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Kurzfassung

Das elektrische Energiesystem unterliegt Veränderungen durch die nachhaltige Bereitstel-
lung von Energie und deren Verbrauch. Diese Veränderungen wirken sich insbesondere auf
die Verteilnetze aus, da diese für den Anschluss sehr gut vorhersehbarer Haushaltslasten
ausgelegt sind. Heutzutage müssen diese Netze in zunehmendem Maße dezentrale erneuer-
bare Erzeuger mit schwankenden Einspeisecharakteristiken sowie neuartige elektrifizierte
Lasten wie Elektrofahrzeuge oder Heizsysteme aufnehmen. Die Integration dieser neuar-
tigen Geräte führt zu Problemen wie Spannungsbandverletzungen oder Überlastungen
des Netzes und stellt somit eine Herausforderung für den sicheren und zuverlässigen
Betrieb des Stromnetzes dar. Um solchen Schwierigkeiten entgegenzuwirken, beinhalten
diese neuen Geräte oft netzstützende Regelungsfunktionen wie Blindleistungsregelkurven
oder Ladestromregelungen. Aus historischen Gründen fehlt es dem Verteilnetz jedoch an
Messkapazitäten. Die Netzbetreiber haben daher keine Möglichkeit sicherzustellen, dass
die notwendigen netzstützenden Funktionalitäten wie vorgesehen funktionieren. Folglich
werden neue Überwachungsmöglichkeiten benötigt.
In dieser Arbeit wird ein datengetriebener Überwachungsansatz vorgestellt, der in Ver-
teilnetzen funktionsfähig ist. Es werden zunächst Bewertungen der verfügbaren Daten
und ihrer Eigenschaften, wie z. B. Abtastraten oder Einschränkungen aufgrund von
Datenschutzbestimmungen, durchgeführt. Anschließend werden Methoden zur Erkennung
von Fehlkonfigurationen der Steuerfunktionen von netzgekoppelten Geräten entwickelt.
Die entdeckten Anomalien werden auch durch Klassifizierungsmethoden kategorisiert.
Die Methoden sind an die verfügbaren Daten angepasst: am Verteiltransformator sind
dies traditionelle Machine Learning (ML) Methoden, auf der Geräteebene werden Deep
Learning (DL) Methoden eingesetzt. Außerdem werden Data-Mining-Methoden entwickelt
und getestet, um trotz des Mangels an Sensoren Informationen über das Niederspan-
nungsnetz (LV) zu gewinnen. Diese Methoden werden anhand von im Labor gesammelten
Daten sowie durch Simulationen validiert. Außerdem wird die Entwicklungsumgebung
beschrieben, die für die Analyse der Methoden und die Erstellung der Simulationsdaten
verwendet wurde.
Die Ergebnisse der Arbeit stellen die Ansätze zur Überwachung netzunterstützender
Funktionalitäten in elektrischen Verteilnetzen dar. Sie zeigen, dass diese unter Verwen-
dung der aktuellen Mess- und Zählerinfrastruktur integriert werden können und eine gute
Erkennungs- und Klassifizierungsgüte aufweisen, die die Implementierung eines nützlichen
Entscheidungsunterstützungswerkzeugs für Verteilnetzbetreiber (DSO) ermöglicht.
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Abstract

The modern power system is undergoing fundamental changes in order to adapt to new
requirements, caused by the need of sustainable provision and consumption of energy.
These changes especially affect power distribution systems, as they have been designed
to host very predictable and similar household loads. Nowadays, they are increasingly
required to connect decentralized renewable generation which shows volatile power infeed
characteristics as well as novel electrified loads such as electric vehicles or heating systems.
The integration of these novel devices can create problems of voltage band violations or
overloading to the grid and therefore be a challenge for the safe and reliable operation
of the power grid. To counter such difficulties, the already mentioned new devices
often implement grid-supporting control functionalities as reactive power control curves
or charging current controls. However, due to the former sole purpose of passing on
energy in a very foreseeable and one-directional manner, the distribution grid lacks
sensory capacities. Therefore, grid operators have no way of ensuring that the necessary
grid-supporting functionalities work as intended. Thus, new monitoring capabilities are
needed.
As an outcome, the thesis provides a layout of a data-driven monitoring approach which
works under the mentioned circumstances found in distribution grids. Assessments of the
available data and their properties such as sampling rates or restrictions due to privacy
issues were conducted. Following, methods were developed to detect misconfigurations
of grid-connected devices’ control functionalities. These detected abnormalities are
also categorized by classification methods. These methods are adjusted to the data
available: at substation level these are traditional Machine Learning (ML) methods,
at the device level Deep Learning (DL) methods are employed. Also, data mining
methods are developed and assessed to gain information about the Low Voltage (LV) grid
despite the lack of sensors. The methods are tested and validated using data collected in
laboratory setup as well as through simulations, which are in turn also validated using
the laboratory data. In addition, the development framework used for developing and
assessing the methods and creating the simulation data is described.
The results of the thesis present the best suited approaches for monitoring grid-supporting
functionalities in electrical distribution grids. They show that these functionalities can
be integrated with the current sensing and metering infrastructure and show a good
detection and classification performance which enables the implementation of a meaningful
decision-support tool for Distribution Grid Operators (DSO).
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Electricity grid operators are facing multiple difficulties due to the massive changes in
the energy system, which are necessary for the shift to a sustainable energy system.
These challenges can range from regulatory barriers to environmental issues and technical
problems in the field of energy storage and transmission. Especially a high density of
distributed generation can have a significant impact on the grid. The replacement of
traditional generation from central power plants by inverter-interfaced generation, such as
photovoltaic (PV) power plants, is one example. This leads to problems with frequency
stability as inertia provided by the rotational masses of the traditional generators needs
to be replaced [1]. As the system frequency is a global variable in the power grid, this
poses a problem for all parts of it. This is also true for reliability issues, which can occur
at a high penetration of volatile renewable energy sources such as wind and solar in the
grid. At levels exceeding 20-30%, the N-1 reliability criterion of the grid can not be
ensured in the traditional manner [2]. However, major challenges also occur especially
with regard to distribution grids as they will bear the brunt of Distributed Generation
(DG) integration of renewable energy sources. Moreover, the operation of distribution
grids will also be affected severely by mobility and heating electrification. Both lead to
higher volatility in grid operation through unknown generation and demand profiles and
to higher demand, in general [3].

Other impacts of the decentralization of power generation and electrification of loads
are local voltage limit violations, congested distribution lines as well as overloaded
transformers. This can for example be caused by electric vehicle (EV) charging which
has an impact on the bus voltage or increases demand. Therefore, the voltage may fall
beneath admissible limits. To handle these problems, costly grid reinforcements may be
necessary [4]. The opposite is the case for the integration of the widespread penetration
of DGs. The distribution network was not conceived to handle the previously unseen
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1. Introduction

power infeed in decentral locations. As a result, local congestions and overvoltages can
occur which are violating the upper voltage limits [5].
To prevent these unwelcome effects without limiting renewable energy generation or
investing heavily in costly grid reinforcement, certain relief strategies can be employed.
One of them is the On-Load Tap Changer (OLTC) which can be used to control and
adjust the voltage centrally at the substation by altering the winding ratio between
the primary high voltage side and the secondary low voltage side [6]. However, OLTCs
only pose a solution in cases in which the voltage profile is either too high or too low
throughout the entire grid segment. Furthermore, they also only provide relief in case of
voltage problems, leaving congestion or overloading unattended. One way of facing all
of these problems is by making loads more flexible allowing for so-called Demand Side
Management (DSM). This can for example come in the form of operating Thermostatically
Controlled Loads (TLC) in a grid supporting manner [7]. These can be for example the
already mentioned electrified heating systems, such as heat pumps. Their thermal inertia
and large power consumption allow to use them to counteract the high production or
consumption of other grid participants. The scheduling of EV charging can be employed
in a similar manner [8]. Local renewable generation, such as building integrated wind
energy, can for example be used to charge EVs by scheduling the two to coincide [9].
This can help to mitigate both overvoltages or congestions due to overproduction as well
as undervoltages due to too high local consumption. There are numerous strategies in
literature to satisfy these goals both using local renewable generation as well as thermal
loads or charging schedules [10]. Also, Real-Time Charging Control (RTC) can help to
regulate EV charging power directly and instantly in order not to violate constraints and
avoid overloading of the grid [11]. The same control can be used to feed energy back from
the electric vehicles to the grid (V2G) in order to bolster the local voltage or support
the grid in general. Nevertheless, voltage regulation is considered as the most important
aspect when it comes to integrating decentral generation in distribution networks, which
is implemented by grid supporting functionalities provided by the generation units [12].
These functionalities can range from limiting the active power dispatched to controlling the
reactive power injection of the generation units or Battery Energy Storage Systems (BESS)
with inverters [13]. Combined PV and BESS systems can also be used for both frequency
control by providing Frequency Containment Reserve (FCR), as well as voltage control
through reactive power provided by the inverter [14]. Grid supporting functionalities
may also come in the form of peak reduction and increased self-consumption, which can
also be motivated by flexible capacity tariffs [15].
At the moment, voltage control is done using local reactive power control, for example
in the form of a droop control using local measurements as inputs [16]. However, this
control does not allow for optimal operation of DGs and does also not guarantee that
voltages are actually kept within limits. Therefore, coordinated voltage controls are
superior for this application [17].
The depiction in Figure 1.1 shows a local power factor control curve of an inverter-
connected generation unit in order to better illustrate the principle behind such grid
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Figure 1.1: cosϕ(p) power factor control (top) and resulting reactive power p as well as
voltage lift (bottom)

supporting functionalities. The top part of the figure shows the alteration of the power
factor depending on the active power fed in by, for example, a PV. At low active power
infeed the power factor is overexcited, which leads, as depicted in the bottom part of the
figure, to a capacitive reactive power dispatch. This in turn helps to bolster the voltage
by lifting it. At high active power dispatch, the power factor is underexcited, which has
the opposite effect of lowering the voltage by feeding in inductive reactive power.

Grid connected generation units are required to implement certain grid supporting
functionalities as defined by national regulations [18]. A common form of grid supporting
functionalities are the already mentioned reactive power controls in order to control the
local voltage. The regulations usually define certain capability curves. The left side
of Figure 1.2 depicts such a capability curve as it is mandated by the grid code of a
country. This specification defines the amount of reactive power that, for example, an
inverter connected generation unit must provide to the grid at a certain infeed of active
power. The right side of the figure shows a possible implementation of this specification.
The configuration depicted is the already elaborated cosϕ(p) power factor control curve.
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As illustrated earlier, these controls can take very different configurations, as they can
be dependent on central coordination or local variables and react to different control
variables in general. As these controls and the support functionalities they provide
are critical to a safe and reliable operation of the grid Distribution System Operators
(DSO) need to be able to ensure that they are actually performed correctly. Currently,
DSOs are lacking the possibility to properly monitor their grids, especially decentrally
installed devices. However, as the control can vary, it can be difficult to determine
whether a certain configuration is the intended one, as more than one can satisfy a
certain specification. Moreover, a certain configuration can change due to malfunctions
or software glitches. This may result in a misconfiguration which in turn disables the
desired control and grid supporting functionality. Therefore, misconfigurations need to
be detected as they pose a threat to grid operation, especially if new generation and load
devices are rolled out at a large scale.

However, the circumstances for the detection of such misconfigurations can be difficult.
Grid data is not up to date or incorrect, apart from the fact that configurations can differ,
as already elaborated. To adjust to various as well as changing circumstances and settings,
a data driven solution is preferable. Additionally, an approach using operational data is
therefore advisable, because the required knowledge about grid component characteristics
can be kept to a minimum. Because of legal restrictions concerning data privacy or
the general lack of measurements the data necessary is often not available, especially at
connection points [19]. Preferably, monitoring is to be conducted remotely, even if Smart
Meters (SM) are installed. One reliable source of data that is currently available to DSOs
are substation measurement data [20]. At the transformer level, various channels such as
currents, voltages, or power flows are captured at a high rate. If SM data are to be used,
DSOs often need to obtain the permission of customers. Furthermore, these data are
only sampled every 15 minutes [21]. Both factors hamper the applicability of local SM
data for monitoring purposes. However, certain properties of the monitoring problem at
hand can also be exploited when crafting a relevant solution. A misconfiguration is not a
transient event and dynamics are therefore not of interest [22]. This means lower data
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1.1. Motivation and Problem Statement

sampling rates are satisfactory as only operational changes on a slower time scale are
to be supervised. Therefore, data of a resolution of 15 minutes might be sufficient for
the task in certain applications, as the time ranges of the effects on the grid are similar.
Detection is less time critical as a not shifted or incorrectly scheduled load or a non
functional control might only have an impact after a few hours or even whenoccurring
in greater numbers. This means avoiding or fixing them one by one at a reasonable
pace might be sufficient, even if that means they are not tackled instantaneously. For
this reason, it is to be determined which measurements are required such as active and
reactive power flows or voltage and current magnitudes, as well as at what sampling rate
these data are needed for a suitable and applicable monitoring solution. Furthermore, it
is to be explored which methods can be employed and applied to these data to actually
detect misconfigurations. In the following the identified sub-problems and the related
works are further elaborated.

1.1.1 Anomaly Detection
As the detection of misconfigurations can be regarded as an anomaly detection problem,
Kernel Principle Component Analysis (kPCA) [23], offers an interesting approach. It
can be used to extract key features of the operational data. Furthermore, a statistical
model of the regular state of a system can be built using it [24]. Due to the unsupervised
character of this learning method, it allows capturing a predominant stable nominal
state along with numerous possible abnormal states, about which only little information
is available. Both grid participants at the low voltage level as well as the substation
transformer are expected to show such behavior. Hidden structures in the operational
data collected can be revealed using Partially Hidden Structured Support Vector Machine
(pSVM) [25]. The pSVM allows to incorporate labeled, partially labeled as well as
unlabeled data and the information stored therein. The same principle is used in [24]
to map relations between ’different’ and ’stable’ events. Another approach to anomaly
detection for Heating, Ventilation, and Air Conditioning (HVAC) using a one-class
support vector machine is explored in [26]. Most variability in the data occurs during the
regular operation of the system and not due to anomalies, as the results show. This also
applies to households or PV systems. Therefore, a combination of Primary Component
Analysis (PCA) and Support Vector Machine (SVM) could be applied to the data sources
at the medium voltage level, as the data there are of high dimensionality. On the low
voltage level, a Deep Learning (DL) approach could be more promising. As the data is
of a lower time resolution as well as dimensionality, filtering out relevant features can
become much harder. Additionally, the grid environment is different for every single grid
participant due to their location in the grid, which further complicates the detection of
abnormal states. DL can help in this regard, as it is well suited to extract detection
features autonomously and condense the special traits of certain anomalies. It could then
be used decentrally to detect certain anomalies [27]. The non-functional requirements of
integrability as well as scalability are at the focus of these methods: It is not necessary
to manually fit the solution to a specific device characteristic or transformer setup. A
feasible and rapid rollout of such a solution is therefore possible. Another non functional
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1. Introduction

requirement targeted is adaptability. After changes in configurations or the setup, the
solution does not have to be adapted manually. The collection of data merely needs to
be restarted.

1.1.2 Classification of Abnormal Behaviour
The already mentioned pSVM [24] could be implemented for the classification of unusual
behavior found. The first two steps of detecting and classifying anomalies could also be
combined using this approach. This might not be feasible on the low voltage level, since,
as mentioned above, the biggest variability in operation, and therefore the operational
data, occurs during the regular operation of households or PV systems. Artificial
Neural Networks (ANN) could be used for this purpose [28]. Fast Fourier transformed
voltage waveforms of normal and abnormal data are required here to train the ANN. As
already elaborated DL could be employed to conduct this preprocessing step in a data
driven way [29]. A Multiclass Relevance Vector Machine (mRVM) [30] uses auxiliary
variables as intermediate regression targets and provides probabilities of class membership
and therefore a classification. Usually, only binary class membership classification is
conducted, whereas the multiclass classification can point grid operators in a specific
direction concerning incorrect behavior of devices, and due to this the approach could
be helpful. This could also be provided by a clustering or SVM approach combined
with a feature selection using Decision Trees [31]. The non functional requirement of
usability is targeted by these approaches: Misconfigured grid connected devices need to
be detectable for DSOs in order to gain knowledge about the current state of the grid.
Information about the origin of the abnormal behavior detected is necessary for a useful
tool that enhances the system operator’s understanding. Non-functional requirements
concerning third-party components need to be considered here in addition. However,
grid connected devices providing the above-mentioned grid support functionalities are
mostly not installed nor operated by the DSO, but by other actors or entities. It is a
requirement to monitor these lacking full information about their specifications.

1.1.3 Disaggregation of Medium Voltage Profiles
In order to make information about decentral grid participants available while respecting
limitations set by either privacy issues or lacking sensing capacities, the load profile at
the medium voltage substation can be split up into its contributions. This is usually
referred to as disaggregation, which [32] uses an ANN for. SM data of households as well
as of generation units or other grid connected devices can be used to create an appliance
signature database. Here, every grid participant could be treated as an appliance. The
signatures could either be regarded as load profiles during entire days or weeks or treated
as routine load or dispatch patterns at specific times, as a PVinverter dispatch profile
during the morning for example. The former would allow for the detection of gradual
alterations in operation which should be sufficient for monitoring. The neural network is
trained on the so-defined signatures. Using the so gained information, the neural network
could distinguish contributions to the aggregated substation profile, as to yield the partial
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profiles timely. As an alternative, a hybrid Support Vector Machine/Gaussian Mixture
Model (SVM-GMM) [33] could be used. This method has the advantage of creating a
power feature model for appliances on its own when these devices are turned on, not
needing SM data. Nevertheless, it has to be determined if this approach can be used
on grid participants, as it is probably not easy to determine when to start collecting
the feature models as such a clear point of turning on is not given. The central non
functional requirement here is data retention. Data privacy laws are protecting data and
are inhibiting its usage. This means access to the data is limited or not possible at all.
One of the main aspects under this point is designing the function for data mining so as
to work in accordance with this requirement.

1.1.4 Software, Data Acquisition and Validation
To start implementing the concepts and approaches presented and to develop a monitoring
solution, a software framework is to be constructed. This framework must be used to
synthesize operational data employing grid simulation software in the first step. The data
generated in this manner ought to include operational data from distribution substations
as well as from grid participants at the low voltage level. The channels to be captured
should include currents, voltages as well as power flows at applicable time resolutions,
such as 15 minutes down to a few Hertz frequencies. The necessary sampling rates are
to be determined for the individual measurement points. The scenarios to be simulated
here should comprise regular operation as well as malfunctions, such as misconfigured
PVinverters or Electrical Vehicle Supply Equipment (EVSE) dispatching or consuming
energy in a manner that is not intended to support grid operation. The substation data
can either be captured at the medium or low voltage side. The low voltage distribution
grid participant data can also be collected using simulation. Data are to be gathered in
a 15-minute resolution to mimic SM data in order to evaluate disaggregation as well as
for the general purposes of monitoring method evaluation such as anomaly detection and
classification. These data ought to be collected at the corresponding connection point of
SMs in order to allow for as life-like conditions as possible. Furthermore, various grid
setups should be used in order to address the non-functional requirement of robustness.
As data from different grid setups have to be handled equally well, this aims at ensuring
robustness. The evaluation and testing of algorithms are to be conducted individually
but also in combination with other parts of the complete solution in order to evaluate the
entire ’pipeline’ of methods. When the algorithms are tested individually, the other parts
of the method are assumed to work with perfect accuracy. This also points to the most
rewarding and biggest potential for improvement of the entire solution. Key Performance
Indicators (KPI) are to be defined. These can be measures such as precision which is the
misclassification rate, or recall, which is listed in order to be able to assess how many
misconfigurations of the ones present actually get detected. The former is of interest in
order to prevent false alarms, and the latter in order to be sure the solution provides a
reliable monitoring solution. The non-functional requirement of quality is to be satisfied
here. Comparing the performance of the found solution against a benchmark can help
ensure that this requirement is met.
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Figure 1.3: General concept [34]

The challenges and approaches identified above lead to the concept depicted in Figure 1.3,
which shows how the said ’pipeline’ can be assembled in order to create an architecture
that allows monitoring of grid connected devices and their supporting functionalities.
The depiction shows transformers, the two overlapping rings, connecting the medium
voltage MV grid to the low voltage LV grid. Furthermore, it shows a PV unit as well as
loads, symbolized by the triangles, on the low voltage level.

The machine learning algorithms described before are to be applied to data spanning
from operational data of generation units or novel loads integrated with household load
profiles to transformers experiencing typical load profiles. This aims at developing a
control misconfiguration detection which is different from fault condition monitoring
approaches which can be found in literature [35]. Data of abnormal behavior as well as
of regular operation are necessary, as in the case of regular or incorrectly parameterized
control curves. At least party-labeled data is going to be needed to enable the training
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of algorithms for classification [36]. In addition to the generated data obtained through
simulation, real-world data are provided by DSOs or collected in laboratory settings that
emulate actual grid conditions. These data can then be used for validation of the methods
but also of the simulations generating data. Ultimately, the monitoring approach is to be
tested on a test site, which should be constituted by an actual part of the grid.

1.2 Aims and Research Questions
1.2.1 Research Questions
The research opportunity identified concerning monitoring decentralized grid connected
devices and detection of malfunctions which influence the provided grid supporting
functionalities was formulated in one main research question and refined by splitting it
into sub-research questions:

Main Research Question: Which approach, applying data driven algorithms
and methods on operational data at the medium and low voltage level is best
suited to detect misconfigurations of grid connected devices’ grid supporting
functions in a low voltage power distribution grid?

This question can be answered by taking several consecutive steps to treat the operational
data available. Methods for anomaly detection, disaggregation of load profiles, or
classification already exist. Combining and developing them to adapt to the task,
however, is yet to be studied. An architecture is therefore proposed which uses data
collected at medium voltage transformers as well as information about the low voltage
grid which is underlying as inputs. The architecture then applies various data driven
approaches on these data. The employed data encompasses measurements of currents,
voltages as well as power flows. Doing so should enable the detection and identification of
grid participants whose grid supporting functionalities show abnormal behavior, meaning
not the behavior they should display according to the configuration parameterized in
accordance with the specifications. Therefore, prior to a malfunction that changes this
configuration, the device is assumed to show behavior corresponding to the implementation
intended. Providing such a monitoring solution should allow, for example, to determine
automatically and remotely whether control schemes of distributed generation units
installed at the low voltage level are executed correctly.

The exploration and development of this approach entail several sub-research questions
(SRQ):

• SRQ1: How can abnormal transformer load profiles or other unusual sensor readings
be detected using solely aggregated measurement data recorded at medium voltage
substations? The first sub question is aimed at identifying these transformers and
their underlying grid segments amongst the great number of transformers in the
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domain of a grid operator. The main point of interest is how a stable state model
using operational data for each transformer can be built, as well as how deviations
from this model can be detected. Furthermore, investigations into which sorts of
operational data, such as voltage, currents, or power flows are of use for this task.

• SRQ2: How can abnormal transformer behavior be distinguished depending on
the fundamental cause? The detected anomalous transformer behavior should
be classified, given it is identified to be unusual. This means, finding the device
causing the detected abnormal behavior on the low voltage level responsible for
the anomaly on the medium voltage level. To do this, deviations of controllable
loads or distributed generation units from their behavior observed up to that point
could be detected. This could be implemented by employing the disaggregated load
profiles.

• SRQ3: How is it possible, based on the medium voltage data, to obtain information
about the behavior of grid connected devices on the low voltage level? Further
insights into the operation of the underlying low voltage grid are necessary, which
can be gathered based on the data employed to identify and classify the unusual
medium voltage transformer behavior in SRQ1 and SRQ2. This should help to
make statements about its exact cause. Exploring the disaggregation of the medium
voltage transformer load profile on the low voltage side can be used here to obtain
the load and generation profiles of individual customers or households and other
grid connected devices, such as Battery Energy Storage Systems (BESS), Heat
Pumps (HP), Electric vehicles EV, PV inverters and households as depicted in
Figure 1.4. It remains to be explored how this can be implemented through a data
driven approach, aided by smart meter data [37] to build load signatures along
with grid data and topology to improve performance.

• SRQ4: Which quality of data is necessary and from which sources to deliver a
certain detection performance? The needed type, such as power flow readings,
currents or voltages, and resolution of data is to be determined. What properties
of the data, such as generality in the data meaning, for example, data are collected
from different grid types, is necessary to create a robust solution is to be investigated.
Moreover, the desired performance is to be determined and evaluated by developing
or using certain indicators as Key Performance Indicators (KPI)s.

1.2.2 Aims
The overall aim of the thesis is to provide concepts and methods for a monitoring solution
of grid connected devices in power distribution grids. Therefore, the following four goals
are defined and put into relation to the research questions mentioned above.

• G1: Develop a data driven method to detect abnormal substation transformer read-
ings. A general approach to anomaly detection on the medium voltage substation

10



1.3. Methodology
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(LV)
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Figure 1.4: Voltage levels and components in power systems [34]

level is missing for implementing monitoring approaches for grid connected devices
in the electric power distribution grids. This approach should use operational data
and respect constraints on its availability. This goal is targeted by sub-research
question SRQ1.

• G2: Provide a method to relate abnormal behavior to its underlying cause. Having
insights into the background of anomalies is very important for a monitoring solution
to actually be a helpful tool. These insights can be provided by the classification
of detected anomalies into predefined types of misconfigurations, which are to be
looked out for. Thus, sub-research question SRQ2 is targeting this need to point to
the cause of an anomaly detected.

• G3: Design an approach to mine information about the low voltage distribution
grid given centrally aggregated data. As the cause of an anomaly rooted on the low
voltage level might not be easily determinable given just readings at a substation
level, some form of information extraction is necessary. This is to be done through
disaggregation of the aggregated medium voltage substation power profiles in order
to gain information about its contributors. This goal is addressed by sub-research
question SRQ3.

• G4: Assess the data needed and the performance yielded by a potential monitoring
solution. A monitoring solution is only viable if it works with the data at hand and
provides monitoring at a certain level of confidence. Therefore, an assessment of
data properties, quality, and origin as well as monitoring performance is necessary.
This goal is tackled by sub-research question SRQ4.

1.3 Methodology
In this section, the methodology is described which is applied to give answers to the
above-stated research questions and reach the aims of the thesis. As the research questions
are partly related to each other and sometimes depend on each other, approaches are
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sometimes applied and evaluated independently and combined later. Also, the combined
solution is then evaluated. Thus, the works and publications were not conducted in a
strictly chronological order. Neither do they fit necessarily to the same order as the
stated research questions. Especially SRQ4 spans all publications as it targets the data
foundations as well as performance evaluation. In general, the research questions were
answered using explorative research which was qualitatively evaluated by developing
proof-of-concept implementations, a method which is applied to certain case studies. In
addition, it is to be mentioned that a comparison of other methods found in literature
was already presented earlier. Following, a more elaborate description of the applied
methods for answering each of the research questions is given. Additionally, Figure 1.5
gives another overview of where the respective SRQs and Goals are to be localized and
which parts of the grid they can be assigned to. The symbols are the same ones for the
transformer, loads, and PV as elaborated above.

SRQ1 /  G1:
Abnormality

detection MV  LV 

SRQ3 / G3:
Disaggregation of

transfomer load profile

SRQ2 / G2:
Classification of

abnormality

SRQ4 / G4:
Data and performance

assessment

PV

Figure 1.5: SRQs and Goals localized and assigned to grid parts

Applied Methods for SRQ1 - Detection of abnormal behavior: As done initially a literature
review was conducted to identify suitable approaches to the problem of detection of
abnormal behavior. In general, two opportunities to detect abnormal behavior were
found: either detection performed on aggregated data at the substation level on the
one hand, or detection at the device level using data at the connection point of the
device. Both approaches were explored also while bearing the thought of combining
the two and their monitoring capabilities in mind. For the transformer-level detection
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approach traditional machine-learning methods were applied. The rationale for this was
that the properties of the substation data are grid specific since every substation connects
a different low-voltage grid to the medium-voltage distribution grid. Furthermore, the
data available is collected at a higher sampling rate and a higher dimensionality as at
the device level, since the sampling rate is higher as well as the number of channels,
and therefore, variable, recorded. Lastly, also changes in the underlying grid have to be
accommodated, and therefore, frequent retraining of the detection model is necessary.
This is only feasible with the more lightweight models provided by traditional learning.
These included Primary Component Analysis (PCA) [38] for dimensionality reduction
and feature extraction as well as the k Nearest Neighbours (kNN) [39], Decision Tree
(DT) [40] and Support Vector Machine (SVM) [41] classifiers to determine whether a state
is abnormal or not. At the device level, DL approaches were employed and compared
to one another and to a benchmark provided by traditional Machine Learning (ML)
methods. These were chosen for the opposite reasons as mentioned for the substation
level detection: data are only available at lower temporal resolutions as well as in a lower
dimensionality, as only for example voltage magnitudes might be available. Additionally,
the circumstances under which these data come into existence are mainly static, as
readings at the device level and the impacts of misconfigurations on them are rather grid
independent. Therefore, DL approaches that can extract general and universal features
of traces of misconfigurations in the data were chosen as the method to be explored here.
As the data available are time series data and temporal relations are crucial, mainly
Recurrent Neural Network (RNN) [42] approaches were under scrutiny. All of these were
compared and also hyperparameters were tuned putting in a lot of effort.

Applied Methods for SRQ2 - Classification of abnormal behavior: Also here a review of the
literature related to the classification of abnormal behavior was carried out beforehand.
As for the task of detecting unusual behavior, classifying it in order to point to an
underlying cause can be done both at the low voltage level device connection point as
well as at the medium voltage substation transformer level. At the device level, again
for the reasons of greater universal applicability as mentioned above, DL methods were
employed. As the data at hand were still time series, also here forms RNNs were mostly
employed. These included the basic RNN, the Long-Short-Term-Memory (LSTM) [43]
and Gated-Recurrent-Unit (GRU) [44] architectures of RNNs. Furthermore, Neural
Networks (NN) with attention mechanisms, as the Transformer architecture [45] as
the only non-recurrent architecture, as well as the R-Transformer [46], an architecture
combining recurrent properties with the attention mechanism, were applied. For each
type of misconfiguration to be detected a separate Neural Network was trained in order to
be able to use them to distinguish between causes of unusual behavior. This network was
trained using data from different grids as well as from different points in this grid, as the
so-trained models are to be used universally. A similar approach was taken on the task of
determining the kind of unusual behavior detected at the substation level. The already
mentioned PCA was used to extract features of the time series data, which is of the same
importance here as it is in the detection case due to the high dimensionality of the data
available here. Due to the individual properties of the underlying grids elaborated above,
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a separate classifier was needed for each grid, which is also supposed to be adaptable
to changes in the said grid. Moreover, either a separate classifier was built for each
misconfiguration which could potentially be the cause of the detected unusual behavior
or the misconfiguration was added as a faulty class. Meaning there are either multiple
binary classifiers per grid or a multi-class classifier. Also here, the kNN, DT, and SVM
classifiers were compared in order to determine the best performing but also the best set
of hyperparameters for each of the algorithms.

Applied Methods for SRQ3 - Disaggregation of substation load profiles: Based on a
literature review the available approaches were analyzed as presented initially. The
predominant form of disaggregation is generally known as Non-intrusive Load Monitoring
(NILM) [47] which refers to disaggregating household load profiles into its contributing
application load profiles, often using appliance signatures that are highly specific to a
certain appliance type, such as a dishwasher. Here the problem to be tackled is similar,
as the aggregated medium voltage substation transformer profile is to be disaggregated
into the individual load and generation profiles attributed to the devices or households
on the low voltage level. These profiles might be similar to each other in some cases,
however, they are never alike as the consumption pattern of the same household appliance.
This obliterates the possibility of using appliance signatures in a similar manner as they
are used in NILM. However, disaggregation is an important capability in order to
enable some of the other questions to be answered and goals to be fulfilled. Therefore,
another approach was chosen; For each grid setup, an array of simulations was conducted
calculating load flows and recreating a great number of operational situations. Load and
generation values were uniformly distributed in the profiles, ranging from the minimum
to the maximum value seen during regular operation, and assigned to the respective grid
participants. This created a dataset covering all expected states the grid could be in
and captures the voltage, current, and load flow values for these. Due to this, the grid
properties are engrained in this dataset. This dataset was then used to train an Artificial
Neural Networks in the form of a simple Feedforward Neural Network (FNN) [48]. The
so-trained model was then used to estimate the loads at the low voltage level given the
aggregated load at the medium voltage substation along with voltage measurements at
neuralgic points of the low voltage grid. Additionally, the same data was used to build a
Linear Regression (LR) [49] regressor, which was used as a benchmark for disaggregation.

Applied Methods for SRQ4 - Evaluation of data needs and performance: To answer
all the above-posed questions, data is necessary. Through literature research, certain
typical parameters and constraints were defined for the data. These data differ in
origin as well as in properties: they can stem from the medium voltage substation
level as well as from the meters at the connection points of devices on the low voltage
level. The former are of higher dimensionality and frequency, for the latter only voltage
data might be available and only at a much lower time resolution. The explorations,
assessments, and validations were conducted with data reflecting properties that are
typical for measurements available in the distribution grid at the moment. The substation
transformer level data was collected and used at a sampling rate of 4 Hertz and spanning
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Figure 1.6: Laboratory setups used for data collection [50]

various readings such as currents, voltages as well as reactive and active power flows. The
data collected at the device level are sampled at a 15-minute rate as they are supposed
to be close to SM data. Also, only a few channels are recorded, as voltage data alone
is realistically available and also sufficient to build a monitoring solution. Data were
collected in both a laboratory environment as well as through the usage of simulation.
The measurements taken in the laboratory were recorded phase-wise, which is done to
ensure the measurements are as close to a real-life setup where single-phase or three-phase
installation of devices might have an impact. Additionally, all misconfigurations were
enacted in different laboratory grid topologies and the measurements were recreated by
simulation in order to be able to validate the simulations in general. Figure 1.6 shows
parts of the laboratory and the setup of load banks and the PV controls which were used
to create misconfigurations.

The assessment and validation of the detection and classification methods elaborated
earlier were done on various use cases. One of these use cases was the already mentioned
PV inverter use case on which both the transformer level as well as the device level
approach was tested. A power factor control curve was the grid supporting functionality
to be monitored. The reactive power infeed of the inverter is regulated depending on
the active power. The local voltage is controlled through this functionality. Figure 1.7
depicts the control curve as well as its modeled misconfigurations. Two misconfiguration
examples, the dotted lines, as well as the correct control curve, which is the fully drawn
line. The one misconfiguration is an inversion of the curve whereas the other is simply a
flat curve, called ’wrong’ here. The latter does not provide reactive power at all. The
former has the inversed effect on the voltage as the original control by feeding in reactive
power of the opposite sign.
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Figure 1.7: Inverter configurations to be detected [50]

Data were collected both in cases in which misconfigurations like the misconfigured curve
were presented, as well as in regular operation. Entire days of data were collected in
this manner. Furthermore, data from these cases were synthesized. this allowed for the
generation of entire years worth of data. This allowed for the variation of the length of
the timeseries used for training and evaluation as well as taking into account a wide range
of grid setups. Grid models were mainly used in the form of synthetic grids provided
by open-source research projects such as the SIMBENCH project [51]. These reflect
common properties of electrical grids found in Germany for various kinds of grid types
and settings such as urban or rural and with or without PV proliferation.

In order to determine which of the methods is the best performing for certain tasks and
under certain circumstances, result metrics had to be chosen. As already elaborated,
the individual methods were tested separately, assuming perfect performance of the
rest of the methods, as well as in combination to assess the overall performance of the
monitoring solution found. An important result metric for the disaggregation of the
substation profiles into their contributors is the Mean Squared Error (MSE) [52] to assess
if the estimation of loads is accurate:

MSE = 1
n

n�
i=1

(Yi − Ŷi)2 (1.1)

whereas n is the number of samples, Yi is the target value for sample i and Ŷi is the
estimate value for sample i. For the detection and classification tasks, metrics like
Precision [53] which measures how many of the found anomalies or misconfigurations of
a certain class are actually misconfigurations, for which the number of true positives is
the most important count:

Precision = tp

tp + fp
(1.2)
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tp being the number of true positives, while fp is the number of false positives. Another
important metric is Recall [53], which makes a statement about how many anomalies or
misconfigurations of a certain category that are present were actually found, also taking
into account the false negatives:

Recall = tp

tp + fn
(1.3)

tp being the number of true positives, while fn is the number of false negatives, as in
misconfigurations that went unnoticed. The last two metrics of Precision and Recall can
be condensed into the very expressive F-score [54] metric:

F − score = 2 ∗ Precision ∗ Recall

Precision + Recall
(1.4)

where obviously Precision and Recall are being balanced off. therefore, the F-score reflects
quite well the practical usability of the method and solution for a user. For once, the
solution is obviously meant to detect as many misconfigurations as possible. However,
no false alarms are to be set off, as this can either entail costly and resource-intense
interventions or at least diminish the monitoring solution’s reliability. A high F-score, as
a result, implies that the found solution is applicable.

1.4 Outline of Publications
1.4.1 Applying Deep Learning-based Concepts for the Detection of

Device Misconfigurations in Power Systems
The first paper (cf. Chapter 2) describes the development and assessment of approaches
to detection and classification at the low voltage device level. Data was generated using
simulations for which synthetic grids were used [51]. In this manner datasets of up to
100k samples, whereas each sample is a timeseries of either a day or a week worth of
voltage data. This data is collected at 15 minute intervals at the connection point of
households with attached PV generation or EVSE. These PVinverters or EVSEs are then
either working correctly or experience a misconfiguration, altering their respective control
curves which impairs their grid supporting behavior. Data is collected in both cases.
The framework and implementations to set up simulations and model misconfigurations
to assemble such datasets are described in detail. Furthermore, various methods for
detection and classification of these misconfigurations among the samples are presented,
all of them DL methods as these are suited to extract fundamental features in this data
and therefore best suited as the initial assessments and benchmarking with traditional
ML methods showed. Also, hyperparameter tuning was conducted in order to determine
which method is best suited. All of this is implemented in the framework, and elaborations
on how to conduct such assessments are integrated in the paper. This exploration of
DL methods for the application on the device level showed that the R Transformer
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Figure 1.8: R Transformer architecture [50]

architecture showed the best performance. The R Transformer, sketched in Figure 1.8,
captures time dependencies in the time-series data locally using a RNN. Furthermore,
attention mechanisms are employed to capture these dependencies on a global scale over
the entire time-series. So-called keys are used by the attention mechanism encoding
the source data feature, this can be the features of some part of the entire time-series
considered. Moreover, queries are employed, which for instance hold the hidden states
related to the last output. A score function which defines the relationship between keys
and queries and is used to decide the next output. This score function is called the energy
score. This score marks the impact of the queries in the output, and therefore also the
impact of the matched inputs which are encoded in the key.

The R Transformer, as the only architecture or method in general under scrutiny, was
able to detect and classify misconfigurations also when fed with data collected in multiple
grids. This means the approach is applicable grid unspecifically. Other, traditional, ML or
DL approaches did not manage to fulfill this requirement. Therefore, the R Transformer
architecture found was selected as the best-fitting method for the device-level monitoring.

1.4.2 Data Driven Transformer Level Misconfiguration Detection in
Power Distribution Grids

This second paper (cf. Chapter 3) focuses on the methods and data used for the
development and assessment of detection and classification approaches on the medium
voltage substation transformer level, but also on the general assessment of data properties.
For this reason, data were collected in a laboratory environment and later recreated using
simulation. The data was analyzed and the simulations were verified in this manner. The
data collected comprised of 15 highly dimensional time-series for each operational scenario
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such as regular operation or some type of misconfiguration present. The data comprised,
amongst others, voltage, current, and power flow data. Each time-series is the equivalent
of one day of grid operation data collected both at the substation transformer as well as
at the connection points of households with and without attached PV generation. The
data were collected at a sampling rate of 4 Hertz and in two different gird setups. The
position of the PV generation was altered between the two in order to assess the impacts
of renewable generation on the data as well as on the detection performance. Figure 1.9
shows laboratory data on the left side and its recreation using simulations on the right.
Further clustering analyses were conducted to show that the simulation data shows the
same fundamental properties regarding the similarity between time-series samples.

These timeseries data were then condensed into single sample using PCA, each sample
representing one day of data. The literature review and an assessment of requirements
suggested using traditional machine learning algorithms for detection and classification
in this case. The kNN, DT, and SVM classifier were compared, also under variation
of hyperparameters such as the number of neighbors or the kernels. As a result, the
SVM was identified as the best-suited method for the transformer-level monitoring.
These results were consistent for both the data collected in the laboratory as well as the
simulation data, giving further validity to the use of simulation data when developing or
operating monitoring solutions.

1.4.3 Data Driven Misconfiguration Detection in Power Systems with
Transformer Profile Disaggregation

This paper (cf. Chapter 4) sketches a complete monitoring solution by linking the
medium voltage substation transformer level data to the low voltage device level data
through disaggregation. This disaggregation helps gain information on loads on the
low voltage level. In addition to the PVinverter use case already analyzed in 4 a DSM
use case is added. In the DSM use case, a load has either functioning DSM control
which shifts its demand to match the generation of an attached PV better, or simply
no control. Also for this use case, data was collected in a laboratory environment and
recreated through simulation. Two new grid setups were used, also here the PV position
was varied, and therefore the load which is DSM controlled. Using data of both use
cases the disaggregation method was developed: an ANN approach was compared to
LR, finding that they mostly perform equally well. However, the LR had a slight edge
over the ANN in grids with few loads and many extensive lines. As necessary inputs
for the simulation, the substation data along with voltage measurements at crucial
points at the low voltage grid along with an estimate of PV production in the grid
were determined. Given these, the disaggregation showed a very good performance in
estimating the loads in the grid. Having this disaggregation at ones disposal, the overall
monitoring functionality could be completed: a certain period of time’s data are used for
calibrating the monitoring solution. In the case evaluated this were 14 days’ worth of
measurements. These measurements are assumed to be taken while all grid connected
devices’ grid supporting functionalities work as intended. The measurements are, again,
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Figure 1.9: Laboratory (top) and simulation data (bottom) by measurement point (note
that the measurements in Setup A with an inversed control curve are not available due

to lab access time limitations).
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1.4. Outline of Publications

Simulated sample  
(malfunction case)

Measured sample  
(regular operation case)

Figure 1.10: Sketch of SVM classifier [50]

condensed into a single sample for each day using PCA. For each of these measured,
correct, samples, an ’incorrect’ sample is simulated. Simulations are employed here as
there is no other way of knowing how a misconfiguration of a certain type would have
impacted the grid data on this particular day. The simulation uses the load values gained
through the disaggregation and incorporates a certain misconfiguration in order to yield
this sample of transformer data of a malfunctioning case. Also here a SVM was found
to be the best-performing method. Figure 1.10 illustrates the method in general and in
particular the working principle of the SVM; the classifier is built by finding a decision
boundary that separates the classes and maximized the margins as in the distance to
the samples. Here a simple example of a binary classification is shown, also multi-class
detection and classification for more than one misconfiguration is possible.

The simulations, the necessary data mining through disaggregation, the dataset creation,
and updates on the SVM model are done once a day and can be done centrally. This allows
for a reliable monitoring solution which regularly scans for misconfiguration without
manual intervention while still keeping computational costs low.

1.4.4 The DeMaDs Open Source Modeling Framework for Power
System Malfunction Detection

The last paper (cf. Chapter 5) presents the software framework designed to enable
filling the identified gap in monitoring capabilities for smart grids. The framework
provides modeling and data generation, processing, and analysis capabilities to develop
and assess functional monitoring solutions. It aims to detect malfunctions during the
regular operation of grid connected devices and can be used in arbitrary grid setups,
and malfunctions can be modeled freely with a variety of detection methods employed.
The framework is entirely written in Python and allows for the integration of different
data sources such as collected real-world or laboratory data or data generated using grid
simulation tools. The work elaborates in detail on the structure of the framework as well
as on the Python libraries used and the resulting dependencies. The framework provides
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three main classes: Deep Learning and Transformer Detection, which serve as isolated
test beds for methods, and Detection Application, which allows for the integration of
the individually assessed methods into a practically applicable detection application.
The framework’s impact is mainly threefold: it allows for the development of detection
methods on a device level, at the transformer level, as well as it provides development and
testing capabilities for a full detection application. The framework is designed in a flexible
manner, allowing users to exchange parts of it and use whichever means of grid simulation
or data mining technique they prefer. An example configuration file is presented as
well in order to illustrate the usage of the framework. Using this configuration file, an
illustratory example of how the framework can be employed is presented. The example
provided shows how grid simulation can be used to generate data on electric vehicle
charging equipment misconfigurations. The misconfiguration is an inverted charging
power control curve dependent on the local voltage. The example also shows how Deep
learning can then be employed and tested on this use case as well as which performance
metrics such as the F-score are provided. The metrics can on the one hand be used to
evaluate the method, and on the other hand to tune hyperparameters in order to enhance
the performance of the found solution.

1.5 Contributions and Conclusions
This work contributes to the state of the art in different areas regarding the stated
problems and research questions presented in Section 1.2. In the following, the main
contributions of the published articles are summarized and the fulfillment of the goals
derived from the research question is discussed. Finally, conclusions are drawn and an
outlook on future work is given.

1.5.1 Scientific Contributions to the State of the Art
G1: Develop a data driven method to detect abnormal substation transformer readings.

As the monitoring capabilities in distribution grids are limited to readings at medium
voltage substations as well as to SM readings, if usable, this goal was tackled on these two
levels. Therefore, suited detection approaches were developed and tested for both data
sources: traditional ML solutions were employed at the substation using transformer-
level data sampled at higher frequencies and at more channels. Furthermore, frequent
retraining is necessary as the solution has to be fitted to the individual grids. Due to
this, a reasonable computational cost of the method used is beneficial. The best fitting
solution was determined, also by tuning its hyperparameters. At the device level, DL
methods were used, as they were deemed better fit to the constraints of data sampled
at lower frequency and fewer channels, as well as universal applicability regardless of
the grid environment. Also here the best performing approach was singled out, as well
as hyperparameters tuned and architecture exploration conducted. In this way, a novel
architecture using a RNN and attention mechanisms was created. The approaches on
both levels yield a daily diagnosis of the regularity of the state of grid operation.
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G2: Provide a method to relate abnormal behavior to its underlying cause.

After having detected an abnormal sensor reading at a substation, knowing what caused
this reading is very valuable. Again, both data sources, meaning the medium voltage
substation measurement data as well the data at the connection point of devices at the
low voltage level are utilized in order to gain knowledge about the cause. The same
constraints and specifics mentioned above about these data with regard to sampling
frequency and dimensionality as well as assumptions about grid-specificity of the solutions
apply. Therefore, DL approaches were chosen for the device level classification task here as
well. Also traditional ML methods were used for the classification of abnormal behavior
at the transformer level. This classification was enabled by modeling and applying
misconfigurations of grid connected devices during grid operation and capturing the
produced grid operational data. This also allowed to build classifiers for either groups of
misconfigurations, as PV inverter misconfigurations, or specific misconfiguration, such as
an inverted PV inverter reactive control curve. On both available levels, transformer and
device level, a daily statement about the type of the abnormality is made.

G3: Design an approach to mine information about the low voltage distribution grid given
centrally aggregated data.

As device level measurement data might not always be available, or only to a certain extent,
a data mining solution is necessary to ensure the necessary insights into the operation of
the low voltage level grid are gained, given aggregated medium voltage substation data.
This solution was found in disaggregation of the medium voltage substation load profiles
into its contributing low voltage grid load profiles. This disaggregation was implemented
through load estimation performed by either an ANN or LR. The inputs determined for
a well performing solution are for once the medium voltage load profiles, but also voltage
measurements at neuralgic points in the low voltage grid as well as power generation
values. Both methods are able to determine the distribution of loads well when provided
with a dataset containing typical grid operational data of a certain grid along with an
estimate of, for example, PV power generation. This dataset can be obtained through
grid simulations requiring only historic minimum and maximum load values of the low
voltage level devices in order to be able to cover the operational states of interest of the
grid. In this manner, information can be mined to enable the daily monitoring of the
power distribution grid.

G4: Assess the data needed and the performance yielded by a potential monitoring solution.

For all three tasks, detection and classification of abnormal measurements as well as
data mining, data was collected and assessed. The data collection was both done in
a laboratory environment and through simulation. The gathered laboratory data was
recreated using simulation, validating the simulations and its results also for further use
in development and assessment of solutions. Based on the laboratory data, but also on
data generated using synthetic representative grid models along with grid simulations,
the approaches for the respective tasks were developed and the solutions found were
assessed. The necessary input data quality and properties were evaluated, as well as the
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necessary quality of the results of the disaggregation in the form of load estimation used
for data mining. These evaluations were done by defining KPIs such as the MSE for the
disaggregation performance or the F-score for the tasks of detecting and classifying an
abnormality. The solutions found were also benchmarked against simpler approaches
in order to justify their applicability. In this manner, the prerequisites for the methods
chosen and the necessary quality of the solutions found was determined.

1.5.2 Conclusions

The changes the energy system is undergoing triggered by the need for sustainable
energy generation and consumption also raise novel challenges for grid operation. These
new generators and loads are often installed decentrally in places where they used
to be uncommon. However, the grid is, due to legacy issues, built to only statically
distribute energy decentrally. New capabilities are therefore introduced to control these
new load and generation devices in order to support the grid operation. For the same
historic reasons as already mentioned, the distribution grid lacks monitoring capabilities,
making it impossible for the grid operator to ensure these grid supporting functionalities
are actually delivered. Therefore, a great need for novel distribution grid monitoring
solutions is present and a research gap concerning approaches to them was identified.
The developed complete monitoring solution fulfilling all the goals elaborated above is
sketched in Figure 1.11.

At first, data at the medium voltage substation are measured along with data at the
connection points of grid participants at the low voltage level. The data collection
can happen through Smart Meters at the low voltage level and through substation
measurement points at the transformer level. The operational data from all these sources
are then fed to the monitoring solution, which was developed under the DeMaDs (Data
Driven Detection of Malfunctioning Devices in Power Distribution Systems) framework.
DeMaDs then employs the aforementioned data driven methods to deliver its monitoring
capabilities. The data is generally used to build models of the grid state in regular
operation, as well as of states in which grid participants’ grid supporting functionalities
experience misconfigurations. These models are then used to determine whether the grid
is in an irregular operational state, therefore detecting anomalous grid behavior. The
misconfiguration specific models are also used to determine the cause and origin of such
anomalous grid data. On the medium voltage substation level, this works as follows:
transformer-level operational data is used for a calibration period of about two weeks.
This data is considered to stem from regular grid operation and serves as daily samples of
the same. In order to obtain the respective irregular grid operational data, data mining
and simulations are necessary. The aggregated transformer level data is disaggregated
into the contributing load profiles at the low voltage level using a load estimation model
trained on generic grid operational data stemming from simulations of the specific grid
monitored. This load data then allows for the simulation of the same grid operation
scenario, just with a misconfiguration present somewhere in the grid. This yields another
set of operational data at the transformer which is used as a sample of anomalous grid
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behavior. The so-built model is used to determine whether a misconfiguration is present,
and if yes, of which type it is. The algorithms used here are PCA for data preprocessing,
SVM to build the detection and classification models, and ANN for disaggregation. This
approach on the substation level is complimented by detection and classification on the
device level, which the R Transformer DL method is employed for. Here, the approach
is fundamentally the same as grid simulations are used to create grid operational data
of regular and irregular grid states on which the DL model is trained. This model is
then used to detect anomalous grid behavior and make a statement from which type of
misconfiguration it stems. As the models are to be universally usable, data is simulated
using various different grid models. The trained models can either be used centrally by
feeding SM data to them or rolled out in an edge-computing manner so as to process SM
data locally. The former can be difficult at times due to data privacy or communication
infrastructure issues, whereas the latter avoids these difficulties, however at the price of
greater installation efforts. In the case of local SM data processing, only a flag containing
the type and location of misconfiguration detected needs to be sent to the central DeMaDs
monitoring application. Generally, due to the detection and classification of anomalous
behavior on the local level, a more reliable statement in general but specifically about
the location of a misconfiguration is possible.

The chosen approach of a combined grid-specific medium voltage substation transformer-
level approach using traditional ML with a universally applicable, local DL method
allows for the envisioned and need monitoring capabilities. The DeMaDs framework
provides this monitoring without much cumbersome customization of the solution as
well as with as little need for training for users, such as a DSO’s control room crew,
as possible. This is due to the fact, that the transformer level detection only requires
a certain calibration period along with historical minimum and maximum load values.
The simulations and load estimations that are needed to build the final classifier can
also be conducted automatically during that time, after which the solution is ready to
use. If changes in the grid occur, a retraining of the model can easily be conducted
since the required computational costs for this are modest. Comparably effortless are
the installation and operation of the local monitoring approach: as the models used for
classification and detection are pre-trained, they solely need to be rolled out, as described,
either centrally or locally on edge devices. These models require high computational
effort in training, however, only limited computational resources are needed when they
are fed with data in order to make statements about a certain grid connected devices
state. For both monitoring approaches, the integration of new types of anomalies to
be detected only requires the modeling of the respective cause, as in the modeling of a
misconfiguration of a grid supporting the functionality of a device in the form of a control
curve. Then this new anomaly model is added to the framework and new detection
models can be created and rolled out without much development effort, allowing for
high adaptability and scalability of the solution presented. Furthermore, no information
about specific grid codes or intended configurations is needed as the DeMaDs monitoring
framework only uses operational data. The availability of operational data is, therefore,
the only real requirement, which is not an issue on the substation level, whereas it can be
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guaranteed by using SM data only locally on edge devices and transmitting flags. The
respective sensors are already widely spread today. This makes major upgrades on the
communication infrastructure or changes to the metering capabilities unnecessary for a
practical and useful application of the monitoring framework.

1.5.3 Outlook
The work presented offers the basic layout of a monitoring solution, along with tests
and validation on laboratory data of the same. A variety of misconfigurations as sources
of anomalous grid behavior are covered. These include misconfigurations of PVinverter
reactive power control curves, load DSM controls, or EVSE charging power controls.
However, further use cases are to be included in order to be covered by the monitoring
framework. These might encompass the monitoring of heat pumps or battery energy
storage systems. Furthermore, periodical revisions of the algorithms and methods
employed are to be conducted in order to keep up with recent developments in the field
of ML and DL. Also, regulations aimed at data privacy and the resulting availability
and usability of data ought to be under constant evaluation as the legal constraints
have quite an impact on how the monitoring can be conducted. Concluding, a field
test in various grids under real-life conditions is to be conducted. This is to test and
further develop the method and especially its robustness under different circumstances
and when confronted with different data qualities. Also, the influence of distortions or
faulty measurement readings along with fitting countermeasures could be assessed by
conducting extensive field testing. Ultimately, the monitoring solution developed is to be
rolled out and integrated with DSOs’ existing Supervisory Control and Data Acquisition
(SCADA) systems as a decision support tool for control room staff. This would effectively
facilitate grid operations by allowing DSOs to react to misconfigurations more quickly
which otherwise might go unnoticed and harm the safe and reliable operation of the
grid. This will be true, especially in the future, where decentralized renewable generation
and novel loads will be even more widespread, and manual checks on them will become
completely unfeasible for a lack of operational as well as human resources.
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Abstract: The electrical energy system is undergoing major changes due to the necessity
for more sustainable energy generation and the following increased integration of novel
grid-connected devices, such as inverters or electric vehicle supply equipment. To operate
reliably in novel circumstances, as created by the decentralization of generation, power
systems usually need grid supportive functions provided by these devices. These functions
include control mechanisms such as reactive power dispatch used for voltage control
or active power reduction depending on the voltage. As the main contribution of this
work, an approach for the development of the detection of misconfigured ( e.g., wrongly
parameterized control curve) grid devices using solely operational data is proposed. By
generating and analyzing operational data of power distribution grids, a Deep Learning
-based approach is applied to the detection problem given. An end-to-end framework is
used to synthesize and process the data as well as to apply machine learning techniques
to it. The results offer insights into the applicability and possible ways to improve the
proposed solution and how it could be employed by grid operators. The findings show
that DL methods, in contrast to traditional machine learning, can be used for the problem
at hand and that the framework developed offers the necessary tools to fine-tune and
scale the solution for broader usage.
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2.1 Introduction
Today, especially power distribution system operators (DSO) have to cope with new
challenges arising due to the transformation of the energy system. A major shift in
paradigm is the increasing penetration of decentralized power generation [1], which
leads to technical challenges in the transmission and storage of power. Standing out is
the impact of high photovoltaics (PV) proliferation, but also of other grid-connected
devices such as electric vehicle supply equipment (EVSE) [2]. In case of generation
outdoing demand locally, bidirectional power flows on different voltage levels as well as
voltage rises are the consequences [3]. If the voltage is lifted too much this can lead to
voltage band violations, which consist of voltages above or below the admissible limits.
Control mechanisms are employed to allow for a reasonable decentralized generation of
renewable energy without creating said violations. For this purpose, voltage regulation
is the preferred strategy [4], which is made possible by generation units implementing
grid supporting functions. These approaches target the frequency as well as the voltage
amongst others. Apart from limiting the dispatch of active power, which is a possible
solution in the EVSE case [5] of undervoltage, one of the most common ways to influence
the voltage is via the power factor and followingly the reactive power exchanged with
the network, usually controlled by a local droop control [6].

Such controls are configured, as the grid codes demand, in controllable decentralized grid-
connected devices. However, they are configured once at installment and subsequently
not monitored. As a result shifts in configuration, such as a reset of a control curve, can
go unnoticed given the current layout of the grid’s metering infrastructure and the DSO’
overall metering capacities.

Figure 2.1 illustrates the functions of these reactive power controls; on the left the power
factor (cosϕ) is varied depending on the active power (p) dispatch, allowing for reactive
power (p) infeed, whereas the right side shows the impact of Q on the voltage (V) [7].
The active power control depending on the voltage applied to EVSEs is described in
more detail later in the work.

To ensure that these grid supporting functions are actually delivered, DSO need to
monitor the operation of grid-connected devices, for instance, PV inverters or EVSE,
as to be sure that the network works in a stable manner. As the available information
about grid components’ characteristics is often limited, a data-driven approach is a
favorable option [9] for a monitoring solution that is actually feasible and therefore useful
to DSO. Such a solution can be crafted in a way as to only use operational data of
the grid-connected devices, in order to detect misconfigurations of the same. These
deviations of configurations from the specifications – as defined by grid codes – can have
two reasons; firstly, a different configuration than the normative one can be purposely
implemented. Secondly, the configuration can change due to malfunctions or faults. Here
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Figure 2.1: Control schemes: a) p(p), b) voltage droop [8].

misconfiguration stands for the latter meaning a deviation from previous implementation
of a control curve that is assumed to be initially correct. Figure 2.2 depicts how these
terms are linked and what is needed to detect anomalies with respect to the type of
anomaly. It becomes obvious that for the detection of involuntary misconfigurations
only detection of the execution of functionalities is necessary, which does not require
knowledge about an implementation code or the fundamental specification and, thus,
follows a black-box approach. Therefore, only operational data is used for this purpose.

This detection of misconfigurations while only having operational data, meaning no
topology information or information about the configuration other than the previous

Implementation
Code

Grid Code
(Specification)

Implementation
(Configuration)

Execution
(Behaviour)

specifies

determines

Operational Data

needed for
anomaly detection

needed for
anomaly detection

Figure 2.2: Definitions of terms and requirements for the detection of wrong implementa-
tions (code needed) respective misconfigurations (data needed).
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one ingrained in the data, is becoming more and more relevant as the transformation of
the energy system paces on with the installment of PVs and EVSE. At the same time,
more and more data at the connection points of these devices, meaning at the Smart
Meters, are becoming available and could be used. However, there is no approach to this
particular problem and therefore the means of developing and assessing novel ones are
needed. This leads to the formulation of the condensed question to be answered:

What approach, applying data-driven methods and algorithms solely on operational data at
Smart Meter level is suited best to detect misconfigurations of functions of grid supporting
devices in a low voltage distribution grid?

To answer this question a number of objectives have to be fulfilled. These are:

• Obtain data that reflects cases of relevant misconfigurations in operational grid
data.

• Assess and process this data to make it usable for the development of detection
methods

• Select and apply detection methods to the data

• Pick and refine the best-suited method found

Therefore, the main contribution of this work, which is an invited, revised, and extended
version of [10], is the detailed description of an end-to-end framework that can be used
to handle grid operational data and to detect misconfigurations. First, this framework
is employed to either select or generate, clean and label data for further use. This is
necessary since grid data in the form needed is almost impossible to obtain. DSO have
no metering in place that would yield data indicating whether a misconfiguration is
present or not. The so-created datasets are then preprocessed by, for example, scaling, in
order to make it fit for usage by, and training of the detection methods. Subsequently,
various detection mechanisms can be applied to the data, which lastly are evaluated and
compared against each other. In this work, Deep Learning (DL) approaches are under
scrutiny, in addition to being benchmarked against traditional Machine Learning (ML)
approaches. DL approaches are chosen for investigation because of voltage curves being
highly non-linear and, therefore, features can not be easily derived from them at a low
sampling rate as the one of Smart Meter data. However, our previous work indicates a
detectable impact of misconfigurations on the voltage [11]. This makes DL an interesting
approach [12]. The extension over the conference version [10] consists of an extra use
case concerning EVSE misconfigurations, under investigation along with a benchmarking
against traditional ML methods as well as sensitivity analysis concerning the parameters
of the DL models and their training.
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The remaining part of this work can be summarised as follows: In Section 2.1 a detailed
discussion of monitoring needs and issues in power distribution grids is conducted.
Section 2.2 describes the state-of-the-art related to malfunctions in power systems as well
as the usage of artificial intelligence for detecting them. In Section 2.3, the functionality
and implementation details of the detection framework are lined out and in Section 2.4 a
description and results of the approaches explored using the framework are presented.
Finally, Section 2.5 provides the discussion, conclusions, and an outlook about potential
further work.

2.2 Related Work

2.2.1 Classical Data Analysis
In the work of [13], electricity consumption data is modeled using a combination of
polynomial regression and Gaussian distribution. This is done to detect anomalies in the
electricity demand of several schools. This approach could be used for anomaly detection
of grid-connected devices, however, the models have to be fitted individually for each
device making the application less suitable for broad usage.

In [14], consumption patterns of medium voltage transformers at substations are clustered
using algorithms, such as k-means and fuzzy c-means. Abnormal consumption is then
identified by employing the Local Outlier Factor (LOF) of hourly load data as a measure.
Indicators such as irregular peak unusual consumption, broadest peak demand, sudden
large gain, and nearly zero demand unusual consumption are used as features here. Even
if not applicable to this particular problem, this shows that there are features present
that allow for general detection of anomalous behavior from operational data.

[15] proposes a fault detection in microgrid using traditional machine learning approaches
such as Support Vector Machine (SVM), k Nearest Neighbor (kNN), or Decision Trees
(DT) in the form of Random Forests. Data of high resolution is used as well as the grid
topology known. However, as only Smart Meter measurements are to be used which
are only available in a low time resolution, also topology detection is not feasible [16]
for the problem at hand. The low resolution and lack of topology knowledge make this
approach impracticable here since features could probably not be extracted. Nevertheless,
the traditional ML methods of SVM, kNN, and DT are to be tried out and used as a
benchmark for other approaches.

2.2.2 Feature Identification using Artificial Intelligence Approaches
Recurrent Deep Learning Architectures

This can be exploited by using DL. As elaborated in [17], Recurrent Neural Networks
(RNN) can be used to classify time series data; an Elman network structure is applied
to classify a time series. This includes a feed-forward part and a memory part which
feeds network activation’s from a previous time step as inputs to the network to influence
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predictions at the current time step. This is achieved through back propagation through
time (BPTT); here the gradient of the cost function is propagated with regard to the
parameters of the network, like weight matrices, for every time point of the sequence and
each layer by unfolding the recurrent connections through time [18]. The parameters are
updated using the gradient in a way that minimizes the cost function. The cost function is
selected according to the task, such as classification or regression [19]. For classification a
cost function as the cross-entropy loss is a common choice since it yields a linear gradient
structure, as does the mean squared error used for regression. This is of particular
importance to avoid a vanishing gradient while back-propagating it through time [20].
Processing the input as a sequence adds a temporal dimension to the information gained
and allows a more flexible window of information to be used in contrast to a feed-forward
network. Here, the most frequent classification result yielded by the output neurons is
used as a classification result. This might be feasible for grammar checking but might
need alteration for the problem addressed in the work here. Especially because RNNs
are mostly used for prediction, they have trouble with longer time-series because of a,
regardless of the cost function, disappearing gradient and, additionally also due to their
limited features w.r.t. parallelization [21].

The RNN approach nevertheless has some deficiencies, most prominently its lacking
ability to capture long-term dependencies in sequential data, as lined out in [22]. In the
Long Short-Term Memory (LSTM) RNNs recurrent hidden layers, so-called ‘memory
blocks’ are contained; they are made of memory cells that store the network temporal
state using self-connections and control the exchange of information through ‘gates’,
which are multiplicative units. Namely, these are the input, output, and forget gates,
which, respectively control the inflow or output of activation’s to or from the cell or scale
its internal states before using them recurrently, which can be interpreted as forgetting.
This makes LSTM RNNs an interesting approach when working with longer time series.
This is also due to the LSTMs’ ability to filter non-relevant inputs through using their
gates giving it an advantage when modelling dependencies that vary over time [23],[24].

Another approach to model long-term dependencies better are Gated Recurrent Unit
(GRU) RNNs; they address the same vanishing gradient issues as the LSTM approach
when back-propagating the gradient of the cost function through time using a simpler
structure. Only two gate types are employed by the GRU; an update gate that controls the
inflow of information as well as a reset gate that decides over forgetting past information
[25]. In contrast to the LSTM architecture, the GRU architecture allows for discarding
of past information entirely. Still exploding gradients remain an issue, which is however
tackled by gradient clipping. This makes the GRU RNN have fewer parameters in
comparison to an LSTM RNN and is, therefore, more lightweight and has been observed
to outperform the latter in several tasks. This is also the case for univariate time series
classification, which is applicable for classification problems in power systems when, for
example, only voltage data is available [26]. Because of these properties, GRU RNNs
could also be interesting for a distributed application in a detection mechanism and also
for frequent retraining if needed.
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Feed-forward Architectures with Attention Mechanisms

An alternative is posed by so-called Transformer architecture [27]. Here, attention
mechanisms are used that enable capturing of global dependencies between the input and
output, regardless of the positions of the sample points in the time series or sequence.
Here, no recurrent computation is used, allowing for better parallelization. Instead
‘self-attention’ is employed to reach a representation of a sequence through setting the
positions of the sequence in relation . An encoder-decoder setup is used, where it performs
a mapping of the input to an internal representation, which the decoder then processes
to generate the output auto-regressively. The encoder and decoder both consist of
feed-forward networks as well as multi-head self-attention mechanisms. This attention
mechanism projects a query and key-value tuples on an output which is calculated using
the weighted values. These weights are computed in turn on the query and the respective
key. This yields an attention value for every query-key-value item and therefore a
representation of the sequence. Multi-head attention now enables processing information
from a higher dimensional query-key-value set at various positions in contrast to a single
attention head, which is helpful. Additionally, positional encodings are simply added to
the initial inputs to insert some hint about the positions of the points of the sequence for
the feed-forward networks. This non-recurrent approach could be also a computationally
interesting option.

Recurrent Architectures with Attention Mechanisms

The R-Transformer concept follows a similar idea as the aforementioned transformer
approaches [28]. The main improvement proposed over the regular transformer consists in
additional capturing of the sequential information in the data. This is done by positional
encoding in the regular transformer, which only yields a scant impact [29], and is often
limited to a certain sequence length to be able to set into a context [30]. If positional
information is to be retained for a flexible sequence length in an effective manner, high
efforts are required to tailor such solutions [31]. These disadvantages take their toll on
the robustness of a solution built on traditional attention mechanisms. Furthermore,
local structures are neglected because of the sheer number of other positions which allows
only for a small signal at a local position, even if these structures might be of quite an
importance. To combat these flaws, the R-Transformer uses local RNNs sliding over the
sequence, applying windows of a defined length to encode the sequential information in
the data and capture local structures in the time series. Thus, latent representations are
generated equally for each of the windows treated by the local RNN and are not dependent
on any of the other windows. Therefore, information about its local surroundings is
ingrained in each data point’s representation. Additionally, by sliding the RNN over
the time series, the global sequentiality of the data is taken into account as well. The
effect of the local RNNs can be compared to a one-dimensional convolution operation,
which has the advantage of being parallelizable, but also taking into account sequential
information. The gained and encoded local information of one position is then, like in
the aforementioned transformer, directly connected to all other positions in the sequence
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through the multi-head attention mechanism. In a similar application to the one at hand
(MNIST dataset with 784x1 sequences), the R-Transformer outperforms both the regular,
convolutional Transformer as well as simple recurrent approaches such as LSTM and
GRU, whereas an RNN performed significantly worse than all other approaches. This
makes the R-Transformer an interesting approach.

2.2.3 Summary and Open Issues
Summarisingly, the work on anomaly detection (see Table 2.1) in the electrical grid
domain shows that there are approaches that are not flexibly applicable to new devices or
are only applicable at a transformer level or with more information or data of properties
which is not available. However, the domain of DL-based approaches offers methods
that are, at least in theory, well suited for developing a solution to bridge this gap.
Nevertheless, no applications to this specific problem can be found in the literature, and
therefore, explorations and assessments of these have to be conducted. This is done
by the introduction of a novel framework allowing for generating and/or handling data
that is specific to the detection problem at hand. The framework also allows for the
development and assessment of detection applications, in order to set up, pick and refine
data-driven methods.

Table 2.1: Non-functional requirements (NFR) fulfilled (X) or unfulfilled (–) by approaches
in related publications cited.

Reference
NFR [14] [13] [15], [16] [17], [21] [22] - [24] [18], [25], [26] [27], [29] -[31] [28]

Scalability – – – – – – X X
Adaptability – – – X – X X X
Integrability X X X X X X X X

Usability X X – X X X X X
Data Retention X – X X X X X X

Robustness – X – X X X – X
Quality X X – – X X X X

2.3 Scenarios for Monitoring and Detection
2.3.1 Employed Framework
To overcome the shortcomings of present approaches for detecting misconfigurations by
the development of a new method, an environment is introduced which is able to handle
different detection scenarios, grid setups, and data properties. In general, the approach
to detecting devices in misconfigured states is novel in itself. This kind of framework
(see Figure 2.3) is used to either synthesize or clean, process, and analyze data as well
as apply ML and DL methods to it. Either real-world operational grid data or data of
simulations using grids that are specifically designed for simulation purposes – like the
ones that form the SIMBENCH[32] project – are being used.
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Figure 2.3: Framework used for generation and handling of data of misconfigured devices
in power grids as well as for assembling datasets using this data and applying and
assessing methods and algorithms for misconfiguration detection.
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If operational data is to be synthesized, the grid data used is extracted from the respective
files and prepared for further use in simulations, as indicated in Figure 2.3 under ‘Grid
Data’. Those are data such as the number of connection points and the specifications
of their connections and the substations as well as the consumption and dispatch of
loads and generation in the grid. In this manner, the grid topology is checked and
generation and load profiles, as well as control curves, are defined and handed over to
the grid simulation software. This is done in the ‘Grid Preparation’ box. The next
step is ‘Grid Setup’: a grid model is set up in a grid simulation software by placing
elements, and adding specifications and profiles to these elements. Using simulations
another plausibility and – if necessary – scaling of, for example, loads is conducted and a
final grid model is yielded. This model is then used for running simulations in which
parameters like the time resolution of the data synthesized, the misconfiguration of
interest and its position, as well as the control curve to be monitored, can be varied, as
indicated under ‘Scenario Settings’. The simulation then delivers operational data of the
grid including data of a malfunction, which is then labeled and saved. This is represented
by the ‘Simulation’ box which specifies the simulation method as quasi dynamic load flow
simulations, which can also be altered to be a simulation of individual load flows. These
individual load flows are necessary to implement voltage-dependent controls, as the one
applied to EVSEs, as described later. These voltage-dependent controls run through
inner control loops in order to find an adequate setpoint for the operational state. These
inner loops slow down the simulation and, therefore, the entire data generation, making
it very time-consuming to collect large amounts of data in this manner. To solve this,
the framework also allows for the use of so-called ‘quasi dynamic simulation language
models’ (‘QDSL models’) in combination with individual load flows. These QDSL models
perform the inner loops of device controls, speeding data generation up by a factor of 7.
Moreover, the misconfiguration is set up and the raw load flow data of the grid simulation
is exported as well as information about when and where a defined misconfiguration
occurred. These results are finally used to pick relevant data such as data of connection
points having a PV unit or an electric vehicle charging station, add noise to it and,
therefore, create datasets. These datasets are used to assess the applicability of machine
learning detection methods, especially DL approaches in this case. This is done in the last
step two steps, ‘Analysis’ and ‘Analysis Results’, of the framework; training of machine
learning classifiers can be conducted as well as architecture exploration or hyperparameter
optimization using grid search. The results can be used to make statements about the
best-suited methods as well as to gain insights into the quality and property of the data
on which the classification has been conducted.

2.3.2 Tackled Scenarios
What this looks like in practice, is illustrated by the schematic of a distribution grid with
household loads and PV generation in Figure 2.4; one possible misconfiguration is shown.
Here all PV inverters follow a certain control curve regarding to the power factor. As
mentioned above, this is meant to help regulate the voltage in case of high active power
infeed through the variation of reactive power dispatch. One of the PV units inverts its
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control curve, it is therefore misconfigured and the voltage is not controlled as intended
anymore, which is to be detected. For PV inverters, other possible misconfigurations
involve a flat control curve, which equals no control, and different maximal or minimal
power factors. This allows an assessment of how grave a misconfiguration has to be found
as to be detected by certain approaches.
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Figure 2.4: Schematic grid used to generate data [7].

Another misconfiguration scenario concerns the EVSEs; the control curve employed in
the electric vehicle charging station simulated is a p(U) control, which is an active power
control depending on the voltage. The curve used in the simulations is depicted in
Figure 2.5; the EVSE is charging at its rated power above a voltage of 1.05 per unit,
whereas the charging power is gradually reduced if the voltage of the connection point
is lower than this. At a voltage value of 0.95 per unit, this reduction is halted at the
minimal charging power of 18.75% of the rated charging power. Therefore, this control
should help keep voltages within limits. The misconfiguration is assumed as a flat control
curve, meaning no reduction in charging power depending on the voltage level.

These misconfigurations, but also misconfigurations in other devices such as battery
energy storages, are supposed to be equally detectable using this approach; being grid
supporting, a change in behavior should leave a similar impact on the operational data,
such as the voltage. The similarity of features should therefore make a detection possible.

The voltage at the coupling points of the loads and the grid-connected devices, such
as EVSEs and PV units is recorded, for example, with a sample rate of 15 minutes to
mimic smart meter data. This data is then turned into a dataset by creating samples
of a certain sequence length, labeling the same in classes 0 (regular behavior) and 1
(misconfiguration present) as well as choosing the ratio of classes, either balanced or
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Figure 2.5: p(U) control curve applied to EVSEs.

unbalanced to an arbitrary degree, to fit the capabilities of the methods applied later.
Finally, these labeled samples are fed into a data-driven detection method to train on
them and assess its performance in detecting a malfunction by recognizing the correct
classes. The datasets compiled and used consist of either weekly or daily time-series
sampled in 15 min intervals (i.e., common for power system applications), which leaves
us with either 96 or 672 data points per sample sequence. This allows for an assessment
of the impact of sequence length on the performance of the applied DL methods, which is
supposed to stem from their respective handling of long-term dependencies in a sequence.

Figure 2.6: Samples of both classes (0 (blue): regular; 1 (orange); misconfiguration
present in grid connected PV device) used for Deep Learning.
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The novel data used for this work are created using up to 5 of the aforementioned
SIMBENCH grids, which are either classified as rural or semi-urban since in such networks
voltage issues are prevalent over current issues, making the misconfigurations described
relevant in these grids. For the first scenario of a PV misconfiguration, Figure 2.6 shows in
two weekly time-series samples the impact left by the misconfiguration on the operational
data gained, namely the voltage. The variation in voltage for class 0 (‘regular behavior’) is
much smaller than for the malfunctioning class 1 (‘malfunction/misconfiguration present’).
This behavior is what is expected here since the control is implemented to keep the voltage
within certain admissible limits. Therefore, this different impact of the misconfigured
power factor control curve is to be detected. For this case, various datasets with up
to 200,000 samples of these kinds with balanced classes, to enable proper learning of
features and classification using DL [33], were split into a train and test set and used for
the adaption and assessment of the DL detection approaches described in the following.
Furthermore, a dataset containing 20,000 samples sourced from a single grid containing
PVs and EVSEs was created to assess the applicability of the DL methods in detecting
the above-described malfunction of EVSEs.

2.4 Applied Learning Methods and Achieved Results

2.4.1 Data Used

The data shown above has been slightly preprocessed; before its usage in the different
DL-based methods by subtracting its mean from every sample to eliminate the influence
of a grid feeder-based voltage offset, as well as scaled to a range between -1 and 1. The
scaler for this was fit on the training set, scaling all zero-meaned training samples between
-1 and 1, and then later applied to the test set. Such samples were assembled to datasets
of different sample sizes (1 day and 7 days respective 96 and 672 positions time-series
length) and sample numbers (1,000, 5,000, 10,000 for preliminary analysis, and 20,000
respective 200,000 for the method comparisons). Bigger sample sizes imply more data
in this case, but longer time-series might not be able to propagate back the gradients
through time through the entire time-series.

2.4.2 Method Implementation

For a baseline and benchmark for the DL methods, traditional machine learning algo-
rithms were applied. Namely, these are the Support Vector Machine (SVM, NuSVM),
k Nearest Neighbor (kNN) as well as Decision Trees (DT) algorithm. for all of them
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the implementations found in the Scitkit-learn python library were used1,2,3,4. All of
these algorithms are supervised learning algorithms, which are applicable to the labeled
data at hand. For the SVM and NuSVM, the kernels used to form the decision boundary
were varied. For the DT the purity measure was varied, meaning the measure by which
data is segmented into classes. For the kNN algorithm, the distance measured to the
next neighboring samples was varied to either count all neighbors equally or weighted
based on their distance.

As a loss criterion for the DL models, PyTorchs CrossEntropyLoss5 is applied, which
combines the LogSoftmax and negative log likelihood loss (NLLLoss). The input is
expected to be the raw, untreated score of each of the two classes, as well as a class label.
The CrossEntropyLoss function can be denoted as

loss(x, class) = −log(exp(x[class]))
Σjexp(x[j]) = −x[class] + log(Σjexp(x[j])) (2.1)

where x[class] denotes the output for the true target class and j spans across all classes,
meaning that x[j] is the output for the jth class.

Figure 2.7 depicts the most basic structure of the Elman network trained. There, a
simple RNN with 2 layers with 6 features in the hidden states each as well as a fully
connected layer with 6 neurons and 2 output neurons is presented. The output neurons
obviously predict the classes 0 and 1. Each time step is fed into the network, and the
output of the final time step, as it is the ‘most informed’ output, is used for calculating
the loss and updating the weights as well as for making a classification. This approach
was used during the first assessments of recurrent approaches implemented, as described
in the following.

The first goal was to train at least a weak learner, meaning that the output of the
classifier should be more accurate than guessing. The initial assessments described in the
following were performed with regard to scenarios of misconfigured PVs; in the case of
the malfunction detection task presented before, this was achieved at a sample number of
5,000 for the 1 day time-series dataset as well as for the 7 days time-series dataset. This
was achieved only using data created using one grid to be able to tell if there was even
enough information in the data to make a meaningful classification (i.e., for this task the
F-score using the most data reached by the network was slightly over 0.5). Furthermore,

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#
sklearn.svm.SVC

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#
sklearn.svm.NuSVC

3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

4https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html

5https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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Figure 2.7: Schematic depiction of the RNN trained and used.

a very small learning rate of 10−6 had to be chosen to reach sufficiently good results with
a standard stochastic gradient (SGD) optimizer. The learning rate was controlled in a
manner so as to increase the learning rate by a factor of 1.1 in case the loss between
epochs diminishes, and decrease it in turn by a factor of 0.9 at an increasing loss. Training
was conducted for up to 100 epochs. A comparison with a linear model showed that the
linear classifier did no better than guessing and therefore only reached an F-score of 0.33
on the balanced datasets. The RNN architecture put to trial here consisted of 5 RNN
layers each consisting of 20 hidden units and a feed-forward layer with 20 neurons as well.
Training here and in the following experiments is always conducted for 20 epochs with a
learning rate of 10−3 if not stated otherwise. The RNN approach was trained using SGD
and Adam optimizer on the 1-day and 7-day samples datasets, with 200,000 samples
from 5 grids and 20,000 samples from 1 grid.

As a first alternative to the simple RNN structure, an LSTM RNN was tried out. The
architecture used also consisted of 5 LSTM layers and a feed-forward layer with 20 hidden
units, respectively neurons per layer, arranged in the same manner as for the simple
RNN. An SGD optimizer was used for training.

To be able to compare the ‘improved’ simple recurrent approaches, for the GRU RNN, the
same architecture was chosen as for the LSTM RNN. As optimizers, SGD and Adam were
used when training on the same data as above. The transformer as the only non-recurrent
detection approach using an attention mechanism was used with an architecture of 5
feed-forward layers with 20 neurons each. The attention mechanism constituted of a
multi-head attention with one head at first. Here, an SGD optimizer was used.

Finally, the most sophisticated architecture used is the so-called R-Trans-former, following
[28] which incorporates both attention mechanisms as well as recurrent and feed-forward
neural networks, as lined out in Figure 2.8. The multi-head attention approach allows to
relate a part of a sequence to any other part of the sequence as it treats them all equally
but encodes them positionally at the same time. This helps to learn global dependencies
while neglecting local structures, which might also be of great interest during the course
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Figure 2.8: Structure of the R-Transformer used.

of a day. Therefore, each part of the sequence is processed beforehand by an RNN; a
window of a certain number of points is slid over the sequence capturing local sequential
information. In this architecture, this window had a size of 7 data points. Furthermore,
the local RNNs were GRU RNNs of which 4 layers with 3 hidden units each were used.
This was decided following a singular experiment conducted on the 7-day 200k dataset in
which GRU reached an F-score of 0.51 after training for 47 epochs at a learning rate of
10−5, outperforming RNN and LSTM. The multi-head-attention used had one head to be
able to assess the impact the recurrence has in comparison to the regular Transformer. In
a first approach, only one block of stacking a local RNN, a multi-head-attention network,
and a feed forward layer were used. An SGD optimizer was used.

After conducting experiments based on the initial strategy of using only the last, ‘most
informed’ output for backpropagation as well as classification of samples, a ‘majority vote’
as described in [34] was implemented. This majority vote uses the outputs of a portion
of the entire sequence, or of the whole sequence, and calculates a loss depending on them.
The absolute loss is then divided by the number of outputs used to have a comparable
loss in all cases. This also allows for an evaluation of how many outputs should be used
ideally to perform the majority vote. This can be done as a hyperparameter optimization,
performed, for example, as a grid search.

2.4.3 Achieved Results and Discussion
The code used to produce the datasets and results can be found in the corresponding
GitHub repository6. For the comparison of the methods as a main result metric the
expressive F-score was used, which combines and balances Precision (i.e., how many
of the found misconfigurations are actually ones), and Recall (i.e., how many of the
misconfigurations present have been found). This allows a quick understanding of how

6https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset
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helpful a result is to a grid operator since a DSO wants to balance between false alarms
and finding all occurrences.

To provide a baseline, traditional machine learning algorithms were applied. Table 2.2
gives an overview of the methods applied as well as their parameters and the results
yielded. The depicted results apply to the dataset containing data of PV misconfigurations.
This assessment was conducted to provide a baseline and serve as a benchmark and
additional justification of DL approaches in this case. All experiments were run applying
3-fold cross-validation.

Table 2.2: Overview of the results found when detecting a PV misconfiguration using
traditional machine learning methods

Model Decision Trees kNN SVM & NuSVM
Parameter varied Impurity measure Distance measure Kernel

1 day-dataset
(sequence length: 96) Entropy Gini Uniform Distance Linear, Sigmoid, RBF

Polynomial (degree 2-6)
Better than guessing

(better than linear model) No No No No No

As this assessment makes clear, various common traditional machine learning algorithms
fail in delivering meaningful results, even if parameters are varied to optimize their
performance.

The aforementioned majority vote classification was assessed using a grid search hyper-
parameter optimization. As can be seen in Figure 2.9, the so-called ‘calibration rate’
was varied for this purpose: this rate determines what portion of the sequence, meaning
how many of the first data points of the sample processed, are used for calibration. The
outputs of these first data points are not used for the majority vote classification. This
means that a calibration rate of 0.8 corresponds to the last 20 percent of the sequence’s
outputs being used for the classification. A calibration rate of 1 corresponds to using
only the last ‘most informed’ output for classification. On the left side of the figure, we
can see the performance of the R-Transformer architecture, whereas the right side depicts
the score of the LSTM architecture as described before. The dataset used consists of
20,000 one-day samples, which are samples with 96 data points, sourced from a single
grid containing only loads and PVs. Therefore, the misconfiguration under scrutiny here
concerns a PV unit’s control curve.

The results of the assessment , only using the last, ‘most informed’ output for classification,
for the small dataset sourced from 1 grid as well as the big dataset collected from 5
grids when detecting a PV misconfiguration are summarised in Table 2.3. This is done
for a setting with a PV proliferation of 25 percent, meaning every fourth load has a
photovoltaic installation. In this context, a Weak Learner is performing better than
the linear model which only guesses and therefore reaches an F-score of 0.33. The
results achieved here are not good enough for actual usage, however, they provide a good
orientation for further refinement of methods.
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Figure 2.9: Grid search to assess the performance of the majority vote classification; top:
RTransformer, bottom: LSTM

For the EVSE misconfiguration a less encompassing assessment was conducted; using data
sourced from one grid with a PV and EVSE proliferation of 25 percent each, meaning
every fourth load has solar generation and/or an electric vehicle charging station a dataset
of 20,000 7-day samples was assembled. This dataset comprises, in contrast to the datasets
used thus far, of samples of data of EV charging stations that are either misconfigured
or in a regular state. Once again, only the last output is used for classification. The
performances of the various methods applied to detect this EVSE misconfiguration are
displayed in Table 2.4: once more the results are not satisfactory for a final solution but
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Table 2.3: Overview of the results found when detecting a PV misconfiguration using
different sequence length, dataset sizes and classifiers: the F-score balances Precision and
Recall.

Model RNN LSTM RNN GRU RNN Transformer R-Transformer
Setup

#grids & #samples
1 grid
20k

5 grids
200k

1 grid
20k

5 grids
200k

1 grid
20k

5 grids
200k

1 grid
20k

5 grids
200k

1 grid
20k

5 grids
200k

F-score 1 day-dataset
(sequence length: 96) 0.33 0.33 0.34 0.33 0.47 0.33 0.33 0.33 0.49 0.47

F-score 7 day-dataset
(sequence length: 672) 0.33 0.33 0.37 0.33 0.39 0.33 0.33 0.33 0.52 0.51

Weak Learner
(better than linear model) No No Yes No Yes No No No Yes Yes

provide a guideline for further research on refined methods.

Table 2.4: Overview of the results found when detecting a EVSE misconfiguration using
different classifiers on a single dataset: the F-score balances Precision and Recall.

Model RNN LSTM RNN GRU RNN Transformer R-Transformer
Setup

#grids & #samples
1 grid
20k

1 grid
20k

1 grid
20k

1 grid
20k

1 grid
20k

F-score 7 day-dataset
(sequence length: 672) 0.20 0.27 0.47 0.47 0.46

Weak Learner
(better than linear model) No No Yes Yes Yes

After these assessments, a first phase of hyperparameter optimization was conducted
on the dataset containing PV misconfigurations of 1 grid with a sample length of one
day. As the R-Transformer architecture was found to be the best fit for this application,
it was also the one chosen to be tuned for better performance. Amongst others, a grid
search on the number of Attention Heads was conducted. The number of Attention
Heads for the Transformer as well as the number of underlying RNN Attention Blocks
were varied, either separately or on par with one another. A model dimension of 30 was
chosen to accommodate a higher number of Attention Heads or Blocks. As the joined
adjustment of the number of blocks showed the best results, Figure 2.10 shows the results
of this assessment; the best number of heads was found to be 2 for both the Attention
heads as well as the RNN Attention Blocks, yielding an F-Score of 0.53, which is a 4%
improvement over the base configuration, which was setting the parameter to 1.

Based on the results of this first round of tuning, another round was conducted on
the R-Transformer. This time the parameter Key Size of the underlying RNN blocks
of the transformer was found to improve performance at a certain setting. The Key
Size determines the length of the sequence that is processed by the underlying RNN.
Figure 2.11 depicts the outcome of this exploration; a Key Size of 8, instead of 7, allows
for an F-score of 0.60 which is another 7% increase in performance compared to the first
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Figure 2.10: Hyperparameter optimization done on the number of Attention Heads of
the R-Transformer
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Figure 2.11: Hyperparameter optimization done on the key size of the RNN blocks of
the R-Transformer

phase of tuning and a total of 11% enhancement over the base case.

These efforts on tuning show that the performance of the solutions can be augmented by
extensive architecture exploration. This is to be done for every architecture for a specific
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use case, however, there are no additional hurdles except for increased computational
demand.

2.5 Conclusions
2.5.1 Achievements
As the necessary integration of decentralized renewable energy generation and other newly
introduced grid-connected devices proceeds, grid operators need novel ways to monitor
the functionalities of these generation units and devices provide. They are crucial to the
safe and reliable operation of power distribution grids. Thus, the framework described
in this work allows for the development of such monitoring capabilities by extracting
and handling data as well as using them for the development and assessment of machine
learning methods for this purpose. By its implementation and usage to generate data
the first two goals set initially were fulfilled. Several traditional ML, as well as DL-based
approaches, have been described and compared in varying settings. In combination with
the sensitivity analysis used to find a best-fitting solution, the two remaining objectives
were tackled.

2.5.2 Discussion & Conclusion
The initial assessment of traditional machine learning methods for anomaly detection
did not yield results pointing to the applicability of the same. Even after parameters of
various methods have been varied conducting a sensitivity analysis in order to provide a
meaningful benchmark, not satisfactory results could be achieved. This can be attributed
to the low dimensionality of the data. Even the great amount of data does not allow the
traditional machine learning algorithm to succeed here. This leaves DL methods to be
explored as they pose the most promising option.

The assessment of the majority vote classification versus using only the last ‘most
informed’ output for classification offers various findings. Generally, using only the last
output, or only the last portion of the sequence, stably appears to give better results
than using a major part of the sequence for the classification of PV misconfigurations.
However, this overall advantage is mainly rooted in a higher F-score achieved, meaning
that the methods can be fine-tuned by choosing a certain calibration rate to fulfill specific
requirements: depending on the priorities of the user, a certain share of the sequence can
be used for classification allowing for higher precision, in cases where no false positives
are wanted, or also a higher recall, in cases when all occurrences of misconfigurations are
to be found.

The results of the assessment of the different methods using only the ‘most informed’
last output lead to the following conclusions: The RNN approach presented already
demonstrates the applicability of DL for this task. This quite simple approach already
yielded a weak learner for the 1-grid case, that can be extended to an ensemble method
or be replaced by more sophisticated algorithms and network structures. Nevertheless,
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training had to be conducted with a very low learning rate and for a long time. When
only trained for fewer epochs and with a higher learning rate, the RNN can not tackle the
problem and does no better than the linear model on the PV misconfiguration tasks. The
RNN shows even worse performance for the EVSE case, seeming to misclassify samples.
This could be due to the RNN learning wrong features, leading to indicating the improper
class and showing that the RNN is not up to this task.

The LSTM and GRU RNN approaches both provide an improvement in the PV case, both
yielding a weak learner for the 1-grid case. This shows that training can be done much
faster with these approaches than with the simple RNN, probably because of the better
back propagation of gradients through time. The GRU RNN performed significantly
better than the LSTM RNN especially in the 1-day case, making it the more efficient
structure. Therefore, GRU was chosen as the local RNN for the R-Transformer. Both
approaches failed to provide a meaningful result on the dataset sourced from multiple
grids. When put to the task of classifying the EVSE misconfiguration, the LSTM shows
similar behavior as the RNN; it appears to fail to properly extract features and does not
yield a weak learner within the given training frame. The GRU performs significantly
better here, even yielding some of the best results in this setup. This could be attributed
to the GRU’s capability to discard past information, which is not of value anymore, more
easily in comparison to the LSTM. Moreover, the GRU has fewer parameters than the
LSTM. This might leave the GRU less confused after a shorter period of training.

The Transformer as the sole fully non-recurrent method showed that in the setting chosen
feed-forward-only architectures do not yield satisfactory results as neither in the 1-grid
nor in the 5-grid setup the linear model could be outperformed. At least this holds true
for the PV case. In the EVSE case, the Transformer architecture yields, along with
the GRU model, the most promising results. This might be due to the less sequential
character of the features to be learned in the EVSE case in contrast to the PV case.
Therefore, for this case, also non-recurrent approaches seem applicable.

The R-Transformer posed the most complex approach under scrutiny, which also yielded
the best results for the 1 grid 20k samples dataset, remarkably showing better performance
on the 7-day data for classification of a PV misconfiguration. This marks the impact the
attention mechanism has as it improves the handling of longer sequences in comparison to
the other recurrent approaches. Comparing the results of the feed-forward Transformer
the advantage of using the local GRU RNN becomes obvious as the R-Transformer
manages to provide meaningful classification. Especially on the 200k samples dataset
from 5 grids the combination of these two features shows its strength as the R-Transformer
is the only architecture that manages to gain traction in this setup and yield a weak
learner. The performance is slightly higher for the smaller dataset though, probably
due to the simple network architecture used and a resulting lack in capacity. A similar
phenomenon might become obvious when applying the R-Transformer on the EVSE case;
the results are slightly worse than for the regular Transformer as well as for the simpler
GRU architecture. This could be attributed to the complexity of the R-Transformer.
Since it has many parameters, it might not be able to learn within the training time
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given. Even if this complexity might not be needed here the R-Transformer yields at least
a viable solution to the problem. Moreover, the results of the hyperparameter tuning
for one use case showed that the performance of the R-Transformer can be increased
significantly in this way. As the basic way of conducting such hyperparameter tuning is
the same for all the use cases, it could be extended to all the other use cases. This would
have to be part of a study focused on this specific problem, as computational resources
are limited in the one at hand. For the practical application of the solution, this should
not be a problem, as the architectures that are found to be optimal for a certain use case
only have to be trained once. Table 2.5 summarises the approaches investigated as well
as their assessment.

Table 2.5: Overview over approaches investigated.

Approach Task Comment

Most-informed output Classification
strategy

Best option in general for classification tasks as
is yields the best scores overall

Majority vote Classification
strategy

Can offer an alternative classification method
for specific goals i.e. avoiding false alarms

RNN
PV

misconfiguration
Not able to extract features therefore,

not better than guessing
EVSE

misconfiguration
Mislearning features, leading to even more
misclassifications than through guessing

LSTM RNN
PV

misconfiguration
Only partly able to extract features;

slightly better than guessing in simple scenario
EVSE

misconfiguration
Mislearning features, leading to slightly

more misclassifications than through guessing

GRU RNN
PV

misconfiguration
Able to extract features making it better

than guessing in simple scenario
EVSE

misconfiguration
Well able to extract features making

it one of the best solutions

Transformer
PV

misconfiguration
Not able to extract features therefore,

not better than guessing
EVSE

misconfiguration
Well able to extract features making it

one of the best solutions

R-Transformer
PV

misconfiguration
Well able to extract features making it

the best solution in all scenarios
EVSE

misconfiguration
Well able to extract features making it

one of the best solutions

The study conducted shows how the framework can be utilized to explore methods,
which lead in this case to the finding that the R-Transformer generally outperformed
its competitors, which however still provided mostly functional solutions. Moreover, the
applicability of solutions might differ between use cases. Additionally, the framework
offers easy-to-use functionalities of tuning the architectures to obtain better performances,
given the required computational power which was a limiting factor here.
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2.5.3 Outlook

The presented work is a foundation for a future decision support tool for power grid
operators which helps them to implement central monitoring of low voltage grids using
DL detection approaches. Further work includes extensive architecture exploration in
order to find the best fitting approach and an optimal model thereof for the tasks at hand.
This architecture exploration was only conducted partly here since the computational
resources available were limited. For a practical application, this would be no hurdle
since the optimal architecture for a certain application only needs to be determined once,
and only models with the best-suited parameters need to be trained then. When such
models are found, a field trial in real-world grids for validation and further refinement
of the method can be conducted. The sole availability of simulated data for this study
can be understood as another limitation at this point. Furthermore, the range of use
cases is to be expanded by training models on data of malfunctioning devices such as
battery energy storage or heat pumps, which could also not be implemented yet due to
the limitations of computational power already mentioned before. This would then lead
to an implementation in said decision support tool and therefore integration into a grid
operators toolbox for further monitoring capabilities.
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CHAPTER 3
Data Driven Transformer Level

Misconfiguration Detection in
Power Distribution Grids

Publication: D. Fellner, T. I. Strasser, W. Kastner, B. Feizifar and I. F. Abdulhadi,
“Data Driven Transformer Level Misconfiguration Detection in Power Distribution Grids,”
2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague,
Czech Republic, 2022, pp. 1840-1847.

Abstract: As more novel devices are integrated into the electricity grid due to the
changes taking place in the energy system, ways of detecting deviations from the intended
settings are needed. If misconfigurations of, for example, reactive power control curves of
inverters go unnoticed, the safe and reliable operation of the power grid can no longer
be ensured due to possible voltage violations or overloadings. Therefore, methods of
detection of misconfigurations of said inverters using operational data at transformers
are presented and compared. These methods include preprocessing by dimensionality
reduction as well as detection by supervised learning approaches. The data used is of
high reliability as it was collected in a lab setting reenacting typical and relevant grid
operation situations. Furthermore, this data was recreated by simulation to validate the
simulation data, which could also potentially be used for detection applications on a
bigger scale. The results for both data sources were compared and conclusions drawn
about applicability and usability for grid operators.

Keywords: Power distribution, detection, device malfunctions, operational data.
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3.1 Introduction
As the energy system is undergoing massive and quick changes, especially the electric
power grid is experiencing a transformation. This leaves power distribution system
operators (DSO) facing novel challenges. A major cause of these challenges in the
transmission and storage of power is rooted in the decentralization of power generation
[1]. One of the biggest effects is caused by the widespread use of photovoltaics (PV) in a
grid. Violations of voltage limits as well as bidirectional power flows or overloading of
components can be caused by generation exceeding demand in a grid segment [2]. High
power infeed from PV can lead to voltage band violations due to elevated voltages. These
are to be avoided through controls to allow for an extensive integration of renewable power
generation in a decentralized manner. Therefore, the generation units implement some
form of voltage regulation [3] that offers grid supporting functions. As the obvious measure
of reducing active power dispatch is to be generally avoided to maximize renewable energy
output, the voltage is mostly controlled through the variation of the reactive power
generation. This is done through variation of the power factor following a droop control
curve locally [4].

The behavior of PV inverters and other grid-connected devices has to be monitored to
make sure these grid supporting functionalities are performed correctly. Otherwise, a
stable and reliable grid operation can not be guaranteed by the DSO. However, limitations
in data availability either set by a lack of sensors [5] or data protection regulations [6]
have to be taken into account when developing a solution. Therefore, a data driven
approach on transformer level to this is advantageous for DSOs as information about
components in the grid is frequently lacking [7]. Misconfigurations of grid connected
devices are a mismatch between the configuration implemented and the one laid out in
the specifications, which is itself defined by grid codes. This mismatch can have two
causes; either a different configuration was implemented on purpose or the configuration
can change as a result of, for example, malfunctions. The case under scrutiny here is the
latter one, meaning the configuration – the control curve – is expected to be initially the
correct one. A more extensive discussion on this was already conducted in [8]. This makes
obvious that misconfigurations can be detected by a solution using only the operational
data collected in the grid, since a misconfiguration leaves a different impact on this data
in comparison to a correct configuration of a grid connected device. For this reason, only
operational data is used here.

The main contribution of this work is the detailed description of grid operational data,
as well as methods applied on it to detect misconfigurations. Data was collected both in
a laboratory environment as well as through simulation, allowing for a validation of the
simulation data. Furthermore, data processing methods as well as detection methods were
applied on the data so as to assess their performance in the task at hand. Dimensionality
reduction methods for processing data as well as supervised learning approaches are
employed as their applicability is suggested by previous work [9] as well as literature [10].

This work has the following content: In Section 3.1, a discussion of issues in power
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distribution grids and monitoring needs is conducted. Section 3.2 describes the state-of-
the-art related to malfunctions in power systems as well as the relevant usage of artificial
intelligence for detecting them. In Section 3.3, the data collected and the means thereof
are laid out and in Section 3.4 a description and results of the approaches applied are
presented. Finally, Section 3.5 provides the conclusions and an outlook about potential
further work.

3.2 Related Work
In [11], energy consumption characterization of buildings of a university campus is
presented with the aim of finding anomalies on building level. Features are extracted as
well as data reduction methods applied during the characterization. Following, normal
patterns for certain times of the day are identified by estimating the most probable one
using globally optimal Evolutionary Trees. These, in addition to being more accurate than
standard Decision Trees (DT), offer full interpretability of the results. After anomalies are
detected on building level, underlying causes are discovered by an unsupervised approach
based on Association Rule Mining (ARM). The data used stem from a medium-low
voltage transformer, however, in 15 minutes resolution, reducing the applicability of this
approach for the higher resolution data at hand.

The work in [12] presents a Deep Learning based anomaly detection method for finding
outliers using a Light Gradient Boosting Machine. This machine has the advantage to
be less computationally expensive due to the lower number of parameters. Even though
the data used in the work has almost the same resolution as the data available here, the
approach does not provide extraordinary good results. Moreover, a very big data set is
required and therefore also used. This dataset is compiled using only active and reactive
power data. This points towards the usage of feature-based approaches that can also
handle higher dimensional multivariate data for the problem present.

An approach focusing on phase measurement unit (PMU) data is sketched in [13];
very good results are achieved using Gaussian Mixture Model (GMM) to estimate the
probability density function of regular PMU data streams to define the minimum and
maximum thresholds for anomalous data streams. Initially Principal Component Analysis
(PCA) is used for feature selection as well as k-Means Clustering for clustering of the PMU
streaming data. The anomalies under scrutiny here are only faults such as line-to-line
or line-to-ground faults. Moreover, the anomalous data is merely simulated, and it is
available in a very high resolution, which is not the case for the problem to be treated
here. Nevertheless, the approaches to data treatment are relevant. Also [14] indicates
that PCA is of use when treating data; it is used here to find the principle components
in voltage sags allowing for clustering of them and then assessing the quality of this
clustering. The results show that PCA is capable of extrapolating features from voltage
data in addition to revealing that the ward linkage method is the best fit for clustering
substation power quality data. Both results can be of help in the task presented here.

Methods for anomaly detection on transformer data that are also multivariate are

63



3. Data Driven Transformer Level Misconfiguration Detection in Power
Distribution Grids

elaborated in [15]. Support vector machines (SVM) as well as k Nearest Neighbors
(kNN) and Decision Trees (DT) appear to deliver promising results here. However, the
data set is not as high dimensional as the present one and the application described is
cybersecurity. Additionally, an ensemble learner of three models is used which makes
the approach complex. This makes the utilized supervised machine learning approaches
such as SVM, kNN, and DT of interest, leaving nevertheless to be investigated how they
perform in the particular case at hand. Another application of SVM and kNN to PMU
data can be found in [16]. Here, both show good results when put to the task of detecting
voltage magnitude anomalies in feature extracted data. The data used stem both from
synthesizing as well as from real world sources and is therefore noised as it has realistic
properties in general. However, the detection is only applied to voltage anomalies such
as sags, ramps, and steps.

These anomalies do not necessarily have the same properties as the subtle changes in
behavior that are to be detected in this work. One more example from the cybersecurity
domain can sooth concerns raised by this; in [17], features are also first selected and
then the SVM, kNN, and DT algorithms are applied to find anomalies in substation
data. Here, these are constituted by, for example, false data injected. These attacks are
recognized with a very high probability, showing that these machine learning algorithms
are very well capable of detecting all sorts of anomalies in the present work setting.

Summarizing, the work in the electrical grid domain on anomaly detection (see Table 3.1)
shows that there are approaches that are either very well suited to certain time resolutions
of data, fit for particular dimensionalities of time series data, or require very big amounts
of data and computational resources. What becomes clear is that a pre-processing that
allows for feature selection appears to be very helpful. Along with classic machine
learning algorithms for anomaly detection this approach yields very good results in
various applications. However, no solution to the posed problem can be found in the
literature, which is why explorations and assessments of approaches to such a solution
have to be conducted.

Table 3.1: Non-functional requirements (NFR) fulfilled (X) or unfulfilled (–) by
approaches in related publications cited.

NFR Reference
[11] [12] [13] [14] [15] [16] [17]

Scalability X X X X X X X
Adaptability – X X X – X X
Integrability – – X – – X X

Usability – – – – – X –
Data Retention X – X X X X X

Robustness X X – X X – X
Quality X – X X X X X
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3.3 Data Collection & Properties
This section is intended to describe the motivation for collecting data in a laboratory
setting as well as through simulation and elaborates the respective aims and functionalities
it should help develop. The detailed ways of obtaining the lab and simulation data is
elaborated along with their properties. Finally, the results produced by it are depicted
and analyzed.

3.3.1 Laboratory Data

Data collection in a laboratory setting complements data collection conducted through
simulations in an important way. Laboratory data is as close to real-world data as
one can hope for, since real-world field data is practically impossible to obtain during
the regular operation of a distribution power grid. This is because the occurrence of
misconfigurations is not noted in time by the system operators, and therefore, the data
collected can not be labeled. When using this data, one would not know whether it stems
from regular or erroneous behavior of a grid connected device.

The data collected here concern the PV inverter reactive control curve addressed in
Section 3.1 in the case of intended configuration as well as in two relevant misconfiguration
cases. These data are very useful for the development of detection approaches at the
transformer level. Only operational data was collected and is used in the following as
explained and justified above.

For this purpose, low voltage distribution grids, or representative parts of these, were
imitated in a laboratory, where grid participants were parameterized and malfunctions
were enacted at a given time, allowing for the creation of a labeled validation dataset.
Such a facility was found through the H2020 ERIGrid 2.0 project at the Power Network
Demonstration Center (PNDC) at the University of Strathclyde in Glasgow, Scotland. To
conduct the experiments and recordings infrastructure like controllable loads, substations,
and inverters, lines as well as measurement devices, such as smart meters, were necessary.
These were then set up in a typical way for grids to be exhibiting sought-after malfunctions,
for example, in a radial topology for rural grids. Loads and generation were parameterized
to follow certain consumption or generation profiles, as well as certain control schemes
regarding their energy consumption or dispatch behavior. The profiles were created
following the profiles used by the SIMBENCH[18] project, which provides grids that are
specifically designed for simulation purposes. Profiles of consecutive days were chosen to
mimic the data collected during grid operation in the course of about 2 weeks.

The operational data such as voltages and currents were then recorded by the grid
participants to mimic smart meter data and their power flows to be able to validate the
scenario settings. Additionally, readings were recorded at the substation connecting the
grid to the medium voltage level. In this manner, one data point would be gained by a
quick measurement at a certain setting of generation and load profiles. Given that at a
15 min resolution there are 96 data points per day, 96 tests would be necessary to collect
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data for one day. As already pointed out, the generation and load profiles, as well as
dispatch and charging control patterns, were to be controlled, whereas operational data
was measured. This measurement was made using Fluke measurement devices, which
delivered 398 different variables per time step, which is 0.25 seconds. In a first selection
step, this was manually reduced to 84 relevant variables for further use. As the setup
was as close as possible to a real-world power distribution grid, the experiments yielded
as realistic results as possible, which should guarantee the highest robustness for the
detection methods and monitoring mechanisms developed using this data.

In the experiments conducted, 15 sets of time series that each match a day from 9 am to
3 pm were collected. This time span was chosen to save on valuable laboratory access
time and still have as much data with meaningful PV contribution, since the night hours
are not expected to contain much valuable information. 15 scenarios, each one consisting
of a set of load and generation patterns, were applied to two grid setups depicted in
Figure 3.1; both setups consist of a substation in Dyn configuration with an apparent
power of 315 kVA, two individually configurable load banks and a PV inverter, as well as
cables of up to 100 meters length each connecting them. Measurements are taken at 3
points; at the substation (corresponding to measurement point F2), as well as at both
connection points of the loads (measurement points F1 and B1) and the inverter (situated
at, and therefore corresponding either to measurement point F1 or B1, depending on the
setup). The positions and connections of the measurement points are indicated in the
figure.

For the first setup, Setup A, the reactive power control curve was either parameterized
correctly or just set to a flat curve, which is called ’wrong’ in the following. A flat control
curve setting does not provide reactive power at all. Running the 15 scenarios for both
control configurations yielded 30 sets of time series for this setup. For the second setup,
Setup B, the control curve was, in addition to the correct and wrong options, inversed,
yielding 45 sets of time series. An inversed curve setting provides the same amount of
reactive power as the correct one, however, with a wrong sign. In total, 75 sets of time
series were obtained.

In Setup A, the inverter is closer to the substation, whereas it is further away from it
in Setup B. This is done to be able to later assess the impact of grid strength on the
detectability of the misconfiguration in the data. In both setups, the misconfiguration is
applied to the inverter, as the different exemplary control curves in Figure 3.1 indicate;
one is correct, the other is inversed. Because of laboratory access time limitations, only
two control configurations were implemented for Setup A, as Setup B is deemed the more
interesting case.

3.3.2 Simulation Data
Data collection through simulations complements data collection conducted in a laboratory
setting in an important way. It allows to create more data that can be of guaranteed
quality when validated through comparison with laboratory data. As some parameters
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Figure 3.1: Setup A (left) and Setup B (right) with the corresponding names (F2, F1,
B1) of the measurement points used in the following.

about the lines of the laboratory were not fully known, assumptions about the line
parameters that reflect the most likely properties of the lines were made. Moreover,
any modeling of imbalances in the grid was neglected since none were known. These
inaccuracies might still have an influence on the simulation quality. The simulations were
conducted using the same profiles and setups as in the laboratory setting, recreating the
same 75 sets of time series.

In addition to these, simulations with an inversed control curve were also carried out for
Setup A, yielding another 15 sets of time series. For the simulation, 30 relevant variables,
chosen among the ones available in the software, were selected to be contained in the
results. The grid data generation capabilities developed in the course of preceding work
[8] were used here.

3.3.3 Outcomes
In summarizing, the experiments were conducted using 15 sets of load and generation
profiles in both setups under up to 3 different inverter settings; a regular working control
curve, a flat control curve (‘wrong control’), and an inversed control curve. An example
of the voltage data collected per measurement point in one of these scenarios can be seen
in Figure 3.2; as one can see, the voltage is mostly higher in cases where the control curve
is wrong or inversed, as is to be expected. For the Setup A, the difference is not as grave
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since the inverter has, as was expected, as well, a lower impact at a closer position to
the substation where the grid is stronger. The difference in the simulation data between
the two curves is also smaller than in the lab data. This can only be attributed to the
inaccurate modeling of imbalances and possible reactive power consumption that results
thereof.

Figure 3.3 shows data, again from the lab and simulation, for the individual cases of
control configuration. Again, the impact of the control appears smaller in the simulation
data however, it is still noticeable, especially again in Setup B where the PV is farther
from the substation and therefore in a weaker point of the grid.

To visualize all scenarios as well as the relationships between each other, clustering was
employed, namely, hierarchical ward clustering as described in [19]; first a similarity
matrix is computed using the Pearson correlation coefficient. Then a dendrogram is
built linking similar time series using the ward linkage method, which is a variance
minimization algorithm. The results comparing the data in case of a correct or wrong
control curve are shown in Figure 3.4. It becomes obvious that for both lab and simulation
data rather the data of the same scenario, in terms of loads and generation, than of the
same control setting, such as correct or wrong, are similar. Furthermore, the individual
lab data samples seem less similar to each other than the simulation data samples, which
are still quite dissimilar. This makes the detection task at hand a nontrivial one.

The simulation model used in a grid simulation software as well as all data and analysis
produced using it can be found in the corresponding GitHub repository1.

3.4 Methods & Results
3.4.1 Preprocessing
To assemble the dataset, all m multivariate time series data samples, each one representing
a scenario with a certain control curve configured in one of the grid setups, which have t
rows for t timesteps and n columns for n variables as represented by 1) in Figure 3.5, are
flattened into single rows of a dataframe having t ∗ n columns. Each column, therefore,
represents the value of one variable at a certain timestep of a measurement. The resulting
dataset is a m x t ∗ n matrix, each of the m rows representing the data of one of the m
measurement samples. Only measurements at the substation level (measurement point
F2) are used, as a transformer level detection solution is to be developed.

This data is then scaled to have a mean of zero and a standard deviation of 1 along all
t∗n features, which again are variables at a certain timestep. This is step 2) in Figure 3.5.
The scaled data is then fed into a PCA as described in [14]; PCA is an orthogonal linear
transformation, aiming to create a new coordinate system in which the first coordinate,
which is the first principal component (1st PC), represents the greatest variance in the
data. There can be as many PCs as there are feature vectors in the data however, usually

1https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset
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Figure 3.2: Laboratory (top) and simulation data (bottom) by measurement point (note
that the measurements in Setup A with an inversed control curve are not available due

to lab access time limitations).

fewer PCs than features are retained to achieve a dimensionality reduction and thereby
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Figure 3.3: Laboratory (top) and simulation data (bottom) by control curve.
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Figure 3.4: Laboratory (top) and simulation data (bottom) of setup B at measurement
point F2 clustered; ’c. c. S. 1’ and ’w. c. S. 1’ stand for ’correct control Scenario 1’ or

’wrong control Scenario 1’ respectively.
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Figure 3.5: Preprocessing and dataset creation.

select important parts of the data, such as the 2nd, 3rd, and so on as higher order PCs
retain decreasingly much variance and therefore less information.

As many principal components are kept so as to retain 99% of the variance in the data,
which ends up being 17 or 27 components for the simulation, the respective laboratory
data of Setup A. Step 3) of Figure 3.5 depicts this unlabeled dataset.

Lastly, the samples are labeled depending on the state of the control curve applied during
the measurement yielding the final dataset, as can be seen in step 4) of Figure 3.5.

3.4.2 Detection
Based on the assessment done in Section 3.2, supervised machine learning algorithms are
employed for the misconfiguration detection task at the transformer level. Additionally
to the mentioned hyperparameter combinations below, additional sensitivity analyses on
hyperparameters were conducted. In cases where little or no impact of variating these
could be observed, the respective hyperparameters were set to common values as the
default ones defined by the specific library implementation used.

As prompted by [16], SVM and kNN are used. The SVM is capable of binary as well as
multiclass classification by finding a hyperplane in an arbitrary dimensional space that
guarantees as big as possible separation margins between the classes. This makes the
SVM especially suitable for high dimensional applications as the one at hand and therefore
attractive. Scikit-learn’s SVM classifier is used here2, varying the kernels used (linear,
polynomial, radial, sigmoid) and their degrees (1 to 6), as preliminary examinations have
shown this parameter to have a significant impact on performance. Kernels define how
the separation margin is formed, and therefore, how the decision boundary is adjusted to

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#
sklearn.svm.SVC
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the data. Moreover, another variant, the NuSVM3, was used. It has the same properties,
only that it controls the number of support vectors that are used to find the decision
hyperplane to avoid overfitting.

The kNN algorithm4 uses the Euclidian distance of a data sample to its k-nearest
neighbors and decides based on the majority of the neighbor’s labels, which class the
given sample should be attributed to. This makes kNN a lazy learner, therefore being a
very time efficient method. This makes kNN beneficial especially for adding new samples.
For this method, the number of neighbors to be taken into account (1 to 4) was varied
as well as the weighting of their distances to the data sample. Either the distance of a
neighbor would be taken into account, which is called distance weighting, or all neighbors
would count equally, called uniform weighting.

Additionally, DTs were applied on the data, as suggested in [11]; a tree is built from the
root by recursively partitioning the feature space, until areas, the leaves of the tree, of a
certain purity in terms of class labels of the samples in this area are defined. Depending
on the splits rule, which in this case the gini impurity, as well as information gain,
were used for, the best splits of the feature space are performed. A new sample is then
classified following the branches of the tree, which represent the decision rules until it is
labeled according to the leaf it ends up with. The DT has a high degree of explainability,
which incentivizes its usage in cases where decisions should be justified. Also here the
Scikit-learn implementation5 varying the splits rule was used.

All experiments were done implementing 7 fold cross-validation with balanced classes
in all training and test batches. Using the data in this way is intended to reflect the
behavior of a detection system using the operational data of the previous days to decide
on whether a misconfiguration is present or not looking at the current data.

3.4.3 Results
The code used to produce the datasets and results can also be found in the GitHub repos-
itory1. The aforementioned datasets were fed to the detection methods, hyperparameters
were varied, as well as results cross-validated as mentioned above. The datasets consist
of 30 samples for the laboratory data of Setup A labeled as correct or wrong and 45
samples for the lab data of Setup B as well as the simulation data of both setups, which
are labeled as correct, wrong, inversed or simply abnormal, meaning of class wrong or
inversed.

Table 3.2 summarizes the best results found for a certain dataset using the F-score
as a result metric. It represents a balanced combination of Recall, how many of the

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#
sklearn.svm.NuSVC

4https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

5https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html
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misconfigurations present have been found, and Precision, how many of the found
misconfigurations are actually cases of erroneous configuration. As a grid operator using
this application would want to balance between finding all occurrences of misconfigurations
and false alarms, the F-score is an expressive metric of how useful the approach is to a
DSO.

Table 3.2: Comparison of best detection results on laboratory and simulation data.

F-Score Grid Setup and Data Source
Result Grid Setup A Grid Setup B
Case Lab Data Sim data Lab Data Sim data

correct
vs. 0.93 0.91 1 0.90

wrong
correct

vs. * 0.97 1 0.97
inversed
correct

vs. wrong * 0.88 0.96 0.90
vs. inversed

correct
vs. * 0.95 1 0.95

abnormal
* Not available due to lab access time limitations

The methods and their hyperparameter settings leading to the best results for each case
are listed in Table 3.3.

3.5 Conclusions
3.5.1 Achievements
Electricity grid operators need to be able to guarantee safe and reliable grid operation,
also in the future of widespread decentralized generation of renewable energy. Therefore,
better monitoring of the distribution grid becomes necessary. The data collected and
described allows for the development of a validated solution for monitoring the behavior
of PV systems in such a grid. Furthermore, the methods applied to this data show the
applicability of such a solution.

In general, better performance for Setup B can be observed, which is in line with
expectations because the PV is installed at a weaker point of the grid here. Therefore, the
impact of the control curve is bigger and a misconfiguration of the same easier to detect.
The scores reached on the laboratory data are also higher in all cases than on the scenario
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Table 3.3: Comparison of best approaches on laboratory and simulation data.

Best Grid Setup and Data Source
Approach Grid Setup A Grid Setup B

Case Lab Data Sim data Lab Data Sim data
correct NuSVM: SVM: SVM: SVM:

vs. linear linear linear linear
wrong kernel kernel kernel kernel
correct NuSVM SVM: SVM:

vs. * linear linear linear
inversed kernel kernel kernel
correct SVM: SVM: SVM:

vs. wrong * linear linear linear
vs. inversed kernel kernel kernel

correct SVM: SVM: SVM:
vs. * linear linear linear

abnormal kernel kernel kernel
* Not available due to lab access time limitations

data. As already discussed above, the simulation data showed only smaller impacts of the
different control curves, which also makes detection harder for the simulated data. This
also explains only a small difference in performance in the simulation data between Setups
A and B. However, this also implies that the results for the simulation data can serve as
a lower estimate for the performance on real-world data for Setup A. Nevertheless, the
performance is very good, or even perfect, for both setups and all cases. This is likely
connected to the rather simple grid topologies and the performance might deteriorate in
more complex settings.

In all cases, the method delivering the best results was found to be a form of SVM with
a linear kernel, which can be explained by the high suitability of this algorithm for high
dimensional data and for datasets with a high feature to sample ratio. This property
also allows for the usage of only very recent data, meaning data of the previous days, for
detection properties.

The work presented shows that a classical supervised machine learning approach, the
SVM, applied to transformer level data can yield very good misconfiguration detection
results. As this is the case for both laboratory and simulation data, wide applicability
of the method is implied. The even better results on the laboratory data underline the
robustness of such a solution.
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3.5.2 Outlook
The collection and assessment of the data presented as well as the detection methods
explored serve as a building block for the envisioned decision support tool for electric
power grid operators, facilitating the monitoring of low voltage distribution grids centrally.
In such a solution, as data is collected at the transformer level, it is checked for signs
of misconfigurations. After passing this check by the detection methods, simulations
of misconfigured cases would be conducted to form the kind of dataset used in this
assessment. An incoming abnormal data sample would most likely be recognized by a
detection method trained on such a dataset, as the real world samples showed a greater
impact on the control curve compared to the simulated samples. The simulations would
require the load and generation profiles of grid participants, which could be obtained
through disaggregation of the transformer load profile into its components. An approach
to this disaggregation is the most important task concerning further work. It could be
developed in combination with the load and PV measurements that were at this point
only used for validation of the transformer measurements. Other additional tasks are the
assessment of additional use cases, such as monitoring of demand side management.

The combination of these methods would then allow for the creation of the already
mentioned decision support tool, which would only require a few days of calibration along
with regular grid operation before being operational. Such a solution would increase
DSOs monitoring capacities in a substantial and feasible manner.
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CHAPTER 4
Data-Driven Misconfiguration

Detection in Power Systems with
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Detection in Power Systems with Transformer Profile Disaggregation,” IEEE Access, vol.
11, pp. 80123-80136, 2023.

Abstract: Rapid and necessary changes in the energy sector are leading to the rise of
new, decentralized devices for generation and consumption in the electrical distribution
grid. Such devices are inverter-connected photovoltaic (PV) generators, heat pumps (HP),
or electric vehicle supply equipment (EVSE). These new components make the power grid
operation more difficult as they display volatile behavior and therefore also need to provide
grid-supporting functionalities. Distribution System Operators (DSOs) need to make
sure these grid-supporting functionalities are performed correctly, in order to guarantee
a safe and reliable operation of the grid. However, especially the low voltage distribution
grid is still ill-equipped with sensors and therefore difficult to monitor. This contribution,
therefore, presents a data-driven application for detection of misconfigurations using the
data available at metering points of substations and selected voltage measurement points
in combination with a transformer load profile disaggregation approach. The assembled
application outlined is both functional, scalable, and easy to integrate into current
monitoring schemes. Such a monitoring application has not been designed yet and is
therefore novel. The data used were collected in a life-like laboratory setup and recreated
using simulations in order to be able to test and validate both the detection as well as
the disaggregation method. Two monitoring use cases of control functions are considered;
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the first one is a reactive power control of PV inverters, and the other one is a Demand
Side Management (DSM) control of loads. The results presented offer insights into both
the quality and performance of the application assembled. Furthermore, the influences
of the individual methods of the approach are explored as well. The conclusions drawn
show that a functional monitoring solution of reasonable reliability can be implemented
using the methods presented and tested here. The application can serve as a decision
support tool for DSOs requiring only minimal adjustments to the sensing infrastructure.

Keywords: Data-driven monitoring, detection, Machine Learning, device malfunctions,
transformer profile disaggregation, load estimation, low voltage grids, misconfigurations,
operational data, power distribution.

4.1 Introduction
Both ecological and economic pressures force major paradigm shifts onto the electric power
system. One of these is the introduction of decentralized renewable energy generation on
a grand scale [1]. Another one is the increased electrification of loads, spanning from
heating systems to electric vehicles [2]. These are located decentrally as well, making
their impacts on the electric power grid just as troublesome: for historic reasons the
power grid is designed to transmit electric energy as well as distribute this energy to
customers whose consumption is relatively static and easy to anticipate. However, on one
hand, the availability of this energy is getting more volatile as it is linked to, for example,
solar and wind yields. On the other hand, it is generated decentrally which may lead to
production overtaking local demand [3]. This in turn can cause reverse power flows from
the low voltage level of the grid to higher voltage levels, which was unconsidered before.
It can also lead to local voltage and current problems, as the grid is not laid out to cater
to the decentral infeed of this energy. Furthermore, the aforementioned electric loads
are being installed in the low-voltage distribution grid. This means for example more
electric vehicles are charged in grid locations that may also not be designed for such high
additional loads [4]. This can also lead to voltage or current problems.

4.1.1 Problem Statement

To cope with these problems, for example, of over-voltage in the case of distributed
generation, as well as under-voltage in the case of additional loads, the devices installed
need to provide grid-supporting functionalities. These functionalities include power factor
control curves depending on the active power infeed (cosϕ(P )) or reactive power control
curves depending on the voltage ( p(U)) for distributed generation units [5]. An example
of the latter is shown in Figure 4.1; the left side of the figure depicts a reactive power
infeed control depending on the local voltage. If the voltage is either too high or too low,
reactive power of the according sign is fed in. On the right side of the figure, the impact
of this reactive power is depicted. Capacitive reactive power, which is dispatched in what
is called underexcited operation, helps to dampen overvoltages by lowering the voltage.
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The opposite is true for inductive reactive power, dispatched in overexcited operation,
which bolsters the voltage and helps control undervoltages by lifting the voltage.
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Figure 4.1: p(U) control (left) used for voltage control (right).

Both the cosϕ(P ) and the Q(U) control alter the reactive power dispatched by the
inverter of a PV generation unit. The reactive power infeed can be used to control, or
rather lower in this case, the local voltage and thus support the grid during operation to
operate within the acceptable limits [6]. Similarly, loads can be equipped with control
functions aiding the grid; EVSEs can follow a charging power control curve limiting the
active power drawn in case the voltage drop is too low [7]. Also, household loads can
follow patterns in order to shift their consumption to more favorable times of the day as
far as the grid or possible self-consumption is concerned. The latter is relevant in case
a rooftop PV system is installed that can be used to cover at least parts of the load’s
consumption. This is commonly referred to as DSM [8].

However, all of these generators and loads are usually installed decentrally in the low
voltage distribution grid, which has, as already mentioned, not been designed for such
use. This also manifests in the lack of sensor capabilities which are usually limited to
substation measurements on the transformer or Smart Meter (SM) measurements [9]. The
use of the latter is often restricted by data protection regulations, which leave the state
of the distribution grid as a blind spot to the Distribution System Operator (DSO) [10].
Nevertheless, the DSO has to ensure the grid is working safely and is within acceptable
limits of loading and voltages. To ensure this, the DSO needs to be able to monitor the
correct execution of the discussed grid-supporting functionalities, as configurations might
change in an undesired manner due to faults, software updates or user interference [11].
This would then lead to misconfigurations. At the moment, this is only possible through
manual check-ups conducted by maintenance crews which are costly and unfeasible. As
the rollout of the novel decentral generation and consumption devices proceeds, the need
for an automated solution arises. This solution should be both easy to install and robust
during use. Furthermore, it should require as little adaption to changes in the grid as
possible, which can be used by the sole use of operational data, as discussed in previous
work [12]. The need for insights into how such a solution could be designed and how well
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it could perform motivated the study conducted.

4.1.2 Contributions and Objectives

As there is no solution to this monitoring need, a new approach is needed. All of
the requirements mentioned above lead to the question formulated: “Given the scarce
availability and usability of data in low voltage distribution grids, what approach is the
best fit to detect grid-supporting devices’ misconfiguration in such grids?”

A number of objectives has to be fulfilled to answer this question:

• Detect unusual transformer profiles given only aggregated medium-low-voltage
transformer data.

• Distinguish abnormal transformer operational data depending on the underlying
cause.

• Based on the same aggregated transformer data, gain information on the behavior
of decentral devices.

• Determine the data and its quality needed to offer a useful accuracy of detection.

These requirements and the goals that stem thereof led to the main contributions of the
present work: a detection method using traditional Machine Learning (ML) methods
on the transformer level is introduced and elaborated using a novel DSM use case.
Furthermore, a disaggregation approach using load estimation is laid out that helps
gaining information on the low voltage level given the transformer operational data. To
conclude, the detection method and the disaggregation method are combined to form a
detection application that is suited to be installed in DSOs’ control rooms as a decision
support tool. The quality and influences of the individual parts are assessed in the course
of the work, helping to reach the objectives set.

4.1.3 Organisation

The remaining work’s structure can be listed in the following manner: In Section 4.2, the
state-of-the-art related to configuration monitoring in power systems and the usage of
data-driven methods for the same are treated. Section 4.3 details on implementation and
functionality of the detection and disaggregation method and lines out the assembled
detection application. In Section 4.4, the use cases and deployed grid setups for assessing
them are described. Section 4.5 presents the results achieved for each application and
stage. Finally, in Section 4.6 the discussion, conclusions, and an outlook about potential
further work are given.
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4.2 Related Work

In the literature, no solution for the stated problem exists. However, approaches to
solving parts of it can be found, even if they might not be straightforwardly applicable.
In the following, these related contributions are assessed in this regard.

4.2.1 Background and Data Preprocessing

As the review conducted in [13] outlines there are various disciplines when it comes to
monitoring power systems. The first applicable one is fault detection, which treats the
detection of the occurrence of deviations from regular operating conditions. Another one
is fault classification, which encompasses the fault type to be identified. Lastly, fault
location is mentioned, which obviously means localizing the fault which is constituted by
singling out the part of the grid covered by the substation. Therefore, the problem at hand
falls into the category of fault diagnosis, as this discipline combines all the aforementioned
challenges. However, the publication mentions explicitly the lack of automatic fault
location methods implemented by DSOs. The same applies to fault classification, whereas
there is even only a small number of publications in this field. What also remains to
be said is that the review mentions only line fault location and classification scenarios.
Also the review conducted in [14] does not address misconfigurations but only power
quality disturbances and lists causes for numerous ones. It only provides methods on
how to detect these. Another current related review article [15] only addresses power
system frequency and control as an application of Deep Learning. It does not mention
misconfiguration detection in the way it is regarded here. The last related review article
to be found is [16], which treats condition monitoring of wind power systems. This is
also somewhat related to the problem defined, however, this is a very general monitoring
task. The specifics of it do not necessarily apply to the problem at hand. For the
misconfiguration detection case treated in the work presented here, no reviews or related
works apart from previous work by the authors could be found.

Treating data in the principal component subspace in order to reduce dimensions and
filter for relevant features using Principal component Analysis (PCA) is a promising
strategy. PCA assesses which components, meaning which features of a sample, have the
highest impact on the feature vector. This is done by evaluating which projection of the
data onto a vector retains the most variance in the data. This vector is the first primary
component. If one wishes to keep a certain percentage of the variance of the data, an
according number of primary components can be used to represent the entire data. This
means the data can be projected onto these components and then use said components
instead of the original data. In [17] this approach is employed, also using measurements
at the substation bus where a data-driven operation model is assembled. However, once
more this solution is used to detect line faults and not misconfigurations.
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4.2.2 Monitoring Approaches
In [18], fault diagnosis of single-phase to ground and three-phase faults are conducted using
gradient boosting trees. Even though the application is once again not congruent with
the one at hand, Decision Trees (DT) are of interest for the detection and classification of
misconfigurations. This method works by using a training set of data in order to divide
the feature space along linear decision boundaries. This is done iteratively until, ideally,
only samples of the same class remain in the so-called leaves of the formed branches of
the decision tree. To avoid overfitting, the depth of the tree can be limited, leading to
impure leaves but a better ability of the trained model to generalize. These decision
boundaries can then be used to classify new, unseen samples. Even though this appears
to be applicable, the method presented makes extended use of feeder data measurements,
which is to be avoided here. Also, [19] uses Random Forest Decision Trees to localize
faults. Here, they are used as regressors to estimate the distance on a feeder to a fault,
but also to identify the faulted branch. Therefore, DTs are considered a detection method
to be assessed.

Deep Learning (DL) is another approach for fault detection and location proposed in [20].
The properties of feeders are learned by a deep neural network such that it is able to
generalize on fault location and occurrence. The main advantage of DL is that it is able
to condense its own features from the data, making complex preprocessing of the input
data unnecessary. The method is, as the authors elaborate, able to do this even if only
measurements at the beginning and end of a feeder are available. For this reason, the
method could be of interest. Nevertheless, the training of such a network is conducted
with hundreds of thousands of time series covering every imaginable operation scenario.
These data stem from simulation and basically constitute a look-up table that is engraved
in the deep neural network. [21] applies a DL Attention Mechanism to voltage sag type
and location detection. Attention Mechanisms offer weighting inputs according to their
importance to the output, thus improving the learning of the relation between the two.
The work presents good results, yet the problem of proper data sourcing remains. For
the present work, an approach is to be found that is easy to integrate and scale without
major adaptions for new grid setups or changes within the grid. This renders the DL
approach impractical for the task at hand.

The work in [22] mentions k-Nearest Neighbour (kNN) as an instance-based learning
method that can be used for fault detection and classification. The kNN algorithm
classifies samples according to the labels of their neighbors: depending on the number of
neighbors and, optionally, the distance to these neighbors, a vote is taken by all training
samples on the class assigned to the unseen sample. This means no classifier has to be
built per se, making kNN a non-parametric method. The only parameter is said number
of nearest neighbors considered and whether their vote should be weighted according to
their individual distance to the sample to be classified. A large number of data samples,
however, lets the computational cost of kNN explode, as all of them have to be evaluated
when making a prediction. Also, [23] uses kNN for fault detection, but also to classify
events like PV outages. However, data at high resolutions from phaser measurement units
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(PMU) positioned in the grid measure voltage magnitudes and also angles. Additionally,
[24] finds kNN a fit solution for detecting voltage sags in distribution grids, which also
shows that the method is not necessarily limited to line faults. Even though kNN seems
to be an approach worth being explored, it remains unclear if it can also perform well
under the present circumstances.

The authors of [25] use a Support Vector Machine (SVM) classifier for fault location.
The SVM is suited for small datasets with data of high dimensionality and building the
classifier has a low computational cost. Furthermore, the SVM can be used using various
kernels, allowing for non-linear decision boundaries. In general, decision boundaries
are found by the large margin principle: the decision boundaries are calculated in a
way to maximize the margin of the samples to the decision boundaries. They also use
dimension-decreased data for their solution. The results are promising, however, the
solution works using micro-PMU data which is not available in that form for the problem
at hand. [26] also uses the SVM for fault detection and location, but uses an online data
bank of simulated fault locations to build the classifier. It is to be evaluated if this poses
an interesting approach to solving the problem of data availability. Additionally also [27]
uses the SVM approach, in this case, to classify power quality disturbances such as well,
harmonics, flicker, or interruptions. This shows the wide range of applications the SVM
can cope with, making the approach of particular interest to the problems stated initially.

4.2.3 Disaggregation Approaches
The problem of disaggregating a load profile into its contributing profiles without using
and installing sensors that track them directly is generally known as Non-Intrusive
Load Monitoring (NILM) [28]. In general, only disaggregation of household profiles into
individual appliance profiles is found in literature [29]. NILM is only partly congruent
with the approach to transformer load profile disaggregation needed here, as the origin
and availability of the input data differ as well as the sought output profiles as these
usually fall into application categories. Of particular interest here is energy estimation
as elaborated in [30]: this estimation is further dissected into event-based and eventless-
based NILM. It is to be said that, even though an arbitrary number of appliances can
make up the profile to be disaggregated, the appliances are usually identified beforehand.
Identification also means extracting a particular typical profile for each appliance, which
can be time-consuming and requires a lot of adaptations. This might be cumbersome or
not possible in a grid setup as loads appear very different depending on their position
in the grid and the resulting influence of lines on these loads’ consumption. This is
especially a problem for the application at hand if not many adjustments are to be done
for individual grids.

Approaches for disaggregation regarding entire transformer profiles in a distribution
system using substation data only treat estimating PV or other distributed generation [31].
Here again, historic load data is used which corresponds to the appliance identification
mentioned earlier. This can pose a problem again as not many manual adaptions
to certain grids are to be conducted for the solution envisioned. Similar approaches
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that can be found only treat system-level disaggregation, meaning disaggregating even
more aggregated power profiles such as national consumption. In [32], the authors
disaggregate national consumption into substation-level contributions, which is still of
too big granularity for use cases related to our work.

In [33] the NILM problem is reframed as a source separation problem, meaning that the
source of an aggregated profile is to be determined. Mostly Neural Network (NN) archi-
tectures are proposed for the task. Here. only high-frequency signals are being treated,
for example, 16 Hertz signals. If the method works on data with lower frequencies is still
to be evaluated. The authors of [34] address the problem as feeder-level disaggregation,
which means disaggregation of substation profiles into components. They use NNs for
this task, however, to make quantile predictions and not point predictions, as would be
more suited to the problems stated above. Lastly, [35] mentions a wide range of NN
architectures to be fit for the task of disaggregation, even though the use case under
scrutiny is not a feeder-level disaggregation but the disaggregation of a household profile
into its devices’ contributions.

Different regressors for disaggregation are compared in [36]. The results of this work show
more or less equal performances for different regressors such as NN, SVR, or Random
Forest with each of them having an edge over the others depending on the dataset they
are applied on. Therefore, no solution seems to be outstandingly favorable over the others.
Also, the work in [37] uses very simple regression methods for disaggregation: even Linear
Regression (LR) seems to offer a good option. For that reason, also well-known and
simple solutions such as LR should be considered for the problem at hand.

Table 4.1: Non-functional requirements (NFR) fulfilled (X) or unfulfilled (–) by approaches
in related publications cited.

Reference
NFR [17] [18], [19] [20], [21] [22] - [24] [25] - [27] [28] - [30] [31], [32] [33] - [35] [36], [37]

Scalability – – – X X – – X X
Adaptability X X – X X X X X X
Integrability X – – – – – – – X

Usability – X – X X – – – X
Data Retention X – X X X X – X X

Robustness – X – – X X X X X
Quality X X X X X X X X X

4.2.4 Summary and Open Issues
Summarisingly, the work on monitoring with regard to misconfigurations as well as the
works on disaggregation (see Table 4.1) in the electrical grid domain shows quite some
gaps to be filled. Either the approaches don’t treat the same problem as the one at hand
as is the case for monitoring which covers only line faults and not misconfigurations.
Here, some methods appear worth exploring, mostly traditional Machine Learning (ML)
approaches such as kNN or SVM. Deep Learning seems not applicable as the data set
size and availability of data, in general, is a problem. Regarding disaggregation mostly

86



4.3. Methods and Algorithms

Integrated Monitoring Application

Disaggregation
Method

Transformer
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Load Flow
calculation

Faulty samples Detection
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Correct
samples
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Unseen
samples

Figure 4.2: Flowchart linking the methods of the monitoring application.

the household level NILM is the focus of the works found in the literature. A wide range
of methods, traditional regressors but also NNs seem to be valid solutions. It remains to
be seen if they can also be applied in the same manner on the feeder-level disaggregation
problem present here, as the constraints are quite different from the ones usually found
with NILM problems. The main contributions of the work here are to apply detection
approaches in the misconfiguration use case, but also combine them with methods applied
to the feeder-level disaggregation task in order to yield an integrated and deployable
misconfiguration monitoring solution.

4.3 Methods and Algorithms
The approach presented in this work integrates a transformer profile disaggregation
method in the form of a load estimation with a detection method for specific misconfig-
urations. First, this detection method is explained in detail. Then, the disaggregation
method is elaborated. Ultimately, the complete detection application and its functionality
are illustrated. How these individual parts are linked is also depicted in the overview
flowchart of Figure 4.2. The entirety of the code used to develop, test, and assess all of
the methods presented can be found in the corresponding repository1.

1https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset
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4.3.1 Detection Method
The detection method used has been presented in detail in previous work [38]: here the
applicability of the method was shown using laboratory data as well as their respective
recreations using simulation of substation data. The misconfiguration to be detected
was a PV reactive power control misconfiguration. Such misconfigurations can be, for
example, a flat cosϕ(P ) curve which leads to a lack of voltage control. The method works
on substation transformer measurement data. It constructs a classifier using samples of
regular grid operations as well as of the corresponding operation circumstances when a
misconfiguration is present. The classifier is then used to assess new, unseen samples
making a statement on whether a misconfiguration is present or not. The assessment
yielded good results, both on the recorded laboratory data as well as on the simulation
data. The misconfiguration could be detected in all, or almost all cases, depending on
the specific misconfiguration, its position in the grid, and the data source. This paved
the way for further usage of this method and its transformation into other use cases as
well as its integration into the final detection application.

The approach for detection can be briefly summarised as follows: the highly dimensional
substation measurement data, which consists of voltages and currents but also active
and reactive power flows are used. These data were recorded at a 4 Hertz rate, and also
recreated at the same frequency. The data of one entire day are regarded as a single data
sample. This is made possible by flattening the data into a single row, whose columns
are marked as certain variables at a specific time step, such as the voltage at phase A
at 10 am. This yields a number of columns equivalent to the product of the number of
rows times the number of channels recorded. 15 days’ worth of data were recorded in all
configurations, totaling 15 data samples for the assumption of regular operation as well
as for cases where a certain misconfiguration is present. Taking a simple example, 15
sets of load and generation profiles were applied and the substation recorded both for
the PV reactive power control to be on or off. The resulting data set has 30 samples in
total, 15 correct ones, and 15 samples of malfunctioning cases. PCA was then applied to
this data set in order to filter for the most important features. The PCA was specified
to retain 99% of the variance in the data, which still reduced the dimensionality of the
individual samples significantly. After this step, the final data set is assembled. This data
set is then fed to classification methods, namely the aforementioned kNN, DT, and SVM.
The latter two build a classifier using the training set and then use the found decision
boundary to classify unseen examples as either stemming from regular operation or a
misconfigured operational state. kNN, as elaborated before, performs the classification
by looking at each testing sample’s neighbors and classifying it in accordance with the
majority of them. For the PV use case under scrutiny in [38], the best-fitting solution
was the SVM.

4.3.2 Disaggregation Method
Usually, only cases of correct operation are recorded or assumed as such as grid operators
are unaware of the occurrence of a misconfiguration. A real application would need
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to know what the faulty samples look like to be able to build the classifier. As only
substation data is to be used for the detection method, and some form of recreation of
misconfiguration cases is necessary, also some form of data mining to gain information
about loads’ consumption in the underlying grid is needed.

The approach chosen is a load estimation approach. In order to be able to conduct this
estimation, the properties of the grid the loads are situated in have to be captured. In
order to achieve this, a training set of generic load flow results is generated using grid
simulations. This is done by running 10,000 load flows where loads and generation units
are assigned profiles with uniformly distributed values. The results are saved as a data
set. The only properties necessary to know here are the minimum and maximum power
values of the loads and generation, which should both be available to grid operators
since they are either needed for billing or installment of devices. The load flow results,
in addition to power flows, then also contain the voltage values for each combination of
load and generation settings.

This training set is in turn used to train a NN or build the regressor used for LR as a
benchmark. The training set obviously contains the same inputs as used later for the
estimation, which is depicted in Figure 4.3: voltages at the substation and at neuralgic
points in the grid, as well as active and reactive power, flows at the substation are
measured. Furthermore, the production of generation units is assumed as known through
external estimation. This estimation is, for example, straightforward for PVs, as radiation
models in combination with the installed rated power yield very accurate estimations of
production. In the case presented, the estimation is done in hindsight, meaning that the
historic radiation data is easy to obtain. The outputs in the training set, the labels, are
the active and reactive power consumption of the loads, marked as estimated.

The NN trained is a very simple one, made up of only 1 hidden layer with ReLU as
an activation function and Adam as an optimizer. ReLU, in contrast to the Sigmoid
activation function, avoids the vanishing gradient problem, which was encountered during
developing the solution. Adam optimizer has the advantage of computing individual
adaptive learning rates for different parameters which speeds up learning compared to
using classic gradient descent for the optimizer. The learning rate was set to 10−3 and
the batch size to 32. The voltage input data were scaled using a standard scaler which
scales the data around the mean divided by the standard deviation. The standard scaler
is used here since the voltage values are expected to be clustered around a nominal
value, like 230V. The load inputs and outputs were scaled using a minimum maximum
scaler, scaling the data between 0 and 1. For the loads, the minimum-maximum scaler
was chosen as these values are easy to determine for grid operators from historic billing
data, and therefore a minimum and maximum value can be defined for the uniformly
distributed inputs. Scaling in these two forms allows for consistent inputs for the NN
without any outliers that might inhibit the learning of the model.

Table 4.2 summarises the requirements and the outputs of the disaggregation method
by device class. As mentioned before, the voltages and power flows at the substation,
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V, P, Q
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P, Q Estimated
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Figure 4.3: Requirements for the disaggregation method.

Table 4.2: Requirements and output of disaggregation method by device.
Device known estimated

Transformer V, p, p –
PV p –

Voltage sensor V –
Load – p, p

voltages at points between loads, and the infeed of generation devices are needed. The
estimation then yields active and reactive power values of the loads in the grid.

4.3.3 Integrated Monitoring Application
In order to merge the aforementioned detection method and disaggregation method
into a monitoring application, the two have to be integrated. The functionality of the
application is sketched in Figure 4.4 as well as described in the following.

The substation data are used for detection as elaborated above. In order to build a
classifier employed for monitoring, a certain calibration period is necessary. During this
calibration period, new unseen samples of transformer level data, the data of one day
constitute a sample, are assumed to have been collected during regular operation without
any misconfiguration present, as in part 1 of Figure 4.4. In order to obtain the corre-
sponding faulty sample consisting of data collected under misconfigured circumstances,
grid simulations are employed. These simulations recreate the grid operation of the
previous day by setting the load and generation values to the corresponding historic
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Figure 4.4: Scheme of the integrated monitoring application.
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values. During the simulation, the control curve to be monitored is set to a misconfigured
setting. Multiple simulations are conducted to cover an arbitrary number of misconfigu-
rations in this way by producing grid operational data under such circumstances. To
attain a complete data set, the measured ’correct’ samples and the simulated ’faulty’
ones are combined. To be able to simulate the ’faulty’ samples though, the values of
the individual loads in the underlying grid need to be determined. For this task, the
already described disaggregation of the measured transformer power profile is used. The
simulation is done using the load and generation profiles, the latter are assumed to be
known from external sources, and simply changing the configuration under scrutiny to
the misconfigured setting. The load flow simulation then yields the transformer data
for this respective case, as shown in part 2 of Figure 4.4. This can be repeated for an
arbitrary number of misconfigurations without high computational cost and only requires
modeling the misconfiguration once.

After the calibration was conducted, which in the presented case was done for 14 days,
the monitoring application is ready for use. New, unseen data are then treated, as
lined out in the description of the detection method: a day’s data is flattened into a
single row and treated by PCA to form one sample. This sample is then classified as
either stemming from regular operation or not, which is depicted in part 3 of Figure 4.4.
Therefore, the monitoring application delivers a diagnosis of device’s configuration status
once a day. The classifier can then also be updated each day, in case the sample collected
is deemed to be of regular operation. This leaves the application with a rolling window
of historical data making up the classifier which also accounts for possible drifts in the
grid operational data.

4.4 Monitoring Examples
Here the two applications the monitoring approach was tested on, as well as the grid
setups the data for these were collected and the corresponding data properties are
presented. Both applications are highly relevant to the integration of renewable energy
sources into the power system. The PV use case aims at the monitoring of the direct
mitigation of the impact of decentral integration through a reactive power control. Such
controls are widely configured at PV inverters. The DSM monitoring use case tends to
the detection of incorrect load shifting looking to maximize PV self-consumption, which
is a more indirect grid-supporting functionality since it also mitigates stress on the grid.

4.4.1 DSM Use Case

The first application is the monitoring of a DSM functionality of loads. The DSM in
question aims to shift the load in a way, as to maximize PV generation self-consumption
as depicted in Figure 4.5: the load profile assigned to a household load (the red profile)
which has a PV generator attached is shifted (the green profile) so that the biggest
consumption peak coincides with PV production (the blue profile). Therefore, it is shifted
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Figure 4.5: DSM working principle; red: original load; green: load after DSM; blue: PV
generation.

to sometime during the day, lowering energy demand from the grid. The overall energy
consumed throughout the day remains unchanged, though.

This is considered a correctly configured load that implements DSM control. In case
the load is not shifted in the way described, the load is considered to have no DSM
control. Data were collected in a laboratory environment using two grid setups shown in
Figure 4.6: both setups contain a transformer, 3 loads, and one PV unit. In setup A,
the PV is located at a load close to the substation and therefore close to the start of the
feeder. In setup B, the PV can be found at the end of the feeder. Data were measured at
the connection points of the loads as well as at the substation. The data was collected
at a 4 Hertz rate, measuring a multitude of signals such as voltages, currents as well as
active and reactive power flows.

Using these grid setups, data corresponding to 15 days of grid operation were collected by
assigning load and generation profiles and measuring the grid data. Each of the profile
combinations is referred to as a scenario in the following. This was done twice as the
data were collected once with the DSM control in place, and once with no DSM control.
This yielded 30 samples, 15 of which were ’correct’ and 15 were ’faulty’. Figure 4.7 allows
a glimpse at the data collected: the top part of the figure depicts the voltage measured
in the lab environment at the load with attached PV as well as at the transformer. The
DSM control helps curtail over-voltages by raising the self-consumption of otherwise
excessive PV generation. This effect is more pronounced in the setup where the PV
is closer to the substation. The lower part of the figure shows the recreation of these
measurements by simulation: the basic behavior is the same, however, the effects of the
DSM are less pronounced than in the real-life data.

In order to get a full picture of all scenarios with both DSM control and no control, a
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Figure 4.6: Test setups used for data collection.

cluster map can be created. The clustering was conducted using ward clustering [39]
which creates a similarity matrix using Pearson correlation and then builds a hierarchical
dendrogram linking together the most similar time series. This is done by the ward
linkage method, an algorithm minimizing the variance. The clustering was done for
the laboratory data, which can be seen in the top part of Figure 4.8, as well as for
the simulation data, which is depicted in the bottom part of the figure. Two aspects
can be derived from these cluster maps: first that the data from the same scenario are
more similar to each other than the data collected with the same control setting. This
means that data samples from the DSM and Pv use case are not trivial to separate.
Secondly, the laboratory data are in general less similar to each other than the simulated
data, which is in accordance with the observation made earlier that the impact of the
control is less pronounced in the simulated case. This could have implications for the
performance of the monitoring application, as it combines real-world measurement data
with simulated data. However, a sample from the real world shows more pronounced
effects of the control, meaning it should be easier to detect in case of a misconfiguration
than its simulated peers used to build the classifier, as elaborated above.
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Figure 4.7: Laboratory (top) and simulation data (bottom) by measurement point.
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Figure 4.8: Laboratory (top) and simulation data (bottom) of setup B at measurement
point B2 clustered; ’D. c. S. 1’ and ’n. c. S. 1’ stands for ’DSM control Scenario 1’ or
’no control Scenario 1’ respectively.
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Figure 4.9: cosϕ(P) control curve and its abnormal configurations.

4.4.2 PV Use Case
The second application is the monitoring of a PV inverter and its reactive power control
curve. The curve under scrutiny is a cosϕ(P) control curve. The misconfigurations,
sketched in Figure 4.9, are either a flat control curve, called ’wrong’ in the following,
which means no reactive power infeed, or an inversed curve leading to an infeed of the
opposite sign. As mentioned above, this power factor control is used to dispatch reactive
power in order to avoid or mitigate overvoltages at high PV active power infeed. The
same data as described above was collected for this use case, also using two grid setups.
Both consisted of a transformer, two loads, and a PV generation unit. In one setup,
this PV is located closer to the substation, in the other one, at the end of the feeder. A
detailed description of these setups, the control curve as well as its misconfigurations,
the data collected, and the results of the detection method achieved on this data can be
found in previous work [38]. Also here, the number of samples collected for each case of
configuration is 15, meaning 15 days’ worth of data were collected.

4.5 Results and Discussion
The results achieved by the individual parts of the monitoring application, but also by
the entire application are shown here.

4.5.1 DSM Detection Method
First, the performance of the detection method is evaluated. This is done for the DSM
use case, as the results for the PV use case can be found in previous work [38]. Table 4.3
shows these results: the first row shows the F-score achieved in both grid setups and when
using data collected in the laboratory as well as through simulation. The results were
achieved by conducting a 7-fold cross-validation. The F-score is calculated using Recall,
how many of the misconfigurations present were also found, and Precision, how many
of the found misconfigurations are actually misconfigurations. The F-score, therefore,
balances the two. The second row lists the classifier yielding the best result.
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Table 4.3: Comparison of best detection results on laboratory and simulation data of the
DSM use case.

Grid Setup A Grid Setup B
Metric

Lab Data Sim Data Lab Data Sim Data

F-Score 0.91 0.70 0.85 0.68

NuSVM: SVM: SVM: NuSVM:
Best method RBF sigmoid linear sigmoid

kernel kernel kernel kernel

The results clearly show a good performance on the data collected in the laboratory
setting, whereas the misconfigurations appear harder to detect in the simulation data.
This can be explained when considering the aforementioned higher similarity between
samples in the simulated cases compared with the samples collected in the lab environment.
In general, the results in setup A have an edge over the results in setup B. In setup A,
the DSM-controlled load is closer to the substation and therefore has a higher impact on
the transformer data, as discussed already. This makes the misconfiguration easier to
detect. However, in both cases the detection is feasible. Furthermore, either the SVM
or NuSVM, which constrains the number of support vectors making up the decision
boundary depending on the so-called nu parameter ranging between 0 and 1, is found to
be the best-performing algorithm for detection. This was to be expected, both considering
the results of previous work as well as the properties of the SVM which shows good
performance on small, highly dimensional datasets.

4.5.2 Disaggregation Method
The performance of the disaggregation method and its load estimation as the next building
block of the monitoring application is assessed here. This was done for both use cases, so
for four grid setups in total. Figure 4.10 shows examples for the estimation of a load’s
active and reactive power consumption for grids used for the PV use case. The active
power value is depicted on the left, and the reactive power value is on the right. The
estimation is done using both a NN as well as LR. The active power estimation follows
the actual value quite accurately, whereas the reactive power seems to be underestimated
generally with some peaks in the NN estimation that are off.
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Figure 4.10: PV use case: estimation of load profile.
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Figure 4.11: DSM use case: estimation of load profile.

The estimation of the consumption of a load, which has the same active and reactive
power profile as the one shown before but in a grid used for the DSM use case can be
found in Figure 4.11: here the active load estimation seems to be too high in a few
instants, whereas the reactive power appears to be more accurately estimated with the LR
estimation being farther away from the actual value when it comes to peaks. This allows
for the conclusion that the estimation is generally better for the active power values than
for the reactive power consumption, which might have to do with the properties of the
grid and the varying reactive power consumption of the lines therein.

The complete results on all grid setups are listed in Table 4.4. The metric used is the
mean squared error, which in this case is based on the scaled values ranging from 0 to 1.
The results for the first two grid setups used for the PV use case are much worse than
the results for the second two used for the DSM use case. The grids used for the DSM
use case have more loads than the ones used for the PV use case, having 3 instead of
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Table 4.4: Comparison of disaggregation error results for both the PV and DSM use
cases.

Mean PV Use Case DSM Use Case
squared

error
(MSE) Setup A Setup B Setup A Setup B

Neural Network 23 ∗ 10−3 20 ∗ 10−3 0.8 ∗ 10−3 0.85 ∗ 10−3

Linear Regression 17 ∗ 10−3 16 ∗ 10−3 0.9 ∗ 10−3 0.87 ∗ 10−3

2 voltage measurements and fewer lines without any measurements in general. This is
likely to be the cause of the better performance on the ’denser’ grids used for the DSM
use case. The performance of the NN and LR are almost the same here, with the NN
having a slight edge over the LR performance. For the less ’dense’ grids employed in
the PV use case, the LR shows better performance, pointing to the LR being the more
robust option. Whether this has an impact on the overall performance of the monitoring
application remains to be determined in the following.

4.5.3 Integrated Monitoring Application

Finally, the detection method and the disaggregation approach were combined and the
resulting monitoring application was put to test. The performance results for the PV
and the DSM use case are both evaluated using the aforementioned F-score as well as
by pointing out the best scoring algorithm for detection. Furthermore, the impact of
the disaggregation approach is evaluated. this is done by comparing the performance of
the monitoring application using the actual load data as inputs for the simulation of the
misconfigured samples to the performance using estimated load data as inputs. Both
the NN as well as the LR estimation are considered inputs. As there are 15 samples
available for each of the use cases and grid setups, 15 combinations of training and test
sets were formed. In each of them, all but one sample of regular operation as well as one
of grid operation with a misconfiguration present are used for training. The two test
samples originate from the transformer measurements. In this way, the real operation of
the monitoring application is emulated.

Table 4.5 and Table 4.6 show the results for the PV use case. The results consider the
detection of the flat reactive power control curve, called ’wrong’, as well as the detection
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of an inversed curve, or simply an abnormal curve which means either a flat or inverted
curve. The top part of the table shows the results for grid setup A where the PV is closer
to the substation, and the bottom half lists the results for grid setup B which contains a
PV at the end of the feeder. The detection of the ’wrong’ control curve works equally
well in both setups, also with regard to the origin of the load data for the simulation. The
best-performing detection method here is a form of SVM with a non-linear kernel. The
inversed control curve can be better detected in grid setup A when the actual load data
are used for simulations, even though the best detection approach is a kNN considering
two neighbors indiscriminate of their distance in both cases. There is no difference in
performance between the grid setups when the estimated load data are used, however, an
SVM with a sigmoid kernel is the best-performing method then. The best performance
is achieved when detecting both misconfigurations at once. The performance is the same
for both grid setups, with the best performing algorithm being kNN with two neighbors
weighted for their distance in the case of the actual load data being used and again
SVM with a sigmoid kernel when either the NN or LR estimated load data are used for
simulation. In this use case, the detection results are generally significantly worse in case
the estimated load data are used. However, it does not seem to matter whether they
stem from the NN or LR estimation even though the LR estimation was more accurate
as already discussed. This general drop in performance can be attributed to the poor
estimation quality for the grid setups used here. In general, the results are acceptable for
individual misconfigurations or even good when trying to detect any misconfiguration of
the PV reactive power control curve.

The results of the monitoring application on the DSM use case can be found in Table 4.7:
The results for both grid setups are quite similar with the only difference being the
best method found. In grid setup A, this is a NuSVM with a polynomial kernel of the
4th degree, whereas in grid setup B, it is an SVM with a Radial Basis Function (RBF)
kernel. What is of particular interest here is that the performance is the same when
using the actual load data as input for the simulation as when using the estimated load
data, regardless of whether NN or LR is employed. This can be traced to the much
better estimation accuracy in the grids under scrutiny here. This allows defining the
MSE as sufficiently small at about 10−3 for the estimation not to have an impact on the
performance of the detection. The overall results are decent, with them matching the
performance of the detection of a specific PV misconfiguration.

4.6 Conclusions

4.6.1 Achievements and Conclusion
The problems raised by the transformation of the electric energy grid need novel solutions
such as controls on a device that support the grid to work within operational limits.
Due to a lack of sensors in the distribution grid, DSOs need solutions for monitoring
the correct execution of these controls, in order to be able to guarantee a reliable and
safe operation of the grid. The integrated monitoring application presented delivers
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Table 4.5: Comparison of best detection methods using the original or the estimated
input data of the PV use case for Grid Setup A.

PV use case: Grid Setup A

Best score / method Data Source

Case Metric Original NN Estimated LR Estimated

F-score 0.71 0.62 0.62
correct

vs. NuSVM: SVM: SVM:
wrong Best polynomial sigmoid sigmoid

method 4th degree kernel kernel
kernel

F-score 0.80 0.67 0.67
correct

vs. kNN: SVM: SVM:
inversed Best 2 neighbors sigmoid sigmoid

method uniform kernel kernel
weights

F-score 0.83 0.80 0.80
correct

vs. kNN: SVM: SVM:
abnormal Best 2 neighbors sigmoid sigmoid

method euclidian kernel kernel
weights

just that tackling the first two objectives set initially. The detection method, as well as
the disaggregation method, were both evaluated and then combined to form an easy-to-
integrate and deploy monitoring solution that can act as a decision support tool for DSOs
pointing them to misconfigurations of controls at a regular interval. A PV inverter and a
DSM use case were presented and used for the experiments. The application presented
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Table 4.6: Comparison of best detection methods using the original or the estimated
input data of the PV use case for Grid Setup B.

PV use case: Grid Setup B

Best score / method Data Source

Case Metric Original NN Estimated LR Estimated

F-score 0.71 0.62 0.62
correct

vs. NuSVM: SVM: SVM:
wrong Best polynomial sigmoid sigmoid

method 4th degree kernel kernel
kernel

F-score 0.76 0.67 0.67
correct

vs. kNN: SVM: SVM:
inversed Best 2 neighbors sigmoid sigmoid

method uniform kernel kernel
weights

F-score 0.83 0.80 0.80
correct

vs. kNN: SVM: SVM:
abnormal Best 2 neighbors sigmoid sigmoid

method euclidian kernel kernel
weights

makes use of data already available to the grid operator, with the sole extension of a PV
generation estimation and voltage measurements at certain points in the grid to mine
information about loads’ consumption. This satisfies the third goal defined. The former
are considered rather easy to obtain as they are historic for the past day. The latter
constitutes only a small extension to sensing capabilities in the low-voltage distribution
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Table 4.7: Comparison of best detection methods using the original or the estimated
input data of the DSM use case.

DSM use case

Best score / method Data Source

Case Metric Original NN Estimated LR Estimated

Setup A: F-score 0.67 0.67 0.67

NuSVM: NuSVM: NuSVM:
DSM vs. Best polynomial polynomial polynomial
no DSM method 4th degree 4th degree 4th degree

kernel kernel kernel

Setup B: F-score 0.69 0.69 0.69

DSM vs. SVM: SVM: SVM:
no DSM Best RBF RBF RBF

method kernel kernel kernel

grid. Figure 4.12 sketches the problems stated and the contributions made in a condensed
way. The contributions include the development of a detection and classification of
abnormal transformer measurement data as well as an assessment of necessary data
quality and an approach to Data Mining through Disaggregation. Life-like data were
collected in a laboratory environment and recreated through simulation to give more
validity to the results. These results give insights into the performance of the individual
parts as well as of the complete monitoring application. The performance achieved in
all scenarios is sufficiently satisfying to serve as a reliable and helpful tool for better
monitoring of distribution grids, which fulfills the last aims set in the beginning. The
limitations are mainly set by the assumptions on a correctly configured initial state before
the calibration of the monitoring solution is conducted. This means previously present
misconfigurations can not be detected, only newly occurring ones.
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Figure 4.12: Problems stated and the corresponding contribution by the work presented.

4.6.2 Outlook
The application is meant to be working online as a decision support tool for DSOs.
Therefore, a field trial assessing the transformer profile disaggregation approach as well as
the complete monitoring solution would be beneficial to further improve the application
as well as check its robustness. Furthermore, a trial in more diverse grid setups as well as
larger grid setups is of interest, to be able to judge the application’s scalability. To test the
application’s adaptability, the integration of new use cases regarding misconfigurations
or devices is to be done in future work as well. The examples presented can also serve as
templates for integrating other devices’ misconfigurations. These are to include EVSEs
and HPs.
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CHAPTER 5
The DeMaDs Open Source

Modeling Framework for Power
System Malfunction Detection

Publication: D. Fellner, T. I. Strasser and W. Kastner, “The DeMaDs Open Source
Modeling Framework for Power System Malfunction Detection,” 2023 Open Source
Modelling and Simulation of Energy Systems (OSMSES), Aachen, Germany, 2023, pp.
1-6.

Abstract: Modeling and simulation of electrical power systems are becoming increasingly
important approaches for the development and operation of novel smart grid functionali-
ties – especially with regard to data-driven applications as data of certain operational
states or misconfigurations can be next to impossible to obtain. The DeMaDs framework
allows for the simulation and modeling of electric power grids and malfunctions therein.
Furthermore, it serves as a testbed to assess the applicability of various data-driven
malfunction detection methods. These include data mining techniques, traditional ma-
chine learning approaches as well as deep learning methods. The framework’s capabilities
and functionality are laid out here, as well as explained by the means of an illustrative
example.

Keywords: Data-driven approach, malfunction detection, modeling and simulation,
electric power systems, smart grids.

5.1 Introduction
The development of new smart grid capabilities for electric power grids is essential these
days. The transformation towards a sustainable, yet still resilient energy system entails
various challenges. These demands can only be faced by novel functionalities [1], which
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allow the grid to react to the current situation. In order to implement them, but also
to test and monitor them, realistic testbeds are needed. However, there are various
obstacles to using the electrical power grid as a testbed. The reasons for this are mainly
domain-specific: as the power grid is a vital building block of modern life, it is regarded as
a critical infrastructure. Any meddling or introduction of non-fully elaborate functionality
could compromise its reliability [2]. Moreover, the power grid can not be rebuilt in a
scaled-down version that would fully reflect its properties. Furthermore, due to the
historical development of the power grid as a hierarchical system, the lower tiers of the
network are fairly ill-equip with sensors [3]. These circumstances make data collection
and testing in the field, or on a replica of the actual power grid, either difficult or next
to impossible.

This leads to modeling and simulation being the only feasible option for early-stage
development and assessment of smart grid solutions. This is especially true if these
approaches are not only to be tested in a very limited lab setting. Regarding grid models,
there is free material available to facilitate these tasks. Very prominent representatives
there are the IEEE radial test feeders [4] which are widely used in power system analysis
under novel circumstances [5]. Even though the IEEE test feeders feature load profiles,
they lack renewable generation profiles and an approach for future scenarios in general.
The SIMBENCH project [6] is an open-source project providing specifically designed
power grids that allow for the simulation of distribution grids. These models also include
scenarios and consumption or generation profiles for electric mobility, battery storage,
and novel forms of power generation. In combination with load flow solvers or power grid
simulation software [7], these resources can be used to assess the impact and behavior of
new techniques in grid operation. The state-of-the-art on these solvers and tools is quite
advanced [8] and allows for high computational efficiency [9]. The data generated in the
course of this could also be used to develop means of monitoring grid-connected devices.

However, the integration of these solvers with grid simulation and the modeling of
specific applications as well as their malfunctions is missing from the literature. This is a
prerequisite for the development of monitoring applications. The current approaches are
often solely mathematical models not integrating data-driven approaches [10]. In case
they do integrate approaches such as machine learning, they only target very common
issues and applications; in [11] the authors present a model for predicting general power
consumption. The work presented in [12] is more specific focusing on combined heat and
power as well as electrical vehicle integration into the power grid. Demand response in
a smart grid environment is under scrutiny in [13], however, with mere attention paid
to its implementation and not to its monitoring functionalities with regard to correct
execution. When it comes to monitoring, significant contributions can be found in the
field of security with respect to malicious attacks on the power grid [14]. Nevertheless,
this does for example not cover misconfigurations occurring during regular operation.
These misconfigurations can lead to malfunctions of the grid-connected device.

The framework presented now aims to fill this gap by providing modeling and data
generation, processing, and analysis capabilities. It is designed to serve as a testbed
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aimed to develop and assess functional monitoring solutions. The approach strives to
detect malfunctions during the regular operation of grid-connected devices. The grid
setups to be used can be arbitrary. Also, the malfunctions under scrutiny can be modeled
freely, as well as a variety of detection methods employed. This is demonstrated in detail
in the previous works of [15] and [16]. These features allow for the easy expansion of
monitoring use cases. Furthermore, the final detection application can be parameterized
freely to facilitate development.

The manuscript has the following content: In Chapter 5.1, the general motivation and
background for the work the and field of application of the software framework are
presented. Chapter 5.2 provides an overview of the framework, its architecture, and its
functionalities. Chapter 5.3 provides insights into the application of the framework by
illustrating an example use case in detail. Chapter 5.4 outlines the impact the framework
has as a testbed for the development of monitoring solutions for power system operators.
Finally, Chapter 5.5 provides the conclusions and an outlook about potential further
work.

5.2 Framework Description

The framework is entirely written in Python and the implementation can be found on the
corresponding GitHub repository1. The most important dependencies regarding external
libraries and their use in the framework are illustrated in Chapter 5.1; almost all libraries
used are free and open-source libraries, with the exception of a library to interface the
here-employed power grid simulation software, DIgSILENT PowerFactory. As there
is sample data provided in the repository, the use of such software is not mandatory.
Furthermore, any grid modeling and simulation solution can be used in combination with
the rest of the framework. In addition, a script which is under development is used for
load estimation.

However, other implementations of this functionality can be used as well. This means
there are no crucial parts of the framework that are not openly accessible. The common
Python libraries are made for data handling and path allocations, whereas for the classic
machine learning capabilities Scikit-learn [17] is used. For deep learning, especially for
the recurrent neural networks employed, Pytorch [18] is being used. For regular neural
network applications, Tensorflow [19] is applied. The choice of using different libraries
for the implementation of artificial neural networks depending on their type was made in
order to allow for increased flexibility when developing a solution. Pytorch enables the
developer to adjust and craft the desired architecture in greater detail in comparison to
TensorFlow. This is especially interesting when trying to craft a monitoring solution in a
setting like the power grid, as the relevant properties of the data and features are widely
unknown beforehand.

1https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset
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Figure 5.1: The dependencies of the framework.

5.2.1 Software Architecture
The architecture of the framework differs depending on the use case of the respective
part of the software. Chapter 5.2 depicts the software architecture of the framework.

The basic settings for the experiment to be conducted by the framework are defined
in the configuration file. These settings include data paths and directories as well as
configurations for the machine learning, or deep learning approaches that are to be used.
The settings also define the neural network models and classifiers to use and how many
layers or what type of kernel they should be parameterized with. Also, settings for the
loading or creation of data and the assembly of datasets can be specified. These include
the specification of the grid models or malfunctions, in order to define the use case the
detection is applied to. Further settings include the mapping of data to align real-world
measurements with simulation results, for cases in which these two data sources are to
be combined.

Then, the data set generation or import of the defined use case is done via functions.
Functions are chosen here in order to allow for easier integration of different data sources
or grid simulation tools. The functional interfaces are easier to adjust or exchange in
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Figure 5.2: The software architecture of the framework.

comparison to an integration of these data handlers within classes. Depending on the
use case, this data is then saved. In the case of deep learning, the created data sets are
also saved as their compilation is more computationally expensive compared to the data
sets used for other approaches.

For experiments testing not a single detection method but a pipeline of methods that
form an approach to a practical detection application, load estimation is done via an
external script. This script is still under development and therefore not fully integrated
with the Detection Application class. This also allows for the use of alternative load
estimation or generally data mining approaches more easily.

The main functionalities regarding malfunction detection are bundled into three classes:
Deep Learning and Transformer Detection both serve as isolated test beds for methods.
These are either grid-unspecific using device-level data in the case of the Deep Learning
approaches or grid-specific using transformer data for Transformer Detection. The last
class, Detection Application, then allows for the integration of the individually assessed
methods into a practically applicable detection application.

5.2.2 Software Functionalities
The framework, as already mentioned above, allows for a great variety of scenarios in
which the modeled malfunctions are to be detected. The malfunctions are modeled as
incorrect control curves of devices whose behavior are reflected in grid operational data.
This detection can be tested and validated in different grid topologies, using differently
sized and composed data sets of different origins. The data can originate both from
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simulation or real-world settings such as lab environments. Furthermore, the approaches
to preprocessing and data-driven detection can be varied. Also, various options for
metrics and visualization of results are given.

When developing deep learning-based detection methods, data generation allows for
the generation of large amounts of data. This is done by using an arbitrary number
of grid models for simulation. These simulations can be parallelized, to swiftly yield
operational data of a certain type of grid-connected device experiencing the malfunction
modeled. Moreover, operational data of the correct behavior of these grid-connected
devices is extracted as well. These data can not be obtained in the real world, especially
not in a labelled manner as the occurrence of a misconfiguration goes unnoticed at the
moment. The results are saved in a CSV format. This data is used to form data sets of
the misconfiguration under scrutiny in the use case, which are stored in an hd5 format as
they contain up to 200,000 samples. These data sets can now contain data stemming
from a single grid or multiple grids. This allows for the assessment of whether the applied
deep learning method is able to extract fundamental properties from the data. This is
done in order to assess if a specific method can recognize a malfunction without any
grid-specific context. The data and the individual samples therein can also be plotted.
The framework allows for data preprocessing such as scaling as well as training in various
deep-learning approaches. In addition, it enables a comparison to traditional statistical
methods. Furthermore, hyperparameter tuning can be conducted. The performance is
assessed using common measures such as the F-score, and scores can also be visualized.

Another monitoring approach is provided by transformer-level detection. Here only
operational data gathered at the transformer is used. Data is loaded from, or generated
and saved to CSV files. Also, both loading of, for example, real-world data, and generation
of data is implemented to merge data of different origins. Then the data is preprocessed
via Principal Component Analysis ( PCA) and combined into datasets. Again, these
datasets contain grid operational data of cases in which a malfunction is present or have
their origin in regular grid operation. As there are data in a higher resolution as well as
more data channels available in this setting, traditional machine learning approaches are
to be tested here. This is due to the meters at substations measuring more variables,
and these at a higher rate, than smart meters in the distribution grid. As this case is
grid-specific, also more advanced tools of data analysis such as hierarchical clustering are
available. This clustering helps to assess whether possible real-world data from a specific
grid aligns with simulated data. Various classifiers can be applied which can then be
assessed by the aforementioned range of result metrics and their plots.

The so-developed and assessed methods can be tested in a near-to-life setup which is
represented by the detection application. Here, in order to fill gaps in data that were
assumed to be known in the isolated method testbeds, also load estimation is conducted.
A load estimation approach using a neural network is trained. Therefore, training data
is generated in a similar manner to the cases described before and saved in a CSV file.
Moreover, this load estimation is compared to a linear regression estimation to benchmark
it. Using this estimation for data mining, data sets can be assembled in a manner similar
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to what they could also be collected like in the field. This aims at testing the performance
of the detection methods under more realistic conditions. The data mining approach is
also kept flexible in order to test the methods under different assumptions on which data
is available. The result metrics can be inspected at every step of this pipeline to identify
the potential for enhancements.

5.3 Illustrative Example
To complement the above-elaborated description of the software with a more tangible
example, one use case is described in detail below (cf. Chapter 1).

The crucial parts of a sample configuration file for testing a deep learning application
on an electric vehicle charging station use case are presented. At first data paths are
defined, both for the grid data used as well as for results and the dataset. Then the
specific dataset to be used is defined along with the use case, which is done by choosing
the device type that is to be monitored for malfunctions. Following, parameters for the
type of neural network used for detection are specified along with training parameters
such as the number of epochs, or the optimizer. The great flexibility in the choice of
these parameters is made possible by the before-mentioned use of Pytorch. Also, the
result metrics can be chosen, as well as settings for a grid search in order to be able to
tune hyperparameters.

In the next section of the configuration file, the dataset to be created can be specified. If
a dataset is already set to be available no new dataset is created. If not so, the number
of samples the dataset created should contain, or how long a sample is, is defined. Also,
the number of grids the samples should be drawn from can be specified. Lastly, settings
on the grid simulation which creates the dataset can be customized. Parameters such
as step size or how many cores should be used for parallelization can be set, along with
the exact type of malfunction. In this case, as shown in Chapter 5.3, a generic active
power control curve of an electric vehicle charging station is inverted, which is considered
the misconfiguration to be detected. The curve depends on the voltage, meaning in
the malfunctioning case active power consumption is not reduced at low voltages which
therefore constituted the detectable anomalous behavior. The red line marks the correct
control curve, whereas the blue line is the inverted, malfunctioning control curve.

These settings and parameters are then used to either create or import a grid model.
Such a grid model is depicted in Chapter 5.4. The grid is modeled with the specified
amount of, for example, photovoltaic units or electric vehicle charging stations. Some of
them are then in turn modeled with the malfunction specified. Then grid simulations
are run and data is collected at the devices’ connection points to the grids, which are
symbolized by the triangles, boxes, or circles connected to the lines. The data is then
used to assemble datasets. These are then used for training and testing the specified
deep neural networks.

The so-trained neural networks are used for the detection of malfunctions in the test set.
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import os
import math

# Sytem settings
grid_data_folder = os.path.join(os.getcwd(), 'raw_data_generation', 'input')
raw_data_folder = os.path.join(os.getcwd(), 'raw_data')
...

# Deep learning settings
learning_config = {

"mode": "train", # train, eval
"dataset": "7day_200k",
"type": "EV",
# PV, EV, (PV, EV) > malfunction
"RNN model settings": [1, 2, 20, 5],
# dim of in&output, dim of hidden state, # of layers
"LSTM model settings": [1, 2, 3, 5],
"R-Transformer model settings": [1, 3, 2, 1, 'GRU', 7, 4, 1, 0.1, 0.1],
# input size, dimension of model,output size, heads, rnn_type, key size,

# local RNN layers, # RNN-multihead-attention blocks, dropout,
emb_dropout

�→
�→
"number of epochs": 20,
"learning rate": 1 * 10 ** -6,
"decision criteria": 'majority vote',
...
"activation function": 'relu', # relu, tanh
"mini batch size": 60,
"optimizer": 'SGD', # Adam, SGD
"k folds": 5, # choose 1 to not do crossval
"early stopping": True,
"LR adjustment": 'warm up',
"% of epochs for warm up": 10,
"train test split": 0.3,
"metrics": ['accuracy', 'precision_macro', 'recall_macro', 'f1_macro'],
...
"plot samples": True,
"classifier": "RNN",
"save_model": True,
"do grid search": True,
"grid search": ("calibration rate", [0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1])�→
}

# Dataset settings
raw_data_available = True # leave True if grid simulation is not available
sample_length = 7 * 96 # 96 datapoints per day
number_of_samples = 200000
number_of_grids = len([i for i in os.listdir(grid_data_folder)

# Grid simulation settings
parallel_computing = True
cores = 12
sim_length = 365 # simulation length in days
step_size = 15 # simulation step size in minutes
percentage = {'PV': 0,

'EV': 25, 'BESS': 0,
'HP': 0} # percentage of busses with active PVs etc...

broken_control_curve_choice = 2 # 1 = flat curve, 2 = inversed curve
t_start = None # default(None): times inferred from profiles in data
t_end = None

Listing 1: Configurations for a deep learning use case.
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Figure 5.3: Malfunctioning p(U) control curve.

The performance results are then stored and also plotted, as Chapter 5.5 illustrates. Here,
the F-score is listed as a metric. The Precision, how accurate label predictions are, as well
as the Recall, signifying how many of the true positives were found, are used to calculate
this score. The results allow drawing conclusions about the performance of a certain
parameterization of a certain deep neural network architecture on a specific dataset. It
also allows for easy hyperparameter optimization. The model scoring the best results is
saved and can be exported for integration into applications to make demonstrations easy.
This should also help facilitate possible field tests of the found solution.

5.4 Impact and Application
The framework’s impact is mainly threefold: first of all, it allows for the development of
detection methods on a device level, as shown in the previous practical example. This
method is intended to work across grid setups; the deep learning approach is meant
to extract fundamental properties from the data of devices in regular operation and of
devices experiencing malfunctions. Pretraining a network for a certain malfunction then
allows the incorporation of the detection solution of this use case into a distribution
system operator’s monitoring system. Such a solution also enables the operator to know
which malfunction occurred. The second aspect aims at developing a detection solution
at the transformer level. This is done by using data collected at the substation and
applying traditional machine learning methods to it. This detection approach is grid
specific. However, it requires no extensive prior training. Only a certain calibration phase
would be necessary.

For both application cases, different data sources, data qualities, and data availability
can be assessed. Furthermore, different neural network architectures, classifiers, and
parameters of these can be compared as well benchmarked against classic statistical
methods.

Lastly, the full detection application merges the approaches mentioned above with a full
detection application. This means integrating the isolated approaches with data mining
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Figure 5.4: Sample power grid (taken from [6]).
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Figure 5.5: Results on hyperparameter tuning.

techniques such as load estimation. This data mining is in turn also either performed by
a neural network or by traditional statistical approaches. It can also be tuned to allow
for optimal solution development for real-world applications. A testbed of this form did
not exist to this point, and as elaborated in the beginning, the real-world power grid can
not be used as such. Currently, because of the assumed data availability, its applicability
is limited to the adaptation of misconfiguration detection in an LV grid segment linked to
the MV level by a substation. However, for this reason, this scope of use cases also has a
big advantage in integrability, since few alterations to the grid infrastructure are needed.
Therefore, the framework has an impact as an enabler of technology development.

5.5 Conclusions
The work presented describes the need for new monitoring capabilities for smart grids and
points out the lack of possibilities to develop such with the means available. Therefore,
a framework that can serve as a testbed for novel monitoring solutions for all sorts of
new grid-connected devices is introduced here. Various approaches can be tested and
integrated into a complete solution. This enables the development of a future detection
tool for grid operators. The assessment of this solution can be conducted under as
life-like circumstances as possible outside of the grid. The framework is designed in a
flexible manner, as to allow users to exchange parts of it. Therefore, it is possible to use
whichever means of grid simulation or data mining technique the user prefers.

In the future, more predefined use cases are to be added to reflect the characteristics of
more malfunctions. Also, the choice and architectures of predefined machine learning
algorithms ought to be updated regularly, in order to keep up with recent developments
in these methods. Finally, a field test of the solution as a monitoring tool is envisioned.
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