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Abstract

Micromechanical resonators are crucial components of various sensing de-
vices, and their performance is limited by different sources of damping. In
this work, we investigate so-called anchor losses, where energy is lost due to
the propagation of elastic waves from the resonator to the elastic substrate.
These type of losses are a dominant source of damping for MEMS devices
in vacuum. There are several existing analytical and numerical studies to
estimate the quality factor of slendered, isotropic beams. In our approach,
we go one step beyond and design a finite-element model to investigate the
behavior of anchor losses for higher-order modes of rectangular shaped plate-
resonators. Additionally, we show that the anchor loss related quality factor
(and thus the energy loss to the environment) for two-dimensional modes is
affected by interference phenomena in the substrate, which results in a mod-
ulation of the quality factor by up to two orders of magnitude with varying
plate width. To validate our results, we design and fabricate plate resonators
with different widths, measure their quality factors using laser-doppler vi-
brometry and compare them to the numerical estimations. The measured
quality factors are in good agreement with the numerical values.

i



Deutsche Kurzfassung

Mikromechanische Resonatoren spielen eine entscheidende Rolle beim Design
verschiedenster Sensoren. Die fundamentalen Leistungsgrenzen dieser Sen-
soren sind im Allgemeinen durch verschiedene Dämpfungseffekte bestimmt.
Diese Arbeit konzentriert sich auf sogenannte Anchor Losses, bei denen En-
ergie durch die Ausbreitung elastischer Wellen vom Resonator in die Umge-
bung verloren geht. Diese Art von Verlusten ist ein dominierender Fak-
tor für MEMS-Sensoren in Vakuum. Mehrere analytische und numerische
Studien beschäftigen sich mit der Abschätzung des Gütefaktors schmaler,
isotroper Balken. Die vorliegende Arbeit geht einen Schritt weiter, und ver-
sucht das Verhalten von Ankerverlusten für Moden höherer Ordnung von
Plattenresonatoren zu beschreiben. Darüber hinaus wird gezeigt, dass der
mit dem Ankerverlust verbundene Gütefaktor (und damit der Energieverlust
in die Umgebung) für bestimmte zweidimensionale Moden durch Interferen-
zeffekten im Substrat beeinflusst wird. Zum Validieren der numerischen Re-
sultate wurden unterschiedlichste Designs von Plattenresonatoren entworfen
und gefertigt. Der jeweilige Gütefaktor wurden dann unter Verwendung von
Laser-Doppler-Vibrometrie bestimmt und mit den numerischen Ergebnissen
verglichen. Die experimentellen Ergebnisse zeigen Variationen des Quality
Factors in ähnlicher Größenordnung wie von den numerischen Ergebnissen
vorhergesagt.
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1. Introduction

Resonant micro-sensors and micro-actuators, based on microelectromechanical systems
(MEMS) technology, are a recent success story which paved the way for a wide range of
applications, e.g. atomic force microscopy [1], energy harvesting [2], viscosity sensors [3]
and micro-fluidic-pumps [4].

A key performance aspect of any sensor (macro and micro) is its sensitivity, which de-
termines the minimum detectable signal. From the fluctuation-dissipation theorem1, we
know that the mechanisms that give rise to noise (fluctuation) in any continuous system
in thermal equilibrium are linked to dissipation mechanisms. Dissipation mechanisms
directly influence the usability of micromechanical resonators for sensing devices or other
applications.

For resonating MEMS devices, the most dominant loss mechanisms are losses to the
surrounding medium (acoustic and viscous losses), surface losses, intrinsic material losses,
thermoelastic damping (TED) losses and anchor losses [6]. The damping is quantified
by the quality factor Q, which is defined by dividing the energy stored in the system by
the energy dissipated per vibration cycle:

Q = 2π · Estored

ΔW
(1)

When a resonating system is excited in the linear regime (which is usually the case
for small amplitudes), it can be approximated by a harmonic oscillator. Using this
simplification, the quality factor can be identified in the harmonic oscillator’s equation
of motion (see Appendix A.2):

Q =
1

2ζ
(2)

ζ is the damping ratio of the oscillator, and is related to the spring constant k, the
damping constant c and the oscillating mass m by the following expression:

ζ =
c

2
√
mk

(3)

Using this approximation, Q is inversely proportional to the width of the resonance peak
and enables the estimation of the quality factor by measuring the resonance bandwidth
of a vibrational mode. For resonators used in sensor- or filter applications, high quality
factors are usually desired, as a high quality factor increases the signal-to-noise ratio
(SNR)2. The total quality factor Qtot of a system can be determined by adding up the
reciprocal quality factors of the individual loss mechanisms [6]:

1Fluctuation-Dissipation-Theorem: For every process that dissipates energy, there is a reverse process
related to thermal fluctuations. First described by Einstein in 1905 [5].

2The quality factor of a resonating system is inversely proportional to its phase noise. This is described
by Leeson’s equation [7].
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1

Qtot
=

1

Qmedium
+

1

Qclamping
+

1

Qintrinsic
+

1

Qother
(4)

For MEMS resonators placed in vacuum, medium losses do not exist and other loss
mechanisms dominate. The thickness of micromechanical resonators typically ranges
from 1 µm to 50 µm. In this range, anchor- [2] and thermoelastic losses dominate over
surface and material losses, so the total energy loss is mostly a combination of anchor
and TED losses [6]. Understanding and minimizing TED and anchor losses in MEMS
is an area of intense research. There have been several analytical [8] [9], and numerical
studies [10] [11] on the effects of anchor losses for slender and isotropic beam resonators.
In this work, we extend this analysis to the effects of 2D-modes3 of plate resonators. As
the shape of these modes can form very complex patterns, the local force distribution in
the anchor is also much more complex than for 1D-modes of beam resonators. This is
illustrated in Figure 1, where the stress distribution in the anchor is shown for a beam
resonator vibrating in its first bending mode, and a plate resonator vibrating in a higher
order plate mode.

(a) beam resonator, 1D mode (b) plate resonator, 2D mode

Figure 1: Illustration of the stress distribution in the anchor for two different resonators.
The resonators are attached to the edge of a substrate, which is acting as a sink
for elastic wave energy. The stress level is especially high at the intersection
between resonator and substrate, and declines with increasing distance from
the resonator. Dependent on the vibrational mode, complex stress patterns are
formed in the anchor region. (a) long, slender beam resonator vibrating in its
fundamental bending mode. (b) plate resonator vibrating in a 2D plate-mode.
Colors are not to scale.

A novel approach to reduce anchor losses are phononic crystals [12]. A phononic crystal
exhibits a periodic pattern of holes. For specific arrangements of these holes, the acoustic
band diagram features band gaps, i.e. elastic waves with frequencies inside the band gap
cannot propagate through the phononic crystal. This band gap allows the use of phononic
band gaps to block the energy flow through the anchor region.

32D-modes are modes with a two-dimensional displacement distribution, which can be observed in
planar structures like plates or membranes.
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We propose an alternative approach to the use of phononic crystals, which does not
require constructive changes to the resonator or substrate by utilizing intrinsic properties
of the system:

The anchor region of a plate resonator vibrating in a 2D plate-mode can be seen as a
continuous distribution of point-sources of elastic energy. The mechanical waves which
are emitted by these sources interfere with each other in the substrate. Depending on the
distance between the individual sources, and their phase, this can lead to an increase or
decrease of the total energy which is lost to the substrate. The mode order, and thus the
number of nodal lines4 corresponds to the number of sources of elastic energy, while the
width of the resonator corresponds to the distance between the individual sources. The
change in energy loss, and therefore the quality factor, should be especially significant
when the distance between two sources is getting in the same order of magnitude as the
dominating wavelength of the substrate wave field.

This approach is based on observations by Kähler et al [13], who described a similar
effect in silicon micro-pillars. Figure 2 illustrates this analogy, where (a) shows the pillar
resonators mentioned above, and (b) shows a plate resonator vibrating in its first torsional
mode. The colors correspond to positive or negative displacement of the resonator in
"vertical" direction. If this effect can be verified in plate resonators, it could possibly be
utilized to control the quality factor for resonators dominated by anchor losses.

(a) pillar resonators (b) plate resonator, 1:1 mode

Figure 2: Analogy between two pillar resonators and a plate resonator vibrating in its
first torsional mode.

Goal In this work, we model plate resonators of various sizes numerically, with a focus
on the behavior of anchor losses for 2D plate-modes. A major goal is to investigate how
the local force distribution at the anchor effects the dissipation of energy to the substrate.
We also expect a modulation of the quality factor with varying plate width for specific
2D plate-modes. In addition, we design an experiment to validate our numerical results.

4Nodal lines are zones with no displacement.
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2. Anchor Losses

For vibrating microstructures in vacuum, a major source of loss are so-called anchor- or
support losses, where elastic energy is radiated out through the intersection between the
resonator and the substrate/chip, which is called the anchor . This mechanism is illus-
trated in Figure 3, where a plate resonator is attached to the edge of a substrate, which
is large in comparison to the resonator dimensions. 3a shows the resonator vibrating in
its first bending mode and 3b shows the first torsional mode. The color corresponds to
the magnitude of total displacement. We can see, that the torsional mode causes a com-
pletely different displacement pattern in the substrate than the bending mode, forming
two distinct side-lobes.

(a) fundamental bending mode (b) fundamental torsional mode

Figure 3: Magnitude of total displacement for the first bending- and the first torsional
mode of a cantilevered plate resonator. The directional characteristic of the
displacement is clearly visible. Colors are not to scale.

2.1. Analytical Models

There have been several attempts to derive analytical estimates for the quality factor
of a beam shaped microstructure. These models have been proven to deliver estimates
consistent with both numerical and experimental results for the fundamental flexural
modes of isotropic, beam shaped resonators. There are no analytical models to predict
the anchor-loss related quality factor for thin plates which are vibrating in higher order
modes.

For an isotropic beam, attached to a semi-infinite substrate and vibrating in its first
flexural mode, Judge et al. proposed the following analytical estimation for the quality
factor [8]:

Qanchor
−1 = A

w

l

t

l

4

, (5)

where the symbols l, w and t denote the length, width and thickness of the cantilever.
The numerical coefficient A is a function of Poisson’s ratio ν and is 0.29 for ν = 0.22. It
is important to note that different sized beams sharing the same aspect ratio, also have
the same anchor-loss related quality factor.

This estimation agrees well with experiments for slender cantilevers attached to a
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semi-infinite substrate (Figure 4a) [8]. However, it is not suited for geometries where the
cantilever is attached on the top of a substrate chip as it is common for many applications
like AFM cantilevers (Figure 4b).

(a) Beam attached to the substrate bulk. (b) Beam attached to the substrate edge.

Figure 4: Different cantilever placement on the substrate.

Another estimation has been derived by Wilson-Rae [9], which is based on the tunneling
of phonons between the beam and the substrate. For out-of-plane bending modes, the
quality factor can be approximated by

Q =
3.9

π4 δ Cn

l5

w t4
3π

2 kn l

4

, (6)

where kn are solutions of the equation cos(knl) cosh(knl) = −1. The parameter δ cor-
responds to the number of supports, e.g. 1 for a cantilevered beam, 2 for a bridge
configuration. The constant Cn can be obtained as follows

Cn = tanh2
knl

2

(−1)(n−1)

. (7)

This estimation is known to work well for isotropic beams with very high aspect ratios
(w/l → 0), and can be generalized to longitudinal modes, as well as torsional modes of
any mode order.

2.2. Numerical Approaches

While analytical methods often yield results close to reality for simple problems, they
typically rely on a high level of simplification and do not generalize well to complex
geometries. A commonly used numerical method to solve partial differential equations
(PDEs) for arbitrary geometries is the finite element method (FEM) [14] [15], where the
simulation space is subdivided into discrete smaller parts, the so-called finite elements.
The finite elements are arranged in the mesh of the object, which represents a numerical
domain of the solution. FEM is widely used in the scientific- and engineering space,
as there are several commercial software frameworks available which wrap finite-element
solvers in relatively easy to use CAD interfaces.

There are various examples in the literature [10] [11] where the anchor-loss related
quality factor has been calculated for micromechanical devices using the finite-element
method. A commonly used approach to conquer open domain problems is to embed a
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finite substrate region into a so called perfectly matched layer (PML). This layer absorbs
impinging elastic waves, using a complex coordinate transformation which can be seen as
a form of impedance matching. The method was first developed by Berenger et al. [16],
to solve open domain problems for the propagation of electromagnetic waves. The PML
method is also suitable to investigate the propagation of elastic waves [17], and is therefore
also used in our finite-element model, which is introduced in section 2.3.

Numerical studies by Frangi et al. [10] and Chen et al. [11] focus on the estimation of
quality factors for the fundamental vibrational modes of slender and isotropic beams, and
the validation of their results against well known analytical models like the ones by Judge
(Eq. 5) or Wilson-Rae (Eq. 6). There are no studies on the behavior of the anchor-loss
related quality factor of micromechanical resonators vibrating in non-fundamental modes
of higher order.

2.3. Finite Element Model

To conduct the finite-element simulations, we use the FEM framework COMSOL Mul-
tiphysics 5.5. The devices of interest are plates with rectangular cross-section and are
attached to a bulk substrate. The resonator and the substrate are both modeled as
linear elastic material. To prevent the reflection of elastic waves on the edges of the
substrate chip, a PML is placed around the substrate region. As sharp corners and edges
on the substrate can impede the wave attenuating mechanism of the PML, the substrate
is formed as a quarter of a sphere.

The substrate radius is set to two times λSAW, which is the expected wavelength of a
surface acoustic wave, and is calculated by

λSAW =
v

f0
, (8)

where v denotes the phase velocity (estimated 5092 m/s [13]) and f0 is the natural
frequency of the mode of interest. A substrate radius below two times λSAW leads to a
worsened convergence of the solver. We will later use the top surface of the substrate
as a "screen" to observe elastic wave propagation and possible interference patterns (see
section 3.2). The PML thickness is set to at least λSAW, which will be addressed later
in Section 2.3.1. Fluid damping should be ignored in this study and the surrounding
environment is modeled as vacuum.
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Figure 5: Rectangular cantilever attached to a quarter-spherical substrate with PML
domain.

The mesh of the model can be seen in Figure 6. The cantilever top surface is meshed
using free triangular elements, with a maximum element size of 2.5 % of the cantilever
width. The top mesh is swept to the cantilever bottom, using a fixed number of three
elements. The substrate is meshed using free tetrahedral elements, where the maximum
element size is set to λSAW/2. The quarter-spherical PML domain which is "coating"
the substrate is meshed using a concentric swept-mesh. The number of elements in the
PML is calculated by multiplying the parameters SPML and MPML, which are explained
in Section 2.3.1.

To keep the model solvable in reasonable time on a local machine, it has been designed
such that the degrees of freedom are not exceeding one million. When changing geometric
parameters of the cantilever and the substrate, we checked that the average skewness5

element quality indicator is not exceeding 0.25.

5Skewness indicates how close to equiangular a mesh cell is. Large skewness can compromise the
accuracy of the interpolated domains. A equiangular mesh cell has a skewness of 0 which is therefore
the optimal value.

7



(a) cantilever mesh

(b) complete mesh

Figure 6: Meshing of the anchor-loss model. The cantilever top surface is meshed with
free triangular elements, which are then swept over the cantilever thickness.
The substrate is meshed using free tetrahedral elements. The PML (highlighted
in blue) is meshed using a concentric swept-mesh.

To determine the natural frequencies and mode shapes of the system, a standard eigenfre-
quency analysis has been used. Since the substrate radius is dependent on the wavelength
and thus on the frequency of vibration, the substrate radius has to be adapted for each
mode of interest. This is done by running an eigenfrequency study on a smaller model,
where the plate resonator without a substrate is set to a fixed constraint on one end.
The wavelength λSAW can be calculated and the full model (including a substrate- and
PML domain) is modified for the expected mode of interest.

In COMSOL, the quality factor is determined from the expression

Q =
Re(f0)

2 Im(f0)
, (9)

where f0 denotes the complex eigenfrequency which is determined numerically in an
eigenmode analysis. Any damping in the system leads to a larger imaginary part in the
eigenfrequency analysis. As the only source of damping in this system is the energy which
gets dissipated in the PML, the quality factor is purely determined by anchor losses. It
has been shown, that for systems that can be approximated by a 1D-spring-mass model,
Eq. 9 gives very similar results as Eq. 1 [10].
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2.3.1. PML Tuning and Model Stability

The mechanism of how the PML is absorbing impinging elastic waves can be tuned, using
the following parameters6:

• The PML thickness TPML is referring to the physical thickness of the PML shell.
To ensure sufficient absorption, the PML should be at least as thick as the longest
wavelength in the wave field.

• The typical wavelength λtyp of the PML is the longest wavelength of propagating
waves which are absorbed by the PML and is inversely proportional to the fre-
quency. In our model, the typical wavelength is set to c/fsys, where c is the phase
velocity of the longest expected SAW wavelength. fsys is the expected natural
frequency of the mode of interest.

• The PML scaling factor SPML is multiplied with the typical wavelength to improve
the effective absorption for waves which are impinging at an angle θ relative to the
PML boundary normal. This is necessary as the path length through the PML is
increased for higher angles.

• The PML curvature CPML can be used to remesh the PML domain. Increasing this
parameter moves available mesh elements towards the substrate/PML boundary,
and can be necessary when the wave field contains a mix of different wavelengths.
As the elastic waves which are travelling through the substrate are expected to
have a very narrow frequency range, which corresponds to the resonance frequency
of the mode of interest, CPML is set to one (1).

• The PML mesh density MPML is a linear scaling parameter which increases the
number of mesh elements in the PML domain.

The PML approximates an infinite substrate that absorbes all wave energy without
significant reflection. To check the effectiveness of the PML implementation, we model a
rectangular beam (L×W ×T = 125×40×6.25 µm), which corresponds to the geometry
of a Bruker AFM-Cantilever RTESPA-5257. The natural frequency of the first bending
mode is 511 kHz and the anchor loss related quality factor is close to 400 000.

To monitor stability and convergence of the model, we perform sweeps of the pa-
rameters TPML, SPML and MPML around their default values (TPML

(default) = λtyp,
SPML

(default) = 1, MPML
(default) = 12), while keeping the other parameters constant.

The dependency of the quality factors on the PML parameters are shown in the figures
7 to 9. The quality factor shows a very stable behavior close to and above the default
values for all three parameters. The model becomes unstable for values of SPML below
0.3 and values of TPML below 8.

6https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
7https://www.brukerafmprobes.com/p-3915-rtespa-525.aspx
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Figure 7: Dependence of Q on TPML, normalized to the longest expected wavelength.
The red vertical line indicates the default value of TPML.

Figure 8: Dependence of Q on SPML. The red vertical line indicates the default value of
SPML.
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Figure 9: Dependence of Q on TPML. The red vertical line indicates the default value of
MPML.

2.3.2. Model Validation

To validate our simulation results for the quality factor, we use the model by Judge et al
(Eq. 5). As this estimation does not take into account any anisotropic effects or wafer
orientation, we use polycrystalline silicon as material for our numerical simulations:

Density ρ 2320 kg/m3

Young’s Modulus E 169 GPa
Poisson’s ratio ν 0.22

Table 1: Material properties of polycrystalline silicon.

As described in section 2.1, Judge’s formula estimates the quality factor for a cantilever
attached to a semi-infinite substrate. This case is represented by the model in Figure 10a,
where the semi-infinite substrate is approximated by a hemispherical PML configuration.
Resonators for sensing applications (e.g. atomic force microscopy) are often placed with
their top surface flush with the substrate surface (Figure 10b). This configuration is used
for most of the simulations in this work, but is expected to show less agreement with the
analytical estimation by Judge.

11



(a) cantilever attached to the center of
a half-spherical substrate

(b) cantilever attached to the edge of a quarter-spherical
substrate

Figure 10: Different cantilever placement on the substrate. While (a) approximates a
semi-infinite substrate, (b) approximates a cantilever attachment more similar
to common real world applications like AFM cantilevers.

To validate the finite element model, the quality factor for the fundamental bending
mode has been calculated for different cantilever geometries. The different resonator
geometries cover different size regimes (L, M, S) and different aspect ratios (4 - long
plate, 1 - square plate, 0.25 - wide plate). The dimensions of the M resonators are one
fourth the dimensions of the L resonators, and the dimensions of the S resonators are
again one fourth the dimensions of the M resonators.

Resonator Length [µm] Width [µm] Thickness [µm]
L4 800 200 10
L1 400 400 10
L0.25 200 800 10
M4 200 50 2.5
M1 100 100 2.5
M0.25 50 200 2.5
S4 50 12.5 0.625
S1 25 25 0.625
S0.25 12.5 50 0.625

Table 2: Different resonator geometries to validate the anchor loss model.

The validation results can be seen in Figure 11 and Table 3, respectively.
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Figure 11: Model validation using Judge’s formula. QFEM,Half is referring to the configu-
ration shown in Figure 10a, and QFEM,Quarter is referring to the configuration
shown in Figure 10b. The corresponding values for the quality factor can be
seen in Table 3.

Resonator f0 [kHz] QJudge QHalf rel. diff. [%] QQuarter rel. diff. [%]
L4 21.5 564 965 517 494 631 700 14.22 124 451 070 353.97
L1 87.7 8 827 586 7 557 169 16.81 1 918 181 360.21
L0.25 352.0 137 931 116 988 17.9 30 139 357.65
M4 86.88 564 965 517 494 321 248 14.29 124 451 050 353.97
M1 350 8 827 586 7 555 516 16.84 1 920 141 359.74
M0.25 1 412 137 931 117 048 17.84 30 233 356.23
S4 347 564 965 517 494 484 590 14.25 124 493 300 353.81
S1 1 403 8 827 586 7 557 942 16.8 1 920 408 359.67
S0.25 5 650 137 931 117 123 17.77 30 233 356.23

Table 3: Quality factors for nine different resonators. f0 denotes the resonance frequency
of the first bending mode. QQuarter and QHalf are referring to the two configu-
rations shown in Figure 10.

The configuration approximating a semi-infinite substrate shows a better agreement
with the analytical estimation. Long, slender plates have higher quality factors than
short, wide plates. As also notable in the analytic formula (Eq. 5), resonators with the
same aspect ratio have also very similar quality factors. The good agreement between
analytical model and numerical results validates the numerical model for a wide range
of planar structures (plates and beams).

In Figure 12, we can see an illustration of the dependency of Q on geometric parameters
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in Judge’s estimation. Starting with a resonator geometry of 200 × 200 × 10 µm, each
parameter is varied over a certain range. The quality factor is increasing with rising
resonator length, and decreasing with both rising width and thickness. The length of the
plate has the greatest influence on the quality factor, followed by the thickness. This is
also visible in Eq. 5, as the quality factor is proportional to l5 and t−4.

Figure 12: Quality factor estimation by Judge (Eq. 5), for a numerical sweep over length,
width and thickness. Starting point is a 200× 200× 10 µm plate resonator.
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3. Vibrational Modes Beyond One Dimension

3.1. Vibrational Modes of Plates

The fundamental bending modes of long, slender beams can be described by the Euler-
Bernoulli beam theory (see Appendix A.1), and the dynamics of such a beam can be
approximated by a lumped-element model of the harmonic oscillator (see Appendix A.2).

As plate resonators have a higher number of spatial degrees of freedom than 1D-
cantilevers, there is also a higher number of possibilities how mode shapes are formed.
Figure 13 shows different mode shapes for a rectangular plate. A common convention is
to distinguish different modes by their number of nodal lines perpendicular and parallel
to the attachment point. The fundamental bending mode is identified by 1:0, the second
bending mode by 2:0, the fundamental torsional mode by 1:1, and so on. This is known
as Leissa nomenclature [18]. Not all modes can identified by this convention, as some
modes do not have straight nodal lines and have therefore a more complex shape.

(a) 1:0 (b) 2:0 (c) 3:0

(d) 1:1 (e) 2:2 (f) complex shaped

Figure 13: Displacement mode shapes for a thin, rectangular plate. Red indicates pos-
itive displacement and blue indicates negative displacement (in z-direction).
The nodal lines (displacement = 0) can be used to distinguish the different
modes. However, there are also more complex shaped modes, which can not
be identified using this convention. Colors are not to scale.

A common problem when identifying different modes from their eigenmode shapes is
veering [19]. When geometric parameters (e.g. width, length or thickness) of a resonator
are changed, the frequency changes accordingly. As the rate of change is not necessarily
the same for different modes, there might be some parameter values where the frequency
curves are expected to cross. Close to this intersection point, the modes approach each
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other in frequency, but just before crossing, they "repel each other" in frequency. During
this process, the mode shapes are exchanged in a morphing process. The frequency curves
do not cross, but the mode shapes are switched between the curves.

In this work, the individual modes are identified by their mode shape according to
Leissa’s nomenclature, which is a two-dimensional displacement distribution. As modes
which show only a very small amount of veering are not easy distinguishable from modes
with no veering at all, one has to pay special attention when selecting measurement or
simulation data for post-processing. To avoid that this effect influences the quality factor,
all data points which show significant veering have been removed from the datasets.

Figure 14: Illustration of veering. When two formerly distinct resonance peaks overlap
each other, the modes cannot be easily separated anymore.

3.2. Directional Characteristics of Energy Transportation

In this section, we aim to get a qualitative understanding of the spatial distribution and
directionality of the mechanical energy flux in the substrate. The quality factor of a res-
onator which is limited by anchor losses is inversely proportional to the total mechanical
energy flux Itot which is flowing through the anchor over one period of vibration.

To get the total mechanical energy flux, we calculate the surface integral of the normal
mechanical energy flux over a quarter spherical surface (highlighted in blue in Figure 15):

Itot =
S
Iini dS, (10)

where nj denotes the normal vector to the integration surface. I is the local mechanical
energy flux and is formed by the multiplication of the stress tensor σ and the velocity
vector v [20]:

Ii = −σij · vj (11)
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Figure 15: Illustration of quarter-spherical integration area, where energy leaves the an-
chor domain. The anchor region itself is hidden in this picture. All energy
which is leaving the resonator has to pass through the blue-colored surface.

Figure 16 illustrates the inverse proportional relationship between the total energy flux
and quality factor.

Figure 16: Inverse total net induced flux leaving the anchor region in comparison with
the quality factor for six different modes of a plate resonator (90 × 90 × 1.5
µm). The data shown in this plot has been generated in a numerical study,
using the model introduced in Section 2.3.

In the next step, we investigate the directional characteristics of the local mechanical
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energy flux I for multiple 2D plate modes.
To keep things simple, we focus on modes with a single nodal line parallel to the anchor

and multiple nodal lines perpendicular to the anchor (1:X in Leissa’s nomenclature).
These modes are commonly called roof tile-shaped modes, and the first six are illustrated
in Figure 17.

(a) 1:2 (b) 1:3 (c) 1:4

(d) 1:5 (e) 1:6 (f) 1:7

Figure 17: Roof tile-shaped modes shapes for a thin rectangular plate. Colors are not to
scale.

To get a better understanding of the local effects of these kinds of modes, we look at
the z-component of the displacement on the top surface of the substrate for the modes
1:0 to 1:7 (Figure 18).
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(g) 1:0 (h) 1:1 (i) 1:2 (j) 1:3

(k) 1:4 (l) 1:5 (m) 1:6 (n) 1:7

Figure 18: Z-component of displacement on the top surface of the substrate for different
modes (1:0, 1:1, 1:2, 1:3, 1:4 1:5, 1:6, 1:7). The bottom of each plot represents
the anchor point of the resonator. The resonator itself is not shown. Red
indicates positive displacement, blue indicates negative displacement. Colors
are not to scale.

The displacement field on the substrate surface exhibits a complex dependence on the
x- and y-coordinates. The field is different for each mode, suggesting interactions between
elastic energy waves from different "sources" in the anchor region. The mode order is
therefore a parameter which directly influences the number of sources of elastic energy:

nsources = n+ 1, (12)

where n is the number of nodal lines perpendicular to the anchor point. As these sources
are interfering with each other, characteristic patterns are formed.

Figures 19 to 25 show the displacement magnitude and the normal mechanical energy
flux, which is projected onto the inside of a semi-sphere (r = λSAW) that surrounds the
anchor domain. As the resonance frequency increases with the mode order, the size of
the substrate is decreasing in comparison to the size of the resonator. This is due to the
dependence of the substrate radius on λSAW, which is again dependent on the resonance
frequency (see Eq. 8). All colors are normalized for better visibility and therefore not to
scale.
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(a) Mode Shape (b) Displacement (c) Normal energy flux

Figure 19: Displacement magnitude and normal mechanical energy flux for the 1:0 mode.
Colors are not to scale.

For the fundamental bending mode (1:0), a large part of the energy leaves the anchor
relatively evenly distributed in nearly all directions. Most of the energy is transported
close to the surface. Additionally, there is a visible energy flux lobe pointing down in an
angle of roughly 80◦ from the top surface.

(a) Mode Shape (b) Displacement (c) Normal energy flux

Figure 20: Displacement magnitude and normal mechanical energy flux for the 1:1 mode.
Colors are not to scale.

When observing the displacement distribution of the 1:1 mode (Figure 20), we can clearly
see two distinct sources of energy where the plate is attached to the substrate. In addition,
the mechanical energy flux forms two very prominent side-lobes, and the energy flow
appears to be smaller in positive y-direction.
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(a) Mode Shape (b) Displacement (c) Normal energy flux

Figure 21: Displacement magnitude and normal mechanical energy flux for the 1:2 mode.
Colors are not to scale.

The 1:2 mode in Figure 21 shows a very similar behavior to the 1:0 mode in Figure 19.

(a) Mode Shape (b) Displacement (c) Normal energy flux

Figure 22: Displacement magnitude and normal mechanical energy flux for the 1:3 mode.
Colors are not to scale.

The 1:3 mode in Figure 22 shows a very similar behavior to the 1:1 mode in Figure 20,
and we can again see two very prominent side lobes of the mechanical energy flux. This
could indicate a possible dependency between the energy flux distribution and the mode
order, as both modes feature an odd number of nodal lines in their mode shape.

(a) Mode Shape (b) Displacement (c) Normal energy flux

Figure 23: Displacement magnitude and normal mechanical energy flux for the 1:4 mode.
Colors are not to scale.

For the 1:4 mode in Figure 23, we can see that the majority of the energy flux is split
in two directions. One major part is emitted in a frontal lobe (pos. y-direction) into
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the substrate at roughly 20◦ from the top surface. The other major part is travelling
downwards, close to the front surface.

(a) Mode Shape (b) Displacement (c) Normal energy flux

Figure 24: Displacement magnitude and normal mechanical energy flux for the 1:5 mode.
Colors are not to scale.

The 1:5 mode shows again a very similar behavior as the modes 1:1 and 1:3, which
reinforces our hypothesis that modes with an odd number of nodal lines in their mode
shape feature a similar behavior in their distribution of the mechanical energy flux.

(a) Mode Shape (b) Displacement (c) Normal energy flux

Figure 25: Displacement magnitude and normal mechanical energy flux for the 1:6 mode.
Colors are not to scale.

The normal mechanical energy flux of the 1:6 mode looks similar as the 1:2 mode and
shows a inverted pattern as the 1:4 mode. One part of the energy is transported close to
the top surface, and evenly distributed in all directions. The other part is emitted in a
fairly concentrated lobe downwards, in an angle of roughly 20◦ from the front surface.

In conclusion, all modes featuring an odd number of nodal lines (1:1, 1:3, 1:5) show a
similar behavior regarding the mechanical energy flux, which is divided into two distinct
lobes. The energy flux in forward (positive y) direction is attenuated for these kinds of
modes. The modes with an even number of nodal lines (1:0, 1:2, 1:4, 1:6), show also a
very similar behavior, where the energy flux is split into two distinct parts. One part
is travelling along one of the surfaces, the other part is concentrated in a lobe into the
substrate.

As surface acoustic waves play a major role in various sensing applications, we try to
get a more quantitative understanding of the mechanical energy flux close to the surface.
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We do this by using the top surface of the substrate as a "screen", on which we can
analyze the energy flow on the top surface of the substrate. This is illustrated in Figure
26, where the observation zone is highlighted in blue.

Figure 26: View of the top-surface of the resonator. We use the highlighted area as a
"screen" to observe the behavior of the mechanical energy flux on the surface.
The simulation results can be seen in figures 27 to 34.

The following figures (27 - 34) show the mechanical energy flux on the top surface for
the modes 1:0 to 1:7, as well as the normal mechanical energy flux, which is leaving the
anchor region through circles with different radii. By calculating the projected normal
energy flux through these circles, the directional characteristic of the mechanical energy
flux can be analyzed for different distances from the anchor. Due to the fact that the size
of the substrate is dependent on the expected wavelength, the substrate is again smaller
for higher frequencies.

Figure 27: Mechanical energy flux for the 1:0 fundamental bending mode. The energy
flux normal to the circles can be seen in the right plot (normalized 0-1).

For the 1:0 mode, we can see that most of the energy is radiated uniformly in forward
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direction (20-160◦), at least close to the anchor. With increasing distance, significant
side-lobes are forming at angles of 10-20◦ and 160-170◦.

Figure 28: Mechanical energy flux for the 1:1 torsional mode.

For the 1:1 mode, most of the energy is radiated in the form of two side-lobes below 30 ◦.
The energy flux in forward direction is nearly completely blocked, which leads to a very
prominent "dark field" in 90 ◦ direction. This is also visible in the 3D plots in Figure 20.

Figure 29: Mechanical energy flux for the 1:2 roof tile-shaped mode.

The 1:2 mode shows a very similar pattern to the 1:0 bending mode. A possible explana-
tion for the similarity could be that both modes exhibit a single, relatively large elastic
energy "source" at the center of the anchor region. For the 1:2 mode, the two additional
sources on the side of the plate (marked in red in Figure 29) seem to contribute less to
the overall energy flux in comparison to the central source (marked in blue). This is also
visible in Figure 18i.
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Figure 30: Mechanical energy flux for the 1:3 roof tile-shaped mode.

For a radius greater than one SAW-wavelength, the pattern of the 1:3 mode looks similar
to the 1:1 torsional mode. Below one SAW-wavelength, a characteristic front-lobe is
forming in 70-110◦ direction.

Figure 31: Mechanical energy flux for the 1:4 roof tile-shaped mode.

The 1:4 mode shows an opposite behavior as the 1:3 mode. For distances close to the
anchor, the characteristic side lobes are present, while for higher distances a higher
amount of energy is also emitted in forward direction (50-110◦). The alternating pattern
is likely due to a coarser mesh density at the edge of the geometry, and therefore a
numerical artifact.
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Figure 32: Mechanical energy flux for the 1:5 roof tile-shaped mode.

The 1:5 mode shows again a very similar behavior to the 1:1 torsional mode. For higher
distances from the anchor, it also behaves similar to the 1:3 mode.

Figure 33: Mechanical energy flux for the 1:6 roof tile-shaped mode.

For the 1:6 mode, the majority of the energy radiated in forward direction, forming a
central lobe between 50 and 130 ◦.
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Figure 34: Mechanical energy flux for the 1:7 roof tile-shaped mode.

The 1:7 mode has a similar behavior than the other antisymmetric modes, but the side
lobes are elevated to a higher angle of about 60 and 120 ◦.

In conclusion, the energy flux of the antisymmetric modes (1:1, 1:3, 1:5, 1:7) forms
characteristic side lobes on the top surface, where most energy is radiated in two sym-
metric directions. For these modes, the energy emitted in frontal direction is relatively
low. Symmetric modes (1:0, 1:2, 1:4, 1:6) show a more evenly distributed pattern which
specific form is highly dependent on the distance from the anchor. This very distinct be-
havior of the energy flux of symmetric and antisymmetric modes can also be observed in
the 3D representation (see figures 19 to 25). For the 1:6 mode, the energy flux on the top
surface behaves different to all other modes, as it radiates most energy in a concentrated
frontal lobe.

3.3. Anchor Loss Modulation for 2D-Modes

As we have stated in the introduction (see Section 1), we now want to examine if the
anchor-loss related quality factor shows modulations dependent on the width of the plate
(and therefore the separation distance of the sources of elastic energy). The following
figures show simulation results for the FEM model introduced in Section 2.3, where the
quality factor is dependent on the width of the plate.

Different vibrational modes are compared for a (90×50−300×1.5 µm) plate resonator.
First, we have a look at the behavior of flexural bending modes, which are presented in
Figure 35.
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Figure 35: Quality factor dependent on cantilever width for flexural bending modes of a
90× 50− 300× 1.5 µm plate resonator.

The first four flexural bending modes show a declining trend for the quality factor
with increasing plate-width. No oscillations are visible, which is plausible as bending
modes have no nodal lines perpendicular to the anchor, so there is just a single "source"
emitting energy to the substrate. Figure 36 shows the first three torsional modes, which
have a single central nodal line along the cantilever and perpendicular to the anchor:

Figure 36: Quality factor dependent on cantilever width for torsional modes of a 90 ×
50− 300× 1.5 µm plate resonator.

We see a similar pattern as for the bending modes, with the only difference for the 3:1
mode, which has a maximum in the Q factor at about 70 µm before it decreases similarly
as the previous modes, with a decline rate of about 10−5600x.

In Figure 18, we have shown that the number of sources of elastic energy is directly tied
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to the number of nodal lines touching the anchor. As interference effects are expected
to influence the quality factor for an increasing number of sources, it would make sense
to investigate modes with a higher number of nodal lines touching the anchor. To keep
things simple, we will again focus on roof tile-shaped modes.

Figure 37 shows the width dependent quality factor for the roof tile-shaped modes 1:3
to 1:6.

Figure 37: Quality factor dependent on cantilever width for roof tile-shaped modes of a
90x50-300x1.5 µm plate resonator.

For this selection of modes, we see an alternating pattern where the quality factor
is oscillating over several order of magnitudes. A rising number of "sources" (which
corresponds to the number of nodal lines touching the anchor) increases the total number
of maxima and minima of the Q-factor. This is a significant difference to the behavior
of the quality factor for bending- and torsional modes.

We will now have a deeper look at the width-dependent quality factor of roof tile-
shaped modes. Figure 38 shows the quality factor dependent on cantilever width for a
plate resonator (L = 90 µm, T = 1.5 µm), for the modes 1:1 to 1:6. The width is again
altered from 50 to 300 µm.
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Figure 38: Quality factor dependent on cantilever width for a plate resonator (L = 90
µm, T = 1.5 µm), for the modes 1:1 to 1:6.

The quality factor shows oscillations spanning over several order of magnitude in am-
plitude, with a general trend to higher quality factors with increasing plate width. The
number of oscillations is clearly related to the mode order and thus to the number of
nodal lines which correspond to the number of elastic energy sources.

To get a better understanding of this effect, Figure 39 shows the same data, but the
width is normalized by the estimated SAW wavelength in the substrate λSAW.
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Figure 39: Quality factor dependent on cantilever width normalized to wavelength for a
plate resonator (L = 90 µm, T = 1.5 µm), for the modes 1:1 to 1:6.

We see that the period length of the oscillations in the quality factor decreases for higher
mode orders, while the ratio between plate width and substrate wavelength approach in
the same order of magnitude. This phenomenon is especially visible when comparing the
1:6 mode to the modes 1:2 and 1:4. A similar behavior for different modes indicates that
the same mechanism is present for all modes.

The alternating pattern also reinforces our hypothesis (see Section 1) that interference
effects in the substrate could possibly be utilized to gain control over the quality factor,
and therefore the performance characteristics of a resonator dominated by anchor losses.
As a next step, we will try to validate our findings experimentally. The process of
designing a suitable resonator and experimental validation of the simulation results is
presented in the following sections.

4. Device Design and Fabrication

In Section 3.3, we have shown that the quality factor of specific 2D modes of plate
resonators is modulated by an oscillating pattern, dependent on the width of the plate.
In the following section, we describe the design process of a resonator to validate the
numerical anchor loss modulation results experimentally.
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4.1. Thermoelastic Limit for Experiment Design

Thermoelastic damping (TED) is also a significant loss mechanism that needs to be taken
into account. In this work, TED is mostly investigated for the reason of later experiment
design, as it can inflict a limit on the measurability of the anchor loss related quality
factor. The reason is that the total quality factor of a system is calculated by adding up
the reciprocal quality factors of the individual loss mechanisms. In our simulations, we
assume, that the only loss mechanisms are anchor losses and TED, which simplifies Eq.
4 to:

1

Qtot
=

1

Qanchor
+

1

QTED
(13)

When thermoelastic losses dominate, changes in Qanchor are harder to see. For this
reason, it is crucial that Qanchor is lower, or at least not higher by orders of magnitude,
than QTED.

The following pages cover the design and validation of the finite element model for
thermoelastic damping. In contrast to the model for anchor loss simulations, the model
for thermoelastic damping does not comprise a substrate or PML. The cantilever is fixed
on one end, and at this intersection, the temperature is set to room temperature. This
ensures that generated heat can leave the cantilever domain at the attachment point. The
remaining surfaces of the cantilever are modeled as thermal insulators, which emulates the
effect of vacuum and assumes no heat radiation. To simulate the effect of thermoelastic
damping, the Solid Mechanics module has been coupled with the Heat Transfer in Solids
module, using the multiphysics interface.

To validate the thermoelastic model, the same resonator geometries as in Table 2 have
been studied. The resonator material is again polycrystalline silicon, and the ambient
temperature is set to room temperature. The quality factors of the mechanical modes
have been calculated using the previously introduced finite element model, and are being
compared to the analytical estimation by Roszhart [36].

The results are presented in Table 4 and Figure 40. As we can see, smaller resonators
feature higher quality factors for the same aspect ratio. When comparing cantilevers in
the same size domain, the quality factor is higher for long, slender plates than for short
but wide plates. Interestingly, the relative error is generally small, but higher for long,
slender beams. This is unexpected, as Roszhart’s estimation has been derived exclusively
for slender geometries.
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Table 4: Quality factors for thermoelastic damping in comparison with analytical esti-
mation by Roszhart.

Resonator f0 [kHz] QRoszhart QFEM rel. diff. [%]
L1 20.9 78657 122251 35.66
L2 83.8 20487 25459 19.53
L3 347.4 9928 7520 32.02
M1 83.2 310279 488412 36.47
M2 344.7 77320 99622 22.39
M3 1382.8 20375 22626 9.94
S1 344.3 1242680 1950662 36.29
S2 1378.9 307423 397996 22.76
S3 5531.4 76641 88718 13.61

Figure 40: TED model validation using Roszhart’s formula 36. The ambient temperature
is set to 293.15 K.

4.2. Resonator Design Process

There are two major limitations which have to be considered when designing the devices
for experiments:

1. The specifications and limitations of the measurement setup, especially the maxi-
mum measureable frequency.

2. The limit, at which the thermoelastic losses dominate over the anchor losses.

To determine the quality factor, we use a laser-doppler vibrometer (LDV) in combination
with a lock-in amplifier (see section 5.1 for details). The highest measurable frequency
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of vibration of the LDV is 24 MHz8, so the maximum frequency for the highest mode
of interest must be below that threshold. In addition, Qanchor should be smaller than
QTED, such that the measured total quality factor Qtot is dominated by anchor losses.

Figure 41 shows FEM simulation results of quality factors for the 1:6 mode of a plate
resonator out of polycrystalline silicon with the following dimensions: L × W × H =
90 × 90 − 300 × 1.5 µm. The resonance frequencies for this plate are well below the
maximum frequency of the measurement setup, but the quality factor is dominated by
thermoelastic damping.

Figure 41: Quality factors for the 1:6 mode of a rectangular plate (L × W × H = 90 ×
90− 300× 1.5 µm). QTED is clearly dominating the total quality factor.

The analytical estimation by Roszhart (see Appendix A.4) suggests that the choice
of the thickness of the plate has a major impact on QTED. Figure 42, shows QTED as
a function of plate thickness. As it can be observed, an increase in plate thickness can
either increase or decrease the quality factor for a specific mode of interest. This is due
to the frequency dependence of the thermoelastic damping.

8The frequency limit of 24 MHz is set by the DD-300 displacement decoder, which is a part of the
MSA-500 LDV.
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Figure 42: QTED as a function plate thickness for different modes. The red line shows
the analytical estimation by Roszhart for the 1:0 mode for comparison.

As we are especially interested in roof tile-shaped modes of higher mode order, the
model suggests increasing the plate thickness to increase the quality factor associated
to thermoelastic effects. In Figure 42 we see, that for the 1:6 mode, QTED shows an
increasing trend with higher plate thickness. At 4.5 µm, QTED is below 105. This is
still low, when comparing this value to the anchor-loss related quality factor in Figure
41, which ranges from about 104 to 107. To increase QTED even further, we increase the
plate thickness to 6 µm for the next iteration. The result can be seen in Figure 43.

Figure 43: Quality factors for the 1:6 mode of a rectangular plate (L × W × H = 90 ×
90 − 300 × 6 µm). The thermal limit is well above the anchor loss quality
factor.

For the 6 µm plate, QTED is up to two orders of magnitude larger. However, the
increase in thickness leads to a stiffer plate, which increases the resonance frequencies
above the maximum measureable frequency of the measurement setup.
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To lower the resonance frequencies, we increased the overall plate dimensions. Another
FEM simulation featuring a larger plate (L×W×H = 200 × 200 − 800 × 15 µm) yields
resonance frequencies for the 1:6 mode below 24 MHz. In addition, QTED is up to two
orders of magnitude larger than Qanchor.

Figure 44: An increase in overall plate dimensions to 200 × 200 − 800 × 15 µm, lifts
QTED above the anchor loss related quality factor, while maintaining vibration
frequencies below 24 MHz.

All previous simulation results has been carried out assuming an isotropic material
(polycrystalline silicon). However, as the devices for experimental validation are fab-
ricated from monocrystalline silicon9 (ρ = 2330 kgm−2) in (100) crystal orientation,
the finite element model has to be modified accordingly. The elasticity matrix for the
anisotropic material is [21]:

E =





194.5 35.7 64.1 0 0 0
35.7 194.5 64.1 0 0 0
64.1 64.1 165.7 0 0 0

0 0 0 79.6 0 0
0 0 0 0 79.6 0
0 0 0 0 0 50.9



GPa (14)

The X, Y and Z axes of the simulation workspace correspond to the [110], [-110] and
[100] directions of the silicon wafer.

Figure 45, shows simulation results for the same plate geometry as before, but for the
anisotropic material:

94-11176 SOI wafer from Ultrasil (http://www.ultrasil.com/)
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Figure 45: QTED and Qanchor, again for the 1:6 mode of the 200 × 200 − 800 × 15 µm
plate, but this time for monocrystalline silicon in (100) crystal-configuration.

The relative difference between QTED and Qanchor is smaller for monocrystalline silicon,
as the new material yields a higher anchor-loss related quality factor. However, there are
significant minima in Qanchor, well below QTED. These minima should also be visible in
the experimental quality factor measurements, since the minima in Qanchor are still up
to two orders of magnitude smaller than QTED at the same frequency.
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4.3. Fabrication

The wafer of choice is a 4-11176 SOI wafer from Ultrasil10. SOI stands for silicon-on-
insulator, where a layer of silicon oxide is buried at a certain depth. This layer acts as an
etch-stop and separates the device layer from the substrate, which is called the handle
layer. The properties of the wafer are listed in Table 5.

To fabricate the resonators, we carried out a standard BOSCH-process [22] (deep
reactive-ion etching). The individual fabrication steps are illustrated in Figure 46. After
covering the wafer with photoresist11, a photolithography mask is brought in hard contact
with the wafer and is then exposed to ultraviolet light (365 nm). As a next step, deep
reactive ion etching is used to define the geometry of the plate resonators. After that,
the backside of the wafer is treated the same way, and the handle layer is etched until
the oxide layer is accessible from beneath. After removing the exposed oxide layer using
hydrofluoric acid (HF), the plate resonators are released from the wafer.

Figure 46: Individual fabrication steps using deep reactive ion etching.

10http://www.ultrasil.com/
11AZ5214 and AZ6624 from MicroChemicals. While the first layer of AZ5214 was used to align the

plates, the second layer of AZ6624 was used for structuring. For the backside etch, two layers of
AZ6624 were used.
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Table 5: Properties of the used SOI-wafer.
Code 4-11176
Handle Material Silicon
Doping type (handle) n
Dopant (handle) Sb
Doping type (device) p
Dopant (device) B
Res (Ohm cm) <0.02
Finish (handle) P (with 1 um oxide)
Finish (device) P
Handle orientation 1-0-0
Handle thickness 400 +/- 10 um
Device thickness 15+/- 0.5 um

The photolithography mask for this project can be seen in Figure 47. The resonator
width is altered from 200 µm to 800 µm, in increments of 3 µm. This leads to 200 different
resonators in total. The individual silicon frames, where the resonators are attached to,
have a length of 3 mm and a width of 1.5 mm.

(a) Complete Mask (b) Close-up view

Figure 47: Lithography mask for the 200 fabricated plate resonators. Each resonator has
a thickness of 15 µm and a length of 200 µm.
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5. Experiments

This section describes the process to validate the effect of Q-factor oscillations for roof
tile-shaped modes, which is described in section 3.3.

5.1. Measurement Setup

The Q-factor measurements are performed with a Polytec MSA-50012 laser-doppler vi-
brometer in combination with an OFV-5000 vibrometer controller and an Intermodulation
Products MLA-313 multifrequency lock-in amplifier.

The measurement setup is shown in Figure 48 and 49. All measurements are performed
in vacuum (< 2 · 10−5 hPa). To excite the vibrational modes of interest, the resonators
are placed on top of a piezo-actuator14, using carbon tape15.

(a) Single resonator chip (b) Multiple chips placed on piezo-actuator

Figure 48: Each plate-resonator is attached to a substrate chip with 3 mm in length and
1.5 mm in width. For the measurement, multiple resonators are placed on top
of a piezo-actuator, using carbon tape.

12https://www.polytec.com/fileadmin/d/Vibrometrie/OM_BR_MSA-500_E_42121.pdf
13https://intermodulation-products.com/support/technical-docs/_spec-sheets/mla3_spec_

sheet_and_topology.pdf
14Piezo-actuator from PI Ceramics (https://www.physikinstrumente.store/eu/000014801/?c=

65670).
15Carbon tape AGG3939 from Agrar Scientific.
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(a) MSA-500 Laser Doppler Vibrometer
(b) Close-up view

Figure 49: Q-factor measurement setup. (a) shows the MSA-500 Laser-Doppler Vibrom-
eter measuring through the window in the vacuum chamber. (b) shows a
close-up look at the devices.

5.2. Measurement Protocol

To obtain the Q-factors, the following procedure has been performed for all devices:

1. The piezo-actuator is driven by the vibrometer controller, using the MSA-500 soft-
ware. To excite as many modes simultaneously as possible, white noise with an
amplitude of 1 V is used as input signal.

2. The Laser-Scanning-Mode of the MSA is used to identify the different mode shapes.
In this mode, a rectangular, uniformly spaced grid is projected onto the resonator’s
top surface, and the displacement of every grid point is measured. The full mode
shape of the plate is interpolated, using the measurements for any data point.
Figure 50 shows an exemplary grid-scan of a 1:3 mode.

Figure 50: Exemplary grid-scan of the resonator surface (1:3 mode). Regions with max-
imum displacement are colored in blue, and regions with minimum displace-
ment are colored in red.

3. All mode shapes of interest are selected by hand, and the corresponding resonance
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frequencies are determined, using the graphical user interface of the MSA software.
The resonance frequencies are stored in a text file.

4. The resonance frequencies are imported to a custom python script which controls
the lock-in amplifier.

5. The laser spot is now placed on one corner of the plate. This ensures that we
can observe all modes, as every mode has a non-zero displacement on the free end
of the resonator during one cycle of vibration. The lock-in amplifier drives the
piezo-actuator in the selected frequency-ranges and performs a fine sweep over the
frequency intervals of interest.

6. A custom python script is used to fit a Lorentzian function to every resonance
peak of interest. A sharp and narrow resonance peak indicates a high quality
factor, while a broad peak indicates a low quality factor. This is illustrated with
synthetic data in Figure 51.

Figure 51: Synthetic data to illustrate resonance peaks with different quality factors at
a resonance frequency of 1 kHz.

To determine the quality factor of a given frequency spectrum, a Lorentzian function is
fitted to the data:

L(x) =
a

γ2 + (ω − ω0)2
+ b, (15)

where ω0 is the resonance frequency and a, b and γ are fitting parameters. As a
Lorentzian-shaped function can also be derived from the harmonic oscillator’s equation
of motion, γ is directly related to the quality factor, as
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Q =
ω0

2 γ
. (16)

An exemplary Lorentzian fit for the 1:3 Mode of a 440 µm wide plate can be seen in
Figure 52.

Figure 52: Example of a Lorentzian fit to determine the quality factor for the 1:3 mode
for a plate width of 440 µm. The corresponding quality factor is 5631.

5.3. Results and Discussion

The modes 1:1 to 1:6 have been measured with the procedure described above, and the
results are presented in the two following plots. The MSA-500 in combination with
the DD-300 displacement decoder can measure frequencies up to 24 MHz. However, at
frequencies above 10 MHz, it gets increasingly more difficult to identify the shape of a
specific mode. This is the reason why the experimental data is restricted to plate widths
above a certain threshold, dependent on the mode of interest (e.g. 240 µm for the 1:1
mode and 420 µm for the 1:6 mode). Below this threshold, a resonance peak cannot be
easily assigned to a certain mode shape anymore, as the noise level is too high to reliably
identify a mode by its displacement pattern.

In Figure 53, the experimental results are compared to the anchor-loss related quality
factor and the thermoelastic quality factor. As different damping mechanisms contribute
to the total quality factor of the system, we use Eq. 13 to calculate Qtot.

Figure 54, shows the comparison between the experimental data and the total numeri-
cal quality factor. In both plots, the black line serves as a guide for the eye and is created
by applying a Gaussian filter16 with a σ parameter of 1.25 to the experimental data.

16https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d
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Figure 53: Comparison of experimental data with simulation results of anchor-loss related
quality factor and thermoelastic quality factor. The black line serves as a
guide for the eye and is created by applying a Gaussian filter (σ = 1.25) to
the experimental data.
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Figure 54: Comparison of experimental data with total quality factor obtained from the
simulations. The black line serves as a guide for the eye and is created by
applying a Gaussian filter (σ = 1.25) to the experimental data.
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The simulations overestimate the quality factor in comparison with the experimental
results. The average difference between simulation- and experimental results can be seen
in Table 6.

Table 6: Average difference in quality factor between simulation- and experimental data.
mode Qavg (FEM) Qavg (exp) absolute difference relative difference [%]
1:1 19772.8 2779.5 16993.3 611.4
1:2 23096.6 10635.0 12461.6 117.2
1:3 23785.9 11295.1 12490.8 110.6
1:4 19713.7 10196.4 9517.3 93.3
1:5 21978.4 10634.3 11344.1 106.7
1:6 22429.5 12417.2 10012.4 80.6

The relative difference in average Q-factor ranges from 80-170 % for the modes 1:2
to 1:6, while the 1:1 mode has a relative difference of about 611 %. A reason for the
relatively high difference for the 1:1 mode could be that there are no data points for
plate widths above 670 µm. There are several possible explanations for the deviation
between simulation- and experimental data. The simulation only takes into account the
effects of anchor losses and thermoelastic damping. However, the real quality factor is
a combination of various effects, where most of them are neglected in the model (e.g.
losses due to internal- or surface friction, phonon-phonon interaction losses or medium
losses due to remaining ballistic gas molecules [6]).

Most of the Q-factor minima in the simulation data can also be seen in the experimental
data. This is especially the case for the modes 1:3, 1:5 and 1:6, where the quality
factor shows very prominent dips, which are about one order of magnitude lower than
the average quality factor. For the 1:2 mode, there is a single experimental data point
indicating a possible minimum around 240 µm, which is present in the simulation results.
Unfortunately, there is no more experimental data in this specific domain.

The observable minima are slightly shifted towards higher plate-widths in the exper-
imental data. This indicates that the simulated resonance frequency is slightly higher
than the resonance frequency in the measurement data. This can also be seen in Figure
55, where the resonance frequency is plotted against the plate-width.
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Figure 55: Comparison of the resonance frequency for the modes 1:1 to 1:6.

The measurements exhibit a notable level of fluctuations. This is expected, as quality
factor measurements for high-Q resonators are known to be very sensitive to environ-
mental parameters and the implementation of the measurement setup. Some possible
explanations are:

1. According to the manufacturer of the wafer, the thickness of the device layer has a
possible tolerance of +/- 0.5 µm. From our numerical study of Judge’s estimation
(see Figure 12), we already know that the anchor-loss related quality factor is very
sensitive to changes in resonator thickness. The tolerance in thickness is usually not
evenly distributed over the whole wafer, and can lead to differences in comparison
with the numerical results. To estimate these deviations, we conducted a numerical
error study for the 1:3 mode of a 200× 400× 15 µm plate, by varying the thickness
from 14.5 to 15.5 µm. The results are presented in Table 7. When assuming a
nominal thickness of 15 µm, the resonance frequency varies about +/- 3.1 %. The
deviations in quality factor are much higher, varying by about +/- 20 %. This
is also consistent with the estimation by Judge [8], where the quality factor is
dependent on the thickness of the resonator to the power of four (see Equation [5]).
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Table 7: Numerical error study for the 1:3 mode of a 200× 400× 15 µm plate. The plate
thickness is varied from 14.5 to 15.5 µm.

thickness [µm] fres [kHz] Qanchor

14.5 2751 80362
15 2839 66920
15.5 2927 53443

2. Anchor losses are heavily dependent on the way the resonator chip (see Figure 48) is
attached to the sample holder. In the presented measurements, the resonators are
sticked to a piezo actuator using double-sided carbon tape, which is again sticked
to a stainless steel socket in the vacuum chamber. The layer of carbon tape is
relatively soft and should therefore act as a barrier for elastic waves between the
substrate and the environment. However, as the quality of the connection varies for
each resonator which is sticked to the carbon tape, it is expected to have significant
influence on the quality factor.

3. The top surface of some chips is slightly scratched due to the release out of the
wafer. This could influence the propagation of waves close to the surface, which
are expected to have a major impact on the quality factor.

4. The substrate-chip has a rectangular footprint of 3 mm length and 1.5 mm width.
This could possibly cause issues for modes with lower resonance frequency, as the
wavelength is larger than the substrate dimensions. This is illustrated in Figure 56.
Figure 56a shows our design we used for the experiments. For future measurements,
it could make sense to design a larger substrate (Figure 56b), to ensure that the
wavelength is smaller than the dimensions of the substrate. A step beyond could
be a substrate with a circular footprint (Figure 56c), which could help to minimize
reflections on the edges and corners of the substrate.

(a) Our design.
(b) Design with larger sub-

strate. (c) Design with spherical sub-
strate.

Figure 56: Comparison of different substrate geometries. λ denotes the wavelength for
each mode of vibration. Dimensions are not to scale.
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When assuming a silicon speed of sound of 5092 m/s [13], a resonance frequency
of at least 6.75 MHz is required to get a wavelength below 0.75 mm, which is half
the width of the substrate chip. The only modes with a significant amount of
data points above this frequency are the 1:5 mode below 414 µm and the 1:6 mode
below 510 µm. These data points however, seem not to behave any different from
the data points with frequencies below 6.75 MHz. This indicates that the effect is
possibly neglectable, but as there are not that many comparable data points this
is not entirely sure.

5. The cause of some outliers has been identified as failed Lorentzian fits. This can
usually happen when two resonance peaks are very close to each other, and the
fitting algorithm tries to fit the Lorentzian function to a double-peak. All outliers
due to failed fits have been removed from the plots.
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6. Conclusions and Outlook

We investigated how the quality factor of plate resonators changes with different plate
widths. We performed finite-element simulations for multiple two-dimensional vibrational
modes of thin plates, with a focus on so-called roof tile-shaped modes. We designed a
finite-element model using a perfectly matched layer (PML), and validated our model
against analytical solutions. We have shown, that the damping effect of anchor losses in
MEMS resonators is highly dependent on the specific shape (displacement distribution)
of the modes.

For the energy transportation in the substrate, antisymmetric modes (modes with
an odd number of nodal lines) form characteristic symmetric side lobes. For symmetric
modes, the mechanical energy flux is mostly split into two parts, where one part is emitted
close to the surface, and the other part is forming a concentrated lobe downwards into
the substrate.

Additionally, we observed a modulation of the quality factor of up to two orders of
magnitude for 2D plate modes, dependent on the width and mode order of the plate. This
is exactly the effect we have been looking for, as it confirms our hypothesis (see Section 1)
that the force distribution in the anchor region can act as a combination of point sources
of elastic energy, which can interfere with each other. This interference effect is similar
to the effect observed in numerical studies of silicon micro-pillar resonators [13] [23]. The
period width of the oscillations in the quality factor is decreasing for higher mode orders,
where the ratio between plate width and wavelength17 is in the same order of magnitude.

To observe this modulation, it is important to keep thermoelastic losses low. We
accomplished this by increasing the overall plate dimensions, as suggested by Roszhart’s
[24] estimation. If this is not possible, it could help to cool down the resonator, as
the thermoelastic Q-factor has an inverse proportional dependency on the temperature.
However, for some resonator geometries, QTED is at least one order of magnitude lower
than Qanchor (see Figure 41). To see a notable effect, it would require sophisticated
cooling solutions using liquid helium.

For experimental validation, we designed and fabricated 200 plate resonators using
deep reactive ion etching. To determine the quality factor, we used Laser-Doppler vi-
brometry and confirmed that the predicted Q-factor oscillations can also be measured in
the experiment. The experimental data exhibits notable fluctuations, which is expected,
as high Q measurements are known to be very susceptible to environmental parameters
and variations in the measurement setup. To estimate the deviations in Q which are
caused by nonuniform wafer thickness, we conducted a numerical error study. When the
thickness of the resonator is varied in a range of the manufacturer’s tolerance, the quality
factor can deviate by about +/- 20 %.

Nevertheless, the experimental data shows a high level of accordance with the simula-
tion results. This is especially visible for the modes 1:3, 1:5 and 1:6.

17The wavelength λ is estimated by dividing the phase velocity v (estimated 5092 m/s [13]) by the
resonance frequency f .
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Anchor losses are one of the dominating damping effects for high-Q resonators in
vacuum. The mode-dependent modulation of the quality factor for plate resonators is
therefore an important finding, which could help to increase the level of control over the
performance of the resonator.

A possible future use case could be a precise coupling of different resonators attached
to the same substrate, utilizing the mode-specific spatial footprint of energy flow in the
substrate. This could also act as a sort of acoustic shielding, where interference effects
caused by one resonator increase the quality factor of another resonator by shielding it
off due to destructive interference.

This is a very different approach to previous methods, as it does not require any special
changes to the anchor design, like phononic crystals [12], or making sure to only support
the resonators on points where a nodal line touches the anchor.

To fully understand the possible potential of this mechanism, additional research is
needed. A starting point for future studies could be the quantification of the three-
dimensional energy flow in the substrate. Additionally, as stated in Section 5.3, future
resonator designs could make use of a larger substrate with a circular footprint, which
may improve the resonator performance.
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A. Appendices

A.1. Euler-Bernoulli Beam Theory

For the fundamental bending modes of slendered, beam shaped structures, analytic so-
lutions have been derived by Leonard Euler and Daniel Bernoulli [25] [26].

We make the following assumptions for a beam with length l and thickness h:

1. The beam is slim, which means l/h > 10.

2. Cross-sectional areas of the beam, which are perpendicular to the beam’s axis
before deflection, are also perpendicular to the beam’s axis after deflection. This
is Bernoulli’s first hypothesis.

3. Cross-sectional areas of the beam stay even during deflection. This is Bernoulli’s
second hypothesis.

4. Deflections u(x) are small in comparison to the length l of the beam.

5. The beam is made of isotropic material and follows Hooke’s law.

When we neglect rotational inertia and shear deformation, the equation of motion for
small displacements u(x, t) is:

ρA
∂2u(x, t)

∂t2
+ EI

∂4u(x, t)

∂x4
+ q(x) = 0, (17)

where ρ is the mass density, A is the cross-sectional area, E is the Young’s modulus and
I denotes the moment of inertia. The additional term q(x) describes external loads on
the beam. In the absence of an external transverse load (q=0), the equation describes a
free, vibrational motion of the beam.

Assuming a superposition of harmonic oscillations, the following ansatz

un(x, t) = eiωnt φn(x), n ∈ N (18)

yields

EI
∂4φn(x)

∂x4
− ρA ω2

n φn = 0 (19)

where ωn denotes the frequency of vibration. A general solution of 19 is:

un(x) = A1 cosh(βnx) +A2 sinh(βnx) +A3 cos(βnx) +A4 sin(βnx), (20)

with

βn(ωn) =
ρAω2

n

EI

1
4

(21)

and ωn being the natural frequency of each mode of vibration. The coefficients A1-A4

are constants which are determined by the problem’s boundary conditions.
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Table 8: Boundary conditions for a cantilevered beam of length l, which is clamped at
x=0.

un
du
dx

d2u
dx2

d3u
dx3

x = 0 0 0
x = l 0 0

Applying the boundary conditions for a beam of length l which is clamped at x=0 (see
Table 8), leads to the following equation:

cosh(βnl) cos(βnl)− 1 = 0, (22)

which can be solved using numerical methods.
The first non-trivial solutions are:

1. β1l = 1.87509

2. β2l = 4.73004

3. β3l = 7.85320

4. β4l = 10.9956

Plugging these solutions in Eq. 20 and Eq. 21, the natural frequency ωn and the
corresponding mode shape un(x) can be determined for each mode n. The first four
mode shapes of a cantilevered beam of length l=1 are shown in Figure 57:

Figure 57: Analytical solutions for the first four mode shapes of an Euler-Bernoulli beam
with length l=1.
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A.2. Lumped-Element Model

If resonators are driven in the linear regime, the continuum mechanical relation between
stress σ and strain is

σij = Cijkl kl (23)

where Cijkl denotes the material’s elasticity tensor [27]. This is usually the case for small
vibration amplitudes. As a consequence, the resonator can be approximated as a simple
1D harmonic oscillator model.

A harmonic oscillator can be interpreted as a spring-mass-model, as shown in Figure
58, where m is the mass, k is the spring constant and c is the damping constant.

Figure 58: Harmonic Oscillator Model

An external force Fext causes a displacement x of the mass out of its equilibrium
position at x = 0.

In the linear regime, the spring causes a force Fk proportional to x (Hooke’s law):

Fk = −kx (24)

Due to Newton’s second law, Fk causes a force in the opposite direction:

Fm = mẍ (25)

The damping element with the damping constant c causes a damping force Fc, which is
proportional to the negative velocity ẋ:

Fc = −cẋ (26)

The force balance yields:
Fm + Fk + Fc = Fext (27)

In the absence of an external force Fext the system is described by homogenous second
order differential equations:

mẍ+ cẋ+ kx = 0 (28)

60



With the definition of the natural frequency ω0 = k/m and the damping ratio ζ =
c

2
√
mk

, Equation 28 can be rewritten as:

ẍ+ 2ζω0ẋ+ ω2
0x = 0 (29)

The damping in the system can also be characterized by the quality factor Q, which is
defined as the ratio of the energy stored in the system, and the energy dissipated per
vibration cycle:

Q = 2π · W

ΔW
. (30)

With

Q =
1

2ζ
=

√
mk

c
, (31)

equation 29 can be written as

ẍ+
ω0

Q
ẋ+ ω2

0x = 0. (32)

Q is inversely proportional to the width of the resonance peak and increases the vibra-
tional amplitude at resonance.

A.3. Laser-Doppler Vibrometry

A Laser-Doppler vibrometer is essentially an interferometer with two beam paths. The
operating principle is illustrated in Figure 59. The object beam (which is projected
onto the object of interest) experiences a frequency shift due to the Doppler effect while
it is reflected on a moving surface. The reflected beam gets merged with a reference
beam (without frequency shift) and the intensity of the combined beam is measured by
a photodetector (commonly a photo diode).

Figure 59: Operating principle of Laser-Doppler Vibrometry
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The velocity of the moving object is directly proportional to the frequency shift of the
object beam and can be written as

v(t) =
fd · λlaser

2
, (33)

where fd is the Doppler-shift and λlaser is the wavelength of the detected laser beam.
Since both an extension and a shortening of the object beam path caused by motion

of the object under test produces the same frequency shift, the movement direction of
the object cannot be uniquely recognized with this setup alone.

For this purpose, an acousto-optic modulator18 (AOM) is placed in the reference beam
path, which causes a shift in the laser frequency. In this way, a specific modulation
frequency of the interference pattern is generated, which indicates that the measurement
object does not move.

This modulation frequency is increased, if the object moves towards the interferometer,
and decreased if it moves away from the interferometer. This makes it possible to clearly
determine not only the absolute value of the velocity, but also the direction of movement.

To measure displacement, the velocity signal is integrated. In the frequency domain,
the following relation can be used for integration

v = 2π · f · s, (34)

where f is the frequency, v is the velocity of the object and s denotes the displacement
at a specific frequency.

The displacement can also be directly obtained using another procedure which counts
the transitions between light and dark in the interference pattern:

s =
λlaser

2
· n, (35)

where n is the number of interference maxima.

18Acousto-optic modulators are based on the variation of the refractive index of a medium due to the
presence of sound waves. These variations in the refractive index, cause variations in light waves by
refraction, diffraction, and interference effects.
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A.4. Thermoelastic Losses

Thermoelastic losses are caused by internal friction in a vibrating structure. During
one cycle of vibration, regions under tensile stress are cooled down while regions under
compressive stress are heated up. The induced temperature gradient leads to irreversible
heat flow and causes vibrational energy to be dissipated.

Figure 60: Illustration of thermoelastic damping for a beam vibrating in its first funda-
mental bending mode. Regions under tensile stress are cooled down, while
regions under compressive stress are heated up.

Assuming a slender beam vibrating in one of its flexural modes, Roszhart et al. [24]
proposed the following analytical estimation for the quality factor

Q =
1

2Γ(T ) Ω(f)
, (36)

with the temperature-dependent function

Γ(T ) =
α2 T E

4 ρCp
, (37)

the frequency-dependent function

Ω(f) =
2 f0 f

f2
0 + f2

, (38)

and the characteristic damping frequency of the cantilever

f0 =
πK

2 ρCp t2c
, (39)

where:
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T : cantilever temperature
E: Young’s modulus
Cp: heat capacity under constant pressure
ρ: cantilever density
α: thermal expansion coefficient
K: thermal conductivity
f : cantilever frequency
tc: cantilever thickness
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