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Abstract

The area of applying control engineering in a hydrodynamic context is increas-
ing in importance by ongoing adoption in the industrial sector, for example in
autonomous ship applications and companies have recently started marketing
solutions to private consumers.
In this thesis, a workflow for designing and calibrating a model-based dynamic
ship control system is proposed and analysed. The workflow consists of a pro-
cess to parameterise mathematical models to resemble a given ship’s nonlinear
dynamic behaviour using system identification, followed by using the param-
eterised models as a basis for a 2-degrees-of-freedom (2-DoF) control system.
In the first major part of this thesis the system identification and model pa-
rameterisation are analysed. First, a suitable mathematical formulation for
nonlinear ship behaviour was obtained from academic literature. A two-pod
azimuthing podded propulsion drive configuration was assumed for its versatil-
ity but the approach is extensible to other types of propulsion. It was investi-
gated what types of experiments need to be performed in the context of system
identification to estimate sets of model parameters that resemble a given ship’s
dynamics with enough precision to be used in the controller design, as well as
how to increase that precision further by supplying the parameter set found
using a least-squares approach as an initial point for gradient-descent based
optimisation. The results of the identification procedure are then presented
and it is shown that a quadratic nonlinear model can be used to approximate
higher order nonlinear ship dynamics and that by extending the model with
linear terms, a single model can be used to reproduce either linear or nonlinear
ship dynamics.
The second major part concerns the process of using the parameterised mod-
els to design a control system. A 2-DoF controller was designed and tested in
simulations, which consists of an exact-inversion based feedforward part and a
full-state feedback controller tuned with a linear-quadratic-regulator approach
to accommodate for the system’s multi-input-multi-output characteristic by
allowing that each DoF can be adjusted separately. Finally, the proposed
workflow is validated by using an independently implemented nonlinear and
higher-order ship model to generate measurement data for the system iden-
tification process, as well as to show that the resulting controller performs
well in a simulation that additionally incorporates wind and wave forces as
environmental disturbances.
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Kurzfassung
Regelungstechnik in einem hydrodynamischen Kontext anzuwenden gewinnt
durch die anhaltende Adoption im Industriesektor zunehmend an Bedeutung,
beispielsweise durch die Relevanz für Anwendung bei autonomer Schifffahrt.
Ferner werden seit kurzem auch Lösungen für Privatkunden angeboten.
In dieser Arbeit wird ein Workflow für die Auslegung eines modellbasierten, dy-
namischen Regelungssystem für Schiffe präsentiert und analysiert. Der Work-
flow besteht aus einer Methode, mithilfe von Systemidentifikation mathema-
tische Modelle zu parametrieren, gefolgt von der Nutzung dieser Modelle als
Basis für eine Zweifreiheitsgrad-Regelung.
Im ersten Teil der Arbeit wird die Systemidentifikation und Parametrierung
analysiert. Erst wurden geeignete mathematische Modelle zur Beschreibung
von nichtlinearem Schiffsverhalten aus der akademischen Literatur ausgewählt.
Ein zwei-Pod Propellergondel Antriebssystem wurde aus Gründen der Flexibil-
ität angenommen, der Ansatz lässt sich für andere Antriebsarten adaptieren.
Es wurde untersucht, welche Arten an Experimenten im Kontext der Systemi-
dentifikation durchgeführt werden müssen, um die Modellparameter mithilfe
eines Least-squares Ansatz mit hinreichender Genauigkeit zu schätzen, dass
die Modelle für die Reglerauslegung geeignet sind. Außerdem wurde betra-
chtet, wie sich die Genauigkeit noch steigern lässt, indem man die geschätzten
Parameter als Startpunkt für ein gradientenbasiertes Optimierungsverfahren
heranzieht. Die Resultate des Identifikationsprozesses werden präsentiert und
es wird gezeigt, dass sich mit einem quadratischen nichtlinearen Modell nicht-
lineare Schiffsdynamiken höherer Ordnung approximieren lassen, sowie dass
durch erweitern des Modells mit linearen Termen ein Modell erzeugt werden
kann, welches lineare sowie nichtlineare Schiffsdynamik wiedergeben kann.
Der zweite Teil der Arbeit beschäftigt sich mit dem Prozess, die parametrierten
Modelle zur Auslegung eines Regelungssystems zu verwenden. Eine Zweifrei-
heitsgradregelung wurde ausgelegt, bestehend aus einer inversionsbasierten
Vorsteuerung und einer Regelung durch Zustandsvektorrückführung, welche
aufgrund der Mehrgrößeneigenschaft des Systems mit einem Linear-Quadratic-
Regulator Ansatz ausgelegt wurde, der eine separate Einstellung der einzelnen
Freiheitsgrade zulässt. Zuletzt wurde der gesamte Workflow validiert, indem
mit vorhandenen nichtlinearen Schiffsmodellen höherer Ordnung Messdaten
generiert wurden und der Regler an diesen Modellen in Simulationen getestet
wurde, welche außerdem Wind- und Wellenkräfte als Störgrößen enthielten.
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Per ardua ad master.
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1 Introduction

1.1 Motivation

Recent years have seen an increase in the adoption of autonomous ship tech-
nologies, from the industrial off-shore oil sector where they originated in the
1960s into other areas such as surveying or undersea cable laying, and even
for leisure use on private boats. On the way towards full autonomy, the only
slightly more straightforward problem of near-term ship control has to be over-
come. One step on the way there are dynamic positioning systems, which are
a class of model-based control systems for a ship’s propellers and thrusters to
have the vessel maintain heading or position, or perform given maneuvers like
mooring automatically. The Yamaha Helm Master system is an example of an
implementation of a dynamic positioning system, which rigs a suitable small
to medium-scale boat to a multi-input-multi-output (MIMO) control system
that is operated by a simple joystick and thus makes maneuvers that would
otherwise require considerable skill trivial to perform. Figure 1 shows two such
maneuvers that the system is able perform by controlling angles and thrusts
of three outboard-motors in concert.

Figure 1: Yamaha Helm Master commercial images showing facilitation of a
lateral unmooring maneuver (left) and a stationary rotation maneu-
ver (right) by adjusting the outboard motor operating angles and
thrusts automatically.

A requirement for this capability is a propulsion system that allows for suf-
ficient degrees of freedom during maneuvering. One such propulsion method
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that offers the needed flexibility with regards to force direction are azimuthing
podded propulsion drives (see later in figure 4). A ship equipped with two
of these drives is theoretically able to generate any desired force direction
along the surface to act on the propelled ship, but finding a combination of
pod thrusts and angles to generate a specific desired force vector requires a
MIMO-control system to perform the required control operations.

1.2 Problem statement

The goal of this thesis is to investigate an approach for designing a model-based
MIMO-control system for the application on ships powered by azimuthing
propulsion drives. The first problem is finding and parameterising a model in
a way that allows for it to be used as a base for controller design. To this end,
a mathematical model that accurately reflects dynamic ship behaviour has to
be chosen. This choice directly impacts the problem of how to estimate the
model’s parameters and which experiments need to performed, as well as how
to handle nonlinearities in case nonlinear hydrodynamic behaviour is consid-
ered. The next problem is to investigate if any of the parameterised models can
be used for the control system in a way that results in acceptable performance
while considering inevitable parameterisation and model inaccuracies as well
as environmental forces acting onto a simulated ship.

1.3 Thesis structure

The thesis consists of two major parts:
In section 2, a method for finding a suitable mathematical model for describ-
ing ship motion and parameterising it using system identification methods on
measurement data from different ship simulations is outlined and validated.
A short overview of rigid-body kinetics for ships is provided and the assumed
propulsion system is described. Then, two models used as the basis for the
subsequent controller are discussed in detail. Design of experiment and the
measurement data sources are elaborated, followed by a description of the rel-
evant system identification methods and their applicability to the problem.
The performance of the identified models is then assessed by comparison to
measurement data and validation data.
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Section 3 describes the process of using the most suitable of these models as a
base to design and implement a control system that can be used for autopilot
or dynamic-positioning applications. The components of a 2 degrees of free-
dom (2-DoF) setup, as well as the mathematical formulations for wind and
wave forces for simulation testing are described. The control system is then
tested for functionality during environmental conditions in different configura-
tions using simulations of already available ship models and it is shown that
the proposed approach leads to promising results.

2 Parameter identification of ship models

2.1 Mathematical boat models

2.1.1 General considerations

Since boatsmanship is one of humanity’s oldest and historically most signifi-
cant modes of transportation, a sizable amount of literature is available. This
section attempts to concisely present the relevant modern definitions and ap-
proaches used in this thesis and to put the conducted work into context.
Rigid body kinetics generally allow for a bodies’ motion to be described in 6
degrees of freedom, but depending on the application and its required com-
plexity/precision, the scope of the model can be reduced. Using Newton-Euler
equations and resorting to the SNAME notation [1] which is the de-facto stan-
dard in academic literature on marine hydrodynamics, the equations of motion
for constant mass and center of gravity located at (xg, yg, zg) can be derived
and are shown in eq. (1).
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Figure 2: Coordinate systems and SNAME notation to designate a ship’s body-
fixed axes and velocities.

m[u̇− vr + wq − xg(p
2 + r) + yg(pq − ṙ) + zg(pr + q̇)] = τx

m[v̇ − wp+ ur − yg(r
2 + p2) + zg(qr − ṗ) + xg(qp+ ṙ)] = τy

m[ẇ − uq + vp− zg(p
2 + q2) + xg(rp− q̇) + yg(rq + ṗ)] = τz

Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+m[yg(ẇ − uq + vp)− zg(v̇ − wp+ ur)] = τk

Iy q̇ + (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz

+m[zg(u̇− vr + wq)− xg(ẇ − uq + vp)] = τm

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx

+m[xg(v̇ − wp+ ur)− yg(u̇− vr + wq)] = τn

(1)
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u, v, w Velocities in surge, sway and heave.
p, q, r Angular velocities in roll, pitch and yaw.
u̇, v̇, ẇ Accelerations in surge, sway and heave.
ṗ, q̇, ṙ Angular accelerations in roll, pitch and yaw.

xg, yg, zg Coordinates of ship’s center of gravity.
m Ship’s mass.

Ix, Iy, Iz Ship’s moments of inertia.
Ixy, Iyz, Izx Ship’s products of inertia.

τx, τy, τz External forces.
τk, τm, τn External moments.

Figure 2 shows the orientation of the principal axes relative to a ship’s hull
in a body-fixed coordinate system. From eq. (1) and according to [2], the
following classification of models by starting with the full 6-DoF case and then
reducing the number of modeled DoFs depending on the requirements of the
application is possible:

• 6-DoF models (surge, sway, heave, roll, pitch and yaw) for full simulation
and prediction of ship motion.

• 3-DoF models can themselves be subdivided into:

– Horizontal plane models (surge, sway and yaw) used in dynamic
positioning systems and trajectory-tracking control systems.

– Longitudinal models (surge, heave and pitch) for forward speed,
diving processes for submersibles and pitch control.

– Lateral models (sway, roll and yaw) for turning and heading control.

• 4-DoF models (surge, sway, roll and yaw) are usually 3-DoF plane models
with added roll motions. The roll motion is of importance for investi-
gations into passenger comfort or ship stability, especially under load
conditions.
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• 1-DoF models for the implementation of simple speed controllers, head-
ing autopilots or roll damping systems.

The focus of this work is to create a control system for performing maneuvers
such as mooring or rotations on the spot. Thus, for the purpose of designing
this dynamic positioning system, heave, roll and pitch are disregarded and
3-DoF horizontal plane models in surge, sway and yaw were used, specifically
and mostly in the formulation used by [3]:

u̇ =
(m+my)vr + τx

m+mx

v̇ =
−(m+mx)ur + τy

m+my

ṙ =
τn

Iz + izz
τ = τprop + τhyd + τwind + τwaves + ...

(2)

mx,my, izz Added mass terms.
τx, τy, τn Generalised forces and moment along principal axes.

τprop Propulsion forces.
τhyd Hydrodynamic resistance forces.

This formulation assumes, that the ship’s body-fixed coordinate system is fixed
to its center of gravity, with the x-axis pointing towards the bow. The forces in
τ can incorporate any relevant phenomenon that influences a ship’s behaviour,
the most important ones for this project being the propulsion forces τprop, the
ship hull’s hydrodynamic resistance τhyd, wind forces τwind and wave forces
τwave. SI units can be used throughout the whole model.

The hydrodynamic forces τhyd demand special consideration. There exists a
wide variety of approaches to model individual phenomena such as vortex drag,
wave drift damping etc., by deriving mathematical formulations of the respec-
tive effects from first principles. Another more pragmatic approach, proposed
by [4], is to formulate the hydrodynamic resistance terms along the principal
axes as a truncated Taylor-series expansion and fitting measurement data into
the resulting model to determine the coefficients numerically. Depending on
the model application and according to [2], different orders of the Taylor series
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Figure 3: Speed regimes for linear and quadratic hydrodynamic damping.

can be considered, for instance for maneuvering speeds < 2m/s, the linear
and quadratic formulations produce similar results at the cost of the linearised
model’s ability to display oscillatory behaviours. Figure 3 from the same source
shows how the linear formulation can be used to approximate the nonlinear
one, provided a vessel operates at low enough speed. Even though the assumed
use case in this work would fall into that regime, the linearised models turned
out to be insufficient for predicting the dynamics of higher-order ship models
as shown in section 2.5 and are therefore not used for controller design.
Lastly, the effects of the displaced fluid when a volume moving through it
changes its relative velocity are factored into the model. This concept, which
is known as "added mass" and "added inertia" is incorporated by adding the
extra terms mx, my and izz.
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2.1.2 Azimuthing podded propulsion system

As method of propulsion, a dual azimuth-thruster configuration is assumed,
which consists of two thrusters as seen in figure 4 at the stern of the ship that
can each rotate 360°. Compared to less flexible methods of propulsion like
traditional outboard motors which have an angle of operation of < 180°, the
operating angle allows for a whole range of options for control design.

Figure 4: Azimuthing podded propulsion drive.

For the ship simulations in this thesis, this means that the propulsion forces
are idealised as two freely pivotable force vectors acting on the stern of the
ship in the xy-plane. Furthermore, it is assumed that the dynamic behaviour
of the propulsion system itself can be neglected and that it is possible to gen-
erate any desired force magnitude and direction timeseries within reasonable
limits, while in reality the propulsion forces are influenced by factors such as
relative speed to the fluid and exhibit dynamic behaviour of their own with
regards to engine characteristics and reaction time to inputs. Approaches for
modeling the generated forces of podded propulsion in greater detail as well
as interactions between multiple pods being operated on the same vessel can
be found for example in [5].
The chosen approach of using the generalised force vector τ not only simplifies
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the implementation of the models in simulation, but also has the advantage of
being freely extensible to different types of propulsion as long as force vectors
can be modeled. These can then be easily transformed into a τprop formulation
via equilibrium of forces. The inverse problem, encountered when determining
required control inputs for a desired τprop, generally leads to an overdetermined
system of equations, for which a possible solution based on a constrained least-
squares approach is described later in section 3.4.

2.1.3 Ship models for identification

Two models were analysed in this work to be used as a basis for the dynamic
positioning system. The two ships which the models are originally based on
are the "Lanxin USV" unmanned surface vehicle described by Sun et al. [6]
and the training ship "Dorchester Lady" described by W. Gierusz [3] and were
chosen for analysis because their full mathematical structure and parameteri-
sation was readily available in literature. As shown in figure 5, the two ships
differ significantly in size which means differences in motion dynamic behaviour
are expected.

Figure 5: The Lanxin USV research ship and the Dorchester Lady training
ship.

The Lanxin USV model assumes linear hydrodynamic damping and no coupling-
effects between any of the principal axes and will from here on be referred to
as model A.
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The equations of model A from the paper are given as

u̇ =
m22

m11
vr − d11

m11
u+

1

m11
τx (3)

v̇ = −m11

m22
ur − d22

m22
v +

1

m22
τy (4)

ṙ =
m11 −m22

m33
uv − d33

m33
r +

1

m33
τn (5)

m11,m22,m33 Generalised mass terms.
d11, d22, d33 Linear hydrodynamic damping coefficients.

The assumptions of linear hydrodynamic damping and no coupling effects re-
sult in the model containing only 6 parameters that define its dynamic be-
haviour, which in the original paper were estimated through recursive least-
squares estimation. The ignored hydrodynamic coupling effects specifically
lead to behaviour in which motion along one axis is only induced if there are
forces acting along that axis which in reality does not hold true for classic
v-shaped ship hulls.
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The Dorchester Lady model contains only nonlinear hydrodynamic damping
terms and motions along any of the axes have an effect on all the other ones,
this second model will be referred to as model B.

u̇ =
(my,tot)vr + τx

mx,tot
+

1

mx,tot
[
1

2
ρwLT [Xuuu|u|+Xvvv

2+

L2Xrrr
2] +Xvrvr]

(6)

v̇ =
−(mx,tot)ur + τy

my,tot
+

1

my,tot

1

2
ρwL

2[Yvuv|u|+ Yvvv|v|+

LYrur|u|+ L2Yrrr|r|+ LYvrv|r|+ LYrvr|v|]
(7)

ṙ =
τn

Iz,tot
+

1

Iz,tot

1

2
ρwL

3[Nvuv|u|+Nvvv|v|+

LNrur|u|+ L2Nrrr|r|+ LNvrv|r|+ LNrvr|v|]
(8)

mx,tot,my,tot Ship mass and added mass.
Iz,tot Moment of inertia and added inertia.

L Length of ship.
T Draft.
ρw Density of water.

Xij , Yij , Nij Nonlinear hydrodynamic resistance coefficients.

This model contains 19 parameters that were originally found using semi-
empirical formulas and the equations are coupled across the 3 axes. Further-
more, in the above formulation some parameters are tied to the same combi-
nation of variables, for example my,tot

mx,tot
and Xvr in eq. (6) are both tied to the

product vr. To prevent ambiguity during the subsequent system identification
process by preventing those parameters from being estimated independent of
each other and for easier implementation of the model in MATLAB, the pa-
rameters were rearranged and combined with coefficients into a new set of
parameters θ1 to θ19 as shown in eqs. (9) to (11).
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u̇ =
my,tot +Xvr

mx,tot� �� �
θ1

vr +
1

mx,tot

1

2
ρwLTXuu� �� �
θ2

u|u|+ 1

mx,tot

1

2
ρwLTXvv� �� �
θ3

v2+

1

mx,tot

1

2
ρwTL

3Xrr� �� �
θ4

r2 +
1

mx,tot� �� �
θ5

τx

(9)

v̇ =
−(mx,tot)

my,tot� �� �
− θ12

θ5

ur +
1

my,tot

1

2
ρwL

2Yvu� �� �
θ6

v|u|+ 1

my,tot

1

2
ρwL

2Yvv� �� �
θ7

v|v|+

1

my,tot

1

2
ρwL

3Yru� �� �
θ8

r|u|+ 1

my,tot

1

2
ρwL

4Yrr� �� �
θ9

r|r|+ 1

my,tot

1

2
ρwL

3Yvr� �� �
θ10

v|r|+

1

my,tot

1

2
ρwL

3Yrv� �� �
θ11

r|v|+ 1

my,tot� �� �
θ12

τy

(10)

ṙ =
1

Iz,tot

1

2
ρwL

3Nvu� �� �
θ13

v|u|+ 1

Iz,tot

1

2
ρwL

3Nvv� �� �
θ14

v|v|+ 1

Iz,tot

1

2
ρwL

4Nru� �� �
θ15

r|u|+

1

Iz,tot

1

2
ρwL

5Nrr� �� �
θ16

r|r|+ 1

Iz,tot

1

2
ρwL

4Nvr� �� �
θ17

v|r|+ 1

Iz,tot

1

2
ρwL

4Nrv� �� �
θ18

r|v|+ 1

Iz,tot����
θ19

τn

(11)
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Figure 6: Propulsion step input in surge direction and velocity u outputs of
Lanxin USV/model A and Dorchester Lady/Model B.

Figure 7: Zigzag-course input and velocity u, v, r outputs of models A and B.

A comparison to show the difference in dynamics between model A and model
B is shown in figures 6 and 7. Model A shows a linear relationship between
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model input and the resulting steady-state velocities while model B exhibits
nonlinear behaviour. Another difference are relatively symmetric acceleration
and deceleration properties of the output for the linear case of model A, while
for the nonlinear model B there is a strong asymmetry and the velocity slowly
decays towards zero in the absence of a propulsion force.
Finally, to analyse the performance of a model that incorporates assumptions
about both linear and nonlinear hydrodynamic damping effects, the respective
linear damping terms from model A and nonlinear ones from model B were
combined into model C, as shown in eqs. (12)-(14).

u̇ = θ1u+ θ2u|u|+ θ3v
2 + θ4r

2 + θ5vr + θ6τx (12)

v̇ = −θ15
θ6

ur + θ7v + θ8r + θ9v|u|+ θ10v|v|+
θ11r|u|+ θ12r|r|+ θ13v|r|+ θ14r|v|+ θ15τy

(13)

ṙ = θ16v+θ17r+θ18v|u|+θ19v|v|+θ20r|u|+θ21r|r|+θ22v|r|+θ23r|v|+θ24τn (14)

In this model, the hydrodynamic forces between sway and yaw direction are
coupled, which results in the linear terms for v and r appearing in both equa-
tions (13) and (14). This combination of linear and nonlinear terms is a valid
approach according to [2]. Since the model in this form is not parameterised
for any ship in particular, no examples are provided here, but identification
results and performance are later shown in chapter 2.5.

2.2 Data generation and test models

In order to validate the approach on independently generated data, experi-
ments were performed using Thor Fossen’s Marine System Simulator (MSS)[7],
which is a Matlab and Simulink library containing relevant scripts and tools,
as well as several fully implemented marine craft models. The two models
that were used for testing and verification of the dynamic positioning system
are the supply ship and the naval vessel model, which are themselves based
on real-life measurements. The supply ship model assumes low maneuvering
speeds and thus only contains linear hydrodynamic damping. The naval vessel
on the other hand is a 4-DoF model, which includes a degree of freedom to
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represent rolling motions of the ship, and it also contains quadratic and cu-
bic hydrodynamic damping terms. The roll-motion was simulated but it was
assumed to be unknown to the models used for identification as well as the
control system, which effectively turned it into an additional slight uncertainty
the control system encounters when applied to the naval vessel model.

Figure 8: The MSS Simulink blocks containing images of the naval vessel and
supply ship.

As seen in figure 8, the two ships are two different classes of vessels and are
therefore again expected to behave differently regarding their dynamic charac-
teristics. A comparison of the two models that shows their dynamic behaviour
for different maneuvers is found in figures 9 and 10, note the differently scaled
velocities in comparison to figures 6 and 7 since the naval vessel and supply
ship models are parameterised for much larger craft than the models described
in the previous section.

21



Figure 9: Propulsion step input in surge direction and velocity u outputs of
the naval vessel (nv) and supply ship (ss) models.

Figure 10: Zigzag-course input and velocity u, v, r outputs of the naval vessel
(nv column) and supply ship (ss column) models. Note the inverted
turning direction on the supply ship as a result of the hydrodynamic
resistance in sway direction.

2.3 Experiment design

In this section, the maneuvers used in the system identification process and
the reasoning behind them are discussed. In order to identify the parameters
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of models A, B and C described in section 2.1.3 in a way that the identified
model can be used as a base for feedback- and feedforward control, the mea-
surements have to be performed in such a way, that the relevant coefficients
are being sufficiently excited. Fundamentally, this requirement depends on the
models mathematical structure, with more complex models containing more
and nonlinear parameters requiring more and more complex experiments.
The maneuvers are designed in a way that incorporates a reasonable bal-
ance between dynamic and steady states of the system. The reason for this
can be shown for example in equation (3) when one assumes a steady-state
(u̇, v̇, ṙ = 0) of the system, in which case m11 couldn’t possibly be determined.
Standard maneuvers for ship testing used in literature are for example straight-
ahead acceleration and coast-downs, zig-zag course or turning maneuvers [8].
The zig-zag course maneuver in particular, which was already shown in figures
7 and 10, is a staple system identification maneuver for ship models that are
designed for forward cruising applications and oftentimes a few variations of it
are enough data to parameterise a model to accurately perform most forward
and turning maneuvers, but this approach failed to produce models that can
perform lateral mooring motions or stationary turns. Therefore, a handful of
additional measurements were performed in an attempt to sufficiently excite
the relevant coefficients, especially concerning motion along sway and yaw di-
rection.
The following section showcases the test-set of 10 experiments chosen to val-
idate the method. Figures 11 to 20 show the original output data from the
simulation and the same data with added white noise on the left. As a sensor
setup containing a GPS receiver was found to be used for a similar application
in literature [9], a signal-to-noise ratio (SNR) of 40 was used to simulate mea-
surement noise levels of GPS receivers similar to those that appear in other
publications [10]. On the right are plots of the maneuvers and the path of
the ship’s coordinate origin in the x-y plane. All experiments shown here were
performed with model B as originally parameterised in [3].
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Figure 11: Straight-ahead accelerations and coast-downs.

Figure 12: Zigzag-course with coasts in between thrusts and a coast-down at
the end.

Figure 13: Zigzag-course and coast-down.
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Figure 14: Turning maneuver in both directions.

Figure 15: Maneuver that excites u, v and r velocities to a similar magnitude.

Figure 16: Stationary rotations in both directions.
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Figure 17: Approximate lateral drift with subsequent coast-down.

Figure 18: Rotations during lateral- and forward thrust.

Figure 19: General cruising with some turns during forward thrust.
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Figure 20: Experiment to emphasise steady-state as well as dynamic behaviour
around the rotation axis.

2.4 Parameterisation of the models

2.4.1 Cost function

When designing a model-based controller, one first needs a parameterised ID
model to approximate the dynamic behaviour of the ship for which it is to
be used. This was done using the established approach of minimising the
quadratic error between measurement data and ID model output. To quantify
the performance of any set of a models parameters, a simulation was performed
and the results were evaluated into a scalar value according to the quadratic
cost function [11] with added weights

J =

n�
k=1

qu(uk − ûk)
2 + qv(vk − v̂k)

2 + qr(rk − r̂k)
2 (15)

where uk, vk, rk are the n sampled velocity measurements of the conducted
experiments, ûk, v̂k, r̂k are the simulated velocities sampled with the same fre-
quency and qu, qv, qr are the corresponding weight coefficients for the respective
axes. When using the cost function to perform optimisation, the weights can
be used to tune the influence of any of the three axes on the resulting value,
for example to scale the deviations across all experiments in different axes to
approximately the same magnitude since the forward, lateral and rotational
velocities differ numerically by nature of the system. To capture the relevant
time-constants of naval vessel behaviour without either slowing down the op-
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timisation process with too great amounts of data or leading to numerical
problems during simulation, a sampling time of Ts = 1Hz proved to be suffi-
cient and was used throughout the whole work.
Further problems that arise during the system identification process are the
nonlinearities in the models that were used, estimating an initial set of param-
eters to approximate the measured dynamics and the question of whether it is
possible to optimise the identification model’s performance from there. These
will be discussed in detail in the following sections.

2.4.2 Sensitivity and identifiability analysis

Parameter sensitivity

Using the cost function described above, sensitivity analysis can be performed
to verify the suitability of the chosen mathematical model structures to the
problem of approximating a given ship’s measured dynamics as well as the
feasibility of using gradient descent approaches for further optimisation. The
parameter sensitivity is defined as the change of the output, i.e. the measured
velocities, with respect to variations of parameters for a given experiment (or
set of experiments) and this change can be quantified by using the cost func-
tion (15). Conversely, this means a parameter that results in a bigger change
of the cost function value relative to others when varied has a bigger influ-
ence on the resulting performance, while parameters that only affect the cost
function minimally or not at all are of smaller significance or even superfluous,
again within the context of the considered experiment(s). This principle is also
the basis for gradient descent based optimisation methods, which attempt to
minimise the cost function value by varying the parameters systematically.
For our exemplary one-factor-at-a-time analysis, individual parameters of model
B were multiplied by evenly spaced factors from 10−1 to 10 and the cost func-
tion was evaluated for the whole set of 10 experiments to verify the existence
of a global cost function minimum at the original parameter values. The plots
for parameters 1 and 7 are shown in figure 21 as examples to represent the
results: All parameters except 6 and 7 show a similar behaviour to parameter
1 with a clearly visible minimum at their original value, while for parameters 6
and 7 the evaluation of experiment 8 exhibits a possible local minimum where
a gradient descent method could potentially get stuck in. This analysis verifies
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the existence of a global minimum for all parameters in the context of evalu-
ating the cost function for the set of 10 experiments shown in section 2.3.

Figure 21: Cost function values for all 10 experiments during one-factor-at-a-
time variations of the original value (the cost function minimum)
for parameters 1 and 7 of model B.

Monte-carlo analysis

Next, to analyse whether the initially varied parameters actually converge
back towards their original values (i.e. their global minimum) during gradient-
descent optimisation or drift away from them, a monte-carlo simulation was
performed in which each parameter in the set of initial values was randomly
varied by ±50% of its original value, followed by gradient-descent optimisa-
tion. The gradient-descent method used in this thesis, MATLAB’s fmincon,
is described in more detail in later in section 2.4.4. The results of 100 opti-
misation runs for model B with the parameter structure of eqs. (9)-(11) are
shown in figure 22. There it is apparent, that while most parameters converge
to their original value over the course of optimisation, parameters 3, 9, 14, 17
and 18 don’t show that behaviour but instead diverge somewhat from their
global minima.
The reason for this phenomenon is either parameter drift, the solver arriv-
ing at a local minimum or that the influence of those parameters on the cost
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function is too small for the optimisation algorithm to detect. This last be-
haviour can be caused by several factors, one being that the relevant terms
for the respective parameters are not being sufficiently excited, either by their
influence being indiscernible through the measurement noise or by the set of
experiments lacking that excitation in the first place. Additionally, while per-
forming system identification on ships, the problem of multi-collinearity and
subsequent parameter drift may arise as described for instance in [12].

Figure 22: Distribution of ID results for each model parameter from a monte-
carlo analysis of 100 optimisation runs. The green boxes show the
spread of initial values (±50% of original value) and the blue ones
the spread of the results after optimisation.

While the 5 parameters that didn’t converge towards their global minima ap-
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parently were not able to be accurately identified given the set of experiments
used, in practice this means that for the maneuvers contained in the experi-
ments these parameters show only negligible influence on the results, i.e. the
sensitivity of the output with regard to changes of these parameters is low.
Therefore, as long as the experiments approximately cover all relevant types
of motion, the models should be accurate enough for use in the subsequent
control system.
A comparison between one of the best and one of the worst fits of the monte-
carlo analysis’ results is seen in figure 23 and more in-depth analysis on the
implemented control system’s performance will be shown in chapter 3. These
results show, that given an initial set of parameters close to a global optimum,
gradient-descent optimisation generally produces a set of resulting parameters
that approximate the dynamics of the test models used.

Figure 23: Comparison between one of the lowest and one of the highest fit
results of the monte-carlo analysis for experiments 4 and 5, model
B.
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2.4.3 Initialisation

One method to parameterise the chosen ID-models as described in section
2.4.1 is using gradient-descent optimisation to find a cost function minimum
by varying the parameters. For any gradient-descent method, a vector (or
range) of initial values has to be provided as a starting point to begin the
descent from and this choice of an initial point has a significant effect on the
quality of the results. The monte-carlo analysis shown in section 2.4.2 was
performed for a system with known parameters and initialised by varying the
parameters randomly by ±50% of their original values. For an unknown ship
with unknown parameter values, an approach to estimate an initial point is
required. Tests were conducted on the use of semi-empirical methods, where
the hydrodynamic coefficients are approximated by using formulas dependent
on a ship’s key metrics like length and draft, as for example discussed in [13].
While those tests sometimes produced results that were adequate for simula-
tions of straight-ahead or zig-zag maneuvers, they generally failed to provide
a set of parameters that reflected the measurement’s dynamics across all prin-
cipal axes as well as initial points from which a gradient-descent optimisation
could improve on the results.
A proven method to fit parameters of a model onto measured data is least
squares estimation. When given enough measurement data, the least squares
estimate for all the parameters resulted in a model that resembles the be-
haviour of the measurements to a high degree without the need to solve dif-
ferential equations and, for model A and B where the original parameters are
known from the literature, the estimates corresponded to the global minima.
The first of two possible drawbacks of this approach is that there is no way of
determining a minimum set of experiments that are required since the qual-
ity of the estimation is not only dependent on the considerations in section
2.3, i.e. that variations of the coefficients need to have a quantifiable effect
on the system dynamics for a given experiment, but also the amount of mea-
surement noise and in further consequence on the precision of the acceleration
data which is assumed to be found by taking the first derivative of the ve-
locity measurements. The second drawback is, that in case that the supplied
measurement data turn out to be insufficient for usable estimates, these esti-
mates would probably not only not be close to an optimal point but so far off
that gradient descent methods might get stuck in a local minimum that may
be impractical for our application. While these inherent properties of least
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squares estimation might lead to problems when using the proposed method,
in practice the set of 10 experiments described above proved to be sufficient
to produce reasonably useful results, provided the excitations were discernible
from the added measurement noise.

2.4.4 Optimisation procedure

Figure 24: Comparison of the least-squares initialisation and the gradient-
based optimisation approach for finding parameters for the iden-
tification model.

While the least-squares approach discussed above usually provides a set of
parameters that make the chosen ID-model approximate the dynamics of the
measurements, there is often room for improvement with regards to precision
of the simulation or unwanted oscillatory behaviour. This set of parameters
can then be supplied as an initial point for gradient-descent based optimisa-
tion methods to further improve upon the result. This is possible because
while the least-squares method only minimises the equation error when trying
to find a solution for the problem of finding parameters that fit the data, a
gradient-descent approach minimises the simulation error as quantified by the
cost function. A comparison of the two approaches is shown in figure 24.
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Figure 25: Exemplary progression of cost function values using fmincon over
the course of a single optimisation run.

The optimisation method used in this thesis is MATLAB’s fmincon, a sophis-
ticated algorithm designed for nonlinear problems with continuous objective
functions. One issue that arose during this process are instabilities of the
system caused by the algorithm guessing parameter values that lead to sin-
gularities during simulation, which can be avoided by catching the errors and
punishing the cost function by returning big values in case they occur. Also,
the optimisation problem was normalised, i.e. the solver started with a vector
of ones corresponding to the least-squares initial values that was recalculated
into parameter-values at every simulation, to make it numerically easier for
the algorithm. Fmincon along with these tweaks proved to be a reliable way
of finding parameters that can be used as the basis for our model-based con-
trol system later. An exemplary progression of cost function values during
an optimisation run is shown in figure 25. Exemplary results of the optimi-
sation process for some training experiments are shown in figure 26 and a
validation on non-training data in figure 27. These show, that while the least-
squares method used on only the measurement data gives a set of parameters
that results in a rough approximation by magnitude that still lacks precision, a
subsequent application of fmincon using these parameters as initial point leads
to a very good approximation of the target dynamic behaviour.
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Figure 26: Comparison between least-squares initialisation and fmincon final
result for the "zig-zag course with coasts" experiment (top) and the
"lateral drift and coast" experiment for model B.
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Figure 27: Validation of the identified model on different zig-zag course exper-
iments that were not part of the training set.
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2.5 Performance of identified models

This section summarises the results of the system identification process for
several relevant combinations of ID-model and measurement data. All iden-
tifications were carried out using noisy measurement data in the form of the
10 experiments described above with a signal-to-noise ratio of 40, except for
the supply ship experiments for which it had to be doubled since otherwise
its slow movements weren’t discernible from the noise. The acceleration time-
series were then obtained by taking the derivative of moving-average smoothed
velocity measurements.
Additionally, model validation similar to the one shown in figure 27 was per-
formed with data not used for the initialisation/optimisation process for all
model-data combinations that produced feasible results (A-A, B-nv, C-nv and
C-ss). All models performed with approximately the same accuracy as the
corresponding exemplary results shown in their respective sections.

Model A

To validate the general functionality of the used methods and the identifiabil-
ity of the parameters of model A, tests were carried out using measurement
data generated with model A itself. Results from this process are shown in
figure 28.
Since model A contains only linear and especially uncoupled hydrodynamic

resistance terms and is therefore mathematically unable to reflect nonlinear hy-
drodynamics, identification of data generated using models containing higher-
order hydrodynamic resistance gives nonsatisfactory results as shown in figure
29.
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Figure 28: A-A identification results for two experiments.
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Figure 29: A-B inadequate identification results. In the absence of coupled
hydrodynamic terms motion only happens along the axes the forces
were applied to.
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Model B

Again, tests were conducted to analyse whether system identification using
model B provides satisfactory results when supplying data generated with
model B itself. Results showing a relatively accurately parameterised model
are shown in figure 30.

Figure 30: B-B identification results.
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To test the method on independently generated measurements, a data set for
the 10 experiments was generated using the "naval vessel" model from Thor
Fossen’s MSS toolbox. Even though the naval vessel model models its nonlin-
ear hydrodynamic damping differently and also contains an additional degree
of freedom for roll motion, model B performs adequately when used for iden-
tification. Results are shown in figure 31.

Figure 31: B-naval vessel identification results.
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Figure 32: B-supply ship identification results showing insufficient ID model
performance caused by inappropriate model structure.

Since model B contains only nonlinear hydrodynamic terms, problems arise
when trying to perform identification on data that only contains linear dy-
namics. To show this limitation, results of using model B to identify the
dynamics of the "supply ship" model contained in the MSS library are shown
in figure 32.
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Model C

To overcome the issue of only being able to identify linear or nonlinear dy-
namics respectively, the two formulations for hydrodynamic resistance were
combined into one model C, as shown in section 2.1.3 of this thesis. This
model performed well on both linear and nonlinear measurement data and is
therefore used along with model B in the rest of this thesis to base the con-
troller for the dynamic positioning system on. Results of using model C to
identify the naval vessel model are shown in figure 33 and for the supply ship
model in figure 34.

Figure 33: C-naval vessel identification results.
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Figure 34: C-supply ship identification results.
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2.6 System identification summary

The system identification approach of the proposed method to use identified
models for controller design has been empirically validated over the previous
sections. Mathematical models of linear and nonlinear structure have been
implemented from literature and have been successfully parameterised for dif-
ferent sets of measurement data generated from models of varying complexity:

• Model A, containing linear hydrodynamic damping, has been shown to be
suitable for identification of data generated with itself and validates the
method while also showing the limitations of having insufficient model
complexity.

• Model B, containing nonlinear hydrodynamic damping, has also been
shown to successfully identify itself as well as data generated from the
naval vessel model, which contains roll motions as an additional degree
of freedom and nonlinear hydrodynamic assumptions.

• Model C, where the linear and nonlinear hydrodynamic damping terms
of model A and B have been combined, has been shown to be suitable
for both linear and nonlinear cases of hydrodynamic damping.

While the applied methods have theoretical limitations, they have been shown
to work within a reasonable scope. For one, having data on a comprehen-
sive set of experiments in which all parameters get sufficiently excited for the
least-squares method to produce a suitable set of initial values, as discussed
in section 2.4.3, is of utmost importance, otherwise the optimisation methods
had been unable to produce results that adequately modeled the test mod-
els’ behaviours across all degrees of freedom. Another theoretical limitation
is that the required information might be lost in measurement noise. The as-
sumptions during testing assumed SNR-values found in GPS-measurements,
but solutions of this problem are of a technical nature outside the scope of this
work.
Having shown the system identification approach to produce reliable results
using the chosen models, the upcoming section uses models B and C as a base
to illustrate the aspects and results of designing a 2-Dof controller for our test
models.
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3 Model based control design

3.1 General considerations

With a reasonably precise identified model, a model-based controller can be
designed. The goal of this section is to outline the implemented controller
and the assumed disturbances for the controller’s validation. Afterwards, the
results are presented and assessed.
From a control engineer’s perspective, the system to be controlled can be clas-
sified as multi-input-multi-output, nonlinear and time invariant. To be able
to accommodate for the nonlinearities, a 2-degrees of freedom (2-DoF) control
system, consisting of an inversion based feedforward approach combined with
a full-state feedback controller was implemented.
Inversion-based 2-DoF control approaches have successfully been applied to
various dynamic systems and, given a sufficiently precise mathematical model
of the processes in question, often reach significantly greater performance than
relying solely on a feedback control system.

3.2 Control concepts

3.2.1 Pure feedforward

A classical feedforward control system, which generates a feedforward con-
trol input u∗ (equivalent to the ships τprop) from a desired velocity profile
w = w(u, v, r) is pictured in figure 35. Since there is no feedback loop present,
the stability of the system is completely unaffected by feedforward control in-
puts. The lack of process feedback also means that any disturbances acting
on the system cannot be taken into account, which is one of the reasons that
for practical purposes feedforward systems are often combined with a feedback
controller.

Figure 35: Feedforward control scheme.
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In our implementation, the process of taking a trajectory w = w(u, v, r) as
input and calculating required forces τprop as the control value u∗ for the de-
manded trajectory is facilitated by exact inversion of the model equations.
Exact inversion is easily possible given the model structures shown in eqs.
(9)-(11) and (12)-(14) and, given the results shown in the following sections,
robust against parameter inaccuracies. For this approach to result in a smooth
force profile, all derivatives of the control quantities required for the inversion
have to be known. This is realised by using smoothstep functions for tran-
sitions between constant setpoints. For an actual implementation, the forces
in τprop can be recalculated into pod forces and angles using a constrained
least-squares method as described in chapter 3.4.

3.2.2 Feedback control

For the feedback controller, a full state feedback approach with integration of
the tracking error is used. The integrator plays an important role, since the
fact that the identified models always contain some parameter inaccuracies
leads to constant offsets for different setpoints otherwise.

Figure 36: Full state feedback controller with integration of tracking error.
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The full state feedback controller with integration of the tracking error is shown
in figure 36, with the control law for finding the control input u ∼ τprop being:

u = −kTy +K


 t

0

(w − y) dt (16)

The gains kT and K are found using the theory of the linear-quadratic-
regulator (LQR) for a linearised system around the operating point x0 =

[0, 0, 0], which allows tuning of the response for each of the system outputs
separately.

3.2.3 2-DoF configuration

The 2-DoF control approach combines the two concepts described above into
one control system. This has the advantage of having two components with
different purposes that can be tuned independent from each other: The feed-
forward controller is mainly responsible for the system’s reference tracking
behaviour, while the feedback controller concerns itself with disturbance rejec-
tion and the remaining feedforward control error.
At any moment, the feedforward system tries to establish the desired system
state y∗ by generating the control input u∗. The feedback controller then
only has to consider the remaining difference between the actual state and the
desired state y∗ − y. This remaining deviation from the desired state can be
caused by parameter inaccuracies from the identification process or caused by
environmental forces acting as disturbances onto the ship.

Figure 37: Feedforward control scheme.
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u = u∗ − kT (y∗ − y) +K


 t

0

(y∗ − y) dt (17)

The control law (17) uses the same gains kT and K as described in the pre-
vious section.

3.3 Modeling environmental forces

To test the designed controller’s performance during environmental conditions,
environmental forces acting on the ship can be implemented in the simulation.
These add to the forces discussed in the previous chapters and consist of wind
and wave forces and ocean currents. As mentioned in chapter 2.1.1, the wind
and wave forces can be added to the generalised forces τ acting on the ship.
Ocean currents on the other hand can be superimposed onto the velocity vec-
tor affecting the hydrodynamic terms, but those are excluded from this work.
A mathematical model for wind forces [2] that can be used in validating the
controller’s performance can be implemented as

τwind =
1

2
ρaV

2
rw

 CX(γrw)AFw

CY (γrw)ALw

CN (γrw)ALwLoa

 , (18)

Vrw =
�

u2rw + v2rw, (19)

γrw = −atan2(vrw, urw), (20)

CX(γrw) ≈ −cx cos(γrw)

CY (γrw) ≈ cy sin(γrw)

CN (γrw) ≈ cn sin(2γrw)

(21)

ρa Density of air.
Vrw Relative wind velocity.
γrw Relative angle of attack.

CX , CY , CN Nondimensional wind coefficients.
cx, cy, cn Approximation wind coefficients.

AFw Frontal projected area of freeboard.
ALw Lateral projected area.
Loa Length overall.
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but according to [2] (p. 192), because of the inertia of the craft, only the mean
wind forces can be compensated by the control system. In the above equations,
Vrw is the relative velocity between vessel and wind, γrw is the relative angle of
attack, Loa is the length overall and AFw and ALw are the frontal and lateral
projected areas. The coefficients CX , CY and CN are the nondimensional wind
coefficients, which are either acquired through measurements for a specific ship,
optionally resorting to using a scale model in a wind tunnel, or they can be
computed numerically using semi-empirical approaches. An approximation
according to [2] can be used with the approximation (21) and the numerical
ranges of cx ∈ {0.5, 0.9}, cy ∈ {0.7, 0.95}, cn ∈ {0.05, 0.2}.
While highly complex models regarding wave forces and their interactions with
ship hulls exist (i.e. response amplitude operators, [14]), these forces usually
consist of a slowly varying mean force and an oscillatory component. A quickly
implemented model for control-testing looks like

τwave = [Xwave, Ywave, Nwave]
T (22)

Xwave =
K

{x}
w s

s2 + 2λ{x}ω{x}
e s+ (ω

{x}
e )2

w1 + d1 (23)

Ywave =
K

{y}
w s

s2 + 2λ{y}ω{y}
e s+ (ω

{y}
e )2

w2 + d2 (24)

Nwave =
K

{z}
w s

s2 + 2λ{z}ω{z}
e s+ (ω

{z}
e )2

w3 + d3 (25)

d1 = w4, d2 = w5, d3 = w6. (26)

Xwave, Ywave, Nwave Wave forces.
K

{x,y,z}
w Constants determining wave amplitudes.

λ{x,y,z} Parameters determining wave spectra.
ω
{x,y,z}
e Wave encounter frequencies.

wi Stochastic Wiener-processes.

where the wave forces are approximated using a transfer function and the
stochastic Wiener-processes wi.
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3.4 Calculation of pod angles and thrusts

Figure 38: Force arrows and variables for calculation of pod forces.

Throughout this work, for the whole system identification and control pro-
cess as well as the simulations, all forces were represented in the body-fixed
reference frame and as components of the vector τ . While this streamlined
the mathematical process, when determining the parameters for operation of
our assumed two-pod configuration it leads to an overdetermined system of 3
equations and 4 unknowns, namely pod angles δp and δs and thrusts Fp and Fs

for the port and starboard pods. To overcome this, a constrained least-squares
approach ([15]) was used which solves the problem by adding the constraint,
that the pods should generate a given τ while minimising their thrust.

We formulate the problem as follows: minimise �Ax − b�2 while demanding
that Cx = d. The equilibrium of forces for our ship containing the pod forces

can be written as

 τx
τy
τn

 =

 1 1 0 0

0 0 1 1

b0 −b0 −l0 −l0




Fx1

Fx2

Fy1

Fy2

 ∼ ddd = CxCxCx

and the condition, that the generated forces should be minimal as

51




0

0

0

0

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Fx1

Fx2

Fy1

Fy2

 ∼ bbb = AxAxAx

A solution x̂ can then be found by solving�
ATA CT

C 0

	�
x̂

z

	
=

�
ATb

d

	
using least squares. While this approach can be extended to any propulsion
configuration, it is important to consider it being a static recalculation which
disregards any aspects of dynamics in the results. As with modeling the dy-
namics of the pods themselves, this was determined to lie outside the scope of
this work. A result of this recalculation that depicts a thrusts and pod angles
timeseries is shown later in section 3.7.

3.5 Feedforward performance

Performance of the feedforward controller for 3 independent trajectories are
using the Dorchester Lady model, as well as the feedforward control inputs cal-
culated through exact inversion, are shown in figure 39 and a system response
for the naval vessel model in figure 40. The trajectories are a representation of
speed control, lateral maneuvering for mooring and a stationary rotation. As
described before, an important characteristic of feedforward systems in general
is that they don’t have an effect on the stability properties of the controlled
process, which can be seen in the naval vessel’s system response to the lateral
v trajectory.
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Figure 39: System output and feedforward control inputs for model B, "Dorch-
ester Lady".
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Figure 40: System output of the feedforward controlled naval vessel model.
Note the effects of instability on the v-trajectory.
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Figures 41 and 42 show the feedforward control system in combination with
the environmental forces. These figures are shown to reiterate the point, that
a feedforward control system cannot react to disturbances due to a lack of pro-
cess feedback. They also show how the disturbances affect the system when
trying to perform maneuvers and give a comparison between the disturbance
forces to the control forces in terms of magnitude.

Figure 41: System output, feedforward control inputs and environmental forces
for model B, "Dorchester Lady".
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Figure 42: System output, feedforward control inputs and environmental forces
for the naval vessel model.

These results show that even though parameter inaccuracies lead to slightly
reduced precision and feedforward systems alone generally can’t compensate
for instabilities during operation, inversion based feedforward control is accu-
rate enough to be used as a component for the 2-DoF control system.
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3.6 Feedback control performance

Figures 43 and 44 show the system responses to setpoint steps along the three
principal axes for the "Dorchester Lady" and naval vessel model respectively.
The controllers were tuned by manually adjusting the values inside the Q and
R matrices of the LQR approach until plausible response times were achieved.

Figure 43: System responses for a setpoint-step for singular forward, lateral
and rotational motion of the "Dorchester Lady" model.
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Figure 44: System responses for a setpoint-step for singular forward, lateral
and rotational motion of the naval vessel model.
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The simulation results show that the designed feedback controller performs
adequately, again despite parameter inaccuracies. For comparability, simula-
tion results of solely the feedback controller being tasked with performing the
trajectory from section 3.5 is shown in figures 45 and 46.

Figure 45: Performance of the full-state feedback controller of the "Dorchester
Lady" model.
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Figure 46: Performance of the full-state feedback controller of the naval vessel
model.
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3.7 2-DoF configuration performance

The performance of the "Dorchester Lady" model using a model B-based 2-
DoF control implementation and of the naval vessel with a model C-based one
are presented in figures 47 and 48. The figures show the performance gain
compared to the singular components shown in the previous sections.

Figure 47: Performance of 2-DoF control configuration of the "Dorchester
Lady" model without disturbances.
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Figure 48: Performance of 2-DoF control configuration of the naval vessel
model without disturbances.
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Finally, the full simulations involving disturbances to test the robustness of
the controller are shown in figures 49 and 50. Both tests were conducted
against the wind and waves disturbance forces described in section 3.3 and
using the controller gains from section 3.6. Plots of two more tests using the
2-DoF configuration and with simulated environmental forces where only the
velocity profiles were supplied as trajectory are shown in figures 51 and 52.
Considering the fact that the control system operates on the velocity level and
errors at the position level accumulate over time, these results show a very
robust performance.

Figure 49: Performance of 2-DoF control configuration of the "Dorchester
Lady" model against wind and wave forces as disturbances.
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Figure 50: Performance of 2-DoF control configuration of the naval vessel
model against wind and wave forces as disturbances.
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Figure 51: Integral of the supplied trajectory (red) and simulated path of the
ship (blue) for the "Dorchester Lady" model in the xy-plane, 2-DoF
configuration and against environmental forces.

Figure 52: Integral of the supplied trajectory (red) and simulated path of the
ship (blue) for the naval vessel model in the xy-plane, 2-DoF con-
figuration and against environmental forces.
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Lastly, figure 53 shows the recalculated pod forces and angles produced by the
constrained least-squares method described in section 3.4 for the naval vessel
trajectory shown in figure 50. While both pods perform the maneuvers and
compensate for the disturbances by varying their thrusts, the pod angles δp
and δs only show slight fluctuations around either 0 or π rad.

Figure 53: Exemplary pod-forces and -angles profile calculated using the con-
strained least squares method from section 3.4.
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4 Summary and conclusion

This thesis investigated an approach for the design of a model-based dynamic
positioning system for a given vessel. As a first step, the system identification
process was examined in detail. Two suitable mathematical models were cho-
sen from literature and combined into a third one. The model structure was
investigated in the context of experiment design and which maneuvers have to
be performed in order to be able to identify the relevant parameters. Then,
the methods used for system identification, a gradient descent method com-
bined with a least-squares based initialisation of the parameters, were analysed
extensively. The results were then shown and the identified models were vali-
dated against measurement data. It has been shown that the dynamics of the
test models could be approximated by applying the discussed concepts.
In addition to the findings on the system identification procedure discussed in
more detail at the end of the section focusing on the topic, in the next part it
has been shown in simulation that the chosen control paradigms are suitable
to be applied to nonlinear ship models, even if these models are of increased
mathematical complexity by containing an additional degree of freedom and
higher order nonlinearities. Exact inversion was shown to be robust in the face
of parameter inaccuracies. The design of the 2-DoF controller has been de-
tailed and a way to solve the overdetermined problem of finding pod forces and
angles from the generalised forces acting on the ship. Finally, the robustness of
the 2-DoF controller was shown. Results from the simulations were presented
in order to show the performance of each configuration of components of the
2-DoF controller and to validate the control scheme utilising models of higher
complexity and incorporating environmental forces.
While the scope of the work was defined to be relatively narrow regarding
the endless number of possibilities and configurations of vessels that exist in a
naval context, the general approach should be applicable to most surface ma-
rine craft that adhere to the classical v-shaped hull design and provide enough
degrees of freedom through their propulsion system. Since linear as well as
nonlinear hydrodynamic resistances are represented, the system in theory is
not limited to either low-speed or cruising speed regimes. The way propulsion
was modeled was limited to a two-pod azimuth thruster configuration, but
can be easily extended to accommodate for outboard motors, bow- or stern
thrusters etc.
The way the propulsion forces were incorporated was also the most significant
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simplification regarding the complexity of actual ship dynamics. In this thesis,
the provided forces are assumed to be perfectly known, therefore further work
in this area would be a logical next step for a hypothetical real-life implemen-
tation of the system. Possibilities include modeling dynamic behaviour of the
pods and motors or the effects of the flows induced by the pods interacting
with the pods themselves.
Regarding the control system, modifying the proposed velocity-based control
into being position-based would be reasonably straightforward by adding an
additional control loop on top. Further possible areas of interest could con-
cern the way the system handles disturbances, either by investigating ways to
make assumptions about these during the feedforward stage or by using model
predictive control to be able to react in an optimal way to respective distur-
bance forces while making it easy to incorporate constraints on ship behaviour.
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