FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Behaviour Monitoring from Honey
Bees based on Video Analysis

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Visual Computing
eingereicht von

Gernot Winkler, BSc
Matrikelnummer 0929255

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: PD Dipl.-Ing. Dr.techn. Martin Kampel

Wien, 19. November 2018

Gernot Winkler Martin Kampel

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. 4+43-1-58801-0 - www.tuwien.ac.at






FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Behaviour Monitoring from Honey
Bees based on Video Analysis

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Visual Computing
by

Gernot Winkler, BSc
Registration Number 0929255

to the Faculty of Informatics

at the TU Wien

Advisor: PD Dipl.-Ing. Dr.techn. Martin Kampel

Vienna, 19" November, 2018

Gernot Winkler Martin Kampel

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at






Erklarung zur Verfassung der
Arbeit

Gernot Winkler, BSc
NeunkirchnerstraBe 17, 2732 Willendorf

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. November 2018

Gernot Winkler






Kurzfassung

Bienen sind ein wichtiger Bestandteil von Wirtschaft und Umwelt. In den letzten Jahren
wurden Bienenstécke durch Parasiten und anderen Umweltfaktoren bedroht. Aus diesem
Grund steigt das Interesse Bienenstocke automatisch zu iiberwachen. Mit Hilfe von
Videodaten kann so eine Uberwachung durchgefiihrt werden.

Diese Arbeit stellt eine Losung vor, um alle Bienen am Eingang des Stocks gleichzeitig zu
tracken und zu zahlen, wahrend sie durch eine kiinstliche Eingangsstruktur gehen. Unter
der Verwendung der HSV- und HSL-Farbmodelle kann mit Hilfe von Mathematischer
Morphologie eine genaue bindre Segmentierung erreicht werden. Durch Anwendung des
K-Means Algorithmus kénnen Cluster von Bienen getrennt werden und das Problem
auf Tracking einzelner Bienen vereinfacht werden. Als Ergebnis der Zaéhlung wird eine
Fehlerrate von 6.86% auf Extremdaten mit einer Bildrate von rund 67 Bildern pro
Sekunde auf einem Desktop-PC erreicht. Vier Datensédtze, die mit drei verschiedenen
Kameramodellen aufgenommen wurden, werden evaluiert. Ein Langzeittest, welcher
Aufnahmen iiber einen Zeitraum von einer Woche (insgesamt 73 Stunden Videodaten)
durchlduft, demonstriert die praktische Anwendbarkeit der Methode.
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Abstract

Honey bees are an important part of the environment and economy. Recently bees
are threatened by parasites and other environmental factors. This raises the need to
automatically monitor bee hives. With the use of video data such a monitoring can be
performed.

This thesis presents a way to use computer vision to automatically monitor a bee hive.
The presented technique is able to simultaneously track and count bees at the hive
entrance while they are walking through an artificial entrance structure. By using
HSV and HSL color models together with mathematical morphology an accurate binary
segmentation can be achieved. With the help of the k-means algorithm bee clusters can
be resolved and broken down to single bee tracking. This allows to get counting results
with less than 6.86% average error rate on extreme data while running at a framerate of
around 67 frames per second on a desktop PC. Four datasets which where recorded with
three different camera models have been evaluated. A long-time test which evaluates the
algorithm with recordings of a whole week (73 hours in total) demonstrates the practical
applicability of the presented method.
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CHAPTER

Introduction

1.1 Motivation

Beekeeping goes back far in the history of mankind, the first use of bee hives was
probably between the years 5000 to 3000 BC[Cral3|. There are hints of hunting honey
in the history of different cultures all around the world|Cral3]. Honey bees are used
for production of honey and wax but also needed as pollinator for many plants[M™10].
Pollination by bees is an important part of our environment and has a huge influence on
agriculture. Honey bees are the economically most important pollinator for monocultures
and are used for pollination with managed bee hives when not enough wild bees are
available] KVCT07]. Crops that contribute to around 35% of the worlds food production
require animal pollination or are increased in productivity by it[KVCT07]. The amount
of crops dependent on animal pollution has increased by over 300% within the last half
century[AHQ9]. Also the global amount of managed honey bee hives has increased by
only around 45% in this time span. This means the demand is growing faster than the

supply.

In recent years a phenomenon called colony collapse disorder has appeared causing a
rapid loss in adult worker bees|ESM™09][RC10][RBHI13]. One of the reasons is believed to
be caused by parasitic infections but other factors like pesticides can also have influences.
The most dangerous threat is a mite called 'varroa destructor’[SGNOQ][RC10]. This mite
transmits diseases that are capable of killing a bee hive. There is need for more research
in this area and tools to help in analyzing the health of a bee hive can provide valuable
insights to beekeepers or researchers.

Computer Vision has been used in different areas to provide automatic solutions based
on visual data. Tasks that have been performed by humans can be entirely performed
by automated systems. This allows to achieve lower costs and permanent observations.
With modern computing power the complexity of data that can be handled in real-time

1
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increases each year. With the help of Computer Vision a bee hive can be monitored and
data can be automatically processed with minimal or no human interaction. Also using
automated electronic systems to observe the hives does not disrupt the natural behavior
of bees opposed to manual measurements.

1.2 Problem Statement

The threat of bees leads to the question on how observation and monitoring can be
improved by computer vision. Measuring and counting the flight activity of bees is
tedious to manually perform and can be automated, also measuring movement paths
(trajectories) can be performed by a computer. To be able to use computer vision a way
to acquire visual data is obviously required. This will be done by using a camera that
records video data at the hive entrance but leads to the question on how exactly should
a recording setup be built?

1.2.1 Data Acquisition

Using a hardware setup with a video camera to record the entrance of a bee hive is not
a novelty and has already been done by multiple research projects. This means those
existing hardware setups should be analyzed and evaluated on what advantages and
disadvantages they posses.

Existing hardware setups can be categorized in two major groups.

e 3-Dimensional setups where recording is done with a camera mounted near the
entrance and there is no restriction to the bees movement and bees are able to
flying around. A landing pad may be placed in front of the hive. A possible camera
placement is directly above the landing pad. Another option is to place the camera
anywhere near the entrance and record the bees while flying in and out.

e 2-Dimensional setups where recording is performed with the help of an entrance
structure where bees have to walk trough. The camera is placed in a way that the
bees cannot move in and out without being recorded by it. Movement is restricted
so bees cannot fly around freely limiting the movement of bees to 2D.

3-Dimensional setups

Many setups place the camera above the entrance of the bee hive. This has the advantage
that the hive entrance is unchanged and the behavior of bees should not be disrupted.
Such a setup has for example been used by Chiron[CGKMR13|, Campbell[CMS08] and
Yang[YCI5]. Two of this setups are shown in figurel.1.
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Hive entrance
Landing platform

, el

(a) The setup used by Campbell[CMS08] (b) The setup used by Yang[YC15]

Figure 1.1: Existing hardware solutions that record bees with a setup where bees can
move in 3D

2-Dimensional setups

Since bees being able to freely move in 3D offer some challenges to algorithms like shadows
or occlusion a way to counter this is by using a setup that restricts the bees movement to
2D while being recorded. For example Chen[CYJLI12] and Tu[THKAI6] use such setups,
shown in figure 1.2l

The setup used by Tu et. al.[THKAT6] uses a mirror and a glass pane to record bees
from below while walking through the entrance tunnel. Chen et. al.[CYJLI2] also use
acrylic walls to separate the entrance tunnel into tracks to separate bees.

Comparisons

Using no entrance structure and recording the bees with a camera placed above requires
little additional structure and can easily be applied to bee hives. On the other hand
using an entrance structure requires more space and is expected to be more difficult to
apply to an existing hive.

From an algorithmic point of view the two kind of setups have to deal with different
problems. When bees can move in 3D phenomenons like occlusion have to be considered.
When a background plate is used flying bees will cast shadows on it. When bees are
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(a) The setup used by Tu[THKATE] (b) The setup used by Chen[CY.JL12]

Figure 1.2: Existing hardware solutions that record bees with a setup where bees can
move in 2D

limited to walking on the ground shadows are always directly below them and cannot be
cast farther away. Segmenting the bees from the background will be more difficult in a
3D setup. In a 2D setup a homogenous background that has a high contrast to the bees
can be chosen. If illumination is from above shadows will also be cast directly below the
bees. When a transparent plate is placed in a height so that bees cannot move over each
other, it is also possible to avoid occlusions. This means occlusions can be completely
ignored by the algorithm in a 2D setup.

Another point that has to be considered is what data can be retrieved from the recorded
videos. Counting the bees will be possible with both kind of setups, but the quality of
bee images is likely better in a 2D setup as the camera records a closed off area and the
camera can be precisely aligned to this. This means that bees will appear bigger on the
images and therefore can be better used for further analysation like detecting parasite
infections. Also with a custom built entrance structure it is possible to use artificial lights
to create a homogenous lighting situation while a 3D setups has to deal with illumination
changes over different times of day and weather situations.

Out of this reasons a 2D setup seems to be the superior choice when considering computer
vision algorithms as difficulties like occlusion and a changing lighting situation can be
avoided.

As part of the MIC-Cam' project a 2D setup[Schi8]|[SZKLI6)] is already present at
the institute. The thesis from Schurischuster[Sch18] handles the problem of classifying
images from bees if they contain varroa mites or not. A deep learning based approach is
compared with a traditional image processing pipeline. This thesis solves the problem of
real time monitoring of bees at the entrance and in the process providing input data for
the classification.

"https://cvl.tuwien.ac.at/project /mic-cam/ (Accessed: 18. 10. 2018)
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Setup specification

With the decision made to use this existing setup the next step is to define the constraints
that can be made by the setup.

The camera is positioned with a top down view above the entrance area. The camera
is aligned with the borders so that the left and right borders of the recorded images
are aligned with the side walls. This makes it impossible for bees to leave or enter
the recorded area on the sides. The camera height is also constant during operation.
Exact height positioning and zooming factors are not defined but are not changed during
operation. This means that bees have constant size during operation and parameters
that are affected by the size of bees or camera height do not need to be adaptive during
operation but need to be defined before starting the processing.

A transparent glass plate is placed as ceiling of the entrance area and the recording is
performed through this plate. The plate is placed in a height that bees can not move
over each other. This allows to define the condition that bees can not occlude each other.
This further implies the algorithm can work in 2D as no 3 dimensional movement is
possible. The glass plane is clear at the beginning but it is important to consider that
accumulation of dirt happens during operation.

The bottom of the entrance area, and background of the video, is a gray monotonous
plate. Like the glass plate this background will also accumulate dirt over time and can
not be expected to be clean at all times.

The lighting situation is constant as the entrance area is illuminated by two rows of LED
lights placed at the upper and lower borders. This means that only minor changes in
illumination happen during the day. Also this causes reflections of the lights to be visible
at the top and bottom borders of the video.

The camera records RGB videos at a framerate between 20 and 30 fps. The available test
data has been recorded with different types of cameras. The resolution of the recordings
is 1416x540 or 1920x1080 pixel. This means no depth or infrared data is available. Exact
details of the used test data are presented in chapter).

As for the behavior of the bees it can not be expected that bees will run in and out in a
straight path. Bees can run around freely including running a loop or standing still for
some time and forming clusters.

Figure [1.3| shows an example of the recorded video data. The position of the LED light
artifacts and the dirt in the scene can be observed.

To conclude this the following conditions can be expected:

e the camera location is constant during operation
e the average size of a bee is constant during operation

e the lighting situation will only change subtle during operation
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Figure 1.3: An example image of the recorded data

e bees can only enter at the top or bottom borders of the recorded area

e bees can not overlap and occlude each other
The following criteria can not be expected:

e The amount of bees that are visible at the same time is absolutely unknown. The
area can be empty with zero visible bees or also be very crowded with less than
20% of the background being visible. This means no ratio between foreground and
background area can be assumed.

e The glass plane can not be expected to be free of dirt at all times.
e The background can not be expected to be free of dirt at all times.
e Bees do not need to be moving. They can stand still.

e Bees do not need to move in a straight path from inside to outside or vice versa.
They can roam freely and run in loops.

1.3 Aim of the Work

The goal of this work is to analyze existing approaches and based on that present a
solution that can automatically monitor a bee hive with the aid of computer vision.
Further it should be evaluated on accuracy, runtime and practical applicability.
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The resulting software should count the bees and also retrieve the location and trajectories.
Also this program should be able to perform the calculations with a runtime performance
of at least 5 frames per second on a desktop PC. The testing system uses an Intel i7
4770k CPU. The program should also be oriented at long time operation and should be
able to process recorded video data of a bee hive the whole day. As goal for the accuracy
of this program a target of less than 10% average error rate is defined. This means that
overall counting results of a day should be below 10% error rate.

To quantify the error rate it is required to perform an evaluation which requires ground
truth data. While there are many hours of video data available no ground truth
information is known. This means that ground truth data has to be acquired for
evaluation. Evaluation is mandatory as it can not be verified if the defined accuracy
requirements are met otherwise. To acquire the ground truth data a manual annotation
is required as no automatic process to detect and count the bees is known.

The evaluation also consists of measuring the runtimes and comparing them with the
target framerate of 5 fps or higher. The average frames per second over test video
sequences used for evaluating the accuracy is used as measurement for the runtime.

The counting of bees consists of the amount of bees that entered and exited during the
recorded video sequence that is processed. These are two separate counting values. With
this information a difference can be observed and also the general activity of a hive can
be measured during a specific time interval.

Retrieving the location and trajectories of the bees is not directly required to measure
the activity as there are algorithms that can count the bees without tracking but these
information provide additional data that can be used for further research. Detecting
single bees allows to extract images of them and pass them to further processing like
checking parasite infections.

1.4 Contributions of this thesis

This thesis presents a combination of algorithms that can monitor bee activity in real
time and performs intensive evaluation on accuracy and runtimes with test data from
different cameras and different resolutions.

e Six video sequences of the bee hive entrance have been fully annotated with the
movement of each individual bee. This allows to get accurate ground truth data
about counting and trajectories.

e [t is shown that the HSV and HSL color models can be effective to segment bees
from an artificial background. While this idea is not novel the evaluation is extensive
and compares with other color models.
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1.5

Morphological opening was used to extract the bee shapes from an initial segmen-
tation. The evaluation shows that this operation can be performed in real time
with OpenCV on current hardware.

While the usage of the k-means algorithm to split clusters of bees has already been
used in a regression based solution for bee counting, this thesis demonstrates that
it can also be used in a tracking based real-time solution for bee monitoring.

The counting algorithm proposes a measurement to self diagnose the accuracy of
the algorithm by differentiating between sure and unsure counting.

A longtime test with a duration of 73 hours in total was performed. The results
of this test show the robustness against illumination changes of the algorithm
combined with the hardware setup and the practically applicability.

Methodological Approach

The methodological approach of this thesis can be broken down into the following steps

Hardware setup and test data evaluation
Ground truth data acquisition
Algorithmic evaluation

Implementation

Evaluation

Longtime test

Hardware Setup and Test Data

The first step is to evaluate existing hardware solutions and applicability. A recording
setup already exists at the institute prior to this thesis. This setup and already recorded
test data was analyzed on their applicability for this thesis. The decision to use the
existing hardware solution was made, as the video sequences meet all requirements for
this thesis and seemed of high quality.

Ground Truth Data Acquisition

While over thousand hours of bee recordings are available no information of ground truth
data is present. Out of this reason different situations and supposedly difficult video
segments were chosen to be manually annotated with ground truth data.
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Algorithmic Evaluation

With test data available related publications where analyzed on their applicability. Further
state of the art methods in image segmentation, tracking and counting where analyzed.

Implementation

A software solution using C++ and OpenCV was implemented that counts the bees
moving in and out of the hive in test videos.

Evaluation

The resulting program was evaluated with the ground truth data on accuracy and runtime.
The algorithmic evaluation, the implementation and this step where repeated in order
until a solution was found that seemed optimal and met all requirements.

Longtime Test

Finally a longtime test was performed where video sequences of 7 days with recording
time windows between 06:00 and 21:00 where processed. This results in 73 hours of
recordings being processed. This demonstrates the practical applicability and how the
resulting algorithm together with the hardware setup work in a real world scenario.

1.6 Structure of the Work

e Chapter 2 discusses the state of the art and evaluates which existing solutions
can be applied or not. After a concise description of each of these publications a
comparison to the requirements of this work is made. Also these approaches are
grouped into different categories.

e Chapter 3| presents and explains methods that have been used or considered to be
used and it is explained how they solve the problems of this thesis.

e Chapter 4 explains the concrete implementation and algorithms used in the program.
This includes the algorithms used for segmentation, matching, tracking and counting.
Also it is explained how bee clusters are handled.

e In Chapter 5 the used datasets are introduced first, then extensive testing on them
with different resolutions is presented. Both the accuracy of the counting and the
runtime is evaluated including runtime of specific algorithms in the program.

e The final Chapter (6) draws a conclusion and discusses possible future work.






CHAPTER

Related Work

To solve the problem of monitoring honey bees with video analysis a study about existing
work and methods is required. This includes state of the art methods in video based
monitoring in general and specific algorithms directly aimed at honey bee monitoring
from video data.

2.1 State of the Art

While monitoring honey bees is a specific application, methods that can be applied are
not restricted to bees. When the problem of monitoring bees is looked at in a more
generic approach parallels to observing humans or other objects can be drawn. Out of
this reason the state of the art in crowd analysis and counting of humans or other objects
is also interesting to consider for this work. Further segmentation and tracking of other
objects from image or video data is considered.

Counting Objects in Images and Videos

Counting people in a crowd has been done using Bayesian Poisson Regression [CV(9].
This approach estimates the count of people on a walkway with two separate classes:
away and towards. This method is based on statistics and does not need any tracking at
all.

An approach by Spampinato et. al[SCBNFO08] aims to track and count fish in underwater
videos. To segment fish an adaptive Gaussian Mixture Model is used. A video is
automatically annotated with the following values: environmental condition (based on
brightness or smoothness of the video), the amount of fish present per frame, the total
number of fish in a video and the quality of a video. Tracking fish between frames is
based on shape features and histograms.

11
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Zhang et. al[ZLWY15|] propose a method for cross-scene crowd counting based on deep
convolutional neural networks. The CNN uses both crowd counts and crowd density maps
as learning objective. This algorithm estimates the number of people in a crowd from
an input image. Further a method for single image crowd counting using multi-column
CNNSs|ZZCT16] was proposed by the same author. This algorithm aims to count the
number of people in a crowd with arbitrary camera perspective and crowd density.

A novel approach to interactively count objects in a scene was proposed by Arteta et.
al[ALNZ14]. The goal is to count a type of object in an image that is interactively defined
by the user. The user annotates a reference object and the algorithm counts all similar
objects in the scene. This algorithm is based on object density estimation and ridge
regression.

Segmentation

Lin and Davis[LDI0] propose a method to detect and segment humans with hierarchical
part template matching. This algorithm uses local part-based and global shape-template-
based schemes. The idea is to detect humans and estimate their pose with a hierarchical
part-template tree. The algorithm is a learned human detector and uses a kernel-SVM
as classifier.

Morar et. al.[MMGI2| proposed new segmentation technique based on contours without
edges. This approach aims to segment bones in CT images. To remove noise a Gaussian
filter is used to smooth the initial image and an anisotropic diffusion filter is applied.
Further steps include adaptive thresholding, island extraction and hole filling. This
technique aims to counter image characteristics like low contrast between foreground and
background or inhomogeneities within objects.

Superpixels are another technique to segment images. The SLIC algorithm (simple linear
iterative clustering)|ASS™12| is an adaption of k-means for superpixel generation with
two distinctions: by limiting the search space of a region proportional to superpixel size
the amount of distance calculations for optimization is reduced. Also a weighted distance
measure uses color and spatial proximity and provides control over size and compactness
of the superpixels.

Yao et. al.[YBEUI5| proposed a coarse to fine topological approach for superpixel
generation. Compared to SLIC and other approaches a better snapping to image
boundaries is achieved. In a recent state of the art survey[SHL18] the algorithm from
Yao et. al.[YBFUIL5| ranked first for superpixel generation.

Deep learning has also been used for image segmentation. Kaiming et. al[HGDGI8]
proposed a method called Mask R-CNN that works as a framework for general object
instance segmentation. This algorithm was published in 2018 and is an extension to faster
R-CNN([RHGS15]). Mask R-CNN adds a branch for predicting segmentation masks for
each Region of Interest in addition to the branches for classification and bounding box
regression. Also a pixel to pixel alignment between network inputs and outputs is added.
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The paper states a runtime of 5 frames per second but which hardware was used is not
stated.

DeepLab|CPK™18| is another deep learning based approach for image segmentation.
DeepLab aims to solve the problem of semantic image segmentation using deep convo-
lutional neuronal networks (DCNN). This approach used convolution with upsampled
filters, called atrous convolution and conditional random fields (CRF).

In the area of biomedical image segmentation a deep learning based approach called
U-net[REBI5] was published. The U-net architecture uses data augmentation with elastic
deformation which counters the problem of limited available training data in biomedical
segmentation tasks.

2.1.1 Tracking

Choi[Chol5] proposes a near-online algorithm for multi-target tracking using aggregated
local flow descriptors (ALFD). The ALFD encodes relative motion patterns between
temporally distant detections using long term interest point trajectories. As runtime a
framerate of 10 frames per second on a 2.5GHz CPU with 16 cores is achieved by using
parallel computing.

A method aimed at multi person tracking was published by Tang et. al.[TAASI6]. This
method consists of 2 major steps. First a minimum cost graph multicut problem is solved.
The second step is using DeepMatching[WRHS13] to calculate pairwise costs between
two bounding boxes.

A neural network based approach was published by Sadeghian et. al.[SAS17]. This
approach uses recurrent neural networks and encodes long-term temporal dependencies
across multiple cues to overcome difficulties like occlusion or similar appearance properties
with surrounding objects.

Kieritz et. al.[KBHA16] proposed a method for multi-person tracking that uses online
multiple instance learning to incrementally train an appearance model. Integral channel
features are used for pedestrian detection.

An approach from Kim et. al.[KLCRI15|] propose a method based on multiple hypotheses
tracking and introduce a method for online appearance model training for each track
hypothesis. Appearance models are learned with a regularized least squares framework.

Fagot-Bouquet[FBADL16] proposed an approach that formulates the multi-frame data
association step as energy minimization problem with an energy based on sparse rep-
resentations. Further a structured sparsity-inducing norm is proposed. As runtime
measurement 7.5fps could be reached on a 2.7GHz 8-core CPU.

13
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2.1.2 Honey Bee Monitoring

Commercial solutions to observe bee hives already exists. One of this solutions is Arnia
! which offers a commercial closed source hardware and software solution to monitor
bee hives. This includes environmental data and also measures acoustic data. Exact
information about internal algorithms is not published.

Beeandmee?| offers a product to monitor a bee hive with environmental data like temper-
ature, humidity and wind. Hive data can be viewed via internet and also a mobile app is
offered.

The HOBOS? project offers live stream data of bee hive entrances, further processing is
not performed. The camera is mounted vis-a-vis of a bee hive entrance and records bees
flying to or from the entrance.

Melixa*| offers a sensor that can be mounted on a bee hive to monitor the activity an
environmental data. An electronic scale to monitor production is utilized. Also a patented
flight sensor to analyze the flights throughout the day is used, how this sensor works
exactly is not available to public. Further temperature is measured and rain can be
detected. A video stream of the hive entrance is not available.

The BeeCam®| project is an interdisciplinary education and research project from Georgia
Tech with the focus on impact of urban habitats on honey bees.

The MIC-Cam®| (Mite Invasion Control Camera) project[SZKL16][SRRKI8] has the goal
to monitor bee hives for varroa mite infections based on video data. The classification of
mite infected bees is solved with a deep-learning based approach and compared with a
traditional image processing pipeline[Schi§].

Other than commercial solutions or research projects there are also research papers that
handle the monitoring of honey bees. This monitoring has been done with the following
types of camera setups:

e Laboratory - Recording of the bees is done in a closed of laboratory area and not
in or at a real bee hive.

e Entrance 2D - The recording of the bees happens at the entrance to the hive
while the bees are on the ground and have to walk trough some kind of tunnel.

e Entrance 3D - The bees are recorded at the entrance while flying to or from the
hive. Typically the camera is located above a landing platform. Bees can move
3-dimensional in this category.

"https://www.arnia.co.uk/ (Accessed: 7. 9. 2018)
http://beeandmegmbh.com /home (Accessed: 18. 10. 2018)
Shttps://www.hobos.de/ (Accessed: 14. 9. 2018)
“http://melixa.eu/en/ (Accessed: 14. 9. 2018)
®https://bees.gatech.edu/home (Accessed: 18. 10. 2018)
Shttps://cvl.tuwien.ac.at/project/mic-cam/ (Accessed: 18. 10. 2018)
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Figure 2.1: An image recorded by the laboratory based setup used by ﬂm

e Inside hive - The bees are recorded inside the hive itself. No artificial background
is placed that can offer a high contrast to the bees.

e Non Video based - Using environmental data is also a possibility to monitor a
bee hive. Using video data is not the only option.

Laboratory Based Monitoring

Kimura m proposed a method in 2014 to track bees on a flat laboratory area.

The setup is a camera recording from the top and the bees are at a small scale. The
segmentation is done with background images. An example image taken by this setup is
shown in figure The produced program has been given the name 'K-Track’ This
algorithm is directly compared to the publication Ctraxﬂmn and gives better results

on bees. Ctrax[BRBT09| was published in 2009 and is an open-source tracking program.

The goal is tracking of fruit flies (Drosophila) in a laboratory area. Ctrax is also called
The Caltech Multiple Walking Fly Tracker. While it is not directly aimed at tracking
honey bees the problem is similar. The program’s source code is available and is written
in python. The tracking was performed with the camera placed at the top and viewing
down on a round laboratory area. The area is also closed off which means it is not
possible for flies to leave or enter the area during tracking. Ctrax uses a background
model for segmentation. This background model is calculated as the mean of all frames
of the input video sequence.
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Figure 2.2: The honey bee pool that is used by [THKAT6] for counting the bees. This is
an example of a 2D setup with recording in an entrance tunnel.

2D Monitoring at the Entrance

A setup used in multiple publications is that the camera is placed above an entrance way
to the hive in way that the bees are walking on the ground and the tracking problem
can be reduced to a 2D. A method that uses an entrance structure has been proposed
by Chen et. al. [CYJLI12]. The hardware setup has entry tracks split with acrylic walls
to separate bees while walking in or out and uses an infrared camera. The goal of this
algorithm is to track bees that have a marker glued to their back.

A regression based method was proposed by Tu et. al. to measure in and
out activity of bee. The hardware setup consists of an entry pool where bees have to
pass trough to enter or leave the hive. A glass plate is at the bottom of this area and a
mirror and a camera are located below. The background appears bright and the bees are
dark in the recorded images. The images are converted to grayscale and segmentation is
performed using background subtraction. To perform the counting the area is split into
a fly-in and a fly-out zone and the activity of bees in each area is used to estimate the
count. This method works with a raspberry pi as processing unit, but is not a continuous
real-time process. Every 10 minutes a 30 second video clip is recorded with a framerate
of 5 frames per second and the processing takes place during the non-recording time. An
example of this recording setup is shown in figure 2.2.

Another approach[KRI16] counts bees on a landing pad using computer vision. A camera
records bees on a landing pad in front of the hive. This landing pad is only a few
centimeters long (exact measurement is not given) and bees are segmented in 2D. The
goal is to count the bees that are currently located on the pad without distinguishing
between moving in and out. The hardware setup has a strict performance restriction as
a solar powered raspberry pi and pi camera are used. Because of the limited processing
power a permanent observation is not possible and recording is only done in time intervals.
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To segment the bees from the background the HSV color model is used. To count the
number of bees foreground areas larger than a bee are divided by the average area of
a bee to estimate the counting. As evaluation the paper states an accuracy of 85.5%
compared to manual bee counting.

3D Monitoring at the Entrance

Opposed to using an entrance structure some publications use a landing pad and the
bees are recorded while flying to or from the hive. This kind of setup has to deal with
problems like 3D occlusion. A stereo vision based method that tracks bees in 3d at
the hive entrance was proposed by Chiron et. al. [CGKMRI3| in 2013. This method

uses a hybrid segmentation using disparity and intensity images from the stereo camera.

Another method that uses a setup with a camera recording the bees while flying was
proposed by Campbell et. al. [CMS08| in 2008. The camera is placed above the hive
entrance and the bees are recorded during flying away and arriving at a landing platform
in front of the hive. As segmentation technique background subtraction is used. An
example of an image taken by this setup is shown in 2.3. Another method that uses a
setup where bees are recorded while approaching or leaving the hive through the air has
been proposed by Yang and Collins [YC15] in 2015. The camera in their setup is located
outside of a bee hive above the entrance. Below the camera a white ground is placed
to have a high contrast background. 3D setups have to deal with problems that occur
because of the 3-dimensional freedom of the bees, including occlusions and shadows.

Monitoring inside the Hive

Another commonality shared by multiple publications is monitoring bees inside the hive.

Khan et. al[KBD04] propose a Rao-Blackwellized particle filter for eigentracking that has
experimental results on tracking a bee in a hive. The setup consists of a camera recording

directly inside a bee hive. In this setup bees have similar colors as the hive behind them.

In the experiment a single bee inside a hive is tracked. Landgraf et. at[LRO7] propose
an optical flow based approach of tracking honey bee movements. They specialize in
tracking a bee’s "waggle dance" which is a movement that scientists believe is used to
communicate. Therefore this work’s goal is an accurate trajectory for tracking. The data
for this publication was recorded with framerates of 90 and 100 frames per second. The
videos were recorded through a glass plate at the hive and artificial lighting is used. Bees
in this setup are tracked with either manual selection and or with markers. Long time
tracking is also a goal here. This paper states a performance of up to 1.5fps on their
hardware. An example of an image recorded by this setup is shown in figure [2.4. Another
publication that uses inside hive tracking has bees proposed by Kimura [KOOILI] in
2011. This method tracks multiple honeybees using vector quantization to analyze hive
behavior. This method is used on images taken inside the hive and with a smaller scale
compared to other publications. The videos where recorded with 720x480 resolution with
30fps. The recorded bee hive has a size of 44x19.6cm with around 700 bees being visible
at the same time. This means that the size of a single bee is only a few pixels. This
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Figure 2.3: An example of a 3D tracking setup at the hive entrance. This specific setup
shown in the image is used by [CMSO08].

method uses the red color channel of the RGB video as this channel gives the best results.
The bees are unmarked and can walk freely in the hive. The runtime of this algorithm is
far from realtime with a given example of an hour for a ten second clip.

Non Video based Monitoring

Monitoring a bee hive was also done without using video data. Edwards [EMMWT16]
proposed a decision tree based algorithm based on environmental data to decided the
health of a bee hive. Measured data includes carbon dioxide, oxygen, pollutant gases,
temperature, relative humidity and acceleration. Weather data is also taken into account
and includes sunshine, rain and temperature.

2.2 Comparison

Additionally to the hardware setup types a categorization can also made regarding goals
and tracking types.
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Figure 2.4: An example of a recording inside a bee hive from the setup used by [LROT].
Markers are also used in this image.

The goal can be categorized the following way and are not mutually exclusive:

e Longtime tracking - The tracking uses markers to identify bees across different
recorded sequences. A tracked bee can be associated to a global ID and it can be
detected if two tracked bees in different recordings are the same bee or not. This
allows to analyze behaviour like the time how long a bee was outside the hive or
how often a specific bee leaves the hive.

e Counting - The goal is to retrieve a counting result on how many bees have entered
or left. Trajectories do not matter for this goal.

e Trajectories - The goal is to retrieve the trajectories of the tracked objects, for
example to study their movement behavior.

Also the type of tracking can be grouped into single target and multi target tracking.
Single target tracking only tracks one bee at a time, while with multi-target tracking
every bee that is currently visible is tracked simultaneously. Also it is possible no tracking
at all is performed as tracking is not mandatory to retrieve a counting result.

In table [2.1] a categorization of different methods is made. Opposed to the solution
wanted for this thesis which is a 2D multi-target tracking at the entrance with the goal
of retrieving the counting results and optionally the trajectories, none of the publications
compared in the table fits exactly.

Further the adaptability of these publications related to this thesis is discussed:
3Dimensional setups record the bees while flying to and from the hive. This means the

bees are able to move freely in 3D while they are being tracked, therefore the algorithm
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Publication Hardware setup ‘ Goals Tracking
Khan 2004[KBD04] inside hive trajectories single
Landgraf 2007 [LROT] inside hive trajectories, single
longtime
tracking
Campbell 2008]CMS08] entrance 3d counting, (tra- | multi
jectories)
Branson 2009|BRBT09] (Ctrax) laboratory trajectories multi
Kimura 2011[KOOI1I] inside hive trajectories multi
Chen 2012|CYJL12] entrance 2d longtime track- | multi
ing
Chiron 2013|[CGKMRI13)] entrance 3d trajectories multi
Kimura 2014[KOC™14] laboratory trajectories multi
Yang 2015[YCI5] entrance 3d trajectories multi
Tu 2016[THKA16] entrance 2d counting -
Kulyukin 2016 KR16] entrance 2d counting -

Table 2.1: Grouping of related publications into categories depending on setup, tracking
type and goals

has to deal with problems like perspective, occlusion and shadows being cast far away
from the bees. Also a problem is merging and splitting of tracked paths. All these
problems do not occur in the setup used for this thesis, therefore it can be concluded that
such algorithms cannot be directly adapted. [CMS08|], [CGKMRI13] and [YC15] belong
to this category.

Ctrax|BRB09] and Kimura’s algorithm|[KOC™14] operate with a camera farther away
from the bees and with a closed off laboratory area, which means that no objects will
leave or enter the tracking area in their setups, this is a common event in an actual bee
hive though.

Landgraf[LR0O7] and Khan[KBD04] use recordings from inside a bee hive which means
the background is non homogenous and has a worse contrast than when using an
entrance tunnel where a specific background can be chosen. Also the tracking focuses on
accurate trajectories of a single bee with computationally expensive methods opposed to
simultaneous tracking of all bees in real-time.

Chen [CY.JL12|] uses a setup with track separation which was already ruled out for this
thesis. Prior to starting this thesis such a setup has been used and high bee frequency
and dead bees can cause the area to get stuffed when using restricting tracks.

The algorithm from Tu[THKAT6] has a similar setup and goal as this thesis but uses
a very strict computational constraint and does not offer a permanently running real
time solution but only offers counting with regression based methods running in time
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intervals.

After analyzing the state of the art and existing solutions the decision was made to
not use a deep learning based approach but a traditional image and video processing
pipeline instead. To the best of my knowledge at the time of writing this thesis there is
no scientific publication that handles segmentation, tracking or counting of bees with a
deep learning based approach. Other than lacking reference material there are two other
reasons to not use a deep learning based approach:

e Runtime - A practical application scenario for bee monitoring is that the hardware
is located directly at the hive. This means the processing power is limited. A
deep learning based approach is expected to cause too high hardware costs. A
performance of 5fps for a deep learning based segmentation[HGDG18] was stated
without which hardware was used.

e Data - Deep learning requires a lot of annotated input data to train against. Ac-
quiring ground truth annotated data for bee segmentation or counting is too time
consuming or costly in the scope of this thesis.
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CHAPTER

Methodology

To monitor bees with video analysis in the setup used multiple steps are required. First
bees need to be separated from the background. The problem of bee clustering needs to
be countered as well. When bees are detected they need to be matched to detections
in past frames to reconstruct the motion of the individual bees. From the resulting
trajectories the bees that enter and exit the hive can be counted.

3.1 Image and Video Segmentation

Image segmentation can be seen as the process to subdivide an image in constituent
regions or objects|GW16]. In the specific context of this thesis the term segmentation
refers to the problem of separating bees from the background, the bees are considered as
foreground. This section provides an overview of options and reasoning on why to use
them or not.

3.1.1 Background Subtraction

An approach to segment objects from background is to have an explicit background image
and calculate the difference to this background to segment all foreground objects [PP12).
This is a basic way to model a background in a static scene|BJET08§].

The foreground is calculated with the following equation: [ is the intensity of a pixel,
B is the intensity of the background at the same image location, d(z,y) is a distance
measurement, for example the absolute difference between the two intensity values. T is
a predefined threshold value that defines how big the difference to the background has to
be to be considered as foreground.

1 dI,B)>T

0 otherwise (3.1)

Foreground = {
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The downside of this method is that a background image must be taken while no bee
is in the recording area. This has to be done manually. Also it only works for short
time periods because over time the background will change with either dirt or small
illumination changes. One goal is to have a long time solution that can observe a bee
hive over multiple weeks or longer. Because of this reason background subtraction was
not chosen as segmentation technique. To overcome the problems of a static background
there are also methods that model a dynamic background.

3.1.2 Background Models

Background models[Pic04] [CGPP03| [SG99] are an approach to background subtraction
where instead of a background image a dynamically updated mathematical model is used
to describe the background.

A possible way to model a dynamic background is to use the median of the last N frames
as background. This has the disadvantage that a buffer with the N recent pixel values is
required, also this does not include a precise statistical description and does not provide
a deviation measure for adapting the subtraction threshold[Pic04].

Another method to model the background are Gaussian Mixture Models (GMM)[SG99]
where the probability of observing a pixel is described with a mixture of K Gaussian
distributions. The formula to calculate the probability of observing the current pixel
value is the following[SG99]:

K

P(Xt) = Zwi,t * 77(Xt7 Hit, Ei,t) (3-2)
i=1

{X1,..., Xy} is the recent history of each pixel, w;; is a weight estimation of the ith
Gaussian in the mixture at time t, p;; is the mean value of the ith Gaussian at time t
and o0 ¢ is the covariance matrix of the ith Gaussian at time t. 7 is a Gaussian probability
density function[SG99]:

77(Xt7 K, Z) = * 67%(Xt7'u’t)TE_1(Xt7“t) (33)

D3| =

(2m) 3|22
A problem with background models is ghosting ([CGPP03]), which happens when some-
thing that is considered background suddenly moves away, leaving a hole in the background
model where the real background is currently not known. If bees stand still or move
very little for longer periods of time they can get merged into the background creating
ghosts the moment they move again. Also it is possible that there is more foreground
than background visible for an hour or longer which provides a challenge to build a
background model. A concrete example for ghosting can be given for this thesis. Early
experiments with the test data used the program Ctrax|BRBT09] to process test videos.
Ctrax uses the median of a defined amount of frames as background. In one of the videos
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Figure 3.1: A ghost (red circle) in a background generated with Ctrax

a bee is moving slowly at the same location resulting in being longer exposed than the
background at this location. Therefore this bee gets merged into the background which
causes the background subtraction to be faulty at that location. While Ctrax offers a
tool to manually fix ghosts this is not an option for automated processing. In figure3.1
the background with the ghost is shown.

3.1.3 Image Thresholding

Image thresholding|[GW16] is a technique where a single color channel or grayscale
image gets converted to a binary image by comparing the intensity of each pixel with
the threshold. This technique does not require information from previous frames thus
resulting in low memory usage. Also this means that image thresholding does not need a
buildup time interval like background models. While background models are a generic
approach that can work with many different scenes, image thresholding needs to be
tailored to a specific case. This means that there needs to be a color channel where a
threshold parameter can be found that is able to distinguish between foreground and
background. This parameter is not adaptive and vulnerable to lighting condition changes
over time. This can be described with a simple equation where I is the intensity of a
pixel and T is a predefined threshold:

1 ifI>T

| (3.4)
0 otherwise

Foreground = {

The advantages of thresholding are that it is simple to calculate and the ghosting problem
does not happen. The downsides are the limited applicability as there needs to be a
color channel where the background and foreground are different enough to be separable
by a threshold value. This is dependent on the scene and in usual outdoor scenes
thresholding is not able to segment most objects. In the specific approach for this thesis
these downsides can all be dealt with, as there is a very specific setup and the background
is artificially placed and can be optimized for this use case. Also the setup has internal
LED lights to provide a constant lighting situation. Image thresholding allows to directly
detected objects and is not depending on motion at all.
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3.1.4 Comparison

Background subtraction and image thresholding are methods that require only one other
image or none to perform the processing and are therefore fast to start processing with a
buildup time of only one frame or they can even start on the first frame. A background
model with a temporal median filter or GMM will need a longer time frame to build
up a model because some bees are moving little over longer periods of time especially
when they are clustered together and stuck. This also means that some parts of the
background are not visible for longer time periods. There is no known exact number how
long this time period is, which means this would require longtime test sequences just to
evaluate the time window.

Background subtraction is dependent on a background image that must be taken manually.
Considering one goal is a long time operation such a background image is vulnerable to
changes in the scene like dirt accumulating over time and slight changes in illumination.
Thus it is required to update the background image over time which can not be automated
because it is possible the background is not clear from bees for multiple hours. Therefore
a background subtraction with a static background image is not a viable solution.

With background subtraction already ruled out the choice was between background
models and image thresholding. Background models have difficulties with ghosting which
is a problem that occurs with the test video sequences. There are situations where a dead
bee lies around for multiple minutes without any motion and then suddenly gets carried
away by another bee. Such a situation will very likely cause the dead bee to be merged
with the background and creating a ghost after getting removed. The difficulty with
image thresholding is that a segmentation criteria must be found, specifically a parameter
value that differentiates foreground from background, which is not available in general
and is specific to the scene. With the artificial background it is possible to chose the
background to provide a high contrast to the bees. The scene is very specific: the object
that should be tracked are bees and the background is a plate with homogenous color.
Thus it is possible to find a color channel where a segmentation can be performed with
image thresholding. In conclusion image thresholding is the optimal choice to segment
the bees from the background. The color models chosen for the segmentation were HSV
and HSL.

3.2 Color Models

There are different color models a digital image can be described with. RGB is a common
format for images and stands for red, green and blue and an image is represented by
three channels that each contains the information of one of theses colors. These color
models all use three different values to describe the color. An exception are grayscale
images where the color channels get converted into a single channel containing only the
grayscale information which is a reduction of information.

Since image thresholding is performed on a single channel it is important to chose the
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color channel that gives the best segmentation results. Limiting this choice to the RGB
color model or grayscale images neglects possible better options.

The following color models have been evaluated:

¢ RGB

e Grayscale
e HSV

e HSL

o XYZ

e YCrCb

e CIE L*a*b*

o CIE L*u*v*

Following the results shown in chapter 5 the decision was made to use HSV and HSL
color models for segmenting the bees from the background. The HSV color model has
also been used by Kulyukin et. al.[KR16] to segment bees from the background.

3.2.1 HSV and HSL

HSV and HSL [EP02] are two color models that share a lot of similarities. The abbrevia-
tions stand for Hue, Saturation, Value and Hue, Saturation, Lightness respectively. The
Hue component represents the primary color component and is oriented at the human
color spectrum, mapping the visible colors to a circle starting with red at 0°, passing the
green primary color at 120° and reaching blue at 240°. From 240° to 360° the loop is
closed by passing the purple color tones. Saturation can be defined as the colorfulness in
proportion to the own brightness [Fail3]. A minimal saturation denotes a color without
any primary color wavelength, therefore white, gray or black. A high saturation stands for
high colorfulness. The lighting and value components can be seen as brightness relative
to white[Fail3], with the difference that HSV maps a pure color to maximum saturation
and value, while in HSL the same color is represented as maximum saturation and half
lightness. A maximal lightness stands for white in HSL.

The hue is identical in both models, while the saturation has differences due different
interaction with value or lightness. This color models can be visually represented as
cylinders which show the mathematical interactions, as seen in figure 3.2.

Converting from RGB to HSV and HSL is done using the following equations|GW16]:

R, G and B are the channels from the RGB model and MAX and MIN are the highest
and lowest value out of R, G and B.
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(a) HSV (b) HSL

Figure 3.2: The HSV and HSL color models visualized as cylinder!
! Image source: https://en.wikipedia.org/wiki/HSL_and_HSV

0, if MAX = MIN
60° * (0 + sran—agy): fR=MAX
60° % (2 + ya—nyw), ifG=MAX
60° (4 + yrrsmw): ifB=MAX

Hue =

The hue is an angle between 0° and 360° and is identical in both HSV and HSL.

S {0, ifMAX =0
HSV = _ .
MASZMIN - i fMAX #0
0, ifMAX =0
SHsr =10, ifMIN =1

MAX—MIN
T AXTMIN=T]  ©lse

V= MAX
; _ MAX + MIN
e

(3.8)

(3.9)

A specialty in these color models is that hue and saturation offer a robustness to subtle
lighting changes in a scene because this will mainly affect lighting or value and leaves the
hue and saturation intact. This is an important advantage to RGB where a brightness

increase or decrease is reflected in all color channels.

In figure 3.3| the red channel is compared with Hue and HSV saturation to demonstrate

how the bees are easier to distinguish from the background when using HSV.
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(a) Red color channel (b) Hue Channel

(c¢) HSV Saturation Channel

Figure 3.3: Comparing the red color channel with Hue and HSV Saturation channels

3.3 Image Processing

While thresholding provides a segmentation between foreground and background the
segmentation can still be enhanced by further processing. After thresholding a big problem
is the remaining noise visible as single white pixels or small white blobs consisting of a
few white pixels.

Also the segmented bees have holes because of the black parts of the bee body not
exceeding the threshold value. These holes should be filled to closely match the shape of
a bee body, which is roughly an ellipse.

By further processing the initial segmentation after thresholding the segmentation from
bees from the background is improved, this is shown in figure3.4

g*r ;’ Me.di.arv1 Filter: f ’ Morphology:.{ '

%

SASSFSSsENSeRRESEATARERLaREEE: | sssscssqeces

Figure 3.4: Image processing applied to initial segmentation

29



3.

METHODOLOGY

30

3.3.1 Median filter

A median filter[GW16] calculates the median value of the neighborhood of a pixel and
returns this value as result for it. The neighborhood is defined as the kernel size which is
usually a square of odd size. In the case of a binary image this means the median of a
pixel is only white when more than half of the other pixels in the neighborhood are also
white. This removes all single white pixels and small white blobs that are not connected
to one of the bigger blobs. A lot of dirt in the background image that is still present
after thresholding can be removed by median filtering if the kernel is large enough.

3.3.2 Morphology

Mathematical morphology[Ser83] can be used to retrieve shape characteristics out of
image data. Opening is a morphological erosion followed by dilation.

Erosion(©) can be defined as[Ser83]:
AcB={zcEYz+bc Aforeverybe B (3.10)

Dilation(®) can be defined the following[Ser83]:
A®dB={cecENlc=a+bforsomeac Aandbe B (3.11)

A and B are sets in N-space (EV) and subsets of EV, a and b are N-tuples of element
coordinates.

In the case of image segmentation the image is A and B is a structure element. In this
thesis the image is a binary image of the initial bee segmentation. The structure element
is a disc to retrieve the elliptical shape of bee bodies.

After filtering the image can still contain some erroneously segmented blobs caused by
dirt and the segmented bee bodies might still be fractured into a few parts or contain
holes. This situation can be improved by applying morphological opening to the image.
The erosion step removes most blobs that were caused by dirt and only leaves the centers
of the bee bodies. The dilation step fills remaining white pixels which are the bee bodies
to elliptical shapes resulting in blobs that accurately resemble the bee bodies. The size
of the structure element must be appropriately chosen. If it is too big the bee bodies get
removed. On the other hand a too small structure element does not remove big noise
blobs and might leave holes in the bee bodies. Also the bee shape is not elliptical in that
case but consists of multiple smaller circles. The correct size of the structure element
depends on the size of a bee in the processed frame. In figure 3.5 the erosion and dilation
steps are visualized on a segmented bee.

3.4 Tracking

In the task of simultaneously counting all honey bees that enter or leave an image there
needs to be a way to retrieve their motion. Tracking the bees while they are visible allows
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Figure 3.5: A segmented bee (left), the result after erosion(middle) and the result after
dilation(right). The green and red discs are the structuring element that has been used.

to reconstruct their trajectories and in conclusion count if they have entered or left the
hive.

Tracking is the process of estimating the trajectory of an object on the image plane while
it moves around the scene[Y.JS06]. This means the known location of an object in a
frame is updated to the position of the same object in a future frame. Tracking is used
in many different computer vision tasks|[CRMO03][HHDOQ].

The main difference in tracking algorithms is the way in which an object is represented.
This includes which image features can be used and how the shape or appearance of an
object can be modeled[Y.JS06].

3.4.1 Detection vs Tracking

Tracking methods need an objected detection to either initially detect an object and
then follow it or a detection in every frame with a correspondence calculation between
detections in different frames[Y.JS06].

Detection and tracking can be differentiated into two distinct processes. Detection can
be defined as process of obtaining the location of an object in the scene without further
information about previous or future locations being available. This is required for this
thesis since no information about location or the amount of bees is known. Tracking can
be seen as the specific process of updating the location of a detected bee to the position
of the same bee in the next frame. This means tracking refers to algorithms that update
an already known position of an object to a newer position in the future without having
to newly detect the object. The point of this kind of algorithms is that detecting is often
computationally more complex or has to be done manually. So only in a few frames
objects are detected while in frames in between tracking is used to follow the motion of
the object over time.
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For tracking bees at the hive entrance detection has to happen very frequently as new
objects may enter or exit the area every frame. This means it will be required to run a
detection every frame. This concludes that detection has to be focused on and tracking
can only work when a detection is already done. Also it is required to simultaneously
track all bees currently visible in the video.

3.4.2 Position Matching

With a frequent detection of every frame a way to track the bees is to match the detected
positions of two adjacent video frames to pairs. While this seems like a trivial task there
are special cases that have to be considered. In an easy example both frames detected
three bees and every position gets matched with the position closest in Euclidean distance
in the other frame. This principle is visualized in figure3.6

Figure 3.6: The bee detections from the previous frame get assigned to the nearest
detection in the next frame.

Ideally matching the nearest neighbor is not ambiguous and the matching is finished,
but this is not always the case since it is possible that two bees in one frame are closest
to the same bee in the other frame. This also assumes that both frames have detected
the same number of bees and these are the same bees. It is a common occurrence that
bees enter or leave the area so a bee that was detected in the previous frame can be
absent or a new bee can appears in the detection. To solve this problem a maximum
tracking distance is defined. This is dependent on the frame rate and the size of the bees
and should be the maximum distance a bee will move between two frames. In the test
videos which are all between 20 and 30 frames per seconds a value of 2/3 of the size
of a bee showed to be a value that not causes loss of tracks for the maximum tracking
distance. This allows to filter out most new detections or lost bees without losing track
when a bee moves too fast. So every bee that has no other bee closer than this maximum
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tracking distance will not be matched and is considered as new or lost. Bees in the older
frame that cannot be paired are considered as lost, which means either they could not be
correctly segmented or they left the visible area. Unmatchable Bees in the newer frame
are considered as new bees that entered the area.

An example of an ambiguous situation is visualized in figure The yellow arrows show
the motion from frame N (red) to frame N+1 (green), but when trying to assign the
nearest neighbor both green spheres in the upper left corner are nearest to the upper left
red sphere.

Figure 3.7: Detections in frame N (red) and frame N+1(green) with the create an
ambiguous situation when trying to assign the nearest neighbor.

Since not always a non ambiguous matching is produced a more sophisticated approach
is needed. The state of the art approach to this problem is the munkres algorithm.

3.4.3 Munkres Algorithm

The Munkres algorithm [Mun57][Kuh55], also called Hungarian algorithm, is an algorithm
that produces an optimal matching for a bipartite graph. The problem of matching the
detected objects in two frames can be seen as a bipartite graph matching problem. Every
object should get matched to an object in the other frame and each matching has a

weight. As weight between two objects in different frames the Euclidean distance is used.

While this algorithm produces an optimal matching on a graph, there are still some flaws
when used to match the bees of two adjacent frames, as an optimally matched graph
alone is not the needed solution. The algorithm always tries to match nodes thus even
two points far apart will get matched if there is no other partner because the algorithm
treats not matched nodes as worse. In this project every frame new bees may appear or
leave therefore even when two adjacent video frames contain the same number of bees the
wanted solution is only to match the points which are close to each other. To overcome
this weakness of the algorithm every bee that has no possible matching partner within
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the defined maximum tracking distance is filtered out prior to finding the matching. This
bees are considered as new or lost bees respectively. This does not fully solve the problem
but avoids many problematic cases. Even though when all bees have a potential partner
within the maximum distance it still is possible for the algorithm to produce a result
where two bees get matched that are farther apart than the maximum distance. Such a
matching will be broken up and both bees are considered to have no partner. With these
tricks the weaknesses of the algorithm for this application can be countered.

An example of a problematic situation are shown in figure3.8. The detections from
frame N (red) got assigned to the new detections from frame N+1 (green). While in the
left upper corner a case that would be ambiguous with nearest neighbor matching gets
resolved by the munkres algorithm on the right side two detections got assigned that are
far apart. Such a situation happens when a bee leaves the visible area in frame N and
a new bee enters somewhere else in frame N+1. If such detections get filtered out this
assignment does not happen.

SN

Figure 3.8: Detections in frame N (red) and frame N+1(green) get assigned with munkres
algorithm. Detections far apart also get matched

3.4.4 OpenCV Tracking

Another idea to improve the matching is to not just use the position of the last frame but
to predict the new position in the next frame and match them with the new detections.
A possible way to predict the new position is by using a tracking algorithm provided
by OpenCV. Out of the previous and current frame a tracking algorithm can track the
position of a region to where it moved in the next frame. This is performed by using the
bounding box of a detected bee as region to be tracked. The tracking algorithm then
updates this bounding box to a new position where the same object is supposed to be
located in the next frame. In theory this allows a more accurate matching as the new
detected position and the predicted new position should be very close.
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The practical application did not provide any improvements though. Two tracking
algorithms available in OpenCV (Median Flow|[KMMI10] and Kernelized Correlation
Filter[HCMBI12]) have been tested and but there was no definite improvement in the
counting results, only minor changes occurred that were not always improvements. The
runtime of the whole program got a lot worse by using OpenCV trackers and increased
by over 200%. This lead to the conclusion that trying to improve the program by using
sophisticated tracking algorithms is pointless as the improvements in accuracy are minor
or non existent and the runtime suffers severely.

3.5 Clusters

When using thresholding and applying filtering it is possible to reliably segment bees
when they are not located in close proximity. This means as long as no segmented bee
blob in the binary image touches another blob each single bee can be detected. But
when a lot of bees are visible at the same time, the area gets crowded and bees begin to
touch each other and form clusters. The solution to this problem is to apply the k-means
algorithm. The idea of using the k-means algorithm to split bee clusters was from Tu et.

al 2016[THKATH).

Figure 3.9: Example of a frame were clustering needed to be countered

Figure [3.9 shows an example of a frame that needed clustering to detect the bee centers.
The white contours show areas that were one region after segmentation but with an
area that exceeds the threshold of belonging to a single bee. After applying the k-means
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algorithm the different bee centers could be detected and the bounding boxes of each bee
are estimated from the results of the k-means clustering.

3.5.1 K-Means

The k-means algorithm [LIo82][AV07] is a cluster algorithm that splits an area into k
cluster. K is a parameter which stands for the number of clusters and has to be known
previously. This is the biggest weakness of the k-means algorithm.

The k-means algorithm is a simple but effective solution to a clustering problem when
the amount of clusters is known. The algorithm works the following:

1. Choose k initial cluster centers
2. Assign each point to the closest cluster center

3. For each cluster calculate a new cluster center that is the center of mass for all
points in this cluster.

4. Repeat steps 2 and 3 until there is no more change, or the change is below a defined
threshold.

The segmented bees are roughly the shape of an ellipse and the setup restricts the bees
from overlapping. This means that the number of bees in a cluster can be estimated
by dividing the cluster area through the average area of a bee. The average area of a
bee must be defined and the shape of a bee is expected to be an ellipse with 2:1 ratio
of the primal axes. This allows to calculate the number of bees in a cluster. A precise
segmentation that matches the bee body contours results in the correct number of bees.
K-Means optimizes the individual cluster centers returning center points for the bees and
also each pixel is assigned to one of the k clusters allowing to estimate the bee positions
by fitting an ellipse around the pixels.

3.6 Ground Truth data

To evaluate the accuracy of the used algorithms it is mandatory to have ground truth
data for test video sequences as the accuracy of the algorithm can not be quantified
otherwise. Since this data is not available prior to this work, it must be created. To label
such a video a tool that assists the user in the process is absolutely necessary. Such a
program was found in Vatic.

3.6.1 Vatic

Vatic [VPR13| stands for Video Annotation Tool from Irvine, California and was released
as a program that allows to publish the annotation tasks to online platforms where they
can be performed by other people compensated with money. While this will become too
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expensive and the quality of outsourced annotations is expected to be lacking, Vatic still
can be used as offline tool to annotate videos and is quite helpful in this process. The
user has to place bounding boxes around the objects that should be tracked and then
update them after a few frames and the tool handles the interpolation.

Annotating videos with Vatic is still time consuming, a short video sequence of around
13 seconds with 143 different bee tracks (which can be considered as an extreme case)
required over 8 hours of time to annotate. Because of the high effort required the amount
of videos that were annotated that way are limited. In total 197 seconds of video data
have been manually annotated with vatic. The advantage is that these annotations are
of high quality and expected to have close to zero errors. An example of a very difficult
annotation task is shown in figure 3.10.

Annotate every object, even stationary and obstructed objects, for the entire video. @ Instructions + New Object

bee 138 AR

| Outside of view frame

W1- | Occluded or obstructed
| bee 137 [CRCR

" Occluded or obstructed
| bee13s @ g
4 Outside of view frame

| Occluded or obstructed

1« Rewind > Play

# Options + Save Work

Figure 3.10: Vatic

3.6.2 Manual counting

Because of the high effort of annotating videos and since evaluating only the count
does not require ground truth of the trajectories a few 1-2 minute videos where counted
manually to provide a rough estimation to compare to. Counting the bees that way is
a very difficult task for humans thus this data is expected to be less accurate than the
labeled videos. An error rate is estimated of up to 10%. Because of the lower accuracy it
is still important to have the fully annotated videos available whose error is estimated to
be less than 1%.
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3.6.3 Possible Error Cases

While all the algorithms presented it also is necessary to discuss what kind of errors
can happen during the tracking and counting and how to deal with them. This includes
methodological errors for the tracking, matching or counting.

Incorrect matching

It is possible that the matching stage, even when using the munkres algorithm, does not
assign the bees correctly. A case where this can happens is when two bees pass each
other very closely and the two bees touch in the binary segmented image on their sides.
When this happens it is possible the merged blob appears similar to a single elliptic
shape instead of two touching ellipses. When this happens k-means might separate these
two bees incorrectly which causes the detected positions to be wrong which in conclusion
increases the chance the matching will be incorrect. As long as the framerate is high
enough to not cause mismatches by fast moving bees the assignment will be correct.
But errors occur because of incorrectly detected bee centers. This is dependent on the
image quality of the recorded data. The cases where two bees touch each other and then
cause the tracker to swap the bees is rare. From manual observations of the test data
the influence of this problem is estimated to be smaller than 1% on the overall counting
accuracy.

Losing Track

Another possible problem that can occur is that a bee gets lost while being in the
transition zone for a few frames because of just barely not matching the criteria to be
segmented. This also depends a lot on the image quality and parameters. If a bee gets
lost this means that it will be a new detection shortly afterward which causes that it is
no longer known where the bee entered the inner zone. This decreases the accuracy of
the counting algorithm.

To counter this problem a newly detected bee in the inner zone of the image is checked
with positions of recently lost bees. If a lost bee exists in close proximity the probability
is high that it is the same bee. In such a case the newly detected bee is considered to
be the same bee that recently got lost instead of a new detection. Since bees can only
enter or exit the tracking area at the top or bottom a bee that gets newly detected in the
inner zone has to either been lost or not detected at all. Bees not getting detected does
occur very rarely, in the test sequences it does not happen at all when the parameters
are suitable. So it is safe to assume that when a newly detected bee is close to a recently
lost bee that it is the same bee. The time window for how many frames a bee will be
recovered is specified by a parameter and a value between 3 and 5 seems reasonable as
most of the time bees only get lost for 1 or 2 frames during the test sequences.

Recovering track losses over a few frames does improve the counting accuracy as bees
that can be recovered do not lose the information on which side they entered and the
counting can be sure when the bee exited or entered.
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Bee walking back in

When a bee walks in the transition zone and walks out on the other side it will be counted.

If the bee then decides to not walk out of the camera view but back into the transition
zone and exits it on the same side it entered it at first it will be counted as both a bee
walking in and a bee walking out.

When the track is not lost this error could be corrected by reducing the count when an
already counted be walks back in, but it only does make a difference if the bee passes
both lines two times. If a bee that got counted walks back across one line but does not
pass the second line the count is correct. Manually observing the test data for this kind
of error lead to the conclusion that it is not worth the extra effort as the occurrence of
this problem is rare and happens in less than 1% of all counted bees.

Another reason not to resolve such cases is that it could interfere with the next problem,
the wrong U-turns, decreasing counting accuracy of the algorithm instead of improving
it.

Wrong U-turn

When a bee leaves the tracking area and a new bee gets detected next to it in the next
frame the matching algorithm might assign this to the same bees resulting in a bee track
walking a U-turn and moving back in. While in reality this are two different bees they
will incorrectly get merged together.

The counting algorithm does not get influenced by this error since a bee at the top or
bottom border has already been counted and there is no difference to a new bee walking
in or an already counted bee walking in again.

The best solution to this error and also the previous error with bees walking back in is
to not handle them as the influence on the counting accuracy is insignificant.

With the different options evaluated the decision for the actual implementation was
made. The tracking is done by matching the center points with the help of the munkres
algorithm. The center point of each bee is detected by image thresholding in the HSV or
HSL color model and further processing by applying a median filter and morphological
opening. Clustering is countered by using the k-means algorithm.
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CHAPTER

Implementation

The software solution was implemented in C++" 11 and with OpenCV?| version 3.2. For
testing purposes a GUI was created with the QT Framework®, but the processing part is
not dependent on QT.

4.1 Segmentation

Segmentation was implemented by segmenting each frame of a video with binary thresh-
olding and further enhance the image with median filtering and morphological opening.
For each step in the segmentation stage of the algorithm the result is shown on the frame
in figure 4.1| as example.

4.1.1 Thresholding

Thresholding transforms a single input frame into a binary image with black as background
and white what is supposed to be a bee. But before this thresholding can be performed
the first task is to convert the RGB color image to a different color model where the
segmentation should be performed. The evaluation |5 showed that HSV and HSL provide
the best results. A dataset where the glass plane already accumulated a lot of dirt,
resulting in less saturated images gave better results with the hue than the saturation.

After the image is converted into the chosen color model and the color channel is extracted
the initial step of the segmentation is performed by converting it into a binary image by
applying a threshold value. This threshold value is a parameter that must be defined
depending on the setup or dataset. The result of this stage is a binary image that roughly

"http://www.cplusplus.com/ (Accessed: 24. 09. 2018)
https://opencv.org/ (Accessed: 24. 09. 2018)
3https://www.qt.io/ (Accessed: 24. 09. 2018)
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Figure 4.1: Frame that will be segmented

segments the bees from the background but still contains noise and holes. Also smaller
white pixel blobs that are not bees might appear in the image. Those are mostly caused
by dirt in the scene. LED light reflections at the top and bottom of the image also get
segmented, but those areas are unimportant for the tracking and counting as at least
a strip of the length of a bee has to be ignored at both the top and bottom to provide
enough area for the bees to fully enter or leave the image. The left and right image
borders are aligned with the sides of the area where the bees can move and therefore do
not allow bees to be partially occluded.

Figure 4.2: The saturation channel (HSV) of the frame that will be segmented

In the example image (4.2) the bees are well distinguishable from the background in the
saturation channel for a human. This suggests a segmentation will be accurate which is
shown in figure (4.3).

After thresholding like seen in figure 4.3 the bees got segmented from the background
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Figure 4.3: The binary image of the example frame after thresholding

but some minor noise and small blobs from the LED lighting are still present. Also there
are small holes present in the bee bodies in the binary image. These artifacts will be
removed in the further steps.

4.1.2 Image Filtering

The result of the first segmentation step contains holes and the bee blobs are fractured
and therefore the segmentation of the bees contains inaccuracies. The first filtering step
which is the application of a median filter tries to counter the noise but also fills small
holes. The median filter calculates the median of each pixel’s neighborhood and if this
value is 1 the resulting pixel is white, otherwise it will be black. Small noise of single
white pixels or blobs with a few connected white pixels get completely eliminated by the
the median filtering. The size of the blobs that can be removed is dependent on the filter
kernel size. This filter kernel size is a parameter that must be defined. The choice for
this parameter is both dependent on the dataset but also on the size of the bees in the
image. The goal for the kernel size is that noise and the legs of the bees get removed but
the main body parts are kept intact. The size of the median filter kernel has to be lower
than the size of the structure element for the morphology step. The median filtering has
a significant influence on the runtime (shown in chapter [5) depending on the filter kernel
size.

The application of the median filter (see figure 4.4) removes noise from the image but
also removes the legs from the bees which is an improvement since the tracking focuses
on the bee bodies. The remaining artifacts in the image are blobs caused by the LED
lights and sometimes also small holes in the bee bodies. In the example image (4.4) there
are no holes in the bee bodies after the median filtering but it might occur in datasets
with lower image quality.

After the median filter has been applied the image should contain close to zero noise and
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Figure 4.4: The segmented image after median filtering

only fractured parts of the bee bodies should be visible. To finish the segmentation it is
required to fill all holes between close blobs and merge them together to resemble the
roughly elliptical shape of a bee body. The morphological opening operation achieves
this. Morphological opening consists of an erosion step followed by dilation. The erosion
step removes the outer parts of the remaining blobs only leaving the inner central parts.
Remaining noise gets eliminated by this process. The parts that are still present after
erosion are expected to be bee body parts. As structuring element for this task a disc
is used as the bees are elliptically shaped and this will result in round shapes after
dilation. The size of the disc is mostly dependent on the size of a bee and evaluation
showed that around 60% to 70% of the width is a value range that allows to get the
described segmentation consisting only of the bee bodies. When the remaining blobs do
not resemble an ellipse but clumps of circles are visible the structuring element is too
small. If bees get completely removed it is too large.

In the dilation step the remaining parts get filled with the disc shape resulting in roughly
bee body sized ellipses. This completes the morphological opening operation. After this
step the remaining white blobs are the bodies of the bees in the scene.

As shown in figure 4.5 the morphological opening removed the remaining artifacts that
persist after median filtering and only the bee bodies are left. All small blobs got
eliminated and only the bigger blobs remain which are the bee bodies.

To compare all the steps the intermediate images have been put together to one image in
figure 4.6. The threshold image is the red channel, the median filter result is the green
channel and the result of the morphological opening is the blue channel. Every color
containing blue is part of the final result which includes white, cyan and purple.
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Figure 4.5: The segmented image after morphological opening
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Figure 4.6: The debug image with the three segmentation steps put together as color
channels. Thresholding (red), Median filter (green) and Morphological Opening (blue)

4.1.3 Bee Extraction

After the segmentation step the locations of the bees need to be extracted from the binary
image and transferred into data structures for the counting and tracking algorithm to
work on. The tracking and counting part does not need image data anymore and only
requires the center points of each bee in the scene in the 2-dimensional Euclidean plane.
The pixel positions are used as coordinates.

The first step to retrieve the locations is to find all the blobs in the image. This is done by
using the findContours method from OpenCV. From the contours the center points
of the bees can be calculated but the special case of multiple bees forming a cluster must
be considered. Each contour with an area below a certain threshold will be considered
as single bee detection. The threshold is calculated as 1.25 times the average bee area,
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which is calculated as the ellipse area from two parameters of this program: the bee
width and length in pixels. The value of 1.25 is used to leave room for bees being slightly
larger than average. Each contour with an area lower than a third of the average area
will be filtered out as incorrect detection.

All the single bee detections will get added to the list of detected bees in this specific
frame and will passed to the matching stage.

Bee Clusters

Unfortunately not all bees are easily extractable and some bee blobs may touch and
form bigger clusters. These clusters need special treatment to extract the single bee
positions. The algorithm used to split these clusters is k-means. But to use k-means the
k-parameter must be found first. This parameter is calculated by dividing the area of
the blob through the average bee area and will be rounded up. After k is calculated the
k-means algorithm is run to retrieve the center positions of the bees in the cluster. These
resulting positions are then treated equally to the single detections.

4.2 Bee Matching

After the detection of the new bee locations they are passed to the matching stage. These
positions have to be matched with the ones from the previous frame to assign them
to the correct bees. First all bees that have no possible matching within a maximum
tracking range parameter are filtered out as they will end as either new bee or lost bee
respectively. All other bees now get assigned to the bee with the closest distance in the
other frame. If this assignment is unique the matching is finished.

4.2.1 Munkres Algorithm

In some cases the simple logic of assigning bees to the closest bee in the other frame
produces ambiguous results. To solve such situations the munkres algorithm is used. This
algorithm produces an optimal bipartite graph matching for the bee assignment. Since
the algorithm always wants to match no matter how high the weight is, all assignments
that have a larger weight than the maximum distance are discarded. These bees are
considered as not having a matching partner in the other frame. After this step the
matching stage is always finished.

4.2.2 Lost bees

When a bee that was present in a previous frame can not be matched to a new detection
it is considered as lost bee. This means it either left the visible area or the segmentation
failed to capture it. If a bee gets lost at the upper or lower part of the image which is
outside of the counting area it does not matter and it likely just left but when a bee gets
lost in the middle of the image there has to be a segmentation error. These bees are kept
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in a separate lost bees list for a predefined low number of frames. After the maximum
amount of lost frames is reached it will be discarded. When a new bee is detected by the
algorithm all lost bees are checked if they are close to the position of the new detection
and if this is the case the closest lost bee gets assigned to the new detection and the bee

is put back into the active list. The positions from the missing frames are interpolated.

The radius for the assignment to a lost bee is the same as the maximum tracking distance
parameter used in the matching stage. The goal of the lost bee recovery is to deal with
short detection losses of around 1 to 3 frames which sometimes occur. If a bee that gets
lost for a short time is not recovered the track is lost and the counting algorithm is no
longer able to determine from which side the bee entered.

4.3 Counting

The first and simplest idea to counting is by putting an imaginary horizontal line in the
middle of the image and check every frame if a bee passed this line. The line is passed
when the last two positions lie on different sides of the line. While this works in theory it
is prone to errors as the detection is not perfectly accurate and the bee center might move
slightly between frames even if the bee is standing still. Also bees are not motionless
and still move their body slightly even if they hold their position. This means that a bee
standing at the line causes a lot of erroneous counts. Also another problem that can not
be handled that way is when a bee walks in and passes the line then turns around and
walks back out. Such a case should not cause any counting but with one line counting
the result will be 1 in and 1 out.

To overcome those difficulties the solution is to put two horizontal lines in the image that
split the recorded area into three different zones:

e Upper zone

e Transition zone

e Lower zone
The two lines, the upper line and the lower line, separate these zones and a bee should
only be counted when both lines are passed in succession. To achieve this it is required
to store a state for each bee where it entered the transition zone. The following states
are used by counting algorithm:

e QOutside

e Entered upper

e Entered lower

e Entered unknown
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Every bee that is not in the transition zone and therefore located in either the upper or
lower zone is labeled with the state Outside. When a bee passes the upper line from
the upper zone to the transition zone it will get the state Entered upper and when
a bee passes the lower line from the lower zone to the transition zone it gets the state
Entered lower.

When a bee with the state Entered lower or Entered upper passes the same line as
it has entered the state is set to Outside without increasing any counters. This happens
when a bee runs a loop and exits the same side it entered.

Every bee that is located in the transition zone in the first frame or that gets detected as
new bee while in the transition zone will be labeled with the state Entered unknown.
The program has no knowledge about where these bees have entered the zone.

When a bee passes the lower line and has the state Entered upper the counter at the
lower line is incremented and the bee’s state gets updated to Outside. When the bee
passes the upper line and the state is Entered lower the upper line counter is increased
and the state is updated.

The only case that is left is when a bee with the state Entered unknown passes one of
the counting lines. Since it is not possible to know where these bees entered they will be
counted but a different counter is used for them on both lines. This means the counting
will be separated into three different types per line:

e Sure count
e Unsure count

e Total count (Sure count + Unsure count)

Bees where it is unknown on which side they entered will be added to the unsure count.
Other counting events will increment the sure count. The reason to split the counting
is because the unsure count value is more likely to contain erroneous counts. This is
because these unsure counts happen when the bee is lost in the transition zone which
happens when incorrect number of bee centers get detected by the segmentation stage.
Having two counting values allows to use that information to self diagnose the quality of
the counting algorithm which is explained in section4.3.2.

To conclude this the program has to decide between the following counting events:
e COUNT_NOTHING
causes no counting

e COUNT_DOWN
increment the sure count of the lower line
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e COUNT_UP
increment the sure count of the upper line

e COUNT_DOWN_UNSURE
increment the unsure count of the lower line

e COUNT_UP_UNSURE
increment the unsure count of the upper line

The whole bee state and counting can be described with pseudocode |4.1.

Algorithm 4.1: Updating bee states and counting

1 if Bee passes upper line from inside to outside then
2 if bee state is Entered__Down then

3 set bee state to OQutside

4 return COUNT_ UP

5 else if bee state is Entered Unknown then

6 set bee state to OQutside

7 return COUNT UP_ UNSURE

8

9

else
set bee state to Outside
10 return COUNT_ NOTHING
11 else if Bee passes upper line from outside to inside then
12 set bee state to Entered__upper

13 return COUNT NOTHING
14 else if Bee passes lower line from inside to outside then
15 if bee state is EnteredUp then

16 set bee state to OQutside

17 return COUNT DOWN

18 else if bee state is Entered Unknown then
19 set bee state to OQutside

20 return COUNT DOWN_ UNSURE

21 else

22 set bee state to Outside

23 return COUNT NOTHING

24 else if Bee passes lower line from outside to inside then
25 set bee state to Entered_ lower

26 return COUNT NOTHING

27 else

28 return COUNT NOTHING
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4.3.1 Multiple Counters

Another weakness that can be observed by using two lines is that they are arbitrary
placed into the scene. There is need for enough space to the borders so the bees are fully
visible and reliably detected and the transition zone should be as large as possible to
avoid counting of bees that only run a loop. But then there is no reason why to put the
line at which exact location. A lot of errors in counting are dependent on the location
of the counting line. For example a bee close at the line gets incorrectly assigned to a
position on the other side of the line or when a bee runs a loop and returns the size of the
transition zone determines if it gets counted or not. When the zone is small it is more
likely a bee runs a loop while passing both lines. Two overcome this problem a solution
is to use multiple counters with different lines at the same time. This is possible without
noticeable performance impact because all of the performance heavy segmentation stage
is shared between all counters. The biggest difference is that for each bee now an array
of states with one value for each counter is stored instead of only a single state. The
state is not memory intensive since there are only 4 different values.

But how many counters should be used? There are still the two criteria points that are
needed to be fulfilled for the counting line placement. First there must be enough space
to the upper or lower border so the bees are fully visible, also in the test videos it can
be observed that in some cases the image quality is locally different. At the top and
bottom borders there are LED lights for illumination which causes the segmentation
to erroneously detect reflections as bees. Second the inner zone should be as big as
possible to avoid errors by bees running loops. Placing the lines at 25% and 75% of the
image height is a compromise between enough distance to the border and a big transition
zone. When using multiple counters their lines will now be placed in similar locations,
specifically 5 counters in total are placed at 23%, 24%, 25%, 26% and 27% of the image
size and 73% to 77% for the second line. Using many more counters does not improve the
counting result. If the lines are too close to each other there is a high chance that errors
that happen at one counter will occur on the other too. Also putting them too close to
the border or making the transition zone too small increases the likelihood for errors.

4.3.2 Analyzing the Results

As explained in the previous subsection (4.3.1) there are two different counters: the sure
count and the unsure count. From these two values it is possible to calculate a sure

count ratio.
. sure__count
sure count ratio = (4.1)
sure__count + unsure__count

This sure count ratio allows to get information about how well the algorithm performed
in a specific time interval or on short test sequence. This can be used to self diagnose
the accuracy.

When multiple counters are used there also needs to be away to calculate the final
counting result. There are two options that have been tried and evaluated:
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e Median

o Weighted Average

The first solution is to use the median of all counters for each line. This suppresses
extreme values if at one of the line a lot of erroneous counts happened. A case where
this can be relevant is when a big cluster is located at the counting line as clusters make
bees harder to correctly segment and track.

The second solution is to use a weighted average where each counter gets weighted by
it’s sure count ratio. This factors in an accuracy estimation for each single counter
but still let everything have an influence opposed to the median which would remove a
single high or low value.

As shown in the evaluation (chapter 5)) the difference between those two results is 0.32%
or less in the error rates of datasets 1,3 and 4. On the overall error rate the weighted
average always performed equal or better than the median but the difference is small.

4.4 Parameters

There a multiple parameters that are required by the segmentation and matching algo-
rithm to work on a specific dataset or recording setup.

e VIDEO_SCALE
This parameter is used to downsize the video prior to all processing to increase the
performance at the cost of image quality. The number of pixels scales quadratically
with resolution scaling. This heavily reduces the required memory of the segmen-
tation stage and all image filters are faster with fewer pixels to calculate. The
evaluation in chapter |5 shows some detailed results on how the resolution affects
quality and runtime.

e BEE_SIZE_X and BEE_SIZE_Y
These two values define how big a bee is on average in the video. The x size is
expected to be the width and the y size the height of a bee. These two values are
used to calculate the average bee area by using x and y as the two primary axes of
an ellipse.

e COLOR_SPACE and COLOR_CHANNEL
These two parameters are used to define which color model and channel are used
for the segmentation. The used values for this are HSV Saturation, Hue and HSL
Saturation. This has to be chosen depending on the dataset or setup. Chapter 5
contains information on what color model works best with each dataset.

e BINARY_ THRESHOLD
This defines the threshold value used for the binary image conversion in the
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segmentation stage. The value is an integer between 0 and 255 and has to be chosen
depending on the dataset or recording setup. A different color channel also requires
a different threshold value. This parameter should be chosen so that most parts of
the bees get segmented but the background does not.

e MEDIAN_FILTER KERNEL

This parameter defines the size for the median filter kernel, it has to be an odd
number larger than 1. For example 3 will create a filter kernel for a 3x3 neighborhood.
The median filter removes noise from the image and it has shown that a large filter
kernel removes more noise, but it should not bee too large and not exceed the size
of the morphology structure element. A too large filter kernel can remove bees.
Also increasing the filter kernel size has an impact on the runtime. The exact size
is dependent on how big a bee is and on the quality of the images. When there is a
lot of dirt in the image a larger filter kernel is better at removing it.

e MORPHOLOGY_DISC_SIZE

This parameter defines how big the structure element disc for the morphological
opening is. The size of the disc is dependent on the size of a bee in the video and it
showed that ideally the size is between 60% to 70% of the width of a bee in pixels.
The exact value for optimal results depends on the dataset. The goal of applying
morphological opening is to remove remaining noise blobs and to fill out the bee
blobs to retrieve the elliptical shapes of the bee bodies. If the disc is too big then
bees might get fully removed, if it is too low then a bee might be fractured into
smaller unconnected blobs or it is not a single ellipse but a clump of circles, which
causes the detection to work less accurate.

o MAXTMUM_TRACKING_DISTANCE

This value is the maximum distance in pixels how far a bee can move between two
frame. This value is needed to break up erroneous assignments in the matching
stage and also defines the maximum distance for lost bee recovery. This value is
dependent on the size of a bee and the framerate. In all test videos the framerate
is between 20 and 30fps and around 2/3 of the height of a bee is a reasonable value
to avoid errors but not lose tracking when a bee moves fast. If this value is set too
low then a fast moving bee can no longer be tracked if it moves further than this
value between two frames. If the value is too high incorrect assignments are more
likely to happen.

4.4.1 Finding parameters

While some parameters like the bee sizes have to be chosen depending on the video setup
and the maximum tracking distance has to be chosen depending on framerate and bee
size, the segmentation parameters are more difficult to chose. Especially the color model,
color channel and segmentation threshold can not be decided by just analyzing the sizes
and framerate.



4.4. Parameters

The idea is to define what the segmentation should look like and then try all possible
values to obtain the best parameters. At the beginning one frame or a few frames have
to be taken from a dataset and manually segmented to a binary image using an arbitrary
image manipulation program. This defines the target segmentation. Now all different
color channels are tested with all possible threshold values. The threshold is limited to
the 0-255 range.

Another problem is how to evaluate how close a segmentation is to the target image. To
obtain a comparable result the Fl-score is used. The whole comparison is treated as a
two class discrimination problem per pixel. The target frame is the ground truth and each
pixel of the segmentation is then evaluated as True Positive (TP), False Positive
(FP), True Negative (TP) or False Negative (FN). True Positives are pixels that
get segmented as white and also are a white pixel in the target frame. False Positives are
white pixels that are black in the target frame. True Negatives are pixels that are black
in both images and False Negatives are black pixels that are white in the target frame.
While True Positives and True Negatives occur when the segmentation is correct, False
Positives mean that background gets segmented as bee while False Negatives mean that
a part of a bee gets erroneous segmented as background.

From the amount of TP, TN, FP and FN for the whole image the F1 score is calculated.
The F1 score is the harmonic average of precision and recall [Sas07]. This measurement
takes both cases of wrong segmentation (FN and FP) into account which is important
since both segmenting too much and segmenting too little reduce the accuracy of the
algorithm. This test only evaluates the initial segmentation threshold but this step is
important because further processing depends on it and also the parameter is independent
of bee size and framerate. Evaluating median filter and morphology the same way would
increase computation time by a lot. Also thresholding is a faster operation than median
filtering and morphological opening especially with larger filter kernels or structure
elements.
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CHAPTER

Evaluation

Evaluation is the process to quantify the results of the algorithm. This includes the
accuracy of the counting results and the runtime. The different datasets used for the
evaluation are presented at the beginning of this chapter.

5.1 Datasets

All datasets have been recorded with the hardware setup present at the institute. The
setup was adjusted multiple times and and the algorithm requires different parameters
for each dataset. Also all videos from the same dataset were processed with identical
parameters. This is needed for long time operation because fine-tuning parameters to a
single video does not provide any insight on how stable parameters are over longer time
periods.

In total the annotated test data is grouped into 4 different datasets. Dataset 1 has
been recorded with a Toshiba BU238MC camera. Dataset 2 has been recorded with a
Raspberry Pi camera module. Datasets 3 and 4 have both been recorded with a Axis
M1125 camera. These two datasets have been split because of clearly visible differences
in camera settings. For a practical application such a change in settings should not be
used.

5.1.1 Dataset 1

This is the first dataset that was tested. Compared to datasets 2 and 4 the bee activity
and amount of clusters is lower.

The videos are recorded in a resolution of 1416x540 at a framerate of 24 frames per
second. The camera model used for this recordings is a Toshiba BU238MC camera. At
this size the videos can be processed without downsizing and sill result in a processing
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Figure 5.1: An example image of dataset 1

speed that meets the requirements of 5 frames per seconds. The example image of this
dataset (5.1) shows one of the moments with the highest bee activity. Compared to the
others, this dataset has low bee activity and therefore is expected to give accurate results
as bee clusters are close to non existent. In this dataset the background is dark and
unsaturated and the bees appear bright. The image appears blurry, but the low bee
activity and high contrast of bees to the background allow the algorithm to perform with
an average error rate of 2.3% which will be shown in section 5.3 in detail.

Evaluating the color models on this dataset resulted in both HSV and HSL saturation to
be the best choices, which can be explained with the low saturation of the background
and the high saturation of the bees.

Three specific sequences of this dataset have been ground truth annotated with vatic
and evaluated. The second sequence is the supposedly most difficult sequence that was
found in this dataset.

e Sequence 1

— Duration: 30s
— Average situation

— Ground Truth: annotated with vatic
e Sequence 2

— Duration: 25s
— Highest bee activity in this dataset

— Ground Truth: annotated with vatic

e Sequence 3
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— Duration: 1m33s
— Contains empty parts without bees, longer than other sequences

— QGround Truth: annotated with vatic

5.1.2 Dataset 2

This dataset is recorded with 1920x1080 resolution at 30 fps but the image is not sharp
and the bees appear blurred. The recording was performed with a Raspberry Pi camera
module which explains the lower quality. Also the lighting situation is hindering for the
program as a lot of light comes in from the sides. The background also appears brighter
compared to the other datasets. This causes a lot of problems for this algorithm as
saturation thresholding is not expected to allow the same distinguishability compared
to the other datasets since the background has a low contrast to the bees in terms of
saturation. Another observable problem is the inconsistency in the background brightness
where the outer parts appear brighter than the inner part of the image which is caused
by the light coming in from the sides.

Figure 5.2: An example image of dataset 2

Out of the 4 evaluated datasets, this dataset performs worst with the proposed algorithm.

With the used technique of segmentation by binary thresholding no parameters can be
found that results in a satisfying segmentation. Single bees can be tracked but splitting
bee clusters with k-means is inaccurate because the bee contours are not precise after
segmentation. This causes inaccuracy in the area of a bee and the calculation of how
many bees are in a cluster does not give accurate results, also this number fluctuates a
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lot between frames. Because of this inconsistency between frames a lot of bees are lost
during tracking and this further implies that it is unknown on which side a bee entered
and therefore the counting has more errors than when the side a bee entered is known.

One specific sequence was ground truth annotated with vatic for this dataset. The
sequence is a difficult situation with a cluster located at the upper counting lines.

e Sequence 1

— Duration: 19s
— Difficult situation, big cluster

— Ground Truth: annotated with vatic

As shown in the next section (5.3) this dataset perform worst. This also shows the
dependence of the algorithm to the recording setup. The conclusion is that this camera
setup should not be used together with the proposed algorithm.

5.1.3 Dataset 3

Dataset number 3 got recorded with 1920x1080 resolution at 30 frames per second. The
camera model used for this recordings is an Axis M1125 camera. The camera quality is
high resulting in sharp images. The colors are also strong causing the yellow parts of
bees to have a highly saturated color.

Figure 5.3: An example image of dataset 3
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The only visual problem that occurs in this dataset are artifacts in the video compression
caused by streaming. This means that there are image errors where a bee is visible twice
or color errors occur where a part of the image is green. Not all sequences contain errors
and this also allows to evaluate the algorithm against this kind of errors. Streaming the
images from a bee hive is not an unrealistic scenario and could be a possible solution for
practical applications therefore it is useful to have test data containing such errors. An
example of such artifacts is shown in figure 5.4

[F o= o o g P =

Figure 5.4: An example of video compression artifacts in dataset 3

The recordings in this dataset contain lower bee activity compared to datasets 2 and 4
but two sequences containing bee clusters have specifically be chosen to test the algorithm
against. Because of the high image quality the splitting of clusters with k-means is
accurate enough to keep track of every single bee in the test sequences even though when
a cluster of 5 bees was formed.

e Sequence 1

— Duration: 18s
— Average bee activity, contains slight video compression artifacts

— QGround Truth: annotated with vatic
e Sequence 2

— Duration: 8s

— Bees form a cluster and then walk apart, splitting the cluster
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— Ground Truth: manually counted
e Sequence 3

— Duration: 9s
— Bees form a cluster and then walk apart, splitting the cluster

— Ground Truth: manually counted

The figure (5.4) about image artifacts is taken from sequence 1 of dataset 3. A few more
short clips have been tested and analyzed manually but since most clips have low bee
activity and no clusters occur it is not worth the effort to annotate more simple videos
as in such sequences the algorithm has an accuracy of greater than 95% as will be shown
in the next section and the evaluation should focus on the most difficult situations that
occur while recording.

5.1.4 Dataset 4

Like dataset 3 this dataset has been recorded with an Axis M1125 camera but the
conditions are worse with a lot more dirt in the recording area. Also the camera seems
to have automatically adapted it’s settings which is visible by the blueish appearance of
the background. Such a change in settings should be disabled for long time monitoring.
These color changes require different parameters than dataset 3 since the background
is more saturated compared to the previous recordings in dataset 3. The shift from
gray background to a blueish color tone causes the saturation to no longer accurately
segment the bees because the saturation between bees and background is now more
similar compared to the other datasets. But this change in color tone allows the hue
channel to better distinguish the bees now since blue and yellow are complementary and
180 degree apart when visualizing the hue channel on a circle.

The sequences from this dataset have been specifically chosen to be hard situations to
evaluate the algorithm in those conditions. One video was fully annotated with vatic but
this required a huge time effort of more than 8 hours for a 13s sequence. Therefore only
one video was annotated and 3 others were counted manually to estimate the ground
truth count. Manually counting these videos is difficult and an error of up to 10% has to
be expected. The videos that are annotated with vatic are accurate and the annotation
error can be expected to be close to zero, therefore counting results from such videos can
be considered as ground truth. While manually counted videos should only be considered
as estimation.

e Sequence 1

— Duration: 12s

— Extreme situation, a lot of dirt and bee clustering
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Figure 5.5: An example image of dataset 4

— QGround Truth: annotated with vatic

e Sequence 2

— Duration: 1m16s

— Hard situation, a lot of dirt and bee clustering

— Ground Truth: manual counting

e Sequence 3

— Duration: 1m17s

— Hard situation, a lot of dirt and bee clustering

— Ground Truth: manual counting

e Sequence 4

— Duration: 1m23s

— Hard situation, a lot of dirt and bee clustering

— Ground Truth: manual counting

——
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5.2 Color Model Parameters

The optimal color model and channel parameters for each dataset are found by comparing
a segmentation with a manual ground truth segmentation and calculating the F1-score
on a per pixel basis. This gives an estimation which parameters are ideal for the whole
dataset. This step does not evaluate the final segmentation after filtering but the initial
segmentation which is the first step of the whole algorithm. As there is filtering in later
steps the borders are not of bigger importance than inner pixels. Each pixel is of equal
importance in this step as the thresholding and then median filtering needs to create a
basis for the morphology stage and calculating the F1 score gives a measurement that
both considers false positives and false negatives and weighs each pixel equally.

Dataset 1

Three different frames from the dataset were taken and manually segmented with an
image manipulation program. The parameters were calculated from the average result of
the three frames.

Table 5.1] shows the color model evaluation for this dataset, the presented values are the
best found threshold value and the F1 score of the segmentation that gets produced by it.
As there are three images the F1 score is averaged for the same parameter value across
all three images. The value range for the threshold is from 0 to 255 as the images are
stored as one byte per color channel. The F1 score values are rounded to 3 digits after
zero. The color channels are tested normally and inverted. Inverted means the binary
image is negated after thresholding.

The results from table |5.1] show that the following color channels should be further
investigated: HSV Saturation, HSL Saturation, u, v, Cb inverted and Cr. The overall
winner is the inverted segmentation of the Cb channel, but the other mentioned channels
are not far behind. In further practical tests L*u*v* YCrCb and L*a*b* color models
have shown to not allow segmentation with constant parameters over longer time periods.
The ideal parameter range shifts over the duration of only minutes so a constant threshold
does not allow to segment the bees in test sequences shorter than 5 minutes. On the
other hand HSV and HSL Saturation are constant over time and even sequences taken
hours apart work with the same parameter. This suggests that HSV and HSL Saturation
are the best color channels to solve this segmentation task.

Dataset 2

The testing procedure is obviously the same as with dataset 1. The results from this
dataset are expected to be worse as the image quality and situations are seem less suitable
for the chosen methodology. This recording setup is already superseded but testing
against it still can provide valuable insights on different conditions when and when not
the algorithm performs well.
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Color Channel Threshold F1 Score Color Channel Threshold F1 Score
Blue 137 0.384 YCrCb Cb inverted 123 0.822
Blue inverted 254 0.109 CIE L*a*b* L 141 0.587
Green 131 0.559 CIE L*a*b* L inverted 254 0.110
Green inverted 254 0.110 CIE L*a*b* a 134 0.629
Red 140 0.668 CIE L*a*b* a inverted 163 0.110
Red inverted 254 0.102 CIE L*a*b* b 132 0.817
Hue 0 0.111 CIE L*a*b* b inverted 179 0.110
Hue inverted 29 0.582 CIE L*u*v* L 143 0.587
HSV Saturation 41 0.795 CIE L*u*v* L inverted 254 0.110
HSV Saturation inverted 183 0.110 CIE L*u*v* u 102 0.795
HSV Value 142 0.660 CIE L*u*v* u inverted 144 0.110
HSV Value inverted 254 0.102 CIE L*u*v* v 140 0.808
HSL Lighting 136 0.576 CIE L*u*v* v inverted 199 0.110
HSL Lighting inverted 254 0.110 XYZ X 130 0.596
HSL Saturation 25 0.818 XYZ X inverted 242 0.110
HSL Saturation inverted 251 0.103 XYZY 132 0.583
YCrChb Y 135 0.588 XYZ 'Y inverted 254 0.110
YCrCbhb Y inverted 254 0.110 XYZ Z 148 0.414
YCrCb Cr 134 0.802 XYZ 7 inverted 254 0.109
YCrCb Cr inverted 175 0.110 Greyscale 135 0.588
YCrCb Cb 0 0.110 Greyscale inverted 254 0.110

Table 5.1: Color model testing results for dataset 1

Due known problems or difficulties with L*u*v*, YCrCb and L*a*b* these color channels
have been already ruled out and will be excluded in the results of this test and further
tests. Also the XYZ color space performs worse than RGB in these tests and the datasets
are similar enough to expect no changes to this. Therefore these channels are also left
out.

Color Channel Threshold F1 Score
Blue 0 0.338
Blue inverted 92 0.607
Green 15 0.340
Green inverted 102 0.442
Red 175 0.498
Red inverted 254 0.340
Hue 0 0.342
Hue inverted 15 0.615
HSV Saturation 98 0.793
HSV Saturation inverted 254 0.338
HSV Value 175 0.495
HSV Value inverted 254 0.340
HSL Lighting 32 0.340
HSL Lighting inverted 217 0.349
HSL Saturation 85 0.762
HSL Saturation inverted 253 0.338
Greyscale 28 0.340
Greyscale inverted 212 0.344

Table 5.2: Color model testing results for dataset 2
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The best F1 score of 0.79 (table is close to the best value of dataset 1, although
applying this parameters does not allow to accurately segment the bee contours. While
single bees can be tracked fine, the lighting conditions and low image quality cause
clusters to not be able to be splitted correctly as the amount of bees in a cluster can not
be accurately estimated. The problems are shadowed areas between bees or holes in a
bee cluster where the background is visible. Due the light background the shadows of
the bees cause this areas to be segmented as bees. Because of this the estimation of the
K parameter for k-means does not work reliably by using the area of the bees.

Image 5.6/ shows an example image of the dataset where this problems are visible. In
the untransformed image it is already noticeable that the bees are quite blurry and the
lighting conditions are not equal across the image as there is a lot of light coming in from
the sides and casting shadows.

Figure 5.6: An example image of dataset 2 to show the difficulties in this dataset

The HSV saturation color channel (shown in image which resulted in being the best
option concluded by the color model test, does not show clear borders between the bees
and the background.

After thresholding, applying median filtering and morphological opening the segmentation
of the clusters does not resemble the actual bee bodies. The main problem is that spaces
between bees that belong to the background get segmented as bee. This causes the area
of the clusters to be unstable in context to the number of bees. The different processing
steps on the example image are shown in image 5.8

Dataset 3

This dataset provides clean images with saturated colors and homogeneous lighting. The
only difficulty are video compression artifacts that happened during recording.

As expected the HSV and HSL Saturation score best in this test as seen in table The
conditions of this dataset are ideal for using the saturation to segment the image as the
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Figure 5.8: The segmentation steps visualized for image [5.6. Threshold is the red channel,
median filtered result is the green channel and the result of the morpholohical opening is
the blue channel.

background is unsaturated greyish and the bees are highly saturated. The F1 score is not
as high as in the datasets before but this does not conclude a worse overall segmentation
quality since applying a median filter and morphological opening are applied afterward
and improve the quality differently on each dataset. The lighting conditions are also
close to perfect in this setup as the brightness appears homogeneous across the whole
image. The shadows also blend well with the background and do not interfere in the
segmentation.

Dataset 4

The best segmentation for this dataset is found in the hue channel as shown in table 5.4.
Opposed to other datasets the saturation does not work well because the background
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Color Channel Threshold F1 Score
Blue 0 0.108
Blue inverted 54 0.572
Green 133 0.230
Green inverted 63 0.346
Red 131 0.409
Red inverted 73 0.169
Hue 0 0.115
Hue inverted 22 0.556
HSV Saturation 98 0.763
HSV Saturation inverted 254 0.108
HSV Value 140 0.375
HSV Value inverted 78 0.190
HSL Lighting 133 0.197
HSL Lighting inverted 69 0.358
HSL Saturation 64 0.719
HSL Saturation inverted 253 0.107
Greyscale 132 0.259
Greyscale inverted 68 0.315

Table 5.3: Color model testing results for dataset 3

Color Channel Threshold F1 Score
Blue 0 0.470
Blue inverted 85 0.572
Green 0 0.472
Green inverted 248 0.473
Red 104 0.580
Red inverted 254 0.472
Hue 0 0.469
Hue inverted 39 0.750
HSV Saturation 93 0.538
HSV Saturation inverted 253 0.470
HSV Value 0 0.473
HSV Value inverted 254 0.472
HSL Lighting 0 0.473
HSL Lighting inverted 246 0.473
HSL Saturation 59 0.570
HSL Saturation inverted 252 0.469
Greyscale 0 0.473
Greyscale inverted 247 0.473

Table 5.4: Color model testing results for dataset 4

appears blueish and is more saturated than the background in other datasets. Also the
plate below the camera is dirty and the overall image quality suffers from this. The
bees appear less saturated than they do in the other datasets. Combined with the more
saturated background this does not allow a satisfying segmentation with the saturation
channels.

The Hue channel is the clear winner in this test and the result can easily be explained
with the blueish background having a high contrast to the bees whose colors are mainly
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in the yellow-red area. In the Hue channel red color is at 0° and yellow at 60° while blue
is at 240°. When the hue is put on a circle those two color tones are nearly 180° apart
and therefore complimentary.

5.3 Quality Results

The result of the counting are two integer numbers standing for the amount of bees that
entered and exited the hive respectively. Since it can be ambiguous in which rotation

the camera is mounted the resulting values are named count up and count down.

The testing is done with five different counting windows with slight offsets. The results
table of each video sequence presents the median count and the weighted average count
(denoted as W. Average in the tables) at both sides. The weighted average is the average
of each counter weighted by it’s sure count ratio.

5.3.1 Dataset 1

As presented in subsection |5.1.1| for this dataset three video sequences have been fully
annotated with vatic.

Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 41 3 44 0.932
Counter 1 down 62 2 64 0.969
Counter 2 up 41 3 44 0.932
Counter 2 down 62 2 64 0.969
Counter 3 up 41 3 44 0.932
Counter 3 down 61 3 64 0.953
Counter 4 up 41 3 44 0.932
Counter 4 down 63 1 64 0.984
Counter 5 up 41 3 44 0.932
Counter 5 down 63 1 64 0.984
Median up 44
Median down 64
W. Average up 44 0.932
W. Average down 64 0.972
Ground truth up 44
Ground truth down 61

Table 5.5: Results for sequence 1 of dataset 1

The results for the first sequence of this dataset, as seen in table [5.5, results in an exact
match on the count at the upper side and 3 bees too much at the lower counting line.

The second sequence performs similar to the first one. The results shown in table [5.5
show an exact match at the upper counting line and a difference of 2 bees at the lower
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Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 41 8 49 0.837
Counter 1 down 42 5 47 0.894
Counter 2 up 41 7 48 0.854
Counter 2 down 42 5 47 0.894
Counter 3 up 41 7 48 0.854
Counter 3 down 41 6 47 0.872
Counter 4 up 42 7 49 0.857
Counter 4 down 42 6 48 0.875
Counter 5 up 43 5 48 0.896
Counter 5 down 42 6 48 0.875
Median up 48
Median down 47
W. Average up 48.394 0.860
W. Average down 47.397 0.882
Ground truth up 48
Ground truth down 49

Table 5.6: Results for sequence 2 of dataset 1

one compared to the ground truth. Both median and weighted average after rounding
provide the same results.

Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 49 1 50 0.980
Counter 1 down 47 4 51 0.922
Counter 2 up 49 2 51 0.961
Counter 2 down 47 4 51 0.922
Counter 3 up 49 1 50 0.980
Counter 3 down 44 7 51 0.863
Counter 4 up 50 1 51 0.980
Counter 4 down 50 3 53 0.943
Counter 5 up 50 1 51 0.980
Counter 5 down 50 4 54 0.926
Median up 51
Median down 51
W. Average up 50.599 0.976
W. Average down 52.020 0.915
Ground truth up 50
Ground truth down 53

Table 5.7: Results for sequence 3 of dataset 1

In the third sequence (table 5.7) the difference is 1 bee on the upper side for both median
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and weighted average after rounding. On the lower side the weighted average is only 1
bee off, while the median counted 2 bees too less.

Sequence count type Count Ground Truth Error rate
Sequence 1 up median 44 44 0%
Sequence 1 down median 64 61 4.91%
Sequence 1 up  weighted average 44 44 0%
Sequence 1 down weighted average 64 61 4.91%
Sequence 2 up median 48 48 0%
Sequence 2 down median 47 49 4.08%
Sequence 2 up  weighted average 48 48 0%
Sequence 2 down weighted average 47 49 4.08%
Sequence 3 up median 51 50 2%
Sequence 3 down median 51 53 3.77%
Sequence 3 up  weighted average 51 50 2%
Sequence 3 down weighted average 52 53 1.89%

Table 5.8: Overview of results and error rates for dataset 1.

In table 5.8 the results from all three sequences can be compared and also the error
rates are given. All sequences have less than 5% error compared to the ground truth
values, some counters even give the exact result. The error rate has been calculated as
the absolute difference between the counting result and the ground truth count divided
by the ground truth count.

When comparing the median count with the weighted average count both give similar
results with weighted average being more accurate in case of sequence 3.

Count type Errors Total counting events Error rate
Median 8 305 2.62%
Weighted Average 7 305 2.3%

Table 5.9: Overall error rates for dataset 1.

Table 5.9/ shows the combined error rates of this dataset by dividing the sum of errors
through the total amount of ground truth counting events resulting in the error rates of

2.62% and 2.3%.

5.3.2 Dataset 2

In this dataset only one sequence was annotated with ground truth. As there are
difficulties with the conditions in this dataset and the annotation is time consuming only
this one sequence is evaluated.

As expected the results shown in |5.10/ to not meet the targeted accuracy requirement of
10% error rate and exceeds it clearly with 68%. While this is only one sequence with a
hard situation, such a situation can occur in this dataset and the results show that this
recording setup is unsuitable for the proposed algorithm.
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Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 5 22 27 0.185
Counter 1 down 2 5 7 0.286
Counter 2 up 4 26 30 0.133
Counter 2 down 2 4 6 0.333
Counter 3 up 4 28 32 0.125
Counter 3 down 1 5 6 0.167
Counter 4 up 5 22 27 0.185
Counter 4 down 3 4 7 0.429
Counter 5 up 5 26 31 0.161
Counter 5 down 4 5 9 0.444
Median up 30
Median down 7
W. Average up 29.114 0.158
W. Average down 7.234 0.332
Ground truth up 15
Ground truth down 10

Table 5.10: Results for test sequence 1 of dataset 2

Count type Errors Total counting events Error rate
Median 18 25 72%
Weighted Average 17 25 68%

Table 5.11: Overall error rates for dataset 2.

The overall error rates for this datasets are 72% and 68% (as shown in table 5.11). The
reason for this is that clusters can not be resolved properly in this dataset and a cluster
occurs at the top counting line in the test sequence. This causes a lot of erroneous counts
at this position. It is important to evaluate the difficult cases and there this dataset is
unsuitable for the proposed algorithm.

5.3.3 Dataset 3

Sequence 2 as shown in table 5.13|is a short video with only 15 counting events. In this
sequence some bees form a cluster and then walk apart splitting the cluster. This is
interesting as it can be used to evaluate how well clusters can be handled. In this case
the algorithm performed perfect and gave the same result as the ground truth. It is also
worth to note that this situation demonstrates how using multiple counters improves the
counting accuracy as two of the five counters give an incorrect result on the lower line.

The third sequence is a similar situation as sequence 2 and the results are shown in table
5.14. As with sequence 2 the counting result is an exact match with the ground truth.
The sure count ratio can not be used as general quality indicator for accuracy when the
test sequence is short or the total number of counting events is low as in this case because
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Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 21 2 23 0.913
Counter 1 down 24 1 25 0.960
Counter 2 up 21 2 23 0.913
Counter 2 down 24 1 25 0.960
Counter 3 up 21 2 23 0.913
Counter 3 down 24 1 25 0.960
Counter 4 up 21 2 23 0.913
Counter 4 down 24 1 25 0.960
Counter 5 up 21 2 23 0.913
Counter 5 down 24 1 25 0.960
Median up 23
Median down 25
W. Average up 23 0.913
W. Average down 25 0.960
Ground truth up 24
Ground truth down 25

Table 5.12: Results for sequence 1 of dataset 3

Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 6 4 10 0.600
Counter 1 down 4 1 5 0.800
Counter 2 up 6 4 10 0.600
Counter 2 down 4 1 5 0.800
Counter 3 up 6 4 10 0.600
Counter 3 down 4 1 5 0.800
Counter 4 up 7 3 10 0.700
Counter 4 down 4 2 6 0.667
Counter 5 up 7 3 10 0.700
Counter 5 down 4 2 6 0.667
Median up 10
Median down 5
W. Average up 10 0.640
W. Average down 5.357 0.747
Ground truth up 10
Ground truth down 5

Table 5.13: Results for sequence 2 of dataset 3

unsure counts are also generated by bees that are located inside the counting area at the
beginning of the video sequence. With longer sequences or higher number of bees this is
negligible but in the case of sequence 2 and 3 it has an impact on the sure count ratio.

Tables [5.15| and |5.16 show the individual and combined error rates for the test sequences
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Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 4 3 7 0.571
Counter 1 down 1 1 2 0.500
Counter 2 up 4 3 7 0.571
Counter 2 down 1 1 2 0.500
Counter 3 up 4 3 7 0.571
Counter 3 down 1 1 2 0.500
Counter 4 up 4 3 7 0.571
Counter 4 down 1 1 2 0.500
Counter 5 up 4 3 7 0.571
Counter 5 down 1 1 2 0.500
Median up 7
Median down 2
W. Average up 7 0.571
W. Average down 2 0.500
Ground truth up 7
Ground truth down 2

Table 5.14: Results for sequence 3 of dataset 3

Sequence count type Count Ground Truth Error rate
Sequence 1 up median 23 24 4.17%
Sequence 1 down median 25 25 0%
Sequence 1 up  weighted average 23 24 4.17%
Sequence 1 down weighted average 25 25 0%
Sequence 2 up median 10 10 0%
Sequence 2 down median 5 5 0%
Sequence 2 up  weighted average 10 10 0%
Sequence 2 down weighted average 5 5 0%
Sequence 3 up median 7 7 0%
Sequence 3 down median 2 2 0%
Sequence 3 up  weighted average 7 7 0%
Sequence 3 down weighted average 2 2 0%

Table 5.15: Overview of results and error rates for dataset 3.

Errors Total counting events Error rate

1.37%
1.37%

Count type

Median 1 73
Weighted Average 1 73

Table 5.16: Overall error rates for dataset 3.

for this dataset. With only 1 counting error in 73 counting events according to the
ground truth the error rate is low with 1.37%. Overall the proposed algorithm performs
well on this dataset. Although it is worth to mention that even when there are clusters
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no crowded situations where bees take more space than the background occurs. So this
dataset can only be classified as of medium difficulty.

5.3.4 Dataset 4

This dataset contains the most difficult situations in context of number of bees and
clusters. The amount of dirt on the glass pane causes additional difficulty and degradation
of image quality.

Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 17 29 46 0.370
Counter 1 down 19 24 43 0.442
Counter 2 up 16 31 47 0.340
Counter 2 down 18 24 42 0.429
Counter 3 up 15 31 46 0.326
Counter 3 down 16 24 40 0.400
Counter 4 up 19 28 47 0.404
Counter 4 down 20 25 45 0.444
Counter 5 up 19 28 47 0.404
Counter 5 down 23 22 45 0.511
Median up 47
Median down 43
W. Average up 46.623 0.369
W. Average down 43.127 0.445
Ground truth up 39
Ground truth down 42

Table 5.17: Results for sequence 1 of dataset 4

This sequence is a difficult one and was explicitly chosen for that reason. It is the
supposedly most difficult time window found in the dataset. Therefore it is expected that
the results are worse than easier videos, although the lower count was quite accurate with
only 1 bee off. The upper count is 20% off which is worse than the goal of <10% error
but it is only a short sequence and the average error can be lower across the whole dataset
and such an inaccuracy spike in extreme data will not necessarily have a noticeable
impact on longtime usage. The image quality is also lower than dataset 3 due to more
dirt on the glass pane.

Sequence 2, as shown in table 5.18, results in only 2 bees off compared to the ground
truth at the upper counting line when using the weighted average count. The lower line
counted 6 bees wrong after rounding and is 3% different to the ground truth.

In table |5.19 the results for sequence 3 are shown. This sequence is more troublesome
than sequence 2 and has some errors at the upper counting line. The lower line was
quite accurate though with a difference of 4 which is only around 1.7% error. The upper
line has difficulties because a cluster forms at that position. While the result at that
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line has an 26% error rate it can still be evened out to a lower total error over longer
time periods. Also it is important to note that the ground truth for this sequence was
manually counted and this is a difficult task for a human therefore it is likely that this
manual counted ground truth is inaccurate. An estimated error of up to 10% can be

Table 5.19: Results for sequence 3 of dataset 4

Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 125 73 198 0.631
Counter 1 down 140 64 204 0.686
Counter 2 up 118 83 201 0.587
Counter 2 down 133 65 198 0.672
Counter 3 up 109 91 200 0.545
Counter 3 down 127 67 194 0.655
Counter 4 up 130 T 207 0.628
Counter 4 down 144 62 206 0.699
Counter 5 up 131 74 205 0.639
Counter 5 down 147 58 205 0.717
Median up 201
Median down 204
W. Average up 202.282 0.606
W. Average down 201.532 0.686
Ground truth up 204
Ground truth down 196
Table 5.18: Results for sequence 2 of dataset 4
Counter Sure Count  Unsure Count Total Count Sure count ratio
Counter 1 up 95 171 266 0.357
Counter 1 down 89 154 243 0.366
Counter 2 up 92 175 267 0.345
Counter 2 down 83 154 237 0.350
Counter 3 up 79 184 263 0.300
Counter 3 down 77 158 235 0.328
Counter 4 up 101 169 270 0.374
Counter 4 down 99 149 248 0.399
Counter 5 up 107 173 280 0.382
Counter 5 down 106 150 256 0.414
Median up 267
Median down 243
W. Average up 269.577 0.352
W. Average down 244.430 0.371
Ground truth up 214
Ground truth down 240
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expected.

Table |5.20 shows the results for the fourth sequence of dataset 4. In this sequence the
error is around 6.5% at the upper line and around 10% on the lower line. The ground

Counter Sure Count Unsure Count Total Count Sure count ratio
Counter 1 up 106 110 216 0.491
Counter 1 down 120 90 210 0.571
Counter 2 up 99 122 221 0.448
Counter 2 down 112 93 205 0.546
Counter 3 up 94 116 210 0.448
Counter 3 down 107 91 198 0.540
Counter 4 up 110 107 217 0.507
Counter 4 down 129 85 214 0.603
Counter 5 up 113 104 217 0.521
Counter 5 down 132 81 213 0.620
Median up 217
Median down 210
W. Average up 216.241 0.483
W. Average down 208.283 0.576
Ground truth up 203
Ground truth down 189

Table 5.20: Results for sequence 4 of dataset 4

truth for this sequence is manually counted and can be inaccurate.

Table 5.21 shows the summary of all error rates on all sequences on both counting lines

Sequence count type Count Ground Truth Error rate
Sequence 1 up median 47 39 20.51%
Sequence 1 down median 43 42 2.38%
Sequence 1 up  weighted average 47 39 20.51%
Sequence 1 down weighted average 43 42 2.38%
Sequence 2 up median 201 204 1.47%
Sequence 2 down median 204 196 4.08%
Sequence 2 up  weighted average 202 204 0.98%
Sequence 2 down weighted average 202 196 3.1%
Sequence 3 up median 267 214 24.42%
Sequence 3 down median 243 240 1.25%
Sequence 3 up  weighted average 270 214 26.17%
Sequence 3 down weighted average — 244 240 1.67%
Sequence 4 up median 217 203 6.89%
Sequence 4 down median 210 189 11.11%
Sequence 4 up  weighted average 216 203 6.4%
Sequence 4 down weighted average 208 189 10.05%

Table 5.21: Overview of results and error rates for dataset 4.
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with both ways of combining the multiple counters. Also it is important to note that
sequences 2,3 and 4 where manually annotated and the ground truth can be inaccurate,
with an estimation of up to 10% error.

Count type Errors Total counting events Error rate
Median 111 1327 8.36%
Weighted Average 109 1327 8.21%

Table 5.22: Overall error rates for dataset 4.

The overall error rate of the whole dataset (shown in table 5.22) is around 8% error on
both lines despite being a difficult dataset. This is below the goal of 10% average error
rate.

5.4 QObservations

From the results a few important conclusions can be drawn. First the results show that
recording conditions have a huge influence on the results as dataset 2 is unusable with the
proposed algorithm. The color of the background has a huge impact on the segmentation
quality and should be complimentary to the bees. Depending on color of the background
this complimentary coloring can be achieved with a different color model. Bees have a
high saturation and when using a camera that produces colorful and saturated images
the saturation in both HSV and HSL color models performs well to segment the bees
from an unsaturated background as shown in datasets 1 and 3. A blueish background
color can best be segmented in the hue color channel.

5.5 Runtime

After analyzing the accuracy of the algorithm the next step is to evaluate the runtime
performance. The runtime testing will be done on the same datasets. Dataset 1 is used
with full resolution as it has a smaller resolution. The other datasets are treated as
50% scale baseline. The results from section 5.3 have been evaluated with these video
resolutions. Dataset 1 has a resolution of 1416x540 and will be presented in an own table
(5.23) as the image resolution is different.

Sequence Average Frametime FPS

1 96.3ms 10.38
2 96.01ms 10.42
3 95.37ms 10.49

Table 5.23: Runtime of dataset 1

Datasets 2,3 and 4 are combined in a single table (5.24) as they have the same resolution
with 1920x1080 at 50% scaling resulting in a resolution of 960x540 pixel.
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Dataset Sequence Average Frametime FPS

2 1 89.43ms 11.18
3 1 57.11ms 17.51
3 2 56.89ms 17.58
3 3 58.69ms 17.04
4 1 78.26ms 12.78
4 2 73.62ms 13.58
4 3 65.35ms 15.30
4 4 66.08ms 15.13

Table 5.24: Runtime of dataset 2,3 and 4

Dataset 3 has less bees active at the same time and provides better framerates. In dataset
4 and 2 the number of bees is constantly high resulting in the higher runtime. The ratio
of the worst case compared to the best case is 57.1% longer runtime.

Resolution influence

While the tests have been done on a fixed resolution it is interesting how much influence
on runtime the resolutions has and how this affects the quality results.

This tests will focus on dataset 4 as it is the most difficult situation and the amount of
counting events in the ground truth data is the highest.

Seq Error FPS Err 50% Res FPS 50% Res Ratio of Err  Ratio of RT

1 12 1.88 9 12.78 133% 15%
2 12 2.02 8 13.58 150% 15%
3 35 2.06 60 15.3 58% 13%
4 24 1.93 32 15.13 75% 13%

Table 5.25: Influence of resolution on runtime and accuracy on Dataset 4. Columns:
sequence (Seq), error in counting at full resolution (Error), frames per second at full
resolution (FPS), errors at 50% resolution (Err 50% Res), FPS with 50% resolution
(FPS 50% Res), ratio of errors between 100% and 50% (Ratio of Err), ratio of run times
between 100% and 50%. (Ratio of RT)

Table 5.25/shows the differences and ratios of runtime and counting errors when comparing
full resolution with half resolution. What can be seen is that in the case of sequences
1 and 2 using half resolution actually has better results. In case of sequence 2 this is
negligible as the ground truth has 400 counting events and both an error of 12 and 8 is
quite low. This difference can be caused by the randomness of the k-means initialization
or the minor parameter differences. Since the median filter kernel size has to be an odd
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number it cannot be perfectly doubled or divided by 2 and has to be either rounded up
or down.

Sequence 1 is shorter and only has 81 counted bees according to the ground truth. The
relative error influence is higher here but with an error difference of only 3 this is also
expected to be caused by the randomness of the k-means initialization especially when
considering that this sequence contains a lot of clustering.

Sequences 3 and 4 performed better with full resolution. 35 errors versus 60 is a clear
improvement in the case of sequence 3 and not only caused by the k-means randomness.
Sequence 3 performed worst out of dataset 4 which shows that using the full resolution
does improve the accuracy in difficult situations. Although in situation where less
counting errors happen the higher resolution does not improve the accuracy at all.

As for the runtime using the full resolution only allows around 2 frames per second to be
processed on a desktop PC which is on average only 14% of the framerate that can be
achieved when using half resolution.

To finish the resolution influence testing it is necessary to compare to quarter resolution
videos. The testing is also performed on dataset 4.

Seq Err 25% FPS 25% Err 50% FPS 50% Ratio of Err  Ratio of RT

1 4 60.35 9 12.78 44% 472%
2 4 65.88 8 13.58 50% 485%
3 60 72.46 60 15.3 100% 474%
4 23 71.17 32 15.13 2% 470%

Table 5.26: Influence of resolution on runtime and accuracy with quarter resolution.
Columns: sequence (Seq), error in counting at 25% resolution (Err 25%), frames per
second at 25% resolution (FPS 25%), errors at 50% resolution (Err 50%), FPS with 50%
resolution (FPS 50%), ratio of errors between 25% and 50% (Ratio of Err), ratio of run
times between 25% and 50%. (Ratio of RT)

In table 5.26| the comparison of quarter resolution with half resolution is shown. Sur-
prisingly quarter resolution actually performed better than half resolution accuracy wise.
All videos have less counting errors or equal compared to half resolution. In the case of
sequences 1,2 and 4 this difference can again be caused by the randomness of the k-means
initialization. These differences can also be cause by parameter differences like median
filter kernel size which has to be rounded. But it seems that decreasing the resolution to
480x270 which is a quarter of the original resolution does not decrease the accuracy of
the counting result compared to using 50% resolution.

As for the runtime the lower resolution allows more than 60 fps which is over double
real-time for the test sequences. This is interesting for practical use as actual realm-time
performance could be achieved with lower processing power than a current desktop PC.
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To better verify this conclusion datasets 1 and 3 will be tested too. Dataset 2 is left out
as it was declared unsuitable for this algorithm.

Seq Err 25% FPS 25% Err 50% FPS 50% Ratio of Err  Ratio of RT

1 3 121.36 3 10.38 100% 1169%
2 2 123.15 2 10.42 100% 1182%
3 1 128.04 2 10.49 50% 1221%

Table 5.27: Influence of resolution on runtime and accuracy with quarter resolution for
datasets 1. Columns: sequence (Seq), error in counting at 25% resolution (Err 25%),
frames per second at 25% resolution (FPS 25%), errors at 50% resolution (Err 50%),
FPS with 50% resolution (FPS 50%), ratio of errors between 25% and 50% (Ratio of
Err), ratio of run times between 25% and 50%. (Ratio of RT)

Seq Err 25% FPS 25% Err 50% FPS 50% Ratio of Err  Ratio of RT

1 2 95.9 1 17.51 200% 548%
2 0 99.5 0 17.58 100% 566%
3 0 97.75 0 17.04 100% 574%

Table 5.28: Influence of resolution on runtime and accuracy with quarter resolution for
datasets 3. Columns: sequence (Seq), error in counting at 25% resolution (Err 25%),
frames per second at 25% resolution (FPS 25%), errors at 50% resolution (Err 50%),
FPS with 50% resolution (FPS 50%), ratio of errors between 25% and 50% (Ratio of
Err), ratio of run times between 25% and 50%. (Ratio of RT)

In tables 5.28 and [5.28| the results for quarter resolution for datasets 1 and 3 is shown.
With one more error in dataset 1 and one less error in dataset 3 the overall error count
stayed about equal. The runtime improved significantly with over 500% in case of dataset
3 and even above 1000% in the case of dataset 1. The difference of the improvement
through downscaling is explainable by the difference of the parameters for the kernel
sizes. Dataset 1 contains nearly no clusters and therefore the median filtering stage is less
important and a lower kernel size is sufficient. The influence of the different parameters
and algorithms on the runtime will be analyzed in section 5.6.1.

What can be concluded from the testing with different resolutions is that in cases with
little clustering or a high image quality the resolution can be reduced a lot and the
counting accuracy does not get worse. At quarter resolution the runtime that can be
achieved is already high and exceeds realtime framerate which is between 20 and 30 fps
for the test videos.

Reducing the resolution has other downsides though. If the bee images should be
extracted for a further processing which is something that is planned to do with this
setup, it is required to scale up the positions and orientations which is likely less accurate
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when done with a lower resolution. But when only counting numbers are considered
quarter resolution does work well.

Since quarter resolution does work quite well it is interesting to see what happens if the
resolution gets reduced even further to 1/8 of full resolution.

Seq Err 12.5% FPS 12.5% Err 50% FPS 50% Ratio of Err  Ratio of RT

1 4 108.19 9 12.78 44% 847%
2 40 138.08 8 13.58 500% 1017%
3 83 142.11 60 15.3 138% 929%
4 45 137.05 32 15.13 141% 906%

Table 5.29: Influence of resolution on runtime and accuracy with 1/8 resolution. Columns:
sequence (Seq), error in counting at 12.5% resolution (Err 12.5%), frames per second
at 12.5% resolution (FPS 12.5%), errors at 50% resolution (Err 50%), FPS with 50%
resolution (FPS 50%), ratio of errors between 12.5% and 50% (Ratio of Err), ratio of run
times between 12.5% and 50%. (Ratio of RT)

The results in table |5.29 show the results of 1/8 resolution (12.5%) compared to the
baseline scaling used for testing of half resolution. While the results of quarter resolution
showed significant improvements in runtimes without increasing the error, reducing
the resolution even further does not seem to be an overall improvement. Error rates
increased in most cases while the runtime is only around twice as fast compared to
quarter resolution. Considering the amount of pixels reduces quadratically when halving
the resolution the runtime increase is a bad tradeoff. Only in the case of sequence 1 the
errors got less but this can be explained by a lucky situation. Overall the conclusion is
that using a smaller resolution than 25% of 1920x1080 does not seem an improvement
when both considering the runtime and accuracy.

Overall 25% resolution of 1920x1080 seems to be the best combination of accuracy and
runtime. On extreme situations the low resolution might get difficulties, but even there
it did not give worse results than 50% resolution and using full resolution is a significant
runtime increase. This applies to counting results only, if the trajectories should be
retrieved lowering the resolution does have a negative impact. The ratio of sure counts
to total counting events decreases on average when lowering the resolution and unsure
counting events are caused by lost tracks concluding the trajectory quality will be worse.
But when only the counting result is needed using 25% resolution on full HD videos is
fine in the used hardware setup.

5.6 Longtime Test

To better verify the quality of the algorithm a long time test was performed by processing
the recordings of multiple days. The data is split in 3 minute video sequences. The whole
dataset contains 1460 files. The following recording time windows are available:
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29.9.2017 15:12-19:39

30.9.2017 06:00-21:00 (Missing: 6:03-6:48)

1.10.2017 06:00-21:00

2.10.2017 06:00-21:00

3.10.2017 06:00-09:24

4.10.2017 09:18-21:00

5.10.2017 06:00-15:15

The processing was done in 25% resolution of full-HD (480x270) to reduce the required
processing time which is still around 2-3 days for this amount of data. Overall the sure
count ratio of each video averages to over 94% in both directions.

Date Start time End time In Out °C7h °C14h °C 19h

2017-09-29 15:15 19:39 4859 3276 9 19 15
2017-09-30 06:00 21:00 17943 17904 9 18 14
2017-10-01 06:00 21:00 18655 18821 10 18 13
2017-10-02 06:00 21:00 21600 21669 7 19 14
2017-10-03 06:00 09:24 072 585 11 15 12
2017-10-04 09:18 21:00 18059 16734 12 19 13
2017-10-05 06:00 15:12 28252 28448 14 23 20

Table 5.30: Testing results for long time operation

Across the whole testing only 1 time window of 4 clips which are around 12 minutes
together seem to caused problems. Especially 2 clips had a sure count ratio of below
10% concluding the results are inaccurate. After further investigation this seemed to be
caused by an automatic parameter change of the camera. This videos had the highest
amount of bees visible at the same time and caused the background to appear blueish
instead of gray. This can also be observed by comparing dataset 3 and 4 which where
both recorded with the same camera. While other videos in this longtime test are visually
similar to dataset 3 the problematic videos are visually more similar to dataset 4. In this
problematic situation the background shifts to blue which causes that the saturation does

not work as segmentation channel since the blueish background becomes more saturated.

To solve such a situation a segmentation in the hue channel can be used which was also
done with dataset 4.

After reprocessing this 4 clips with a Hue segmentation the sure count ratio was higher.

The conditions in these videos is comparable to dataset 4. This situation happened on

5.10 between 06:00 and 06:12. The table 5.30| contains the results of the fixed processing.
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The difference are around 200 more bees in and 300 less out compared to the original
results.

The important question is now how this can be solved for practical application. The ideal
solution is to avoid such a situation. This could be done by configuring the camera to not
adjust settings. Another possibility would be to automatically detected the problem by
analyzing the sure count ratio and use different processing parameters when it drops low,
which was effectively done in this test by rerunning the specific clips. The sure count
ratio is an indicator to detect segmentation problems and a high sure count ratio is likely
a more accurate counting result.

Credibility of the test

Also important is to verify the counting results of this test on how reasonable they are.
Since acquiring a ground truth data for this amount of data is out of the question a bee
researcher was asked for feedback who claimed the results seem plausible.

To better visualize the results of the 3 days with the full recording time from 06:00 to
21:00 are shown as plots: 5.9 for 30.9, [5.10| for 1.10 and 5.10) for 2.10.
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Figure 5.9: Bee activity on 30.9.2017 with 3 minute counting intervals.

Plot 5.9 has a recording hole between around 6:03 and 6:48, but the activity seems low
in that time period so it can be neglected. Overall the counting results seem reasonable
with similar patterns on all days and more bees are flying out in the morning while in
the late afternoon and evening more bees come back. The overall daily count of bees
exiting and entering is also quite similar when the whole day was recorded.

5.6.1 Runtime Breakdown

The runtime of the following program stages is measured:
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Figure 5.10: Bee activity on 1.10.2017 with 3 minute counting intervals
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Figure 5.11: Bee activity on 2.10.2017 with 3 minute counting intervals

Binary Threshold

Median Filtering

Morphological Opening

findContours()
o K-Means

e Matching Stage

Binary thresholding, median filtering and morphological opening are the necessary image
detection steps to segment the image. findContours() is an OpenCV method that can be
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used to detect pixel groups of same color in the binary image. In the case of this program
each separate cluster of white pixels is detected. The k-means algorithm is only needed
when a detected blob is larger than the defined maximum area of a bee and therefore
the blob needs to be split into multiple bees. On video sequences where there is no bee
clustering the k-means algorithm is not needed and therefore the runtime of this stage
will be faster. The matching stage time is measured as the time that is needed to match
the detected bee centers in a new frame with the old detections. This stage optionally
uses the munkres algorithm if a nearest neighbor matching is ambiguous.

The runtime testing will be performed on datasets 1, 3 and 4 with different resolutions.

Datasets 1 and 3 have a far lower bee activity than dataset 4 and are expected to have
a different spread of runtimes percentages between the different stages and algorithms.
The overall percentage does not equal to 100% as only the specific algorithms or stages
are measured. All timings are measured in milliseconds (ms).

Stage Time 100% Percentage 100% Time 50% Percentage 50%
BinaryThreshold 0.177 0.170% 0.026 0.320%
Median Filter 25.587 25.230% 0.568 6.930%
Morphology 71.228 70.190% 5.225 63.570%
Find Contours 0.391 0.380% 0.106 1.280%
K-Means 0.118 0.120% 0.100 1.170%
Matching 0.005 0.010% 0.005 0.060%

Total 108.516 - 8.228 -

Table 5.31: Runtimes of different program stages in absolute values and percentages of
dataset 1 with 100% and 50% resolution of 1416x540 and results averaged over all test
sequences of the dataset

Table [5.31 shows the runtimes of different program stages on dataset 1. The results
are averaged over all test sequences and both full resolution and half resolution have
been tested. In the case of this dataset with both resolutions the morphology needs the
most processing time with around 70%. The biggest difference that can be observed
between changing the resolutions is that the median filtering goes down from 25% of the
runtime to around 7%. Dataset 1 uses the smallest filter kernel for median filtering out
of the datasets as there is not a lot noise and close to zero bee clustering. This means
a smaller filter kernel is sufficient and explains the low runtime of the median filtering
stage compared to other datasets which will be shown in the text tables.

The runtime breakdown of dataset 3 which is shown in table [5.32, shows that morphology
takes the highest processing time of all stages with 68% but decreases to 46% and 17%
of the runtime when reducing the resolution. The median filters relative amount of
the runtime increases when reducing resolution concluding it’s runtime scales less with
resolution than morphology. On 25% resolution the median filter is the most performance
heavy operation. The k-means algorithm does only take between 1.5% and 5% of the
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Stage Time 100% Perc. 100% Time 50% Perc. 50% Time 25% Perc. 25%
BinaryThreshold 0.689 0.210% 0.153 0.260% 0.024 0.230%
Median Filter 81.448 25.200% 23.134 39.570% 3.171 30.020%
Morphology 220.788 68.318% 27.062 46.280% 1.884 17.840%
Find Contours 1.532 0.470% 0.271 0.460% 0.087 0.820%
K-Means 4.853 1.490% 1.875 3.220% 0.551 5.230%
Matching 0.009 0.000% 0.012 0.020% 0.004 0.040%
Total 323.196 - 58.474 - 10.563 -

Table 5.32: Runtimes of different program stages in absolute values and percentages of
dataset 3 with 100%, 50% and 50% resolution of 1920x1080 and results averaged over all
test sequences of the dataset

processing time with this dataset which is expected as the bee activity is lower than
other datasets and clusters appear less often.

Stage Time 100% Perc. 100% Time 50% Perc. 50% Time 25% Perc. 25%
BinaryThreshold 0.501 0.100% 0.071 0.100% 0.014 0.100%
Median Filter 41.714 8.000% 25.256 36.160% 3.513 23.430%
Morphology 405.948 77.840% 23.494 33.640% 2.003 13.390%
Find Contours 1.444 0.280% 0.318 0.460% 0.129 0.860%
K-Means 51.429 9.770% 13.214 18.490% 3.449 22.430%
Matching 0.049 0.010% 0.047 0.070% 0.049 0.330%
Total 522.049 - 70.155 - 14.602 -

Table 5.33: Runtimes of different program stages in absolute values and percentages of
dataset 4 with 100%, 50% and 25% resolution of 1920x1080 and results averaged over all
test sequences of the dataset

In table [5.33| the runtime breakdown of dataset 4 is shown. As with the other datasets
the morphology is the most expensive operation when using full resolution. On 50%
resolution median filtering and morphology are about equal, while when using 25%
resolution the median filter is more expensive. Dataset 4 contains the highest amount of
bees and clusters of the 4 datasets which causes the k-means algorithm to need more
runtime than in the other datasets. Dataset 4 can be considered as extreme data and is
supposedly the worst case scenario that happened during recording. This evaluation is
important as it showns that even with heavy clustering the performance does not take a
serious hit as the k-means algorithm still only takes around 20% of the runtime even in
such difficult scenario.

The most expensive operation with higher resolutions is the morphology which scales the
most with resolution. Reducing the structure element is not a viable option as the size of
the structure element is tied to the bee size. Reducing the size of the structure element
will create less accurate shapes of the bee bodies which further decreases the accuracy of
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the area estimation and makes it harder to separate clusters. The only way to counter
the high runtime of the morphology is to generally work with a lower resolution. The
median filter is second most expensive operations. Reducing the resolution does also
improve the runtime but the difference is smaller than with the morphology. The size
of the median filter kernel is not tied to the size of the bees but is needed to create a
clearer image for the morphology stage by filling up holes so the bee shapes can be better
extracted by the morphology. If bees have holes or are split in parts after thresholding
they can get removed during the morphology stage. The median filtering counters this
problem and is therefore needed, but reducing the size of the median filter kernel is an
option as it is not tied to the size of bees but the quality of the initial segmentation
with a binary threshold. The k-means algorithm is not always needed and only called
when there are clusters in the image. This means the needed runtime for k-means scales
with the amount and size of clusters that appear after the segmentation stage. Also in
extreme situations as with dataset 4 the runtime of k-means is below 25% of the total
runtime of the algorithm. Binary Thresholding, findContours() and the matching stage
are all below 2% of the runtime and thus are not worth to be considered when trying to
improve the runtime.

5.7 Summary

The overall error rates of all datasets are summed up in table 5.34. Dataset 1 has been
recorded with 1416x540 resolution, the others were recorded at 1920x1080 (full-HD)
resolution. As counting method the weighted average is used as in all cases it has equal
or better accuracy than the median.

Dataset  Resolution Errors Total counting events Error rate FPS

Dataset 4 100% 83 1327 6.25% 2

Dataset 1 100% 7 305 2.3% 10
Dataset 3 50% 1 73 1.37% 17
Dataset 4 50% 109 1327 8.21% 14
Dataset 1 50% 6 305 1.97% 124
Dataset 3 25% 2 73 2.74% 98
Dataset 4 25% 91 1327 6.86% 67

Table 5.34: Overall error rates for datasets 1,2 and 4 with different resolutions and the
average frames per second needed for processing

On datasets 1,3 and 4 the overall counting accuracy is 8.21% or below. Dataset 2 has to
be considered as failure with an error rate of 68% concluding the quality of a Raspberry
Pi camera module is not good enough for this application. Dataset 4 can be considered
as extreme data and is composed of the supposedly most difficult situations found in all
of the available recordings, still an error rate of only 8.21% in total could be reached. The
phenomenon hat dataset 4 has the worst results with 50% resolution and better results
with 25% and 100% resolution can be explained with the randomness of the k-means
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initialization. Dataset 4 contains the most clustering of all tested datasets and therefore
this has the most influence there.

Comparison with State of the Art

As other publication use different recording setups and test data it is not possible to
make an unbiased objective comparison of results. A few numbers for comparison are
given to show the competitiveness of the results from this thesis:

Kulyukin et. al[KR16] count the bees currently at the landing pad without making a
distinction between in and out. Their evaluation shows an accuracy of 85.5% with a
white landing pad. This equals to an error rate of 14.5%.

Tu et. al.[THKAT6] state a regression statistic (R?) of 0.953 for measuring in-activity
and 0.888 for out-activity of honey bees.
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CHAPTER

Conclusion

The problem of counting bees at the hive entrance has been solved with different setups.
A differentiation that can be made is between 3D tracking where the bees are recorded
while flying to or from the hive and the use of an entrance tunnel with 2D tracking. This
has a lot of influence on the algorithms that can be used for video analysis as there are
different problems that have to be handled. The 2D setup used with this thesis does
simplify the problem further by ensuring some constraints:

First the whole tracking problem is purely 2D-dimensional as bees cannot move over
each other as the available space beneath the glass plate is not big enough. This avoids
occlusions in all cases and a bee is always visible when it is inside the recorded area. Also
the artificial tunnel at the entrance allows to chose a background that distinguishes well
from the bees. This is not the case when bees should be tracked inside the hive where a
specific background cannot easily be chosen. The LED lights together with closed off
walls create a very constant lighting environment which allows to not require parameter
changes over long time periods.

The proposed tracking method is specifically tailored to the used hardware setup but
provides an average error rate of 6.86% in difficult situations while maintaining a framerate
of around 67 fps. Using the HSV and HSL color models proved to be very effective at
segmenting the bees from the background while being robust against illumination changes.
Using morphological opening together with median filtering provides a segmentation that
extracts the bee body shapes and still can work in real time. The morphology only works
reliably because the bee movement is restricted to 2D. Morphological opening extracts
the shapes of the bee bodies which then allows to estimate the number of a bees in a
cluster by diving the area through the average bee size. With this estimation of bee
number the k-means algorithm is able to separate bee clusters. With occlusions of bees
this would not be reliable.
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The used methods support each other. K-means would not give accurate results without
morphology because of inaccurate bee areas. Morphology works better with applying a
median filter before. The k-means algorithm optimizes cluster centers which are accurate
to the center of a bee because of the elliptical body shapes.

As for tracking a position matching showed to be sufficient to achieve a simultaneous
tracking of bees in the tracking area. The used algorithms create a program that is instant
responsive and can start tracking at the second frame as there is no warm up time needed
for building background models as other techniques would require. This means that the
memory usage is low because only the current frame needs to be stored. After the bee
positions have been extracted only this positions are needed when processing the next
frame. Another advantage from this instant responsiveness is that video interruptions
can be handled well. Of course information from lost frames cannot be recovered but
short frame drops or image errors did have less impact on the tracking and counting
algorithm that one would expect.

6.1 Future Work

The next step would be to do more practical tests and to create a prototype that can be
tested in practice. This would require testing of the processing power of embedded devices
if they can handle realtime performance with this algorithm and at what resolution.
Other options could include streaming the video data and processing on a server. Further
improvements to the hardware setup could also be done, this includes trying to optimize
the background color and camera settings. For example trying a blue background and
using the hue channel for segmentation. Also a darker background could improve the
segmentation when using the saturation.

Another possible idea for a practical application is to use the ratio of sure and unsure
counting events as a way to self-diagnose the quality of the algorithm and apply a
automatic warning system that can detected bad counting accuracy which is likely caused
by bad parameters or a very dirty scene.

As for the algorithm a possible improvement could be statistical analysis if there is a
bias on which side more errors happen. This would require a lot of additional ground
truth data though, which is very difficult and time consuming to obtain.

Another future option is to build an integration with another project that can classify if
a bee is infected by a parasite. This algorithm estimates the location and can calculate
the bounding ellipse of every bee currently visible. This allows to extract images of bees
for further processing.

A lot of recent research in computer vision is based on deep learning. This includes
publications for image segmentation and tracking. While deep learning has proved to
be a solution for a classification problem on bees[Sch18], at the time of writing a deep
learning based approach for segmentation or counting of bees does not seem to be a good
solution especially when considering runtime and embedded hardware. In a few years
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better algorithms or hardware could allow the use of a deep learning based approach that
monitors the activity of bees in realtime on hardware directly mounted at the hive.
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