s
FAKULTAT
FUR INFORMATIK

Faculty of Informatics

A Review of Technologies
supporting Dynamic Fine-Grained
Data Access Control in Relational

Databases

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Gerhard Schraml, BSc.
Registration Number 00728067

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Robert Sablatnig

Vienna, 20" November, 2018

Gerhard Schraml Robert Sablatnig

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. 4+43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Gerhard Schraml, BSc.
1100 Laxenburger Stral3e 29/8

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. November 2018

Gerhard Schraml

iii

Kurzfassung

Die Menge an sensiblen Daten, die in Enterprise-Applikationen verarbeitet werden,
wachst kontinuierlich. Gleichzeitig kann ebenso beobachtet werden, dass die Anzahl der
Anwender dieser Applikationen steigt. Aus diesem Grund ist es notwendig, Mechanismen
zu entwickeln, die die effiziente Verwaltung von Zugriffskontrolle auf sensible Daten
ermoglicht. Feingranulare Datenzugriffskontrolle und Attributbasierte Zugriffskontrolle
sind junge Konzepte die die Umsetzung dieser Anforderung unterstiitzen. Noch komplexer
wird es, wenn sowohl die Struktur der Datenbank als auch die Zugriffsregeln zur Entwick-
lungszeit einer Applikation noch nicht bekannt sind. Es wird ein Prototyp eines Systems
vorgestellt, welcher Dynamische Feingranulare Datenzugriffskontrolle im Forschungsfeld
des Sustainable Non-Bureaucratic Government ermoglicht. Zu diesem Zweck wird Virtual
Private Database eine Funktionalitiat der Oracle-Datenbank, herangezogen, um erfolg-
reich einen Prototyp einer Applikation mit dynamischen Zugriffsregeln zu entwerfen.
Die Applikation unterstiitzt ihre eigene Modifizierung zur Laufzeit durch demokratische,
gemeinschaftliche Entscheidungsfindung ihrer Anwender. Der replizierende Vergleich mit
einem bestehenden Prototyp zeigt, dass mit Hilfe von Virtual Private Database eine
Implementierung eines Systems mit Dynamischer Feingranularer Datenzugrifsskontrolle
moglich ist. Im Gegensatz dazu wird gezeigt, dass es nicht méglich ist, standardisierte
Definition von Zugriffsregeln mittels der eXtensible Access Control Markup Language im
selben Prototyp zu erreichen.

Abstract

The amount of sensitive data processed by enterprise applications is constantly increasing.
Simultaneously, a growing number of users of these applications can be observed. Thus
it is necessary to provide means for efficiently managing access control to sensitive data.
Fine-Grained Data Access Control and Attribute Based Access Control are new concepts
assisting with fulfilling this requirement. The complexity of access control reaches an even
higher level, if database structure and authorization rules are not known at application
design time. A proposed prototype system in the field of Sustainable Non-Bureaucratic
Government aids as a decision criterion for which technologies can be used to implement
Dynamic Fine-Grained Data Access Control. Virtual Private Database is a feature
provided by Oracle Database that is successfully utilized in the prototype system to
build a dynamic access control aware application. The application supports its own
alteration during runtime by means of democratic collaborative decision making of the
users. In a comparison with an existing prototype system it is shown that it is possible
to replicate the feature set of Dynmic Fine-Grained Data Access Control using Virtual
Private Database. In contrast, it is found that it is not possible to integrate standardized
access policy definition with the prototype using the eXtensible Access Control Markup
Language.

vii

Contents

Kurzfassung v
Abstract vii
Contents ix
1 Introduction 1
2 Concepts of access control 5
2.1 Evolution of access controll.)
2.2 Foundations of Fine-Grained Data Access Controll 17
2.3 Dynamic Fine-Grained Data Access Control: Introducing the Secure SQL
Serverl . ..o e 28
2.4 XACML: A standardized access control policy language 34
2.5 Summary|o e e e e e 43
3 A prototype dFGDAC system utilizing Oracle Virtual Private Database 45
3.1 Implementing Fine-Grained Data Access Control: the VPD schema/ 45
3.2 Enabling complex dynamic access control policies using Proxy Views . . . 57
3.3 Collaborative decision-making: the sovereign schemal 63
3.4 The parliament scenario: a prototype web-based user interface, 68
3.5 Summary, ... L e e e e 69
4 Approaching standardized access policy definition using XACML 71
4.1 High-level XACML implementations| 71
4.2 Integrating XACML policies with relational databases 73
4.3 Discussion: XACML as an enabler for standardization in dFGDAC| 79
4.4 Summary e e e e 80
5 _Discussion of dFGDAC solutions 83
5.1 Performance indicators 83
5.2 Discussion of Secure SQL Server 84
5.3 Discussion of the Oracle dFGDAC prototypel 87
5.4 Comparison of the discussed technologies| 92

ix

9.0 Summary| e e e e e 95

6 Conclusion and Future Work 97
6.1 General observations| 97
6.2 Discussion of findings| 98
6.3 Future workl e e 99

Bibliography 101

CHAPTER

Introduction

Evolving database technology has enabled applications to store and process practically
uncountable amounts of person-related data |5]. The implementation of access control
mechanisms aims at protecting sensitive data from being accessed by unauthorized users
or user groups. Relational Database Management Systems (RDBMS) provide means
for storing all the application data in tabular form. Built-in access control in common
RDBMS (such as Oracle Database |28]) is traditionally implemented only at relation
level, that is, access can only be granted for tables or views as a whole [22]. This level of
access control is referred to as coarse-grained|23).

In contrast, Fine-Grained Data Access Control (FGDAC) allows for managing autho-
rizations each on row, column and cell level of tabular data [41]. As a short example,
consider a database table containing all the employees records of a company including
names, salaries and department affiliations. With a FGDAC implementation deployed,
access constraints as following could be enforced: “employees may only view their
own salary", “employees may only see the names of employees belonging to the same
department".

Compared to access control systems with static database structure and policies, the
problem under discussion gets more complex, if both database structure and access
control policies to apply are not known in advance, i.e. at application design time. This is
due to the fact that it is impossible for application designers and developers to anticipate
all possible future changes to the system.

Such is the case in the emerging research field on Sustainable Non-Bureaucratic
Government (SNBG), which aims at creating a system of structured, machine-readable
law. The following statements refer to the work of Paulin (2015) [35]. SNBG involves
democratic creation, enactment and modification of machine-readable access control
policies to system-relevant data during runtime, as well as democratic creation and
modification of the underlying database structure - likewise, during runtime. Accordingly,

1.

INTRODUCTION

database access policies in SNBG can neither be defined nor abstracted (e.g. in form
of templates) at design-time. In SNBG, the absence of administrative super users, who
could corrupt the democratically created policies when implementing them in the system,
is of crucial importance. Furthermore, authorization decisions can no longer solely depend
on the identity of a requestor. This is due to the usage of attributes describing user,
resource and the environment of an authorization request. These attributes allow for a
less maintenance-intensive and more general definition of access control policies, compared
to systems utilizing Identity Based Access Control [23|. This relatively new approach is
referred to as Attribute Based Access Control (ABAC) [23].

In order to provide a name for the functional requirements defined above the term
Dynamic Fine-Grained Data Access Control (IFGDAC) is introduced by Paulin [35]. The
main purpose of this thesis is expected to aid as a decision criterion on which technologies
can be utilized to set up a dFGDAC system. The technologies under comparison are
Oracle Virtual Private Database (VPD) [39] and Secure SQL Server (SecSQL) [35], a
prototype system specifically designed to meet the criteria as required by SNBG. In
this work a new prototype is proposed trying to replicate the dFGDAC features of the
existing SecSQL solution by utilizing the fine-grained query rewriting features of VPD.

To establish comparability, performance indicators are identified within this work by
considering both functional and non-functional features necessary for implementing a
dFGDAC system. Examples for such indicators are provided access control granularity,
ABAC support and the ability to implement a dynamic system that does not require
the knowledge of database structure an access constraints in advance. Subsequently,
a detailed hands-on investigation using the candidate technologies focusing on these
performance indicators is executed.

In addition, the possibility of adding aspects of standardization to a dFGDAC system
is evaluated. It can be conceived that dFGDAC is applicable to several similar problem
domains in terms of public, collaborative usage of sensitive data [35]. Especially in the
area of Open Data (control of access to governmental data) using standards enables
systems being compatible and interoperable. To this end, eXtensible Access Control
Markup Language [15] (XACML), an XML based language standardizing the way ABAC
policies are defined, is evaluated in terms of possible integration with a dFGDAC system.

As a result of the basic definitions and concepts introduced above, it is possible to
formulate the following main research question, this work aims to answer:

“Is it possible to build a dAFGDAC system in the application scenario of
SNBG utilizing Oracle VPD?”

In addition, another research question is stated as follows:

“Is it possible to add aspects of standardization by integrating XACML
as language for definition of fine-grained access constraints?”

The main contribution of this work is to aid as a decision criterion on which technology
is best-suited for use as an enabler of SNBG regarding dynamic fine-grained data access
control. In addition, evaluating the integration of standardization approaches provides
insight into possible couplings with other similar access-constrained applications. Finally,
the thesis presents an important contribution to fostering technological development of
applications covering similar domains in terms of sensitivity and collaborative usage of
data, such as Smart City (governance of access to public resources), Open Data (control
of access to governmental data) or e-Health (governance of access to Hippocratic data).

The remainder of this work is organized as follows. In Chapter [2, theory and concepts
of access control are discussed in detail. It includes an overview on the evolution of
access control and extensive introductions to FGDAC and dFGDAC. In addition, the
XACML standard is introduced and described. Chapter [3| presents a new prototype
dFGDAC system making use of Oracle VPD. Documentation of the prototype includes
data models, application-specific business logic as well as a brief overview of the provided
web-based user interface. In Chapter 4, efforts to add standardization aspects to the
system using the XACML language for access constraint definition are documented. It
contains descriptions of utilizing high-level XACML implementations, direct integration
of XACML policies with relational databases as well as a discussion of both approaches.
In Chapter [5, both prototype dFGDAC solutions are discussed. The chapter comprises
the definition of the performance indicators, description of the considered technologies in
terms of these indicators and a tabular, easily readable by-feature comparison. Finally,
results are concluded in Chapter [6. The chapter presents both findings of the current
work as well as a brief outlook on future work.

CHAPTER

Concepts of access control

This chapter outlines the most important facts and basic concepts of access control in
order to provide a solid foundation for further research presented in the following chapters.
Section 2.1| draws a line from the first efforts to latest development of access control. In
Section [2.2, the foundations of Fine-Grained Data Access Control are presented in detail.
Section 2.3 introduces the term Dynamic Fine-Grained Data Access Control and provides
an overview of an existing prototype implementation. Finally, Section [2.4] outlines the
fundamentals of the eXtensible Access Control Markup Language.

2.1 Evolution of access control

Beginning from the 1970s, several access control models were presented by researchers
and system engineers [27]. They all have in common to provide means for controlling
the way, access to digital resources is granted [27]. Starting off with basic access control
models, growing data volume as well as rapidly increasing user numbers lead to the need
for sophisticated mechanisms [20]. The steadily evolving models may be grouped in
low-level models, consisting of Discretionary Access Control (DAC) and Mandatory Access
Control (MAC), followed by first approaches of standardized access control mechanisms,
namely Role-Based Access Control (RBAC). DAC utilizes lists of allowed actions per
user, attached to the object under protection [46]. In contrast, MAC defines an ordered
labelling system describing the sensitivity and trustworthiness of each objects and users,
respectively [9, 47]. RBAC introduces the concept of roles to act as an intermediary
between users and objects [3| 45]. Lately, developments tend towards attribute-based
access control, trying to make decisions based on attributes describing the involved
participants rather than utilizing the identity of a requestor [23, 8, |48 |49].

2.

CONCEPTS OF ACCESS CONTROL

2.1.1 Conceptual distinction: authentication vs. authorization

Speaking simplified, access control is based upon two steps, namely authentication and
authorization [17]. Authentication is defined as verifying the identity claimed by the
subject requesting access to a certain resource [23]. This verification can in general be
achieved using one or more of the following authentication factors:

e knowledge factor - something the subject knows, e.g. a password
e possession factor - something the subject possesses, e.g. an electronic key card

e inherence factor - something the subject is, e.g. physical characteristics such as
finger prints

Requiring two or more of these factors at the same authentication request is referred
to as multi-factor authentication and obviously leads to a stronger form of protection
than relying on just one single authentication factor.

In contrast, authorization describes the process of determining, whether a subject
is allowed to gain access to a requested resource (e.g. is Bob allowed to view health
records?) [23|. Hence, authorization depends on proper authentication, as granting access
to a resource at least requires to be sure about the identity of the subject asking for
access.

The following sections focus on describing concrete models of the authorization step,
leaving the concept of authentication out of consideration. Thus, the terms access control
and authorization are used synonymously within the scope of this work.

2.1.2 Discretionary Access Control

Basic elements of DAC are subjects, objects and actions [20]. Subjects describe active
elements of a system, demanding request on certain resources. These resources are
referred to as objects, whereas actions describe the kind of access, e.g. read or write. The
most-known implementation of DAC is via Access Control Lists (ACL), which basically
attach a list of allowed actions to concrete objects. Early versions of Unix systems
already included that kind of access control (user/group/world, read/write/execute) [17].
Another common example is the privilege system implemented in relational databases
(e.g. Oracle Database), including granting and revoking privileges (SELECT, INSERT,
etc.) on certain database objects, such as tables or views.

Basically, subjects and objects are recognized by their identity [46]. Presence of an
entry in the ACL of the object to be protected, containing the requestor (subject) and
the desired type of access (action) results in a positive access decision. The model is
called discretionary, as the owner of an object is in charge of managing who may or may
not gain access to it. Furthermore, owners may also delegate (grant) other users the

2.1. Evolution of access control

privilege of managing access to a given resource. Such privileges may also be revoked.
These actions are regulated by a general, administrative access control policy.

The majority of DAC implementations uses closed policies, that is, every permitted
access of any subject to any object has to be explicitly defined [46]. Requests, for which
no entry in the ACL can be derived, result in a negative access decision. In contrast,
open policies grant every requested access, unless it is explicitly defined to be forbidden
[46, 9]. In general, security-critical systems should rather be protected using a closed
policy access control model ensuring better protection [46], whereas open policy models
are able to reduce administration effort for systems with small need for protection. It is
also possible to use a mixture of both approaches. However, this may result in conflicting
access requests, for which both a positive and a negative decision might be derived. To
this end, combining algorithms are necessary to come to an unambiguous decision.

Defining access rights at the granularity of users and resources enables detailed control
over what a user is allowed to access as well as who is allowed to access a specific resource.
In return, that leads to higher administration effort, compared to generic approaches
of access control definition, and poor scalability in case of growing user numbers. One
approach to get rid of that problem is the introduction of user groups. Users belonging to
a specific user group inherit all the access rights granted to the group. Another negative
aspect of the DAC model is the propagation of the identity of a user to a process executed
by her. That means, every program executed by a user gains the privileges of that user.
Thus, an attacker might make use of that privileges by providing a piece of potentially
malicious code and forcing the victim to execute it (Trojan Horse) [46].

2.1.3 Mandatory Access Control

A key element of Mandatory Access Control (MAC) is the so-called security level |20, 9].
Both objects (resources) and subjects (requestors) within a system are classified using a
security level, describing the need for protection and the permission to access a certain
class of protected resources, respectively. Security levels may be defined using a partially
ordered set, that is, a ranking scale in the following form: SecLevell < SecLevel2, which
reads as follows: “SecLevell is lower than SecLevel2”. An example for a security level
definition is:

unclassified < confidential < secret < top secret

MAC using above definition is implemented as follows: subjects given a certain
security level are not allowed to gain access to objects classified as higher security level.
Consequently, they are allowed to gain access to all objects classified as lower or equal
security level. This rule is referred to as no read-up (9]. In return, the no write-down rule
says that no subject is allowed to write to objects at a lower security level, in order to
prevent leakage of highly sensitive information. Similarly to DAC, Trojan Horse attacks
would be possible otherwise by exposing information of high confidentiality to objects
that may be read by subjects of low security level.

2.

CONCEPTS OF ACCESS CONTROL

One way of implementing MAC is via Multilevel Security Policies (MLS) [9]. Security
levels assigned to objects are called classifications, whereas security levels assigned to
subjects are referred to as clearances [9]. The classification of a resource defines the
sensitivity within an organization, while the clearance of a user gives evidence concerning
the trustworthiness of the user with respect to his ability on keeping discretion of the
protected information. MLS were already used for military and governmental purposes
before first efforts were undertaken at the beginning of the 1970s to implement the model
in electronic information systems [9]. MLS policies can be divided into two types:

e confidentiality policies

e integrity policies

Security levels in confidentiality policies are called confidentiality levels and are defined
as a tuple comprising a sensitivity level (secret, top secret, etc.) and one or more
compartments the level applies to |9]. Compartments can be seen as some kind of
application-specific domain, e.g. health care, transport, etc. A positive authorization
decision may only be derived if both of the following conditions are met: (1) the sensitivity
level of the requested resource is lower or equal to the requestors sensitivity level; (2) the
set of compartments the requestor is allowed to gain access to contains all elements of the
set of compartments attached to the requested resource, in other words: the requestor
has to be “cleared” for all domains the resource is involved in. MLS additionally contains
the discretionary approach of DAC, that is, the owner of a resource must additionally
grant a user of sufficient clearance the access to contained information.

Security levels in integrity policies are called integrity levels. Classifications of resources
therefore refer to the level of confidence that may be put in the information contained.
Clearance of users is defined by the trustworthiness that may be placed in information
originated from this user.

2.1.4 Role-Based Access Control

As information systems became larger in terms of number of users as well as covered
functionalities, administration of simple DAC and MAC policies started to get cumbersome
[17]. Thus, efforts were undertaken to develop models for being able to cope with upcoming
access control requirements. According to [3] and [17], Ferraiolo and Kuhn were the
first to introduce a standardized feature set of Role-Based Access Control (RBAC) in
1992 [16]. Built upon this work, Sandhu et al. introduced a whole framework of models
describing different types of possible RBAC implementations in 1996 [42]. In the following
years, standardization attempts were undertaken resulting in the approval of a complete
proposal as an official INCITS standard by the U.S. National Institute of Standards and
Technology (NIST) [17]. It is worth mentioning that RBAC does not aim at completely
substituting any DAC or MAC implementations but rather extend basic access control
mechanisms by new functionalities.

2.1. Evolution of access control

—_——————— ~

Static b Role Hierarchy

~

Separation of Duty /l ~.

—_——
\
\
\

AN L
User Permission

Permissions
Assignments\> Assignments X X
Users Operations Objects

[
|
|

User Sessions Session Roles
~

b ‘{ Dynamic |
\ Separation of Duty }I

Sessions

Figure 2.1: Core elements of RBAC, adopted from [3]

Core elements of RBAC

The RBAC scheme basically consists of the modules Core RBAC, Hierarchical RBAC as
well as Constrained RBAC. While Core RBAC comprises the basic mandatory elements
of an RBAC implementation, the latter components add optional functionalities. Figure
2.1| depicts the core elements of all three modules and their relations amongst themselves.
It contains the elements of Core RBAC (“Users”, “Roles”, “Sessions”, “Operations”
and “Objects”), Hierarchical RBAC (“Role Hierarchy”) and Constrained RBAC (“Static

Separation of Duty”, “Dynamic Separation of Duty”). The purpose of the individual
elements and their relations is described in the following paragraphs.

Core RBAC contains the well-known basic elements inherent to all access control
models [17]. These are users, objects and operations that users can execute on objects.
But in contrast to the models described in the preceding sections, users are not directly
granted permissions. Instead, the concept of roles is introduced. Users can get assigned
multiple roles based on their job, position or responsibilities within a company using
RBAC in its information system. Conversely, roles may be assigned to an arbitrary
number of users. For example, all employees of the accounting department of a company
could be assigned each the “global employee” role as well as the “accountant” role.
Consequently, all defined roles are equipped with the permissions (i.e. allowed operations
on objects) necessary for a member to successfully carry the role out. Here, too, multiple
assignments of a single permission to roles are allowed. Roles serve as an intermediary,
concrete user permissions are derived on each authorization request. Continuing the
example mentioned earlier, let us assume there are two permissions “read canteen menu”

2.

CONCEPTS OF ACCESS CONTROL

10

and “transfer salary”. One would assign the “global employee” role only the former
permission, whereas the “accountant” role will likely be also granted the latter. Based on
the chosen example it is obvious, that RBAC permissions do not necessarily describe only
technical access to resources (e.g. read, write, execute resource XY) but rather define
higher level use cases coming up within an enterprise-level information system.

Furthermore, the concept of sessions is contained in the feature set of Core RBAC
[42]. Sessions can be used to reduce the amount of privileges a user needs to carry out
a certain task or process of tasks. Therefore the concept of least privilege is embedded
to RBAC. Least privilege states that a user should be granted as little permissions as
possible and as much as necessary to fulfil a task [42]. That is, during a session only a
subset of the users roles get activated. A user might simultaneously use multiple sessions
with different roles activated within.

Hierarchical RBAC refers to the possibility of implementing permission inheritance
by basing roles upon each others [17]. As a result, organizational hierarchies within a
company and the respective permissions can be mapped to a role hierarchy, where senior
roles are assigned more privileges than junior roles. Considering the previously mentioned
example, the “accountant” (senior) role is a classic example for the applicability of
an inheritance relation to the “global employee” role (junior) [17]. Accountants are
not directly granted the “read canteen menu” permission but rather inherit it from
the “global employee” role. To continue the example, a new role “head of accounting”
might be imaginable, which inherits all permissions from “accountant” and, as it is a
transitive relation, also all permissions from “global employee”. Additionally, “head of
accounting” could be assigned a new permission “hire employee”, which concretises the
higher competences of this role. Back to the formal definition, the set of the assigned
permissions per role is a superset of the set of assigned permissions of the role it is derived
from.

Constrained RBAC introduces the ability to implement simple rules that might
restrict the assignment of roles to users. As a consequence, the Separation of Duty (SOD)
concept is addressed. According to [17], the American National Standards Institute
(ANSI) defines the term as follows:

“Dividing responsibility for sensitive information so that no individual acting
alone can compromise the security of the data processing system.”

That means in other words, that no user should be granted a set of permissions
simultaneously that would enable her to execute fraudulent actions due to an unnecessary
surplus of competency. In constrained RBAC, SOD can be implemented both statically
(Static Separation of Duty - SSD) and dynamically (Dynamic Separation of Duty - DSD)
[17]. SSD is defined at design time of the user/role assignments and is valid at any
time from its definition. For example, an employee of the accounting department can

2.1. Evolution of access control

never assume the roles “release salary transfer” and “transfer salary” at the same time.
Considering rather small companies, defining such a constraint statically might be a too
strong condition and not practical, as the company could lack on a sufficient amount of
personnel. In order to prevent threatening the quick execution of all tasks of the payment
process due to possible illness or vacation, DSD introduces the possibility of constraints
within a single session. Members of the accounting department then could be assigned
both above described roles, but could only activate one of them within a single session,
i.e. although a user can generally be assigned multiple roles, only a subset of all assigned
roles can be held at a time.

RBAC administration

The ability to control and maintain access to a whole information system by a central
authority was a prime motivation towards the implementation of a new access control
model [17]. In addition, straightforward auditing and reporting of currently assigned per-
missions is one of the major advantages RBAC involves, especially over the discretionary
approach of DAC [17].

When RBAC was first introduced it was designed for use in systems of manageable
size, e.g. company-wide systems [17]. Role administration was meant to be done by
security and system administrators [17]. However, unexpectedly increasing user numbers
lead to high administration efforts [17]. On one hand, a single administrator or even
teams of administrators have to ensure that new users are assigned their allowed roles as
fast as possible in order to prevent slowing down business. On the other hand, growing
systems covering more and more different kinds of functionalities require the extension of
the existing RBAC configuration [17]. Role engineering of strategic vision is necessary in
order to prevent role explosion and chaotic implementations [23].

Initial versions of RBAC did not include a standardized model of how to adminis-
trate RBAC [17]. Later, an approach called Administrative RBAC (ARBAC) [50] was
introduced, extending the core RBAC systems by elements enabling the management
of permissions of administrative users for changing roles, users, permissions and the
relations amongst them. As research made progress, more sophisticated approaches were
introduced, e.g. trying to derive user-role assignments automatically based on attributes
of the new user [2]. This approach is called Rule-Based RBAC, as the automatic role-
assignments depend on rules defined in advance by an administration authority. For this
purpose, users are provided with a certain set of attributes describing them. Based on
this attributes, as well as on given role constraints, roles are dynamically assigned or
revoked from users.

RBAC extensions

As aforementioned, the basic version of RBAC did not include any administration
concepts, as well as it was not able to consider contextual information when deriving

11

2.

CONCEPTS OF ACCESS CONTROL

12

access decisions |17]. Research focused partly on extending RBAC by functionalities
needed in practice.

As an example, GEO-RBAC [4] was introduced to help RBAC systems gain awareness
of spatial conditions. Motivation behind this are use cases, where access decisions depend
on the current location of the requestor, e.g. a certain highly-protected document might
only be viewed if the user demanding access to it currently resides in a secured room,
in order to prevent information being stolen by unauthorized persons around. For this
purpose, roles get attached a geographic position or boundary. The result is referred
to as spatial role. Making use of Core RBACs session system, roles get only activated
within a session if the current position provided by the requesting user complies with the
defined geographic position of the role. Obviously, using spatial roles is not mandatory,
as not all access decisions depend on geographic constraints.

Similar to GEO-RBAC, Generalized Temporal RBAC (GTRBAC) [25] was designed to
enable access control based on temporal conditions. These are implemented via temporal
constraints that may be defined upon roles as well as on user-role and role-permission
assignments. Examples of constraints and the covered use cases, respectively, are:

e Periodicity constraints - activation of RBAC elements during a certain time interval

e Duration constraints - activation for a maximum period of time at once

A rather special extension of RBAC is proposed by Byun and Li 5], implementing
“purpose based access control [..] in relational database systems”. Utilizing role attributes,
a subset of users of the role can be derived for which, provided that the stated access
purpose within the attribute matches all conditions, access is granted to the desired
database objects. However, this requires the corresponding database objects to be labelled
with a set of purposes the use is allowed for.

2.1.5 Attribute-Based Access Control

So far, all presented access control models relied on identifying information regarding
both requestor and resource for deriving access control decisions, e.g. a user asking
for access to a certain information has to authenticate using his credentials, followed
by a lookup in the ACL attached to the requested information. These models may be
subsumed under the term Identity-Based Access Control (IBAC). A drawback of this
approach is, that subjects and objects involved in access control have to be known in
advance or at least some configuration effort has to be taken when they first appear in
the information system.

In contrast, Attribute-Based Access Control (ABAC) focuses on attributes describing
the current context of an authorization request rather than depending on identity. Based
on these contextual conditions and a set of predefined business rules an authorization
decision is derived. Thus, ABAC is also referred to as a Context-Based Access Control

2.1. Evolution of access control

Context

User-declared

Temporal Spatial
Context Context Context

| /
|]

Prerequisite Provisional
Context Context

\ \ \

(\ \)
Global Clock [Environment] [Purpose j
User
Hardware and
System
Software
Architecture Database
Y Information System

\ /

Figure 2.2: OrBAC contexts, adopted from [8]

model [20]. Other synonyms used in research literature are Policy-Based Access Control
[40] and Rule-Based Access Control [44]. Although definitions of all these terms may
vary, they are all based on the concept of ABAC and are therefore summarized under
this term within the scope of this work.

Early approaches towards ABAC

Access control models solely based on IBAC turned out to lack on expressiveness concern-
ing contextual conditions possibly affecting authorization decisions [8]. Hence, research
started to move towards ABAC gradually by extending existing models with single
concrete contextual capabilities. As already mentioned in Section 2.1.4, focus was on
developing extensions for the well-known RBAC model, starting with temporal and
location-based attributes attached to core elements of RBAC. Cuppens and Cuppens-
Boulahia went even further and defined a whole framework of contextual considerations
applicable within a single security policy named Organization-Based Access Control
(OrBAC) [8]. The listing of supported contexts is depicted in Figure 2.2/ and gives a
good overall view on aspects with possible relevance to access control systems as well
as the sources the information will be taken from. Temporal and spatial contexts refer
to time-based and location-based constraints [8]. An example for temporal limitation
is that access to a certain resource is only granted during office hours. Spatial contexts
can describe both physical and logical locations. Concrete physical locations might be
an office room with special security precautions, while logical locations could refer to
a concrete local area network the request is sent from. User-declared contexts provide
a means of stating for which purpose the authorization is needed, consequently this

13

2.

CONCEPTS OF ACCESS CONTROL

14

information has to be provided by the requestor. Based on concrete permissions, a
user might or might not be allowed to gain access to a resource for the stated purpose.
Prerequisite contexts enable to provide general rules that must be fulfilled for deriving a
positive authorization decision. Most likely the data necessary for evaluating these rules
will come from a global database containing all the application data. Finally, provisional
contexts are used to express obligations that can either involve actions that must be
undertaken before or after the requested authorization can be granted.

Core ABAC in Detail

Concerning the basic entities, ABAC uses similar terms as the access control models
introduced above. Subjects (e.g. users) represent active entities of the system requesting
access to objects (e.g. resources of any kind: files, services, small chunks of information,
etc.) [23 |49]. In addition, the environment is considered an entity with relevance to
authorization decisions. The most-important elements of ABAC are called attributes,
which can be attached to all of these entities. Crucial prerequisite to all types of attributes
is, that they are well-defined in terms of possible expressions and hence easy to evaluate
and compare against.

Subject attributes are used to describe the user asking for access to a system. Examples
include name, department within a company or the job title. As literally every information
can be attached, subject attributes are capable of expressing all the necessary information
used for enforcing the previously introduced access control models. ABAC could be
mapped to DAC using identifying attributes. MAC could be achieved using a “clearance”
subject attribute, whereas RBAC could be implemented by using role names as attributes.

Object attributes are used to attach information to resources necessary for access
control. For example, files can be provided with title, author or creation date attributes.
Again, well-known concepts such as security classifications or compartments could be
used to provide enough information for meaningful access control decisions.

Environment attributes contain descriptions on environmental conditions, that can
neither be attached to subjects nor to objects. Examples could be current time, location-
based information or current threat-levels within or around the system under protection.
These attributes will also be considered during evaluation time of an authorization
request.

There is no recommendation or obligation regarding the location of attribute storage.
They might either be attached to the relevant entities directly, or get centrally managed
using an attribute store, for example using a database.

ABAC policies

Concrete access control policies are implemented by defining rules for accessing resources
based on the above-mentioned attributes [23]. These rules are formulated using a set
of Boolean expressions subsequently leading to a Boolean result reflecting the access

2.1. Evolution of access control

decision. A comprehensive access control policy should contain rules for every object to
be secured by the access control system. A simple example for a rule restricting access
to the turnover report of a company could be defined as follows:

attr (env, CURRENT TIME) between 8 and 17 and
attr (subject , DEPARTMENT) = ‘Sales’ and
attr (subject , CLEARANCE) >= ‘confidential > and
attr (subject , YEARS IN_ COMPANY) > 5§

Let attr denote a relation taking an entity and the name of an attribute, returning the
concrete attribute value attached to the entity. Provided that subject and env contain
the concrete requestor and the object describing the current environmental conditions,
the rule would read as follows:

“Grant access during office hours only if the requestor works in the sales
department and earned a clearance level of at least confidential’ and has been
working in the company for more than five years.”

As attributes are free to be defined, ABAC policies are a very expressive mechanism
for enforcing access control. In fact, the expressiveness is only limited by the capabilities
of the programming language chosen for implementation. Furthermore, existing policies

allow for the addition of new users without any further effort regarding access control.

That is, access control can even be defined for unanticipated users.

ABAC architecture

ABAC comes with a proposed system architecture, providing all the modules necessary
for deploying access control at enterprise level. Figure 2.3/ depicts the elements comprising
the system. Mandatory elements are a Policy Enforcement Point (PEP) and a Policy
Decision Point (PDP).

The PEP acts as an intermediary between the subject and the resource. In large I'T
environments several PEPs may be deployed across the system. Each access request has
to be intercepted, prepared for and subsequently sent to the PDP. The PEP thereupon

waits for a response which can either contain a positive or a negative access decision.

Based on this decision, the request is either redirected to the resource or rejected resulting
in an error message delivered to the requestor.

The PDP marks a central module with responsibility of deciding whether an access
request should be granted or rejected. As mentioned before, the PDP is contacted by a
PEP containing information on the subject, resource and type of access requested. After
being entrusted with such a request, it gathers all the necessary information to come
to an authorization decision. First of all, applicable policies concerning the requested
resource are retrieved from a central policy storage. Next, to be able to evaluate the
rules gathered in this way, all the necessary attributes are retrieved from the Policy

15

2.

CONCEPTS OF ACCESS CONTROL

16

Policy Enforcement Point
Resource

Policy
Storage

Policy Decision Point

—
(—

Attribute
Storage

g

] Environment
<« |

Conditions
____/

[Policy Administration Pointj [Policy Information Point

Figure 2.3: ABAC architecture, adopted from [23]

Information Point (PIP). If multiple rules or readily derived access decisions lead to
a conflicting state, the PDP has to resolve the conflicts to come to an unambiguous
decision. Finally, the result is transferred back to the PEP.

Key responsibility of the PIP is the retrieval of all the data, respectively attribute
values, necessary for the PDP to evaluate business rules. Data sources can be various,
attribute values might be stored in relational databases or key value stores, whereas
environmental conditions could even be derived on-the-fly.

Finally, a Policy Administration Point (PAP) has to be deployed. This module serves
for managing all the security policies containing the business rules and therefore addresses
an important tool for security officers and system administrators. Thus, the PAP provides
means for analysing, adding, changing and deleting security rules and policies in the
policy repository. In addition, development-related capabilities are inherent to any PAP,
such as testing or debugging the defined policies.

From a more organizational point of view, so-called Attribute Authorities (AA) are
responsible for well-defined attribute specifications [23]. It is possible to set up one
ore more AAs within one system. Usually they are divided into Subject AAs, Object
AAs and Environment AAs. However, authority can also be distributed among business
responsibilities, e.g. letting HR define all the HR-related attributes. For means of
inter-organizational security-enforced communication common attribute definitions have
to be agreed on, or at least automatic mappings between differing definitions should be
possible.

To provide a common way of implementing ABAC, a de facto standard called
eXtensible Access Control Markup Language (XACML) was adopted by the OASIS

2.2. Foundations of Fine-Grained Data Access Control

standards organization'. We will discuss this standard in detail in Section 2.4.

2.2 Foundations of Fine-Grained Data Access Control

Evolving database technology has enabled applications to store and process practically
uncountable amounts of person-related data [5]. The implementation of access control
mechanisms aims at protecting sensitive data from being accessed by unauthorized users
or user groups. Usually, RDBMS are utilized for storing all the application data in
tabular form. Built-in access control in most RDBMS is traditionally implemented only

at relation level, that is, access can only be granted for tables or views as a whole [22].

This level of access control is often referred to as coarse-grained.

Due to the lack of support of more fine-grained authorization mechanisms at database
level, solution developers were forced to implement access control at application level
[51) |41], which brings up several shortcomings, which are discussed in the remainder
of this paragraph. Obviously, access control enforcement has to be woven into each of
the user interfaces providing access to information under protection. On one hand, that
leads to high effort, as many different application modules have to be implemented and
maintained. For example, changes to the applications access control policy have to be
propagated to all code locations implementing access control enforcement. In addition,
systems provide a higher risk of being vulnerable to data breach attempts, the more data
access points they provide. In other words, bigger applications involve a bigger risk of
exposing interfaces which are poorly implemented in terms of data access control. Even
worse, when application code is responsible for enforcing access control, it is necessary to
provide access to the database using a fully-privileged user capable of reading or even
modifying all of the sensitive data [41]. Consequently, a single point of security policy
enforcement is necessary. It is therefore recommendable letting the database take care of
this step.

Conventional RDBMS, such as Oracle Database, do not come with built-in assistance
for FGDAC enforcement |29]. Thus research focused on proposing approaches to overcome
the lack of support, leading to a variety of possible solutions all of them coming with
different strengths and weaknesses [51, 43, 41, |19, 6, |1, 44]. These solutions can be
roughly grouped into static views, parameterized views, extension of the SQL standard
and query rewriting, which are described in detail and illustrated using the EMPLOYEES
example in the following sections.

2.2.1 Problem description

As an introductory example, consider the definition of a common FMPLOYFEE relation
within a database (see Table 2.1)). According to the possibilities of coarse-grained access
control, users of the surrounding system could only be granted access to the table as a
whole or could get no access at all, which is very restrictive, though. In the following we

1https ://www.oasis—-open.org/

17

https://www.oasis-open.org/

2.

CONCEPTS OF ACCESS CONTROL

18

Table 2.1: DB table EMPLOYEE

ID FIRSTNAME LASTNAME DEPT POSITION SAL
1 Jane Doe Sales Head Of Sales 4200
2 Max Power Sales Sales Clerk 1800
3 Frank Wright Sales Sales Clerk 2100
4 John Hancock Accounting Head Of Accounting 4500
5 Sandra Brown Accounting Accountant 2200
6 Linda Roberts IT Developer 2400

Table 2.2: DB table EMPLOYFEE viewed by Max Power

ID FIRSTNAME LASTNAME DEPT POSITION SAL
Jane Doe Sales Head Of Sales
Mazx Power Sales Sales Clerk 1800
Frank Wright Sales Sales Clerk

Table 2.3: DB table EMPLOYEFE viewed by John Hancock

ID FIRSTNAME LASTNAME DEPT POSITION SAL
John Hancock Accounting Head Of Accounting 4500
Sandra Brown Accounting Accountant 2200

Table 2.4: DB table EMPLOYEFE viewed by Linda Roberts

ID FIRSTNAME LASTNAME DEPT POSITION SAL
1 Jane Doe Sales Head Of Sales

2 Max Power Sales Sales Clerk

3 Frank Wright Sales Sales Clerk

4 John Hancock Accounting Head Of Accounting

5 Sandra Brown Accounting Accountant

6 Linda Roberts IT Developer 2400

provide a list of possible real-world access control constraints, that might be necessary to
preserve privacy, if all users (equal to all records in EMPLOYEES) are allowed to access
at least parts of the table:

(C1) Users are only allowed to view information on employees of their own department,
except for members of the IT department, which may view the records of all
employees company-wide.

(C2) Users are only allowed to view their own salary, except for department heads, which
may view the salary of all employees of their department.

2.2. Foundations of Fine-Grained Data Access Control

(C3) Users are not allowed to view their ID, except for members of the IT department,
which may view the ID of all employees company-wide.

For implementing the above-mentioned constraints, FGDAC is necessary. FGDAC
refers to managing authorizations each on row, column and even cell level. Constraint (C1)
needs row-level access control, as some rows (in particular: rows of employees belonging
to another department) have to be filtered. Constraint (C3) needs column-level access
control, as the ID column has to be omitted for all non-IT employees. Finally, constraint
(C2) needs cell-level access control, as both filtering and projection are necessary to
ensure proper compliance. The effects of applying the constraints to a selection of all
authorized data from the viewpoint of different employees are depicted in Tables 2.2 2.3
and 2.4.

2.2.2 Static views

Primitive approaches utilized statically defined database views for preparing data in
different granularity levels [1]. These views were either designed to meet the permissions
of one single user, or if possible, at least of a whole group of users. Obviously this
approach is hardly scalable, as the number of views needed is directly related to the
number of system users. Additionally, the selection of which view to present to which user
has to be implemented in application code, which just as much leads to high maintenance
effort. According to the EMPLOYFEES relation introduced above, a static authorization
view for user Max Power could be implemented as depicted in Listing 2.1. Notice that
the results of querying the view correspond to those presented in Table 2.2.

Listing 2.1: View on EMPLOYFEES for Max Power
create view EMPLOYEES MaxPower as

select — Max Power is not allowed to see IDs
null as ID,
FIRSTNAME as FIRSTNAME,
LASTNAME as LASTNAME,
DEPT as DEPT,
POSITION as POSITION,
—— Mazx Power may only see his own salary
case
when ID = 2
then SAL
end as SAL

from EMPLOYEES
—— Mazx Power may see all employees of his own department
where DEPT = (select DEPT

from EMPLOYEES

where ID = 2);

For achieving comprehensive access control, (1) each of the defined employees must
be provided with its own view and (2) no direct access to the EMPLOYEES table may

19

2.

CONCEPTS OF ACCESS CONTROL

20

be implemented at application level [1]. Especially (2) lead to serious security problems,
if users of malicious intent manage to get access to the underlying tables containing all
the unfiltered raw data.

2.2.3 Parameterized views

To address the issue of having to manage countless different static views and all the places
in code querying them, parameterized views were proposed [41]. Although Rizvi et al.
used the notion of parameterized views in their model, they did not propose a technical
solution. Views should be able to be equipped with abstract parameters at design time,
which are used within the SQL statement to refine the results. When requesting query
results, the concrete parameter values have to be provided. Although there has been
no proposal for such a concept to the SQL standard so far, a sample implementation
considering the EMPLOYFEES example could look as depicted in Listing [2.2. Note that
the presented code snippet will not work in any existing RDBMS as it is supposed that
views can be equipped with parameters of the form (PARAM_NAME in data_type [, ...])
in the header, where PARAM__NAME can be used in the view query.

Listing 2.2: Parameterized View on EMPLOYEES

create view EMPLOYEES ByUserID(USER_ID in number) as
select — only members of IT may view IDs
case
when ’'IT’ = (select DEPT
from EMPLOYEES
where ID = USER_ID)

then ID
end as ID,
FIRSTNAME as FIRSTNAME,
LASTNAME as LASTNAME,
DEPT as DEPT,
POSITION as POSITION,
case

— users may only view their own salary
when ID = USER 1D
then SAL

— except for department heads, which may view
—— the salary of all employees of their department
when (DEPT, ’Head of’) = (select DEPT,
left (POSITION, 7)
from EMPLOYEES
where ID = USER_ID)
then SAL
end as SAL
from EMPLOYEES
— users may only see employees of their own department
where DEPT = (select DEPT

2.2. Foundations of Fine-Grained Data Access Control

from EMPLOYEES
where ID = USER_ID)
— except for members of IT
or 'IT’ = (select DEPT
from EMPLOYEES
where ID = USER,_ID);

Table functions are a means of implementing parameterized views embedded into

some popular RDBMS. Oracle provides the concept of pipelined table functions [21], which
are capable of returning collection results that in turn can be used in the SQL context
similar to querying views or tables. Similar to traditional stored functions, pipelined
table functions can be provided with input parameters. The interface of the resulting
collection can optionally be predefined using user-defined types. Finally, the tabular
information has to be “piped” row by row to the calling unit. Utilizing the EMPLOYEES
example, Listing 2.2/ shows (1) the definition of the interface of the resulting collection,
(2) the implementation of the pipelined table function and finally (3) how to query the

function from within a traditional SQL statement.

Listing 2.3: Oracle pipelined function on EMPLOYFEES

— (1) define interface of resulting collection
create type EMPLOYEE OT as object (
1D number,

FIRSTNAME varchar2(256),
LASTNAME varchar2(256),
DEPT varchar2 (256),
POSITION varchar2(256),
SAL number

);
create type EMPLOYEES TT as table of EMPLOYEE OT;

— (2) implement pipelined table function

create function EMPLOYEES ByUserID(USER_ID in number)
return EMPLOYEES TT pipelined

is

begin

for rec in (/+ wuse same query as in Listing 2.2 %/) loop
pipe row (
EMPLOYEE OT (

rec.ID,
rec .FIRSTNAME,
rec .LASTNAME,
rec .DEPT,
rec . POSITION,
rec.SAL));

21

2.

CONCEPTS OF ACCESS CONTROL

22

end loop;

end EMPLOYEES_ByUserID;

— (8) use pipelined function :
— query EMPLOYEES for user Max Power (ID = 2)
select x

from table(EMPLOYEES_ByUserID(2));

Other RDBMS provide similar functionalities, including table functions in PostgreSQL
[13] and table-valued user-defined functions in MS SQL Server [38].

2.2.4 Extension of the SQL language

As mentioned in Section [2.2.3, some of the proposed approaches rely on extending the SQL
language by constructs supporting FGDAC enforcement. As an example, in 1], Agrawal
et al. introduce the notion of restrictions. These can be considered FGDAC-enabled
versions of the existing more coarse-grained grant statements. While traditional grant
statements can only be used to define authorizations on relation level (e.g. tables or
views), restrictions provide syntactical possibilities for defining each row-level, column-
level and even cell-level authorizations. The straight-forward syntax of the proposed
language constructs is depicted in Listing 2.4.

Listing 2.4: Syntax of restriction command, adopted from [1]

create restriction restrictionName
on tableX
for authNamel [except authName2 |
(((to columns columnNameList)

| (to rows [where searchCondition |)

| (to cells (columnNameList

[where searchCondition |)+)

)

[for purpose purposeList |

[for recipient recipientList |
)+
commandRestriction;

A restriction may be applied to a combination of table (tableX) and authorized
subjects (authNamel), which can be concrete users or roles. Optionally, authName2 can
be used to define an exceptional subject, to which the restriction shall not be applied.
Below, the concrete data restrictions may be defined. Column-level restrictions have
to be provided with a columnNameList. Row-level restrictions are implemented via a
custom where clause to be specified. Consequently, cell-level restrictions may be defined
using a columnNameList and again a where clause, which may contain a correlated
sub query accessing data from other cells of the row. Additionally, allowed purposes

2.2. Foundations of Fine-Grained Data Access Control

(purposeList) for querying the data as well as concrete recipients (recipientList) may be
defined. Finally, commandRestriction completes the statement by stating to whether
access type the restriction has to be applied, e.g. select, delete, insert or update.

Applied to our EMPLOYEES example, the restriction describing all the authorizations
for user Max Power could look as depicted in Listing [2.5.

Listing 2.5: Example restriction on EMPLOYFEES for user Max Power

create restriction R EMP MAX POWER
on EMPLOYEES
for user MAXPOWER
to columns FIRSTNAME,
LASTNAME,
DEPT,
POSITION
to rows where DEPT = (select DEPT
from EMPLOYEES
where ID = 2)
to cells SAL where ID = 2
restricting access to select;

2.2.5 Query rewriting

Agrawal et al. further define how the enforcement of the restrictions defined using above
new language constructs can be implemented. By generating an ad-hoc view on the
underlying database table, all restrictions are implemented. To be more exact, a sample
algorithm is provided that applies all the where clauses, column projections and hiding
of cell values resulting in a concrete SQL query to be executed instead of the originally
requested query. This process is referred to as query rewriting and has been proposed
multiple times in the research area of FGDAC. Figure [2.4) depicts the architectural basics
necessary for enforcement using query rewriting, considering) as the original query
issued by the requestor and)’ as the translated query rewritten according to the applied
access control policies retrieved from a generally available policy store.

In [43], Shi et al. introduce their model of cell-level FGDAC enforcement including a

practical approach using query rewriting, based on the previous work of LeFevre et al. |26].

Core elements are so-called restricted objects, which comprise a relation (i.e. a database
table) and a policy function, applying filters to all attributes of the relation. Filters can

be used either to explicitly allow (“AllowedFilter”) or deny (“ProhibitedFilter”) access.

That is, both open and closed access control policies are supported. In case of conflicting
filters (i.e. access is defined to be both allowed and denied), prohibitions are promoted to
ensure security. The proposed concrete implementation of the query rewriting algorithm
makes use of the CASE condition inherent to SQL. In an ad-hoc view, each attribute
of a restricted object is only returned to the requestor, if there applies at least one

“AllowedFilter” and no “ProhibitedFilter”, otherwise NULL is returned. Both Shi et al.
and LeFevre et al. focus strongly on cell-level FGDAC, putting row-level FGDAC aside.

23

2.

CONCEPTS OF ACCESS CONTROL

24

| T
Q Result(Q')
\ l

4 \)

Policy Store —>[Query Rewriting Module]

l

Ql

\

[Execution Engine]

RDBMS
. v

Figure 2.4: Concept of query rewriting, adopted from (7]

At least the latter work states that rows consisting of NULL values only after applying
all cell-level filters can be omitted as a whole.

To give a practical example of how cell-level FGDAC can be implemented using query
rewriting, suppose that every column C used within a SELECT query is replaced by a
CASFE condition of the following form:

case
when AccessAllowed('C’, context) then C
else null
end as C

It is supposed that AccessAllowed(columnName, context) denotes a function holding
awareness of all information necessary to derive an access decision, taking the name
of the queried column and contextual information only available at the time of query
execution as input and returning either TRUE or FALSFE for positive and negative
decisions, respectively. The implementation applies all the access control policies - it
could thus access additional contextual information such as the user currently logged
in or even query other database tables for retrieving identity based or attribute based
authorization information. Note that, for more complex systems, the column name alone
is not sufficient for identifying the object an access decision is needed for. That is, it will
likely be necessary to provide the table name or even the name of the database scheme
for a unique identification. Moreover, the interface of the AccessAllowed() function has
to be defined in a way, that all information that will ever be needed to hand over to the
decision algorithm, can be provided as an input parameter. Application-specific design is
therefore crucial and inevitable, unless more dynamic query rewriting approaches are
investigated or the decision algorithm is woven directly into the SQL query without the
detour via functional encapsulation.

2.2. Foundations of Fine-Grained Data Access Control

VPD [39] is a well-known implementation of FGDAC using query rewriting in one
of the most commonly used commercial RDBMS, Oracle Database 12¢%. It is based on
PL/SQL, the proprietary procedural programming language inherent to the database
system. The core elements of FGDAC enforcement using VPD are called policies, which
at least consist of a unique policy name, the DB object needing protection (specified by
its table or view name) and a user-defined function written in PL/SQL returning the
restrictions to apply. Basically, VPD adds all the restrictions applicable to an object to
the WHERFE clause of the SQL requesting access. The function has to provide an interface
as follows: two input parameters describing both schema (object location) and name
of the object, the function result has to be a string containing the restrictions. These
restrictions are called predicates and must be formulated as valid Boolean expressions. If
more than one policy function is applied to a single object, all predicates are logically
conjuncted, i.e. they are put together using the AND operator.

VPD supports both row-level and cell-level security policies. Row-level access control
is, as already mentioned above, achieved by adding all the applicable predicates to the
WHERE clause of the submitted query. Predicates can also be applied to columns. By
default, the whole row is removed from the result set, if at least one cell value is restricted.
It is possible to explicitly specify that restricted cell values should be masked with the
NULL value, though. If so, all the rows not restricted by any other possible WHERE
clause are returned. If all values of a row are empty, the row is returned anyway. VPD
does not natively support custom masking for restricted cell values other than using the
NULL value, e.g. just displaying the last 3 digits of a credit card number.

Coming back to our EMPLOYFEES example, Listing 2.6 shows how a PL /SQL function
is defined for use as a VPD policy function. We assume that a context of name ctx_emp
has already been defined, taking care of storing the employee ID of the user currently
logged in. The stored ID can be retrieved via the predefined function sys_context() and
may be used for gathering additional information necessary for building the predicate,
which finally is returned back as a string. Note that the result must contain a syntactically
valid Boolean expression, usable in the WHERE clause of any SQL query.

The listing contains the implementation for constraint (C1) as defined in Section
2.2.1. The remaining constraints (C2) and (C3) have to be defined according to this
example implementation.

Listing 2.6: Define VPD policy functions

create function filter_ dept
(schema in varchar2, owner in varchar2)
return varchar2

is
dept EMPLOYEES.DEPT%type;

begin

2VPD is part of the paid version (“Enterprise Edition”). However, Oracle provides a free
pre-installed virtual machine for testing purposes at http://www.oracle.com/technetwork/
community/developer—-vm/index.html

25

http://www.oracle.com/technetwork/community/developer-vm/index.html
http://www.oracle.com/technetwork/community/developer-vm/index.html

2. CONCEPTS OF ACCESS CONTROL

—— ensure that no data is exposed by accident in case of
— missing context information by returning a predicate
— evaluating to a contradiction

if sys_ context(’ctx _emp’, ID’) is null then
return ’'1=0";
end if;

— collect additional information mnecessary for
— defining the predicate, based on the employee ID
—— stored in the context
select DEPT
into dept
from EMPLOYEES
where ID = sys_ context(’ctx _emp’, ’ID’);

— return predicate string
— for the DEPT row—level restriction

return '(DEPT = *’7 || dept || 7777 ||
" or ||
777IT7? - bR |‘ dept || Y0)7;

end filter_ dept;

— [...] define two more policy functions
— filter_sal () and filter__id() accordingly [...]

Listing 2.7 shows how the predefined system package DBMS RLS allows to install
new FGDAC policies using the add__policy() function. By default, filter functions are
appended to the WHERE clause enforcing row-level security. If explicitly stated using
the sec_relevant_cols and sec__relevant cols opt parameters, policy functions may be
used for applying cell-level restrictions. In addition, the package contains functions for
altering, dropping, enabling, disabling and grouping policies.

Listing 2.7: Add VPD policies using the sys package DBMS_ RLS

— wse filter__dept() for row—level access control
dbms_ rls.add__policy (

object_ name = 'EMPLOYEES’ ,
policy__name => ’employees_ filter__dept’,
policy_ function => ’filter_dept’

)

— wse filter_sal() for cell—level access control
dbms_ rls.add__policy (

object__name => 'EMPLOYEES’ ,
policy__name => ’employees_filter_ sal’,
policy_ function => ’filter__sal’,
sec__relevant__cols => ’'SAL’,

sec__relevant_ cols__opt => dbms_ rls .All, ROWS

26

2.2. Foundations of Fine-Grained Data Access Control

— [...] add policy for filtering IDs accordingly [...]

Finally, Listing [2.8 shows how the actual query is built. At session initialization, the
employee ID has to be set using the predefined set context procedure. This could for
example be implemented using a logon trigger at database level, reading the operating
system user from the system environment and setting the corresponding employee ID in
the context. Note that we implemented the policy function in Listing 2.6/ in a restrictive
way, that nothing is returned querying the EMPLOYEES table unless the context is
initialized properly.

Listing 2.8: Set context and query table

— query EMPLOYEES table without initializing context
SQL> select x
2 from EMPLOYEES;

no rows selected

— set employee ID for user currently logged in
— for example, use ID of employee Max Power

SQL> begin
2 dbms__session.set__context(’ctx_emp’, 'ID’, 2);
3 end;
4/

—— again: query EMPLOYEES table without WHERE clause :
— VPD automatically applies all policy functions
SQL> select =

2 from EMPLOYEES;

ID FIRSTNAME LASTNAME DEPT POSITION SAL
Jane Doe Sales Head of Sales
Max Power Sales Sales Clerk 1800

Frank Wright Sales Sales Clerk

If full data access to a restricted object is necessary for administration or development
purposes, one can either connect as the predefined, fully-equipped SYS database user
or grant the EXEMPT ACCESS POLICY privilege to any trusted administration user, to
bypass FGDAC enforcement. Obviously, granting of this privilege should be handled
with care.

27

2.

CONCEPTS OF ACCESS CONTROL

28

2.3 Dynamic Fine-Grained Data Access Control:
Introducing the Secure SQL Server

All solutions discussed in Section 2.2 are dependent on knowing each the database
structure and the policies to apply in advance. However, there exist application scenarios,
where both of these prerequisites can not be fulfilled.

Such is the case in the emerging research field on SNGB [35], which aims at creating
a system of structured, machine-readable law. SNBG involves democratic creation,
enactment and modification of machine-readable access control policies to system-relevant
data during runtime, as well as democratic creation and modification of the underlying
database structure - likewise, during runtime. Accordingly, database access policies in
SNBG can neither be defined nor abstracted (e.g. in form of templates) at design-time. In
SNBG, the absence of administrative super users, who could corrupt the democratically
created policies when implementing them in the system, is of crucial importance.

There is a prototype implementation, SecSQL, providing the above-mentioned func-
tionalities. In the following, SecSQL’s features of interest with respect to the scope of
this work, will be discussed.

2.3.1 Functional requirements

“The challenge we are facing ... is how to appropriately design the technical
infrastructure that would make it possible to store and retrieve such data
without human moderation, while maintaining the possibility to moderate
at design-time unpredictable read- and write-access requests to this data
through advanced, at design-time unpredictable rules.” [35]

Electronic registries

The core of SecSQL consists of electronic registries, containing information that can
be roughly categorized into 3 types. First, business data needs to be stored. In the
concrete problem domain, the data describes everything related to public governments,
including, for example, citizen’s data, law and bureaucratic work flows. Second, rules
need to be maintained that govern the way business data can be accessed, i.e. selected,
inserted, updated or deleted. Finally, the technical structure, that stores both business
and governance data, needs to be maintained.

Electronic Legal Acts

Rules are called Electronic Legal Acts (ELA). Incoming requests of any type are parsed
and checked for the applicability of one ore more ELAs. Similar to the concept of ABAC
(see Section 2.1.5), ELAs can refer both to business data and contextual information,
such as the identity of the user currently logged in, or other environmental conditions.

2.3. Dynamic Fine-Grained Data Access Control: Introducing the Secure SQL Server

Collaborative decision-making

All parts of electronic registries can be created and changed only by means of collaborative
decision-making. The intention of this restriction is to reduce or even eliminate the need
for supervising administration. In addition, this process of decision-making is governed
by the rules described above, too. That is, rules are self-administrative, collaborators
are capable of changing the conditions of collaboration at runtime. The process of
decision-making is defined as follows. First, users of the system are entitled to propose
changes to any part of the electronic registry. This step is comparable to a parliamentary
group handing in a new draft law. After that, all members of the decision-making body
are required to declare their decision on the pending proposal, similar to a parliamentary
voting. Finally, if the proposal was collaboratively accepted, action is undertaken to
execute to proposed changes to the system. In the comparative real-world parliament
example, the proposed draft law would get enacted.

Fine-Grained Data Access Control

Access to both data and structure of the electronic registries needs to be governed at
finest granularity. That is, even the smallest chunk of data can be restricted from being
accessed, as described in more detail in Section 2.2l In addition, access control needs
to evolve hand in hand with structures changing due to the process of collaborative
decision-making. Hence, dFGDAC is introduced, describing that even properties and
enforcement of (fine-grained) access control can be changed during runtime without
intervention of a system administrator.

2.3.2 Approaching Dynamic Fine-Grained Data Access Control

Neither of the approaches to enforce FGDAC discussed in Section [2.2 are feasible for use
in the SecSQL application. Parameterized views, SQL language extension as proposed
in [6] and query rewriting as suggested in [26] are, each on their own, not capable of
providing the dynamism and sustainability necessary [35].

As a result, the concept of cascading projections is proposed. Figure 2.5 depicts a
schematic illustration of the concept. It involves the iterative application of access control
restrictions to an incoming request, until only the data survives, the requesting user
is allowed to access. The restrictions applied can either emerge from current context
dependencies (i.e. the requesting user, current day of time, etc.) or the queried data
itself. The resulting set of data is called ad-hoc virtual view.

Listing 2.9: Example query masked using cascading projection

select =
from (select x
from (
/* original query begin x/
select id,
sal

29

2.

CONCEPTS OF ACCESS CONTROL

30

. accessible data,
after restrictions applied

data

! restriction #2

|:| restriction #1

Figure 2.5: Cascading projections, schematic illustration from

A\

dept
from employees
/* original query end x/)

where /x restriction #2 x/)
where /+ restriction #1 x/

Practically speaking, given SQL queries are sub-queried and attached with WHERE
clauses without changing the structure of the result set. Finally, the original query
is executed on the prepared ad-hoc virtual view returning only the permitted data.
Following this approach, the dFGDAC system is capable of dynamically attaching an
unlimited extensible list of restrictions to each query. With small technical adaptions, the

approach works for all types of SQL statements, including DML statements (INSERT,
UPDATE, DELETE).

Listing [2.9 shows an example application of two restrictions as cascading projections
to a query attempt on a table containing employee’s data. Although two different filter

clauses are applied, the structure of the result set expected by the requestor remains
unchanged.

2.3.3 Implementation of the Secure SQL Server

In the following sections, the current reference implementation of the SecSQL Server is
described, concerning architecture, information flow and additionally interesting imple-
mentation details.

2.3. Dynamic Fine-Grained Data Access Control: Introducing the Secure SQL Server

Requests

'y vy
(Frontend

//\\

[Crypto ELA Rules FGDAC

Q))

Backend / Database / Rule Storage

Figure 2.6: SecSQL Server modules and information flow, adopted from [35]

Overview of architecture and information flow

The SecSQL Server is logically divided into five main modules. Figure 2.6 gives an
overview of the architecture and the internal process and information flows.

The front end module listens for incoming requests and coordinates the complete
work flow it takes to process the request properly. Prior to dispatching messages to all
the modules, contextual information is attached that is necessary for further internal
processing of the request. Example context information can be the authentication of the
requestor as well as time and location the incoming message originated from.

The crypto module is the first internal module called by the frontend module when a
new request arrives (1). It takes care of verifying the authenticity and integrity of the
original message. Validation of the attached signature is undertaken. In addition, the
identity of the requestor is determined and verified and attached to the context of the
request for further use in later steps of the processing.

The ELA rules engine is called by the frontend module after successful processing of
the crypto module (2). It is responsible for analysis of the SQL query contained in the
request and the derivation of applicable ELA rules. To this end, an ELA rules repository
is queried (3), which can reside in a relational database in the backend. Potentially
numerous of different ELA repositories could exist, residing in arbitrary locations over

the network, using arbitrary storage mechanisms apart from relational databases, e.g.

31

2.

CONCEPTS OF ACCESS CONTROL

32

XML files. The ELA rules engine retrieves all rules from all locations and returns the
result for further processing.

In a next step, the FGDAC module is provided with the incoming request, the
previously determined context information and the set of applicable ELA rules (4). Based
on the given information, the requested SQL query is being rewritten according to the
dFGDAC approach utilizing cascading projections described in Section [2.3.2. In the
following, the rewritten SQL statement is queried against the backend SQL database (5).
The result of the SQL query contains access-control-enforced data only and is returned
to the frontend module, which in turn formulates the response to the requesting client.

The backend database stores each business application data and access-control rules.
It provides an SQL-queryable interface to the ELA rules engine and the FGDAC module.

Implementation technology

The reference implementation SecSQL Server is developed using the Microsoft .NET
Framework. The modules described in the previous section are implemented in a loosely
coupled way and dynamically bound together at runtime to reach maximum extensibility
and interchangeability. In theory, additional or replacing components can be added
over time without changing or even corrupting the overall system. The backend of the
reference implementation uses a MySQL database.

Request and response format

Requests issued by the client to the frontend module as well as responses sent back to the
caller use the JavaScript Object Notation (JSON) format. The fixed message format is
depicted in Figures [2.7 and 2.8, Incoming requests contain the SQL query either entered
manually in a minimal text based client or assembled by some assistive graphical user
interface. In addition, a digital signature of the query is attached in the field Pkcs7 to
enable the system to perform integrity checks on the issued query. Outgoing responses
to the client comprise the actually (rewritten) executed SQL, the originally issued SQL
as well as the results of the query. Beyond that, meta data on the results of the query
processing is attached.

Query processing

Allowed SQL query types are SELECT, INSERT and UPDATE as well as the MySQL-
specific SHOW command to present definitions and structure of database objects. In
addition, a custom command called SX.ENACT is exposed. SX.ENACT can be used to
enact proposed changes to the database, accepted by collaborative decision-making, as
described in Section 2.3.1. It contains no mechanism to prevent malicious queries, as such
would violate the basic principle of neutrality in SNBG. As a result, it is theoretically
possible for the decision-making body to agree on the execution of statements that would
be able to destroy the complete system.

2.3. Dynamic Fine-Grained Data Access Control: Introducing the Secure SQL Server

SQL: ’
Pkcs7: ,
comment:

Figure 2.7: Structure of incoming JSON requests [35]

Results:

ExecutedsqQL: s
RequestedsqL: s
ROWS :
[{
Name: ,
value:

1]
11,
Feedback: s
GenerationDate: ,
OK:

Figure 2.8: Structure of JSON responses [35]

All statements are subject to dFGDAC. SELECT statements only return rows where
not a single requested attribute is restricted, using cell-level access control, from being
accessed. The reason is to prevent the partial exposure of data, a possible state occurring
in systems, whose FGDAC set-up is referred to as The Truman Model [41]. dAFGDAC
enforcement for INSERT and UPDATE statements requires a workaround making use of
the MySQL built-in DUAL virtual relation. Selecting this relation as basis for INSERT
and UPDATE statements makes it possible to prepare values, that need to be updated
or inserted, in variables, and equip the set of data to be changed with WHERE-clauses
reflecting ELA rules applicable to the request.

ELA storage

ELAs (access rules) are, just as data and structure of the system itself, subject to
collaborative decision-making. For this reason, a predefined data structure for storing
both positive and negative authorizations is necessary, catering for a default solution
to the at design-time unpredictable data access rules. In the SecSQL system, they are
referred to as Permissions and Restrictions, respectively. The Permissions table contains
the identification of the described database object (either table or column) and the
permitted SQL statement type. Rows in the Restrictions table are directly related to
a corresponding entry in the Permissions table and additionally comprise a potentially

33

2.

CONCEPTS OF ACCESS CONTROL

34

unlimited number of WHERE clauses, defined in SQL language, restricting all requests
of the defined SQL statement type to the corresponding database object.

2.4 XACML: A standardized access control policy
language

XACML is an XML based language catering for a standardized way of defining ABAC
policies. In addition, it comes with a complete proposal concerning both architecture
and data flow necessary for implementing an access control system. However, system
engineers can freely decide on the degree of accordance with the proposed concepts and
cherry-pick the components and concepts tailored to their needs.

XACML 1.0 was first introduced as a standard by the OASIS? standards organization
in 2003, followed by version 2.0 in 2005. Currently, the latest version is XACML 3.0,
announced as a standard in 2013 [15].

The following sections describe the basics of the XACML policy language, usage of
policies and architectural foundations.

2.4.1 XACML policies

Similar to the access control models introduced in the previous sections, central elements
of XACML policies are subjects, resources and rules. Those terms refer to requestors,
objects to be accessed and granted permissions (either positive or negative), respectively.
Furthermore, attributes are used to describe all elements involved in an access control
decision. These could either be simply used for identifying the involved actors or more
generally for describing classes of affected elements. By default, attributes can be
attached to subjects, resources and the environment surrounding the access control
system, although the model is capable of using customized additional categories.

XACML policy language constructs

In order to express and group access control policies, the basic elements rule, policy and
policy set are used. Figure [2.9 gives an overview on these elements. Policy sets may
comprise multiple policies or even other policy sets. Policies consist of a non-empty set
of rules.

XACML rules provide the basis for access control decisions by defining permissions
and prohibitions at finest granularity. The target element of a rule is used to specify, to
what kind of access requests the rule is applicable. It makes therefore use of a logical
expression, defined over the attributes describing the current request. As rules obligatorily
have to be contained in a policy element, the rule target can be omitted. If so, the target

30rganization for the Advancement of Structured Information Standards, |https://wwwl
oasis—open.org/

https://www.oasis-open.org/
https://www.oasis-open.org/

2.4. XACML: A standardized access control policy language

e N
PolicySet N

4 \\
Target Policy N
. 4
Policy Target Rule
Combining

Algorithm e)
Rule Target] [Conditions

Combining \ V.

Obligations Algorithm e A

Effect = { Permit, Deny }

Advices

Obligations

\
S

Obligations J (Advices

Advices

[PolicySet

\
A\

Figure 2.9: Core language constructs of XACML policy language, adopted from

of the containing policy is derived. Rule conditions are used to further refine the set of
applicable requests by providing more capabilities such as more detailed functions or
comparability of multiple attributes. The main difference between targets and conditions
is that targets can only be used for expressing static comparisons, i.e. only the left-hand
side of a comparison can hold a variable attribute value. Conditions, however, can be
utilized to do a comparison of two variable attribute values. The effect of a rule simply
describes whether the fulfilment of all target and condition expressions lead to a result
of either Permit or Deny. Optionally, obligations may be attached to a rule, describing
actions that must be undertaken by the requestor along with an access decision. For
example, the requesting system could be obliged to log any access attempt on confidential
resources to an audit trail. Likewise, advices can be attached to such an access decision
of which execution by the requestor is optional.

Similar to rules, applicability of policies is described using the target element. Here,
targets can either be defined explicitly by the policy writer or may be computed by the
targets of the rules it contains. To this end, either the intersection or the union of all
sub rules targets can be used. Obviously, selection of one of these approaches has to be

35

2.

CONCEPTS OF ACCESS CONTROL

36

considered carefully, to achieve correct sets of applicable policies. Obligations and advices
are used equivalently at policy level and rule level. As policies may comprise more than
one applicable rule, there exists the possibility that several conflicting access decisions can
be derived for a single authorization request. For this purpose, rule combining algorithms
have to be defined, which take care of deciding what decision has to be returned to the
requestor. Combining algorithms will be discussed in detail in the next section.

Finally, policy sets comprise multiple policies or even sub policy sets. Again, com-
bination algorithms are necessary to resolve conflicts in authorization decisions of the
contained policies and rules. In addition, targets, obligations and advices may be defined
as well.

Combining algorithms

Combining algorithms are part of both policy and policy set elements. They are used to
compute one single overall decision per authorization request, mapping possible several
decisions into a single unambiguous result. As an extension, combining algorithms can
be provided with parameters affecting the behaviour of the decision algorithm. The list
of possible results of a rule, policy or combining algorithm evaluation contains the values
Permit, Deny, NotApplicable and Indeterminate. NotApplicable is returned if no target
was matched in any rule or policy. Indeterminate is the result of an erroneous rule or
policy evaluation. It is extended by the information, whether the applicable but failed
rule or policy would have evaluated to Permit, Deny or possibly one of both, which is
denoted as Indeterminate(P), Indeterminate(D) or Indeterminate(DP), respectively.

In the following, some built-in combining algorithms are listed and described. Com-
bining algorithms are identified using a URN within the RuleCombiningAlglD and
PolicyCombiningAlgID elements of the described policy and policy set, respectively.
System engineers are enabled to implement custom algorithms beyond those included by
default.

Listing 2.10: Example policy combining algorithm URNSs

urn:oasis:names:tc:xacml:3.0: policy —combining—algorithm : deny—
overrides

urn: oasis :names: tc:xacml:3.0: policy —combining—algorithm : permit—
overrides

urn:oasis:names:tc:xacml:1.0: policy —combining—algorithm: first —
applicable

urn:oasis:names:tc:xacml:1.0: policy —combining—algorithm : only—one—
applicable

urn:oasis:names:tc:xacml:3.0: policy —combining—algorithm :ordered —deny—
overrides

urn:oasis:names:tc:xacml:3.0: policy —combining—algorithm : ordered —
permit—overrides

urn:oasis:names:tc:xacml:3.0: policy —combining—algorithm : deny—unless —
permit

2.4. XACML: A standardized access control policy language

urn:oasis:names:tc:xacml:3.0: policy —combining—algorithm : permit—unless
—deny

Deny-overrides describes a rather restrictive combining algorithm. As can easily
be recognized by its name, any single Deny decision applicable to the current request
overrides all other decisions, even if there are several rules returning Permit as a result.
NotApplicable and Indeterminate decisions are possible.

Permit-overrides obviously implements the complete opposite of Deny-overrides. As
long as there is one single Permit decision derived, the overall decision is Permit as well.
NotApplicable and Indeterminate decisions are possible.

Deny-unless-Permit and Permit-unless-Deny are combining algorithms guaran-
teeing that the overall result is either Permit or Deny, even if there is no rule or policy
applicable at all or the evaluation of possibly applicable rules fails. Opposing to the
first two algorithms, a result of NotApplicable or Indeterminate is not possible, which in
particular is useful at the topmost level of a policy tree in order to ensure the returning
of an unambiguous authorization decision back to the requestor. Deny-unless-Permit
evaluates in favour of positive access decisions, that is, presence of a single Permit decision
is sufficient for returning the same as an overall result. In every other case, the overall
result is Deny. Consequently, Permit-unless-Deny prioritizes negative access decisions.

First-applicable describes an algorithm with consideration of the order of rules within
a policy / policies within a policy set. The first applicable rule evaluating to a concrete
Permit or Deny decision will halt the algorithm and the result will be returned. If no
applicable rule was found, NotApplicable is returned. If an error occurs while evaluating
a rule, the corresponding Indeterminate state is returned.

Only-one-applicable is used to retrieve a completely unambiguous authorization
decision. If more than one policy is applicable for the current request, Indeterminate is
returned. If exactly one policy is applicable, the result of the found policy is returned. If
no policy is applicable, NotApplicable is returned.

Example XACML policy

Listing [2.11| shows a minimalist example XACML policy containing one single rule. The
policy governs the access to the attribute “LASTNAME” of an employee record. Consider
that full qualifiers and namespaces of XML elements, attributes and attribute values are
omitted for the sake of simplicity.

In Line |1, the policy is provided with a name and “deny-unless-permit” as rule
combining algorithm. Starting with Line 2, the target is set using given attributes
defining the intent of access (action-id = VIEW) and the specific requested resource

37

2.

CONCEPTS OF ACCESS CONTROL

38

© 00 O Ui WN

WWWWWNNNNNDNDNDNNNDN =
BWNHE OO TITO U WNFE OO0 U WN—=O

(resource.attributeName = LASTNAME). The definition of the single rule contained
starts in Line 20, By setting the effect to “Permit”, a successful evaluation of the
attached condition will lead to a positive access decision. The condition makes use
of the built-in function “string-equal”, taking the parameters “subject.employee.dept”
and “resource.employee.dept”, describing department affiliation of the user requesting
access and those of the employee record being queried, respectively. As mentioned above,
conditions need to be chosen over targets if two variable attribute values need to be
compared, as target clauses are only capable of comparing one single variable value with
a static literal.

Given the whole definition of the policy, the meaning reads as follows: “If the requestor
wants to view the LASTNAME attribute of an employee record: Permit access, if the
requestor is affiliated with the same department as the employee being described by the
queried record. Otherwise, deny access.”.

Listing 2.11: Example XACML policy: ViewEmployeeLastName

<Policy Policyld="ViewEmployeeLastName" RuleCombiningAlgld="deny—unless—permit ">
<Target>
<AnyOf>
<AIllOf>
<Match Matchld="string —equal ">
<AttributeValue DataType="string ">VIEW</AttributeValue>
<AttributeDesignator Attributeld="action—id"
DataType="string"
Category="action" />
</Match>
<Match Matchld="string —equal ">
<AttributeValue DataType="string ">LASTNAME</AttributeValue>
<AttributeDesignator Attributeld="resource.attributeName"
DataType="string"
Category="resource" />
</Match>
</AllOf>
</AnyOf>
</Target>
<Rule Effect="Permit" Ruleld="ViewEmployeeLastName SameDept">
<Target />
<Condition>
<Apply Functionld="any—of—any ">
<Function Functionld="string—equal"/>
<AttributeDesignator Attributeld="subject.employee.dept"
DataType="string"
Category="access—subject" />
<AttributeDesignator Attributeld="resource.employee.dept"
DataType="string"
Category="resource" />
</Apply>
</Condition>
</Rule>
</Policy>

2.4. XACML: A standardized access control policy language

~
. . XACML context
application-specific
request XACML request
. Context Handler
application-specific XACML response
response
v

Figure 2.10: XACML context, adopted from [15]

2.4.2 XACML architecture and data flow

The system architecture recommended in the XACML 3.0 standard largely complies with
the proposed ABAC system architecture already introduced in Section 2.1.5. Additionally,
XACML introduces a context handler component (see Figure 2.10), taking care of
transforming incoming requests from application-specific communication formats, issued
by an application-specific PEP, to XACML authorization requests. These requests
are forwarded to a PDP that thereupon returns a XACML authorization response.
Subsequently, the context handler is responsible for converting the decision back to the
application-specific format and notifying the PEP. Thus, the application environment
in need of access control support by a XACML system is completely encapsulated from
XACML-specific technologies. In turn, PDPs are not forced to retrieve XACML policies
applicable to a specific request from a pure XML based XACML policy store. By
definition of the standard, the policies could just as well be stored in and retrieved from
a conventional RDBMS or other policy sources.

XACML request format

XACML requests comprise a list of attributes describing the intention of the access control
request. Attached attributes can be categorized into the following default categories:

e access-subject
attributes describing the access subject, i.e. the user requesting access to some
query-able information

e resource
attributes describing the resource, i.e. identification or description of the informa-
tion, the requestor wants to query

39

2. CONCEPTS OF ACCESS CONTROL

0O U W

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

40

e action
attributes describing the action, i.e. the intended use, e.g. read some chunk of
information, update a specific record

e environment
attributes describing the environment, i.e. external circumstances of the access
control request, e.g. spatiotemporal information

Listing 2.12 depicts an example XACML request containing attributes of the categories
access-subject (from Line 5), action (from Line 13) and resource (from Line 22). The
subject is identified via her subject.employee.id. The requested resource is described using
the resource.employee.id attribute and the specific desired detailed information, defined
via resource.attributeName. Finally, the intended action is described using the attribute
action-id.

The meaning of the access control request reads as follows: “I am employee with
ID=1 and I want to view the LASTNAME attribute of employee with ID=2".

Listing 2.12: Example XACML request: view LASTNAME of Max Power
<Request ReturnPolicyldList="false" CombinedDecision=""false ">

<!— attributes describing access subject:
employee id =1 —>
<Attributes Category="access—subject">
<Attribute Attributeld="subject.employee.id" IncludeInResult="false">
<AttributeValue DataType="string ">1</AttributeValue>
</Attribute>
</Attributes>

<!— attributes describing desired action:
action—id = VIEW —>
<Attributes Category="action ">
<Attribute Attributeld="action—id">
<AttributeValue DataType="string ">VIEW</AttributeValue>
</Attribute>
</Attributes>

<!— attributes describing requested resource:
employee id = 2,
attributeName = LASTNAME —>
<Attributes Category="resource ">
<Attribute Attributeld="resource.employee.id" IncludelnResult="false">
<AttributeValue DataType="string ">2</AttributeValue>
</Attribute>
<Attribute Attributeld="resource.attributeName" IncludelnResult="false ">
<AttributeValue DataType="string ">LASTNAME</AttributeValue>
</Attribute>
</Attributes>

</Request>

MultiRequests As of XACML 3.0, support for submitting multiple access control
requests within one single message was introduced [15]. Therefore a reduction of message

© 00U WN -

I R R e el e e e e
WNHEH OO UL WNR~O

2.4. XACML: A standardized access control policy language

exchange can be achieved, reducing the overall time of network latency. Using the
CombinedDecision attribute of the request element, the requestor can either ask the PDP

for several single decisions on each contained request or for a combined overall decision.

In the latter case, the overall decision can only be Permit if every single contained request
results in a Permit decision.

Listing [2.13| shows an example XACML MultiRequest similar to the single request
presented above. It contains access requests for two different attributes of the desired
employee’s record.

Similar to the previous example, the request contains attributes describing the access
subject and the desired action, in Lines |5 and [13, respectively. Note that each of the
<Attributes> elements now contains an id attribute. This ID is going to be used later for
referencing the attributes in concrete requests. In addition to the requested LASTNAME
attribute (Line 22), we now have another resource attributes section describing access
intention on the SAL attribute of employee with ID=2 (Line |34). Again, the <Attributes>
elements are equipped with identifiers for the purpose of being referenced.

Finally, the MultiRequests section contains one RequestReference section per request
to be contained in the message. By adding references to attributes defined above, using
the attributes id’s, each request is equipped with the necessary attribute values. The
first request reference in Line 50 generates exactly the same request as the single request
described in Listing 2.13. Additionally, the request reference in Line 61 adds a request for
accessing the SAL column of employee with ID=2. As the CombinedDecision attribute in
the request element is set to false, the response of the PDP will contain 2 single decisions
on each of the requests. Setting the CombinedDecision attribute to true would lead to a
positive access control decision only if both requests result in a Permit decision.

Listing 2.13: Example XACML MultiRequest: view LASTNAME and SAL of Max Power
<Request ReturnPolicyldList="false" CombinedDecision=""false ">

<!— attributes describing access subject:
employee id =1 —>
<Attributes Category="access—subject" id="ID—accessSubjectAttributes">
<Attribute Attributeld="subject.employee.id" IncludelnResult="false">
<AttributeValue DataType="string ">1</AttributeValue>
</Attribute>
</Attributes>

<!— attributes describing desired action:
action—id = VIEW —>
<Attributes Category="action" id="ID—actionAttributes">
<Attribute Attributeld="action—id">
<AttributeValue DataType="string ">VIEW</AttributeValue>
</Attribute>
</Attributes>

<!— attributes describing requested resource:
employee id = 2,
attributeName = LASTNAME —>
<Attributes Category="resource" id="ID—-resourceAttributesLASTNAME2">
<Attribute Attributeld="resource.employee.id" IncludeInResult="false ">

41

2.

CONCEPTS OF ACCESS CONTROL

42

24 <AttributeValue DataType="string ">2</AttributeValue>

25 </Attribute>

26 <Attribute Attributeld="resource.attributeName" IncludelnResult="false ">
27 <AttributeValue DataType="string ">LASTNAME</AttributeValue>
28 </Attribute>

29 </Attributes>

30

31 <!— attributes describing requested resource:

32 employee id = 2,

33 attributeName = SAL —>

34 <Attributes Category="resource"' id="ID—resourceAttributesSAL2">

35 <Attribute Attributeld="resource.employee.id" IncludeInResult="false ">
36 <AttributeValue DataType="string ">2</AttributeValue>

37 </Attribute>

38 <Attribute Attributeld="resource.attributeName" IncludelnResult="false ">
39 <AttributeValue DataType="string ">SAL</AttributeValue>

40 </Attribute>

41 </Attributes>

42

43 <MultiRequests>

44

45 <!— request comprising following attributes:

46 access—subject: employee id =1

47 action: action—id = VIEW

48 resource: employee id = 2

49 attributeName = LASTNAME —>

50 <RequestReference>

51 <AttributesReference Referenceld="ID—accessSubjectAttributes" />
52 <AttributesReference Referenceld="ID—actionAttributes" />

53 <AttributesReference Referenceld="ID—resourceAttributesLASTNAME2" />
54 </RequestReference>

55

56 <!— request comprising following attributes:

57 access—subject: employee id =1

58 action: action—id = VIEW

59 resource: employee id = 2

60 attributeName = SAL —>

61 <RequestReference>

62 <AttributesReference Referenceld="ID—accessSubjectAttributes" />
63 <AttributesReference Referenceld="ID—actionAttributes" />

64 <AttributesReference Referenceld="ID—resourceAttributesSAL2" />
65 </RequestReference>

66

67 </MultiRequests>

68

69 </Request>

XACML response format

The format of a XACML response message contains a single decision node containing
one of the following allowed values: Permit, Deny, NotApplicable, Indeterminate.

Listing 2.14: Example XACML response: view LASTNAME of Max Power

<Response>
<Result>
<Decision>Permit</Decision>
</Result>
</Response>

U W N =

2.5. Summary

2.5 Summary

In this chapter, basic concepts and the evolutionary process of access control are presented.
Low-level models, DAC and MAC, are followed by first standardization approaches in
the form of RBAC. In its core, RBAC supports the concepts of users, roles, sessions
and operations on objects. ABAC utilizes attributes describing requestors and accessed
objects rather than definite identifiers, which leads to less maintenance intensive access
control systems. FGDAC enables access control on database tables each on table, row,
column and cell level. Proposed approaches to implement FGDAC are static views,
parameterized views, the extension of the SQL language and query rewriting. The
following section presents SecSQL as an example of an existing dFGDAC implementation.
Core feature is the democratic creation, enactment and modification of machine-readable
access policies to system-relevant data during runtime. Human administrators and
super-users are avoided. In the final section, XACML is presented. XACML provides
means for standardized definition, exchange and enforcement of ABAC policies.

43

CHAPTER

A prototype dFGDAC system
utilizing Oracle Virtual Private
Database

In this chapter, a new prototype is proposed trying to replicate the dFGDAC features
of SecSQL introduced in Section [2.3. The prototype relies on the capabilities of Oracle
Database, in particular on the fine-grained query rewriting mechanism of VPD. The
functional requirements are inherited from the model solution and the research field of
SNBG.

The foundation for the proposed technical prototype is Oracle Database’s built-in
feature VPD, as introduced in Section [2.2.5. VPD offers a query-rewriting approach as a
solution to the problem of FGDAC. Simply put, issued SQL queries to the database get
dynamically equipped with additional WHERE clauses filtering the queried database
table for permitted data. These filters can either be applied to whole records or single
columns of the queried table, providing row-level and cell-level access control, respectively.

The remainder of this chapter is organized as follows. Firstly, the basic data model for
providing dFGDAC is presented in Section 3.1. In Section 3.2 the concept of Proxy Views
is introduced. Section [3.3| discusses the component providing means of collaborative
decision-making. Finally, an overview of the prototype web-based user interface is given
in Section 13.4.

3.1 Implementing Fine-Grained Data Access Control: the
VPD schema

The necessary FGDAC functionalities are grouped in a module called “the VPD schema”.
This schema comprises the following components. A data model for storing authorization

45

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

46

r D
vpd J e N
restriction
s — N
permission PFK object_owner TEXT
) PFK object_name TEXT
PKobject_owner TEXT PFK statement_type TEXT
PK' object_name TEXT PK column_name TEXT
PK statement_type TEXT PK sequential_number NUMBER
description cLos filter_clause CLOB
b o description CLOB
\ y,
L /

Figure 3.1: Data model of the VPD schema

data, a component providing context awareness to the access control system and means
for defining and maintaining VPD policies. The components are described in detail in
the following sections.

3.1.1 A simple data model for positive and negative authorizations

To implement dynamic access control using VPD, the access rules need to be maintained
in a dedicated data structure. Figure 3.1/ depicts the data model designed for use with our
prototype implementation. Two tables, PERMISSION and RESTRICTION are necessary
to store both positive and negative authorizations.

The intended usage of the former table is as follows: Each and every database table,
that needs to be exposed to the public, shall be represented by one record. Tables
lacking a corresponding entry in PERMISSION can not be accessed. The exposed table
is identified using the columns OBJECT_OWNER and OBJECT NAME. The column
STATEMENT_TYPE is used to define the type of action, for which permission on the
given table is granted. The allowed values include the standard SQL query types SELECT,
INSERT, UPDATE and DELETE as well as the application specific permission types
USER_ADD_PROPOSAL, USER_ VOTE, USER,_ ENACT and PROPOSAL_ENACT,
which will be discussed in Section [3.3l Finally, the DESCRIPTION column can be used
to optionally add a comment or justification for the presence of the given permission.

The RESTRICTION table is related to the PERMISSION table via the columns
OBJECT_OWNER, OBJECT_NAME and STATEMENT_TYPE, establishing a one-to-
many relationship. Using the COLUMN_NAME column, it can take restrictions defined
either for whole rows (using an asterisk as column name) or for single columns, using the
name of the column the restriction should be applied to. As part of the primary key of
the table, the SEQUENTIAL_NUMBER column allows the application of an unlimited
number of restrictions per column.

The definition of the restriction is done by providing an SQL statement to populate

3.1. Implementing Fine-Grained Data Access Control: the VPD schema

the FILTER_ CLAUSE column. The provided statement must return a boolean result,
indicating whether the restricted row/column should be visible within the result of an
arbitrary SQL statement, queried against the exposed table. Filter clauses may utilize
the full expressiveness of the SQL language, including simple predicate comparisons and
set operations. As predicates, the definer may refer to the column names of the restricted
table, or even sub-select other information from the database. Context-aware restrictions
are possible using a wildcard mechanism. The system provides automatic integration
of the user ID currently logged-in to the system at the time of query execution. For
this purpose, the user may be referenced via his citizen identification (referring to the
parliament scenario from SNBG) within the filter clause using the wildcard @CITIZEN 1D.
Information on wildcards and the context awareness module is described in more detail
in Section 3.1.2. Finally, equivalent to the PERMISSION table, the RESTRICTION table
contains a column DESCRIPTION allowing to optionally add a comment on the stored
restriction.

By default, there is different behaviour of access control enforcement for row-level
and column-level access control, concerning the need for explicit governance of access
rules. On the one hand, general table access needs to be enabled explicitly by entering
a corresponding record in the PERMISSION table. In other words, row-level security
follows a pessimistic access control approach. On the other hand, provided that an entry
in the PERMISSION table exists, all the columns of the table are exposed to the public
by default. That means that column-level access control follows an optimistic approach.
Restricting access to single columns of a table generally exposed to the public needs to
be defined explicitly by entering a corresponding record to the RESTRICTION table.

Table 3.1 shows an example entry of the RESTRICTION table, providing a row-level
(COLUMN_NAME = *) restriction for selecting (STATEMENT TYPE = SELECT) the
table SOVEREIGN.CITIZEN (columns OBJECT_OWNER and OBJECT_NAME). The
FILTER,__CLAUSE column contains an SQL predicate making use of the QCITIZEN_ID
wildcard to retrieve the citizen identification of the logged-in user at SQL execution time.
The clause also includes a sub-select retrieving additional data necessary for the access
control decision. Finally, the DESCRIPTION column shows a textual description of the
restriction’s intention.

3.1.2 Providing context awareness to the access control system

To be capable of providing environment-attribute dependent access control, a con-
text awareness module is necessary. The proposed solution utilizes Oracle Database’s
built-in feature “Application Contexts”. Application contexts provide means of storing
application-specific, session-dependent contextual information in key-value pairs. For
further organization, contexts may be categorized using the concept of namespaces.

The context awareness module comprises the following components. (1) a key-value
based storage for context information, implemented using Oracle application contexts;
(2) an access layer consisting of the functions context.set and context.get for storing into

47

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

48

Table 3.1: Example entry of table RESTRICTION

OBJECT_OWNER SOVEREIGN

OBJECT_NAME CITIZEN
STATEMENT_TYPE || SELECT
COLUMN__NAME *
FILTER__CLAUSE
citizen id = @citizen__id
or

(select position
from sovereign.citizen
where citizen_ id = @citizen_id) = ’official’

DESCRIPTION except for officials, citizens may only view their own record

and retrieving key-value pairs from the context, respectively; (3) a database logon trigger
taking care of proper initialization of the context every time a user logs in to the system;
(4) a stored function, used by the VPD query rewriting engine, dedicated to replace all
wildcards in restriction’s filter clauses with concrete values from the context, taking an
abstract filter clause as an input parameter and returning a concrete, SQL-executable
filter clause.

Figure 3.2 gives a combined overview of both architecture of the context module
and the process of query rewriting using context information. When a user logs in
to the system, a database logon trigger is fired (1). The logon trigger determines
the technical identification of the user attempting to log in and tries to establish a
logical connection between the technical user and the real world citizen, the user is
associated to. To this end, the CITIZEN table is queried for the citizen identification
(2). Subsequently, the retrieved CITIZEN_ID is stored to the application context using
context.set. In addition, a small number of environment attributes is determined from
Oracle Database’s meta information and provided to the context. The predefined
environment attributes include the name of the client’s host machine (“CLIENT_HOST”),
the IP address the request originiated from (“CLIENT_IP__ ADDRESS”), the operating
system user of the client (“CLIENT__OSUSER”) and the time the client has logged in
(“CLIENT_LOGON_TIME”) (3). As soon as the logged in user attempts to query
the CITIZEN table, or any other table containing sensitive business data, the VPD
query rewriting engine intercepts the request (4). The engine determines all restrictions
applicable to the request and queries the context for necessary environment information
using context.get (5). In a next step, the query is rewritten utilizing the wildcard
replacement component and executed against the desired business data tables. Finally,
the results are propagated the same path back to the user (6).

3.1. Implementing Fine-Grained Data Access Control: the VPD schema

p
CONTEXT

(M

DATA

\4)(6)

g, - m
[on_database_logon vpd engine 4—’“—?[sovereign.citizen

/

(3)
(5)

[context.set q context.get 9
@\ (5)/"
[context ﬁ

/

Figure 3.2: Overview of context awareness model

3.1.3 Definition of VPD policy functions

As already described in Section [2.2.5, Oracle VPD utilizes user-defined stored functions
written in PL/SQL to return restrictions applicable to a specific query. Basically, VPD
adds all the restrictions to the WHEREFE clause of the issued SQL query. The stored
function has to provide an interface as follows: two input parameters of data type
VARCHAR?2 describing both schema (object owner) and name of the object; the function
result has to be a string containing a boolean expression. The function is automatically
called by the internal VPD engine on query execution and dynamically provided with
the necessary input parameters describing the queried database object. For computation
of the result it is allowed to make use of the complete expressiveness of PL/SQL, i.e.
provide constant predicates, use the input parameters, use the application context or
other session based information, or even query additional data from database objects.
If more than one policy function is applied to a single database object, all returned
predicates are logically conjuncted, i.e. they are put together using the AND operator.

49

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

50

Row-level access control

Setting up policy functions for dynamic row-level access control is possible using little
coding effort. It is sufficient to define one generic policy function and four wrappers for
each supported SQL statement type, that is SELECT, INSERT, UPDATE and DELETE.
The reason for that becomes clear if the way, policies are connected to policy functions,
is explained. In Listing 3.1} the call to add a new row-level access control policy to the
CITIZEN table is depicted. Several parameters of the call can be automatically populated
with the values stored in the RESTRICTION table defined in Section 3.1.1; including
OBJECT_SCHEMA, OBJECT_NAME and STATEMENT_TYPES. Although VPD allows
to define a single policy function for all statement types by simply enumerating the
desired statement types comma separated, the prototype system forces the usage to
separate functions per statement type, to allow separate restriction behaviour based on
the statement type. For example, SELECT access might be defined less restrictive than
DELETE access on some business table. The POLICY_FUNCTION parameter is provided
with the name of the statement type specific stored function, e.g. FILTER, ROW_SELECT
for SELECT access.

Listing 3.1: Adding a new row-level VPD policy

DBMS RIS.ADD POLICY(
object__schema => ’'SOVEREIGN’ ,
object__name => 'CITIZEN" ,
policy__name => 'POL_SOV_CIT_ROW_LEVEL’ |
function__schema => 'VPD’,
policy_ function => ’POLICY .FILTER ROW_SELECT’ ,
statement__types => ’SELECT’

)E

That leads to the definition of the four statement type specific policy functions for
row-level access control: FILTER ROW _SELECT, FILTER ROW _INSERT, FIL-
TER_ROW _UPDATE and FILTER ROW_DELETE. All functions call a generic
function FILTER_ROW, taking the owner and name of the restricted object and the
statement type, to be able to return separate restriction predicates based on the type of
access request.

The generic function’s behaviour is explained using pseudocode in Listing 3.2l In
Line 3|, the application context is queried for the technical user currently logged in. If
the user matches the owner of the queried object, a tautology can be returned indicating
that no data filtering needs to be established. Owners always enjoy unrestricted access to
their object’s data. In Line |7, application context is queried for the citizen identification
of the user currently logged in. If the citizen ID is not set properly, a contradictious
boolean clause is returned, preventing unauthorized citizens from accessing potentially
restricted data. Line 11| contains querying the PERMISSION table for the existence
of a permission for the given combination of OBJECT OWNER, OBJECT NAME and
STATEMENT _TYPE. If the query returns an empty result, meaning that no permission
is present, again a contradictious boolean clause is returned. Starting from Line |18,

O N O T W N

CO W W W N NN DNDNDDNDRNDNDDNDN H =
W OO0 IR WNNEFE OO Uk WwNnEE=OO©O

3.1. Implementing Fine-Grained Data Access Control: the VPD schema

the algorithm queries the RESTRICTION table and iterates through the set of returned
restrictions. In each iteration, the concrete filter clause is generated by calling the
wildcard replacement component of the context awareness module, providing the abstract
filter clause of the iterated restriction. Subsequently, the filter clause is added to the
resulting filter predicate using logical conjunction. Finally, in Line 30, the resulting filter
predicate is checked for any found restrictions. The function returns the generated filter
predicate or a tautology, if applicable restrictions were found or there are no restrictions
present, respectively.

Listing 3.2: Behaviour of FILTER_ ROW
FILTER_ ROW(objectOwner , objectName, statementType)

currentTechnicalUser = context.get("user')
if currentTechnicalUser = objectOwner
return true

citizenID = context.get("citizen_id")
if citizenID = ""
return false

permission = table.select("PERMISSION",
objectOwner ,
objectName ,
statementType)

if permission = "'

return false

predicate = ""

restrictions = table.select ("RESTRICTION",
objectOwner ,
objectName ,

statementType)
for each restriction in restrictions
if predicate # "'
predicate = predicate + " AND'

abstractFilterClause = restriction.filterClause
concreteFilterClause = context.replaceWildcards(abstractFilterClause)
predicate = predicate + concreteFilterClause

non

if predicate =
return true
else
return predicate

51

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

52

SO W N

Column-level access control

Definition of policy functions for dynamic column-level access control requires more
effort than for row-level access control. This is due to the fact, that it is not possible
to dynamically retrieve the column name, the filter predicate should be generated for,
during execution of the policy function. As described above, VPD policy functions need
to be defined using a fixed interface, including only owner and table/view name of the
currently queried object as input parameters. To be capable of dynamically retrieving
the name of the affected column from within the function, an additional parameter in the
function interface is necessary, providing the column name. This aspect was discussed
in a online post in Oracle’s official discussion board [10], leading to the finding, that
dynamism to the extent necessary is not provided in the default feature set of Oracle
VPD, which requires the invention of a workaround.

This workaround involves the dynamic creation of one single policy function per
column-level restriction. This dynamic creation needs to be triggered by the emergence
of a new column-level restriction, as this involves a change in the set of column-level
access control rules. The name of the column under protection needs to be compiled
hard-coded into the definition of the policy function. Listing 3.3 shows the behaviour of
a custom, dynamically compiled column-level policy function. To ensure the creation
of a large number of custom policy functions without running into naming conflicts, a
random hash value is added to the name of the function. In contrast to the row-level
policy functions described above, column-level functions are never reused for protection
of more columns than the column it was originally dedicated to at compile time. For that
reason, the mandatory input parameters OBJECT OWNER and OBJECT NAME are
completely ignored in the code section of the function, instead, only hard-coded values
are used to retrieve the applicable access constraints. For example, in Line 3| and the
following, the owner of the protected object is known at compile time. Thus, the second
operand of the comparison can be hard-coded to the function. Checking the presence of
a valid citizen identification, starting from Line |7, stays the same with respect to the
behaviour of FILTER_ROW. In turn, a permission check is omitted (Line 11) due to the
optimistic approach of column-level access control defined in Section |3.1.1. The procedure
of retrieving restrictions and wildcard replacements to the filter clauses essentially does
not differ either, with one exception: For the selection of all applicable restrictions from
the RESTRICTION table only hard-coded values are used. Additionally, the hard-coded
column name is included in the query (starting from Line [13). Finally, the return part of
the function remains unchanged compared to the FILTER ROW algorithm (Line 26).

Listing 3.3: Behaviour of FILTER_ COLUMN_ <HASH>
FILTER_ COLUMN_<HASH>(objectOwner, objectName)
currentTechnicalUser = context.get("user')

if currentTechnicalUser = "Hard—coded object owner"
return true

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

3.1. Implementing Fine-Grained Data Access Control: the VPD schema

citizenID = context.get("citizen_ id")
if citizenID = ""
return false

/* no permission check necessary: optimistic access control x/

predicate = "'

restrictions = table.select ("RESTRICTION',
"Hard—coded object owner",
"Hard—coded object name",
"Hard—coded statement type",
"Hard—coded column name")

for each restriction in restrictions

if predicate # "'
predicate = predicate + " AND'

abstractFilterClause = restriction.filterClause
concreteFilterClause = context.replaceWildcards(abstractFilterClause)
predicate = predicate + concreteFilterClause

non

if predicate =
return true
else
return predicate

Adding column level policies to the VPD engine requires additional parameteriza-
tion. An example call is depicted in Listing 3.4. The parameters OBJECT SCHEMA,
OBJECT NAME, STATEMENT TYPES and SEC_ RELEVANT_COLS can be populated
with the corresponding values from the RESTRICTIONS entry.

Note that the SEC_ RELEVANT __COLS parameter corresponds to the COLUMN_ NAME
column. The custom policy function introduced above needs to be compiled upfront, the
connection between the function and the policy is established by providing the randomly
generated function name to the POLICY FUNCTION parameter. The last parameter
SEC_RELEVANT COLS_OPT is used to express, that rows containing restricted columns
need to be returned regardless of the existence of an actual hidden column value. Instead,
NULL will be returned as the value of the hidden column. Omitting the parameter would
lead to filtering of the complete row, if at least one column value is hidden.

Listing 3.4: Adding a new column-level VPD policy
DBMS RIS.ADD POLICY(

object__schema => ’SOVEREIGN |

object__name => ’'CITIZEN" |

policy__name => ’POL_SOV_CIT DOB_ COLUMN_LEVEL’ ,
function__schema => 'VPD’ |

policy_ function => ’POLICY .FILTER,_COLUMN_<HASH>" ,
statement_ types => ’SELECT’ |

sec__relevant_cols => 'DATE OF BIRTH’ ,

sec__relevant_ cols_ opt => dbms_rls.all_rows

53

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

54

T W N~

E

3.1.4 Maintaining VPD policies

Effective enforcement of access constraints defined in the FGDAC data model is under-
taken by the built-in VPD engine of Oracle Database. To ensure a comprehensive and
accurate implementation of all the permissions and restrictions, maintenance of VPD
policies is important - the applied policies need to comply with the given permission
and restriction meta data at any time. This requires several components. Firstly, a
component taking care of enforcing all the defined access constraints is necessary. Also, a
mechanism needs to be established for cleaning up policies which are no longer required.
Finally, those two program sections need to be triggered every time either the structure
of the database or access constraints change.

Adding new policies

The first component is implemented using a predefined function called ENFORCE
POLICIES. The behaviour of this function is depicted in Listing 3.5, The function
takes three input parameters used to identify the object, for which FGDAC needs to
be enforced. First, all restrictions applicable to the given object are retrieved from the
RESTRICTION table (Line 3). Additionally, in Line 7, all statement types for which
there is no corresponding entry for the given object in the PERMISSION table at all, are
determined. As a consequence of defining row-level access control using a pessimistic
approach in Section |3.1.1, implicit restrictions need to be established for all objects lacking
explicit permission for any of the default SQL statement types. In the following, the
set of determined restrictions is iterated and processed depending on the level of access
control. Row-level restrictions (starting from Line |12), are recognized by an asterisk
symbol instead of a real column name. First, the applicable, pre-defined row-level policy
function is determined based on the statement type of the iterated restriction. Then,
a new VPD policy is added, providing the determined function name and the values
identifying the object and the desired statement type from the restriction. The steps for
processing column-level restrictions are depicted starting from Line [19. First of all, a new
random, unique and yet unused name for the necessary custom policy function needs to
be derived. In a second step, the custom policy function is dynamically created. As input
to the dynamic creation the following parameters are necessary: the previously derived
function name, the object and column identification and the statement type. Finally, a
new VPD policy is added, providing the same parameters.

Listing 3.5: Behaviour of ENFORCE_ POLICIES
ENFORCE_POLICIES(objectOwner, objectName, columnName)

restrictions = table.select ("RESTRICTION",
objectOwner ,
objectName ,

o ™

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

U W N =

3.1. Implementing Fine-Grained Data Access Control: the VPD schema

columnName)
restrictions = restrictions —+
table.select ("ALL_OBJECTS without any permission")

for each restriction in restrictions

if restriction .columnName = "x'
functionName = "FILTER, ROW_" + restriction .statementType
vpd.add_policy(restriction.objectOwner,
restriction .objectName ,
functionName ,

restriction .statementType)

else
functionName = "FILTER_COLUMN_" + hash ()
create_policy function(functionName ,
restriction .objectOwner ,
restriction .objectName ,
restriction .statementType,
restriction .columnName)
vpd.add_policy(restriction.objectOwner,
restriction .objectName ,
functionName ,
restriction .statementType,
restriction .columnName)

Cleaning up outdated policies

Restrictions on database objects may become obsolete at some time during the usage of
the prototype application. In order to maintain a clean and tidy system state, outdated
policies and all related system components need to be removed in this case.

To this end, a function called CLEANUP_POLICIES is provided. The behaviour of
this function is depicted in Listing [3.6. The function’s interface provides the same input
parameters as ENFORCE_ POLICIES does. First, all the policies effective for the given
object identification are determined. In a next step, the determined policies are iterated
through. As step one of each iteration, the VPD policy, identified by it’s unique policy
name, is dropped. If the dropped policy provided column-level access control, the custom
policy function created during addition of the policy is dropped as well. The reusable
policy functions for row-level access control are dropped at no time.

Listing 3.6: Behaviour of CLEANUP_ POLICIES
CLEANUP_POLICIES(objectOwner , objectName, columnName)
policies = vpd.get_policies(objectOwner,

objectName ,
columnName)

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

56

O © oD

© 00 O Uk Wi+

for each policy in policies
drop__policy (policy.policyName)
if policy.columnName # "x'
drop_ function(policy.policyFunction)

Triggering policy maintenance

As stated in the introductory paragraph of this section, policy maintenance needs to be
triggered every time either the structure of the database or access constraints change.
To this end, several triggers on different events potentially occurring during the usage of
the prototype application are installed.

To take care of changing database structures, Oracle allows for the definition of triggers
AFTER CREATE ON DATABASE and BEFORE DROP ON DATABASE. Every time one
of these events occurs, the database calls a stored function associated to the event allowing
for custom code to be executed as a result of the change. The implementation of these two
events contains calls to ENFORCE_ POLICIES and CLEANUP_ POLICIES, respectively.

In addition, it is possible to establish database triggers notifying the system about
changing table contents. To ensure correct maintenance of access control policies on chang-
ing access rules, a row-level change trigger AFTER INSERT OR UPDATE OR DELETE
on table RESTRICTION is defined and implemented. The behaviour of the triggered
function is depicted in Listing |3.7. Row-level triggers provide the entire record of values
of both the old row (before the change) and the new row (after the change) to the context
of the trigger function. This enables the developer to react to specific data changes, by
referring to the context variables oldRow and newRow. In case that the trigger reacted to
an UPDATE or DELETE action on the RESTRICTION table, the oldRow record will be
filled with the values valid before the action. As such an action implies that an access
rule has changed or even was deleted, the CLEANUP_POLICIES function needs to be
called with the values of the oldRow record (Line 3). Line 8 and the following define
the reaction on an INSERT or UPDATE statement. Again, CLEANUP_ POLICIES needs
to be called if it was not already done for the same parameters in the previous Section.
Finally, the ENFORCE_ POLICIES function needs to be called in any case other than a
performed DELETE action, which can be recognized by a non-empty newRow record.

Listing 3.7: Behaviour of ON_RESTRICTION_CHANGE
ON_RESTRICTION CHANGE(oldRow, newRow)

if oldRow # EMPTY
CLEANUP_POLICIES(oldRow.objectOwner ,
oldRow . objectName ,
oldRow . columnName)

if newRow # EMPTY AND newRow # oldRow
CLEANUP_POLICIES(newRow.objectOwner ,

3.2. Enabling complex dynamic access control policies using Proxy Views

10 newRow . objectName ,
11 newRow . columnName)
12

13 if newRow # EMPTY

14 ENFORCE_POLICIES(newRow.objectOwner ,
15 newRow . objectName ,
16 newRow . columnName)

After execution of the ON_RESTRICTION_CHANGE trigger function the access
control system has successfully reacted to a change of the access control data model and
(re-)enforced all necessary VPD policies.

3.2 Enabling complex dynamic access control policies
using Proxy Views

Due to a number of technical limitations of VPD policies, implementing access control
using VPD is not possible in the dynamism needed for covering the desired dFGDAC
features. To this end, a workaround is presented in order to overcome the shortcomings
of VPD. The following sections comprise the description of the mentioned limitations as
well as a solution approach.

3.2.1 Limitations of VPD policies

Oracle VPD includes technical drawbacks, that limit the practical usefulness of the
technology in the area of dAFGDAC. In the following, two problems arisen during the
prototyping phase of the proposed solution, are presented and described using examples.

Circular VPD policies

Consider the EMPLOYEE table introduced in Section 2.2.1. An exemplary fine-grained
access constraint on the SAL column could be defined as follows. “Employees are only
allowed to view their own salary, except for department heads, which may view the salary
of all employees of their department." Consequently, an example implementation of the
policy function used for masking the column could look like the one in Listing 3.8.

Listing 3.8: Example 1: policy function FILTER__SALARY

function FILTER,_ SALARY(
object_owner in varchar2,
object_name in varchar2
) return varchar2

is

nEmployeelD varchar2(16) := util.context.get(’employee id’);
begin

return ’'id = ’ || nEmployeelD ||

o7

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

58

or
((select position from EMPLOYEE where id = ’ || nEmployeeID || 7)

"Head of ’7 || dept
)7
end FILTER SALARY;

Note that the complete filter predicate is written in one single dynamic SQL string,
utilizing the application context for retrieval and correct application of the employee
identification. Thus, the information, whether the employee currently logged in is a
department head, is retrieved from a sub-SELECT, in turn querying the EMPLOYEE
table. This leads to the following question: How should the access control enforcement
engine handle subquerying of the same table, that is subject to access control, from
within the generated filter predicate? VPD’s answer is just as simple as to throw an
exception during SQL execution time:

ORA—-28113: policy predicate has error

[...]

xCause : Policy function generates invalid predicate.
*Action: Review the trace file for detailed error information.

Inspecting the session’s trace file as suggested by the error message leads to the
following information:

Error information for ORA-28113:

ORA—28108: circular security policies detected
xCause : Policies for the same object reference each other.

xAction: Drop the policies

Obviously, but not proven by any official documentation of Oracle Database, columns
used within VPD predicates are in turn subject to access control. In the worst case, this
fact can lead to circular dependencies of VPD predicates. The problem was discussed in
an online post in Oracle’s official discussion board [11]. One proposed solution approach
was rejected because it included the on-design-time static preparation of information
necessary during access constraint evaluation time, which resulted in incompatibility
with the dynamism requirement. The discussion also came up with a promising approach
including the usage of separate database views for access control enforcement, rather
than directly restricting access to the table itself.

Masked columns as access control criterion

There is another limiting characteristic of the Oracle VPD enforcement engine. It unveils
when columns, that are already restricted by a valid VPD predicate, need to be considered
in another VPD predicate. As an example, two access constraints to the EMPLOYEE
table are defined as follows: (1) “No one can view salaries" and (2) “Job positions of
employees can only be viewed if the salary of the respective employee does not exceed

3.2. Enabling complex dynamic access control policies using Proxy Views

4000". Consequently, access constraint (1) restricts access to data that is necessary to
successfully evaluate access constraint (2). The definition of two corresponding policy
functions is depicted in Listing 3.9.

Listing 3.9: Example 2: policy functions FILTER_SALARY and FIL-
TER_BIG_EARNERS

function FILTER, SALARY(
object_owner in varchar2,
object_name in varchar2

) return varchar2

is

begin
return '1=0";

end FILTER_SALARY;

function FILTER BIG EARNERS(
object_owner in varchar2,
object_name in varchar2

) return varchar2

is

begin
return ’sal < 40007;

end FILTER_ BIG EARNERS;

As introduced in Section 2.2.5| the two policy functions defined above are applied
using the dbms_rls. ADD_ POLICY function. By linking the functions to the corresponding
columns SAL and POSITION, the expected behaviour should be achieved. In reality
however, adding the two policy functions in random order causes indeterminate results.
The two possible sequences of policy additions and their concrete effect on querying the
EMPLOYEE table are depicted in Tables 3.2 and 3.3. Values masked by the VPD engine
are plotted crossed out and in gray color. By first adding the restriction on the SAL
column, followed by adding the restriction on the POSITION column, the query returns
exactly the expected results: no salaries are exposed, the job position of the two “big
earners", (Jane Doe=4200, John Hancock=4500) are masked. Compared with this, the
results of querying the table after switching the order of policy addition, are unexpected
and undesired. Now every single value of the POSITION column is masked. The fact that
the ordering of policy addition obviously matters, is a show stopper to the dynamism
needed in the proposed prototype application, as it is not possible to control the order of
arising access constraints at runtime.

It was not possible to find an explanation for the undeterministic behaviour in official
product documentation or other official publications of Oracle Database. The problem
was also discussed in an online post in Oracle’s official discussion board [12]. None of
the participants could justify the behaviour. However, the problem was only observed
for column-level policies. Together with the circularity problem discussed above, this is
the reason for the idea of a new concept including database views in the access control

59

3. A PROTOTYPE DFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

Table 3.2: Example query of the EMPLOYEE table
order of policy addition: 1. FILTER_SAL, 2. FILTER_BIG_EARNERS

ID FIRSTNAME LASTNAME DEPT POSITION SAL
1 Jane Doe Sales Head-OfSades 4206
2 Max Power Sales Sales Clerk 1860
3 Frank Wright Sales Sales Clerk 2100
4 John Hancock Accounting Head-Of Acecountine 4560
5 Sandra Brown Accounting Accountant 22006
6 Linda Roberts IT Developer 2400

Table 3.3: Example query of the EMPLOYEE table
order of policy addition: 1. FILTER_BIG_EARNERS, 2. FILTER_SAL

ID FIRSTNAME LASTNAME DEPT POSITION SAL
1 Jane Doe Sales Head-OfSades 4206
2 Max Power Sales Sades-Clerk 1866
3 Frank Wright Sales Sates-Clerk 21400
4 John Hancock Accounting Head-Of Aceountine 4560
5 Sandra Brown Accounting Aeceountant 22006
6 Linda Roberts 1T Developer 24006

enforcement process. The concrete implementation of this approach will be discussed in
the following sections.

3.2.2 Structural elements of the Proxy View concept

To provide a solution for the problems arising from usage of Oracle VPD for dAFGDAC,
the concept of “Proxy Views' is introduced. It involves the creation and maintenance of
a set of database views on concrete database objects subject to access control, for the
purpose of allowing comprehensive definition of VPD filter predicates. Each protected
database table is wrapped by an exclusive database view. An example is depicted in
Listing 3.10. The definition of the view simply involves the automatic determination of a
unique view name and the unrestricted selection of the underlying database table (in the
example, the definition of a Proxy View on the EMPLOYEE table is provided).

Listing 3.10: Proxy View on table EMPLOYEE

create view proxy.PVIEW_<HASH>
as

select =
from EMPLOYEE;

60

3.2. Enabling complex dynamic access control policies using Proxy Views

As a result, it is possible to set up the following process upon emergence of new
database objects:

1. a new database table is created

2. creation of the table is recognized by the system

3. a new Proxy View is created

4. an association from the table to the Proxy View is stored in a maintenance table

5. all access constraints on the concrete database table are actually installed on top
of the Proxy View using Oracle VPD

6. all VPD policies have unrestricted access to all concrete tables from within the
filter predicates, as no policies are installed on top of actual database tables

7. all queries of protected database tables are rewritten so that they actually query
the corresponding Proxy Views; the rewriting module makes use of the association
information stored in the Proxy View maintenance table

8. direct access to protected database tables is restricted in order to prevent potential
bypassing of the access control system

The advantages gained by establishing the proposed Proxy View system regarding
the two problems discussed in the previous section are as follows. The problem of circular
VPD policies does not occur as there is the possibility to define filter predicates using
references to the data of the original table rather than the actually protected Proxy
View. Using subquerying of the protected database table is now fully supported without
the described VPD limitation, as the original table is never subject to physical VPD
protection. The same applies to the problem regarding already masked columns for usage
as access control criterion. As subquerying is now supported, all additional data necessary
for determining the applicable filter predicates can be retrieved from the original table,
which from VPD’s point of view, is fully accessible. It has to be acknowledged that it is
still possible to provoke the problems mentioned with the proposed Proxy View system
in effect, hence maintenance of dynamic access control policies still needs to be evaluated
carefully.

To simplify access to the information, which Proxy View is associated to which concrete
protected database object, a maintenance table called PROXY_VIEW is introduced. An
example record of the table is depicted in Table 3.4 One record contains the full
qualified database names of both the protected database table (ORIGIN_OWNER and
ORIGIN NAME) and the associated Proxy View (PROXY OWNER and PROXY NAME).
In addition, informative meta data on the association is stored (OBJECT_TYPE of the
protected database object and CREATE DATE of the association).

61

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

62

ST W N

1
2
3

Table 3.4: Example entry of table PROXY_VIEW

ORIGIN__ OWNER EXAMPLE
ORIGIN_NAME EMPLOYEE
PROXY__OWNER PROXY
PROXY_NAME PVIEW__<HASH>
OBJECT_TYPE TABLE
CREATE_DATE 2017-12-04

In addition, a simple interface for retrieving stored Proxy View associations is
providing, utilizing a stored function called proxy.GET. Listing 3.11|provides the definition
of the function’s behaviour. The function is primarily used by the rewriting module
taking care of exchanging all names of protected database tables in issued SQL queries
with their respective Proxy View.

Listing 3.11: Behaviour of proxy.GET
proxy .GET(originOwner, originName)

proxy = table.select ("PROXY VIEW',
originOwner
originName)
return proxy

3.2.3 Triggering Proxy View generation

Maintenance of the Proxy View system needs to be triggered every time the struc-
ture of the database changes. To this end, Oracle allows for the definition of triggers
AFTER CREATE ON DATABASE and BEFORE DROP ON DATABASE. Every time one
of these events occurs, the database calls a stored function associated to the event allowing
for custom code to be executed as a result of the change.

As a result, a stored function called ON_TABLE_CREATION is introduced. The
behaviour of this function is depicted in Listing|3.12. Firstly, a new unused and unique
name for the new Proxy View needs to be generated. In a next step, the new Proxy View
needs to be generated according to the method introduced in Listing |3.10. Subsequently,
the association between the protected database object and the newly generated Proxy View
is saved to the PROXY_VIEW table. Finally, row-level security is activated immediately
by calling the ENFORCE_ POLICIES function as introduced in Section 3.1.4. From this
point in time, all queries on the database table need to be rewritten to actually query
the respective Proxy View to ensure comprehensive protection of the table’s contents.

Listing 3.12: Behaviour of ON_TABLE_CREATION
ON_TABLE CREATION(objectOwner, objectName, objectType)

[...]

0 3 O Ut

11
12
13
14
15
16
17
18
19
20
21
22
23

3.3. Collaborative decision-making: the sovereign schema

proxyOwner = "PROXY'

proxyName = "PVIEW_" 4 hash ()

create_proxy_ view (proxyOwner,
proxyName ,
objectOwner ,
objectName ,

objectType)

table.insert ("PROXY VIEW",
proxyOwner ,
proxyName ,
objectOwner ,
objectName ,
objectType)

enforce_policies(proxyOwner,
proxyName ,

II*II)

To maintain a clean system state, outdated Proxy Views need to be removed properly.

To this end, another function called ON_TABLE_DROP is triggered every time a protected
table is being dropped from the system. The function comprises the following tasks:

1. determine the corresponding Proxy View by the name of the dropped object

2. drop the determined Proxy View

3. remove the association from the PROXY VIEW table

3.3 Collaborative decision-making: the sovereign schema

One central idea of the proposed dFGDAC prototype is the possibility to change the
system during runtime by means of collaborative decision-making. Users are in charge
of proposing and deciding on alterations of the system democratically. To this end, a
module called “the sovereign schema” is provided. In the following sections both data
model and a callable interface of the sovereign schema are presented.

3.3.1 Democratic processes modelled in a simple data structure

The basic data structures enabling the democratic administration of the prototype system

are preinstalled and hold information on both users and the change process of the system.

The three included database tables are CITIZEN, PROPOSAL and DECISION. Figure 3.3
depicts their definitions and associations among each other.

63

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

64

3 N
sovereign J
e N
proposal
p ~ PK proposal_id TEXT
citizen FK proposed_by_citizen_id NUMBER
command CLOB
PK citizen_id NUMBER proposal _date DATE
first_name TEXT enactment_date DATE
last_name TEXT b ’
sex TEXT
date_of_birth DATE
position TEXT ~
UK yser_nqme TEXT decision)
is_entitled_to_vote NUMBER
N Y,
PFK citizen_id NUMBER
PFK proposal_id TEXT
decision TEXT
decision_date DATE
\
\ Wy,

Figure 3.3: Data model of the SOVEREIGN schema

The users of the prototype system are referred to as “citizens”. There is a corresponding
table entry in the CITIZEN table for every user, including the name, a unique identification
and other personalized and application-specific static data. Users are allowed to propose
changes to the prototype system in the form of SQL statements to be executed in the
system’s database. To this end, users need to insert a corresponding record into the
PROPOSAL table, containing a proposal identification and the SQL statement desired
to be executed. In addition, administrative meta data is stored automatically by the
responsible insert function. This includes the user, that inserted the proposal, the date
of proposal and the date when, if at all, the proposal got enacted. If a proposal gets
enacted, the proposed SQL statement is executed in the system’s database. Users of
the application, i.e. citizens, are entitled to vote on any proposal made by any citizen.
Voting results are stored in the DECISION table, which contains references to the citizen
giving his vote, the affected proposal and the decision of the citizen. The decision can be
one of “in favor of” or “against”.

For the scope of this work it is assumed, that every user is capable of writing
syntactically correct and meaningful SQL statements. For future evolutions of the
prototype system it is conceived that proposed SQL statements are generated by some
high-level user interface.

Access to the three basic tables of the SOVEREIGN schema is not granted directly to
the users of the system. Instead, well-defined interfaces for all possible actions in the

3.3. Collaborative decision-making: the sovereign schema

context of democratic changes to the system are provided. Exposed actions and their
behaviour are described in more detail in the following section.

3.3.2 An interface for participating in enactment

The interface for executing democratic actions in the SOVEREIGN schema exposes three
crucial procedures. The design aims at simplicity, naturalness and practicability. In
Listing 3.13, the PL/SQL based interface definition is depicted.

First of all, the procedure ADD_PROPOSAL provides means for the caller to bring in
new proposals to change the system. It takes a mandatory textual PROPOSAL_ID and
the COMMAND written in SQL, that should be executed on enactment of the proposal.
In a preliminary step, the procedure dynamically checks whether execution is allowed
in the current application context. If not, execution is aborted immediately throwing
an exception indicating that permission is denied. Otherwise, a new record utilizing the
given parameters and the citizen identification retrieved from the application context is
inserted to the PROPOSAL table.

The VOTE procedure technically behaves in a similar way. It does the same dynamic
execution permission check upfront and, in case of successful execution, leads to a new
record being inserted to the DECISION table. The procedure can be used to hand in a
decision on a pending proposal. The PROPOSAL_ID parameter identifies the affected

[13

proposal, whereas the DECISION parameter carries one of the two allowed values: “in
favor of” or “against”.

Listing 3.13: Main procedures: ADD_PROPOSAL, VOTE and ENACT
— inserts the given @proposal_id including @Qcommand
— 1into the proposal table
procedure add_proposal(proposal id in varchar2, command in clob);

— 1inserts the given @decision on @proposal id
— into the decision table
procedure vote(proposal id in varchar2, decision in varchar2);

—— enacts given @proposal id if enactable
— or all enactable proposals if no @proposal id is given
procedure enact(proposal_id in varchar2);

Finally, the ENACT procedure is provided as the key component of the sovereign
schema. Its behaviour is depicted in Listing |3.14. The procedure takes the identification
of the proposal that is desired to be enacted. In a first step, similar to the two functions
mentioned earlier, a dynamic execution permission check is done by retrieving and
applying the application-specific restriction “USER__ENACT?” (starting from Line 3).
Subsequently, the current enactment criterion in place is dynamically retrieved utilizing
the application-specific restriction “PROPOSAL_ENACT?”, applied to the given proposal
identification (starting from Line 11). Finally, if all checks are passed successfully,

65

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

66

0O Ui Wi+

the command associated with the proposal is executed and the proposal is set to be
successfully enacted (starting from Line [21). Otherwise, an exception corresponding to
the type of the failed check is thrown to the caller. Other exceptions occurring during
the execution of any of the three procedures introduced are not handled internally but
rather get handed over uncaught to the caller’s responsibility. That is, also errors during
execution of the proposed SQL command are thrown to the calling user interface.

Listing 3.14: Behaviour of ENACT
ENACT(proposallD)

/* check if execution of procedure ENACT is allowed x/
executionCriterion = table.select("RESTRICTION',

"SOVEREIGN" ,

"ENACTMENT" |,

"USER_ENACT")
if executionAllowed(executionCriterion) = false

raise "PERMISSION DENIED"

/% check if proposal meets enactment criterion x/
enactmentCriterion = table.select ("RESTRICTION",
"SOVEREIGN" ,
"ENACTMENT" ,
"PROPOSAL_ENACT")
if enactmentAllowed(proposallD ,
enactmentCriterion) = false
raise "ENACIMENT CRITERION NOT MET"

/* execute COMMAND and set ENACIMENT DATE x/
proposal = table.select("PROPOSAL",
proposallD)
execute (proposal.command)
table.update("PROPOSAL",
proposallD ,
enactmentDate = currentTime ())

Initial access constraints

The VPD data model contains each four pre-installed permission and restrictions types,
governing authorizations on executing democratic actions. In addition to the standard
SQL operations SELECT, INSERT, UPDATE and DELETE new application-specific
actions are introduced in the STATEMENT _TYPE column. The list of application-specific
statement types comprises USER__ ADD_PROPOSAL, USER_ VOTE, USER__ ENACT
and PROPOSAL ENACT. Each of the democratic actions mentioned above starts
with a permission check, making use of the FILTER_CLAUSE of the corresponding
application-specific statement type.

3.3. Collaborative decision-making: the sovereign schema

Listing [3.15 shows the filter clause that is applied for checking execution permission
of all three democratic actions; the initial filter clause is the same for all three actions. It
contains a check, whether the user currently logged-in, identified by her @CITIZEN_ID,
has the vote entitlement property set to 1 in the corresponding static data record in the
CITIZEN table. Technically, there is no difference to traditional restrictions in the same
table. The result of the provided filter clause needs to contain a boolean expression.

Listing 3.15: Initial access constraints for execution of ADD_PROPOSAL, VOTE and
ENACT

1 = (select nvl(is_entitled to_vote, 0)
from dual
left join sovereign.citizen
on citizen_ id = Qcitizen_ id)

Listing |3.16| shows the initial enactment criterion. The implementation of the ENACT
procedure expects the filter clause to return a boolean expression indicating, whether
a given yet un-enacted proposal, identified by its PROPOSAL_ID, meets the enactment
criterion. Initially, the criterion is defined as follows: Enactment is permitted, if the
proposal was not yet enacted and the number of votes in favor of the proposal is equal to
the total number of citizens entitled to vote. In other words, proposals need 100 per cent
acceptance by all citizens entitled to vote in order to get enacted. In addition, to prevent
duplicate executions of proposed SQL queries, already enacted proposals are excluded
once and for all from the enactment process.

Listing 3.16: Initial enactment criterion

proposal_id in
(select proposal id

from sovereign.proposal p

where p.enactment_date is null

and (select count(x)
from sovereign.decision d
where d.proposal _id = p.proposal_id

and d.decision = ’in favor of’)

(select count(x)
from sovereign.citizen
where is_entitled to_vote =1))

Note that the initial filter clauses for the application-specific restrictions, as presented
above, can be subject to democratic change just like any other part of the application.
That is, each enactment criterion and the execution permissions on the procedures
providing access to democratic actions can in turn be changed by means of democratic
enactment during runtime of the prototype application. For example, it is conceivable
that the initial enactment criterion of 100 per cent acceptance is weakened soon after
a temporary setup phase of the application in order to facilitate democratic decision-
making.

67

3.

A PROTOTYPE DEFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

68

3.4 The parliament scenario: a prototype web-based user
interface

In order to provide a simple user interface to test the implemented prototype application,
a minimal web-based client is presented. The client is developed using the free server-side
interpreting script language PHP! and deployed to a local Apache web server?| running a
PHP 7 interpreter.

The user interface comprises an input section and a result section. The input section
contains a multi-line text input field, where SQL statements can be entered, that need
to be queried against the prototype application. Permitted statement types are the
standard DML types SELECT, INSERT, UPDATE, DELETE and CALL. The latter
one can be used to call stored functions and procedures to be executed in the form
“CALL myFunction()”. The primary intention is to make it possible to call the procedures
implementing democratic actions as introduced in the previous section. Other types
of statements are forbidden, such as the DDL (Data Definition Language) commands
CREATE, DROP and ALTER as well as Oracle PL/SQL’s anonymous blocks (BEGIN ...
END). These commands are only allowed to be issued utilizing the democratic enactment
system.

In addition, there is a dropdown field containing a selection of all available technical
database users. Prior to hitting the “execute” button, the database user needs to be
chosen, which should be utilized to establish the connection to the database. The scope
of this work excludes the implementation of a session-based login mechanism securing the
web-based user interface. Each of the database user entries corresponds to a record in
the CITIZEN table, which in turn is used to establish the association from the technical
database user to the access permissions the associated citizen is granted. Technically,
this is implemented using a database login trigger, which is capable of determining the
correct citizen based on the database user and setting the citizen identification in the
application context properly, making it available to the subsequently carried-out access
control enforcement mechanism.

In a next step, the user interface is responsible for the rewriting of the entered
database query in a way, that all database objects mentioned in the query are replaced by
their corresponding proxy views. Remember that this is necessary, as all the fine-grained
access constraints are enforced on top of the proxy views only, and the concrete objects
are fully restricted from being accessed. To this end, all associations from real objects to
proxy views are queried from the database. This needs to be done using an administrative
application user with permissions to query the PROXY_VIEW table. Subsequently, the
SQL query string is parsed for the occurrence of database object names and simply string-
replaced with the corresponding proxy view names. The integration or implementation of
a dedicated technical SQL parser and query rewriting engine is considered out of scope of

'PHP: Hypertext Preprocessor https://www.php.net/
2Apache HTTP Server Project https://httpd.apache.org/

https://www.php.net/
https://httpd.apache.org/

3.5. Summary

this work. Finally, the successfully rewritten SQL query is executed, subject to dynamic
enforcement of all fine-grained data access constraints defined for the citizen logged-in.

The result section contains a status bar and an optional result table. In every case, the
status bar is used to provide meaningful meta-information on the outcome of the query
attempt. Success messages are displayed in green, while error messages are displayed in
red. In case of exceptions, regardless of them being generated by the database core or the
parliament application itself, technical error messages and the error stack are displayed
in the status bar. If applicable to the statement type of the entered SQL, additional
information is provided, such as the number of returned rows by a SELECT statement,
or the number of affected rows by statements that successfully manipulated data. In case
of a SELECT statement, the tabular results of the SQL query are displayed beneath the
status bar.

Figure 3.4/ shows a screenshot of the web-based user interface. In the depicted
screenshot, a SELECT statement on the CITIZEN table has been executed successfully in
the database with the fine-grained access permissions of the database user “max”, which
corresponds to the citizen record with ID=“3”, “Max Power”. The test scenario of this
example defined the following column-level access constraint: “Citizens may view only
their own date of birth”. As a result, the SQL query, when executed with the privileges of
database user “max”, hides the values of the DATE_OF_ BIRTH column of all the other
citizen records.

3.5 Summary

This chapter presents a new prototype dFGDAC system making use of the Oracle VPD

query rewriting technology. The prototype aims at replicating the features of SecSQL.

Main components are the VPD schema, the sovereign schema and a web-based user
interface.

The VPD schema implements the functional requirements of a FGDAC system.

Authorization data is stored in a dedicated data structure. Along with a context

awareness module, means for defining and maintaining VPD policies are provided.

Technical limitations of VPD require the definition of proxy views, a workaround for
implementing the dynamism needed for covering the desired dFGDAC features.

The sovereign schema enables users of the system to propose and decide on alterations
of both database structure and access control in a democratic manner. A simple data
structure stores information on citizens and their decisions on proposals. The PL/SQL
based interface to the sovereign functionality comprises the functions ADD_PROPOSAL,
VOTE and ENACT.

A prototype web-based user interface written in PHP allows for issuing SQL requests

to the database. Supported actions are DML requests and calling stored procedures.

dFGDAC enforced query results are presented to the user immediately.

69

3. A PROTOTYPE DFGDAC SYSTEM UTILIZING ORACLE VIRTUAL PRIVATE DATABASE

() Dynamic Fine-Grained Data / X Gast

@ localhost:8888/parliament/# @,

Dynamic Fine-Grained Data Access Control:
Parliament Demo

select citizen_id, first_name, last_name, date_of_birth, position
from sovereign.citizen

execute as

Query executed successful as user max in 0.3375 second(s)

SELECT affected 3 row(s)

Query Results
CITIZEN_ID [FIRST_NAME | LAST_NAME | DATE_OF_BIRTH | POSITION
1 John Hancock citizen
2 Laura Diamond citizen
3 Max Power 16-APR-78 official

Figure 3.4: Screenshot of the prototype web-client

CHAPTER

Approaching standardized access
policy definition using XACML

So far, only proprietary technologies were discussed as enablers for implementing a
dFGDAC system. Neither SecSQL Server, nor the dFGDAC system utilizing Oracle VPD
proposed in Chapter 3| contain remarkable approaches of standardization. However, for
the intended application scenario of Open Data it is desirable to establish compatibility
and interoperability with similar systems. To this end, XACML is evaluated in terms of
possible integration with a dFGDAC system.

The following sections are organized as follows. In Section |4.1, an overview of high-
level XACML implementations is provided. Section [4.2 presents approaches for direct
integration of XACML policies with relational databases. Finally, all the approaches are
discussed with respect to their applicability in a dFGDAC scenario in Section 4.3.

4.1 High-level XACML implementations

The non-exhaustive list of languages, XACML implementations are available for, contains
Java and .NET. Research and concrete hands-on testing of different implementations and
APIs showed that only a small number of projects is still supported or under development.

The most promising looking solution, the Aziomatics Policy Server! is available for

both Java and .NET platforms. The product is distributed under a commercial license
only and not freely available for testing purposes, neither for a limited amount of time,
nor with a limited feature set. For this reason, detailed hands-on testing of this product
is not possible in the scope of this work.

"https://www.axiomatics.com

71

https://www.axiomatics.com

4.

APPROACHING STANDARDIZED ACCESS POLICY DEFINITION USING XACML

72

From the remaining running Open Source XACML API projects the ATET XACML
3.0 Implementation? was chosen for performing hands-on testing of a XACML imple-
mentation in a high level programming language. Other high-level implementations
mentioned in the literature are SunXACML and XEngine |24].

4.1.1 The AT&T XACML 3.0 implementation

The reference implementation provided by AT&T supports the latest XACML 3.0
standard. Crucial implemented components are the XACML Core and XACML Multiple
Decision Profile, which allows the PDP to process multiple decisions within one single
XACML request issued by the PEP. In addition, it is possible to define custom PIPs
which can be used by the PDP to retrieve missing attribute information necessary for
deriving decisions.

The steps for developing an example XACML application using the ATET XACML
3.0 Implementation are as follows. First of all, a new PDPEngine needs to be created. A
new instance can be retrieved using the PDPFEngineFactory, providing a file containing
properties necessary to initialize the PDP. The most important property is the file location
of the XACML policies to be enforced. In addition, PIP engines can be defined using the
engine type, one of CSV, LDAP or JDBC, and the access parameters, that is, file name of
the information point or database connection credentials. Having a PDPFEngine instance
created successfully is sufficient to start issuing requests. To this end, it is necessary to
gather all attributes describing subject, resource and action in maps and attach them
to a new StdRequest object. By calling the decide method of the PDP engine handing
over the request object, a decision is derived by the PDP and immediately returned
represented by a new Response object. From this object the decision can be extracted,
one of PERMIT, DENY, INDETERMINATE or NOT APPLICABLE.

In order to implement attribute-based FGDAC on relational database tables it is
necessary to derive a decision for every single cell of the result set. To this end, an
implementing XACML policy needs to define rules for accessing the single chunks of data
based on the requestors identity, name of the accessed column and contextual information,
e.g. values of other columns in the same row. XACML-enforced SQL query execution
makes it necessary to fully retrieve the unrestricted data from the database in a first
step and then request access control decisions from the PDP for each of the result cells.
The PEP then needs to filter or mask out all the cell values for which a DENY decision
was returned by the PDP. This leads to R times C XACML requests, with R being the
number of rows and C the number of columns returned by the SQL query, respectively.
Access control decision times increase with the size of the result set.

2https://github.com/att/XACML

https://github.com/att/XACML

4.2. Integrating XACML policies with relational databases

4 N\
Policy 1: readRadiologicalFindings

N [0\

T 2 .
arget Rule 1: denyUnexperiencedNurses

resource.rType

Target: subject.position = ,nurse”

,,rac.:liol.ogical AND subject.jobExperience < 5y
finding”
AND | Effect: deny l
actionlD _)
=d" s N
nrea Rule 2: permitRadiologyNurses
Rule) Target: subject.position = ,,nurse”
Combining AND subject.ward = ,radiology”

Algorithm:
permit- | Effect: permit |
Overrides

\ /U /

Figure 4.1: Example policy: hospital

4.2 Integrating XACML policies with relational databases

A second approach for obtaining standardization using XACML needs to be considered.
Instead of using an implementation of a XACML PDP in a high-level programming
language, access control policies described in XACML can be directly weaved into the
RDBMS. However, there are no suggestions on implementing database access control
enforcement given in the core specification of XACML. Thus, research has to devise
solutions for making standardized XML based access control policies available from within
RDBMS. Jahid et al. propose compilation of XACML policies into native database access
control lists [24]. In contrast, El-Aziz and Kannan introduce an algorithm for creating
and populating relational authorization tables reflecting the contents of a given XACML
policy file [14].

For the sake of describing both approaches in a practical way in the following sections,
an example XACML policy describing an imaginary hospital scenario is introduced in
Figure 4.1. Policy 1 targets read access requests for all resources of type “radiological
finding”. Rule 1 states that nurses with job experience of less than five years are denied
access to radiological findings. Additionally, Rule 2 expresses that nurses of the radiology
ward are permitted to access such findings. Assuming that Nurse Betty has been working
at the radiology ward for three years, she would be granted access to any radiological
finding due to the PermitOverrides combining algorithm defined for Policy 1, as Rule
2 returns Permit as a result. If the rule combining algorithm would be changed to
DenyOverrides, Nurse Betty would be restricted from access, as Rule 1 returns a Deny
decision.

Additionally, a simplified example of XACML code is depicted in Listing [4.1. The

73

4.

APPROACHING STANDARDIZED ACCESS POLICY DEFINITION USING XACML

74

OO U W

el e el el el el
© 00O U W~ OO

20

rule denyUnexperiencedNurses is described using the XML attributes Ruleld and Effect.
Moreover, sub-elements are used to describe the target clauses.

Listing 4.1: Example XACML code describing rule denyUnexperiencedNurses

<Rule Ruleld="denyUnexperiencedNurses" Effect="Deny">
<Target>
<AnyOf>
<AllOf>
<Match Matchld="string —equal ">
<AttributeValue DataType="string ">nurse</AttributeValue>
<AttributeDesignator Attributeld="subject.position"
DataType="string"
Category="access—subject" />
</Match>
<Match Matchld="integer —less —than">
<AttributeValue DataType="integer ">5</AttributeValue>
<AttributeDesignator Attributeld="subject.jobExperience"
DataType="integer"
Category="access—subject" />
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>

4.2.1 Compiling XACML policies into access control lists

Jahid et al. state that decision time is not satisfactory when implementing database
access control using standard XACML PDPs, such as SunXACML [24]. Therefore an
approach called MyABDAC is proposed, providing compilation of high-level XACML
policies into low-level database access control lists.

The basic architecture of MyABDAC is depicted in Figure 4.2 The Policy Compilation
Engine comprises the following modules. The Policy Parsing Module parses the contents
of a given XACML policy file and creates a tree representing the rules. Subsequently,
the User and Resource Extraction Module queries the underlying database for all the
values of attributes used in any of the previously parsed policies, e.g. the contents of a
table describing all the employees of a company, which are the users of the protected
application. The retrieved attribute values are attached directly to the rules they are
referred from. In a further step, the Conflict Discovery and Resolution Module checks for
the presence of possibly conflicting rule decisions and applies resolution strategies such
as correct ordering, merging and combination of rules. Finally, the ACL Building Module
is responsible for translating the tree established in the previous steps into common
GRANT and REVOKE statements. As a result, each database resource affected by the
access control policy is provided with a complete list of users that are allowed to access
it. For this purpose, common databases internally manage access control lists.

Considering the hospital example policy introduced in Section 4.2, database tables
containing the information on nurses and radiological findings could be defined as
described in Tables |4.1 and 4.2. The Personnel table contains data on all the users of

4.2. Integrating XACML policies with relational databases

XACML Policy
Policies || Compilation
Engine

Resource 1 Resource 2

Database
\\ /‘

Figure 4.2: Basic architecture of MyABDAC, adopted from [24]

Table 4.1: DB table Personnel

Name Position Ward Experience
Betty nurse radiology 3y

Steve nurse emergency 8y

Tom secretary office 10y

Table 4.2: DB table RadiologicalFindings

ID Physician Results
27 Frank
33 John

the hospital’s management software. The User and Resource Extraction Module queries
the table for all the information necessary to translate the abstract rules defined in the
policy to applicabilities by replacing abstract attribute variables with their concrete
values.

Listing 4.2: GRANT/REVOKE statements for table RadiologicalFindings

grant select on RadiologicalFindings
to Betty;

revoke select on RadiologicalFindings
from Steve;

revoke select on RadiologicalFindings
from Tom;

As a result, access control to the RadiologicalFindings table is achieved by genera-

75

4.

APPROACHING STANDARDIZED ACCESS POLICY DEFINITION USING XACML

76

Table 4.3: DB table Policy for hospital example

PolicyID RuleCombiningAlg
readRadiologicalFindings permitOverrides

Table 4.4: DB table Rule for hospital example

RuleID Effect RuleTargetID_FK PolicyID_FK
denyUnexperiencedNurses deny targetDenyUN readRadiologicalFindings
permitRadiologyNurses permit targetPermitRN readRadiologicalFindings

Table 4.5: DB table RuleTargetSubject for hospital example

AttributeID MatchOperator AttributeValue RuleTargetID_FK
subject.position equals nurse targetDenyUN
subject.jobExperience less-than 5 targetDenyUN
subject.position equals nurse targetPermitRN
subject.ward equals radiology targetPermitRN

tion and execution of the statements by the ACL Building Module, as depicted in Listing
4.2 As mentioned above, Nurse Betty is granted read access due to her employment in
the radiology ward. Nurse Steve is not granted access because he works in the emergency
ward, even though he would have sufficient job experience. Tom is not granted access
because he is not employed as a nurse.

As both policies and the underlying user and resource data may change over time,
recompilation of the ACLs has to be considered to maintain consistency. To address
performance issues, the system keeps administrative information in memory to react to
changes of the access control rules as economically as possible. That is, ACLs are only
changed for database objects that are actually affected by any change in the environment,
e.g. a change of any user’s static data or change of a specific access control policy.

A comparison shows that the proposed system outperforms a prototype implementa-
tion with the existing SunXACML framework, providing response 6 times faster during
runtime. In addition, it is stated that the solution is “reasonably faster” than XFEngine,
another technology providing functionalities of a XACML PDP.

4.2.2 Mapping XACML policies to relational tables

In [14], El-Aziz and Kannan argue that the structure of XACML is complex and main-
taining policies requires profound knowledge of the language constructs. Therefore an
approach is introduced, aiming at minimization of complexity by migrating existing
XACML policies to the relational paradigm.

The proposed algorithm parses a given XACML policy file top-down and creates
database tables corresponding to the contents of the file. If a policy set element is

4.2. Integrating XACML policies with relational databases

4 N\
Policy P .
. Rule
PolicyID
RuleCombiningAlg # RuleID
: Effect
> ’ Description
* PolicyID_FK
(N * RuleTargetID_FK
RuleTarget
G J
RuleTargetID p N
\ J RuleTargetResource
p ~ # AttributelD
RequestResource MatchOperator
AttributeValue
AttributeID * RuleTargetID_FK
AttributeValue .
* RequestID_FK “ <
G S

Figure 4.3: Example database structure as created by algorithm proposed in [14]

found for the first time, a PolicySet table is created and populated with the element’s
information. The same procedure is applied for policy and rule elements, likewise. Figure
4.3 shows a minimal example of the created database structure. Selection and renaming of
the original columns is done for the sake of comprehensibility. To address the hierarchical
structure of the file, foreign keys pointing from tables of lower levels to higher levels are
established. For example, the Rule table includes a PolicyID_ FK column storing the
ID of the policy it is contained in. In addition, target elements are mapped to one table
each per element they occur in (target elements may occur in policy sets, policies and
rules). Concrete target matching criteria are stored in tables reflecting their attribute
category. For instance, a RuleTargetResource table contains the values necessary for
matching the resource attribute of a rule target. That is, it defines all the resources a
specific rule is applicable to.

Consider the hospital example policy introduced in Section 4.2, Tables|4.3, 4.4 and 4.5
depict an excerpt of the result of applying the algorithm described above for mapping the
hospital policy to relational tables. Firstly, a Policy table is created and filled with a data
set representing the readRadiological Findings policy. Amongst others, the policy identifier
and the chosen rule combining algorithm are stored. Another table, Rule, is used to
represent both rules the policy contains. The rule-policy relation is established using the
PolicyID__FK column containing the policy ID readRadiologicalFindings. The targets of

7

4.

APPROACHING STANDARDIZED ACCESS POLICY DEFINITION USING XACML

78

the rules are referenced via their RuleTargetID’s, targetDenyUN and targetPermitRN,
respectively. Furthermore, both identifiers and effects of the rules are stored. Finally,
the RuleTargetSubject table is used for representing the concrete attribute-based
target matching information for the rules. Both rules contain two Boolean clauses
that are logically ANDed, e.g. subject.position equals nurse AND subject.jobExperience
less-than 5 to match the target of the denyUnexperiencedNurses rule. Note that the
MatchOperator column is not contained in the original system which is only capable
of doing simple equality comparisons. It is rather added in this paper to gain the
expressiveness necessary for implementing arithmetic comparisons, e.g. less-than or
greater-than. Moreover, the original system does not provide a solution for choosing the
method of logically connecting multiple clauses used within one target, that is, whether
conjunction or disjunction should be used.

In the next step, incoming access requests are stored to the database in a similar way.
Each subject, resource, environment and action attributes provided by the request context
are mapped to specific request attribute tables corresponding to their categorization. For
instance, attributes describing the resource requested are stored in the RequestResource
table.

Listing 4.3: Search for rules applicable to a specific requested resource

select Rule. Effect
from RequestResource,
RuleTargetResource ,
Rule
where RequestResource.RequestID_FK = 1
and RequestResource. AttributelD =
RuleTargetResource. AttributelD
and RequestResource. AttributeValue =
RuleTargetResource. AttributeValue
and RuleTargetResource.RuleTargetlD_FK =
Rule.RuleTargetID_FK;

Access control enforcement can be implemented by building SQL queries matching
policy targets to the concrete values provided in the access request and thereby deriving
applicable rules containing either a permit or deny decision. A minimal example SQL
query reflecting an access request is provided in Listing 4.3. The meaning of the query
reads as follows: “Find all rules applicable to the resource specified in request 1 and return
the value of the Effect column'. In other words, the rule’s target resource attribute must
match the resource attribute in the request with ID = 1. The issuer of the access control
query is responsible for correct interpretation of the query results.

4.2.3 Comparison of approaches

Access control enforcement In the simple policy mapping approach, access control
enforcement has to be implemented by the database developer making use of the stored,
fine-grained authorization data. In contrast, the policy compilation approach hands this
responsibility over to the existing, built-in access control system of the database.

4.3. Discussion: XACML as an enabler for standardization in dFGDAC

Primary objectives The mapping approach is limited to proposing an algorithm for
making the contents of a XACML policy available to the database. Additionally, a small
example for how access control enforcement can be handled is added. In turn, compilation
into native database ACL aims at reducing the effort of access control for the developer
of a business application as much as possible.

XACML Language Support Neither of the two papers explicitly provide any ac-
knowledgements in terms of unsupported XACML language constructs. However, the
mapping approach does not provide solutions for implementing target clauses containing
multiple Boolean expressions. Moreover, arithmetic comparisons are not supported. In
contrast, the compilation approach explicitly mentions arithmetic comparisons in an
example policy.

Evaluation El-Aziz and Kannan do not provide extensive information on evaluation
efforts of their mapping approach. Although an example application implemented using
Java and MS Access is mentioned, there are no further details given on performance
measures. Jahid et al. comprehensively describe a performance comparison with related
implementations, namely SunXACML and XEngine. Results claim that the proposed
compilation approach outperforms SunXACML by 600% and is “reasonably faster than
XEngine”.

Practicability In the mapping approach, little details are given on the intention of the
solution. One possible use could be as a XACML preprocessor for subsequent applications
not capable of self-employed parsing of raw XACML policies. The compilation approach
comes with detailed solution description as well as discussion on performance, security
issues and expressiveness of the proposed solution. As recompilation of ACLs has to be
triggered when the underlying attributes change, the model is better suited to applications
with less dynamic data in terms of change frequency.

Compatibility Both solutions involve an algorithm for parsing a given XACML policy
and building a desired representation. While in the policy mapping approach the parsing
algorithm directly advances to the end-product, the compilation approach uses a similar
algorithm for constructing an intermediate result. This intermediate representation
could also easily be constructed from the information stored in the tables created by the
mapping algorithm.

4.3 Discussion: XACML as an enabler for
standardization in dFGDAC

In order to discuss the applicability of the XACML standard in our prototype dFGDAC
system it is necessary to briefly recall the functional requirements. The most important
features are FGDAC, collaborative decision making and dynamic changes of both data

79

4.

APPROACHING STANDARDIZED ACCESS POLICY DEFINITION USING XACML

80

model, business data and access control data. It is conceivable that XACML is capable
of providing means for the maintenance of access control policies. This could possibly
cover the required aspects of FGDAC.

First let us consider the approach of utilizing a high-level XACML implementation
as discussed in Section 4.1, Unfortunately there is a show stopper for this approach. The
language paradigms of Java and SQL are not compatible in terms of the dynamism and
expressiveness necessary for covering the requirements. The FGDAC component in the
prototype solution is capable of providing the full expressiveness of the SQL language,
as it is possible to define access control policies even at the level of SQL subquerying.
In contrast, the inspected AT&T XACML Java implementation only provides minimal
support for dynamically retrieving additional authorization data necessary for imple-
menting ABAC. The number of attributes that is likely to be needed during request
evaluation needs to be known in advance, as the data sources for the PIP must be
defined at application design time. In addition, access control decisions are expensive, as
authorizations can only be queried per result cell of the issued SQL query. This leads
to R times C necessary XACML requests, with R being the number of rows and C the
number of columns in the SQL result set.

The policy compilation approach in the database integration section brings one major
disadvantage when applied to an Oracle Database system: the static access privilege
system of Oracle is not capable of defining authorization on row- or cell-level. For that
reason it is not possible to use the approach for FGDAC with the standard access control
system. Although it would be feasible to implement compilation to VPD policies to
solve this issue, it is not possible to enhance the situation due to the (again) lack of
compatibility and expressiveness of XACML policies compared to the possibilities of SQL
subquerying. Another factor worth mentioning is the effort of dynamically maintaining a
consistent state reflecting changes to authorization data. Even efficient re-compilation
approaches would likely be able to provide not more than eventual consistency.

It is conceivable that the policy mapping approach could be used as a kind of import
mechanism. In a scenario including the interchange of authorization data between two
similar dFGDAC systems it would be necessary to decide on a common data format.
Provided that a way can be found to map the expressive access constraints of our prototype
VPD application into XACML, a reverse mapping mechanism could be used to export
authorization data from a source system in order to transfer the data to a destination
system. However, further research is necessary to find a way to establish compatibility
and to overcome the differences in expressiveness. Summarizing the findings it can be
stated that neither of the evaluated approaches qualifies for a reasonable integration of
XACML as a policy language in our proposed dFGDAC prototype.

4.4 Summary

In this chapter, the XACML language is evaluated as an enabler of standardized ac-
cess control policy maintenance in the proposed dFGDAC system. To this end, three

4.4. Summary

approaches are presented and discussed.

The AT&T XACML 3.0 Java framework is an example of a high-level XACML
implementation. It supports static definition of attributes needed for evaluating access
control enforced SQL queries. Decisions need to be derived separately for each cell of a
SQL’s result set, which makes this solution expensive for big result sets.

Another approach is the compilation of high-level XACML policies into low-level
database access control lists. Dynamic changes of database structure, users and policies
require ongoing recompilation in order to maintain consistency. The approach is not
compatible with the coarse grained access control system of Oracle database.

Finally, mapping XACML policies to relational tables is discussed. XACML policies
files are parsed and transferred to a SQL-queryable hierarchical data structure. Accord-
ingly, incoming access requests are stored to relational tables which makes it possible to
derive access decisions by joining request data with policy data.

The chapter finishes with a comparison and discussion of the three approaches in
terms of access control enforcement, primary objectives, XACML language support,
evaluation, practicability, compatibility and quality as an enabler for standardization in
the proposed dFGDAC system.

81

CHAPTER

Discussion of dFGDAC solutions

So far we have introduced two prototype implementations of a dFGDAC system. This
chapter contains detailed discussions of the evaluated solutions. To establish comparability,
performance indicators are identified by considering both functional and non-functional
features necessary for implementing a dFGDAC system. These indicators are presented
in Section |5.1. The following Sections 5.2/ and 5.3/ contain a detailed by-feature discussion
of SecSQL and the Oracle dFGDAC prototype, respectively. Finally, findings of the
discussions are compared in a clear and compact tabular form in Section 5.4.

5.1 Performance indicators

To gain an overview on the discussed technologies, a descriptive comparative analysis
is performed. Thus, characteristics and features necessary for enabling dFGDAC in
the problem domain of SNBG are evaluated. The investigation covers both functional
and non-functional performance characteristics. The detailed attributes are further
categorized into sub-groups, which are listed in the following.

e Functional attributes

— Access control mechanism

x Granularity
* Support for ABAC

* Access control enforcement

— Self-Administrability

*x Support for dynamic data model changes

x Support for dynamic access control changes

83

d.

DiscussioN oF DFGDAC SOLUTIONS

84

e Non-functional attributes

— Performance

* Access control decision times

* Access control updating times

— Development enablers

x Development effort
*x Documentation of technology

* Licensing

— Miscellaneous attributes

x Security
x Interoperability
*x Extensibility

5.2 Discussion of Secure SQL Server

In this section, the results of the descriptive comparative analysis of the SecSQL system
are presented. Findings are grouped by the performance indicators identified previously.
Fach paragraph, additionally grouped into categories, contains the descriptions of one
single performance indicator.

5.2.1 Functional attributes
Access control mechanism

Granularity The access control mechanism provides full-featured FGDAC. As dynamic
SQL clauses are used to restrict the results of incoming queries, everything that can be
expressed using SQL is potentially expressible as an access constraint.

Restricting access is enabled both on different object levels and different statement
types. Regarding object levels, authorizations and restrictions can be defined each on
relation level, row level or cell level. It should be noted that although cell-level access
control is possible in general, only rows are accessible, for which every single requested
column is accessible, too. Regarding statement types, access control can be established
on SELECT, INSERT, UPDATE and DELETE statements. The MySQL-specific SHOW
command, used to present definitions and structure of database objects, is not restricted
at all. As a result, every user of the application is allowed to view the entire database
structure.

5.2. Discussion of Secure SQL Server

Support for ABAC ABAC requires access to all security-related information in the
context of a current request. Each of the three main categories of security-related
attributes, (1) subject attributes, (2) resource attributes and (3) environment attributes,
are accessible during access control enforcement.

Subject attributes can be identified and additionally retrieved from the backend
database using the requestor identification stored in the context of any request. Resource
attributes belong to the requested database objects and can easily be attached to the
restriction clause. Environment attributes can be retrieved from the system context,
examples are time and location the incoming request originated from.

Access control enforcement Enforcement of the access control rules is executed
using the approach of query rewriting. The rewriting algorithm is implemented in .NET
using a component specialized on rewriting of MySQL queries. There is no detailed
technical information on how the algorithm works internally.

To enforce row-level access control, the approach of cascading projections, as already
discussed in detail in Section 2.3.2, is applied. Column-level access control, as mentioned
above, is carried out in a strict manner: only rows will be exposed to the requestor, where
all desired columns are accessible. The access rules are retrieved from the ELA storage,
which comprises tables for Permissions and Restrictions, the latter which comprises a
number of restricting SQL-WHERE clauses.

Self-Administrability

Support for dynamic data model changes The system perfectly implements the

requirement of self-administrability by its approach of collaborative decision-making.

Users of the system are generally allowed to change the structure of the system, with the
following restriction: the decision for a change needs to be reached by collaboration of a
defined group of users of the system. In addition, the conditions for a change decision
must be met.

Execution of a request for structural changes is carried out by the virtual function
SX.ENACT. The function first retrieves the condition definitions and checks if any
constraints are violated. If this is not the case, the proposed changes are applied and
taken into effect immediately. SX.ENACT allows arbitrary, SQL-expressible changes to
the system. It does not take any effort in preventing changes of malicious intent.

Support for dynamic access control changes Similar to the support for data
model changes, access control can be adapted dynamically to new requirements during
runtime. Again, the approach of collaborative decision-making is used to determine
changes to the access control system.

The internal representation of the system itself is the only fixed, hardcoded component
in SecSQL. The tables Permissions and Restrictions are used to store positive and negative
authorizations, respectively. The latter are described by a potentially unlimited number

85

d.

DiscussioN oF DFGDAC SOLUTIONS

86

of WHERE clauses, defined in SQL language. By changing the contents of those two
tables, the access control enforcement mechanism immediately applies new policies.

5.2.2 Non-functional attributes
Performance

Access control decision times Neither of the known papers describing SecSQL
contains technical evaluation regarding latency in the query process caused by access
control enforcement.

Access control updating times Neither of the known papers describing SecSQL
contains technical evaluation regarding updates of access control rules. As it is sufficient
to modify or add few database rows to change the behaviour of access control enforcement,
it can be presumed that the delay is negligibly short.

Development enablers

Development effort Information on the concrete development effort of SecSQL could
not be found in the system’s documentation. As well-established technologies are used,
development and evolution is presumably straight-forward. Especially the wide variety
of available .NET-components (e.g. the used query rewriting engine) enables developers
to work at a highly efficient level.

Documentation of technology Both the .NET framework and the MySQL database
comprise extensive online and offline documentation, as well as official product support. In
addition, the broad usage of the technologies lead to the emergence of large communities
enabling developers to get fast answers on concrete problem statements, including large
numbers of tutorials, books and discussion boards.

Licensing The basic .NET framework is free of charge. Costs may arise if additional
commercial components need to be integrated. The most common development environ-
ment, Visual Studio, needs to be purchased using a commercial license. However, there
exist numerous alternatives free of charge.

MySQL is available using two different licensing schemes. Commercial products not
willing to publish its source code need to purchase a commercial license. Open source
products using MySQL can use the database for free.

Miscellaneous attributes

Security One of the most important security aspects in the context of SNBG is fair
non-repudiable communication. That is, message transmission needs to be performed
ensuring full integrity including the identity of the requestor. To this end, messages

5.3. Discussion of the Oracle dFGDAC prototype

contain Base64-encoded digital signatures of the desired access request. Further efforts
on security are subject to future research.

Interoperability Although the core of SecSQL is written in a proprietary technology,
the system comes with good characteristics regarding interoperability. The usage of
dynamic binding enables operations with changing components. As SQL was chosen
as language for requests, underlying data structures can be exchanged easily. SQL is a
widely used standardized query language; every data storage exposing an SQL-queryable
interface can potentially be used for retrieving both business data and access rules.

Extensibility The .NET solution is built upon a modular structure. Architectural
components (e.g. the query rewriting engine, the crypto module) are determined and
bound dynamically. Thus, preparations were undertaken to simplify extension of the
system or replacement of existing modules.

5.3 Discussion of the Oracle dFGDAC prototype

In this section, the results of the descriptive comparative analysis of the proposed Oracle
dFGDAC prototype are presented. Findings are grouped by the performance indicators
identified previously. Each paragraph, additionally grouped into categories, contains the
descriptions of one single performance indicator.

5.3.1 Functional attributes

Access control mechanism

Granularity The implemented dFGDAC prototype provides full support for FGDAC.

Utilizing the VPD feature of Oracle Database leads to inheritance of all capabilities of
the access control mechanism regarding granularity. By using the proxy view concept
some drawbacks of the VPD engine can be wiped out to gain full expressiveness in access
constraint definition utilizing SQL statements.

All access constraints are defined either on row level or on column level. Definitions
of both levels fit into one single data structure by using either the asterisk symbol or the
concrete column name for mapping access constraints to entire rows or single columns,
respectively. Technically, row level access control removes rows as a whole from the result
set. In contrast, column level access control only masks restricted column values with
NULL values. It is possible to obtain result sets solely consisting of NULL values, if
all selected columns are masked but there is no row level constraint in place. Column
level access control provides means to be extended to cell level access control, as access
constraint definitions can refer to data of the same record easily.

Access constraints are not applied recursively within the step of access control
enforcement, leading to the advantage, that data already restricted by other rules can
still be used inside other access rules. In other words, definers of restrictions can always

87

d.

DiscussioN oF DFGDAC SOLUTIONS

88

rely on the fact, that all necessary data is available at any time of access constraint
evaluation.

The four default SQL statement types SELECT, INSERT, UPDATE and DELETE
can be equipped with separate access constraints. SELECT constraints work in the
background and quietly lead to automatically restricted result sets. Violated INSERT
constraints lead to a technical exception thrown internally by the VPD engine and directly
handed back to the user interface. The exception uses the internal Oracle error code
“ORA-28115: policy with check option violation”. UPDATE and DELETE constraints
behave similar to SELECT constraints. Attempts to updating or deleting restricted data
quietly fails and leads to the data simply not being modified.

Support for ABAC By using SQL for definition of access constraints, the full ex-
pressiveness of the language is made available to the access control mechanism. For
that reason it is easy to implement ABAC to its full extent. The three main attribute
categories of ABAC, namely subject attributes, resource attributes and environment
attributes, are supported as described in the following.

Subject attributes always relate to the user trying to access information. With the
citizen identification being stored in the application context, all subject information
necessary for evaluating access constraints can be additionally queried from the database.
Resource attributes are fully accessible, as all resources are stored in the application
database in SQL-queryable relational tables. By default, a small number of environment
attributes is provided to the access control mechanism. These are determined at the time
a user logs in to the application database and stored in the application context by the
prototype’s context awareness module. The predefined environment attributes include
the name of the client’s host machine, the IP address the request originiated from, the
operating system user of the client and the time the client has logged in.

Access control enforcement FEnforcement of access control is handled by a combi-
nation of the internal Oracle VPD engine and a rudimentary query rewriting module
located in the prototype application’s user interface.

VPD also makes use of the query rewriting method to provide access control enforce-
ment. It is activated automatically each time any query is issued to the database, there is
no responsibility for the application developer to make sure enforcement works. However,
the process of query rewriting is entirely hidden from the database user issuing requests.
Besides that, there is no official documentation on how the VPD algorithm internally
works in detail. SQL queries get dynamically and implicitly equipped with additional
conditions filtering the requested database tables for permitted data only. In case of row
level restrictions, the rewritten query is most probably equipped with an extra WHERE
clause containing the defined filter clauses. In case of column level restrictions it can be
assumed, that the algorithm follows an approach similar to the cascading projections
approach introduced in the SecSQL section above.

5.3. Discussion of the Oracle dFGDAC prototype

The introduced concept of proxy views involves the necessity for some preparatory
processing steps on issued SQL queries. That is, all references to database objects need
to be replaced by references to their corresponding proxy views in order to enable correct
access constraint evaluation by the VPD engine. This steps need to be undertaken before
the query reaches the database, that is, it is executed within the prototype application’s
frontend module.

Self-Administrability

Dynamic changes of structures within the application database are subject to the system
of collaborative decision-making. Changes to both contents and structure need to be
agreed on by a defined group of users of the application, all of which is possible during
runtime of the prototype application.

The sovereign schema introduced in Section 3.3| provides interfaces for proposing
database changes in the form of SQL statements, voting on the proposal and finally
“enacting” them by executing the proposed statements in the database. The crucial
functionality of this mechanism is provided by the ENACT procedure. It does both checks
on execution permission (for the user requesting execution) and enactment permission
(whether the enactment criterion is met). With the ENACT procedure it is possible to
execute arbitrary types of SQL statements, including all types of statements defined
in the Data Definition Language, e.g. CREATE, DROP and ALTER. In addition, it
provides means to prevent proposed changes being applied repeatedly.

Support for dynamic access control changes

Similar to changes of the database structure, changes of data access constraints are
possible only utilizing the implemented feature of collaborative decision-making.

The prototype application continuously listens to data changes in the PERMISSION
and RESTRICTION tables and immediately reacts by recompiling and re-establishing
VPD access policies in order to comply with the authorization data maintained by the
users of the system. Furthermore there are triggers reacting on changes to the data
structures as well, making sure that newly created tables are subject to protection
instantly after they emerged in the system. The components ENFORCE_ POLICIES and
CLEANUP_POLICIES, as introduced in Section [3.1.4) take care of maintaining a proper
system state by i.e. dropping unnecessary security policies or outdated proxy views.

5.3.2 Non-functional attributes
Performance

Access control decision times Access control is enforced automatically by Oracle’s
VPD feature on query execution time. Poor overall query performance can be caused by
poor access control decision times. The latter depend on several parameters.

89

d.

DiscussioN oF DFGDAC SOLUTIONS

90

First of all, number and complexity of restrictions applicable to an issued request needs
to be considered. Computation of concrete WHERE clauses takes linear time with respect
to the number of applicable restrictions. In addition, physical and logical organization
of the queried table is relevant for access control performance. Table columns used in
access control restrictions without any indexation or comparable tuning mechanism are
causing less efficient SQL queries after the rewriting phase of VPD. Finally, as it is
the case for non-protected systems too, the amount of data within a queried table is of
crucial relevance for query performance, which needs to be considered along with table
organization, type and frequency of data access.

Access control updating times The update process of access constraints is enforced
each time the content of the PERMISSION or RESTRICTION tables is changed. Temporal
delay is divided into two actions undertaken by the system. First, it takes a (most
probably) insignificant amount of time until the trigger listening on changes to the
content of the two tables fires. Second, the trigger needs to create a new job in the
database’s job queue responsible for cleaning up existing, possibly outdated access policies
and enforcing new access policies. It is necessary to run these tasks in a separate job
because it is not possible to execute DDL code directly from within a trigger’s source
code. The latter is necessary for cleaning up unused policies.

There is a significant time delay from adding a job to Oracle Databases job queue to
its successful execution. The delay depends both on (1) configuration of the job system
regarding the polling frequency to check for new jobs and (2) the number of jobs issued
at the same time, i.e. a possible blocking time due to competing jobs.

Development enablers

Development effort Development is divided into two different technologies. Firstly,
the prototype web-based user interface uses a PHP script consisting of approximately
500 lines of code, most of it necessary for design considerations. It comes with basic
frontend functionality only, which makes it easy to maintain or even to be substituted
as a whole by a new component using a different technology, provided that it allows for
connecting to and querying Oracle Databases.

Secondly, the more complex application backend is provided using Oracle Database,
including its feature VPD for supporting FGDAC. The core solution comprises approxi-
mately 1500 lines of code. Although this is also a manageable amount of source code, it
comes with considerably more complexity compared to the web-based user interface. For
instance, overcoming the technical drawbacks of VPD policies with respect to the usage
in the domain of dynamic access control, as described in Section [3.2.1, took days of time,
effort and endurance. On the other hand, rapid development of dynamic row-level access
control is encouraged by the VPD system.

Documentation of technology Oracle provides extensive online documentation on
all of its products, including Oracle Database in general [31] and its inherent feature Oracle

5.3. Discussion of the Oracle dFGDAC prototype

VPD [39]. In addition, there is an active online community consisting of approximately
500.000 active users [32]. Among others, the community provides technical articles, best-
practices and discussions on all Oracle related issues. Finally, Oracle provides technical
support on a contractual basis, including personal assistance by Oracle professionals as
well as update and patch supply for software products [33].

Similar to Oracle, PHP provides extensive technical online documentation [36],
covering, among others, guidance on installation, the PHP language itself and best
practices. Unlike Oracle community, the PHP community is spread all over the WWW
including uncountable amounts of technical discussion forums.

Licensing Oracle database is available in two different editions, Standard and En-
terprise [30]. Standard edition covers only a reduced set of features compared to the
Enterprise edition. As the feature Oracle VPD is only available in Enterprise edition,
purchasing the latter is necessary for commercial use of our prototype application. Prices
depend on the type of licensing (per user or per processor) and the edition. Enterprise
edition is usually approximately three times as expensive as Standard edition. How-
ever, Oracle provides pre-installed VirtualBox virtual machine images including Oracle
Database Enterprise edition for research and testing purposes, free-of-charge [34].

PHP 7, used for the web-based user interface, is distributed under an Open Source
license and may be used free-of-charge for both commercial and non-commercial use [37].

Miscellaneous attributes

Security Technical security issues of the proposed prototype solution are not subject
to the scope of this work. Future efforts need to address communication between the
web-based frontend module and the database application backend.

Interoperability The proposed application backend heavily relies on proprietary tech-
nology. There is no chance of adding components not developed using technology provided
by Oracle. The only exception is the web-based user interface, which could be replaced
by any component written in any UI technology capable of issuing SQL queries to a
Oracle Database.

Extensibility Provided that development sticks to the proprietary technology of Oracle,
the proposed solution is highly extensible. The imperative programming language PL/SQL
is Turing complete. In addition, PL/SQL allows for the integration of Java components,
which potentially enables the system to make use of this high level programming language
and all of its power.

91

5. DiscussioN oOF DEFGDAC SOLUTIONS

5.4 Comparison of the discussed technologies

In the previous sections the performance indicators, introduced at the beginning of this
chapter, were summarized extensively and in great detail with respect to the technologies
under comparison. In the following, the results are displayed in a compact and clear form.
Tables [5.1] and [5.2| depict an overview of all functional and non-functional attributes of
the considered technologies, respectively.

92

€6

Table 5.1: Comparison of functional attributes

’ Attribute

SecSQL

\ Oracle dFGDAC prototype

AC granularity

full FGDAC on all SQL statement types; ex-
pressiveness of SQL; entire row restricted if at
least one column is restricted

full FGDAC on all SQL statement types; ex-
pressiveness of SQL; AC features inherited
from VPD, drawbacks wiped out using proxy
views; no custom column masking possible

AC ABAC Support

subject attributes via requestor ID; resource
attributes by referencing queried DB objects;
environment attributes available from the sys-
tem context (e.g. time and location of the
request)

subject attributes via citizen ID from the appli-
cation context; resource attributes by referenc-
ing queried DB objects; environment attributes
inherited from default Oracle session informa-
tion (e.g. OS user of the client, IP address of
the request)

AC enforcement

query rewriting algorithm using .NET compo-
nent; approach of cascading projections; rules
are retrieved from ELA storage containing per-
missions and restrictions

combination of rudimentary query rewriting
and VPD; no official documentation on the
internal working method of VPD; references to
DB objects are replaced by proxy views; access
to new data structures is restricted by default

Dynamic model changes

structure changes possible via collaborative
decision making; function SX.ENACT allows
changes that are expressible using SQL; mali-
cious changes possible

structure changes possible via collaborative
decision making; proposals can include every-
thing that is expressible in SQL; votings and
enactment using the sovereign schema

Dynamic AC changes

access constraint changes possible via collabo-
rative decision making; positive and negative
authorization described using SQL WHERE
clauses

access constraint changes possible via collab-
orative decision making; data changes to the
PERMISSION and RESTRICTION cause re-
compilation of VPD policies

Sor80[0oUTD9} PIsSNISIp oY} jo uostredwio)) ‘G

¥6

Table 5.2: Comparison of non-functional attributes

Attribute

[

SecSQL

Oracle dFGDAC prototype

Performance: AC decision
times

detailed information missing

decision times depend on number and complex-
ity of restrictions (linear effort), organization
of queried tables and amount of data stored

Performance: AC updat-
ing times

detailed information missing; presumably short
delays

temporal delay depending on trigger reaction
time and configuration of utilized internal job
system

Development effort

detailed information missing; presumably no
overflowing efforts, as well-established tech-
nologies are used

simple PHP script (approx. 500 LOCs), more
complex Oracle backend (approx. 1500 LOCs);
tricky technical drawbacks of Oracle VPD

Documentation

extensive documentation for both .NET and
MySQL database; large, active online commu-
nities; official product support

extensive documentation for both PHP and
Oracle Database; active online communities
providing discussions an best practices; official
product support

Licensing

.NET is free of charge, commercial components
available; free use of MySQL for OpenSource
products, chargeable otherwise

PHP 7 under OpenSource license; Oracle En-
terprise edition including VPD feature is ex-
pensive, prices depend on type of licensing (per
user or per processor); free pre-installed VMs
available for testing purposes

Security

efforts on fair non-repudiable communication
via Base64-encoded signature; open questions
for future research

out of scope of this work; open questions for
future research

Interoperability

dynamic binding is used, operations with
changing components possible; data backend
can be provided by any technology offering an
SQL interface

proprietary technology provided by Oracle, lit-
tle chance for interaction with components of
other technology; exception: frontend mod-
ule can be written in any language with SQL
support

Extensibility

prerequisites for extensions created by using
modular .NET structure and dynamic binding

highly extensible via PL/SQL; integration of
Java components possible

S

SNOILNTOS DVdHAA 40 NOISSNODSI(J

5.5. Summary

5.5 Summary

This chapter summarizes the features of SecSQL and the proposed Oracle VPD prototype.
To establish comparability, performance indicators are identified. Functional performance
indicators can be grouped into attributes describing the access control mechanism and
the support of self-administrability. Non-functional performance indicators comprise
performance, development enablers and miscellaneous other attributes. The following
sections discuss the technologies under comparison with regard to the performance
indicators. Finally, the results of the discussion are compared in tabular form, again
grouped into functional and non-functional performance indicators.

95

CHAPTER

Conclusion and Future Work

In this thesis several aspects of access control are discussed. While the first chapters
introduce concepts and evolution of access control, the majority of the contents focuses on
FGDAC. To this end, two dFGDAC systems are discussed and compared. Additionally,
the possibility for approaching standardization using XACML is investigated.

The remainder of this chapter is organized as follows. In Section 6.1, general observa-
tions along with the topic of dFGDAC are described. Section [6.2| discusses the findings
of this thesis. Finally, an outlook on future research is presented in Section 6.3/

6.1 General observations

Evolving database technology has enabled applications to store and process practically
uncountable amounts of person-related data [5]. One way of storing this data is to use
RDBMS, such as Oracle Database. The underlying relational data model allows for
a well-structured organization of the information [35]. Depending on the application
scenario, smaller or bigger chunks of the overall stored data are sensitive and therefore
need to be protected from unauthorized access [5].

Classical relational databases, such as Oracle Database, allow only for a coarse-grained
definition of data access control. The most detailed level in this form of access control
is the relation/table level. In contrast, FGDAC caters for more detailed authorization
constraints. Row-level, column-level and cell-level access control are used to clearly
separate allowed from prohibited access to a very detailed extent. Earlier approaches
relied on defining rules solely based on the identity of the person or process requesting
access. In the 2000s, ABAC emerged as a mechanism for achieving less maintenance-
intensive access control systems [23]. ABAC systems prefer the utilization of contextual
data rather than identifying data for deriving access decisions.

97

6.

CONCLUSION AND FUTURE WORK

98

The concept of dAFGDAC comprises the features of both FGDAC and ABAC. In
addition, the important aspect of dynamism is added. Constraints of the access control
system are not known in advance and can change over the entire life cycle of a dFGDAC
application. Even changes to the underlying data structure are not limited to application
design time any more. This is the case in the research field of SNBG [35]. The goal
is to create structured, machine-readable law under aspects of collaborative decision
making. To be concrete, an application scenario is introduced, that allows citizens of a
fictive country to collaboratively propose and enact changes to an Open Data system in
form of SQL statements. Both structural changes and modifications of the access control
mechanism are possible via democratic voting.

6.2 Discussion of findings

SecSQL is a prototype implementation of an SNBG system introduced in by Paulin [35].
It covers full support for FGDAC and ABAC. Enforcement of access control is done by
a .NET component using the approach of cascading projections. In this step, rules are
dynamically retrieved from a persistent rule storage. Dynamic changes to both data
model and access constraints are possible using collaborative decision making. Change
requests can include anything that is expressible using SQL. The prototype contains
miscellaneous additional non-functional features in the areas of security, interoperability
and extensibility.

In this work, an Oracle dFGDAC prototype is introduced trying to cover the same
feature set, defined by the requirements of SNBG, as SecSQL provides. Most of the
functionality is implemented in Oracle PL/SQL except for a small client frontend written
in PHP. It was possible to reach full support of FGDAC and ABAC utilizing the
VPD feature of Oracle Database. To overcome some drawbacks of VPD limiting the
expressiveness of possible access constraints, the concept of Proxy Views was introduced.
Proxy Views enable the system to evaluate access requests correctly. Dynamic changes
to both data structure and access constraints are possible using a system of collaborative
decision making. Users of the application can issue change requests in the provided
web-based frontend and subsequently vote on these requests. If a request has reached
the necessary approvals, the contained change in form of a SQL statement is executed.
An (uncounted) small delay of changing access constraints needs to be accepted due to
the complex system of polling database jobs and triggers.

Parts of the efforts on the work were spent to reach the goal of adding standardization
aspects to the prototype system. To this end, the integration of XACML, an XML
based standard for definition and exchange of access control policies, was targeted. Two
approaches were evaluated, and both were considered not applicable for use in the
Oracle dFGDAC prototype. Utilizing a high-level XACML implementation in Java
fails due to the lack of compatibility between the language paradigms of XACML and
SQL. Although technical compatibility between Java and Oracle Database could be
reached, the expressiveness of access constraints would suffer from the fact that a direct

6.3. Future work

mapping between the concepts of XACML rules and SQL subqueries is not possible in
any conceivable case. The same problem applies to the second approach containing the
integration of XACML rules directly to the database system.

The main research question this work aims to answer is: Is it possible to build a
dFGDAC system in the application scenario of SNBG utilizing Oracle VPD? Basically
the answer is yes, including all the strengths and weaknesses discussed in the scope of
this work. A subordinate question is: Is it possible to add aspects of standardization by
integrating XACML as language for definition of fine-grained access constraints? This
question can be answered with no - the paradigms of SQL-based FGDAC and XACML
ABAC policy definition are hard to integrate.

6.3 Future work

The proposed Oracle dFGDAC prototype provides a feature set similar to the compared
SecSQL system. However, both prototypes use completely different technologies to
implement the desired system. To this end, it is questionable how the outcome of this
work can be used to gain synergy by combining strengths of both approaches. It is
subject to future research to find possible compatibilities to add value to the research
field of SNBG.

Focusing on the proposed Oracle dFGDAC prototype, there is a number of future
work that needs to be done to further improve the system. The most crucial improvement
is the integration of a dedicated query rewriting engine in the interface of the frontend
and backend components. The current approach just aims at supporting standard cases
and contains known issues that lead to a possibly high rate of errors.

Furthermore, enhancements of the rudimentary web-based frontend need to be
implemented. The current user interface only provides the possibility to directly enter
and send SQL commands to the dFGDAC system. Future versions could implement
some sort of query builder in order to make a step towards better usability for laypersons
as intended users of the application.

Focusing on security issues, two more enhancements are still left to do. The current
implementation does not contain any secured authentication step at all. For testing
purposes only a dropdown field for selecting the desired database connection (including
credentials) is provided. In a future version, a session-based login mechanism securing
the web-based user interface should be introduced. Besides that, considerations regarding
a secure communication between the frontend module and the database application
backend need to be undertaken.

99

Bibliography

Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry Kiernan, Scott Logan, and
Walid Rjaibi. “Extending Relational Database Systems to Automatically Enforce
Privacy Policies”. In: Proceedings of the 21st International Conference on Data
Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan. Ed. by Karl Aberer, Michael
J. Franklin, and Shojiro Nishio. IEEE Computer Society, 2005, pp. 1013-1022. 1SBN:
0-7695-2285-8. DOI1: [10.1109/ICDE.2005.64. URL: http://dx.doi.org/10.
1109/ICDE.2005. 64l

Mohammad A. Al-Kahtani and Ravi S. Sandhu. “A Model for Attribute-Based User-
Role Assignment”. In: 18th Annual Computer Security Applications Conference
(ACSAC 2002), 9-13 December 2002, Las Vegas, NV, USA. IEEE Computer Society,
2002, pp. 353-362. 1SBN: 0-7695-1828-1. bo1: [10.1109/CSAC.2002.1176307.
URL: http://dx.doi.org/10.1109/CSAC.2002.1176307.

Vijay Alturi and David F. Ferraiolo. “Role-Based Access Control”. In: Encyclopedia
of Cryptography and Security, 2nd Ed. Ed. by Henk C. A. van Tilborg and Sushil
Jajodia. Springer, 2011, pp. 1053-1055. 1SBN: 978-1-4419-5905-8. DOI1:|[10.1007/
978-1-4419-5906-5_829. URL: http://dx.doi.org/10.1007/978-1~+
4419-5906-5_829.

Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. “GEO-
RBAC: a spatially aware RBAC”. In: SACMAT 2005, 10th ACM Symposium
on Access Control Models and Technologies, Stockholm, Sweden, June 1-3, 2005,
Proceedings. Ed. by Elena Ferrari and Gail-Joon Ahn. ACM, 2005, pp. 29-37. ISBN:
1-59593-045-0. DO1: 10.1145/1063979.1063985. URL: http://doi.acm.
org/10.1145/1063979.1063985.

Ji-Won Byun and Ninghui Li. “Purpose based access control for privacy protection
in relational database systems”. In: VLDB J. 17.4 (2008), pp. 603-619. DOI: 10 .
1007/s00778-006-0023-0. URL: http://dx.doi.org/10.1007/s00778~
006-0023-0.

Surajit Chaudhuri, Tanmoy Dutta, and S. Sudarshan. “Fine Grained Authorization
Through Predicated Grants”. In: Proceedings of the 23rd International Conference
on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April
15-20, 2007. Ed. by Rada Chirkova, Asuman Dogac, M. Tamer Ozsu, and Timos K.

101

http://dx.doi.org/10.1109/ICDE.2005.64
http://dx.doi.org/10.1109/ICDE.2005.64
http://dx.doi.org/10.1109/ICDE.2005.64
http://dx.doi.org/10.1109/CSAC.2002.1176307
http://dx.doi.org/10.1109/CSAC.2002.1176307
http://dx.doi.org/10.1007/978-1-4419-5906-5_829
http://dx.doi.org/10.1007/978-1-4419-5906-5_829
http://dx.doi.org/10.1007/978-1-4419-5906-5_829
http://dx.doi.org/10.1007/978-1-4419-5906-5_829
http://dx.doi.org/10.1145/1063979.1063985
http://doi.acm.org/10.1145/1063979.1063985
http://doi.acm.org/10.1145/1063979.1063985
http://dx.doi.org/10.1007/s00778-006-0023-0
http://dx.doi.org/10.1007/s00778-006-0023-0
http://dx.doi.org/10.1007/s00778-006-0023-0
http://dx.doi.org/10.1007/s00778-006-0023-0

[10]

102

Sellis. IEEE Computer Society, 2007, pp. 1174-1183. 1SBN: 1-4244-0802-4. DOI:
10.1109/ICDE.2007.368976L URL: http://dx.doi.org/10.1109/ICDE.
2007.368976.

Surajit Chaudhuri, Raghav Kaushik, and Ravishankar Ramamurthy. “Database
Access Control and Privacy: Is there a common ground?” In: CIDR 2011, Fifth
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 9-12, 2011, Online Proceedings. www.cidrdb.org, 2011, pp. 96-103. URL:
http://www.cidrdb.orqg/cidr2011/Papers/CIDR11 Paperll.pdf.

Frédéric Cuppens and Nora Cuppens-Boulahia. “Modeling contextual security
policies”. In: Int. J. Inf. Sec. 7.4 (2008), pp. 285-305. DOI: ' 10.1007 /510207~
007-0051-9. URL: http://dx.doi.org/10.1007/s10207-007-0051-9.

Frédéric Cuppens and Nora Cuppens-Boulahia. “Multilevel Security Policies”. In:
Encyclopedia of Cryptography and Security, 2nd Fd. Ed. by Henk C. A. van Tilborg
and Sushil Jajodia. Springer, 2011, pp. 811-812. 1SBN: 978-1-4419-5905-8. DOI:
10.1007/978-1-4419-5906—-5_824. URL: http://dx.doi.org/10.
1007/978-1-4419-5906-5_824.

Oracle Developer Community Forum Discussion. Database Security General -
Dynamic VPD policies - works for row-level security, but not for column masking?
last visited on 2017-11-24. URL: https://community.oracle.com/thread/
3995566.

Oracle Developer Community Forum Discussion. Database Security General -
VPD - get rid of circular references. last visited on 2017-11-24. URL: https !
//community.oracle.com/thread/3994346.

Oracle Developer Community Forum Discussion. Database Security General - VPD
- use already masked column as predicate in another policy function. last visited on
2017-11-24. URL: https://community.oracle.com/thread/3963300.

PostgreSQL 7.3.21 Documentation. Table Functions. last visited on 2016-08-12.
URL: https : //www . postgresqgl . org/docs /7.3 /static/ xfunc+
tablefunctions.html.

Abd El-Aziz Abd El-Aziz and Arputharaj Kannan. “XML access control: mapping
XACML policies to relational database tables”. In: Int. Arab J. Inf. Technol.
11.6 (2014), pp. 532-539. URL: http://ccis2k.org/iajit/?option=com_
contenté& task=blogcategory& id=94& Itemid=364.

eXtensible Access Control Markup Language (XACML) Version 3.0. OASIS Stan-
dard. 22 January 2013. URL: http://docs.ocasis—open.org/xacml/3.0/
xacml—-3.0-core-spec—os—en.html.

David Ferraiolo and Richard Kuhn. “Role-Based Access Control”. In: Proceedings of
the NIST-NSA National (USA) Computer Security Conference. 1992, pp. 554-563.

http://dx.doi.org/10.1109/ICDE.2007.368976
http://dx.doi.org/10.1109/ICDE.2007.368976
http://dx.doi.org/10.1109/ICDE.2007.368976
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper11.pdf
http://dx.doi.org/10.1007/s10207-007-0051-9
http://dx.doi.org/10.1007/s10207-007-0051-9
http://dx.doi.org/10.1007/s10207-007-0051-9
http://dx.doi.org/10.1007/978-1-4419-5906-5_824
http://dx.doi.org/10.1007/978-1-4419-5906-5_824
http://dx.doi.org/10.1007/978-1-4419-5906-5_824
https://community.oracle.com/thread/3995566
https://community.oracle.com/thread/3995566
https://community.oracle.com/thread/3994346
https://community.oracle.com/thread/3994346
https://community.oracle.com/thread/3963300
https://www.postgresql.org/docs/7.3/static/xfunc-tablefunctions.html
https://www.postgresql.org/docs/7.3/static/xfunc-tablefunctions.html
http://ccis2k.org/iajit/?option=com_content&task=blogcategory&id=94&Itemid=364
http://ccis2k.org/iajit/?option=com_content&task=blogcategory&id=94&Itemid=364
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[19]

[20]

[21]

[22]

David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-based
access control. 2nd ed. Artech House computer security series. Boston, Mass. [u.a.]:
Artech House, 2007. 1SBN: 1-58053-370-1.

David F. Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn, and Vincent C. Hu.
“Extensible Access Control Markup Language (XACML) and Next Generation Ac-
cess Control (NGAC)”. In: Proceedings of the 2016 ACM International Workshop on
Attribute Based Access Control, ABACQCODASPY 2016, New Orleans, Louisiana,
USA, March 11, 2016. Ed. by Elisa Bertino, Ravi Sandhu, and Ram Krishnan. ACM,
2016, pp. 13-24. 1SBN: 978-1-4503-4079-3. po1: [10.1145/2875491.2875496.
URL: http://doi.acm.org/10.1145/2875491.287549¢6|

Stefano Franzoni, Pietro Mazzoleni, and Stefano Valtolina. “Towards a Fine-Grained
Access Control Model and Mechanisms for Semantic Databases”. In: 2007 IEEE
International Conference on Web Services (ICWS 2007), July 9-13, 2007, Salt Lake
City, Utah, USA. IEEE Computer Society, 2007, pp. 993-1000. 1SBN: 0-7695-2924-0.

DOI:10.1109/ICWS.2007.176. URL: http://dx.doi.orqg/10.1109/ICWS!

2007.176.

Alban Gabillon. “Web Access Control Strategies”. In: Encyclopedia of Cryptography
and Security, 2nd Ed. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Springer,

2011, pp. 1368-1371. ISBN: 978-1-4419-5905-8. DOI: [10. 1007/ 978-1- 4419+
5906-5_664L URL: http://dx.doi.org/10.1007/978-1-4419-5906~

5_664.

Oracle Database Data Cartridge Developer’s Guide. Using Pipelined and Parallel
Table Functions. last visited on 2016-08-12. URL: https://docs.oracle.com/
database/121/ADDCI/pipe_paral_tbl.htm.

Raju Halder and Agostino Cortesi. “Observation-based Fine Grained Access Control
for Relational Databases”. In: ICSOFT 2010 - Proceedings of the Fifth International
Conference on Software and Data Technologies, Volume 1, Athens, Greece, July
22-2/, 2010. Ed. by José A. Moinhos Cordeiro, Maria Virvou, and Boris Shishkov.

SciTePress, 2010, pp. 254-265. 1SBN: 978-989-8425-22-5. URL: http://www.dsi.

unive.it/~cortesi/paperi/icsoftl0_a.pdfl

Vincent C. Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin,
Robert Miller, and Karen Scarfone. Guide to Attribute Based Access Control
(ABAC) Definition and Considerations. National Institute of Standards and Technol-

ogy. 2014. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublicati

NIST.SP.800-162.pdf (visited on 07/27/2016).

Sonia Jahid, Carl A. Gunter, Imranul Hoque, and Hamed Okhravi. “MyABDAC:
compiling XACML policies for attribute-based database access control”. In: First
ACM Conference on Data and Application Security and Privacy, CODASPY
2011, San Antonio, TX, USA, February 21-23, 2011, Proceedings. Ed. by Ravi
S. Sandhu and Elisa Bertino. ACM, 2011, pp. 97-108. 1SBN: 978-1-4503-0466-5.

103

ons/

http://dx.doi.org/10.1145/2875491.2875496
http://doi.acm.org/10.1145/2875491.2875496
http://dx.doi.org/10.1109/ICWS.2007.176
http://dx.doi.org/10.1109/ICWS.2007.176
http://dx.doi.org/10.1109/ICWS.2007.176
http://dx.doi.org/10.1007/978-1-4419-5906-5_664
http://dx.doi.org/10.1007/978-1-4419-5906-5_664
http://dx.doi.org/10.1007/978-1-4419-5906-5_664
http://dx.doi.org/10.1007/978-1-4419-5906-5_664
https://docs.oracle.com/database/121/ADDCI/pipe_paral_tbl.htm
https://docs.oracle.com/database/121/ADDCI/pipe_paral_tbl.htm
http://www.dsi.unive.it/~cortesi/paperi/icsoft10_a.pdf
http://www.dsi.unive.it/~cortesi/paperi/icsoft10_a.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf

[25]

104

DOI: |10.1145/1943513.1943528. URL: http://doi.acm.org/10.1145/
1943513.1943528.

James Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. “A Generalized Tem-
poral Role-Based Access Control Model”. In: IEEE Trans. Knowl. Data Eng. 17.1
(2005), pp. 4-23. DOI: 10.1109/TKDE.2005. 1. URL: http://dx.doi.org/
10.1109/TKDE.2005. 1k

Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan, Yirong
Xu, and David J. DeWitt. “Limiting Disclosure in Hippocratic Databases”. In:
(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases,
Toronto, Canada, August 31 - September 8 2004. Ed. by Mario A. Nascimento,
M. Tamer Ozsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, and K.
Bernhard Schiefer. Morgan Kaufmann, 2004, pp. 108-119. 1SBN: 0-12-088469-0.
URL: http://www.vldb.org/conf/2004/RS3P3.PDF.

Eric Medvet, Alberto Bartoli, Barbara Carminati, and Elena Ferrari. “Evolutionary
Inference of Attribute-Based Access Control Policies”. In: Evolutionary Multi-
Criterion Optimization - 8th International Conference, EMO 2015, Guimardes,
Portugal, March 29 -April 1, 2015. Proceedings, Part 1. Ed. by Anténio Gaspar-
Cunha, Carlos Henggeler Antunes, and Carlos A. Coello Coello. Vol. 9018. Lecture
Notes in Computer Science. Springer, 2015, pp. 351-365. 1SBN: 978-3-319-15933-1.
DOI: [10.1007/978-3-319-15934-8_24. URL: https://doi.org/10.
1007/978-3-319-15934-8_24|

LouAnna Notargiacomo. “Role-based access control in ORACLE7 and Trusted
ORACLET”. In: Proceedings of the First ACM Workshop on Role-Based Access
Control, RBAC 1995, Gaithersburg, MD, USA, November 30 - December 2, 1995.
Ed. by Charles E. Youman, Ravi S. Sandhu, and Edward J. Coyne. ACM, 1995.
ISBN: 0-89791-759-6. DOI1:[10.1145/270152.270185. URL: http://doi.acml
org/10.1145/270152.270185/

Lars E. Olson, Carl A. Gunter, William R. Cook, and Marianne Winslett. “Im-
plementing Reflective Access Control in SQL”. In: Data and Applications Security
XXIII, 23rd Annual IFIP WG 11.8 Working Conference, Montreal, Canada, July
12-15, 2009. Proceedings. Ed. by Ehud Gudes and Jaideep Vaidya. Vol. 5645. Lec-
ture Notes in Computer Science. Springer, 2009, pp. 17-32. 1SBN: 978-3-642-03006-2.
DOI: 10.1007/978-3-642-03007-9_2. URL: http://dx.doi.org/10.
1007/978-3-642-03007-9_2.

Oracle. Global Pricing and Licensing Welcome Page. last visited on 2018-01-13.
URL: https://www.oracle.com/corporate/pricing/index.htmll

Oracle. Oracle Database Online Documentation 12c¢ Release 1 (12.1). last visited
on 2018-01-13. URL: https://docs.oracle.com/database/121.

Oracle. Oracle Developer Community Welcome Page. last visited on 2018-01-13.
URL: https://community.oracle.com.

http://dx.doi.org/10.1145/1943513.1943528
http://doi.acm.org/10.1145/1943513.1943528
http://doi.acm.org/10.1145/1943513.1943528
http://dx.doi.org/10.1109/TKDE.2005.1
http://dx.doi.org/10.1109/TKDE.2005.1
http://dx.doi.org/10.1109/TKDE.2005.1
http://www.vldb.org/conf/2004/RS3P3.PDF
http://dx.doi.org/10.1007/978-3-319-15934-8_24
https://doi.org/10.1007/978-3-319-15934-8_24
https://doi.org/10.1007/978-3-319-15934-8_24
http://dx.doi.org/10.1145/270152.270185
http://doi.acm.org/10.1145/270152.270185
http://doi.acm.org/10.1145/270152.270185
http://dx.doi.org/10.1007/978-3-642-03007-9_2
http://dx.doi.org/10.1007/978-3-642-03007-9_2
http://dx.doi.org/10.1007/978-3-642-03007-9_2
https://www.oracle.com/corporate/pricing/index.html
https://docs.oracle.com/database/121
https://community.oracle.com

[41]

Oracle. Oracle Support Welcome Page. last visited on 2018-01-13. URL: https:
//support .oracle.comn.

Oracle. Pre-Built Developer VMs (for Oracle VM VirtualBozx). last visited on
2018-01-13. URL: http://www.oracle.com/technetwork/community /
developer-vm/index.htmll

Alois Paulin. “Towards a sustainable system for non-bureaucratic government :
doctor of science thesis”. dissertation. University of Maribor, 2015. URL: http://
cobiss6.izum.si/scripts/cobiss?command=DISPLAY &base=99999%
rid=18746390&fmt=11&lani=enl

php.net. PHP English Manual. last visited on 2018-01-13. URL: http://php.
net/manual/en/l

php.net. PHP Licensing. last visited on 2018-01-13. URL: http://php.net/
license.

Microsoft TechNet Library SQL Server 2008 R2. Table- Valued User-Defined Func-
tions. last visited on 2016-08-12. URL: https://technet.microsoft.com/en—
us/library/ms191165 (v=sgl.105) .aspxk

Oracle Database Online Documentation 12¢ Release 1 (12.1) / Database Admin-
istration / Database Security Guide. Using Oracle Virtual Private Database to
Control Data Access. last visited on 2016-08-22. URL: https://docs.oraclel
com/database/121/DBSEG/vpd.htm.

Erik Rissanen, David Brossard, and Adriaan Slabbert. “Distributed Access Control
Management - A XACML-Based Approach”. In: Service-Oriented Computing, 7th
International Joint Conference, ICSOC-Service Wave 2009, Stockholm, Sweden,
November 24-27, 2009. Proceedings. Ed. by Luciano Baresi, Chi-Hung Chi, and
Jun Suzuki. Vol. 5900. Lecture Notes in Computer Science. 2009, pp. 639-640.
ISBN: 978-3-642-10382-7. DOI: [10 .1007/978-3-642-10383-4_47. URL:
http://dx.doi.org/10.1007/978-3-642-10383-4_4"7.

Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan Roy. “Extending
Query Rewriting Techniques for Fine-Grained Access Control”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Paris, France,
June 13-18, 2004. Ed. by Gerhard Weikum, Arnd Christian Konig, and Stefan
Deflloch. ACM, 2004, pp. 551-562. 1SBN: 1-58113-859-8. pO1: [10.1145/1007568.
1007631. URL: http://doi.acm.orqg/10.1145/1007568.1007631.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
“Role-Based Access Control Models”. In: IEEE Computer 29.2 (1996), pp. 38-47.
DOI:|10.1109/2.485845. URL: http://dx.doi.org/10.1109/2.485845.

Jie Shi and Hong Zhu. “A fine-grained access control model for relational databases”.
In: Journal of Zhejiang University - Science C 11.8 (2010), pp. 575-586. DOI:
10.1631/jzus .C0910466. URL: http://dx.doi.org/10.1631/jzusl
C0910466.

105

https://support.oracle.com
https://support.oracle.com
http://www.oracle.com/technetwork/community/developer-vm/index.html
http://www.oracle.com/technetwork/community/developer-vm/index.html
http://cobiss6.izum.si/scripts/cobiss?command=DISPLAY&base=99999&rid=18746390&fmt=11&lani=en
http://cobiss6.izum.si/scripts/cobiss?command=DISPLAY&base=99999&rid=18746390&fmt=11&lani=en
http://cobiss6.izum.si/scripts/cobiss?command=DISPLAY&base=99999&rid=18746390&fmt=11&lani=en
http://php.net/manual/en/
http://php.net/manual/en/
http://php.net/license
http://php.net/license
https://technet.microsoft.com/en-us/library/ms191165(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms191165(v=sql.105).aspx
https://docs.oracle.com/database/121/DBSEG/vpd.htm
https://docs.oracle.com/database/121/DBSEG/vpd.htm
http://dx.doi.org/10.1007/978-3-642-10383-4_47
http://dx.doi.org/10.1007/978-3-642-10383-4_47
http://dx.doi.org/10.1145/1007568.1007631
http://dx.doi.org/10.1145/1007568.1007631
http://doi.acm.org/10.1145/1007568.1007631
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1631/jzus.C0910466
http://dx.doi.org/10.1631/jzus.C0910466
http://dx.doi.org/10.1631/jzus.C0910466

[44]

[48]

[50]

106

Scott D. Stoller. “Trust Management and Trust Negotiation in an Extension of
SQL”. In: Trustworthy Global Computing, 4th International Symposium, TGC 2008,
Barcelona, Spain, November 3-4, 2008, Revised Selected Papers. Ed. by Christos
Kaklamanis and Flemming Nielson. Vol. 5474. Lecture Notes in Computer Science.
Springer, 2008, pp. 186—-200. 1SBN: 978-3-642-00944-0. pOI1:/10.1007/978-3-642+
00945-7_12. URL: http://dx.doi.org/10.1007/978-3-642-00945~
7_12.

Henk C. A. van Tilborg and Sushil Jajodia, eds. Encyclopedia of Cryptography and
Security, 2nd Ed. Springer, 2011. 1SBN: 978-1-4419-5905-8. DO1: [10.1007/978-1~+
4419-5906-5. URL: http://dx.doi.org/10.1007/978-1-4419-5906-5.

Sabrina De Capitani di Vimercati. “Discretionary Access Control Policies (DAC)”.
In: Encyclopedia of Cryptography and Security, 2nd Ed. Ed. by Henk C. A. van
Tilborg and Sushil Jajodia. Springer, 2011, pp. 356-358. ISBN: 978-1-4419-5905-8.
DOI: [10.1007/978-1-4419-5906-5_817. URL: http://dx.doi.org/10.
1007/978-1-4419-5906-5_817.

Sabrina De Capitani di Vimercati and Pierangela Samarati. “Mandatory Access
Control Policy (MAC)”. In: Encyclopedia of Cryptography and Security, 2nd Ed.
Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Springer, 2011, p. 758. 1SBN:
978-1-4419-5905-8. DOI: [10.1007/978-1-4419-5906—-5_822. URL: http:
//dx.doi.org/10.1007/978-1-4419-5906-5_822,

Zhongyuan Xu and Scott D. Stoller. “Mining Attribute-Based Access Control
Policies from Logs”. In: Data and Applications Security and Privacy XX VIII - 28th
Annual IFIP WG 11.83 Working Conference, DBSec 2014, Vienna, Austria, July 14-
16, 2014. Proceedings. Ed. by Vijay Atluri and Giinther Pernul. Vol. 8566. Lecture
Notes in Computer Science. Springer, 2014, pp. 276-291. 1SBN: 978-3-662-43935-7.
DOI: 10.1007/978-3-662-43936-4_18. URL: http://dx.doi.org/10.
1007/978-3-662-43936-4_18|

Eric Yuan and Jin Tong. “Attributed Based Access Control (ABAC) for Web
Services”. In: 2005 IEEE International Conference on Web Services (ICWS 2005),
11-15 July 2005, Orlando, FL, USA. IEEE Computer Society, 2005, pp. 561-569.
ISBN: 0-7695-2409-5. DO1: 10.1109/ICWS.2005.25. URL: http://dx.doi.
org/10.1109/ICWS.2005.25

Yue Zhang and James B. D. Joshi. “Administration Model for RBAC”. In: Encyclo-
pedia of Database Systems. Ed. by Ling Liu and M. Tamer Ozsu. Springer US, 2009,
p- 58. 1SBN: 978-0-387-35544-3. DOI1: [10.1007/978-0-387-39940-9_1507.
URL: http://dx.doi.org/10.1007/978-0-387-39940-9_1507.

Hong Zhu and Kevin Lii. “Fine-Grained Access Control for Database Management
Systems”. In: Data Management. Data, Data Everywhere, 24th British National
Conference on Databases, BNCOD 24, Glasgow, UK, July 3-5, 2007, Proceedings.
Ed. by Richard Cooper and Jessie B. Kennedy. Vol. 4587. Lecture Notes in Computer
Science. Springer, 2007, pp. 215-223. 1SBN: 978-3-540-73389-8. D01:/{10.1007/978+

http://dx.doi.org/10.1007/978-3-642-00945-7_12
http://dx.doi.org/10.1007/978-3-642-00945-7_12
http://dx.doi.org/10.1007/978-3-642-00945-7_12
http://dx.doi.org/10.1007/978-3-642-00945-7_12
http://dx.doi.org/10.1007/978-1-4419-5906-5
http://dx.doi.org/10.1007/978-1-4419-5906-5
http://dx.doi.org/10.1007/978-1-4419-5906-5
http://dx.doi.org/10.1007/978-1-4419-5906-5_817
http://dx.doi.org/10.1007/978-1-4419-5906-5_817
http://dx.doi.org/10.1007/978-1-4419-5906-5_817
http://dx.doi.org/10.1007/978-1-4419-5906-5_822
http://dx.doi.org/10.1007/978-1-4419-5906-5_822
http://dx.doi.org/10.1007/978-1-4419-5906-5_822
http://dx.doi.org/10.1007/978-3-662-43936-4_18
http://dx.doi.org/10.1007/978-3-662-43936-4_18
http://dx.doi.org/10.1007/978-3-662-43936-4_18
http://dx.doi.org/10.1109/ICWS.2005.25
http://dx.doi.org/10.1109/ICWS.2005.25
http://dx.doi.org/10.1109/ICWS.2005.25
http://dx.doi.org/10.1007/978-0-387-39940-9_1507
http://dx.doi.org/10.1007/978-0-387-39940-9_1507
http://dx.doi.org/10.1007/978-3-540-73390-4_24
http://dx.doi.org/10.1007/978-3-540-73390-4_24

|3-540-73390-4_24|. URL: http://dx.doi.org/10.1007/978-3-540~
73390-4_24

107

http://dx.doi.org/10.1007/978-3-540-73390-4_24
http://dx.doi.org/10.1007/978-3-540-73390-4_24
http://dx.doi.org/10.1007/978-3-540-73390-4_24
http://dx.doi.org/10.1007/978-3-540-73390-4_24

	Kurzfassung
	Abstract
	Contents
	Introduction
	Concepts of access control
	Evolution of access control
	Foundations of Fine-Grained Data Access Control
	Dynamic Fine-Grained Data Access Control: Introducing the Secure SQL Server
	XACML: A standardized access control policy language
	Summary

	A prototype dFGDAC system utilizing Oracle Virtual Private Database
	Implementing Fine-Grained Data Access Control: the VPD schema
	Enabling complex dynamic access control policies using Proxy Views
	Collaborative decision-making: the sovereign schema
	The parliament scenario: a prototype web-based user interface
	Summary

	Approaching standardized access policy definition using XACML
	High-level XACML implementations
	Integrating XACML policies with relational databases
	Discussion: XACML as an enabler for standardization in dFGDAC
	Summary

	Discussion of dFGDAC solutions
	Performance indicators
	Discussion of Secure SQL Server
	Discussion of the Oracle dFGDAC prototype
	Comparison of the discussed technologies
	Summary

	Conclusion and Future Work
	General observations
	Discussion of findings
	Future work

	Bibliography

