
Pose Estimation of Deformable Objects

DIPLOMARBEIT

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Vincze
MSc Dr.techn. S. Thalhammer

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Christian Eder, BSc

St. Leonhard am Forst, January 2024

Vision for Robotics Group
A-1040 Wien, Gußhausstr. 27, Internet: https://www.acin.tuwien.ac.at

Preamble
Diese Diplomarbeit wurde als Abschlussarbeit für das Masterstudium Energie- und
Automatisierungstechnik verfasst. Ich möchte mich an dieser Stelle bei allen bedanken,
die mich in diesem Studium unterstützt und dazu beigetragen haben, dass ich am Ende
offiziell den Titel Dipl.-Ing. führen darf.

Mein Dank gilt besonders der Vision for Robotics Gruppe am Institut für Automatisierungs-
und Regelungstechnik unter der Leitung von Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus
Vincze, die mir in den letzten vier Jahren die Möglichkeit gegeben haben, im Labor
einen großen Wissensbereich aufzubauen. Für seine Unterstützung während der Arbeit
möchte ich mich zudem bei meinem Betreuer MSc Dr.techn. S. Thalhammer bedanken,
der mir alle Freiheiten für die selbständige Umsetzung geben hat, aber trotzdem immer
erreichbar war.

Ebenfalls möchte ich mich bei meinen Studienkollegen bedanken, besonders bei de-
nen, die ich mittlerweile auch außerhalb der Universität zu meinen engsten Freundeskreis
zählen darf. Unsere abendlichen Diskussionen auf der Fachschaft Elektrotechnik werden
mir sehr fehlen. Ohne euch wäre dieser Erfolg nie möglich gewesen. DANKE!

Ein ganz besonderer Dank natürlich gilt meiner Familie, die mich immer unterstützt und
mir das Gefühl gegeben hat, dass ich auf dem richtigen Weg bin. Zu guter Letzt möchte
ich mich bei Rebecca bedanken, weil sie mich motiviert und mir den Raum zum Arbeiten
gegeben hat.

Christian Eder, BSc

St. Leonhard am Forst, January 2024

I

Abstract
This study introduces a technique for estimating the pose of deformable objects. In par-
ticular, everyday objects are considered, which can then be further processed by a robot.
Deformations, e.g. due to daily use or to save space during waste disposal, mainly af-
fect the appearance, which significantly impairs the performance of many pose estimators.

The focus of this work is to train a modern pose estimator with deformed versions
of an object and to analyze the results. The data of the “Deformed Object Dataset
(DOD)“, which was developed for this work, serves as the basis. In the dataset, the
3D models of various everyday objects such as toothpaste, juice bags, cans, pastry or
chips packaging are deformed by an algorithm. Images and the corresponding masks are
calculated from mixed scenes with known and unknown objects and used as training data.

Pix2Pose is used as a pose estimator because it is suitable for textureless objects and
also works with UV prediction for estimation. These form the basis for the training pro-
cess. The correct prediction of the UV coordinates enables a precise estimation of the pose.

In the final experiments, it was found that an accurate estimation of the pose is not
easily possible. A constant deviation in the UV coordinates has a direct effect on the
translation and rotation error in the pose. In addition, it was found that there are stable
and unstable regions, so a more accurate estimate is quite possible with more advanced
methods.

II

Kurzzusammenfassung
In dieser Arbeit wird ein System vorgestellt, dass es erlaubt die Pose von deformierbaren
Objekten im Raum zu schätzen. Es wird besonders auf Alltagsgegenstände eingegangen,
die dann von einem Roboter, zum Beispiel durch Greifen, weiterverarbeitet werden
können. Verformungen, z.B. durch täglichen Gebrauch oder aus Platzspargründen bei
der Abfallentsorgungen, beeinflussen vor allem die äus̈sere Erscheinung, wodurch die
Leistungen vieler Posenschätzer erheblich beeinträchtigt werden.

Der Fokus dieser Arbeit liegt darauf einen Posenschätzer nach aktuellem Stand der
Technik mit deformierten Versionen eines Objektes zu trainieren und die Ergebnisse zu
analysieren. Als Grundlage dienen die Daten des „Deformed Object Dataset (DOD)“,
welches für diese Arbeit entwickelt wurde. Im Datensatz werden die 3D-Modelle diverser
Alltagsgegenstände wie Zahnpasta, Tetrapaks, Dosen, Teig- oder Chipsverpackungen
durch einen Algorithmus deformiert. Aus gemischten Szenen mit bekannten und un-
bekannten Objekten werden Bilder und die zugehörigen Masken berechnet, die als
Trainingsdaten genutzt werden.

Als Posenschätzer wird Pix2Pose verwendet, weil er einerseits für texturlose Objekte
geeignet ist und anderseits mit UV-Koordinaten für die Schätzung arbeitet. Diese bilden
die Grundlage des Trainingsprozesses. Eine korrekte Vorhersagung der UV-Koordinaten
ermöglicht eine präzise Schätzung der Pose.

In den abschließenden Experimenten wurde festgestellt, dass eine genaue Schätzung
der Pose nicht einfach möglich ist. Eine konstante Abweichung in den UV-Koordinaten
wirkt sich direkt als Verschiebungs- und Drehfehler in der Pose aus. Zusätzlich wurde
festgestellt, dass es stabile und instabile Bereiche gibt, wodurch eine präzisere Schätzung
durch fortgeschrittenere Methoden durchaus möglich ist.

III

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Contribution . 3
1.4 Chapter Organization . 4

2 Related Work 5
2.1 Pose Estimator . 5

2.1.1 Pose Estimation Methods . 5
2.1.2 BOP-Challenge . 7

2.2 Deformable Objects . 7
2.3 Synthetic Data . 10

3 System Components 11
3.1 Objects of Deformable Object Dataset 11
3.2 Software packages . 11

3.2.1 Metashape . 15
3.2.2 Open3D . 15
3.2.3 BlenderProc . 16

3.3 Pose Estimator - Pix2Pose . 17
3.4 Robot Sasha . 18

4 Reconstruction, Deformation and Pose Estimation 20
4.1 Reconstruction Process . 20
4.2 Deformation Algorithm . 23

4.2.1 Model Manipulation Tools . 27
4.3 Generate Training Data . 28
4.4 Training Procedure . 29

4.4.1 Train Object Detector . 29
4.4.2 Train Pose Estimator . 33

5 Experiments 35
5.1 Evaluate Object Detector . 35
5.2 Evaluate Pose Estimator . 35

5.2.1 Mean Loss . 35
5.2.2 Translation and Rotation Error 38
5.2.3 UV-Prediction Error . 42

IV

Contents V

5.2.4 Stable Areas . 47

6 Conclusion 49
6.1 Deformed Object Dataset (DOD) . 49
6.2 Pose Estimation . 49
6.3 Future Work . 50

List of Figures
1.1 Proposed solution of the thesis . 2

2.1 Pose estimation with bounding box and coordinate system [1] 6

3.1 Concept of the deforming pipeline . 16
3.2 Pix2Pose architecture [20] . 17
3.3 Pix2Pose pose estimation process [20] . 18
3.4 Toyota HSR [56] . 19

4.1 Object reconstruction process . 21
4.2 Vertex, edge and face explained with a cube 23
4.3 Bones movement . 26
4.4 Scene with training images from different camera views 30
4.5 Training image with RGB, depth, segmentation map and masks 31

5.1 Chips training result at different augmentation probabilities 36
5.2 Translation error statistical evaluation without score filter 39
5.3 Translation error statistical evaluation with score filter 39
5.4 Rotation error statistical evaluation without score filter 40
5.5 Rotation error statistical evaluation with score filter 41
5.6 Pix2Pose score statistical evaluation . 42
5.7 UV-Prediction error for the object chips 44
5.8 UV-Prediction error for the object juice 44
5.9 UV-Prediction error for the object paste 45
5.10 UV-Prediction error for the object pastry 45
5.11 UV-Prediction error for the object pringles 46
5.12 UV-Prediction error for the object shampoo 46
5.13 UV-Prediction error for the object teabox 47
5.14 Heatmap of pringles sample . 48

VI

List of Tables
2.1 Overview BOP Challenge datasets . 8

3.1 Chips reconstruction, front/back view . 12
3.2 Juice reconstruction, front/back view . 12
3.3 Paste reconstruction, front/back view . 13
3.4 Pringles reconstruction, front/back view 13
3.5 Shampoo reconstruction, front/back view 14
3.6 Teabox reconstruction, front/back view 14
3.7 Pastry reconstruction, front/back view 15

4.1 Example bones deflection . 25
4.2 Mask-RCNN config parameters . 32
4.3 Pix2Pose config parameters . 34

5.1 Dataset object training result at different augmentation probabilities . . 37

VII

1 Introduction
Object pose estimation is an important task for a robotic system to understand the given
scene. Based on this information, higher level tasks such as object manipulation are
performed. In most cases, certain knowledge about the object model is used. The known
3D model in combination with RGB or RGB-D data enables suitable results. The task
becomes even more difficult when the model no longer matches the real world. This can
be due to physical deformations or texture changes.

1.1 Motivation
In real-life scenarios, objects often deviate from their modeled 3D shape, e.g. due to
pressure, deformation, breakage or similar factors. Such damage is typically caused by
external influences during transportation, handling or disposal. As the level of automation
increases, it becomes increasingly important to understand all aspects of the objects and
their environment. This understanding goes beyond the basic object and includes all
modified forms that enable manipulation by machines.
Although it is possible to capture 3D models of different deformations and treat each
of them separately, this approach involves considerable effort. An object can take on
countless different shapes, making simulation programs a more convenient option. The
continuous development in this field, combined with the available computing power, offers
immense potential.

The issue of computing power is both an advantage and a challenge. On the one
hand, it facilitates the manipulation of objects and enables multiple images of the same
object to be created quickly. On the other hand, computing power is often limited in
industrial applications. Although industrial computers are getting better and better,
their costs are also rising. In the industrial sector, a balanced price/performance ratio is
particularly important, so a compromise must be found. The optimal solution is to use
high computing power in the learning phase and minimize it in the recognition phase.

1.2 Problem Statement
Differences between the object model and the real object lead to a significant performance
degradation in pose estimation systems. This starts with object recognition and ends
with the pose estimator itself. Figure 1.1 shows this fact. Classical pose estimation
algorithms try to fit the object model to the given scene, but fail if the object in the

1

1 Introduction 1.2 Problem Statement 2

scene differs from the original model. Recording different representations of the same
object is time consuming. Modern simulation tools offer the possibility to manipulate
objects and create different versions in a short time.
In this work, a state-of-the-art algorithm for estimating the object position is trained
with synthetic deformed models. The results are then tested for plausibility, performance
and future potential.

Figure 1.1: Proposed solution of the thesis

1 Introduction 1.3 Contribution 3

1.3 Contribution
The contribution of this work is divided into three important parts. First, the creation
of a dataset with deformable objects. This requires the implementation of a method
for synthetic object deformation. The second part is the training of a state-of-the-art
pose estimator with the prepared dataset. And last but not least, the evaluation of the
resulting data. The parts are explained in more detail below:

Deformable Object Dataset (DOD): The focus of this part of the work is on a
small dataset for deformable objects. Seven representative household objects are used for
this purpose. The objects differ according to various criteria such as shape (boxes, tubes,
packs, cans), material, deformability and use. First of all, a high-resolution reconstruction
of the objects is required. Therefore, many images of the object are used. Since the object
model is the fundamental part of the project, it is important that the reconstruction
meets the quality criteria. To ensure usability and comparability in the later phase, the
dataset corresponds to the BOP challenge structure. During the deformation process,
synthetically generated deformed versions of the object model are created using 3D model
software. These correspond to the real world in terms of material properties, volume
stability and texture changes. As many different versions of the object deformation are
required, an automated process with a certain degree of randomness is implemented. At
least the objects of the dataset are placed in certain scenes with some randomly selected
distraction objects. The information from the scene is used to generate images and masks.
Together with the models, this forms the Deformable Object Dataset.

Pose Estimation: In this work, a state-of-the-art pose estimator called Pix2Pose is
trained on the given Deformable Object Dataset. Pix2Pose offers several advantages.
First, it can handle textureless objects and second, it uses UV predictions for pose
estimation. The UV prediction is particularly helpful. During deformation, the UV
coordinates of the models are stored, which correspond directly to the base model. This
information is later used as input for training. The aim is to predict the UV coordinates
and use this information to determine the pose of the object.

Evaluation: The results of Pix2Pose are evaluated in the experiments. The predicted
pose and the rendered pose are compared. The metric used is the translation and rotation
error. When training the pose estimator, the mean loss is analyzed on the basis of the
variable augmentation probability value. The results show a direct correlation between
the UV prediction error and the translation and rotation error. The deviation caused by
the UV prediction error was too high for useful results. The calculated heat map shows
that there are stable and unstable areas that offer future potential.

1 Introduction 1.4 Chapter Organization 4

1.4 Chapter Organization
Chapter 2 deals with different methods for estimating the object pose. It begins with
a brief introduction to object pose estimation systems. Then the common methods
are explained. Additionally, the BOP challenge is explained to compare these methods.
Finally, a focus is placed on deformable objects and the generation of synthetic data.
In Chapter 3 the common software tools are explained. There is also a part about the
created Deformable Object Dataset, where the idea about the selected objects is shown.
Chapter 4 shows the implementation of the system. First the object reconstruction part,
followed by the deformation process. Then the training of the object detector and the
pose estimator Pix2Pose is explained. Chapter 5 presents the evaluation process with
the synthetic dataset. First, the evaluation metric is explained and then the results are
discussed. The plausibility of the results is also discussed. In Chapter 6 the whole system
is analyzed. The thesis ends with a discussion of future work.

2 Related Work
A pose estimator is a system that can recognize and estimate the 6D pose of an object
based on RGB or RGB-D data, usually for rigid objects with a unique texture. As the
performance of the algorithms improves, research is being conducted on pose estimation
for objects without texture and deformable objects. To support this work, datasets are
needed that are small samples from the real world, either captured or generated in a
virtual environment. This chapter focuses on recent work in the areas of pose estimation
(2.1), deformable objects (2.2) and synthetic data generation (2.3).

2.1 Pose Estimator
The purpose of pose estimation is to calculate the 6D pose of an object in a particular
scene. An example can be seen in Figure 2.1. 6D stands for the combination of 3D
translation and 3D rotation. There are different methods to calculate the pose of an
object based on 2D image data. The aim is to create a link between 2D and 3D. This
section deals with three approaches to pose estimation (2.1.1) and the benchmarking of
pose estimation algorithms (2.1.2).

2.1.1 Pose Estimation Methods
There are several common methods for estimating posture. In this section, the three
most commonly used methods are explained in detail. First, there are direct pose algo-
rithms that search for the center of the region of interest (ROI) and then compute a 3D
displacement between this point and the camera coordinate system. Another approach is
a combination of keypoint algorithms and Perspective-n-Point (PnP) algorithms. The
idea is to use the camera intrinsic and calculated keypoints to predict the pose of the
camera. The last method uses additional data in the form of UV predictions to estimate
the object pose.

Direct Pose: Direct pose algorithms such as PoseCNN [2], Deep Model-Based 6D
Pose Refinement in RGB [3] and Multi-Task Deep Networks for Depth-Based 6D Object
Pose and Joint Registration in Crowd Scenarios [4] attempt to fit a 3D model of the object
directly into the image. The 3D model must be available for these approaches. First, a
recognition algorithm such as Mask-RCNN [5], YOLO [6] (latest version YOLOv7 [7]),
SSD [8], Faster-RCNN [9], RetinaNet [10] or FCOS [11] is used to identify the region of
interest (ROI) in the image. PoseCNN, for example, searches for the center of the object.
The 3D displacement between the center coordinate system and the camera coordinate

5

2 Related Work 2.1 Pose Estimator 6

Figure 2.1: Pose estimation with bounding box and coordinate system [1]

system is then calculated. For this purpose, a Convolutional Neural Network (CNN) is
usually trained to predict the geometric 2D-3D correspondence. The scale of the object
is also taken into account in the calculation. The PoseCNN then adjusts the rotation.
For this, the texture of the object is used to calculate the visual features of the 3D model
and the image. In this step, the image is limited to the bounding box around the object,
which originates from the recognition phase. Now a prediction is calculated for each pair
of features. The final prediction is determined based on a loss function and represents
the rotation. CNNs are often used for prediction. The other algorithms work in a
similar way. For example, Deep Model-Based 6D Pose Refinement in RGB uses the object
contours instead of the center point for prediction, but generally follows the same principle.

Keypoint: The latest keypoint algorithms, such as COPE [12], Keypoint-graph-driven
learning framework for object pose estimation [13], BB8 [14], PVNet [15], Segmentation-
driven Pose [16] and Seamless Single Shot 6D [17], use robust keypoint detection in
combination with a variation of the Perspective-n-Point (PnP) algorithm. This process
is divided into two stages: First, the keypoints are identified, and then the 6 DOF
pose of the camera is predicted, which requires intrinsic parameters of the camera. The
algorithms differ in the way they locate and represent the keypoints, which can be done
using coordinates, heatmaps or vector field-based representations, and in the CNNs used
to account for different lighting conditions, occlusions and powers. Despite the differences,
the basic concept remains the same.

2 Related Work 2.2 Deformable Objects 7

UV correspondences: Algorithms such as EPOS [18], CDPN [19], Pix2Pose [20],
GDR-Net [21], SO-Pose [22], Perspective Flow Aggragation [23], SurfEmb [24], OSOP
[25] and Neural Correspondence Fields [26] use additional data from UV coordinates to
make the pose estimator more reliable and improve its performance. This is particularly
useful for objects without texture, as seen in Pix2Pose. The UV coordinates are a
local representation of the 3D object point in a 2D image. GDR-Net uses intermediate
geometric representations based on a dense correspondence as keypoints, which are then
adjusted in a second stage using a PnP algorithm and RANSAC [27] to obtain the best
prediction. According to the BOP challenge (2.1.2), this type of algorithm currently
provides the best results on multiple datasets.

2.1.2 BOP-Challenge
In 2019, the first open BOP challenge [28] was conducted with the aim of comparing
different current methods for estimating the pose of objects. The process started with
the detection or segmentation of the objects, followed by the estimation of the 6D pose.
The ranking provides an overview of the test image format, the performance score for
each dataset and the time required. The two test image formats are RGB and RGB-D,
the latter containing depth information in addition to color. In 2022, the BOP Challenge
[29] was expanded to include a separate challenge for the recognition and segmentation
task. The current top algorithms in the competition are based on the Geometry-Guided
Direct Regression Network (GDR-Net) [21], with various versions occupying the first five
places. This is followed by Perspective Flow Aggregation (PFA) [23], RCVPose 3D [30],
ZebraPose [31] and SurfEmb [24].

As already mentioned, datasets help to compare different algorithms. One of the first
large-scale open source datasets was ImageNet [32]. Other suitable datasets are Microsoft
Common Objects in Context (MS COCO) [33], Yale-CMU-Berkley (YCB) [34] and
Large Vocabulary Instance Segmentation (LVIS) [35]. The BOP project [36] offers the
possibility to benchmark certain algorithms on the given datasets. Over time, more and
more different datasets will be added. At the moment 13 are included and an overview
can be seen in Table 2.1.

2.2 Deformable Objects
Most robotic tasks such as object recognition, pose estimation and object manipulation
focus mainly on rigid objects. The reason for this is that deformable objects present a
number of special challenges. They must be able to handle different shapes and material
properties such as elasticity and plasticity [47]. When a rigid object is gripped by
a gripper, its shape changes only slightly. However, a deformable object can change
drastically depending on the force of the gripper. Gripping an empty cardboard box, for
example, is different from gripping a block of wood.

2 Related Work 2.2 Deformable Objects 8

dataset objects special feature

LM (Linemod) [37] 15 texture-less

LM-O (Linemod-Occuleded)
[38]

15 texture-less, various level of occlusion, addi-
tion to LM

T-LESS [39] 30 exhibit symmetries and mutual similarities in
shape and/or size, no significant texture or
discriminative color

ITODD (MVTec ITODD)
[40]

28 realistic industrial setups

HB (HomebrewedDB) [41] 33 13 scenes with varying complexity

HOPE (NVIDIA Household
Objects for Pose Estimation)
[42]

28 50 scenes from 10 household/office environ-
ments, up to 5 lighting variations per scene

YCB-V (YCB-Video) [43] 21 in 92 videos

RU-APC (Rutgers APC)
[44]

14 textured products from Amazon Picking Chal-
lenge

IC-MI [45] 6 two texture-less and four textured household

IC-BIN [46] 2 two objects from IC-MI, which appear in mul-
tiple locations with heavy occlusion in a bin-
picking scenario

TUD-L (TUD Light) [36] 3 moving objects under eight lighting condition

TYO-L (Toyota Light) [36] 21 table-top setup, with four different table
cloths and five different lighting conditions

Table 2.1: Overview BOP Challenge datasets

2 Related Work 2.2 Deformable Objects 9

A major challenge is to create a model of a deformable object. Generally, a discrete
representation is chosen, e.g. a mesh, a skeleton, a deformable template, landmarks,
particles or point clouds. All of these methods use specific keypoints to identify specific
parts. For example, a mesh consists of vertices, edges and faces [48]. The face is
surrounded by edges that are connected to the vertices. Figure 4.2 explains the terms
vertex, edge and face. First, the mesh is calculated for the rigid object or for the initial
state of the object. Then the vertices are linked to the key points. If the key points
move, the vertices, edges and faces also move. The vertices only change their position,
the edges can change their scale and orientation, and the face can change its shape, scale,
orientation and rotation. This information can be used to compare the original and
resulting mesh and create heat maps. Another approach is the use of skeletons. The
basic elements of the skeleton are bones connected by joints that allow flexion. When a
bone moves, the entire skeleton moves. The deformation itself is the interesting part. It
can be modeled with the following approach [47]. At the beginning, the object is in its
initial state S0:

S0 = p0
i = x0

i , y0
i , z0

i ∈ Rn=3, i ∈ N (2.1)
The number of points that define the shape is denoted by N. If an external force is
applied to the object, the points will move to a new position pnew . Examples of external
forces include gravity, manipulators, and contact with rigid objects. The deformation
can be expressed as the difference between the initial position and the resulting position
u = pnew − p0, which is a displacement vector field. The stress tensor σ and the strain
tensor are then defined. The stress tensor indicates the force per unit area that acts
on the shape of the object, and is calculated for each point from S0 using Hooke’s law
σ = E . This requires the strain tensor, which provides an overview of the deformation
relative to the initial object. The strain tensor is calculated as = 1

2 ∇u + ∇uT with
∇u using the displacement vector field, shown in Equation 2.2. The advantage of this
formula σ = E is that it works only for small displacements, and there is a linear
relationship between stress and strain on the elasticity tensor E.

∇u =

 ∂ux/∂x ∂ux/∂y ∂ux/∂z

∂uy/∂x ∂uy/∂y ∂uy/∂z
∂uz/∂x ∂uz/∂y ∂uy/∂z

 (2.2)

The deformation of the particle i over time is determined by Newton’s second law. The
position of the particle i at time t is denoted by pt

i. With Equation 2.3 and Equation 2.4
the velocity vt ∈ R3 and the acceleration at

i ∈ R3 are calculated by taking the first-order
derivative with the mass mi ∈ R3 and the external force f t

ext t
i

∈ R3.

vt
i = ṗt

i, at
i = v̇t

i, miat
i = f t

extt
i

(2.3)

ṗt
i =

pt+Δt
i − pt

i

Δt
v̇t

i =
vt+Δt

i − vt
i

Δt
(2.4)

2 Related Work 2.3 Synthetic Data 10

Next, with explicit Euler integration in Equation 2.5, the velocity vt
i and position pt

i of
point i at time t are calculated.

pt+Δt
i = pt

i + vt
iΔt,

vt+Δt
i = vt + 1

m
fext iΔt,

(2.5)

This is only a simple solution for representing the deformation. There are many other
approaches that are more stable against unrealistic deformation behavior. One example
would be the representation in the form of a mass-spring system or model-based with
neural networks.

2.3 Synthetic Data
The real world is the most comprehensive dataset we have. There is an infinite number
of objects and scenes. Unfortunately, it is impossible to capture all this data. Taking a
photo of the same object with 1000 different views would take a very long time, especially
if the object is moving. As an alternative, synthetic data generation is used to generate
data. [49]. This information is then used by computer simulations or algorithms to
gain a better understanding of the real world. Synthetic data is not only artificial, it
should also reflect the real world. This is done using mathematical or statistical methods
that have been learned from real datasets. For neural networks, the motto “more is
more“ applies. Large, well-labeled datasets are required for training in order to obtain
a result that comes close to the real world. In addition, generating synthetic data is
less time-consuming and less expensive than manually labeling a dataset. Comparing
the amount of data between a hand-labeled dataset and a GPU-powered server-engine
dataset is an unfair scenario.
Synthetic data can be generated using three different approaches [50]. The first is a
stochastic process that generates random data based on the structure of the real world.
This is the optimal method when the content is not as important as the structure, such
as in a stress test of a system with a large amount of data. The second method is a
rule-based process that is guided by specific rules defined by humans. For example, a
deformation task may be limited to a range of 20-120 degrees, as opposed to a stochastic
process that can randomly choose any angle between 0 and 360 degrees. This method
can lead to distortions in the synthetic data as the generation process can be steered in a
certain direction. Also, the rules may not be able to keep up with the changing real data,
leading to a deviation in the results. The last method is based on deep learning, where
a machine learning model attempts to estimate values based on its own training data
from the real world. This is the most realistic method, but also the most time-consuming
and expensive, as it requires a large real-world dataset to achieve accurate results. This
method has opened up a new field of research, with AI systems such as OpenAI ChatGPT
[51], Google LaMDA [52], and DeepMind Sparrow [53] being able to produce and learn
very realistic data. However, this has also raised concerns about data privacy, copyright,
and security.

3 System Components
This chapter deals with the hardware and software components of the project. Metashape
is used to reconstruct dataset objects (3.1) from RGB images, and the Open3D library
is used for post-processing. Blenderproc, a Blender plug-in, is then used to calculate
deformed versions of the objects (3.2). Pix2Pose (3.3) is trained with the resulting object
variants. At last the evaluation is done with the synthetically generated data.

3.1 Objects of Deformable Object Dataset
As described in Chapter 2, a dataset is used to compare different algorithms or systems.
Currently, there is no dataset for deformable objects. One of the main advantages of a
dataset should be its reusability, which is why the Deformable Object Dataset (DOD)
was designed similarly to the BOP challenge examples. This allows other algorithms
to perform the benchmark test without additional effort. The dataset comprises seven
objects with four degrees of deformation and 240 views each. The Tables 3.1 - 3.7 show
the objects chips, juice, paste, pringles, shampoo, teabox and pastry. All of these objects
are classic household items that have typical shapes such as boxes, cones, packets and
cylinders. Other criteria for these objects are rigidity, surface texture and stability of
volume. Pringles, for example, have a much higher rigidity than pastry, but both objects
have a high volume stability. The teabox, on the other hand, can be easily deformed. In
their untouched state, the bag of potato chips and the juice represent an almost rigid
object that can only be deformed slightly. However, when they are opened, they become
unstable and can be deformed. When assembling the objects, attention was also paid
to the surface finish. Shiny and transparent materials were avoided as they can pose a
problem for object reconstruction and pose estimation. The pastry is the only object
with a small amount of transparency.

3.2 Software packages
This section deals with the software packages used. The advantages and disadvantages
as well as the features of the individual packages are examined. First, Metashape (3.2.1)
is used to reconstruct the object model. Open3D (3.2.2) is used to post-process the
models. Finally, BlenderProc (3.2.3) is used in combination with Blender to perform the
deformation of the object models.

11

3 System Components 3.2 Software packages 12

Deform 1 Deform 2 Deform 3 Deform 4

Table 3.1: Chips reconstruction, front/back view

Deform 1 Deform 2 Deform 3 Deform 4

Table 3.2: Juice reconstruction, front/back view

3 System Components 3.2 Software packages 13

Deform 1 Deform 2 Deform 3 Deform 4

Table 3.3: Paste reconstruction, front/back view

Deform 1 Deform 2 Deform 3 Deform 4

Table 3.4: Pringles reconstruction, front/back view

3 System Components 3.2 Software packages 14

Deform 1 Deform 2 Deform 3 Deform 4

Table 3.5: Shampoo reconstruction, front/back view

Deform 1 Deform 2 Deform 3 Deform 4

Table 3.6: Teabox reconstruction, front/back view

3 System Components 3.2 Software packages 15

Deform 1 Deform 2 Deform 3 Deform 4

Table 3.7: Pastry reconstruction, front/back view

3.2.1 Metashape
Agisoft’s Metashape software enables the creation of 3D object models from 2D images.
Photogrammetric processing of the images is used to generate a point cloud, which is
achieved by calculating feature points in each image and then mapping them to tie points.
It is recommended to use at least one masked image to filter out unimportant points.
The tie points are then used to align the images using aerotriangulation (AT) and bundle
block adjustment (BBA). The point cloud is then used to reconstruct the surface using
camera position and image information as well as dense matching. The mesh can then
be exported in various file formats (.ply, .obj, .stl) for further use. The main advantage
of Metashape is that it can create a highly detailed 3D model of an object with just a
few masks and images from different views. The downside is that the software is not free,
although Agisoft offers a 30-day free trial. If reconstructing objects is a recurring task, it
may be necessary to switch to an open source alternative.

3.2.2 Open3D
Open3D[54] is an open source Python library that is mainly used for processing 3D
data. It also supports C++. This library provides structures, visualization, processing
algorithms, machine learning support, scene reconstruction, surface alignment and GPU
acceleration. It is particularly useful for 3D data processing algorithms such as layer
segmentation, filtering, scaling and surface reconstruction. Open3D is also an excellent

3 System Components 3.2 Software packages 16

tool for visualizing the results of the deform pipeline steps. It enables fast visual debugging
with minimal effort. Open3D supports all common file extensions. The main advantage
of Open3D is the fast and uncomplicated manipulation and visualization of 3D data. The
package is well structured and easy to understand. The disadvantages are the limited
processing algorithms and the inconsistencies between versions. As the package is still
under development, the method calls and parameters may change. This can be a problem
if the version is not specified, especially when using Docker environments.

Figure 3.1: Concept of the deforming pipeline

3.2.3 BlenderProc
BlenderProc [55] is an add-on program for Blender, a free and open source software
for 3D objects. It was developed by the German Aerospace Center for photorealistic
rendering. Blender is capable of modeling, texturing, manipulating, simulating, rendering
and much more, making it a powerful tool for creating anything from simple 3D printed
objects to a video game or animated film. BlenderProc is used to control Blender with
Python commands. This allows users to load, edit and save objects as well as control the
entire scene, including various objects, cameras, light sources and more. This requires
a different approach than the typical Blender project, which is more like a clicking
adventure with hundreds of options and parameters that can be seen in the visualization.
BlenderProc does not offer such a powerful interface, which makes debugging difficult
and slow. However, it has the great advantage that a sequential process, such as a
deformation pipeline, can be applied to many different objects with different values.
Once the pipeline is coded, it can be used multiple times. BlenderProc’s debugging
window saves all commands, which, combined with the documentation, allows the user

3 System Components 3.3 Pose Estimator - Pix2Pose 17

Figure 3.2: Pix2Pose architecture [20]

to write code in a relatively short time, even without prior knowledge. In addition, the
functionality of Blender can be used with all Python libraries, such as Open3D. Figure 3.1
shows the general concept of the deformation process. The object as input is processed
with a combination of Blender, Blenderproc and the respective algorithm. The result is
various deformed objects that are saved in the desired format.

3.3 Pose Estimator - Pix2Pose
The following session explains the process of basic pose estimation. Pix2Pose [20] is a
framework that regresses 3D coordinates pixel by pixel between an RGB image and a
3D model. This 3D model is textureless, which means that all information is stored
in the RGB-colored UV prediction image. To clarify: The RGB information of the
pixels does not represent the texture of the object. Figure 3.2 shows the architecture
of the framework. A modern object detector is used to calculate the bounding box
around the object, which is then cut out and results in an image Is. This image is
used as input to the Pix2Pose system, and the output is the 3D coordinates of each
pixel I3D, which are normalized. Moreover, the estimated error for each prediction
Ie = G(Is) is a function of the Pix2Pose network G, which can be interpreted as the
confidence value for each pixel. The relationship between XYZ and RGB is used to map
an XYZ coordinate to an RGB coordinate, since both use three values for representation.
For training, the ground truth image Igt is generated by loading the textureless 3D
model into the ground truth scene and coloring it with the UV prediction. The network
consists of multiple convolutional layers, deconvolutional layers and fully connected layers.

The Pix2Pose network generates an output that is used to calculate the position of the
object. This process is illustrated in Figure 3.3. First, the width, height and center of
the bounding box are used to crop the relevant part of the image with an input size
of 128 x 128 px. If the bounding box is not square, the width and height are set to the
same size. To take masking into account, the resulting size is multiplied by a factor of
1.5. A two-stage prediction is then carried out. In the first stage, the bounding box is
aligned with the center of the object, which may vary slightly depending on the base

3 System Components 3.4 Robot Sasha 18

Figure 3.3: Pix2Pose pose estimation process [20]

object detector. In the second stage, the same mesh is used to create a final prediction
using the refined inputs from the first stage. This is achieved using a PnP algorithm in
combination with a RANSAC algorithm. The fact that Pix2Pose uses textureless models
instead of texture models makes the algorithm fast.

3.4 Robot Sasha
Figure 3.4 shows a Toyota HSR (Human Support Robot) used for robotic experiments.
This robot is designed to assist people in their daily lives, such as cleaning, carrying
objects and other manipulation tasks. As can be seen in the illustration, the robot is
modeled on the human body, with a head containing several cameras, a display and
a microphone. The body is cylindrical and mounted on a movable base that provides
stability and flexibility. The base enables omnidirectional movement, making it virtually
impossible to tip over. The robot arm is equipped with 5 Degrees of Freedom (DoF),
which is a limitation as the base must reach all points, making movement planning
difficult. At the end of the arm is a gripper for handling objects, which also contains a
suction cup.
The robot is equipped with several camera systems located in the head and on the end
effector, as well as a Lidar system located above the base. These are the primary means
of collecting data about the environment. For safety, the robot has bumper sensors on
the base, a magnetic sensor on the underside of the base and an emergency stop switch
on the back. The magnetic sensor is used to detect if the robot crosses its power cable.
The robot main camera system is the Xtion PRO LIVE RGB-D camera. This camera
uses various technologies, such as infrared sensors, adaptive depth detection, color image
recognition and audio streaming, to capture RGB and depth images and create a point
cloud. To do this, the camera emits a known signal pattern, which is then captured
by a CMOS sensor. The difference between the detected signal and the known pattern,
combined with the geometry of the camera systems, produces the point cloud.
The robot’s battery system enables an autonomous operating time of up to two hours. A
power cable or docking station is available for charging. In addition, the robot can be
controlled manually by the user with a Playstation controller. This simplifies daily work.

3 System Components 3.4 Robot Sasha 19

Figure 3.4: Toyota HSR [56]

4 Object Reconstruction, Deformation
and Pose Estimation

This chapter describes the steps from object modeling to pose estimation. It starts with
photographing the object. A 3D model is then created (4.1). The mesh deformation
pipeline then takes the model and creates deformed submodels (4.2). Training data is
generated from these submodels (4.3). After training the object detector and the pose
estimator (4.4), the method can be tested and evaluated.

4.1 Object Reconstruction Process
The first step of the process is to reconstruct the object, with a focus on accuracy. This
is illustrated in Figure 4.1, and the objects are defined in section 3.1. For each object,
two sequences of 30 images were taken from four angles with the aim of reconstructing
the entire object. To achieve better results, the overlapping areas should be as large as
possible, resulting in 240 images of each object in the database. To reduce the workload,
the images are captured by a robot in the lab. This uses a KUKA LBR arm equipped
with a Realsense camera, which provides images with a resolution of 1280x720 pixels
and also a matching depth image. The images are then loaded into Agisoft Metashape
Professional software (Section 3.2.1) and the important part of the image is marked with
the selection tool, creating black and white masks. Between three and six images are
selected for masking. The camera positions for each image are estimated by searching for
features between the images. The result is a point cloud containing the object, the table
plane and some background artifacts with a good resolution. A mesh is then created from
the point cloud and the texture is calculated, resulting in an authentic reconstruction
of the object. To obtain a more accurate point cloud, a PLY file is created from the
detailed mesh.

The Metashape process in detail:

1. Load images (Workflow → Add Photos ...)

2. Mask images (Choose photo, use selection tool)

3. Align images (Workflow → Align Photos ...)
• Accuracy: Highest

4. Build mesh (Workflow → Build Mesh ...)

20

4 Reconstruction, Deformation and Pose Estimation 4.1 Reconstruction Process 21

Real Object

Sequence 1 Sequence 2 Take 120 images

Metashape

Process:
• Images to pointcloud (low resolution)
• Pointcloud to mesh
• Mesh to pointcloud (high resolution)

Open3D
Filter:
• Plane
• Artifacts

Meshlab
Process:
• Scale
• Align

Reconstruction

Figure 4.1: Object reconstruction process

4 Reconstruction, Deformation and Pose Estimation 4.1 Reconstruction Process 22

• Quality: Ultra High

5. Build texture (Workflow → Build Texture ...)

6. Build pointcloud (Workflow → Build Point Cloud ...)
• Quality: Ultra High

The Open3D library is used to remove the artifacts of the table plane and the background.
A bounding box filter is used to remove the background artifacts, as the world coordinate
system is located at the center of the object, resulting in a large distance between the
background and the object. A RANSAC plane detection is used for the plane, whereby
the outlier points are retained and the inlier points are removed. The object is then
separated and can be processed further.

The segmentation process in detail:

1. Segment plane (open3d.geometry.PointCloud.segment_plane)
• distance_threshold = 0.001
• ransac_n = 3
• num_iterations = 1000

2. Crop cloud (open3d.geometry.PointCloud.crop)
• bounds = [[x_min, x_max], [y_min, y_max], [z_min, z_max]]

In a final step, the two sequences of the same object must be aligned with each other.
Meshlab software is used for this. Both point clouds are opened in Meshlab and all
artifacts that were not filtered by the previous steps can be removed manually. The option
“Align“ is used for the alignment step. One of the meshes is set to a fixed position in the
specified coordinate system using the “Glue Here Mesh“ option. For the second mesh,
the option “Point-based gluing“ is used to mark the same points in different meshes. This
information is used to calculate a transformation between the meshes. It is recommended
to select more than four points if possible. The transformation can be improved with
ICP refinement using the “Process“ option. Finally, the meshes are combined into a final
mesh. The measurement method can be used to scale the final mesh and compare the
result of the 3D model with the real object.

1. Load two meshes

2. Align (Edit → Align)

3. Fix first mesh (Align Window → Glue Mesh Here)

4. Find transformation (Align Window → Point Based Gluing)
• use False Color → uncheck
• use Point Rendering → check

4 Reconstruction, Deformation and Pose Estimation 4.2 Deformation Algorithm 23

• Allow Scaling → check

5. ICP Refinement (Align Window → Process)

6. Create final mesh (Filters → Mesh Layer → Flatten Visible Layers)
• Merge Only Visible Layers → check
• Delete Layers → check
• Merge duplicated vertices → check
• Keep unreferenced vertices → check

7. Measure feature (Edit → Measuring Tool)
• Choose first point
• Choose second point

8. Scale mesh (Edit → Quality Measure and Computations → Transform: Scale,
Normalize)

• X Axis → Scaling Factor

4.2 Object Deformation Algorithm
The deformation pipeline is outlined in the following section. The Blender software is
used for this. With the additional pipeline for Blender, known as Blenderproc, which is
discussed in Section 3.2.3, it is possible to use Python code in conjunction with almost
all of Blender’s functions. This means that everything can be calculated automatically.
First, the mesh, including the vertices and faces, is loaded for each object. The terms
face, edge and vertex are easy to understand when looking at a cube. The vertices are
the corner points of the cube, the edges connect two vertices, and a face is the surface
enclosed by the edges. This is shown in Figure 4.2.

vertex edge face

Figure 4.2: Vertex, edge and face explained with a cube

The object is then moved to the origin so that the lower middle point of the calculated
bounding box is at (0/0/0). Equation 4.1 is then used to calculate the lengths of all

4 Reconstruction, Deformation and Pose Estimation 4.2 Deformation Algorithm 24

edges between the vertices, and any length value that is greater than a certain threshold
(corresponding to the maximum length between two vertices) is marked as selected. A
new vertex is then inserted between the edges using the subdivision method, and this
process is repeated until no more edges fulfill the given condition. This results in a
homogeneous edge length along the object and all edges at the same position are removed.
A painted version of the mesh is then created, which helps to find a clear match between
the original and the deformed mesh. Each vertex is selected and the RGB value is
calculated according to its position in XYZ, shown in Equation 4.2. A “subsurf“ filter is
then used to increase precision, close holes and ensure that each vertex is connected to
an edge. The painted undeformed object is then exported, which serves as a reference
for all other objects.

vertices = [v1, ..., vl] vi | |vi − vi+1| >
max

i
vi

th , i = 1, ..., l − 1
 (4.1)

R = xi − min(x)
max(x) − min(x)

G = yi − min(y)
max(y) − min(y)

B = zi − min(z)
max(z) − min(z)

(4.2)

The following deformation technique is modeled on the human body and involves the use
of armatures. These armatures consist of bones that are connected by joints. The bones
form the skeleton of the object and all have the same length. When a bone is moved,
this has an effect on the connected bones, similar to a chain with rigid elements. The
bones move in the X and Y directions, with the Z axis aligned with the longest part of
the object. The skeleton S is made up of nS = [5, 14] bones:

S = b1,x b2,x ... bnS ,x

b1,y b2,y ... bnS ,y
(4.3)

Next, the deflection of each bone in the X and Y directions is calculated. For this a
random goal g = [−270◦, 270◦] is calculated and the sum of all bones have to fit this
value by a tolerance of ± 5 ◦:

g = gx

gy
(4.4)

gx =
nS

i=1
bi,x gy =

nS

i=1
bi,y (4.5)

The deflection of a bone is determined randomly between blimit = [30◦, 50◦] due to
restrictions in the properties of the material. However, if the goal is to reach 270◦ and

4 Reconstruction, Deformation and Pose Estimation 4.2 Deformation Algorithm 25

the maximal limit of 50◦ is too low, the limit is adjusted to accommodate the situation.

blimit,x = |gx|
nS

+ 10◦ blimit,y = |gy|
nS

+ 10◦ (4.6)

The bones have to meet the condition:

|bi,x| ≤ blimit,x |bi,y| ≤ blimit,y (4.7)

In approximately 20% of all calculations, the bone values are set to zero, that allows the
object to be deformed in a single direction, rather than along both the X- and Y-axes.

Table 4.1 presents a skeleton made up of six bones, the result of which is depicted
in Figure 4.3.

g blimit b1 b2 b3 b4 b5 b6 ±5

0 0 bx 0 0 0 0 0 0 0 0

63 34 by 25 10 -19 30 24 -5 65 -2

-171 49 bx 3 -39 -31 -45 -24 -38 -174 3

0 0 by 0 0 0 0 0 0 0 0

-83 41 bx -24 -6 3 -30 -10 -12 -79 -4

36 37 by 28 -3 -30 12 34 -5 36 0

207 47 bx 40 37 46 7 32 41 203 4

120 35 by 31 10 12 32 35 3 123 -3

5 31 bx -4 10 -14 -16 0 25 1 4

-260 50 by -49 -42 -50 -35 -48 -34 -258 -2

Table 4.1: Example bones deflection

Mapping Vertices between Models

To calculate the correspondence between the RGB image and the XYZ color model, a
color mapping procedure is required. This algorithm uses the location information of
a vertex to store both the color and the original texture value in an array of the form
(3, 256, 256, 256). This array contains up to 16 million colors, converting the color
information of the colorized model from the range [0.0, 1.0] to the range [0, 255], which
allows the use of an unsigned integer instead of a floating point value and reduces the

4 Reconstruction, Deformation and Pose Estimation 4.2 Deformation Algorithm 26

x

y

z

Figure 4.3: Bones movement

4 Reconstruction, Deformation and Pose Estimation 4.2 Deformation Algorithm 27

memory requirements of the mapping file by a factor of 10. The colored value can then
be used to access the texture color value as explained in Section 4.2.

Rtexture = mapping[0][Rcolor,uint8][Gcolor,uint8][Bcolor,uint8]

Gtexture = mapping[0][Rcolor,uint8][Gcolor,uint8][Bcolor,uint8]
Btexture = mapping[0][Rcolor,uint8][Gcolor,uint8][Bcolor,uint8]

with
Xcolor,uint8 = Xcolor · (256 − 1) | datatype = uint8

Since the original colored model and all its deformed versions have the same number
of vertices and the same colored data, the mapping also works for them. The mapping
file can be used in any part of the project, but the calculation requires a lot of effort as
each vertex must be examined. For the object chips_01 this means that about 600,0002

operations have to be performed. To make this process more efficient, the algorithm was
optimized to use GPU support.

Outlier Removal

Once the color mapping file is created, the models can be further enhanced. All clusters
with connected vertices are identified and only the largest is retained. As all objects have
the same number and order of vertices, these can be calculated in one model and then
quickly removed from the other files. Therefore, the outlier indices for each model are
stored in a combined array. The repeated indices are then removed from all objects in
the same group.

4.2.1 Model Manipulation Tools
The object is deformed in Blender using a series of filters and manipulation operations.
The most important of these are listed below in the correct order.

Move_origin_to_bottom_mean_point: This operation is applied directly to the
object, moving it so that its bounding box is at the center of the specified coordinate
system. This means that the bounding box is in the middle of the X and Y axes and the
lower center of the bounding box is at Z = 0.

Subdivide: This operation is applied to the given mesh, dividing the selected edges by
the number of intersections and creating new vertices evenly distributed between them.
For this purpose, a vertex group must be assigned. In this project, all edges with a length
greater than 1/7 of the maximum edge length are selected and a vertex is placed in the
center of the edge to obtain a more detailed mesh.

Remove_doubles: This operation is applied to the mesh, whereby all vertices that lie
within a certain distance are combined. The pipeline merges vertices that are less than

4 Reconstruction, Deformation and Pose Estimation 4.3 Generate Training Data 28

1/x the maximum edge length. This is a common step in the pipeline, with the number
of merged vertices ranging from 200 to 2000, depending on the object. The value x was
determined empirically. In this step, unnecessary vertices are eliminated.

Subsurf Modifier: Once the edges and the number of vertices have been optimized,
the surfaces must be refined. Blender offers the “Subdivision Surface Modifier“ which
divides the mesh surfaces into smaller surfaces. This also helps to create a smooth look
with a mesh that has a small amount of vertices. In addition, a large amount of data can
be stored. To reduce the calculation time, a subsurf level of one is used. This modifier is
crucial for the success of the following deformation step.

Displace Modifier: The “displace modifier“ is used to manipulate the surface of
the object. A “DISTORTED NOISE“ texture is applied to the object and the parameters
noise_scale and distortion are set to 0.7. The result is a slightly distorted surface that
looks more realistic. This modifier is only applied to the previously selected vertices.

Lattice Modifier: Next, a “lattice modifier“ is inserted. The lattice object serves
as a support for the base object. The deformation of the lattice object has a direct effect
on the base object. This approach is particularly advantageous for objects with a large
number of vertices. The lattice modifier does not change the texture of the mesh surface.

Armatures: Blender’s armature system is modeled on the human body. It consists of
several bones that can be manipulated to move. All parts connected to these bones move
in the same way, allowing the mesh to be deformed based on the armature. Between
8 and 14 armatures are connected and used in the deformation pipeline. The upper
end of each armature is connected to the lower end of the next. A bone is created and
connected for each armature. If a bone moves, all other parts of the chain are affected.
In combination with the lattice object, the entire object can be deformed.

Bones: The skeletal structure of the body influences the shape of the mesh by chang-
ing its position. The bones are an integral part of the skeleton and change the mesh
depending on their position.

4.3 Generate Training Data
The following section of the thesis deals with the generation of training data. First,
a scene with objects is created in Blenderproc in which only one of the four degrees
of deformation is present. This scene consists of one plane, seven objects from the
Deformable Object Dataset and six deflection objects. Blender’s physical engine is used
to place the objects randomly, with a drop point defined in a specific area and the final
position depending on the existing scene objects and the object shape itself. The area has
the shape of a box with a base surrounded by walls, the size of which is determined by
the maximum camera radius parameter. Two random objects from each of the TLESS,

4 Reconstruction, Deformation and Pose Estimation 4.4 Training Procedure 29

TYOL and YCBV datasets are used for the distractor objects, and the texture of the
base and walls is also chosen randomly. This is done to avoid dependencies, e.g. on the
background or the positioning of the scene objects.
Each block of training images contains 20,000 RGB images for each degree of deformation.
These images are divided into 800 different scenes, with 25 images per scene from different
camera angles. Figure 4.4 shows a complete scene. This means that each deformation
submodel occurs on average eight times. In addition to the camera angle, the light source
of the scene also varies from scene to scene, which leads to more realistic rendering results.
RGB images, depth images and segmentation maps are saved for each scene. In addition,
the mask and UV mask are also saved for each object in the deformation dataset in the
scene. In addition, all information about the camera and the object position is stored in
another file so that the scene can be reproduced later.
The structure of the training data is identical to that of the BOP challenge so that the
pose estimation algorithm can be exchanged.

To sum up the resulting dataset consists of:

• 80,000 RGB images

• 80,000 depth images

• 80,000 segmentation map images

• 560,000 mask images

• 560,000 UV mask images

• 80 scene files

The number of mask images and UV mask images can be reduced if an object is not in
the camera’s field of view. An example of a scene is shown in Figure 4.5.

These files form the basis for the next two steps. First, an object detector such as
Mask-RCNN must be trained on the objects. Then the pose estimator must be trained.

4.4 Training Procedure
This section explains the training procedure for the object detector (4.4.1) and the pose
estimator (4.4.2). In the first step, the training data must be prepared for the training
process. After adjusting the parameters and defining the training epochs, the process
can be carried out.

4.4.1 Train Object Detector
To train Mask-RCNN, a modern object detector created with Python3, Keras and
TensorFlow, the training data from the previous section must be modified. For each scene,

4 Reconstruction, Deformation and Pose Estimation 4.4 Training Procedure 30

Figure 4.4: Scene with training images from different camera views

4 Reconstruction, Deformation and Pose Estimation 4.4 Training Procedure 31

Figure 4.5: Training image with RGB, depth, segmentation map and masks

4 Reconstruction, Deformation and Pose Estimation 4.4 Training Procedure 32

the objects are extracted from the RGB image of the scene based on the segmentation
mask. To increase the amount of training data, a simple data augmentation step is used.
The extracted image parts are rotated by a random value between -180 and 180 degrees
and an occlusion is added. In addition, the size of the object in the image is manipulated.
This step makes it possible to increase the amount of data with minimal effort. After
this step is completed, the data is ready for the training process.
Mask-RCNN offers a wide range of settings to improve the training process. However, the
memory requirements of the GPU are quite high: 12 GB are needed to train an image
with 1280 x 1280 pixels. As this is not always available, the process must be optimized.
The parameters in Table 4.2 are used for this purpose.

Parameter Value Explanation
BACKBONE resnet50 Backbone network architecture
GPU_COUNT 1 NUMBER OF GPUs to use
IMAGES_PER_GPU 1 Number of images to train with on

each GPU. Adjust based on your
GPU memory and image sizes.
Use the highest number that your
GPU can handle for best perfor-
mance

RPN_ANCHOR_
SCALES

(16, 32, 64, 128,
256)

Length of square anchor side in
pixels

TRAIN_ROIS_PER_
IMAGE

32 Number of ROIs (Region of Inter-
est) per image to feed to classi-
fier/mask heads.

STEPS_PER_EPOCH 50000 / IMAGES_
PER_GPU

Number of training steps per
epoch

VALIDATION_STEPS 5 Number of validation steps to run
at the end of every training epoch.
A bigger number improves accu-
racy of validation stats, but slows
down the training.

DETECTION_MIN_
CONFIDENCE

0.5 Minimum probability value to ac-
cept a detected instance. ROIs
below this threshold are skipped

IMAGE_MAX_DIM 800 px Maximum image dimension
IMAGE_MIN_DIM 800 px Minimum image dimension

Table 4.2: Mask-RCNN config parameters

4 Reconstruction, Deformation and Pose Estimation 4.4 Training Procedure 33

This configuration of the Mask RCNN object detector is trained over five epochs with
five or more layers. The result is a .h5 file containing the calculated weights. This file
can then be used by the object detector implementation, e.g. on a robot.

4.4.2 Train Pose Estimator
To train the pose estimator, similar data as before must be generated. However, instead
of storing all objects in one image, each object is stored separately, as shown in Figure 4.5
on the right column. The RGB image is then cropped to the dimensions of the mask and
the resulting snippet is saved together with the UV mask in an .npy file. To expand the
data, the snippet is rotated clockwise every 30 degrees, increasing the training dataset
by a factor of twelve.
The training process can be performed with these files, creating a file with the corre-
sponding weights. The next step is to convert this file into an inference file, which is the
input for the pose estimator. For each of the seven elements there is an inference file.
Pix2Pose was used as the pose estimator, and the algorithm from the original work was
modified for better results. The cut and paste on a random background was eliminated
and a cutout with the scene background and an enlarged bounding box was used instead.
This was possible because the backgrounds in the scenes were already taken from a
random background dataset, making them as unbiased as possible. In addition, the
occlusion value was removed as the scenes always contained a number of objects, resulting
in a natural occlusion. Since the training was performed on a single GPU, the process of
loading PLY files was also restructured. Instead of loading them all at the beginning,
which requires a large amount of memory, the PLY files were only loaded when needed.
A probability value has been added to the original code to improve the augmentation
tools for processing the input images. This value is used in the pose estimator, which
includes the following:

• CoarseDropout

• GaussianBlur

• Add

• Invert

• Multiply

• LinearContrast

It is important that the training images reflect the various factors that can influence an
image, such as lighting conditions, camera resolution, movement, focus, etc. To weight
the tools, the augmentation probability value was used, which ranges from zero to one.
A value of zero means that the original image was used, while a value of one means that
the entire range of the filter is applied to the image. For example, if an “Add filter“ with
a range of -25 to 25 is used on all three channels (RGB) with an expansion probability

4 Reconstruction, Deformation and Pose Estimation 4.4 Training Procedure 34

of 1, a value between -25 and 25 can be added to each color. Not all filters are used in
every iteration, which allows for different results.
Table 4.3 show the training parameters of Pix2Pose.

Parameter Value Explanation
backbone resnet50 Backbone network architecture
outlier_th [0.15, 0.25, 0.35] Threshold value for outliers (evalu-

ation)
inlier_th 0.15 Threshold value for inliers (evalua-

tion)
score_type 2 score methode (evaluation)
task_type 2 task type, e.g. BOP, ViVo (evalua-

tion)
cand_factor 2 candidate factor (evaluation)
model_scale 1 model scale factor to get model ob-

ject dimensions in m
aug_prob [0.2, 0.4, 0.6, 0.8, 1] augmentation probability factor

(training)

Table 4.3: Pix2Pose config parameters

5 Experiments
This chapter primarily deals with the evaluation of the object detector (5.1) and the pose
estimator (5.2). First, different training results are compared with adjustable training
parameters. The object pose is then evaluated using the Deformable Object Dataset
(3.1). Finally, the determined pose is tested and evaluated using the rendered dataset.

5.1 Evaluate Object Detector
The two-stage deformation pipeline consists of an object detector and an object pose
estimator. Unfortunately, the results of the trained object detector were not satisfactory,
as it often segmented the wrong objects or assigned them incorrectly. Since the pose
estimator, Pix2Pose, only requires the region of interest as a bounding box, the object
detector part was removed and the bounding box information was obtained from the
simulation data.
To ensure that MaskRCNN was not the only one having difficulties with the deformed
dataset, YoloX was also trained. The results were slightly better than those of MaskRCNN,
but still not satisfactory. In contrast to MaskRCNN, the implementation of YoloX is
much newer and has a higher performance. The training data for YoloX and MaskRCNN
are almost identical. Both require RGB images with texture and the mask as input. The
training showed that the data got better and better with each epoch. After more than
50 epochs, the results were still not good enough to be used as input for Pix2Pose. It is
possible that with 100 to 200 epochs the results will become stable enough for the pose
estimator, but there was not enough time in the experiments to test this. Since the focus
of this master thesis is on pose estimation, the object detector part was not used.

5.2 Evaluate Pose Estimator
Common evaluation metrics such as mean loss (5.2.1) and translation and rotation error
(5.2.2) are used to evaluate the pose estimator. To explain the deviation of the pose,
the UV prediction error (5.2.3) is also important. And finally, there is a more detailed
consideration of stable areas (5.2.4).

5.2.1 Mean Loss
At the beginning of the training process for the pose estimator, the Deformable Object
Dataset was divided into three parts: 80 % for training, 10 % for evaluation and 10 %

35

5 Experiments 5.2 Evaluate Pose Estimator 36

for testing. To increase the diversity of the dataset and reduce bias, an augmentation
probability factor was introduced during training. This augmentation probability factor
was added to the original training procedure. The training method required several
iterations, referred to as epochs, to improve the results. A loss function was used to
compare the results. The purpose of a loss function is to map a high-dimensional problem
to a single comparable value, usually represented as a real number. Figure 5.1 and Table
5.1 show that the mean loss decreases from epoch to epoch during training, which is
the desired result. This shows that the results improve with each iteration. After the
tenth epoch, the improvement becomes linear with only a slight increase. This indicates
that with a large number of objects, training can be completed after ten epochs, halving
the training time with minimal impact on performance. It can also be observed that a
smaller augmentation probability has a positive effect on the resulting mean loss of the
dataset. The loss function used is the binary cross entropy, which calculates the cross
entropy between the real classification and the predicted classification. As the name
suggests, the binary cross entropy has only two conditions, in contrast to the categorical
cross entropy. The binary cross entropy falls under the category of probabilistic losses.
The optimization discriminator used is an implementation of the Adam algorithm [57],
which estimates first and second order moments based on the stochastic gradient descent
method. The advantage of the Adam algorithm lies in its efficient implementation, which
is invariant to gradient rescaling and optimized for applications with large amounts of
data. In addition, the memory requirement is low.

Figure 5.1: Chips training result at different augmentation probabilities

5 Experiments 5.2 Evaluate Pose Estimator 37

Table 5.1: Dataset object training result at different augmentation probabilities

5 Experiments 5.2 Evaluate Pose Estimator 38

5.2.2 Translation and Rotation Error
This section deals with the evaluation of the quality of the estimated property location.
For this purpose, a suitable evaluation method is required. The simplest method is to
measure the translation and rotation error between the estimated and the rendered pose.
This method has two requirements: First, the rendered pose must be known, and second,
the coordinate frame must be aligned between the original and the deformed object.
Firstly, attention is paid to the issue of the coordinate frame. During the design phase
of the deformation pipeline, the world coordinate frame was placed at the center of the
bottom plane of the object. This positioning ensures that the deformation process, as
described in Section 4.2, does not change this frame. Consequently, a comparison can be
made between the estimated pose and the rendered pose. However, since the rendered
pose is only available from synthetic data, no real data can be used at this stage. In
practical applications, the objects would have to be annotated using a tool, which is
more challenging due to the unavailability of the deformed object model. For the training
of the pose estimator, a split into 80 % training data, 10 % evaluation data and 10 %
test data was used. To calculate the translation and rotation error, the rotation and
translation matrices of the estimated and rendered system are required. In both cases,
these matrices represent the transformation from the model to the camera. Equation 5.1
illustrates the resulting matrix.

Xc

Yc

Zc

1

 =

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

Xm

Ym

Zm

1

 = R t
0 1

Xm

Ym

Zm

1

 (5.1)

The following step involves computing the translation error in Equation 5.2 and the
rotation error in Equation 5.3.

et =
n=3

i=1

(t1,i − t2,i)
n

(5.2)

eR = R1 · RT
2

2

2
(5.3)

Figure 5.2 shows the translation errors for each object in all scenes. The boxplot provides
several important pieces of information. First, the box shows 50 % of all deviation errors.
The bottom line of the box denotes the first quartile, which is 25 % or the median of the
bottom half of the data. The top line of the box indicates the third quartile or 75 %.
The lower and upper lines represent the minimum and maximum error without possible
outliers. In addition, the blue line shows the median of the total errors. The green dashed
line shows the arithmetic mean. It can be seen that the median error for all objects is
around 10 cm. As a rough estimate, the 10 cm offset is useful, but in most applications
the value is too high. For example, gripping will result in a failed grip. The distance
between the mean and median value is unusually high. For example, for the object
“chips“ the mean value is out of range. This happens when a number of values are at the

5 Experiments 5.2 Evaluate Pose Estimator 39

Figure 5.2: Translation error statistical evaluation without score filter

Figure 5.3: Translation error statistical evaluation with score filter

5 Experiments 5.2 Evaluate Pose Estimator 40

upper end of the scale. This means that there are some results where the translation
error is 30 cm or more. The predicted score is also calculated using the translation and
rotation matrix. This score is intended to indicate whether a result is good or bad. In
theory, the score is higher for a good prediction and lower for a bad one. Therefore,
predictions that lie on the upper side of the boxplot should be filtered out using this
score. In Figure 5.2, all score values are allowed, which means that no filter was used.
If we use the median score from Figure 5.6 as a filter and only allow higher scores, the
results will be slightly better. This is shown in Figure 5.3. The median and the box do
not move very well, as most values are not filtered. It is noticeable that the mean value
has decreased significantly. The dimension of the box is also smaller. Another expected
behavior is that the maximum translation error decreases for all objects.

Figure 5.4: Rotation error statistical evaluation without score filter

The calculation of the rotation error for the object was also carried out in Figure 5.4. The
boxplot shows that the accuracy of the object rotation is not very high. The most optimal
object has a constant rotation error of about 125 ◦. Interestingly, the median value as
well as the first and third quartiles for each object are in a similar range, indicating that
there is a constant error during the training or data modeling process. Furthermore,
the maximum value consistently reaches 180 ◦. It is noteworthy that the mean value is
lower than the median value, suggesting that smaller rotation errors are rare. Using the
same scoring filter that was used for the translation error did not lead to different results
(see Figure 5.5). This indicates that a constant rotation error was introduced during the
training phase. A possible solution for real data would be to consistently add a rotation
offset to eliminate the error.

5 Experiments 5.2 Evaluate Pose Estimator 41

Figure 5.5: Rotation error statistical evaluation with score filter

The Pix2Pose score is currently being investigated. It is not easy to interpret. In general,
the object detector and the object pose estimator affect the score. The formula for the
score is shown in Equation 5.4. The final Pix2Pose score is calculated by multiplying the
object detector score (sd), the ratio of outlier to mask of the object pose estimator (si),
the intersection between the object detector and the predicted mask of the object pose
estimator (sm) and a factor of 1,000. Equation 5.4 describes the final prediction score, sd

the object detector score, si the pose estimator score, sm the mask score, mi the number
of outliers in the predicted mask from the pose estimator, mp the total mask from the
pose estimator and md the object detector mask.

s = sd · si · sm · 1000

si = mi

mp

sm = md ∩ mp

md ∪ mp

(5.4)

Figure 5.6 shows the score for each object. The “pringles“ has the highest score, which
is probably due to its almost rectangular shape in the image. The score is strongly
influenced by the given mask. Since the results of a trained object detector were not
useful, bounding boxes were used instead. These bounding boxes contain not only the
mask of the object, but also many background pixels. Equation 5.4 shows that the
intersection between the mask of the object detector and the mask of the pose estimator
is used. The more background pixels are contained in the mask, the lower the score,

5 Experiments 5.2 Evaluate Pose Estimator 42

which is particularly noticeable for small objects such as the paste and the pastry. To
improve the scoring, a segmented mask can be used instead of a bounding box mask. The
bounding box mask is sufficient for the project, as the pose estimator Pix2Pose requires
it as input. As a higher score indicates a better estimate, a filter can be developed on
the basis of this result. For example, all estimates that are below the median value could
be discarded. The diagram also shows that not all objects have the same score. The
score of the “chips“ is between 0 and 5,000 with a median value of 1,000. In contrast,
the pastry have a score range of 0 to 600 with a median value of 200. In an application,
the score value must therefore be determined empirically. Another approach is to use
the training data and evaluate the results as here and then use the median or the third
quartile limit as a filter.

Figure 5.6: Pix2Pose score statistical evaluation

5.2.3 UV-Prediction Error
This section discusses the UV prediction error with Pix2Pose. The UV prediction is
represented by an RGB color code, where a value of (255, 0, 0) represents the point (xmax,
0, 0), (0, ymax, 0) by (0, 255, 0), and (0, 0, zmax) by (0, 0, 255). This representation
enables the estimation of objects without texture. As the RGB value is correlated with
the object dimensions, the prediction should be as accurate as possible. The Section
4.2 contains a more detailed description of the process. When a pose is estimated with

5 Experiments 5.2 Evaluate Pose Estimator 43

Pix2Pose, the predicted mask and the predicted image section are returned. Together
with the Region of Interest (ROI), this enables the extraction of the UV prediction for
the object. In the next step, the rendered data is used to compare the results. The metric
used is Equation 5.5, where eX is the error for the specific color or coordinate, Xp is the
predicted color value, Xr is the rendered color value and n is the number of predictions
in the given scene. The average error over all color values is represented by eRGB.

eR = 1
n

·
n

i=1
Rp,i − Rr,i

eG = 1
n

·
n

i=1
Gp,i − Gr,i

eB = 1
n

·
n

i=1
Bp,i − Br,i

eRGB = 1
n

· (eR + eG + eB)

(5.5)

Figure 5.7 shows the error in the UV prediction for the object “chips“. Since the discus-
sion applies to all objects shown in Figure 5.7 - 5.13, it is conducted specifically for the
“chips“ object. The boxplot illustrates that the approximation to the Z value provides
the best results. The median of the blue value is around 85 and the spread of the values
is comparable across all color channels. In this diagram, a value of zero represents a
perfect match, while 255 represents the worst value. The proximity of the median and
mean value indicates that the values are evenly distributed around a constant value of
around 80-90. As mentioned earlier, a rotational and translational error was identified
in the previous section. This error is clearly visible in the RGB values. However, this
is to be expected as it forms the basis for the estimation of the posture itself. To find
an explanation for this deviation, knowledge of the actual object dimensions would be
helpful. The dimensions of the “chips“ object are approximately [25 cm, 10 cm, 38 cm].
Another interesting observation is that all objects have a similar boxplot. This uniformity
in the plots is beneficial for future research as it suggests that any errors can be minimized
through improvements in the estimation pipeline. However, it should be noted that the
current values from the estimation process are not as accurate as desired.

5 Experiments 5.2 Evaluate Pose Estimator 44

Figure 5.7: UV-Prediction error for the object chips

Figure 5.8: UV-Prediction error for the object juice

5 Experiments 5.2 Evaluate Pose Estimator 45

Figure 5.9: UV-Prediction error for the object paste

Figure 5.10: UV-Prediction error for the object pastry

5 Experiments 5.2 Evaluate Pose Estimator 46

Figure 5.11: UV-Prediction error for the object pringles

Figure 5.12: UV-Prediction error for the object shampoo

5 Experiments 5.2 Evaluate Pose Estimator 47

Figure 5.13: UV-Prediction error for the object teabox

Previously, a translation error of around 10 cm was determined for the object chips. To
compare the results, we can now use the information from Figures 5.7 and 5.2 with the
correct dimensions of the object. The expected translation error for the “chips“ object is
also around 10 cm. Using Equation 5.6, it can be determined that the total translation
error is 12.51 cm. This value agrees quite well with the observed mean translation error.
It is important to note that the calculation was not performed with exact values, but
with estimates derived from the given diagrams.

eR = 75
255 · 25 cm = 7,35 cm

eG = 75
255 · 10 cm = 2,94 cm

eB = 65
255 · 38 cm = 9,69 cm

eRGB = (e2
R + e2

G + e2
B) = 12,51 cm

(5.6)

5.2.4 Stable Areas
After taking into account the translation, rotation and UV prediction error, the next
step is to identify stable regions in the prediction. The results provided are a summary
of all predicted values. It may be possible to identify sub-regions where the prediction
is more accurate than the rest. For this purpose, a random prediction was selected
and a heat map was created. In the heatmap, green indicates a good match, while red

5 Experiments 5.2 Evaluate Pose Estimator 48

indicates a poor match. Figure 5.14 illustrates the evaluation of the “pringles“ object,
specifically scene 19 image 0. The figure shows a part of the original image with the
mask, the predicted and the rendered UV mask, the difference between them and the
heatmap. The heatmap shows areas of both good and poor prediction accuracy. Most
of the object appears light green, indicating that the prediction, while not perfect, is
reasonably accurate. However, it is worth noting that the prediction is not very accurate
overall, as almost half of the object is not green. This evaluation is made possible by the
availability of the rendered UV data. Without this data, only the UV-colored original
model could be used for comparison, making it difficult to identify stable regions in the
object. One approach to overcome this challenge could be to divide the prediction into
smaller clusters and search for corresponding regions in the original object.

Figure 5.14: Heatmap of pringles sample

6 Conclusion
This thesis focuses on training and testing a state-of-the-art pose estimation algorithm
on a newly created dataset of deformed objects, the Deformable Object Dataset. The
following chapter evaluates the strengths and weaknesses of the proposed approach and
also discusses possible future work. The discussion is divided into two main topics: the
dataset with deformed objects (6.1) and the pose estimation results (6.2).

6.1 Deformed Object Dataset (DOD)
The dataset forms the basis for each trained method. However, as the area of deformed
objects is relatively new, there was no suitable dataset. For this reason, a new dataset
was created. The Simple Deformed Object Dataset consists of seven main objects (chips,
juice, paste, pastry, pringles, shampoo, teabox) in 3,200 scenes. Each scene contains seven
objects from the dataset, six random distractor objects and a randomly selected unbiased
background. The objects were specifically selected based on their shape, deformability
and availability. For each scene, there are 25 different views. In total, the dataset includes
80,000 RGB images, 80,000 depth images, 80,000 segmentation masks, 560,000 mask
images and 560,000 UV mask images.
The study included four different models of each object, including the original object and
three real deformations. In addition, 100 additional deformations were created through
software manipulation, resulting in a total of 404 unique deformations per object. The
3D model files contain RGB and UV texture information. The deformation algorithm
used in the study is implemented as open-source Python code, which can be adapted for
future applications in conjunction with the open-source software Blender. In this work, a
simple approach based on a skeleton consisting of bones was used. To increase realism,
material properties, surface stiffness and external forces can be included.
To facilitate future use, the structure of the dataset corresponds to the specifications of
the BOP challenge. This allows for easy integration of the dataset into both new and
existing projects, with minimal customization required. Due to the large volume of data,
it is advisable to read the PLY files individually and not all at once.

6.2 Pose Estimation
An object pose estimator called Pix2Pose was used for the evaluation. This pose estimator
was chosen for several reasons. First, it is capable of working with objects that do not
have texture. Also, UV prediction masks are integrated into the methodology. Finally,

49

6 Conclusion 6.3 Future Work 50

the supporting team has a wealth of knowledge and experience in using this particular
pose estimator. The training process was based on feature matching between the base
object and different deformations. The UV prediction masks played a crucial role in
establishing a unique connection due to their different color codes. As a result, the pose
estimator was able to learn the deformations effectively.
The results show that the UV prediction leads to an error across all color channels.
This error subsequently leads to translation and rotation errors. The translation error
for each object is about 10 cm, while the mean weighted rotation error is about 125
degrees. It is possible to reduce the error by using the predicted score. However, since
the score is different for each object, there is no universal score filter. Furthermore,
the evaluation shows a correlation between the UV prediction and the translation and
rotation errors. This indicates that the pose estimation process is theoretically feasible if
the UV prediction is sufficiently accurate. Another notable observation is that a smaller
augmentation probability factor improves the mean loss or quality of the training process.
One possible explanation for the error in UV prediction could be due to the use of the
entire dataset for training. In particular, there were three actual deformed recorded
models, and the UV mask did not match the real objects in these models. The intention
behind this approach was to evaluate different levels of deformation, ranging from simple
to severe. However, due to the unexpected challenges encountered during the training
process, this assessment was ultimately discarded.
Another aspect of the work was the requirement that the pose estimator should be
compatible with common hardware. In particular, it should be ensured that the pose
estimator can run on a laptop connected to the laboratory robot. This laptop was used
throughout the training and evaluation process, demonstrating its potential for future
use. The object mask or the Region of Interest (ROI) is a typical input for any pose
estimation process. In this work, two different object detectors, namely MaskRCNN
and YoloX, were trained on the dataset. However, both proved to be unusable due to
incorrect segmentation and labeling. The results indicate that either not enough training
epochs were performed or the object detector was not able to process deformed objects.
As the main focus of this work is on the object pose estimator, the cause of this problem
was not investigated further.

6.3 Future Work
This section discusses possible future improvements for the pose estimator. To improve the
accuracy of the score predicted by the pose estimator, it is recommended to incorporate a
reliable object detector. Instead of using the ROI to calculate the score, it would be more
effective to use the mask generated by the object detector. Another approach could be
to use a scene segmenter, where the prediction results would reflect the most appropriate
suggestion. However, a disadvantage of this method is that the estimation process would
have to be performed for each learned object.
The main problem with the trained pose estimator lies in the inaccuracies of UV prediction.

6 Conclusion 6.3 Future Work 51

To get a deeper insight into the UV prediction, the training process can be divided
into four different parts corresponding to the different levels of real deformations: light,
medium, large and no deformation. This evaluation is expected to provide valuable
information.
In addition, the Deformable Object Dataset can be used to train another algorithm
for pose estimation. The advantage of the dataset lies in its existing BOP format,
which allows the use of all listed methods for pose estimation. This leads to the next
improvement. The evaluation of the results is done with knowledge of the generated
data. For future work, it would be beneficial to have a metric that evaluates the quality
of the pose. Also, an additional method could be developed to draw a 3D bounding box
around the deformed object. Currently, this is not possible due to the limited availability
of information about the 3D model of the original object.
As already mentioned, the current deformation algorithm offers considerable potential
for improvement. Factors such as material properties, surface texture and shape can be
used as input for a new algorithm. In addition, the use of physical machines commonly
used in video games to capture the deformed object scene by scene could be explored,
especially with the increasing computing power available. Once the pose estimation
process is sufficiently improved, it would be highly interesting to evaluate the algorithm
on real data. The ultimate goal would be to implement the algorithm on a robot for
object manipulation tasks, such as grasping. To achieve this, it could be beneficial to
identify stable areas on the object, and a possible approach could involve the use of heat
maps similar to those discussed in this thesis. In summary, there is considerable potential
for future work in this area. The basic steps have been completed in this work, and the
next challenge is to improve the results for practical applications on robots.

Bibliography
[1] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, „Deep

Object Pose Estimation for Semantic Robotic Grasping of Household Objects,“
CoRR, vol. abs/1809.10790, 2018. arXiv: 1809.10790. [Online]. Available: http:
//arxiv.org/abs/1809.10790.

[2] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, PoseCNN: A Convolutional
Neural Network for 6D Object Pose Estimation in Cluttered Scenes, 2018. arXiv:
1711.00199 [cs.CV].

[3] F. Manhardt, W. Kehl, N. Navab, and F. Tombari, Deep Model-Based 6D Pose
Refinement in RGB, 2018. arXiv: 1810.03065 [cs.CV].

[4] J. Sock, K. I. Kim, C. Sahin, and T.-K. Kim, Multi-Task Deep Networks for Depth-
Based 6D Object Pose and Joint Registration in Crowd Scenarios, 2018. arXiv:
1806.03891 [cs.CV].

[5] W. Abdulla, Mask R-CNN for object detection and instance segmentation on Keras
and TensorFlow, https://github.com/matterport/Mask_RCNN, 2017.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified,
Real-Time Object Detection, 2016. arXiv: 1506.02640 [cs.CV].

[7] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors, 2022. arXiv: 2207.02696
[cs.CV].

[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
„SSD: Single Shot MultiBox Detector,“ in Computer Vision – ECCV 2016, Springer
International Publishing, 2016, pp. 21–37. [Online]. Available: https://doi.org/
10.1007%2F978-3-319-46448-0_2.

[9] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks, 2016. arXiv: 1506.01497 [cs.CV].

[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. DollÃ¡r, Focal Loss for Dense
Object Detection, 2018. arXiv: 1708.02002 [cs.CV].

[11] Z. Tian, C. Shen, H. Chen, and T. He, FCOS: Fully Convolutional One-Stage
Object Detection, 2019. arXiv: 1904.01355 [cs.CV].

[12] S. Thalhammer, T. Patten, and M. Vincze, COPE: End-to-end trainable Constant
Runtime Object Pose Estimation, 2022. arXiv: 2208.08807 [cs.CV].

52

https://arxiv.org/abs/1809.10790
http://arxiv.org/abs/1809.10790
http://arxiv.org/abs/1809.10790
https://arxiv.org/abs/1711.00199
https://arxiv.org/abs/1810.03065
https://arxiv.org/abs/1806.03891
https://github.com/matterport/Mask_RCNN
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1904.01355
https://arxiv.org/abs/2208.08807

Bibliography Bibliography 53

[13] S. Zhang, W. Zhao, Z. Guan, X. Peng, and J. Peng, „Keypoint-Graph-Driven
Learning Framework for Object Pose Estimation,“ in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2021,
pp. 1065–1073.

[14] M. Rad and V. Lepetit, BB8: A Scalable, Accurate, Robust to Partial Occlusion
Method for Predicting the 3D Poses of Challenging Objects without Using Depth,
2018. arXiv: 1703.10896 [cs.CV].

[15] S. Peng, Y. Liu, Q. Huang, H. Bao, and X. Zhou, PVNet: Pixel-wise Voting Network
for 6DoF Pose Estimation, 2018. arXiv: 1812.11788 [cs.CV].

[16] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, Segmentation-driven 6D Object Pose
Estimation, 2019. arXiv: 1812.02541 [cs.CV].

[17] B. Tekin, S. N. Sinha, and P. Fua, Real-Time Seamless Single Shot 6D Object Pose
Prediction, 2018. arXiv: 1711.08848 [cs.CV].

[18] T. Hodan, D. Barath, and J. Matas, EPOS: Estimating 6D Pose of Objects with
Symmetries, 2020. arXiv: 2004.00605 [cs.CV].

[19] Z. Li, G. Wang, and X. Ji, „CDPN: Coordinates-Based Disentangled Pose Network
for Real-Time RGB-Based 6-DoF Object Pose Estimation,“ in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), 2019, pp. 7677–7686.

[20] K. Park, T. Patten, and M. Vincze, „Pix2Pose: Pixel-Wise Coordinate Regression
of Objects for 6D Pose Estimation,“ in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), IEEE, Oct. 2019. [Online]. Available: https://doi.
org/10.1109%2Ficcv.2019.00776.

[21] G. Wang, F. Manhardt, F. Tombari, and X. Ji, GDR-Net: Geometry-Guided
Direct Regression Network for Monocular 6D Object Pose Estimation, 2021. arXiv:
2102.12145 [cs.CV].

[22] Y. Di, F. Manhardt, G. Wang, X. Ji, N. Navab, and F. Tombari, SO-Pose: Exploiting
Self-Occlusion for Direct 6D Pose Estimation, 2021. arXiv: 2108.08367 [cs.CV].

[23] Y. Hu, P. Fua, and M. Salzmann, Perspective Flow Aggregation for Data-Limited
6D Object Pose Estimation, 2022. arXiv: 2203.09836 [cs.CV].

[24] R. L. Haugaard and A. G. Buch, SurfEmb: Dense and Continuous Correspondence
Distributions for Object Pose Estimation with Learnt Surface Embeddings, 2021.
[Online]. Available: https://arxiv.org/abs/2111.13489.

[25] I. Shugurov, F. Li, B. Busam, and S. Ilic, OSOP: A Multi-Stage One Shot Object
Pose Estimation Framework, 2022. arXiv: 2203.15533 [cs.CV].

[26] L. Huang, T. Hodan, L. Ma, L. Zhang, L. Tran, C. Twigg, P.-C. Wu, J. Yuan,
C. Keskin, and R. Wang, Neural Correspondence Field for Object Pose Estimation,
2022. arXiv: 2208.00113 [cs.CV].

[27] M. A. Fischler and R. C. Bolles, Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography, 1987.

https://arxiv.org/abs/1703.10896
https://arxiv.org/abs/1812.11788
https://arxiv.org/abs/1812.02541
https://arxiv.org/abs/1711.08848
https://arxiv.org/abs/2004.00605
https://doi.org/10.1109%2Ficcv.2019.00776
https://doi.org/10.1109%2Ficcv.2019.00776
https://arxiv.org/abs/2102.12145
https://arxiv.org/abs/2108.08367
https://arxiv.org/abs/2203.09836
https://arxiv.org/abs/2111.13489
https://arxiv.org/abs/2203.15533
https://arxiv.org/abs/2208.00113

Bibliography Bibliography 54

[28] T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C.
Rother, and J. Matas, „BOP Challenge 2020 on 6D Object Localization,“ European
Conference on Computer Vision Workshops (ECCVW), 2020.

[29] M. Sundermeyer, T. Hodan, Y. Labbe, G. Wang, E. Brachmann, B. Drost, C.
Rother, and J. Matas, BOP Challenge 2022 on Detection, Segmentation and Pose
Estimation of Specific Rigid Objects, 2023. [Online]. Available: https://arxiv.
org/abs/2302.13075.

[30] Y. Wu, A. Javaheri, M. Zand, and M. Greenspan, Keypoint Cascade Voting for
Point Cloud Based 6DoF Pose Estimation, 2022. [Online]. Available: https://
arxiv.org/abs/2210.08123.

[31] Y. Su, M. Saleh, T. Fetzer, J. Rambach, N. Navab, B. Busam, D. Stricker, and
F. Tombari, „ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose
Estimation,“ arXiv preprint arXiv:2203.09418, 2022.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, „ImageNet Large
Scale Visual Recognition Challenge,“ International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[33] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P.
Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, „Microsoft COCO: Common
Objects in Context,“ CoRR, vol. abs/1405.0312, 2014. arXiv: 1405.0312. [Online].
Available: http://arxiv.org/abs/1405.0312.

[34] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, „Bench-
marking in Manipulation Research: Using the Yale-CMU-Berkeley Object and
Model Set,“ IEEE Robotics & Automation Magazine, vol. 22, no. 3, pp. 36–52,
2015.

[35] A. Gupta, P. Dollár, and R. B. Girshick, „LVIS: A Dataset for Large Vocabulary
Instance Segmentation,“ CoRR, vol. abs/1908.03195, 2019. arXiv: 1908.03195.
[Online]. Available: http://arxiv.org/abs/1908.03195.

[36] T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft, B. Drost,
J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim,
J. Matas, and C. Rother, „BOP: Benchmark for 6D Object Pose Estimation,“
European Conference on Computer Vision (ECCV), 2018.

[37] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N.
Navab, „Model Based Training, Detection and Pose Estimation of Texture-Less 3D
Objects in Heavily Cluttered Scenes,“ in Computer Vision – ACCV 2012, K. M.
Lee, Y. Matsushita, J. M. Rehg, and Z. Hu, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 548–562, isbn: 978-3-642-37331-2.

[38] E. Brachmann, 6D Object Pose Estimation using 3D Object Coordinates [Data],
version V1, 2020. [Online]. Available: https://doi.org/10.11588/data/V4MUMX.

https://arxiv.org/abs/2302.13075
https://arxiv.org/abs/2302.13075
https://arxiv.org/abs/2210.08123
https://arxiv.org/abs/2210.08123
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1908.03195
http://arxiv.org/abs/1908.03195
https://doi.org/10.11588/data/V4MUMX

Bibliography Bibliography 55

[39] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, „T-
LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects,“ IEEE
Winter Conference on Applications of Computer Vision (WACV), 2017.

[40] B. Drost, M. Ulrich, P. Bergmann, P. HÃ¤rtinger, and C. Steger, „Introducing
MVTec ITODD â€” A Dataset for 3D Object Recognition in Industry,“ in 2017
IEEE International Conference on Computer Vision Workshops (ICCVW), 2017,
pp. 2200–2208.

[41] R. Kaskman, S. Zakharov, I. Shugurov, and S. Ilic, „HomebrewedDB: RGB-D
Dataset for 6D Pose Estimation of 3D Objects,“ International Conference on
Computer Vision (ICCV) Workshops, 2019.

[42] S. Tyree, J. Tremblay, T. To, J. Cheng, T. Mosier, J. Smith, and S. Birchfield, „6-
DoF Pose Estimation of Household Objects for Robotic Manipulation: An Accessible
Dataset and Benchmark,“ in International Conference on Intelligent Robots and
Systems (IROS), 2022.

[43] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, „PoseCNN: A Convolutional
Neural Network for 6D Object Pose Estimation in Cluttered Scenes,“ CoRR,
vol. abs/1711.00199, 2017. arXiv: 1711.00199. [Online]. Available: http://arxiv.
org/abs/1711.00199.

[44] C. Rennie, R. Shome, K. E. Bekris, and A. F. D. Souza, „A Dataset for Improved
RGBD-based Object Detection and Pose Estimation for Warehouse Pick-and-
Place,“ CoRR, vol. abs/1509.01277, 2015. arXiv: 1509.01277. [Online]. Available:
http://arxiv.org/abs/1509.01277.

[45] R. Kouskouridas, A. Tejani, A. Doumanoglou, D. Tang, and T.-K. Kim, „Latent-
Class Hough Forests for 6 DoF Object Pose Estimation,“ CoRR, vol. abs/1602.01464,
2016. arXiv: 1602.01464. [Online]. Available: http://arxiv.org/abs/1602.
01464.

[46] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim, „6D Object De-
tection and Next-Best-View Prediction in the Crowd,“ CoRR, vol. abs/1512.07506,
2015. arXiv: 1512.07506. [Online]. Available: http://arxiv.org/abs/1512.
07506.

[47] V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano, and J. L.
Wyatt, „Modeling of Deformable Objects for Robotic Manipulation: A Tutorial
and Review,“ Frontiers in Robotics and AI, vol. 7, 2020, issn: 2296-9144. [Online].
Available: https://www.frontiersin.org/articles/10.3389/frobt.2020.
00082.

[48] H. Delingette, „General Object Reconstruction Based on Simplex Meshes,“ Inter-
national Journal of Computer Vision, vol. 32, 1999. [Online]. Available: https:
//doi.org/10.1023/A:1008157432188.

[49] S. I. Nikolenko, „Synthetic Data for Deep Learning,“ CoRR, vol. abs/1909. 11512,
2019. arXiv: 1909.11512. [Online]. Available: http://arxiv.org/abs/1909.
11512.

https://arxiv.org/abs/1711.00199
http://arxiv.org/abs/1711.00199
http://arxiv.org/abs/1711.00199
https://arxiv.org/abs/1509.01277
http://arxiv.org/abs/1509.01277
https://arxiv.org/abs/1602.01464
http://arxiv.org/abs/1602.01464
http://arxiv.org/abs/1602.01464
https://arxiv.org/abs/1512.07506
http://arxiv.org/abs/1512.07506
http://arxiv.org/abs/1512.07506
https://www.frontiersin.org/articles/10.3389/frobt.2020.00082
https://www.frontiersin.org/articles/10.3389/frobt.2020.00082
https://doi.org/10.1023/A:1008157432188
https://doi.org/10.1023/A:1008157432188
https://arxiv.org/abs/1909.11512
http://arxiv.org/abs/1909.11512
http://arxiv.org/abs/1909.11512

Bibliography Bibliography 56

[50] M. Pasieka, A comparison of synthetic data generation methods and synthetic
data types, 2022. [Online]. Available: https://mostly.ai/blog/comparison-of-
synthetic-data-types.

[51] OpenAI, GPT-4 Technical Report, 2023. arXiv: 2303.08774 [cs.CL].
[52] R. Thoppilan, D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng,

A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M.
Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen,
A. Roberts, M. Bosma, Y. Zhou, C.-C. Chang, I. Krivokon, W. Rusch, M. Pickett,
K. S. Meier-Hellstern, M. R. Morris, T. Doshi, R. D. Santos, T. Duke, J. Soraker,
B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Olson, A. Molina,
E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna, M. Lamm, V.
Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil, B. Aguera-Arcas, C.
Cui, M. Croak, E. H. Chi, and Q. Le, „LaMDA: Language Models for Dialog
Applications,“ CoRR, vol. abs/2201.08239, 2022. arXiv: 2201.08239. [Online].
Available: https://arxiv.org/abs/2201.08239.

[53] A. Glaese, N. McAleese, M. Trebacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh,
L. Weidinger, M. Chadwick, P. Thacker, L. Campbell-Gillingham, J. Uesato, P.-S.
Huang, R. Comanescu, F. Yang, A. See, S. Dathathri, R. Greig, C. Chen, D. Fritz,
J. S. Elias, R. Green, S. MokrÃ¡, N. Fernando, B. Wu, R. Foley, S. Young, I. Gabriel,
W. Isaac, J. Mellor, D. Hassabis, K. Kavukcuoglu, L. A. Hendricks, and G. Irving,
Improving alignment of dialogue agents via targeted human judgements, 2022. arXiv:
2209.14375 [cs.LG].

[54] Q.-Y. Zhou, J. Park, and V. Koltun, „Open3D: A Modern Library for 3D Data
Processing,“ arXiv:1801.09847, 2018.

[55] M. Denninger, D. Winkelbauer, M. Sundermeyer, W. Boerdijk, M. Knauer, K. H.
Strobl, M. Humt, and R. Triebel, „BlenderProc2: A Procedural Pipeline for Photo-
realistic Rendering,“ Journal of Open Source Software, vol. 8, no. 82, p. 4901, 2023.
[Online]. Available: https://doi.org/10.21105/joss.04901.

[56] Toyota Motor Corporation, Toyota HSR, 1995-2021. [Online]. Available: https:
//global.toyota/en/detail/8709541.

[57] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2017. arXiv:
1412.6980 [cs.LG].

https://mostly.ai/blog/comparison-of-synthetic-data-types
https://mostly.ai/blog/comparison-of-synthetic-data-types
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2209.14375
https://doi.org/10.21105/joss.04901
https://global.toyota/en/detail/8709541
https://global.toyota/en/detail/8709541
https://arxiv.org/abs/1412.6980

Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus anderen
Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form
in anderen Prüfungsverfahren vorgelegt.

Christian Eder, BSc St. Leonhard am Forst, 25.01.2024

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution
	1.4 Chapter Organization

	2 Related Work
	2.1 Pose Estimator
	2.1.1 Pose Estimation Methods
	2.1.2 BOP-Challenge

	2.2 Deformable Objects
	2.3 Synthetic Data

	3 System Components
	3.1 Objects of Deformable Object Dataset
	3.2 Software packages
	3.2.1 Metashape
	3.2.2 Open3D
	3.2.3 BlenderProc

	3.3 Pose Estimator - Pix2Pose
	3.4 Robot Sasha

	4 Reconstruction, Deformation and Pose Estimation
	4.1 Reconstruction Process
	4.2 Deformation Algorithm
	4.2.1 Model Manipulation Tools

	4.3 Generate Training Data
	4.4 Training Procedure
	4.4.1 Train Object Detector
	4.4.2 Train Pose Estimator

	5 Experiments
	5.1 Evaluate Object Detector
	5.2 Evaluate Pose Estimator
	5.2.1 Mean Loss
	5.2.2 Translation and Rotation Error
	5.2.3 UV-Prediction Error
	5.2.4 Stable Areas

	6 Conclusion
	6.1 Deformed Object Dataset (DOD)
	6.2 Pose Estimation
	6.3 Future Work

