
1.  Introduction
Mixing fronts formed by miscible fluids influence a range of hydrological and biogeochemical processes 
(Dentz et  al.,  2011; Rolle & Le Borgne,  2019; Valocchi et  al.,  2019) including river-groundwater exchanges 
(Bandopadhyay et  al.,  2018; Hester et  al.,  2017; Ziliotto et  al.,  2021), freshwater-saltwater mixing in coastal 
areas (Abarca et al., 2007; De Vriendt, 2021), subsurface microbial processes (Bochet et al., 2020) and mixing 
in river confluences and estuaries (Bouchez et al., 2010; Prandle, 2009; Yuan et al., 2022). They are also pres-
ent in many engineering applications, such as soil and groundwater remediation (Fu et al., 2014; Karadimitriou 
& Hassanizadeh, 2012; Wang et al., 2022), geological carbon sequestration (Szulczewski et al., 2012; Zoback 
& Gorelick,  2012), hydrogen storage (Lysyy et  al.,  2022; Tarkowski,  2019) and geothermal systems (Burté 
et  al.,  2019). The heterogeneity of flow fields at various scales leads to stretching of mixing fronts, leading 
to the enhancement of concentration gradients and the resulting mixing rates (Chiogna et  al.,  2012; Cirpka 
et al., 2011, 2015; De Barros et al., 2012; Dentz et al., 2023; Engdahl et al., 2014; Le Borgne et al., 2014; Rolle 
& Le Borgne, 2019; Rolle et al., 2009; Villermaux, 2019; Ye et al., 2015, 2020). The interplay between fluid 
stretching and diffusion has been captured by lamellar models, that represent mixing fronts as stretched elemen-
tary lamellae (in 2D) or sheets (in 3D), in porous media (Heyman et al., 2020; Le Borgne et al., 2013, 2015; Souzy 
et al., 2020) and turbulent flows (Villermaux, 2019). While this approach has successfully described the coupling 
between stretching and diffusion, it does not account for situations where dispersion dominates locally over diffu-
sion. This occurs in a range of hydrological systems, including porous media at Darcy scale (Dentz et al., 2011).
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Hydrodynamic dispersion is driven by the combination of molecular diffusion and pore-scale flow variability 
(Bear, 1988). It is classically modeled as an anisotropic effective dispersion coefficient, whose magnitude 
is proportional to flow velocity (Delgado, 2007), as opposed to constant diffusion coefficients. Such veloc-
ity dependent local dispersion is disregarded in studies that use Hele-Shaw cells as experimental analogs 
of porous media to study mixing fronts, density driven flows, and reactions (De Wit,  2020). The veloc-
ity dependence of the dispersion coefficient has been shown to play an important effect on mixing rates 
at the salt-fresh water interfaces in porous media (De Vriendt et al., 2022) and in Poiseuille flows (Perez 
et al., 2019). However, it is not generally known how to quantify its effect on mixing front properties under 
non-uniform flows.

Here, we investigate the role of dispersion versus diffusion on mixing front properties under both uniform and 
non-uniform flows. As a paradigm of non-uniform flow, we consider a mixing front created by the conver-
gence of opposing flows. Such flow leads to the appearance of a stagnation point (a point of null velocity) and 
frequently arise in hydrological systems (Bresciani et al., 2019). This includes hyporheic zones where ground-
water upwelling locally competes with flow recirculation produced by variations in the river bathymetry (Hester 
et  al.,  2017), fresh-salt water interfaces (De Vriendt,  2021), density-driven flows (Hidalgo et  al.,  2015). The 
velocity field close to a stagnation point is non-uniform, with a constant velocity gradient magnitude close to the 
stagnation point. This means that the flow is constantly decelerating/accelerating when approaching/departing 
from the stagnation point. This leads to a net stretching of fluid elements and a constant compression rate of 
mixing fronts. Under the assumption of local diffusion, such compression is known to sustain chemical gradients 
over a fixed characterize length scale called the Batchelor scale (Villermaux, 2019). While the coupling between 
stretching and diffusion is well understood is such flows, it is not known how these dynamics are altered by local 
dispersion.

The paper is organized as follows. In the first section, we solve analytically the steady advection-dispersion equa-
tion governing a conservative mixing interface under a constant compression rate. We obtain analytical predic-
tions for the concentration profile, the mixing scale and the mixing rate across the interface. We validate these 
predictions by comparison with numerical simulation of the coupled flow-dispersion problem. In the second 
section, we compare these predictions to tank experiments of conservative tracer in uniform and non-uniform 
flows. We investigate mixing fronts both in the presence and absence of porous media, which lead to respectively 
local diffusion and local dispersion.

2.  Theory
2.1.  Mixing Under Advection Diffusion/Dispersion

We consider the transport of a conservative solute in a two-dimensional incompressible flow field with velocity 
u(x, y), following:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝒖𝒖(𝑥𝑥𝑥 𝑥𝑥) ⋅ ∇𝑐𝑐(𝑥𝑥𝑥 𝑥𝑥) + ∇ ⋅ (𝑫𝑫(𝑥𝑥𝑥 𝑥𝑥) ⋅ ∇𝑐𝑐(𝑥𝑥𝑥 𝑥𝑥)),� (1)

where D is the dispersion tensor.

To compare the effect of diffusion and dispersion, we consider two models: (a) a constant diffusion coefficient, 
D(x, y) = DI or (b) a velocity dependent dispersion coefficient (Bear, 1988):

𝑫𝑫 = (𝐷𝐷𝑚𝑚 + 𝛼𝛼𝑇𝑇 |𝒖𝒖|)𝑰𝑰 + (𝛼𝛼𝐿𝐿 − 𝛼𝛼𝑇𝑇 )
(𝒖𝒖⊗ 𝒖𝒖)

|𝒖𝒖|
� (2)

where |u| denotes the norm of the velocity vector, ⊗ is the outer product, I is the identity matrix and Dm the effec-
tive molecular diffusion in porous media. αT and αL are the transverse and longitudinal dispersivities. Equation 2 
implies that the dispersion coefficients parallel and transverse to the local flow direction are respectively

𝐷𝐷L = 𝐷𝐷m + 𝛼𝛼𝐿𝐿|𝒖𝒖|.� (3)

and

𝐷𝐷T = 𝐷𝐷m + 𝛼𝛼𝑇𝑇 |𝒖𝒖|.� (4)
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To highlight the difference produced between these two models in mixing front properties, we consider a uniform 
and a non-uniform flow field.

2.2.  Uniform Flow

First, we consider the trivial case of a uniform flow with constant velocity U (Figure 1a) where

𝒖𝒖(𝑥𝑥𝑥 𝑥𝑥) =

⎡
⎢
⎢
⎣

𝑈𝑈

0

⎤
⎥
⎥
⎦

.� (5)

Since the flow velocity is constant, dispersion is also a constant tensor D and the transport equation is

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝒖𝒖 ⋅ ∇𝑐𝑐 +𝑫𝑫Δ𝑐𝑐� (6)

We impose the boundary condition to be a continuous solute injection at the flow inlet on the half plane (c(x = 0, 
y > 0) = 1), a so-called co-flow configuration (Figure 1a). Continuous time-independent injection leads to the 
existence of a steady-state solution of the mixing interface, so that ∂c/∂t = 0. As illustrated in Figures 1a and 1c, 
concentration gradients are much larger along y than along x directions, and mixing occurs mostly through trans-
verse diffusion/dispersion. Hence, Equation 6 can be approximated by:

𝑈𝑈
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐷𝐷T

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
� (7)

whose solution is

Figure 1.  Numerical simulations showing the mixing interface of a conservative solute c in a uniform (left column) and non-uniform flow (right column), if 
dispersion is assumed constant (top) or proportional to the velocity (bottom). The dotted lines show the extent of mixing width given by theory (Equation 9 for a and c, 

𝐴𝐴 𝐴𝐴𝐵𝐵 =
√
2𝐷𝐷∕𝛾𝛾  for b and Equation 22 for d.).
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𝑐𝑐(𝑥𝑥𝑥 𝑥𝑥) = 1∕2

[

1 + erf

(
𝑦𝑦

𝑠𝑠(𝑥𝑥)

)]

� (8)

where erf is the error function. The mixing width s(x) is:

𝑠𝑠 = 2

√
𝐷𝐷T

𝑈𝑈
𝑥𝑥𝑥� (9)

The characteristic concentration gradient and mixing flux along the interface 
are respectively,

∇𝑐𝑐(𝑥𝑥) =
1

√
𝜋𝜋

1

𝑠𝑠
=

1

2
√
𝜋𝜋

√
𝑈𝑈

𝐷𝐷T𝑥𝑥
� (10)

and

𝐽𝐽 (𝑥𝑥𝑥 𝑥𝑥 = 0) = 𝐷𝐷T∇𝑐𝑐 =
1

2
√
𝜋𝜋

√
𝑈𝑈𝑈𝑈T

𝑥𝑥
� (11)

The mixing front properties for diffusion and dispersion dominated regimes are thus obtained by substituting DT 
from Equation 4 in the equations above. The results are synthesized in table 1.

2.3.  Non-Uniform Flow

We now focus on the case of a non-uniform flow characterized by a constant stretching/compression rate γ 
induced by converging flows (Figure  1b). This flow represents a paradigm of stretching enhanced mixing 
(Izumoto et al., 2022; Rolle & Le Borgne, 2019; Villermaux, 2019). Linearization of the flow field around the 
stagnation point leads to the velocity field

𝒖𝒖(𝑥𝑥𝑥 𝑥𝑥) =

⎡
⎢
⎢
⎣

𝛾𝛾 0

0 −𝛾𝛾

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥𝑥

𝑦𝑦

⎤
⎥
⎥
⎦

+ 𝑜𝑜
(
𝑥𝑥2,𝑦𝑦 2, 𝑥𝑥𝑥𝑥

)
,� (12)

where γ = ∂u/∂x|0,0. This velocity field imparts a constant compression rate γ −1 to fluid elements in the y direction, 
and a constant stretching rate γ in the x-direction. Compression acts at enhancing scalar gradients in the y direc-
tion, with a direct impact on solute transport and mixing as discussed below.

2.3.1.  Diffusion in Non-Uniform Flow

We first consider a constant diffusion coefficient isotropic in the flow domain D = DmI. Since the compression 
rate is constant, this system is locally equivalent to chaotic flows where constant compression/stretching rates 
are sustained globally due to exponential elongation rates (Batchelor et al., 1959; Heyman et al., 2020; Lester 
et al., 2013, 2016; Villermaux, 2019). The balance of compression rate of fluid elements 𝐴𝐴

1

𝑠𝑠

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝛾𝛾 and the rate 

of diffusive expansion 𝐴𝐴
1

𝑠𝑠

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

2𝐷𝐷m

𝑠𝑠2
 leads to the emergence of a fixed mixing scale

𝑠𝑠𝐵𝐵 ∼

√
2𝐷𝐷m

𝛾𝛾
.� (13)

This scale, at which solute gradients are maintained, is called the Batchelor scale (Batchelor et  al.,  1959; 
Villermaux, 2019). The concentration profile across the mixing interface is obtained by solving Equation 1 with 
the linearized flow field (Equation 12). The boundary conditions consist of continuous injection of solute on one 
side of the stagnation point, for example, c(x, y = ∞) = 1 and c(x, y = −∞) = 0. The solute c is advected and mixes 
transversally along the mixing interface located on the x-axis (Figure 1b). Concentration gradients along x are 
null because both the y component of the velocity and the boundary conditions are independent of x. As before, 
the continuous injection of solute leads to a steady-state mixing interface, govern by:

−𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝐷𝐷m

𝛾𝛾

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
.� (14)

Uniform flow Non-uniform flow

Mixing width s

  diffusive
𝐴𝐴 𝐴𝐴 = 2

√
𝐷𝐷𝑚𝑚𝑥𝑥

𝑈𝑈
  𝐴𝐴 𝐴𝐴 ∼

√
2𝐷𝐷𝑚𝑚

𝛾𝛾
 

  dispersive 𝐴𝐴 𝐴𝐴 ∼ 2
√
𝛼𝛼𝑇𝑇 𝑥𝑥  𝐴𝐴 𝐴𝐴 ∼ 2

√
𝛼𝛼𝑇𝑇 𝑥𝑥

3
 

Mixing rate J

  diffusive
𝐴𝐴 𝐴𝐴 ∼

√
𝐷𝐷𝑚𝑚𝑈𝑈

4𝜋𝜋𝜋𝜋
  𝐴𝐴 𝐴𝐴 ∼

√
𝐷𝐷m𝛾𝛾

2𝜋𝜋
 

  dispersive 𝐴𝐴 𝐴𝐴 ∼ 𝑈𝑈

√
𝛼𝛼𝑇𝑇

4𝜋𝜋𝜋𝜋
  𝐴𝐴 𝐴𝐴 ∼ 𝛾𝛾

√
3𝛼𝛼𝑇𝑇 𝑥𝑥

4𝜋𝜋
 

Note. For Dispersive, Results are Given in the Limit αTU ≫ Dm.

Table 1 
Theoretical Mixing Width s and Rate J Dependence With Problem 
Quantities for the Uniform and Non-Flow and in Diffusive and Dispersive 
Conditions
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The solution of this equation is an error function,

𝑐𝑐(𝑥𝑥𝑥 𝑥𝑥) = 1∕2

[

1 + erf

(
𝑦𝑦

𝑠𝑠𝐵𝐵

)]

� (15)

with a constant mixing width given by the Batchelor scale s = sB. The characteristic concentration gradient and 
mixing flux per unit area of the interface are respectively,

∇𝑐𝑐(𝑥𝑥) =
1

√
𝜋𝜋

1

𝑠𝑠𝐵𝐵
=

1
√
2𝜋𝜋

√
𝛾𝛾

𝐷𝐷m
� (16)

and

𝐽𝐽 (𝑥𝑥𝑥 𝑥𝑥 = 0) = 𝐷𝐷m∇𝑐𝑐 =

√
𝐷𝐷m𝛾𝛾

2𝜋𝜋
� (17)

We synthesize the results in Table 1.

2.3.2.  Dispersion in Non-Uniform Flow

We now consider a dispersion coefficient proportional to flow velocity in non-uniform flow, thus varying in 
space. We impose the same boundary conditions as before and assume that the mixing interface remains close to 
the position y = 0, where the flow velocity is almost parallel to the x direction (|u| ∼ γx). Within such approxima-
tion, Equation 1 for stationary flows 𝐴𝐴

(
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0

)

 simplifies to

0 = 𝛾𝛾 𝛾𝛾
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝛾𝛾 𝛾𝛾

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕

𝜕𝜕𝜕𝜕

(

(𝐷𝐷𝑚𝑚 + 𝛼𝛼𝑇𝑇 𝛾𝛾 𝛾𝛾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+
𝜕𝜕

𝜕𝜕𝜕𝜕

(

(𝐷𝐷𝑚𝑚 + 𝛼𝛼𝐿𝐿𝛾𝛾 𝛾𝛾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

.� (18)

We define dimensionless variables (X, Y) = (x/Lx, y/Ly), with Lx and Ly being the characteristic length of obser-
vation in the x and y directions, respectively. We focus on the solution near the mixing front and away from the 
stagnation point, where y/x = Ly/Lx = δL ≪ 1. In this domain, we can neglect the contribution of molecular diffu-
sion (αTγx ≫ Dm). We observe that the relative change in the mixing width is small along the length Lx and get 
(∂c/∂x)/(∂c/∂y) ∼ Ly/Lx ≪ 1. Equation 18 then gives

−𝛿𝛿2
𝐿𝐿
𝑌𝑌

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝛿𝛿2

𝐿𝐿
𝑋𝑋

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝛼𝛼𝑇𝑇

𝐿𝐿𝑥𝑥

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝑋𝑋
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+
𝛼𝛼𝐿𝐿

𝐿𝐿𝑥𝑥

𝛿𝛿2
𝐿𝐿

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝑋𝑋
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

.� (19)

We finally consider that Lx is much larger than the grain size d and, consequently, the dispersion coefficient αT 
and αL (αT/Lx ≪ 1 and αL/Lx ≪ 1). Keeping only the leading order terms, we can neglect the longitudinal disper-
sive term in the right-hand side of the equation. Thus, Equation 18 simplifies to

− 𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑥𝑥

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝛼𝛼𝑇𝑇 𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

.� (20)

The concentration profile is found by assuming the functional form 𝐴𝐴 𝐴𝐴(𝑦𝑦) = 𝐴𝐴 erf

(
𝑦𝑦

√
𝐾𝐾𝐾𝐾𝑇𝑇 𝑥𝑥

)

+ 𝐵𝐵 . K = 4/3 is deter-
mined so that the equation satisfies Equation 20, and boundary conditions. Thus, the solution is,

𝑐𝑐(𝑦𝑦) = 1∕2

[

1 + erf

(
𝑦𝑦

√
4∕3𝛼𝛼𝑇𝑇 𝑥𝑥

)]

� (21)

This leads to a mixing width,

𝑠𝑠 = 2

√
𝛼𝛼𝑇𝑇 𝑥𝑥

3
.� (22)

The characteristic concentration gradient and mixing flux per unit area of the interface are respectively,

∇𝑐𝑐(𝑥𝑥) =
1

√
𝜋𝜋

1

𝑠𝑠
∼

1
√
𝜋𝜋

√
3

4𝛼𝛼𝑇𝑇 𝑥𝑥
� (23)
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and

𝐽𝐽 (𝑥𝑥𝑥 𝑥𝑥 = 0) =
𝛼𝛼𝑇𝑇 𝛾𝛾𝛾𝛾
√
𝜋𝜋

∇𝑐𝑐 ∼
𝛾𝛾

√
𝜋𝜋

√
3𝛼𝛼𝑇𝑇 𝑥𝑥

4
� (24)

We validated the analytical solution for the mixing width Equation 22 and for the flux Equation 24 by numerical 
simulations of the full advection-dispersion equation using the OpenFOAM code (Figure 1 and Appendix A). 
Thus, the mixing front and flux properties are similar as for uniform flows, although the mixing width is reduced 
by a factor 𝐴𝐴 1∕

√
3 and the normalized flux is increased by a factor of 𝐴𝐴

√
3 . We summarize the theoretical depend-

ence of the mixing width and mixing rate with space in Table 1.

3.  Experiments
In the following, we test the theoretical predictions against conservative tracer experiments in quasi-two dimen-
sional cells in the presence and absence of porous media.

3.1.  Experimental Setup

Two cells with parallel flat plates were designed to achieve (a) uniform flow and (b) non-uniform flow created by 
converging flows. The thickness of the cells was chosen to be small compared to the longitudinal and transverse 
dimensions. The uniform flow cell is a rectangular cell with a co-injection of tracers at the inlet (Figure 2a). The 
co-injection of two solutions produces a mixing interface that propagate toward the outlet at the other side of the 
cell (Figure 2a). The non-uniform flow cell is designed with four branches of hyperbolic shape with y = ±a/x, a 
being a constant, that reproduces the geometry of streamlines near a stagnation point created by opposing flows 
(Equation 12). Flow inlets and outlets are facing each other (Figure 2b), creating a stagnation point and an hori-
zontal mixing interface in the middle cell.

Two sets of conservative transport experiments were performed in these parallel flat plates cells, with and with-
out porous media. We use the empty cell as a reference for mixing in the presence of diffusion with parallel flat 
plates distanced by small gap (w = 2 mm) thus assuring an Hele-Shaw flow condition. The diffusive Hele-Shaw 
experiments are presented in terms of the Péclet number calculated as Pe  =  w U/Dm. The experiments with 
porous media were carried out in thicker cells (12 mm) to have a sufficient number of grain diameters in the cell 
thickness to represent a Darcy scale set up. In this case, we use the porous media Péclet number as Pe = d U/Dm 
where U and d are respectively a characteristic velocity and grain size. As porous material, we used Fluorinated 
Ethylene Propylene (FEP 100 X, Chemours ⓒ) grains of mean grain diameter 2 mm. This material has the advan-
tage of being transparent in water and have a refractive index (n = 1.34) very close to that of water (n = 1.33), 
limiting light scattering (see Appendix B for details) (Amini & Hassan, 2012). These optical properties allow 
quantifying the depth integrated mixing width of the interface. The porosity of the packed FEP was measured to 
be 0.37. This is determined by calculating the volume of packed FEP beads based on the packed weight and the 
density of the FEP.

3.2.  Experimental Protocol

First, the cells are filled with deionized water. To fully saturate the media, we first injected CO2 gas, which 
dissolved into the injected water hence preventing the presence of bubbles. The cells are placed on top of a blue 
LED panel to measure solute concentration by fluorescence. The mixing interface is produced by injecting clear 
and fluorescein tracer solutions at the same rate by a syringe pump. When the mixing front has stabilized, we 
image the interface with a digital camera (Sony A7s, F2.8/90) equipped with a green band pass filter (Midopt 
BN532). The image resolution was 0.04 mm per pixel in all experiments. Before each experimental run, we take 
two images of the cell fully filled with (a) pure water (image intensity I0) and (b) the fluorescein solution (image 
intensity Imax). The signal emitted by the fluorescein could be approximated as linear with the concentration in 
this range of concentration. This was done by injecting 6 fluorescein solutions with increasing concentrations 
into the flow cell packed with FEP, and compare their fluorescence signal to their concentration (see in Annex 
C a calibration curve). Finally, a normalized tracer concentration is then computed with c = (I − I0)/(Imax − I0), 
with I the raw image intensity. Thus, c varies between 0 and 1. The signal emitted by the fluorescein exhibited 
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linearity within this concentration range. To confirm this, we introduced six fluorescein solutions with increas-
ing concentrations into the FEP-packed flow cell and compared their fluorescence signals with their respective 
concentrations (refer to Annex C for the calibration curve). We calculated a normalized tracer concentration, 
denoted as c, using the formula c = (I − I0)/(Imax − I0), where I represents the raw image intensity. Thus, c ranges 
between 0 and 1.

Each experiment was performed for 9 flow rates, corresponding to 9 Péclet numbers. The molecular diffusion 
coefficient of the fluorescein sodium salt is 4.2 × 10 −10 m 2 s −1 (Casalini et al., 2011). In the non-uniform flow 
cell, the characteristic length scale of the velocity gradient γ is estimated from the distance between the injection 
and the stagnation point Lc = 10 cm for the setup without porous media. The compression rate is estimated by 
vinj/L, with vinj the velocity at the injection and L the distance between the injection and the stagnation point. 

Figure 2.  (a, b) Experimental design of (a) the uniform flow cell and (b) non-uniform flow cell. The brown dotted lines 
indicate the flow regions shown in (c). The thickness of cell is 2 mm for the Hele-Shaw cell (without porous media) and 
12 mm with porous media. The non-uniform cell has a length of 103 mm (a = 303 mm 2) without porous media and 208 mm 
with porous media (a = 811 mm 2). The thick arrows indicate the direction of the flow. (c) Tracer concentration field in 
uniform flow (top two rows) and non-uniform flow cases (bottom two rows). Flow is from left to right. The white bars 
represent 10 mm.
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The same characteristic length (Lc = 10 cm) was used for the calculation of Péclet numbers such that U = γLc. 
The 9 flow rates resulted in Péclet numbers ranging from 360 to 7,150 and 930 to 18,620 for the uniform and 
non-uniform flow cells respectively.

The mixing width was estimated by fitting an error function Equation  8 across the mixing interface at each 
distance (x/d). Because of residual light scattering by the FEP grains, the tracer concentration of the mixing front 
does not reach 0 in the side of the pure solution. Thus, the error function is fitted on a single side of the front, for 
which tracer concentrations are above 0.5 (Figure 3a). For experiments with porous media, we triplicated each 
experiment by repacking the FEP grains to obtain results independent of specific grain arrangements. This lead 
to reproducible results (Figure 3b), allowing us to capture the effect of flow non-uniformity on the evolution of 
the mixing scale.

3.3.  Experimental Results

Figure 2c shows the experimental images obtained in the uniform and non-uniform flow cells with and without 
porous media. In the absence of porous media and in uniform flows (Figure 4a), the transverse mixing interface 
follows the classical diffusive scaling 𝐴𝐴

√
𝑥𝑥 (Table 1). In contrast, when imposing non-uniform flows with constant 

compression (Figure 4b), the mixing width becomes constant along the interface. This highlights the balance 
between compression and diffusion, leading to the Batchelor scale (Equation 13, table 1). Note that the sudden 
increase observed for x > 5 cm is caused by the finite size of the non-uniform flow cell, which induces a decrease 
of the compression rate at the outlet boundaries, and an increase of the mixing width.

In the presence of porous media, the mixing front dynamics are different as the mixing scale increases as 𝐴𝐴
√
𝑥𝑥∕𝑑𝑑 

for both uniform and non-uniform flows (Figure 3b). This is consistent with theoretical predictions (Table 1). The 
non-uniform flow slightly depart from this tendency for x < 15d and x > 60d range. Indeed, close to the stag-
nation point, x < 15d, the asymptotic theory (Equation 22) is not valid anymore. Close to the outlet, the mixing 
width starts to interact with the boundary of the cell and fluid compression is not constant anymore, thus slowing 
down the observed growth. This limitation is also observed in the absence of porous media (see Figure 4b). We 
thus limit the quantification to the range 15 < x/d < 60. The estimated prefactor is 0.52 for uniform flow, corre-
sponding to a transverse dispersivity of αT = (0.52 2/4) d = 0.07 d ± 0.01 d. For non-uniform flow, the pre-factor 
is 0.27, which is 𝐴𝐴

√
3.7 times smaller than for the uniform flow, close to the predicted ratio of 𝐴𝐴

√
3 (Equation 22). 

This confirms that fluid compression sharpens mixing fronts in porous media, hence enhancing mixing rates.

Figure 3.  Mixing in porous media (packed FEP). (a) Procedure to obtain the mixing width by the fit of an error function on the upper part of the mixing interface 
(uniform flow, Pe = 357). The arrow indicates the fitted zone. (b) Average growth of the mixing width with distance in uniform (purple line) at Pe = 5,800 and 
non-uniform flow (green line) at Pe = 2,320. The average is taken over three experiments with different grain packing. The light colored lines are the three replicates for 
each flow, and the thick colored lines are their average. Best fits were estimated using a square root function 𝐴𝐴 (𝑠𝑠∕𝑑𝑑 = 𝐴𝐴

√
𝑥𝑥∕𝑑𝑑) using the average mixing width of both 

flow cases for 15 < x/d < 60.
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In Figure 5, we plot the dependence of the mixing width with flow rate through Pećlet numbers for the diffusive 
problem at a given position along the front. In the presence of porous media, the mixing width is independent of 
flow rate for both uniform and non-uniform flows. In contrast, in the absence of porous media, the mixing width 
decreases as Pe −1/2 in uniform and non-uniform flow. These results are in agreement with the theoretical predic-
tions (Table 1). They highlight the properties of the Batchelor scale, as a result of the balance between compres-
sion and diffusion, and its break down under dispersion at Darcy scale. The mixing scale is still systematically 
smaller under fluid compression and dispersion, leading to enhanced mixing rates (Table 1).

4.  Discussion and Conclusion
We investigated the effect of local dispersion versus diffusion on the properties of mixing fronts developing 
in uniform and non-uniform flow. For the latter, we focused on flow topologies formed around a stagnation 
point in converging flows, a configuration that is common for mixing fronts in hydrological and hydrogeolog-
ical systems. We derived analytical solutions for the mixing width, concentration gradient and mixing rate for 

Figure 4.  Mixing in Hele-Shaw diffusive cells without porous media in uniform versus non-uniform flows. (a) Mixing width as a function of x/Ux in the uniform flow 
configuration. (b) Mixing width as a function of x in the non-uniform flow configuration. Lines get darker when the Hele-Shaw Péclet number decreases.

Figure 5.  Mixing width as a function of flow rate through the Péclet number for diffusion and dispersion. The mixing widths 
in uniform and non-uniform flows in porous media (with dispersion) and in uniform diffusive Hele-Shaw flows are plotted at 
40d (8 cm). For non-uniform diffusion, mixing width is averaged between the stagnation point and 10d (2 cm) (see Figure 4).
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uniform and non-uniform flows and both diffusion and dispersion. We performed millifluidic tracer experiments 
in two parallel flat plates cells with and without porous media, showing good agreement with the theory. The 
results in the absence of porous media are representative of steady mixing fronts at pore scale, in a fracture or in 
open low Reynolds number flows. They show that fluid compression leads to the development of a fixed mixing 
scale independent of position but function of the flow rate for non-uniform diffusive as shown in Figure 4, hence 
highlighting the properties of the Batchelor scale in Equation 13. The results obtained with porous media are 
representative of Darcy scale mixing fronts.

In this scenario, the mixing scale increases as one moves along the mixing interface, while remaining unaffected 
by variations in velocity, whether in the context of uniform or non-uniform flows. Fluid compression sharpens 
mixing fronts by enhancing concentration gradients by a factor 𝐴𝐴

√
3 . This leads to enhanced mixing, as known 

from theories considering diffusion and compression, but the scaling with distance and flow rate deviates from 
these classical diffusive predictions.

These findings thus highlight the importance of considering dispersion or diffusion when studying mixing 
fronts in heterogeneous flows. The constant compression rate obtained locally in the considered non-uniform 
flow is analogous to chaotic flows, where a constant compression rate is sustained globally by repeated stretch-
ing and folding. This phenomenon is known to occur naturally at pores scale (Heyman et  al.,  2020; Lester 
et al., 2013, 2016; Souzy et al., 2020) and can be created by engineered pumping and injection (Fernàndez-Garcia 
& Rodríguez-Escales, 2023; Mays & Neupauer, 2012; Neupauer et al., 2014; Trefry et al., 2012). The obtained 
scaling laws (Table 1) and impact of diffusion/dispersion are thus expected to be relevant for such chaotic flows. 
An interesting perspective of this study is to investigate the impact of local dispersion on reaction rates in mixing 
fronts.

Appendix A:  Mixing Width and Flux Validation With Simulations
The 2D advection-dispersion Equation 1 is numerically solved using the software OpenFoam. Figure 1 in the 
main text provides examples of the computed concentration fields for uniform and non-uniform flows for diffu-
sive and dispersive, where we highlighted the mixing zone by visualizing c. For the validation with the simula-
tions, we compute the product c(1 − c) across the mixing interface, which follows Equation 8:

𝑐𝑐(1 − 𝑐𝑐) = 1∕4

[

1 − erf

(
𝑦𝑦

𝑠𝑠

)]2
� (A1)

with 𝐴𝐴 𝐴𝐴 = 2
√
𝛼𝛼𝑇𝑇 𝑥𝑥 for uniform flow and 𝐴𝐴 𝐴𝐴 = 2

√
𝛼𝛼𝑇𝑇 𝑥𝑥∕3 for non-uniform flow. Following (De Vriendt et al., 2022), 

the width of the mixing zone is taken as the distance at half the maximum of c(1 − c). The growth of mixing width 
with distance is in Figure A1, together with theoretical predictions.

In Figure A2, we also provide a comparison between the simulated flux calculated at the mixing front (i.e., 
at y  =  0 where the flux is maximum) and the theoretical predictions. According to the theoretical devel-

Figure A1.  Simulation and theory results of the porous media (dispersive) cases in uniform and non-uniform flows. Left: Simulated against predicted c(1 − c) profile 
for the non-uniform flow case taken at two distances from the injection. Right: normalized mixing interface width from simulation at different flow conditions against 
the theoretical s/αT expression as given in Equations 9 and 22.
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opment summarized in table  1, we have 𝐴𝐴 𝐴𝐴∕𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥 = 0) = 𝐽𝐽∕𝑈𝑈 =
√
𝛼𝛼𝑇𝑇 ∕(4𝜋𝜋𝜋𝜋) for uniform flow and 

𝐴𝐴 𝐴𝐴∕(𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥 = 0)) = 𝐽𝐽∕(𝛾𝛾𝛾𝛾) ∼
√
3𝛼𝛼𝑇𝑇 ∕(4𝜋𝜋𝜋𝜋) for non-uniform flow. For both the mixing width and flux, the theoret-

ical development is consistent with the numerical results for x. The openFoam C++/python codes for running the 
simulations and plotting validation figures are available in the online repository Zenodo (Rousseau et al., 2023).

Appendix B:  Transparency of Fluorinated Ethylene Propylene (FEP) Grains
The Fluorinated Ethylene Propylene (FEP 100 X, Chemours ⓒ) is a translucid plastic which has the advantage to 
have a index of refraction (1.34) close to water (1.33). Since the FEP grains are not totally transparent for blue 
and green wavelengths (Figure B1a), we investigated how much each depth contributes to the image intensity. 
We investigate (a) how far the blue excitation wavelengths penetrate into the media and (b) how much green light 
reemitted by the fluorescein reached the camera (Figure B1b). To obtain these, we measured (a) the transparency 
of FEP to the blue backlight, (b) the transparency of FEP to the green light emitted from fluorescein, and (c) 
the transparency of fluorescein sodium salt solution to blue backlight. For (a) and (b), we placed different depth 
of the packed FEP (0, 2, 4, 6, 8, 12 mm) above the backlight (or above the illuminated fluorescein). The image 
intensities (normalized by the image intensity of 0 mm FEP depth) can be obtained as a function of FEP depth 
as IF,b(xi) and IF,f(xi) for packed FEP above the backlight and illuminated fluorescein, respectively, where xi is 
the depth of the FEP (x1 = 0 mm and x6 = 12 mm). For 3), we placed different depth of fluorescein sodium salt 
solutions (0, 2, 4, 6, 8, 12 mm) above the backlight, which gave the normalized image intensity If,b(xi), where xi is 
the depth of the fluorescein sodium salt solution (x1 = 0 mm and x6 = 12 mm). The backlight reaches at certain 
depth (Ib(xj)) can be calculated by considering the transparency of FEP and fluorescein solution to the backlight, 
and the porosity of the packed FEP ϕ = 0.373 as:

𝐼𝐼𝑏𝑏(𝑥𝑥𝑗𝑗) = 𝐼𝐼𝑏𝑏(𝑥𝑥𝑗𝑗−1) + (𝐼𝐼𝐹𝐹 𝐹𝐹𝐹(𝑥𝑥𝑗𝑗) − 𝐼𝐼𝐹𝐹 𝐹𝐹𝐹(𝑥𝑥𝑗𝑗−1)) + 𝜙𝜙 × (𝐼𝐼𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑗𝑗) − 𝐼𝐼𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑗𝑗−1))� (B1)

where x1 corresponds to the bottom (0 mm depth) and we set Ib(x1) as 1. The decrease of the light intensity emitted 
by the fluorescein as a function of FEP depth is IF,f(xi). Therefore, the contribution to the image intensity from a 
certain depth Ic(xj) is given by multiplying the backlight reached at certain depth and the decrease of the emitted 
light intensity as:

𝐼𝐼𝑐𝑐(𝑥𝑥𝑗𝑗) = 𝐼𝐼𝑏𝑏(𝑥𝑥𝑗𝑗) × 𝐼𝐼𝐹𝐹 𝐹𝐹𝐹 (𝑥𝑥7−𝑖𝑖)� (B2)

Figure A2.  Normalized flux as a function of x at the mixing front interface width at y = 0 is plotted based on simulations at different flow conditions against the 
theoretical J expression as provided in Equations 11 and 24. Note that u(x, y = 0) = U for uniform conditions and u(x, y = 0) = γx for non-uniform conditions.

 19447973, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035848 by C

ochrane France, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

ROUSSEAU ET AL.

10.1029/2023WR035848

12 of 14

The results show that the Ic takes maximum at certain depth (Figrue B1c). Nevertheless, maximum Ic and mini-
mum Ic differs only by a factor two, which suggests that the image captured the mixing in entire depth even 
though the FEP grains are not perfectly transparent.

Appendix C:  Concentration and Light Intensity
Figure C1 shows the example of the relationship between the concentration of the fluorescein sodium salt and the 
image intensity at the saddle flow cell packed with FEP grains (average in 282 × 282 pixels). The result shows the 
linear relationship between the normalized concentration of the fluorescein sodium salt Cnorm,calib = (C − Cmin)/
(Cmax − Cmin), where Cmin is 0 g/L, and Cmax is 12.5 mg/L of the fluorescein sodium salt, and the normalized 
intensity of the emitted light (received light) Iemit = (I − Imin)/(Imax − Imin), where I is the image intensity, Imin is the 
image intensity at 0 g/L, and Imax is the image intensity at 12.5 g/L the of fluorescein sodium salt.

Data Availability Statement
All experimental images and the OpenFoam solver are available on the online repository Zenodo (Rousseau 
et al., 2023).

Figure B1.  (a) Fluorinated Ethylene Propylene grains. The black line indicates 10 mm. (b) Schematic illustration of the emission of the light from fluorescein solution 
at a certain depth in a semi-transparent media. (c) Normalized received light intensity as a function of FEP packing thickness.

Figure C1.  Normalized emitted light intensity as a function of normalized concentration.
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