the given relation RF . Moreover,
the resulting BAT represents a list of positions, which is further used to project
every other attribute of the same relation that is required in following parts of
the translated code. Thus, projections of attributes are required in any case, and
improvements can focus on replacing the semi-join with a simple selection. The
MonetDB’s algebra module provides selection logic through the thetaselect
instruction, which takes a column, a single value and a selection operator as in-
put. The column to be filtered needs to be defined by its table identifier and
the bound attribute itself. Moreover, the types of the single selection value and
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the BAT to be filtered must be the same and the selection operator is equality,
because matching values need to be selected. Such matching values reference other
attributes of the given relation that can occur in an output tuple with the given
selection value. Listing 4.7 shows a MAL code example that is equivalent to the
one provided in Listing 4.6, but improves upon the later one’s direct translation.
Two advantages are introduced by be improved version given in Listing 4.7. First,
the algebra.intersect instruction is replaced with algebra.thetaselect,
which might introduce slight performance improvements. More importantly, this
replacement eliminates the need for wrapping the raw value of the current iteration
into a temporal BAT. Getting rid of such temporal BATs will reduce the memory
footprint of the translated MAL program and simplify the overall code as well.

1 X_75 : bat [ : o id ] := a lgebra . t h e t a s e l e c t ( bindSB : bat [ : s t r ] ,
t idS : bat [ : o id ] , rawValueB : s t r , "==": s t r ) ;

2 semiSC : bat [ : s t r ] := a lgebra . p ro j e c t i on pa th (X_75 : bat [ : o id ] ,
t idS : bat [ : o id ] , bindSC : bat [ : s t r ] ) ;

3 X_78 : bat [ : o id ] := a lgebra . t h e t a s e l e c t (bindRB : bat [ : s t r ] ,
tidR : bat [ : o id ] , rawValueB : s t r , "==": s t r ) ;

4 semiRA : bat [ : s t r ] := a lgebra . p ro j e c t i o np a t h (X_78 : bat [ : o id ] ,
tidR : bat [ : o id ] , bindRA : bat [ : s t r ] ) ;

Listing 4.7: MAL code snippet presenting the improved way of translating the semi-
join RF �tI . Improvements are achieved by replacing the need for wrapping a single
raw value into a temporal BAT in order to be able to use algebra.intersect
with utilizing the algebra.thetaselect instruction.

Q ← Q ∪ {tI} × Q[tI ]
The direct translation of tuple reconstruction has been discussed in great detail,
and it has been pointed out that it is a very demanding challenge to be tackled in
the overall translation process. The central instruction when performing a direct
translation is the cross product. Moreover, the cross product is a very heavy and
performance critical operation, which should be avoided during the integration of the
Generic-Join algorithm 3.1 into the MonetDB system. To that end, the improved
translation aims for replacing algebra.crossproduct with an equivalent set of
MAL instructions and further adapts the column crafting process as well. In case of
the Generic-Join algorithm 3.1, utilizing the relational algebra’s cross product
operator suits the algorithm’s general formulation. However, leveraging the cross
product implementation of a column-store to combine an arbitrary column with
another one that consists of a single value might introduce performance shortcomings.
In order to find the most suitable replacement, it is important to understand the
outcome of the relational algebra statement {tI}×Q[tI ] in the context of MonetDB.
The output of the algebra.crossproduct are two position lists of the same
length. The first one represents all positions in the column that are related to the
result Q[tI ] of the second recursive invocation of Generic-Join. The second
resulting BAT of OIDs is of the same length as the previous one and represents the
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same positions as the previous list, which tI needs to be projected to. Thus, both
mentioned position lists are of the same shape and represent the same positions.
Thus, a proper replacement of algebra.crossproduct is connected with no
additional effort, because the required BAT of OIDs has already been calculated.

A simple observation made when inspecting the direct translation of the triangle
query Q� in Listing A.2 leads to the insight, that there is no need to evaluate
the cross product, since the required position list has already been calculated in
line 48 for example. The variable C_109 is used to obtain the distinct values of
the current attribute utilizing the algebra.projection instruction. Moreover,
C_109 defines the shape of the cross product’s result and can therefore be used to
project the intermediate BAT to the single raw value that corresponds to tI . To
that end, the algebra.project instruction can be utilized to project this single
raw value to the position list given by C_109. This improvement eliminates the
need for evaluating the cross product at no additional costs, since it has been kind
of redundant.

Due to the elimination of the algebra.crossproduct instruction, the transla-
tion of the tuple reconstruction needs to be adapted as well. The cross product
within each loop served to obtain the shapes of the intermediate results. Since it
has been eliminated, the corresponding shape information needs to be propagated
from nested loops to its encapsulating one. To achieve such propagation, another
temporal variable has to be introduced per nested loop. Note that the outermost
loop does not require any temporal variables, since there is no information to
propagate further. Listing A.3 depicts such additional temporal identifier in line 41,
for instance. The variable tmpBCand represents a BAT of OIDs which is utilized
to append the intermediate shapes. The length of such temporal BAT can be
interpreted as the number of tuples, which the current iterator value of attribute B
appears in. Propagation is important, since the encapsulating loop is the only one
being able to perform the according projection of its iterator value properly. Line 60
in Listing A.3 shows such projection, and its result is appended to the overall output
BAT for attribute B in line 63. Note that the propagation of intermediate result
BATs remains the same compared to the previously discussed direct translation
approach.

To conclude the manual translation process of the Generic-Join algorithm 3.1 into
a MAL program, it has to be underlined that following a direct translation approach
turned out to be very helpful. It improved the basic understanding of MAL, the MonetDB
query compiler and the Generic-Join algorithm 3.1. Based on the direct translation
and gained knowledge, problematic areas in the translated code could be identified and
analyzed. Moreover, the improved translation describes concepts that drastically improve
performance, as evaluated in Chapter 5.
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4.4.3 Making MonetDB Generate Worst-Case Optimal MAL Code
The previous section discussed the translation of the Generic-Join algorithm 3.1 into a
MAL program. The aim of this section is to outline the integration of this class of WCOJ
algorithms into MonetDB’s query compiler based on the results of the manual translation.
Therefore, this section discusses adaptations that have been made to MonetDB’s query
compiler, which has been introduced in Section 4.3. Moreover, it is pointed out how
the Generic-Join algorithm 3.1 can be integrated in MonetDB while still natively
supporting any other features out of the box. Additionally, the main data structures
enabling the translation of joins into MAL code, that evaluates joins in a multi-way
manner, are introduced.

Code Structure

The goal of the integration is to replace MonetDB’s way of evaluating joins with the
semantic given by the Generic-Join algorithm 3.1. Due to the fact, that MonetDB
performs system queries at start up time and that the integration carried out during this
work is experimental, the original query compiler code should not be altered with. That
way, updates can be carried out using the original query compiler and user submitted
queries can be evaluated using the adapted one. Moreover, this possibility of switching
between the two ways of treating joins will be needed, because this work just focuses
on natural join queries. To use different approaches for system and user submitted
queries, a switch has been implemented in the sql_relation2stmt function in the
sql_gencode.c source file. Listing 4.8 shows the corresponding code snippet. The
depicted function is invoked with parameter nme set when system queries are executed,
and therefore the presence of such a value indicates the use of MonetDB’s original query
translation approach. Furthermore, lines 7-11 of Listing 4.8 show an if-else construct
using preprocessor expressions. If the flag _WCOJ_ has been defined, a newly compiled
MonetDB system will utilize the WCOJ approach in its mserver5 program. Otherwise,
the original MonetDB compiler will be used. This empowers to easily switch between the
two implementations for testing and benchmarking purposes.

1 stat ic stmt ∗ sq l_re l a t i on2 s tmt ( backend ∗be , s q l _ r e l ∗ r , const char∗ nme)
2 {
3 . . .
4 i f (nme != NULL) {
5 s = output_rel_bin ( be , r ) ;
6 } else {
7 #i f d e f _WCOJ_
8 s = output_rel_bin_wcoj ( be , r ) ;
9 #else

10 s = output_rel_bin ( be , r ) ;
11 #e n d i f
12 }
13 . . .
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14 }

Listing 4.8: C code snippet that is used to translate system queries using MonetDB’s
original query compiler. Moreover, a preprocessor flag is used to compile the MonetDB
column-store with the WCOJ or the original approach.

MonetDB’s main query compiler logic is centred in the rel_bin.c source file.
Roughly speaking, the translation dataflow logic is defined by various functions that
reside in this file. In order to generate MAL instructions, methods provided by the
sql_statement.c source file are leveraged. Since the integration aims for replac-
ing the translation logic of joins while still supporting the translation of any other
SQL feature, the rel_bin.c source file is copied and renamed to rel_bin_wcoj.c.
The WCOJ processing approach given by the Generic-Join algorithm 3.1 is imple-
mented in that source file and replaces MonetDB’s pairwise join evaluation. The entry
points to the query translation code are given by the methods output_rel_bin and
output_rel_bin_wcoj in line 10 and 8 of Listing 4.8 respectively.

Integration using Hypergraph Representation of Queries

The idea on how and where the Generic-Join algorithm 3.1 can be suitably integrated
into MonetDB has been outlined in the previous section. The aim of this section is to
discuss the key aspects of the adapted query compiler, which empowers the translation
of joins following the multi-way join approach of WCOJ algorithms. Due to the fact
that the Generic-Join algorithm 3.1 operates on the hypergraph representation of a
given query, the adapted query compiler will operate on a very similar data structure as
well. This enables this work to stick closely to the dataflow given by the Generic-Join
algorithm 3.1. Based on this code structure, the translation logic has to be implemented
to generate MAL programs that follow the translations discussed in Section 4.4.2. In the
following, the key data structures, as well as the main aspects of the adapted compiler
implementation are outlined.

Listing 4.9 depicts the data structures used to represent a given query as hypergraph
and further store additional information that is required to translate joins according
to the Generic-Join algorithm 3.1. The parent data structure is the Hypergraph
struct, that aims for representing the query as sets of vertices and edges. Therefore, the
list pointers vertices and edges represent these sets as lists of type Vertice and
Edge respectively. Note that MonetDB’s way of handling single linked lists is reused
in this implementation, as given in lines 4 and 5 of Listing 4.9. Moreover, the number
of vertices and edges is stored respectively. Besides that, a hypergraph stores a pointer
to the originally parsed query of type sql_rel in the original_rel property. This
is not required, but used to be handy for testing purposes. Finally, the partition
flag indicates whether the hypergraph represents partition I or J which is an important
dataflow information.

The Vertice struct is mainly composed of stmt pointers utilized for tuple recon-
struction. Each vertex of a hypergraph belongs to a specific attribute, as shown in
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the example in Figure 3.1. Therefore, the cname property refers to the corresponding
attribute name. The list pointer attributes represents a list of type Attribute,
where each list element represents a column corresponding to the attribute of the current
vertex across various relations. This list can be very useful for intersecting all columns
belonging to the same attribute, for instance. Furthermore, the result_stmt field
represents the statement corresponding to the result BAT for a given attribute. The
tmp_result property relates to the statement that corresponds to intermediate result
BAT of a nested loop, as introduced in Section 4.4.2. Similarly, the tmp_candidate
field relates to the statement that represents the intermediate position BAT used to
reconstruct columns for attributes belonging to encapsulating loops.

Moreover, the Attribute struct represents a given column of a table and adds
additional stmt properties that relate to certain translations, which the current attribute
has been involved in. Each such attribute is identified by the column name cname and
the table name tname. Moreover, the bat_type field specifies the datatype of the
corresponding BAT. This information is required to generate MAL code that creates a
new temporal BAT. Note that the implementation of this work only supports string types,
since this is sufficient for an experimental integration. However, the bat_type property
could be used to support arbitrary datatypes. The two stmt pointer fields have similar
purpose as the ones used in the Vertice struct, which is to indicate certain usages
of the attribute during the translation process. To that end, the current_stmt field
represents the latest translation the current attribute has been involved in. Moreover,
the intersection_stmt property represents the statement returned from intersecting
multiple attributes of column name cname.

Finally, the Edge struct represents the relations involved in the natural join query.
Each edge can be identified by its corresponding table name tname. Furthermore, a
list pointer attributes is maintained that composes all attributes of the current
relation. This list of attributes has similar purposes as the one of the Vertice struct,
but there are situations where retrieving all attributes of a given relation is beneficial.
Moreover, the ref property relates to the operator node of type op_basetable that
corresponds to the given relation.

1 typedef struct
2 {
3 s q l _ r e l ∗ o r i g i n a l _ r e l ;
4 l i s t ∗ v e r t i c e s ;
5 l i s t ∗ edges ;
6 int nr_ver t i c e s ;
7 int nr_edges ;
8 int p a r t i t i o n ;
9 } Hypergraph ;

10
11 typedef struct
12 {
13 const char ∗tname ;
14 const char ∗cname ;
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15 sql_subtype bat_type ;
16 stmt ∗ current_stmt ;
17 stmt ∗ i n t e r s e c t i on_stmt ;
18 } Att r ibute ;
19
20 typedef struct
21 {
22 const char ∗cname ;
23 l i s t ∗ a t t r i b u t e s ;
24 stmt ∗ tmp_result ;
25 stmt ∗ resu l t_stmt ;
26 stmt ∗ tmp_candidate ;
27 } Ver t i c e ;
28
29 typedef struct
30 {
31 const char ∗tname ;
32 l i s t ∗ a t t r i b u t e s ;
33 s q l _ r e l ∗ r e l ;
34 } Edge ;

Listing 4.9: Data structures to represent a SQL query through its hypergraph. Note
that these data structures further posses properties that aim for propagating specific
information through the translation process.

The previous introduction of the key data structures used for representing queries
as hypergraphs within the adapted query compiler underlines, that there are properties
that are required directly for generating MAL code and others represent dataflow char-
acteristics. This differentiation is also done in this work by separating the discussion
of translation and integration processes. The advantage of this approach is that the
integration benefits from the translation process, since the query compiler can be adapted
having the full knowledge about the resulting MAL code. Therefore, the integration
process can focus on dataflow properties and introduce features which are not supported
by MonetDB yet.

One important detail about the integration process is the conversion of MonetDB’s
internal query representation into the hypergraph structure given in Listing 4.9. This
conversion needs to be carried out right before translating the joins to MAL code according
to the Generic-Join algorithm 3.1. The new join translation logic is entered when
the original query translation logic traverses the operator tree and reaches the node of
type op_join closest to the operator tree’s root node. Figure 4.4 shows a sub operator
tree of the one depicted in Figure 4.1 representing the two pairwise joins of the triangle
query Q�. Translation of the sub operator tree is done recursively and the leave nodes
of type op_basetable are converted into the corresponding sets of Vertice, Edge
and Attribute, as shown in Listing 4.9. After recursively generating these sets, the
overall Hypergraph struct is created and returned.

After discussing the translation of the Generic-Join algorithm 3.1 to MAL code
in Section 4.4.2 and introducing the Hypergraph data structure used in the adapted
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MonetDB query compiler, all parts required for integrating the class of WCOJ algorithms
have been established. Due to the fact that the sql_statement.c source file already
implements functions that aim for generating the MAL instructions required by this
work, these methods mainly have to be invoked appropriately in order to produce
MAL programs equivalent to the Generic-Join algorithm 3.1. The newly introduced
translation logic is centred around a recursive function called rel2bin_generic_join
that takes a pointer to MonetDB’s backend data structure, as well as a pointer to the
converted Hypergraph as parameters. The earlier data structure composes further data
structures required for the compilation process, such as the mvc that transports context
and holds properties for interacting with the memory. Such property are fields of type
sql_allocator which can be utilized to allocate memory for internal data structures.
The Hypergraph parameter represents the (sub-)hypergraph that is translated at the
current level of recursion. The first invocation provides the hypergraph of the overall
parsed query, and every recursive call is done providing the sub-hypergraph corresponding
to partition I or J . Since the recursive structure of the Generic-Join algorithm 3.1
is suitable for implementing logic that compiles given queries into MAL programs
as introduced in Section 4.4.2, the control flow of rel2bin_generic_join closely
matches the one of the Generic-Join algorithm 3.1. This circumstance combined with
the already discussed manual translation and the Hypergraph data structure led to
a straightforward implementation that empowers MonetDB to compile MAL programs
that follow the discussed class of WCOJ algorithms.

op_join

op_join

op_basetable op_basetable

op_basetable

Figure 4.4: Operator sub-tree of the triangle query Q� that represents the pairwise join
operations and which needs to be translated into a hypergraph H = (V , E).

Further Adaptations

Unfortunately, MonetDB’s original query compiler does not support all features required
to enable the generation of MAL programs according to the Generic-Join algorithm 3.1.
Further adaptations made to MonetDB’s optimizer and methods that aim for producing
MAL code are outlined in the following.

One important feature introduced during the integration of the Generic-Join
algorithm 3.1 into MonetDB’s query compiler is the support of temporal identifiers.
Temporal variables are utilized to assign newly created BATs that are a key component
of the tuple reconstruction logic in the final MAL code. The requirement for such
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a feature arose from the nested loop pattern that results from the Generic-Join
algorithm 3.1. Propagating intermediate results from nested loops to the encapsulating
ones requires such temporal BATs. This feature has not been supported yet, since the
original MonetDB query compiler was not generating loops at all. Moreover, every
MAL instruction’s result is assigned to a new global variable. Fortunately, temporal
BATs could be integrated easily, because the sql_statement.c source file provides
methods to introduce empty BATs. The original optimization pipeline’s empty bindings
optimizer recognized such temporal BATs as empty bindings and deletes them during the
optimization process. In order to allow temporal BATs that correspond to nested loops,
the empty bindings optimizer defined in the opt_emptybind.c has been extended to
keep temporal variables that are defined right before a loop header.

Besides temporal variables, the possibility to generate loops in MAL code has to
be established. Moreover, loop header and footer need to be generated separately but
still share the same variables. Therefore, the sql_statement.c source file has been
extended with two methods stmt_iterate_list and stmt_end_iterate_list
that take a backend as well as a stmt parameter. The later one defines the statement
that corresponds to the set L in line 6 of the Generic-Join algorithm 3.1 in case of the
stmt_iterate_list method which creates the loop header. The footer is generated by
stmt_end_iterate_list and its stmt parameter represents the resulting statement
of the loop header creation. That way, the footer is able to leverage the same t and h
variable and the overall loop will be translated correctly.

Another required feature for tuple reconstruction in MAL breaks with MonetDB’s
policy of assigning every instruction’s result to a new identifier. Collecting intermediate
results of nested loops requires the possibility to append partial results per loop iteration
to the same temporal BAT. Therefore, the target variable of the newly created identifier
needs to be overwritten by the corresponding existing one. This can be easily achieved by
calling pushArgument in the corresponding method of the sql_statement.c source
file with the existing identifier’s number. This overwrites the newly created instruction’s
identifier in the MalBlkPtr data structure with an existing number. Moreover, the
resulting stmt instance needs to reflect these changes as well.

To conclude, the major adaptations of MonetDB’s translation logic could be established
well with deep knowledge about MonetDB’s source code, as well as a deep understanding
of the Generic-Join algorithm 3.1.
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CHAPTER 5
Experimental Evaluation

This section aims for discussing the results obtained from benchmarking the MonetDB
instance with integrated Generic-Join algorithm 3.1. Upfront of the actual experimen-
tal evaluation, the overall benchmarking setting is introduced. This includes the hardware
on which the benchmarks were carried out, as well as the queries and databases the
systems were tested against. First, the adapted MonetDB system with direct translation
integrated was evaluated and compared to the running times of the original system.
Based on these results, potentially problematic MAL constructs have been revisited, and
the direct translation has been improved. Furthermore, the resulting MonetDB with
optimized translation integrated was evaluated against the original MonetDB. Besides
investigating the running times for various input relation sizes, the asymptotic runtime
has been graphically evaluated by comparing the results using log-log plots. Moreover,
the impact of different degrees of skew in the data has been explored.

5.1 Methodology
The experimental evaluation of the three different MonetDB instances has been carried
out by running the same evaluation framework for each system separately. The three
different instances are the original MonetDB system, MonetDB with direct translation
and MonetDB with optimized translation integrated. These systems are tested against
three different natural join queries with increasing number of rows per table on each run in
order to measure the runtime behaviour of each system when answering the given queries
on varying input relation sizes. The results of the run of MonetDB with direct translation,
as well as the one with optimized translation are compared to the original MonetDB’s
results to obtain their potential performance. Moreover, the results of the system with
optimized translation are analyzed in more detail to evaluate if the measured runtime
meets the asymptotic boundaries discussed by Ngo et al. [NRR13]. Furthermore, the
benchmark investigates if the MonetDB with optimized translation can even handle input
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relation sizes which cause memory errors for the original MonetDB system. All these
benchmarks aim for obtaining the system’s performance with increasing number of rows
in the input relations. Moreover, the evaluation of MonetDB with optimized translation
results from averaging three independent benchmark runs. Another interesting insight to
gain, is the running time behaviour over increasing fan-out in the join attributes of a given
query. The term fan-out relates to the number of values that occur in a tuple together
with all other values. A fan-out of 1 for relation R of the triangle query Q� means that
values a0 and b0 occur in tuples with all values a0...m and b0....m respectively.

The benchmarking framework used to evaluate the adapted MonetDB systems is shown
in Figure 5.1. The benchmark.sh file is a parametrizable shell script that measures
runtime in milliseconds and is the core component of the benchmarking framework.
It interacts with a running MonetDB system’s database instance using the mclient
program and utilizes the gendb.py script to generate the relations for a given run. The
gendb.py can be configured using three arguments. The first indicates the query for
which the relations need to be created, the m argument specifies the number of rows to
be generated and n is utilized to specify the fan-out within the created relations. The
mclient program is called, after the relations for the given run have been generated in
order to connect to the running database and insert the created data into the running
instance. Note that the monetdbd program of the MonetDB system to be benchmarked
needs to start the corresponding dbfarm. Moreover, the monetdb program has to
be called manually to start the database instance used for benchmarking. The set of
queries submitted during the benchmarking process is defined in the benchmark.sh
file and provided to gendb.py to generate the corresponding relations to be queried.
Furthermore, the benchmark.sh script can be configured using the three parameters
m, n and f. Parameter m is an integer array that corresponds to the number of rows of
each input relation and is looped through to benchmark the current MonetDB system
on all these input sizes. The parameter n represents the number of runs per query and
value in m and can be used to perform benchmarks multiple times for greater reliability.
Furthermore, parameter f specifies the fan-out used during the database generation using
gendb.py. Finally, each benchmark run produces a log output file and a csv file with
structured results that are suitable for plotting.

Figure 5.1: The benchmarking framework used for the experimental evaluation.
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5.1.1 Hardware
The benchmarks discussed in this chapter were run on a desktop computer with a 64-bit
Ubuntu 20.04.3 LTS OS installed with kernel version 5.11.0-41-generic. The machine is
equipped with an AMD Ryzen 9 3900x processor with 12 CPU cores, 24 threads, a base
clock of 3.8GHz and a 64MB L3 cache. The available memory of the machine is 32GB
DDR4 and its disk capacity is 1TB.

5.1.2 Data
The benchmarks presented in this chapter are evaluating the corresponding MonetDB
system’s performance on three different natural join queries. Data is generated using the
gendb.py utility that is able to create databases as csv files for the three supported
queries. This csv file can be loaded into a database running within MonetDB using the
mclient program. The three queries used for evaluation purposes are:

select count(*) from r natural join s natural join t;
This query is evaluated on a database with relations R(A, B), S(B, C) and T (A, C). The
given query is further referred to as go3.

select count(*) from r natural join s natural join t natural join u;
This query is evaluated on a database with relations R(A, B, C), S(B, C, D), T (A, C, D)
and U(A, B, D). The given query is further referred to as go4.

select count(*) from r natural join s natural join t natural join u natural join
v natural join w;
This query is evaluated on a database with relations R(A, B, C, D, E), S(B, C, D, E, F ),
T (A, C, D, E, F ), U(A, B, D, E, F ), V (A, B, C, E, F ) and W (A, B, C, D, F ). The given
query is further referred to as go6.

Note that the attributes are distributed across multiple relations in a way that each
relation consists of n attributes and any two arbitrary relations posses n − 1 overlapping
attributes. This means that a natural join between two relations is done on n − 1 join
attributes. Furthermore, each attribute is of type string, since the gendb.py utility
generates string values according to the specified number of rows m and fan-out n. The
resulting values are a concatenation of attribute name and a number (e.g. a0, c123, etc.).

The databases generated during the evaluation follow the schema introduced in
Figure 3.3. This figure depicts a database instance for the triangle query Q� with m = 4
and fan-out n = 1, since a0, b0 and c0 occur in a tuple with each other value respectively.
Furthermore, the evaluation is done on synthetically generated data instead of standard
benchmarks. The main reason for that is the fact that WCOJ algorithms promise to
outperform traditional pairwise join evaluation the most for database instances such as
the one illustrated in Figure 3.3. In such settings, there are relations that are composed
of attributes with low entropy, as introduced in the previous example. Database instances
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that are most beneficial for WCOJ algorithms have been selected in order to show the
potential performance improvements over traditional join evaluation. Furthermore, one
could think of domains and settings in practice, where data is similarly structured as the
synthetic data in this experimental evaluation.

5.1.3 Configuration
The configurations used for benchmarking the three different MonetDB variants are
briefly outlined in this section. The input relation sizes used to compare MonetDB with
direct translation to the baseline are given in column m of Table 5.1. Due to the fact that
the MonetDB with direct translation performs worse than the original MonetDB system,
the evaluation has been stopped at m = 15000. Likewise, the input relation sizes used for
benchmarking MonetDB with optimized translation are shown in column m of Table 5.2.
The array m of input relation sizes to be evaluated is specified in the benchmark.sh
script. Furthermore, Listing 5.1 depicts the command executed to run the benchmark
and shows the provided arguments. Note that the MonetDB instance to be evaluated
needs to be started upfront. Moreover, all benchmarks that are not related to fan-out
have been carried out with a fan-out of 1.

1 . / benchmark . sh −n 3 −f 1 −o r e s u l t s / monetdb_class ic . csv

Listing 5.1: Command to start the benchmark for an already running MonetDB instance.

5.2 Discussion of Results
This section aims for presenting the results of the experimental evaluation. The baseline
for this evaluation is the performance of the original MonetDB system as released in
October 2020 and forked for this work in March 2021. The data used for benchmarking
has already been described in the previous section. At first, a comparison of the MonetDB
with direct translation integrated to the original MonetDB system is carried out. Based
on the evaluation of the direct translation, potential improvements have been applied
to the translation process that finally led to the optimized translation. This optimized
translation is evaluated more extensively throughout this chapter, due to its potential of
outperforming the original MonetDB system on the benchmark data for big relations.
Moreover, this section compares the asymptotic running times of the MonetDB with
optimized translation to the baseline system. Finally, the evaluation aims for exploring
the impact of skew in the data by investigating the given set of queries for data with
increasing fan-out.

5.2.1 Results of Direct Translation
The results of a single benchmark run on the original MonetDB system and the MonetDB
with direct translation integrated are compared in Table 5.1 for queries go3, go4 and
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go6. Moreover, the results are plotted in Figure 5.2, where each plot corresponds to one
of the given queries. A single benchmark run has been sufficient to obtain, that this work
requires to improve upon the direct translation approach. Investigating the sub-plots from
Figure 5.2 reveals that MonetDB with direct translation (MonetDB_wcoj) performs
worse than the original MonetDB system (MonetDB_classic) even for small input
relation sizes. Furthermore, the original MonetDB outperforms the direct translation
approach the most for query go3 which joins the least number of relations. The runtime
gap between both systems is the smallest for query go6. Multiple improvements upon
this translation have been discussed in Section 4.4.2 and it has been underlined that the
algebra.crossproduct operation can be identified as the key factor responsible for
the worse performance. Calling this cross product operator within nested loops causes
multiple invocations of this computationally expensive operator. Moreover, inspecting
Table 5.1 reveals that answering queries using MonetDB with direct translation can be
two up to five times worse for the depicted values of m. It is obvious that these results
are not satisfying and that this work needs to improve the translated MAL programs
in order to be able to outperform the original MonetDB system. Therefore, no further
evaluation of the direct translation approach has been performed, and the focus has been
shifted to improve upon this direct approach.

m Classic WCOJ
go3 go4 go6 go3 go4 go6
(s) (s) (s) (s) (s) (s)

10 0,011 0,024 0,041 0,011 0,036 0,066
100 0,012 0,025 0,042 0,023 0,049 0,088
500 0,03 0,059 0,089 0,095 0,163 0,279
1000 0,05 0,097 0,182 0,222 0,369 0,615
2000 0,108 0,254 1,791 0,52 0,992 1,676
5000 0,613 1,387 2,95 2,956 5,146 8,138
10000 2,219 5,614 11,431 10,26 18,872 30,642
15000 5,108 12,688 26,667 21,783 37,345 61,32

Table 5.1: Table representation of the comparison of running times of the original
MonetDB system (Classic) and the MonetDB with direct translation (WCOJ). The
displayed numbers result from a single benchmark run.

5.2.2 Results of Optimized Translation

The optimizations introduced in order to improve upon the results of the MonetDB
with direct translation integrated have already been discussed in Section 4.4.2. Since
these improvements lead to an efficient system, most evaluation has been carried out
on this variant with optimized translation. The results presented in the following have
been obtained by averaging the outcomes of three independent runs of the system. The
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Figure 5.2: Visualization of benchmark results of the three queries go3, go4 and go6
for the original MonetDB vs. the direct translation approach. Note that these plots
correspond to the values depicted in Table 5.1.

idea behind this approach is to reduce variation between independent runs. One specific
situation that benefits from this approach is, when the original MonetDB system allocates
almost all available memory for BATs. It has been observed that measured running
times greatly vary in such situations. Table 5.2 shows a comparison of running times
of the original MonetDB system and MonetDB with optimized translation integrated.
The table depicts results for answering queries go3, go4 and go6 across a range of
input relation sizes given by column m. Note that the run with m = 90000 and query
go4 on the original MonetDB system led to a situation, in which MonetDB consumed
almost all available memory, which results in big deviations between independent runs.
Furthermore, more memory intense runs failed with memory errors, which is represented
in Table 5.2 by MEM-ERR entries. The original MonetDB system fails in such settings
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before trying to evaluate the given query, because there is not enough memory for
allocating the required BATs. Moreover, it is quite notable that the MonetDB with
optimized translation can successfully answer queries for which the original system
fails with a memory error. Therefore, the first achievement of integrating a class of
WCOJ algorithms into MonetDB is a system that handles memory intense queries in a
more memory friendly and efficient way. This conclusion has been made based on the
benchmark results from Table 5.2. To gain deeper insights, future work could monitor
the memory footprint during benchmarking the different MonetDB instances.

Table 5.2 further underlines that the MonetDB with optimized translation clearly
outperforms the original system for large input relations. Both systems have achieved
very similar runtime for input relations of size m ≤ 15000 and the original MonetDB
system even outperforms the WCOJ approach a bit. Moreover, for input relation sizes
of m ≥ 30000 the MonetDB with optimized translation starts to benefit from the
Multi-Way-Join processing approach and significantly outperforms the baseline. For
instance, the original MonetDB requires 26 minutes and 23 seconds to answer query go6
for m = 90000 whereas the MonetDB with optimized translation only needs 10 minutes
and 12 seconds. The results depicted in Table 5.2 are plotted in Figure 5.3. The subplots
correspond to the queries go3, go4 and go6. These plots reveal, that the MonetDB with
optimized translation (monetdb_wcoj_optimized) performs asymptotically better
than the baseline (monetdb_classic). The plots in Figure 5.3 represent the expected
result when starting to integrate the Generic-Join algorithm 3.1 into MonetDB. The
main achievement of this work is the establishment of an adapted MonetDB system
that integrates a class of WCOJ algorithms and asymptotically outperforms the original
system that traditionally evaluates join in a pairwise manner. Note that the increasing
steepness at the end of curve monetdb_classic for query go4 is caused by the original
MonetDB allocating almost all available memory. Operating at the edge of available
memory leads to strong runtime deviations as observed during the benchmarks.

In order to visualize the asymptotic behaviour of the original MonetDB and the
MonetDB with optimized translation, Figure 5.4 and Figure 5.5 represent log-log plots
per query that enable to graphically compare the results to m

3
2 and m2. The earlier figure

represents the results over the full range of values m whereas the later figure cuts off values
m < 10000 in order to focus on the asymptotic behaviour of big input relations. This
representation uses the natural logarithm. Figure 5.4 clearly shows that both systems
perform quite well on smaller sizes of input relations and that their asymptotic behaviour
can be estimated somewhere around m2 or higher. Figure 5.5 just plots logarithmic values
for m ≥ 10000 in order to get better insights in this upper region of the plots in Figure 5.4.
This area of big input relation sizes is very interesting with respect to asymptotic behaviour
of the MonetDB with optimized translation (monetdb_wcoj_optimzed), since it aims
for meeting the worst-case optimal runtime bound discussed by Ngo et al. [NRR13].
Figure 5.5 shows that monetdb_wcoj_optimized grows steadily with increasing m
and that its angle can be estimated to be between m

3
2 and m2. Therefore, the curve

corresponding to monetdb_wcoj_optimized depends on the size of its input relations
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with a constant exponential factor between 1,5 and 2, which can be estimated to be closer
to 2 when looking closely at the plots in Figure 5.5. Thus, the results meet the theoretical
bound discussed by Ngo et al. [NRR13] with some potential overhead introduced by
MonetDB. Furthermore, the curve monetdb_classic is way steeper, which underlines
the worse asymptotic behaviour of the original MonetDB system for the given queries.

m Classic WCOJ Optimized
go3 go4 go6 go3 go4 go6
(s) (s) (s) (s) (s) (s)

10 0,121 0,552 0,437 0,012 0,013 0,017
100 0,153 0,208 0,260 0,019 0,024 0,035
500 0,022 0,036 0,072 0,037 0,066 0,128
1000 0,040 0,081 0,361 0,071 0,148 0,288
2000 0,221 0,257 0,831 0,170 0,438 0,815
5000 0,595 1,675 3,268 0,974 2,496 3,928
10000 2,323 5,955 11,957 2,943 7,315 12,761
15000 5,125 12,658 26,821 5,240 15,266 24,751
20000 9,157 21,988 55,168 9,207 25,005 44,995
30000 24,449 58,296 141,043 18,077 46,814 92,416
40000 43,734 113,796 320,903 27,370 80,538 161,249
50000 70,318 210,338 554,513 41,463 125,379 249,312
60000 103,933 343,542 871,868 57,769 181,054 351,862
70000 151,664 504,957 1221,621 77,092 241,355 473,263
80000 214,647 667,121 1582,506 96,933 311,276 611,765
90000 296,099 1394,951 MEM-ERR 119,839 385,316 790,587
100000 MEM-ERR MEM-ERR MEM-ERR 149,555 488,995 976,385

Table 5.2: Table representation of the comparison of running times of the original
MonetDB system (Classic) and the MonetDB optimized translation (WCOJ Optimized).
The displayed numbers results from averaging three independent benchmark runs.

5.2.3 Impact of Fan-Out in Data

The following section will briefly discuss the impact of different fan-out values on the input
data and will shed a light on skewed data. Moreover, the importance of skewed data and
input relation size for the superiority of the WCOJ approach over the baseline system will
be pointed out. All benchmarks discussed until now were performed on data generated
with a fixed fan-out of 1 and a varying input relation size m. Thus, the performance of
different MonetDB systems could be compared over increasing size of input relations.
The evaluation discussed in this section compares the original MonetDB system to the
MonetDB with optimized translation on a fixed input relation size m = 50000 and
varying fan-out value between 1 and 5. The benchmark.sh script has been adapted in
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(a) go3 (b) go4

(c) go6

Figure 5.3: Visualization of benchmark results of the three queries go3, go4 and go6
for the original MonetDB vs. the optimized translation approach. Note that these
plots correspond to the values depicted in Table 5.2 which are averaged across three
independent runs.

order to enable such evaluation. Figure 5.6 shows the results of this benchmark with
varying fan-out values for queries go3, go4 and go6. In case of queries go3 and go6,
the MonetDB with optimized translation (monetdb_wcoj_optimized) outperforms
the baseline up to a fan-out value of 4. The query go4 is only superior up to a fan-out
of 2 and shows similar runtime to the baseline for higher fan-out values. To be able to
interpret the results from Figure 5.6, it is important to understand the meaning of an
increasing fan-out while keeping the input relation size m constant. Given a fan-out of
1, the gendb.py utility will create relations where one value per attribute will occur
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(a) go3 (b) go4

(c) go6

Figure 5.4: Visualization of the asymptotic behaviour of the benchmark results of the
three queries go3, go4 and go6 for the original MonetDB vs. the optimized translation
approach.

in a tuple with all other values. In case of the query go3 the value a0 of attribute A
in relation R will occur in a tuple together with all values b0...49999. Furthermore, for
the same example a fan-out of two would create tuples where values a0 and a1 occur
in tuples with all values b0...b24999 in order to keep the overall input relation size at
m = 50000. This pattern can be followed to obtain the structure for higher fan-out
values. Moreover, the value a0 would occur in a tuple with 50000 different values of
attribute B for a fan-out of 1. Facing a fan-out of 2, this number would decrease to
25000, because value a1 will occur in tuples with 25000 different values of attribute B
while the overall relation size remains constant at m = 50000. Following this pattern
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(a) go3 (b) go4

(c) go6

Figure 5.5: Visualization of the asymptotic behaviour of the benchmark results of the
three queries go3, go4 and go6 for the original MonetDB vs. the optimized translation
approach. The x-Axis takes m values from 10000 to 90000 into account and therefore
depicts the asymptomatic runtime behaviour.

for an increasing fan-out value will gradually reduce the skew in input data. Thus, the
current benchmark setting evaluates a given MonetDB variant’s performance on data with
different degrees of skew, which can be controlled by the fan-out parameter. Reducing
skew by increasing the fan-out value leads to similar performance of the MonetDB with
optimized translation in comparison to the baseline. Furthermore, the baseline sometimes
performs even slightly better than the WCOJ approach for reduced skew. However, the
MonetDB with optimized translation significantly outperforms the original MonetDB
system for highly skewed data. This is the expected behaviour that has been discussed
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by Ngo et al. [NRR13] from a database theoretical point of view.

To sum up, the degree of skew within the input data directly impacts the superiority
of the Multi-Way-Join approach introduced by WCOJ algorithms.

(a) go3 (b) go4

(c) go6

Figure 5.6: Visualization of runtime behaviour of MonetDB with optimized translation
and the original MonetDB system with a fixed input relation size m = 50000 and varying
fan-out value.
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CHAPTER 6
Conclusion

This work has been the first to show that integrating WCOJ algorithms into column-
oriented database systems is possible, and it has been evaluated that this integration can
significantly increase performance for natural join queries on data-intensive workloads.
The second important outcome shown is that the integration of WCOJ algorithms
improved efficiency of the column-store on workloads with highly skewed data. An
increasing degree of skew in the input data results in an increasing performance benefit of
the column-store with integrated WCOJ algorithm over the baseline system. Furthermore,
this work showed that the system with WCOJ algorithm integrated is more memory-
efficient than the original MonetDB, since it successfully evaluates queries which cause
memory allocation errors for the baseline system. Moreover, it is quite notable that the
original MonetDB system can achieve similar performance to the system with WCOJ
algorithm integrated for skewed input relations of sizes smaller than 20000 rows due to
concepts from several decades of database research.

This work aims for providing an answer to the first open question in Chapter 5 of the
fundamental theoretical research paper by Ngo et al. [NRR13] about WCOJs which this
work is built upon. As shown by this work, the algorithmic ideas presented by Ngo et
al. [NRR13] can gain runtime efficiency when integrated in column-oriented database
systems. Moreover, the set of queries used for experimental evaluation of the resulting
system were crafted according to Ngo et al. [NRR13] to underline the system’s power
on skewed input data. Figure 3.3 illustrates such skew on the example of the triangle
query Q�. Even tough, this work has been evaluated using synthetic data, one can
imagine a real word setting with highly skewed data, where certain attributes provide
low entropy values. Due to the power of WCOJ algorithms when evaluating joins on
relations with skewed data, a tactical query optimizer could decide to make use of the
WCOJ approach based on the given query and input relations. Thus, natural join queries
could be computed way more runtime efficient in settings with highly skewed data.
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Besides these very interesting evaluation results, this work has further analyzed, and
discussed the MonetDB’s query compiler and its MAL code in great detail. This can be of
certain interest, since the official documentation does not provide such deep insights into
the compiler. Furthermore, a manual translation of a class of WCOJ algorithms given by
the Generic-Join algorithm 3.1 into a MAL program has been introduced. Based on
the overall knowledge of the specific column-store and the Generic-Join algorithm 3.1,
an optimized translation has been proposed and discussed. This translation is used by
the final system resulting from this work.

6.1 Open Questions
Finally, some open topics were identified that could be visited in the future in order to
further improve the integration of a class of WCOJ algorithms into column-stores.

The integrated Generic-Join algorithm 3.1 divides the query hypergraph based on
a partition of vertices V into two sets I and J . The partition strategy chosen in this work
is relatively simple and need not be an optimal strategy to the best of our knowledge.
An open problem is to find the optimal partitioning strategy in order to further improve
the efficiency of the column-store with WCOJ algorithm integrated. Furthermore, the
performance benefit of an optimal strategy compared to the straightforward one discussed
in this work has to be evaluated.

The second open question is related to the memory footprints of the respective
column-store implementations during benchmark runs. This work provides evidence
that the MonetDB with WCOJ algorithm integrated is more memory-efficient than the
original system. However, the corresponding memory footprints have not been measured
during the experimental evaluation. Future work could investigate and evaluate the
overall memory allocation of the respective implementations. The gained insights could
potentially lead to ideas for further improvements of this work.
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APPENDIX A
MAL Programs

This chapter shows various MAL programs that are referenced throughout this work.
These MAL programs include example programs that result from the modified query
compiler and cover the final results for different queries, as well as different intermediate
results that have been achieved during earlier integration attempts. MAL code generated
by the query compiler can be obtained using the EXPLAIN statement modifier. Moreover,
this statement modifier prints all actions that have been applied in order to generate the
MAL program (e.g. it lists the utilized optimizer and the number of times specific modules
have been used respectively). Furthermore, the mclient program can be configured
to run MAL code directly instead of evaluating SQL queries. This can be achieved by
starting the mclient program using the following command: mclient -d <dbname> -l
msql. It is important to note that running MAL programs obtained using the EXPLAIN
statement modifier can lead to problems with generic variable names. Renaming them
solves this issue and it remains unclear why running MAL code using generic variable
names can cause problems for some instructions. Listing A.3 shows a MAL program
that computes the triangle query on given relations R(A, B), S(B, C), T (A, C) following
the Generic-Join algorithm 3.1 and which can be successfully run using the above
configuration of the mclient.

Moreover, Listing A.1 shows another MAL program that computes the output of
the triangle query Q� for relations R(A, B), S(B, C), T (A, C). This program has been
generated by the unmodified MonetDB using the EXPLAIN statement modifier and repre-
sents the optimized version of the program. For instance, optimizer introduced the hash
operators on BATs and dataflow optimizations. Note that this program cannot be run by
the MonetDB’s MAL interpreter when passed to it using the mclient program, since
it somehow struggles with the dataflow barrier, log output and the language.pass
operator. Removing lines 1-3, 44-60 and 62 as well as renaming generic variable identifiers
that cause interpretation errors will make the program shown in Listing A.1 interpretable
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by MonetDB using the mclient.

1 func t i on user . main ( ) : void ;
2 X_1: void := query log . d e f i n e ( " exp la in s e l e c t ∗ from r natura l j o i n s

natura l j o i n t ; " : s t r , " de fau l t_pipe " : s t r , 70 : i n t ) ;
3 b a r r i e r X_166 : b i t := language . data f low ( ) ;
4 X_4: i n t := s q l . mvc ( ) ;
5 C_5: bat [ : o id ] := s q l . t i d (X_4: int , " sys " : s t r , " s " : s t r ) ;
6 X_8: bat [ : s t r ] := s q l . bind (X_4: int , " sys " : s t r , " s " : s t r , "b " : s t r , 0 : i n t ) ;
7 X_15 : bat [ : s t r ] := s q l . bind (X_4: int , " sys " : s t r , " s " : s t r , " c " : s t r ,

0 : i n t ) ;
8 C_20 : bat [ : o id ] := s q l . t i d (X_4: int , " sys " : s t r , " t " : s t r ) ;
9 X_22 : bat [ : s t r ] := s q l . bind (X_4: int , " sys " : s t r , " t " : s t r , " a " : s t r ,

0 : i n t ) ;
10 X_27 : bat [ : s t r ] := s q l . bind (X_4: int , " sys " : s t r , " t " : s t r , " c " : s t r ,

0 : i n t ) ;
11 X_32 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_5: bat [ : o id ] , X_15 : bat [ : s t r ] ) ;
12 X_34 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_20 : bat [ : o id ] , X_27 : bat [ : s t r ] ) ;
13 (X_35 : bat [ : o id ] , X_36 : bat [ : o id ] ) := a lgebra . j o i n (X_32 : bat [ : s t r ] ,

X_34 : bat [ : s t r ] , n i l :BAT, n i l :BAT, f a l s e : b i t , n i l : lng ) ;
14 X_41 : bat [ : s t r ] := a lgebra . p ro j e c t i o n pa th (X_35 : bat [ : o id ] ,

C_5: bat [ : o id ] , X_8: bat [ : s t r ] ) ;
15 X_43 : bat [ : s t r ] := a lgebra . p ro j e c t i o n pa th (X_36 : bat [ : o id ] ,

C_20 : bat [ : o id ] , X_22 : bat [ : s t r ] ) ;
16 C_45 : bat [ : o id ] := s q l . t i d (X_4: int , " sys " : s t r , " r " : s t r ) ;
17 X_48 : bat [ : s t r ] := s q l . bind (X_4: int , " sys " : s t r , " r " : s t r , " a " : s t r ,

0 : i n t ) ;
18 X_54 : bat [ : s t r ] := s q l . bind (X_4: int , " sys " : s t r , " r " : s t r , "b " : s t r ,

0 : i n t ) ;
19 X_59 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_45 : bat [ : o id ] , X_48 : bat [ : s t r ] ) ;
20 X_60 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_45 : bat [ : o id ] , X_54 : bat [ : s t r ] ) ;
21 X_67 : bat [ : lng ] := batmkey . hash (X_41 : bat [ : s t r ] ) ;
22 X_70 : bat [ : lng ] := mkey . bulk_rotate_xor_hash (X_67 : bat [ : lng ] , 22 : int ,

X_43 : bat [ : s t r ] ) ;
23 X_72 : bat [ : lng ] := batmkey . hash (X_60 : bat [ : s t r ] ) ;
24 X_73 : bat [ : lng ] := mkey . bulk_rotate_xor_hash (X_72 : bat [ : lng ] , 22 : int ,

X_59 : bat [ : s t r ] ) ;
25 (X_74 : bat [ : o id ] , X_75 : bat [ : o id ] ) := a lgebra . j o i n (X_70 : bat [ : lng ] ,

X_73 : bat [ : lng ] , n i l :BAT, n i l :BAT, t rue : b i t , n i l : lng ) ;
26 X_80 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (X_74 : bat [ : o id ] , X_41 : bat [ : s t r ] ) ;
27 X_81 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (X_75 : bat [ : o id ] , X_60 : bat [ : s t r ] ) ;
28 X_82 : bat [ : b i t ] := b a t c a l c .==(X_80 : bat [ : s t r ] , X_81 : bat [ : s t r ] ) ;
29 C_86 : bat [ : o id ] := a lgebra . t h e t a s e l e c t (X_82 : bat [ : b i t ] , n i l :BAT,

t rue : b i t , "==": s t r ) ;
30 X_87 : bat [ : o id ] := a lgebra . p r o j e c t i o n (C_86 : bat [ : o id ] , X_74 : bat [ : o id ] ) ;
31 X_88 : bat [ : o id ] := a lgebra . p r o j e c t i o n (C_86 : bat [ : o id ] , X_75 : bat [ : o id ] ) ;
32 X_89 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (X_87 : bat [ : o id ] , X_43 : bat [ : s t r ] ) ;
33 X_90 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (X_88 : bat [ : o id ] , X_59 : bat [ : s t r ] ) ;
34 X_91 : bat [ : b i t ] := b a t c a l c .==(X_89 : bat [ : s t r ] , X_90 : bat [ : s t r ] ) ;
35 C_93 : bat [ : o id ] := a lgebra . t h e t a s e l e c t (X_91 : bat [ : b i t ] , n i l :BAT,

t rue : b i t , "==": s t r ) ;
36 X_95 : bat [ : o id ] := a lgebra . p r o j e c t i o n (C_93 : bat [ : o id ] , X_88 : bat [ : o id ] ) ;
37 X_97 : bat [ : s t r ] := a lgebra . p ro j e c t i o n pa th (C_93 : bat [ : o id ] ,
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X_87 : bat [ : o id ] , X_35 : bat [ : o id ] , X_32 : bat [ : s t r ] ) ;
38 X_100 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (X_95 : bat [ : o id ] , X_59 : bat [ : s t r ] ) ;
39 X_101 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (X_95 : bat [ : o id ] , X_60 : bat [ : s t r ] ) ;
40 X_103 : bat [ : s t r ] := bat . pack ( " sys . r " : s t r , " sys . r " : s t r , " sys . s " : s t r ) ;
41 X_104 : bat [ : s t r ] := bat . pack ( " a " : s t r , "b " : s t r , " c " : s t r ) ;
42 X_105 : bat [ : s t r ] := bat . pack ( " c lob " : s t r , " c lob " : s t r , " c lob " : s t r ) ;
43 X_106 : bat [ : i n t ] := bat . pack ( 0 : int , 0 : int , 0 : i n t ) ;
44 X_168 : void := language . pass (C_5: bat [ : o id ] ) ;
45 X_169 : void := language . pass (C_20 : bat [ : o id ] ) ;
46 X_170 : void := language . pass (C_45 : bat [ : o id ] ) ;
47 X_171 : void := language . pass (X_41 : bat [ : s t r ] ) ;
48 X_172 : void := language . pass (X_74 : bat [ : o id ] ) ;
49 X_173 : void := language . pass (C_86 : bat [ : o id ] ) ;
50 X_174 : void := language . pass (X_75 : bat [ : o id ] ) ;
51 X_175 : void := language . pass (X_43 : bat [ : s t r ] ) ;
52 X_176 : void := language . pass (X_88 : bat [ : o id ] ) ;
53 X_177 : void := language . pass (C_93 : bat [ : o id ] ) ;
54 X_178 : void := language . pass (X_87 : bat [ : o id ] ) ;
55 X_179 : void := language . pass (X_35 : bat [ : o id ] ) ;
56 X_180 : void := language . pass (X_32 : bat [ : s t r ] ) ;
57 X_181 : void := language . pass (X_59 : bat [ : s t r ] ) ;
58 X_182 : void := language . pass (X_95 : bat [ : o id ] ) ;
59 X_183 : void := language . pass (X_60 : bat [ : s t r ] ) ;
60 e x i t X_166 : b i t ;
61 X_102 : i n t := s q l . r e s u l t S e t (X_103 : bat [ : s t r ] , X_104 : bat [ : s t r ] ,

X_105 : bat [ : s t r ] , X_106 : bat [ : i n t ] , X_106 : bat [ : i n t ] , X_100 : bat [ : s t r ] ,
X_101 : bat [ : s t r ] , X_97 : bat [ : s t r ] ) ;

62 end user . main ;

Listing A.1: MAL program generated by the unmodified MonetDB using the EXPLAIN
modifier that evaluates the triangle query.

1 sqlmvc : i n t := s q l . mvc ( ) ;
2 t idS : bat [ : o id ] := s q l . t i d ( sqlmvc : int , " sys " : s t r , " s " : s t r ) ;
3 bindSB : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " s " : s t r , "b " : s t r ,

0 : i n t ) ;
4 bindSC : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " s " : s t r , " c " : s t r ,

0 : i n t ) ;
5 projSB : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( t idS : bat [ : o id ] , bindSB : bat [ : s t r ] ) ;
6 tidT : bat [ : o id ] := s q l . t i d ( sqlmvc : int , " sys " : s t r , " t " : s t r ) ;
7 bindTA : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " t " : s t r , " a " : s t r ,

0 : i n t ) ;
8 bindTC : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " t " : s t r , " c " : s t r ,

0 : i n t ) ;
9 projTC : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( tidT : bat [ : o id ] , bindTC : bat [ : s t r ] ) ;

10 tidR : bat [ : o id ] := s q l . t i d ( sqlmvc : int , " sys " : s t r , " r " : s t r ) ;
11 bindRA : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " r " : s t r , " a " : s t r ,

0 : i n t ) ;
12 bindRB : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " r " : s t r , "b " : s t r ,

0 : i n t ) ;
13 projRB : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( tidR : bat [ : o id ] , bindRB : bat [ : s t r ] ) ;
14
15 a : bat [ : s t r ] := bat . new( n i l : s t r ) ;
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16 b : bat [ : s t r ] := bat . new( n i l : s t r ) ;
17 c : bat [ : s t r ] := bat . new( n i l : s t r ) ;
18
19 interB : bat [ : o id ] := a lgebra . i n t e r s e c t ( projSB : bat [ : s t r ] , projRB : bat [ : s t r ] ,

n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t , f a l s e : b i t , n i l : lng ) ;
20 pro j Inte rB : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( interB : bat [ : o id ] ,

projSB : bat [ : s t r ] ) ;
21 (X_62 : bat [ : o id ] , C_63 : bat [ : o id ] ) := group . groupdone ( pro j Inte rB : bat [ : s t r ] ) ;
22 d i s t i n c t B : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_63 : bat [ : o id ] ,

p ro j Inte rB : bat [ : s t r ] ) ;
23
24 b a r r i e r (X_68 : oid , X_69 : s t r ) := i t e r a t o r . new( d i s t i n c t B : bat [ : s t r ] ) ;
25 X_70 : bat [ : s t r ] := bat . new( n i l : s t r ) ;
26 tupleB : bat [ : s t r ] := bat . append (X_70 : bat [ : s t r ] , X_69 : s t r , t rue : b i t ) ;
27
28 X_73 : bat [ : o id ] := a lgebra . i n t e r s e c t ( projSB : bat [ : s t r ] , tupleB : bat [ : s t r ] ,

n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t , t rue : b i t , n i l : lng ) ;
29 semiSC : bat [ : s t r ] := a lgebra . p ro j e c t i on pa th (X_73 : bat [ : o id ] ,

t idS : bat [ : o id ] , bindSC : bat [ : s t r ] ) ;
30 X_79 : bat [ : o id ] := a lgebra . i n t e r s e c t ( projRB : bat [ : s t r ] , tupleB : bat [ : s t r ] ,

n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t , t rue : b i t , n i l : lng ) ;
31 semiRA : bat [ : s t r ] := a lgebra . p ro j e c t i o np a t h (X_79 : bat [ : o id ] ,

tidR : bat [ : o id ] , bindRA : bat [ : s t r ] ) ;
32
33 interC : bat [ : o id ] := a lgebra . i n t e r s e c t ( semiSC : bat [ : s t r ] ,

projTC : bat [ : s t r ] , n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t ,
f a l s e : b i t , n i l : lng ) ;

34 pro j Inte rC : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( interC : bat [ : o id ] ,
semiSC : bat [ : s t r ] ) ;

35 (X_87 : bat [ : o id ] , C_88 : bat [ : o id ] ) :=
group . groupdone ( pro j Inte rC : bat [ : s t r ] ) ;

36 d i s t i n c t C : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_88 : bat [ : o id ] ,
p ro j Inte rC : bat [ : s t r ] ) ;

37
38 atmp : bat [ : s t r ] := bat . new( n i l : s t r ) ;
39 b a r r i e r (X_94 : oid , X_95 : s t r ) := i t e r a t o r . new( d i s t i n c t C : bat [ : s t r ] ) ;
40 X_96 : bat [ : s t r ] := bat . new( n i l : s t r ) ;
41 tupleC : bat [ : s t r ] := bat . append (X_96 : bat [ : s t r ] , X_95 : s t r , t rue : b i t ) ;
42
43 X_98 : bat [ : o id ] := a lgebra . i n t e r s e c t ( projTC : bat [ : s t r ] ,

tupleC : bat [ : s t r ] , n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t ,
t rue : b i t , n i l : lng ) ;

44 semiTA : bat [ : s t r ] := a lgebra . p ro j e c t i on pa th (X_98 : bat [ : o id ] ,
tidT : bat [ : o id ] , bindTA : bat [ : s t r ] ) ;

45
46 C_106 : bat [ : o id ] := a lgebra . i n t e r s e c t ( semiTA : bat [ : s t r ] ,

semiRA : bat [ : s t r ] , n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t ,
f a l s e : b i t , n i l : lng ) ;

47 X_107 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_106 : bat [ : o id ] ,
semiTA : bat [ : s t r ] ) ;

48 (X_108 : bat [ : o id ] , C_109 : bat [ : o id ] ) := group . groupdone (X_107 : bat [ : s t r ] ) ;
49 X_111 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_109 : bat [ : o id ] ,

X_107 : bat [ : s t r ] ) ;
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50
51 (X_112 : bat [ : o id ] , X_113 : bat [ : o id ] ) :=

a lgebra . c ro s sproduct (X_111 : bat [ : s t r ] , tupleC : bat [ : s t r ] , f a l s e : b i t ) ;
52 X_114 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (X_112 : bat [ : o id ] ,

X_111 : bat [ : s t r ] ) ;
53 X_115 : bat [ : s t r ] := a lgebra . p r o j e c t (X_113 : bat [ : o id ] , X_95 : s t r ) ;
54 atmp : bat [ : s t r ] := bat . append (atmp : bat [ : s t r ] , X_114 : bat [ : s t r ] ,

t rue : b i t ) ;
55 c : bat [ : s t r ] := bat . append ( c : bat [ : s t r ] , X_115 : bat [ : s t r ] , t rue : b i t ) ;
56
57 redo (X_94 : oid , X_95 : s t r ) := i t e r a t o r . next ( d i s t i n c t C : bat [ : s t r ] ) ;
58 e x i t (X_94 : oid , X_95 : s t r ) ;
59
60 X_123 : bat [ : o id ] := a lgebra . c ro s sproduct ( tupleB : bat [ : s t r ] ,

atmp : bat [ : s t r ] , f a l s e : b i t ) ;
61 X_124 : bat [ : s t r ] := a lgebra . p r o j e c t (X_123 : bat [ : o id ] , X_69 : s t r ) ;
62 b : bat [ : s t r ] := bat . append (b : bat [ : s t r ] , X_124 : bat [ : s t r ] , t rue : b i t ) ;
63 a : bat [ : s t r ] := bat . append ( a : bat [ : s t r ] , atmp : bat [ : s t r ] , t rue : b i t ) ;
64
65 redo (X_68 : oid , X_69 : s t r ) := i t e r a t o r . next ( d i s t i n c t B : bat [ : s t r ] ) ;
66 e x i t (X_68 : oid , X_69 : s t r ) ;

Listing A.2: MAL program that evaluates the triangle query worst-case optimally following
the Generic-Join algorithm 3.1. This is the directly translated MAL program for
evaluating the triangle query without further improvements.

1 sqlmvc : i n t := s q l . mvc ( ) ;
2 t idS : bat [ : o id ] := s q l . t i d ( sqlmvc : int , " sys " : s t r , " s " : s t r ) ;
3 bindSB : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " s " : s t r , "b " : s t r ,

0 : i n t ) ;
4 bindSC : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " s " : s t r , " c " : s t r ,

0 : i n t ) ;
5 projSB : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( t idS : bat [ : o id ] , bindSB : bat [ : s t r ] ) ;
6 tidT : bat [ : o id ] := s q l . t i d ( sqlmvc : int , " sys " : s t r , " t " : s t r ) ;
7 bindTA : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " t " : s t r , " a " : s t r ,

0 : i n t ) ;
8 bindTC : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " t " : s t r , " c " : s t r ,

0 : i n t ) ;
9 projTC : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( tidT : bat [ : o id ] , bindTC : bat [ : s t r ] ) ;

10 tidR : bat [ : o id ] := s q l . t i d ( sqlmvc : int , " sys " : s t r , " r " : s t r ) ;
11 bindRA : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " r " : s t r , " a " : s t r ,

0 : i n t ) ;
12 bindRB : bat [ : s t r ] := s q l . bind ( sqlmvc : int , " sys " : s t r , " r " : s t r , "b " : s t r ,

0 : i n t ) ;
13 projRB : bat [ : s t r ] := a lgebra . p r o j e c t i o n ( tidR : bat [ : o id ] , bindRB : bat [ : s t r ] ) ;
14
15 b : bat [ : s t r ] := bat . new( n i l : s t r ) ;
16 c : bat [ : s t r ] := bat . new( n i l : s t r ) ;
17 tmpC : bat [ : s t r ] := bat . new( n i l : s t r ) ;
18 a : bat [ : s t r ] := bat . new( n i l : s t r ) ;
19
20 distA : bat [ : s t r ] := bat . new( n i l : s t r ) ;
21 distB : bat [ : s t r ] := bat . new( n i l : s t r ) ;
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22 distC : bat [ : s t r ] := bat . new( n i l : s t r ) ;
23
24 C_58 : bat [ : o id ] := a lgebra . i n t e r s e c t ( projSB : bat [ : s t r ] , projRB : bat [ : s t r ] ,

n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t , f a l s e : b i t , n i l : lng ) ;
25 pro j Inte rB : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_58 : bat [ : o id ] ,

projSB : bat [ : s t r ] ) ;
26 (X_65 : bat [ : o id ] , C_66 : bat [ : o id ] ) := group . groupdone ( pro j Inte rB : bat [ : s t r ] ) ;
27 distB : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_66 : bat [ : o id ] ,

p ro j Inte rB : bat [ : s t r ] ) ;
28
29 b a r r i e r (X_70 : oid , X_71 : s t r ) := i t e r a t o r . new( distB : bat [ : s t r ] ) ;
30 X_75 : bat [ : o id ] := a lgebra . t h e t a s e l e c t ( bindSB : bat [ : s t r ] , t idS : bat [ : o id ] ,

X_71 : s t r , "==": s t r ) ;
31 X_77 : bat [ : s t r ] := a lgebra . p ro j e c t i o np a t h (X_75 : bat [ : o id ] , t idS : bat [ : o id ] ,

bindSC : bat [ : s t r ] ) ;
32 X_78 : bat [ : o id ] := a lgebra . t h e t a s e l e c t (bindRB : bat [ : s t r ] , tidR : bat [ : o id ] ,

X_71 : s t r , "==": s t r ) ;
33 X_80 : bat [ : s t r ] := a lgebra . p ro j e c t i o np a t h (X_78 : bat [ : o id ] , tidR : bat [ : o id ] ,

bindRA : bat [ : s t r ] ) ;
34
35 C_81 : bat [ : o id ] := a lgebra . i n t e r s e c t (X_77 : bat [ : s t r ] , projTC : bat [ : s t r ] ,

n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t , f a l s e : b i t , n i l : lng ) ;
36 X_82 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_81 : bat [ : o id ] , X_77 : bat [ : s t r ] ) ;
37 (X_83 : bat [ : o id ] , C_84 : bat [ : o id ] ) := group . groupdone (X_82 : bat [ : s t r ] ) ;
38 distC : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_84 : bat [ : o id ] , X_82 : bat [ : s t r ] ) ;
39
40 tmpC : bat [ : s t r ] := bat . new( n i l : s t r ) ;
41 tmpBCand : bat [ : o id ] := bat . new( n i l : o id ) ;
42 b a r r i e r (X_90 : oid , X_91 : s t r ) := i t e r a t o r . new( distC : bat [ : s t r ] ) ;
43 X_94 : bat [ : o id ] := a lgebra . t h e t a s e l e c t ( bindTC : bat [ : s t r ] ,

tidT : bat [ : o id ] , X_91 : s t r , "==": s t r ) ;
44 X_100 : bat [ : s t r ] := a lgebra . p ro j e c t i o np a t h (X_94 : bat [ : o id ] ,

tidT : bat [ : o id ] , bindTA : bat [ : s t r ] ) ;
45
46 C_101 : bat [ : o id ] := a lgebra . i n t e r s e c t (X_100 : bat [ : s t r ] , X_80 : bat [ : s t r ] ,

n i l : bat [ : o id ] , n i l : bat [ : o id ] , f a l s e : b i t , f a l s e : b i t , n i l : lng ) ;
47 X_102 : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_101 : bat [ : o id ] ,

X_100 : bat [ : s t r ] ) ;
48 (X_103 : bat [ : o id ] , C_104 : bat [ : o id ] ) := group . groupdone (X_102 : bat [ : s t r ] ) ;
49 distA : bat [ : s t r ] := a lgebra . p r o j e c t i o n (C_104 : bat [ : o id ] ,

X_102 : bat [ : s t r ] ) ;
50
51 X_110 : bat [ : s t r ] := a lgebra . p r o j e c t (C_104 : bat [ : o id ] , X_91 : s t r ) ;
52
53 tmpBCand : bat [ : o id ] := bat . append (tmpBCand : bat [ : o id ] , C_104 : bat [ : o id ] ) ;
54 a : bat [ : s t r ] := bat . append ( a : bat [ : s t r ] , d istA : bat [ : s t r ] , t rue : b i t ) ;
55 tmpC : bat [ : s t r ] := bat . append (tmpC : bat [ : s t r ] , X_110 : bat [ : s t r ] ,

t rue : b i t ) ;
56
57 redo (X_90 : oid , X_91 : s t r ) := i t e r a t o r . next ( distC : bat [ : s t r ] ) ;
58 e x i t (X_90 : oid , X_91 : s t r ) ;
59
60 X_119 : bat [ : s t r ] := a lgebra . p r o j e c t (tmpBCand : bat [ : o id ] , X_71 : s t r ) ;
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61
62 c : bat [ : s t r ] := bat . append ( c : bat [ : s t r ] , tmpC : bat [ : s t r ] , t rue : b i t ) ;
63 b : bat [ : s t r ] := bat . append (b : bat [ : s t r ] , X_119 : bat [ : s t r ] , t rue : b i t ) ;
64
65 redo (X_70 : oid , X_71 : s t r ) := i t e r a t o r . next ( distB : bat [ : s t r ] ) ;
66 e x i t (X_70 : oid , X_71 : s t r ) ;

Listing A.3: MAL program that evaluates the triangle query worst-case optimally
following the Generic-Join algorithm 3.1. This is the final improved MAL program
for evaluating the triangle query.
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Acronyms

ACID Atomicity, Consistency, Isolation and Durability. 18

API Application Programming Interface. 17

BAT Binary Association Table. 12, 16–18, 20–25, 53, 54, 57–59, 61–67, 69, 70, 72, 73,
80, 81, 89

BBP BAT Buffer Pool. 18

CPU Central Processing Unit. 4, 10, 12, 13, 16, 17, 19, 77

CSP Constraint Satisfaction Problem. 37

CWI Centrum Wiskunde & Informatica. 16

DBMS Database Management System. xv, 4, 7–9, 15–17, 27, 30, 32, 33, 47

DSM Decomposed Storage Model. 18

GDK Goblin Database Kernel. 18, 21

GHD Generalized Hypertree Decomposition. 46

MAL MonetDB Assembly Language. 5, 6, 10, 11, 14, 17–26, 45, 48–73, 75, 79, 88, 89,
91, 93, 95

MMU Memory Management Unit. 19

OID Object Identifier. 16, 23, 54, 59, 66, 67

OS Operating System. 18, 77

RLE Run Length Encoding. 10, 13

SIMD Single Instruction Multiple Data. 4, 12, 46

95



SQL Structured Query Language. 17, 19, 25, 46, 55–57, 69, 71, 89

WCOJ Worst Case Optimal Join. 3–6, 15, 22, 24, 27, 28, 33–37, 45–49, 55, 56, 60, 65,
67–69, 71, 72, 77–79, 81, 82, 85–88
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