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1  INTRODUCTION

The computation of smartphone orientation is an important step in the process 
of pedestrian indoor localization, for example, when providing navigation to a 
certain location (Ehrlich & Blankenbach, 2018; Moder et al., 2018) or using the 
movement behavior of persons to gain insight into building utilization (Burgess 
et al., 2018; Kanda et al., 2007). We propose a new orientation-estimation algorithm 
(OEA) based on self-contained sensors, with a focus on magnetometer integration 
to provide robust absolute smartphone heading information.

The magnetometer observation model exhibits classical internal sensor errors 
such as those related to bias, scale factor, and misalignment (Renaudin et al., 2010) 
as well as platform- and environment-dependent errors such as hard-iron bias, 
soft-iron scaling, and magnetic anomaly bias (Groves, 2013). These latter errors 
are the primary reason that magnetometer integration in OEAs can cause large 
deviations in heading estimations. Routines for determining and mitigating these 

Abstract
We introduce an algorithm that provides robust three-dimensional orientation 
of a smartphone for pedestrian indoor localization. The algorithm focuses on 
integration of the magnetometer and a reformulated observation model such 
that the influence of magnetic anomalies is mitigated. The methodological nov-
elty of this approach lies in the use of an extended Kalman filter (EKF), based 
on a state vector that contains only the slow-varying systematic deviation com-
ponents of the magnetometer. We apply a statistical test to the EKF residuals 
to detect the presence of magnetic anomalies and update the absolute heading 
when beneficial conditions prevail. Otherwise, the heading is propagated based 
on gyroscope observations. We investigate the properties of the proposed algo-
rithm by using simulated smartphone sensor observations with different scenar-
ios of systematic deviations. In experiments with very accurate ground truth, the 
proposed algorithm achieves a root mean square error of 17.4° for the computed 
heading, outperforming state-of-the-art algorithms by at least 40%. 

Keywords
extended Kalman filter, indoor navigation, magnetometer integration, 
orientation estimation

O R I G I N A L  A R T I C L E

Robust Determination of Smartphone Heading by 
Mitigation of Magnetic Anomalies

Andreas Ettlinger*1  Andreas Wieser2  Hans Neuner1

1 Department of Geodesy and 
Geoinformation, Technische Universität 
(TU) Wien, Vienna, Austria
2 Institute of Geodesy and Photogrametry, 
Eidgenössische Technische Hochschule 
(ETH) Zürich, Zürich, Switzerland

Correspondence
Andreas Ettlinger
Wiedner Hauptstraße 8-10,  
1040 Vienna, Austria. 
Email: andreas.ettlinger@tuwien.ac.at

Present address
Wiedner Hauptstraße 8-10,  
1040 Vienna, Austria



ETTLINGER et al.    

systematic deviations are mandatory, and herein, we consider only procedures that 
are directly applied in the indoor localization process (i.e., on-site). There are two 
main approaches for on-site determination or mitigation of systematic deviations, 
namely, instruction-based procedures and in-run procedures (Martin et al., 2016). 
In instruction-based procedures, the smartphone must undergo special movements 
or trajectories prior to the localization process; in in-run procedures, sensor errors 
are determined during localization. The classic instruction-based approach for 
smartphones is the ellipsoid-fitting approach, in which the smartphone is rotated 
around its three main axes to determine sensor errors. With the constraint that 
magnetometer observations are ideally located on a sphere with known radius, i.e., 
the known value of the magnitude of the earth’s magnetic field (EMF), it is possible 
to determine sensor and platform errors (Gebre-Egziabher et al., 2006; Klingbeil 
et al., 2014; Renaudin et al., 2010; Vasconcelos et al., 2011).

The obvious problem is that environment-dependent errors (i.e., magnetic anom-
alies) cannot be captured with the above-described approach. Thus, it is necessary 
to apply an in-run procedure in the OEA to determine the presence of magnetic 
anomalies in magnetometer observations. A common approach is to fuse the gyro-
scope, accelerometer, and magnetometer in an extended Kalman filter (EKF) to 
estimate the smartphone orientation (Gebre-Egziabher et al., 2004; Han & Wang, 
2011). In these approaches, it is critical to note that magnetic anomalies also influ-
ence the inclination component of the orientation (roll ϕ  and pitch θ  in Euler 
angle parameterization). Madgwick et al. (2011) and Valenti et al. (2015) attempted 
to avoid this effect by using complementary filters, where the change in inclination 
is computed via the accelerometer sensor and the change in yaw (ψ  in Euler angle 
parameterization) is computed via the magnetometer sensor. A possibility for mit-
igation is to use the known quantities of the EMF to determine whether magnetic 
anomalies are present. The literature contains many proposed solutions exploiting 
this information: Costanzi et al. (2016) used this knowledge to compute adaptive 
variances for magnetometer observations. Renaudin & Combettes (2014) and Lee 
et al. (2018) performed the EKF update only if conditions on the magnetometer 
observations were met, and Afzal et al. (2011) used statistical tests and fuzzy infer-
ence to determine the resulting heading error due to magnetic anomalies. Another 
approach is to parameterize the systematic deviations in an EKF (i.e., include them 
in the state vector). It is not common to estimate each type of systematic deviation 
separately in the EKF but to subsume them in a bias and an affine transforma-
tion parameterized with a symmetric matrix (Klingbeil et al., 2014; Renaudin et al., 
2010). Crassidis et al. (2005) included this bias and the elements of a symmetric 
matrix in the state vector of an EKF and an unscented Kalman filter. Han et al. 
(2017) additionally integrated the EMF in the state vector and propagated it with 
the gyroscope observations.

Each of the previously mentioned approaches exhibits at least one of the fol-
lowing problems: On the one hand, systematic deviations in magnetometer obser-
vations cannot be sharply separated from the desired signal; rather, they can only 
be separated to a certain extent. When orientation parameters are included in the 
state vector of an EKF, small amounts of systematic deviations that cannot be 
detected influence the estimated states. On the other hand, trajectories from pedes-
trians do not usually contain sufficient information to decorrelate the state vector 
components, including orientation parameters and different types of systematic 
deviations.

Consequently, biased estimates arise in the presence of unmodeled effects 
such as magnetic anomalies. We propose an OEA that reduces these problems 
under some loose restrictions. The computation of the inclination, heading, and 
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systematic deviations is divided into separate modules to avoid undesired effects 
due to correlated parameters. Instead of absolutely computing the heading in every 
epoch, the algorithm propagates the heading with the gyroscope, and the absolute 
part is updated periodically when good conditions for EMF sensing prevail. The 
update of the absolute heading is triggered by an EKF, whose state vector consists 
only of the magnetometer bias subsuming the systematic deviations with low tem-
poral variance (i.e., related to the sensor and its platform). This algorithm enables 
the reliable detection of rapidly varying systematic deviations (i.e., magnetic anom-
alies and their secondary effects); therefore, the update of the absolute heading 
can be suppressed in such phases. However, an OEA based solely on an inertial 
measurement unit and magnetometer is dependent on the condition that error-free 
magnetometer observations are available in at least some time windows (ideally in 
the initial phase of the algorithm). For edge cases in which magnetometer observa-
tions are faulty all the time, it is necessary to integrate additional observation types 
into the OEA.

In Section 2, we introduce the proposed OEA in detail. For convenience, a list 
of symbols used in the extensive equations is provided in Appendix B. We validate 
our OEA in Section  3.1 with simulated data to show that the OEA exhibits the 
proposed properties. In Section 3.2, we use measured smartphone sensor data and 
ground truth data from a laser tracker to compare our OEA with three of the OEAs 
mentioned above.

2  PROPOSED ALGORITHM

The coordinate frames and smartphone sensor observations are shown in 
Figure 1. We assume that the observations from the gyroscope ωωB ,  accelerome-
ter a B ,  and magnetometer mB  are available in the common smartphone body 
frame (B-frame). The aim of smartphone orientation determination is to link the 
B-frame with the navigation frame (N-frame), which corresponds to the coordi-
nate system in which the pedestrian motion is described. To describe the rota-
tions needed to link the B-frame with the N-frame, Euler angle parameterization 
is used herein. All frames are right-handed, and all angles are counted positive 
in the counter-clockwise direction. We use an intermediate frame, the local-level 

FIGURE 1 Visualization of the used coordinate frames
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frame (L-frame), to separate the computation of the inclination from the computa-
tion of the heading.

The inclination computation (i.e., computing ϕ  and θ ) with ωωB  (angular veloc-
ity around the B-frame axes) and a B  (components of the gravity vector gN  in the 
B-frame) links the B-frame with the L-frame. The heading describes the rotation 
around the vertical z-axis and links the L-frame with the N-frame. The heading is 
computed by using mB  (components of the EMF vector hN  in the B-frame), the 
vertical angular velocity ψ ,  and the magnetic declination hD .  Values for hN  and 
hD  are derived from an EMF model.1

Figure 2 shows an overview of the proposed OEA for determining smartphone 
orientation. The inputs are the sensor observations ωωk

B ,  ak
B ,  and mk

B  as well as 
an initial smartphone heading ψ 0  at time k = 0.  The algorithm consists of four 
modules: The computation of the inclination follows the algorithms from Särkkä 
et al. (2015) and Hostettler & Särkkä (2016), as outlined in Appendix A. Heading 
propagation is conducted with ψ k  derived from the inclination-EKF (Section 2.1). 
The bias-EKF in Section 2.2 is based on a novel functional model. Its state vector 
contains the slow-varying systematic deviations in the magnetometer observations 
and uses � � �k k k, ,  as well as mB  as observations. In the heading update module 
(Section 2.3), the results from the bias-EKF are collected in time windows. If these 

1World Magnetic Model (WMM), online calculator: https://www.ngdc.noaa.bov/geomag/calculators/magcalc.shtml? 
model=wmm, accessed: 28.05.2022

FIGURE 2 Overview of the proposed OEA
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data exhibit certain properties, the absolute heading is updated. Additionally, a 
one-time check of ψ 0  is performed in the heading update.

It is not necessary for the user to carry the smartphone in a certain mode. The 
smartphone can be carried in a pocket or bag but can also be held by the user 
in texting or calling mode. One of the following two conditions must be met for 
the proposed OEA to provide useful results: Either ψ 0  must be accurately known 
or the first couple of seconds of magnetometer observations must be free from 
systematic deviations (e.g., ensured by magnetometer calibration with ellipsoid 
fitting). We favor the second case, as it is common in several smartphone appli-
cations, requiring the user to perform certain rotations of the phone in order to 
trigger a built-in magnetometer calibration procedure. Still, the calibration with 
ellipsoid fitting must not result in an unbiased yaw angle. When ellipsoid fitting 
fails, there should be at least some time windows without magnetic anomalies in 
order to have an opportunity to improve an initial heading that is most likely erro-
neous. The proposed algorithm is dependent on this fact. If magnetic anomalies 
are present all the time, the smartphone heading can only be propagated with the 
relative changes derived from the gyroscope. In this case, drift effects due to the 
summation of gyroscpe bias must be considered, and additional observations are 
needed to stabilize the resulting smartphone heading. These limitations must be 
considered when the proposed algorithm is applied.

2.1  Heading Propagation

The heading ψ  for the current epoch k is derived by integrating ψ k  with the 
constant time interval between observations dt:
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This integration is performed from the epoch κ  on, at which the absolute head-
ing has been previously updated, where d��|k  is the accumulated heading change. 
The computation of ��  is outlined in Section 2.3. The variance ��2  is derived with 
variance propagation, neglecting temporal correlations (i.e., autocorrelation). The 
propagated heading is the outcome of the proposed OEA but is also used as an 
observation in the bias-EKF, as described in the following section.

2.2  Bias-EKF

We reformulate the magnetometer model (Groves, 2013) to develop a functional 
model of the bias-EKF:

	 ( )[( ) ( ) ]B B N N B B
sn si N a hi b m= + + + + + +m I I R h δ δ δ∆ ∆  � (2)

sn∆  is a matrix that accounts for scaling and non-orthogonality of the magne-
tometer. B

bδ  and B
hiδ  are the sensor bias and hard-iron bias, and N

aδ  accounts for 
magnetic anomalies in the sensor’s environment. si∆  contains the soft-iron effects, 
which are dependent on smartphone position and orientation with respect to mag-
netic anomalies. m  is the magnetometer white noise, and I  is the identity matrix. 
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RN
B  is the rotation matrix linking the N-frame and B-frame; this term is computed 

from ϕ,  θ ,  and ψ .  We rearrange Equation (2) such that two new terms summa-
rize the systematic deviations:

	 ( )
( ) ( )

B B N B B
N s f m

B B B
s sn hi b
B B N B N N
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
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B
sδ  subsumes the deviations that are related only to the magnetometer and its 

carrier platform (i.e., the smartphone). This term is treated as a slow-varying bias. 
B
fδ  is the bias that exhibits rapid changes upon movement through the environ-

ment when magnetic anomalies are present.
As mentioned in Section 1, we choose a minimum parameterization of the state 

vector for the bias-EKF, which equals .B
sδ  The prediction is performed with a ran-

dom walk model:

	 , ,k 1
ˆB B

s k s dt δ−= + ⋅δ δ ζ � (4)

where ,
B

s kδ  is the predicted state, ,k 1
ˆB
s −δ  is the previously estimated state, and δζ  is 

the system noise. For better readability, we omit the index k  from here on. Only the 
quantities related to the previously estimated state are indexed with k −1.  The fil-
ter innovation wm  is computed by using mB  and the Euler angles as observations:

	 ( , , )B B B N
m s N ϕ θ ψ= − −w m R hδ � (5)

Here, we use a slightly different formulation of the innovation computation that 
does not exhibit the common structure of “observed minus computed.” Ettlinger 
et al. (2018) and Vogel et al. (2018) provided a detailed explanation of this EKF vari-
ant. In the presence of magnetic anomalies, mB  contains B

fδ  (see Equation (3)), 
which is absorbed by ˆB

sδ  only to a certain extent depending on the preset variances 
of mB  and δζ  (Table 1). Consequently, ˆB

sδ  becomes biased, and the remaining 
influence of B

fδ  affects the residuals 12 1
ˆ
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m
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bias-EKF. We use v̂  and the corresponding variance-covariance matrix (VCM) 
ˆ ˆvvΣ  to formulate a statistical test (global model test):
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We use the above equation to verify the compliance between the observed data 
and the model assumptions of the bias-EKF. In the null hypothesis H0 ,  the expec-
tation of the residuals is assumed to be zero =ˆ{ } ,E v 0  and therefore, TG  follows 
a chi-square distribution with three degrees of freedom (DoFs) (i.e., the dimen-
sion of wm ).  In the presence of magnetic anomalies, B

fδ  also affects ˆ ,v  leading 
to ≠ˆ{ } ;E v 0  therefore, TG  should become significant (i.e., larger than the corre-
sponding critical value TG c, ( )α ,  where α  is the type I error). In this case (i.e., 
under the alternative hypothesis HA ),  TG  follows a non-central chi-square distri-
bution � �3,

2  with non-centrality parameter λ.
Finally, we rotate mB  and ˆB

sδ  into the L-frame:

	
ϕ θ

ϕ θ

=

=

( , )
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L L B
B

L L B
s B s

m R m
Rδ δ

� (7)

which we use in the following heading update step.



    ETTLINGER et al.

2.3  Heading Update

The heading update step of the proposed OEA contains two actions: the update 
of ψ  when certain conditions are met and the one-time check of ψ 0 .  The follow-
ing equations describe the update:
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We collect mL ,  ˆ ,L
sδ  and TG  in non-overlapping time windows with length 

dtW u, .  To update �� ,  two conditions must be fulfilled (first line in Equation (8)). 
The percentage pT  (second line in Equation (8)) is computed from the number of 
test values TG i,  that exceed the corresponding critical value TG c, ( )α  (third line in 
Equation (8)). If pT >α ,  we assume that magnetic anomalies are present, which 
cannot be absorbed by ˆ ,B

sδ  leading to a bias in the computed heading. The second 
condition d d� �� �|k �  suppresses the update of ��  if the user is turning within a 
time window because, in this case, the values in the time windows are not valid 
for the current epoch k. � �d  is a preset threshold, and the accumulated heading 
change d��|k  from Equation (1) is used as an indicator for user turns.

Up to this point, the proposed OEA relies on the the unbiasedness of ψ 0 ,  as it is 
used for the heading propagation and in the initialization of the bias-EKF. We use 
the following procedure only one time at the beginning of the trajectory to verify 
the compliance between ψ 0  and the magnetometer observations:
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This value is independent from the results of the bias-EKF, and if the conditions 
are fulfilled, ��  is updated accordingly and the bias-EKF is re-initialized. We col-
lect only mL  in a time window with length dtW ,0  starting from k = 0.  First, the 
difference | |>� � ��k � m  between the propagated heading ψ k  from Equation (1) 
and ψm  must exceed the predefined threshold ��  (otherwise, there is no reason for 
an update). The second condition is equivalent to the condition in Equation (8) and 
suppresses an update if the user turns within the time window. The third condition 
pm m> γ  requires that the percentage pm  (second line in Equation (9)) of mi

L ,  
which fulfills two additional requirements c1  and c2  (third line in Equation (9)), 
is higher than the predefined threshold γm .  Because we want to use the heading 
computed from raw magnetometer observations in this control procedure (i.e., ˆB

sδ  
is not used in the first line of Equation (9)), the observations must be checked for 
systematic deviations. c1  requires that the magnitude of mL  be equal to the mag-
nitude of the EMF vector hN  (also derived from the EMF model in Section 2). This 
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condition is too sparse, as all accepted solutions theoretically lie on a sphere. Thus, 
c2  requires that the z-component of mL  be equal to the z-component of hN .  All 
acceptable solutions of c2  lie on a plane, and the intersection with the sphere from 
c1  results in a circle in the three-dimensional (3D) space of solutions that fulfill 
both conditions. Because of measurement noise, these conditions cannot be met 
exactly but must be fulfilled within the threshold � ��m m� ,  where σm  is the stan-
dard deviation of m  and ��m  is a predefined multiplier.

In the next section, we use simulated data and experiments performed with a 
high-accuracy 6-DoF reference measurement system to analyze the properties of 
the proposed OEA. Additionally, the results from the experiments are compared 
with the results of three other OEAs from the literature.

3  EVALUATION

3.1  Validation with Simulated Data

In this section, we use simulated data to validate the proposed OEA in different 
controlled conditions, where the influence of different systematic deviations affect-
ing the magnetometer is exactly known. The smartphone sensor observations a B ,  
ωωB ,  and mB  are determined from a straight trajectory, as shown in Figure 3, where 
the orientation of the coordinate frame equals the orientation of the N-frame. The 
trajectory also determines the heading or yaw angle � � �61.0°,  and the inclina-
tion angles are constant  � �� � �0.0 , 30.0° °.  Thus, the rotation matrix RN

B  is avail-
able (~ indicates known quantities), and a B  and mB  are computed as follows:

	
a g
m h

B

B

B

� �

� �

�





R
R
N
B N

a

N
B N

m





�� �

� (10)

where  a m, ,  and ω  are the noise vectors of the accelerometer, magnetometer, 
and gyroscope. The components of the noise vectors are modeled as zero-mean 
uncorrelated Gaussian noise with a corresponding standard deviation (see Table 1). 

FIGURE 3 Map with trajectories and magnetic anomalies used in the simulation scenarios



    ETTLINGER et al.

The  standard deviations are derived from the smartphones used in Section  3.2 
when lying static for several minutes. As we do not model stride or step accel-
erations, the state of the inclination-EKF only consists of ˆ .Bg  All settings of the 
proposed algorithm are summarized in Table 1.

We investigate six scenarios with different systematic deviations affecting the 
magnetometer observations. Additionally, a baseline scenario (scenario 0) is cho-
sen, in which no systematic deviations are introduced. Magnetic anomalies are 
modeled in all scenarios (except scenario 2), representing .B

fδ  The anomalies 
are shown in Figure 3, modeled as a magnetic dipole according to previous work 
(Afzal, 2011). In scenarios 1, 3, and 4, there is only one magnetic anomaly, which 
occurs in the middle of the trajectory, and in scenario 5, there is one anomaly at the 
beginning of the trajectory. Scenario 6 contains six magnetic anomalies to imitate 
a more realistic indoor scenario. A slow-varying bias is modeled in scenarios 2 and 
3, representing .B

sδ  The bias [2.0, 0.0, 0.0] [ ]B T
s Tµ=δ  is added to mB  from 15.0 s  

on (see Figure 4(a)). A linear increase starting from 0.0 µT  in the x-component is 
modeled from 10.0 s  to 15.0 s,  at which point 2.0 µT  is reached. Both deviations 
are deterministic quantities, i.e., no noise is added. ψ 0  is drawn from a Gaussian 
distribution with zero mean and standard deviation �� ,0 ,  according to Table 2. To 
analyze the influence of the accuracy of ψ 0 ,  �� ,0  is increased in scenario 4. All 
scenarios are evaluated 3000 times. We investigate the results of the proposed algo-
rithm from these six scenarios and compare them with the results for scenario 0.

Figure 4 shows the deviations ∆ ˆB
sδ  of the estimated slow-varying bias from the 

corresponding known values for scenarios 1, 2, and 6. The results of scenario 4 do 
not differ from those shown in Figure 4(a), except during the first 3 s before the 

TABLE 1
Settings of the Proposed Algorithm 
�� a i j, ,  and �� a i j, ,  are only relevant for the measured data containing user motion in Section 3.2.

inclination-EKF bias-EKF heading update 

σa  0.1 / 2m s  σm  2.0 µT  � �d  10.0°  

��  0.1 /° s  ���  0.5 /µT s  ��  5.0°  

�� g i,  0.02 / 2m s  α  0.1  γm  0.95  

�� a i j, ,  0.02 / 2m s  ��m  3.0  

�� a i j, ,  0.02 / 3m s  dtW u,  5.0 s  

dtW ,0  3.0 s  

TABLE 2
Mean and Standard Deviation of ψ∆ ˆ  (Deviation of Estimated ψ̂  from Reference Value) from 
3000 Evaluations 
The bias column indicates whether a sensor bias is added to the simulated observations, and �� ,0  
is the standard deviation of the distribution from which ψ 0  is drawn.

scenario anomaly bias �� ,0 [ ]°  °ψ∆ ˆ [ ]  °ψσ∆ ˆ [ ]  

0 no no 10.0 −0.02 3.72

1 yes (one) no 10.0 0.02 3.76

2 no yes 10.0 0.15 3.80

3 yes (one) yes 10.0 0.03 3.77

4 yes (one) no 20.0 0.20 5.37

5 yes (start) no 10.0 −0.12 4.55

6 yes (multiple) no 10.0 −0.06 3.81
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one-time check (Equation (9)) of ψ 0  is performed. The bias-EKF exhibits the pro-
posed behavior. ˆB

sδ  does not absorb the magnetic anomaly, which spreads on the 
residuals; therefore, TG  becomes significant (Figure 4(a)). An update of ��  is not 
performed near the magnetic anomaly, as the heading angle would be biased and 
ˆB
sδ  takes on the correct value only a couple of seconds after the magnetic anomaly 

is passed. In scenario 2 with the sensor bias, ˆB
sδ  requires several seconds to follow 

the bias. Even if TG  never becomes significant (i.e., ��  is updated with slightly 
biased values in Equation (8)), ∆ ˆB

sδ  approaches zero again after the appearance of 
the bias. Moreover, in the case of multiple anomalies (Figure 4(c)), the bias-EKF 
exhibits the desired behavior. The global test values are significant in the vicinity of 
magnetic anomalies and converge back to zero after approximately 5 s.

The mean deviations of the resulting heading and their standard deviations are 
summarized in Table 2 for all scenarios. The mean deviation is slightly increased in 
scenarios 2, 4, and 5 compared with the other scenarios, which provide mean devi-
ations similar to that of scenario 0. The issue with the sensor bias in scenario 2 was 
discussed in the previous paragraph. Scenarios 4 and 5 represent problematic con-
ditions at the beginning of the trajectory (i.e., poor accuracy of ψ 0  or systematic 

FIGURE 4 Mean deviations ∆ ˆB
sδ  for three systematic deviation scenarios with the 

corresponding standard deviation (dotted line) (a) Scenario 1 (b) Scenario 2 (c) Scenario 6
The orange areas in scenarios 1 and 6 indicate the influence of magnetic anomalies, the yellow 
area in scenario 2 indicates the influence of the constant bias, and the blue areas indicate 
significant global tests according to Equation (6).
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deviations in mB ).  These two scenarios also exhibit considerably higher values of 
δψσ ˆ .  This result indicates that problematic conditions in the initialization phase 

of the proposed OEA have the greatest impact on the achievable heading accuracy.
This simulation study is not all-encompassing, and real conditions have only 

been partially modeled. Yet, the results in this section indicate that the proposed 
OEA exhibits the desired properties. The OEA provides reasonable results for 
smartphone orientation when strong magnetic perturbations are present in the 
environment. In the next section, we analyze results from a small-scale experiment 
with high-accuracy ground truth values for smartphone orientation to further 
demonstrate the potential of the proposed OEA.

3.2  Comparison with Measured Data

We performed experiments in the measurement laboratory of the Department 
of Geodesy and Geoinformation, TU Wien with three smartphones (Samsung 
Galaxy S10, LGE Nexus 5X, and Google Pixel 5) to evaluate the achievable orienta-
tion accuracy of the proposed algorithm. The reference values of the Euler angles 




� � �, ,  are determined with a Leica LTD800 laser tracker. The laser tracker pro-
vides observations in its local coordinate frame, which we denote as the Lt-frame. 
Pillars in the laboratory have known coordinates in a local north–east–up coordi-
nate system, which is used to visualize the trajectories in Figure 6. The N-frame is 
oriented in the same way as the local north–east–up coordinate system. The coor-
dinates of these pillars in the Lt-frame are derived from laser tracker observations 
to a corner cube reflector placed on the pillars. The rotation matrix RLt

N  linking 
the Lt-frame to the N-frame is computed with an overdetermined similarity trans-
formation. We assembled a platform with a 3D printer that can be carried by the 

FIGURE 5 Experimental setup 
The top row of images shows the measurement area with the laser tracker and magnet. The 
bottom row of images shows the 3D-printed platform with the rigidly mounted T-probe and 
smartphone and how the platform was held during the measurements.
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user and that holds the smartphone as well as the T-probe (see Figure 5). With this 
device, the laser tracker provides the six DoF parameters linking the T-probe coor-
dinate frame (Tp-frame) with the Lt-frame. The T-probe is mounted with known 
angular offsets from the smartphone body coordinate frame (B-frame) such that 
the rotation matrix RB

Tp  is available. The overall rotation matrix is composed from 
the previously described rotation steps:

	 R R R RN
B

Lt
N

T p
Lt

B
Tp T= ( ) � (11)

The standard deviation of the angles linking the N-frame with the Lt-frame from 
the overdetermined similarity transformation is ����� , [0.001, 0.02, 0.001] [ ]N Lt

T
� � ° .  

The standard deviation of the angles linking the Lt-frame with the Tp-frame is 
����� , [0.002, 0.002, 0.002] [ ]Lt Tp

T
� � ° ,  which is determined with the T-probe being 

static. Because these angles are measured kinematically, we assume that ����� ,Lt Tp�  
is increased by a factor of 10. Still, the uncertainty is clearly beyond a tenth of 
a degree for the “cumulated” angles linking the N-frame with the Tp-frame. The 
largest source of uncertainty is the mounting of the smartphone on the 3D-printed 
platform ( )����� ,Tp B�  and the realization of the B-frame in/on the smartphone. By 
carefully aligning the longitudinal side and back side of the smartphone with plas-
tic screws (see Figure 5) to the 3D-printed platform, we ensure a precise alignment. 
From the numeric simulations in Section 3.1, we know that the accuracy of the 
resulting heading from the proposed algorithm is 4 5− °  under ideal conditions. 
We assume that this value increases by a factor of at least 2  under real conditions 
(platform and sensor imperfections, user motion, etc.). Thus, the chosen reference 
measurement system should be sufficient to provide reference values for the exper-
iments and the following analysis.

The smartphone sensor observations a mB B B, ,ωω and  as well as the rotation 
matrix RTp

Lt  are collected kinematically. Time synchronization between the smart-
phone and tracker data is conducted by using cross-correlation. The two signals 
for cross-correlation are ωωB  and ωωB ,  which is derived according to previous work 
(Titterton & Weston, 2004):
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Figure 6 shows trajectories 2, 3, and 4 (trajectory 1 is the same as trajectory 2) as 
well as the magnet (blue square), which was positioned in the experiment area. The 
colormap represents the magnitude of the deviation vector �m m hB B

N
B N� � R ,  

computed from trajectory 2 by two-dimensional interpolation. Trajectory 1 was 
obtained in the same manner as trajectory 2 but without the magnet. Each phone 
is rotated around its three main axes to trigger the hard-iron bias calibration before 
trajectory 1 begins. We use a magnet with a known position to have at least one 
magnetic anomaly influencing the magnetometer observations. As shown in 
Figure 6, there is another magnetic anomaly present in the upper right region of 
the experiment area. This pattern could be reproduced with each phone for trajec-
tories 1, 2, and 4 (at the beginning of the trajectory).
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We compute the Euler angles for all 12 trajectories with the proposed OEA. 
To initialize the Euler angles, we compute ϕ  and θ  with a B  at time k = 0  
(Appendix  A), and � �0 0�   is derived from Equation (11) via the laser tracker 
measurements. Figure 7 (top) shows the deviations of the computed EMF in the 
B-frame with respect to the known values for the LGE Nexus 5X and trajectory 2. 
Figure 7 (bottom) presents the deviations of the computed Euler angles from the 
corresponding known quantities. The influence of the magnet and the anomaly 
in the upper right region of the experiment area on the components of hB  (and 
therefore on ψ )  is very weak. Noticeable deviations of up to 25°  occur in a few 
cases (e.g., after the initial check with Equation (9) and approximately 110 s),  but 
they rapidly decrease to zero. The deviations of ϕ  and θ  basically have a zero 
mean, with a maximum of ±7°.

We use three algorithms for comparison: the complementary filter from 
Madgwick et al. (2011) (called Madgwick or “madgw” in some plots), the EKF 
from Renaudin & Combettes (2014) (called Magyq), and the EKF from Han et al. 
(2017) (called Han). Madgwick and Magyq fuse a mB B, ,  and ωωB  in one algorithm 
and deliver the quaternion, which describes the 3D rotation from the N-frame into 
the B-frame. Thus, in contrast to the algorithm proposed herein, the computations 
of the inclination and heading component are not totally separated in these two 
approaches. Han does not estimate orientation parameters; instead, it estimates the 
EMF in the B-frame hB  together with a magnetometer bias and symmetric matrix 
elements subsuming sn∆  and .si∆  The estimation of the EMF (implicitly contain-
ing the heading information) and two categories of systematic deviations is the 
main difference of the proposed algorithm, which has minimal parameterization 
in the bias-EKF. The inclination angles are computed in the same way for the Han 
algorithm as in the proposed algorithm. We use these three algorithms to compute 
� �, ,  and ψ  for all trajectories.

FIGURE 6 Trajectories 2, 3, and 4 plotted on a colormap representing the magnitude of the 
deviation vector DmB 
Trajectory 1 is not plotted, as it is nearly the same as trajectory 2. The blue square represents the 
magnet, which is positioned in the experiment area.



ETTLINGER et al.    

Each algorithm has at least one variable that can be used for tuning. We attempted 
to optimize the algorithms on the basis of the root mean square error (RMSE) of the 
computed heading. In the Madgwick algorithm, the maximum gyroscope measure-
ment error can be adjusted; we set this term to 0.01 /° s.  Renaudin & Combettes 
(2014) estimated the accelerometer bias (beside the orientation quaternion q  and 
the gyroscope quaternion bias qb,ω ),  which we omit herein. Thus, there are two 
system noise components for q  and qb,ω ,  whose standard deviations are set to 
�q � 0.001  and � �q s,

10.001� � .  Additionally, Magyq performs static period detec-
tion and outlier rejection of a B  and mB  by comparing their magnitudes with the 
nominal values. The number of observations (a B  and mB )  used for static period 
detection is set to 20, and the corresponding thresholds are set to �1, 20.3 /a m s�  
and � �1, 1.0m T� .  The thresholds for outlier rejection are set to � 2, 21.0 /a m s�  
and � �2, 3.0m T� .  Han provides one tuning variable, which is a dimensionless 
multiplier for controlling the influence of the system noise; this term is set to 100.0.

The resulting deviations ��  are shown in Figure 8, and the respective RMSE 
values are given in Appendix B (Table B1). Madgwick performs best in trajec-
tory  3, which exhibits the most preferable properties (no anomaly in the begin-
ning and short duration of only 12 s).  The results from the other trajectories are 
significantly worse. For Han, the results from trajectory 1 (without the magnet) 
are clearly better than those for the other three trajectories. In the provided exper-
imental setup, heavy magnetic anomalies cannot be reasonably estimated by using 
functional models containing several parameters for systematic deviations (i.e., 
bias and symmetric matrix). Due to the very low standard deviations of the sys-
tem noise obtained when using Magyq, this algorithm performs better in the short 
trajectories 3 and 4. Trajectory 1 contains only two very high RMSE values for the 
Samsung Galaxy S7 and LGE Nexus 5X. If one neglected these two values, the 

FIGURE 7 Deviations of hB  (top) and � � �, ,  (bottom) for trajectory 2 and LGE Nexus 5X 
The durations for which the phone is closer than 1.0m  to the magnet are marked in orange 
(denoted “magnet” in the legend), and those for which the phone is closer than 2.0m  to 
the anomaly in the upper right region of the experiment area are marked in yellow (denoted 
“anomaly” in the legend). The turquoise line marks the initial check with Equation (9), and the 
purple lines mark the updates of ��  with Equation (8).
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overall RMSE would be very close to that of the proposed OEA. The drawback of 
Magyq (and therefore of all algorithms that compute the 3D orientation within 
one EKF) is that the magnetic anomalies also influence the inclination angles (see 
Table 3). Because Madgwick is based on a complementary filter, the RMSE values 
of the inclination angles are considerably smaller, even if all smartphone observa-
tions are fused in one algorithm. The proposed OEA delivers the lowest RMSE for 
the computed heading given an unbiased value of ψ 0  (Table 3).

We perform the evaluations again for biased values of ψ 0 ,  as shown in Figure 9, 
where �� 0  is the deviation from the correct value. The RMSE values are com-
puted for each value �� 0  in the same way as in Table 3. Over the whole range 
of �� 0 ,  the proposed OEA delivers the lowest RMSE values of the computed 
heading on average (with worse performance toward �� 0 90� � °  compared with 
the other algorithms). It is counterintuitive that the minima of the graphs are not 
exactly at the correct value of ψ 0  (i.e., �� 0 0� °).  Our explanation is that the shift 
in ψ 0  partially compensates for systematic deviations contained in the magnetom-
eter observations. The low variation in headings when the magnet is passed leads 
to additional experiment-specific effects because the summation of the magnetic 
anomaly and sensor-related biases is similar for all trajectories. Still, this experi-
ment with high-accuracy ground truth values for 3D orientation reveals the poten-
tial of the proposed OEA within smartphone or pedestrian localization systems.

TABLE 3
RMSE Values of Euler Angles Over All Trajectories and Phones in [°] 
Han and the proposed OEA use the same inclination computation procedure. Thus, these 
algorithms have the same RMSE values for ϕ  and θ .

Madgwick Magyq Han Proposed OEA 

RMSE ϕ  7.0 31.4 1.7 1.7 

RMSE θ  9.7 13.6 2.6 2.6 

RMSE ψ  65.8 36.5 29.2 17.4 

FIGURE 8 Deviation of the smartphone heading computed from the known quantities ��  
for all trajectories, phones, and algorithms
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4  CONCLUSION

We developed an OEA that provides the absolute 3D orientation of a 
consumer-grade device such as a smartphone. The proposed OEA exhibits the fol-
lowing properties:

•	 reliable detection of magnetic anomalies, 
•	 fast convergence of the estimated bias back to the correct value after a magnetic 

anomaly is passed, and 
•	 minimal/reduced influence of magnetic anomalies on the computed heading. 

The limiting condition is that magnetometer observations that are free from sys-
tematic deviations must be available for at least certain time spans of the trajectory. 
Otherwise, the heading determination can only be performed in a relative manner 
by using the gyroscope or additional information from other sensors. We validated 
and analyzed the proposed OEA by using numerical simulations. We modeled 
magnetic anomalies, sensor biases, and two levels of accuracy of the initial head-
ing in different scenarios. The scenarios with problematic conditions in the initial-
ization phase of the proposed OEA led to slightly worse results. Nevertheless, the 
proposed OEA provides an estimated smartphone orientation with low deviation 
from the correct value.

We evaluated the performance of the proposed OEA based on experiments with 
high-accuracy ground truth values for 3D smartphone orientation. The proposed 
OEA was compared with three other algorithms from the literature that also use a 
magnetometer. If the initial heading is unbiased, the RMSE of the computed head-
ing is 40% lower for the proposed OEA compared with the “second-best” algorithm 
over all trajectories (Tables 3 and B1). For a wide range of biased initial headings, 
the proposed OEA also delivers the lowest RMSE values for the computed head-
ing (Figure 9). Although these small-scale experiments with laboratory conditions 
exhibit some limitations, the results indicate that the proposed OEA has potential 
to be included in positioning systems. In future work, the performance must be 

FIGURE 9 RMSE values of the computed heading for a biased initial heading
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evaluated in large-scale experiments with diverse data (more DoFs in the trajec-
tories, multiple users, more smartphone holding modes, etc.). A by-product of the 
proposed OEA with a potentially high benefit is a global test for magnetic anom-
aly detection. This approach can be used to detect and locate magnetic anomalies, 
which can be used as features to aid in indoor positioning, e.g., with fingerprinting.

The authors acknowledge TU Wien Bibliothek for financial support through its 
Open Access Funding Program.
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APPENDIX

A  INCLINATION-EKF

In the inclination-EKF, the gravity vector in the B-frame ˆ Bg  is estimated; this 
vector is used later to compute ϕ  and θ .  a B  and ωωB  are smartphone sensor 
observations utilized as input in the inclination-EKF, in which the calibrated val-
ues delivered by the smartphone are used. ωωB  is the control input in the prediction 
of gB :
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and gζ  is the system noise of gB .
The state vector of the inclination-EKF also contains stochastic resonators 

(Hostettler & Särkkä, 2016; Särkkä et al., 2015), which compensate for accelera-
tions due to user motion. We include resonators for stride a a i x y zi str
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step acceleration a a i x y zi stp
B

i stp
B

, ,, , , , =  for each coordinate axis (where ai jB,  are the 
corresponding derivatives). These terms are propagated as follows:
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where f0  is the base frequency, which we set to the stride frequency, and the ζ  
terms are the system noise components of the stochastic resonators.

a B  equals the observation vector in the filter update (i.e., measurement equa-
tion) for computing the filter innovations:

w a gI
B B
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B� � � �a a

In the Euler angle representation, the roll angle ϕ  and pitch angle θ  describe 
the inclination; these terms are computed from ˆ Bg  as follows:
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The angular velocity around the z-axis of the L-frame or N-frame is computed 
as follows:

�
�
� � � �= 1 ( )

cos
sin cosy

B
z
B� � �

To avoid the gimbal-lock problem (� �� � 2 ),  one can also derive the orientation 
quaternion from ˆ Bg  (Valenti et al., 2015), which describes the same rotation as 
ϕ  and θ .  The gimbal-lock problem does not appear in the simulation study in 
Section 3.1 or in the experiments in Section 3.2; thus, we utilized only the Euler 
angle representation.

B  ADDITIONAL MATERIAL

TABLE B1
RMSE Values of Computed Heading in [°] 
The RMSE per trajectory was computed by using the deviations of all phones and one trajectory, 
and the RMSE per phone was computed by using the deviations of all trajectories and one phone. 
The bold RMSE numbers were computed from the deviations over all phones and trajectories.

Samsung 
Galaxy S7 

LGE Nexus 5X Google Pixel 5 RMSE per trajectory 

Madgwick 

trj-1 68.5 86.5 43.6 67.5 

trj-2 64.6 45.9 85.9 67.7 

trj-3 20.1 15.7 10.9 15.7 

trj-4 38.5 47.7 58.2 49.9 

RMSE per phone 64.5 67.2 65.6 65.8 (overall RMSE)

(Continued)
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TABLE B2
Symbols Introduced in Sections 2 and 3

sensor observations and rotations 

ωωB  gyroscope observations in the B-frame 

a B  accelerometer observations in the B-frame 

mB  magnetometer observations in the B-frame 
ψ  angular rate around the z-axis of the N- or L-frame 

gN  gravity vector in the N-frame 

hN  EMF vector in the N-frame 

hD  magnetic declination 

� � �, ,  Euler angles roll, pitch, and yaw describing rotation from N- into the B-frame 

RN
B  rotation matrix describing rotation from N- into the B-frame 

  sensor white noise (index marks sensor) 

σ  standard deviation of white noise component (index marks quantity) 

heading propagation 

ψ 0  initial heading 

��  last updated absolute heading 

d k�� |  accumulated heading change 

k  or κ  time indices indicating epochs or timestamps 

dt  time interval 

bias-EKF 

sn∆  matrix representing sensor scale and non-orthogonality of magnetometer

si∆  matrix representing soft-iron effects of platform in the magnetometer 
N
aδ  vector representing magnetic anomalies 
B
hiδ  vector representing hard-iron effects of platform in the magnetometer 

(Continued)

Samsung 
Galaxy S7 

LGE Nexus 5X Google Pixel 5 RMSE per trajectory 

Magyq 

trj-1 70.6 52.5 22.8 50.5 

trj-2 9.2 25.8 13.4 17.8 

trj-3 7.5 2.7 4.4 5.3 

trj-4 9.4 5.5 16.8 12.0 

RMSE per phone 47.5 39.8 18.4 36.5 (overall RMSE)

Han 

trj-1 16.1 11.0 14.3 13.8 

trj-2 25.0 32.2 52.5 38.8 

trj-3 20.1 15.2 30.4 23.8 

trj-4 19.4 33.4 42.1 34.1 

RMSE per phone 21.1 24.4 37.7 29.2 (overall RMSE)

Proposed OEA 

trj-1 7.8 25.7 19.8 19.6 

trj-2 25.0 9.4 10.2 16.2 

trj-3 6.7 6.8 3.6 5.7 

trj-4 7.8 5.8 10.7 8.5 

RMSE per phone 18.3 18.7 15.4 17.4 (overall RMSE)

TABLE B1 (Continued)
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B
bδ  vector representing sensor bias of the magnetometer 
B
sδ  vector subsuming slow-varying systematic deviations of the magnetometer 
B
fδ  vector subsuming fast-varying systematic deviations of the magnetometer 

ˆ,B B
s sδ δ  predicted and estimated B

sδ  (EKF) 

δζ  system noise of B
sδ  (EKF) 

wm  filter innovation of bias-EKF 

Σ ˆ ˆˆ , vvv EKF residuals (index marks quantity) with VCM 

TG ,  TG c, ( )α  global test value and its critical value 

α  type I error of global test 

χ3
2  chi-square distribution (index indicates three DoFs) 

λ  non-centrality parameter of chi-square distribution 

H0,  HA  null and alternative hypothesis 

E{}  expectation of random variable 

heading update 

dtW u, ,  nW u,  length of time window for updating ψ  and number of values contained

dtW ,0 ,  nW ,0  length of time window for controlling ψ 0  and number of values contained

nT ,  pT  number of TG i,  values exceeding TG c, ( )α  and corresponding percentage 

nm ,  pm  number of mi
L  fulfilling conditions c1  and c2  and corresponding percentage 

c1  condition that the magnitudes of mi
L  and hN  must be the same 

c2  condition that the vertical components of mi
L  and hN  must be the same 

� �d  preset threshold of maximum heading change in time window 

��  preset threshold for difference in propagated and magnetometer heading 

γm  preset threshold of mi
L  values that must fulfill c1  and c2  

��m  preset multiplier for σm  acting as a threshold for c1  and c2  

TABLE B2 (Continued)
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