
A Matheuristic for Battery
Exchange Station Location

Planning for Electric Scooters

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Matthias Rauscher, BSc
Matrikelnummer 01527543

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Projektass. Dipl.-Ing. Thomas Jatschka, BSc

Wien, 27. Dezember 2021
Matthias Rauscher Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Matheuristic for Battery
Exchange Station Location

Planning for Electric Scooters

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Matthias Rauscher, BSc
Registration Number 01527543

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Projektass. Dipl.-Ing. Thomas Jatschka, BSc

Vienna, 27th December, 2021
Matthias Rauscher Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Matthias Rauscher, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. Dezember 2021
Matthias Rauscher

v

Danksagung

Ein besonderer Dank ergeht an meine Betreuer Günther Raidl und Thomas Jatschka,
welche mich durch zahllose Stunden der Diskussion und Ratschläge zu einem erfolgreichen
Projekt geführt haben. Ihr unschätzbares Wissen und die wertvollen Ideen haben es mir
erlaubt, alle Herausforderungen, welche diese Arbeit mit sich führte, zu meistern.

Ich möchte mich auch bei Honda R&D Co., Ltd.1 für die Kooperation und Finanzierung
im Bezug auf dieses Projekt, und dementsprechend auch auf diese Arbeit, bedanken.
Besonderer Dank gebührt Yusuke Okamoto, Hiroaki Kataoka, Tadashi Hayashida von der
Honda Motor Company und Tobias Rodemann vom Honda Research Institute Europe2

für die zahl- und lehrreichen Meetings während der Projektdurchführung.

Weiters möchte ich mich bei Bernhard Kreutzer bedanken, welcher im Rahmen seiner
Masterarbeit ebenfalls am Projekt beteiligt war. Große Teile der MILP-Formulierung
sind seinen Anstrengungen zu verdanken.

Ich möchte mich auch bei der Algorithms and Complexity Forschungsgruppe der TU
Wien3 für die Bereitstellung der notwendigen Cluster-Infrastruktur zur Durchführung
der Experimente.

Vor allem möchte ich mich bei meiner Mama dafür bedanken, dass sie mich mein ganzes
Leben lang unterstützt hat und mir in schwierigen Zeiten immer Mut und Hoffnung
geben konnte. Natürlich möchte ich mich auch bei meiner liebsten Julie bedanken, welche
mein Leben unsagbar bereichert und mich während dieser Arbeit ständig begleitet und
unterstützt hat.

1https://www.jp.honda-ri.com/en/
2https://www.honda-ri.de/
3https://www.ac.tuwien.ac.at/

vii

https://www.jp.honda-ri.com/en/
https://www.honda-ri.de/
https://www.ac.tuwien.ac.at/

Acknowledgements

I want to express my sincere gratitude to my supervisors Günther Raidl and Thomas
Jatschka who have spent numerous hours in discussion and guidance towards a successful
outcome of this project. With their valuable input and knowledge they allowed me to
overcome all challenges encountered while working on this project.

I also want to thank Honda R&D Co., Ltd.4 for their cooperation and funding of
the project, and therefore partly of this thesis. I especially want to thank Yusuke
Okamoto, Hiroaki Kataoka, Tadashi Hayashida representing the Honda Motor Company
and Tobias Rodemann from Honda Research Institute Europe5 for the frequent and
insightful meetings during this project.

Furthermore, I want to thank Bernhard Kreutzer who was also working on this project
as part of his master thesis. Large parts of the MILP formulation of the problem can be
attributed to his efforts.

I further want to thank the Algorithms and Complexity Group at TU Wien6 for providing
the necessary cluster infrastructure required to perform the evaluations in this thesis.

Due above all, I am very grateful to my mum for supporting me my whole life and for
always providing me perspective and hope in times of need. Of course I also want to
thank my dearest Julie who is tremendously enriching my life and who supported me on
my journey through this thesis.

4https://www.jp.honda-ri.com/en/
5https://www.honda-ri.de/
6https://www.ac.tuwien.ac.at/

ix

https://www.jp.honda-ri.com/en/
https://www.honda-ri.de/
https://www.ac.tuwien.ac.at/

Kurzfassung

In dieser Arbeit betrachten wir das Battery Exchange Station Location Problem (BEX-
SLP) welches sich mit der Platzierung von Batteriewechsel-Stationen für elektrische
Roller beschäftigt. Ziel ist es, eine dreiteilige Zielfunktion unter Erfüllung eines festgeleg-
ten Mindestbedarfs zu minimieren. Nutzer können an Batteriewechsel-Stationen leere
Batterien ihrer Roller unmittelbar gegen vollständig geladene Batterien tauschen. Diese
entleerten Batterien werden dann bei der Station wieder aufgeladen und nach entspre-
chender Ladezeit anderen Nutzern wieder zur Verfügung gestellt. Hierfür betrachten wir
einen Zeithorizont von einem Tag, welcher in gleich lange Zeitintervalle diskretisiert wird
(typischerweise wird ein Tag auf 24 Stunden aufgeteilt). Der (Mindest)bedarf ist durch
Fahrten von Nutzern mit definiertem Start- und Endziel innerhalb eines bestimmten
Zeitslots, in welchem die Nutzer das Fahrzeug aufladen müssen, gegeben.
Stationen können an unterschiedlichen Orten gebaut werden. Abhängig vom Ort, an dem
eine Station gebaut wird, gibt es Unterschiede in Bezug auf verschiedene Eigenschaften,
wie zum Beispiel die Baukosten, Anzahl der möglichen Batterieslots oder Zeiten, zu
welchen Nutzer ihre Batterien tauschen können. Die Planung erfolgt unter Berücksichti-
gung von drei unterschiedlichen Aspekten welche linear gewichtet in einer gemeinsamen
Zielfunktion minimiert werden. Diese drei Aspekte sind (a) die Baukosten für Stationen
sowie Erweiterungsmodule, (b) die Kosten für das Laden von Batterien und (c) die
Zeitsumme der Umwege, welche dadurch entstehen, dass Nutzer zu einer Ladestation
fahren müssen.
In dieser Masterarbeit entwickeln wir eine Matheuristic, welche exakte Techniken der ma-
thematischen Programmierung mit heuristischen Methoden kombiniert, um das BEXSLP
zu lösen. Wir verwenden eine Large Neighborhood Search (LNS), welche mittels einer
Konstruktionsheuristik eine initiale Lösung erzeugt und dann mittels eines Zerstör-und-
Reparier-Schemas versucht diese Lösung iterativ zu verbessern. Hierbei werden Teile einer
bestehenden Lösung aufgelöst und anhand einer Menge vielversprechender Stationen
wieder repariert. In der LNS verwenden wir gemischt-ganzzahlige lineare Programmierung
(mixed integer linear programming, MILP) mit relaxierten Eigenschaften in Bezug auf
die Anzahl der Stationen und Erweiterungsmodule. Anschließend wird die Lösung für
das relaxierte Modell mittels heuristischer Methoden repariert, um eine gültige Lösung
abzuleiten. Wir präsentieren mehrere Strategien um vielversprechende Stationen für
das Zerstören beziehungsweise Reparieren von Lösungen auszuwählen, welche sich auf
einzelne Aspekte unserer mehrteiligen Zielfunktion fokussieren.

xi

Wir erstellen neuartige Testinstanzen basierend auf Vorgehensweisen bestehender Litera-
tur. Anhand dieser Testinstanzen zeigen wir, dass die entwickelte Matheuristic für größere
Instanzen um zehn bis dreißig Prozent bessere Resultate erzielt als die Verwendung eines
universellen MILP-Lösers.

Abstract

In this thesis, we consider the Battery Exchange Station Location Problem (BEXSLP)
which considers planning the setup of new stations for exchanging batteries of electric
scooters with the aim of minimizing a three-part objective function while satisfying an
expected amount of demand. Depleted batteries can directly be exchanged by customers
at those stations for fully charged ones. Batteries returned at a station are charged and
provided to customers again once they are fully charged. A time horizon of one day is
considered, discretized into equally long consecutive time intervals (typically a day is split
into 24 hours). Demand refers to user trips with a defined start and end point within a
certain time interval at which the users need to exchange the batteries of their vehicles.
Stations may be set up at given potential locations, which may differ in certain aspects,
such as setup costs, number of provided battery slots or different time intervals in which
exchanging batteries is possible for customers. This task is done with regard to minimizing
three objectives, which are combined in a weighted linear fashion and the requirement
that a certain minimal amount of demand must be fulfilled. These three objectives are (a)
the setup cost for stations and extension modules, (b) the cost for charging batteries and
(c) the total duration of detours for users induced by travelling to a station to exchange
batteries.
In this thesis, a matheuristic is developed which combines exact mathematical program-
ming techniques with heuristic methods to solve the BEXSLP. More specifically, a Large
Neighborhood Search (LNS) is implemented. The LNS uses an initial solution created by
a construction heuristic and iteratively tries to improve the solution quality by applying
a destroy and repair scheme, i.e., parts of an incumbent solution are destroyed and
repaired with a set of promising stations. In the LNS we make use of a mixed integer
linear program (MILP) with relaxed properties regarding the number of stations and
modules. Afterwards, heuristic methods are applied to derive feasible solutions from
the solutions of the relaxed model. Multiple strategies are presented which specifically
focus on individual parts of our multi-component objective to systematically find more
promising stations when destroying and repairing solutions.
A set of test instances is designed based on approaches from literature. Using these
instances, we show that the matheuristic approach achieves between ten to thirty percent
better results for larger instances than using a general-purpose MILP solver.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Structure of the Work . 2

2 State of the Art and Related Work 5
2.1 Previous Work . 5
2.2 Related Problems . 6
2.3 Matheuristics . 7

3 Methodological Approach 9
3.1 Mathematical Programming Techniques 9
3.2 Heuristics . 11
3.3 Matheuristics . 12

4 The Battery Exchange Station Location Problem 13

5 A Matheuristic for the BEXSLP 19
5.1 Large Neighborhood Search . 19
5.2 Construction Heuristic . 19
5.3 Destroy and Repair Operators . 21

6 Experiments and Results 29
6.1 Test Instances . 29
6.2 Experimental Results and Discussion . 31

7 Conclusion and Future Work 51
7.1 Future Work . 52

List of Figures 55

xv

List of Tables 57

List of Algorithms 59

Bibliography 61

CHAPTER 1
Introduction

Adoption of electric vehicles has significantly increased in the past years and is expected to
grow further in the years to come [RHL20]. While users mention a positive environmental
impact as a reason for adopting electric vehicles, certain aspects may hinder a wide-spread
adoption, such as long charging times [CBW17, LLCG17]. A possible solution for this
problem is the construction of electric vehicles which allow users to replace empty batteries
with fully charged ones, thus avoiding long waiting times due to recharging. Today, this
swapping strategy is not common for electric cars as the method of construction of the
respective batteries (weight, complexity, etc.) often hinders users in doing so. However,
there are promising possibilities for electric scooters, as batteries can be constructed
compactly enough to allow everyday users to easily replace them themselves. Thus, if
such batteries are drained, users can remove the empty batteries of their scooters and
replace them with fully charged ones provided at designated battery exchange stations.
The empty batteries are left at the station for charging and are offered to other customers
when fully charged.
An important task in designing such systems is to determine where such battery swapping
stations should be set up and how many batteries shall be provided at each location. It
has to be considered that different aspects influence this decision, as on the one hand
providers of such systems are interested in minimizing setup costs for setting up the
necessary equipment and infrastructure. Further, it might be desirable to minimize costs
of electricity for charging the batteries, by, for example setting up the battery provider
network in a way to allow charging during time periods with cheaper electricity prices.
On the other hand, users wish to minimize the time requirement for reaching such battery
swapping stations. Battery exchange stations are typically not set up directly on routes
taken by individual users but are placed near common and convenient public spaces such
as supermarkets or conventional gas stations.
Further, certain limitations may be posed on stations depending on the location such
as the maximum number of providable batteries or on the times during which users are

1

1. Introduction

allowed to exchange batteries.
As a planning horizon, one day, discretized into equally long consecutive time intervals is
considered (typically a day is split into 24 hours).
In general, we assume that users specify their trips in terms of starting location, target
location and approximate time and are assigned by the system to an appropriate station
for changing batteries.
We further consider different types of vehicles with respect to the number of batteries
required to operate.
We refer to the here presented problem as the Battery Exchange Station Location Problem
(BEXSLP). Such problems can be specified in terms of a mixed integer linear program
(MILP). While such approaches are able to find (and guarantee) optimal solutions, they
tend to suffer in terms of scalability for larger instances. For such systems it is however
reasonable to assume that several hundred or even thousands of potential locations
for constructing stations, as well as multiple thousand users have to be considered for
planning purposes. We therefore present an approach to tackle these scalablity issues
in the form of a matheuristic, i.e., a combination of a heuristic approach with exact
mathematical techniques.
In our matheuristic, we obtain an initial solution to the BEXSLP by first solving a
linear relaxation of the MILP and afterwards repairing the solution to ensure feasibility.
Afterwards, we use a Large Neighborhood Search (LNS) based on a repair and destroy
scheme to iteratively improve the solution. In each iteration, parts of an incumbent
solution are destroyed and afterwards repaired using a set of promising candidate stations.
For repairing the solution, we make use of a linear relaxation of the MILP. Afterwards
we again use a heuristic procedure to ensure that the resulting solution is feasible.
For selecting promising stations during the destroy and repair steps we present several
strategies, which aim to focus on individual parts, i.e., construction costs, charging costs
and induced delays, of our multi-part objective. We further present two strategies to
combine multiple aspects of the problem for selecting promising stations.
To evaluate the performance of the approach, we generate a novel set of test instances,
based on approaches from literature. We will see that the matheuristic approach performs
superior in terms of optimality gaps to using a general-purpose MILP solver for larger
instances of the BEXSLP.

1.1 Structure of the Work
In Chapter 2 we show existing work regarding problems which are related to the
BEXSLP. Further, we discuss other problems where matheuristics similar to the one
proposed by this thesis have been successfully applied.
Chapter 3 establishes the methodologies used in this thesis. In particular, it gives an
overview on (mixed integer) linear programs and basics of how general purpose solvers

2

1.1. Structure of the Work

effectively solve such problems. We will further highlight the heuristic elements used
in our approach and show how heuristics and exact mathematical techniques can work
together to form matheuristics.

Chapter 4 gives a formal definition of the BEXSLP in the form of a MILP.

In Chapter 5 we introduce and explain our developed matheuristic. We discuss how we
use a linear programming relaxation of the presented MILP to find an initial solution in a
reasonably fast time and how a large neighborhood search (LNS) following a destroy and
repair scheme, again making use of a relaxed problem definition, is applied to iteratively
improve solutions. We further discuss steps necessary to construct and guarantee feasible
solutions despite the mentioned relaxations. Lastly, we present multiple operators,
focusing on different aspects of our multi-component objective to select promising stations
in our LNS approach.

Afterwards, Chapter 6 presents how a set of novel benchmarking instances was created
to test the performance of the presented approach. We further show experimental results
of the established matheuristic approach in comparison to solving the MILP formulation
of the BEXSLP with a general purpose solver for MILPs.

Finally, Chapter 7 summarizes the presented approach, results and findings and
presents possible future work.

3

CHAPTER 2
State of the Art and Related

Work

This chapter discusses related work which is relevant with regard to the thesis. We
first discuss a previous project done at TU Wien which is related to the BEXSLP but
also highlight the differences to the problem concerned in this thesis. We then discuss
related work in areas related to the BEXSLP. Then, related work is presented in which
matheuristics have been successfully applied.

2.1 Previous Work

Parts of the BEXSLP are based on the Multi-Period Battery Swapping Station Location
Problem (MBSSLP) [JORR20]. Similar to the BEXSLP, the goal in the MBSSLP is
to identify an optimal location placement for battery swapping stations including their
required capacities in order to satisfy a specified amount demand with minimum cost.
A MILP is formulated and proposed for solving smaller instances as well as an LNS
approach for solving larger instances. However, there exist certain differences between
the MBSSLP and the BEXSLP. In the MBSSLP the objective function is only concerned
with minimizing setup costs, while in the BEXSLP we consider setup costs, charging costs
and total duration of detours for customers, combined in a linear weighted fashion. In the
MBSSLP there is instead an additional constraint regarding the maximum allowed detour
and a loss of users in dependence of the respective detour length is assumed. Further,
in the BEXSLP we consider multiple types of vehicles with respect to the number of
batteries needed while in the MBSSLP a single type is considered.

5

2. State of the Art and Related Work

2.2 Related Problems

Generally, the BEXSLP can be classified as a facility location-allocation problem (FLP)
[BF12] as we are dealing with an optimization problem with a finite set of users with
demand for service and a finite set of possible locations for facilities providing such service.
More specifically, as in the BEXSLP we assign users to appropriate charging stations
to fulfill their demand, our problem is related to the capacitated multiple allocation
Fixed-Charge Facility Location problem [LNdG19]. Considering that we optimize the
BEXSLP over a given time horizon, we can further place it in the category of Multi
Period Facility Location Problems [NSdG15].

In early research regarding facility location-allocation problems, demand is often expressed
as weight at nodes of an underlying network of locations and in turn the goal is to serve
the demand at these nodes, such as in the maximal covering location model (MCLM)
[CR74]. However, Hodgson notes that in certain scenarios demand can be better expressed
as (traffic) flow, such as for convenience stores or gas stations [Hod90]. They therefore
introduce the Flow Capturing Location Model (FCLM) for covering demand along paths
instead of at fixed nodes of an underlying graph. They assume that a shortest path is
taken to get from an origin to a destination and accordingly introduce the notion of
origin-destination pairs (O/D pairs). In the BEXSLP we also use the notion of O/D-pairs
in the form of planned trips specified by the users beforehand and part of our objective is
to minimize detours induced by users deviating from their planned trip to visit a battery
charging station.

In the FCLM, the demand/flow of a path can only be met by a single facility. Facilities
should in general be placed directly at nodes of a path to potentially cover demand/flow
of other paths passing through this node according to Berman et al. [BLF92]. However,
there exists an extension of the FCLM in which facilities are additionally limited by
capacities and flow/demand may be covered by multiple facilities [HRZ96].

Further, regarding alternative-fuel vehicles, Kuby and Lim [KL05] introduce the Flow
Refueling Location Model (FRLM) as an extension to the FCLM. They argue that for
alternative-fuel vehicles it might be necessary to refuel more than once on a given path
due to the limited vehicle range and further consider round-trip paths to avoid vehicles
being stuck at a destination with depleted batteries. In the BEXSLP we consider an
urban environment in which we assume that trips are short enough such that swapping
batteries is necessary at most once per trip and users are always able to reach their
assigned battery station before the vehicle’s batteries are fully depleted.

In the original FRLM the goal is to select a fixed size set of refueling stations to maximize
the total flow volume refueled and is due to computational complexity limited to small
instances. However, there exists a more efficient formulation which allows appliance of
the FRLM also to larger instances by Capar et al. [CKLT13]. MirHassani and Ebrazi
[ME13] also use a more efficient formulation with the additional distinction that instead
of selecting a fixed set of stations to maximize the total covered flow they aim to cover

6

2.3. Matheuristics

all demand while minimizing the cost. This latter formulation is more closely related to
the approach we take in the BEXSLP.

2.3 Matheuristics
To solve the BEXSLP, we propose a matheuristic, combining a metaheuristic, in the form
of an LNS, with exact mathematical programming techniques, in the form of a MILP.

The general idea of combining metaheuristics with exact mathematical techniques has
already been successfully applied in a multitude of areas [PR05, PRP09, DS10, AS14,
BPRR11] and is neither restricted to the problem at hand nor to the proposed usage
of an LNS as metaheuristic. For example for the Dynamic Facility Layout Problem
Kulturel-Konak [KK17] use a metaheuristic in the form of a tabu search to approximate
the locations while the exact locations are calculated via mathematical programming.
Further, similar to our idea, Keskin and Çatay [KÇ18] use a matheuristic based on an LNS
combined with a general purpose solver for MILPs to solve the respective sub-problems.
They apply this technique to the vehicle routing problem with cross-docking.

Turkeš, Sörensen, and Cuervo [TSC21] use a similar approach as our proposed one but
apply it to the stochastic facility location problem. They employ an iterated local search
technique to look for good location and inventory configurations and use a general purpose
solver for MILPs for optimizing the respective assignments.

Hosseini, MirHassan, and Hooshmand [HMH17] present the Capacitated Deviation Flow
Refueling Location Model. Their work concerns the placement of alternative fuel stations
to provide energy for environmental friendly vehicles. Similar to our approach, they use
heuristics in combination with a linear program to solve larger instances. They identify
promising sets of candidate sites derived from the solution to the linear relaxation of their
model and iteratively add them to the solution in a greedy fashion. For the less restrictive
Capacitated Facility Location Problem Lagos et al. [LGC+16] use a local search to
identify a subset of promising facilities based on the installation cost and the distance
between customers and facilities. Then the subproblems are solved to optimalitiy using
mathematic programming techniques. They show that the combined approach performs
significantly better than using either a local search heuristic or the mathematical program
alone.

Related to our problem specification Ghamami, Zockaie, and Nie [GZN16] aim to minimize
an objective which considers the infrastructure investment, battery cost and user cost (in
terms of waiting time for a free battery slot). To solve larger instances, they also use a
matheuristic to find solutions for their problem, however, they base their metaheuristic
on Simulated Annealing. They conclude that the usage of a metaheuristic provides much
better scalability than solely using a general purpose solver, serving as motivation to our
proposed approach.

Calvete et al. [CGI+20] additionally consider customer preferences in their assignment to
stations but do not consider charging costs in their objective. We consider construction

7

2. State of the Art and Related Work

costs, charging costs and the total duration of detours and ultimately assign customers
in a way to minimize this overall objective. To solve their problem, they also employ a
matheuristic which is based on an evolutionary algorithm.

It is also important to emphasize that our approach is different from a multi-objective large
neighborhood search (MO-LNS) [SH13]. In MO-LNS a set of nondominated solutions is
retained instead of just a single best-so-far solution and in each iteration one of these
solutions is selected and optimized to aid the overall search procedure. In our approach
however, we combine aspects of multiple objectives in a linear weighted fashion into a
single multi-part objective function. Nonetheless, the idea of different repair and destroy
operator focusing each on one part of our multi-part objective function is inspired by
Rifai, Nguyen, and Dawal [RND16].

8

CHAPTER 3
Methodological Approach

In this chapter we discuss the various methodological approaches and techniques which
are relevant to this thesis. We first establish the necessary basics of mixed integer linear
programms (MILPs), which are used as part of our matheuristic. We then explain
necessary heuristic methods which are used in our approach. Finally, we discuss how
heuristics and exact mathematical techniques can be used together as matheuristics.

3.1 Mathematical Programming Techniques
This section is based on Bertsimas and Tsitsiklis [BT97], Schrijver [Sch98] and Wolsey
[Wol20].

In a mathematical programming problem the goal is to find a minimum or maximum
value of a real valued function while adhering to a set of defined constraints. As the
mathematical models used in this thesis focus on a minimization problem we will also
focus on minimization problems in this section. We further focus on linear programs,
i.e., the objective function and all constraints are linear functions.

We first formulate the notion of a linear program (LP) as:

min cT x (3.1)
such that Ax ≤ b (3.2)

x ≥ 0 (3.3)
x ∈ Rn (3.4)

The vector x = (x1, .., xn) refers to the decision variables. The goal is to find an
assignment for the decision variables x that minimizes the objective function (3.1) while
adhering to, i.e., not violating, the constraints defined in (3.2) - (3.3).

9

3. Methodological Approach

An assignment of decision variables x is called a solution to the program. A solution
of the program is called feasible if all constraints are satisfied, otherwise the solution is
called infeasible. The set of all feasible solutions is often referred to as the feasible region
or feasible space. A solution is called optimal if it is feasible and minimizes the objective
function of the program. There potentially exist multiple optimal solutions.

The set of all values which can be assigned to a decision variable xi is called the domain
of xi. The domain of a decision variable may be further restricted by a constraint (see
Constraint (3.3)), in which case the variable is referred to as restricted. Otherwise, the
variable is called unrestricted.

Constraints may be defined in the form of equalities or inequalities. Note that each equality
constraint Ax = b can be expressed by two inequalities: Ax ≤ b and Ax ≥ b. Further,
inequalities can also be expressed with a reversed sign, as: Ax ≤ b ⇔ −Ax ≥ −b. In
similar fashion can a minimization problem be formulated as a maximization problem
(and vice versa) as: min cT x ≡ max − cT x.

LP problems can be solved in polynomial time, for example by using the interior point
method [Gon12]. An alternative is the simplex method introduced by Dantzig [Dan51],
which although in theory has an exponential worst case performance, usually performs
very well in practice.

An integer linear program (ILP) is a linear program where the domain of all decision
variables is restricted to the set of integers, i.e., it can be formulated as:

min cT x (3.5)
such that Ax ≤ b (3.6)

x ≥ 0 (3.7)
x ∈ Zn (3.8)

A mixed integer linear program (MILP) is a linear program where the domain of some
decision variables is restricted to the set of integers, while the domain of others is the set
of real numbers. A MILP can therefore be expressed as:

min cT x + dT y (3.9)
such that Ax + By ≤ b (3.10)

x, y ≥ 0 (3.11)
x ∈ Zn (3.12)
y ∈ Rn (3.13)

Contrary to solving an LP, solving a MILP is N P-hard [Pap81] and solving an ILP is
N P-complete [KM78].

10

3.2. Heuristics

A common procedure for solving MILPs is to generate a decreasing sequence of upper
bounds (primal bounds) and an increasing sequence of lower bounds (dual bounds) and
to terminate when the difference between the primal bound and dual bound is lower than
some small nonnegative value .

Further note that a primal bound is an upper bound for minimization problems and a
lower bound for maximization problems. Similarly, a dual bound is an upper bound for
maximization problems and a lower bound for a minimization problems.

There exist efficient multi-purpose MILP solvers such as Gurobi1 or CPLEX2 which often
follow a branch-and-bound algorithm [LW66]. In essence, such algorithms repeatedly
divide the search space into smaller subspaces. By using the currently best known
solution, also called the incumbent solution and dual bounds, some subspaces can be
safely removed from consideration. In particular, if the dual bound of a subspace is worse
than the incumbent solution, this subspace cannot contain the optimal solution.

3.2 Heuristics
Using exact mathematical techniques proves unsuitable for many problems, as they
cannot be solved that way in a reasonable time. An alternative approach to solving such
(combinatorial optimization) problems is the usage of heuristics. While heuristics can
not guarantee to find an optimal solution, they still aim to find solutions of high quality
and this is usually done in significantly less time than when using exact approaches. It is
therefore also often reasonable to use exact mathematical techniques for smaller instances
of a certain problem and to switch to heuristic approaches for larger instances where
using exact methods would take an unreasonable amount of computation time [PR05].

3.2.1 Construction Heuristics
Construction heuristics are applied to find an initial solution to a problem and thus often
serve as a starting point for other heuristic approaches. An initially empty solution is
iteratively expanded until eventually a complete solution has been formed. Often, the
focus lies rather on finding an initial solution fast than on finding a solution with very
good quality. The quality of the solution is then commonly improved in subsequent
steps of an heuristic approach. Common examples of construction heuristics are greedy
heuristics [CLRS09]. Here, a solution is constructed step-by-step by always choosing the
element which appears to be best in the current moment, i.e., in a rather myopic way.

3.2.2 Large Neighborhood Search
Large Neighborhood Search (LNS) [GP+10] is a prominent metaheuristic for addressing
difficult combinatorial optimization problems, which builds upon effective lower-level
heuristics.

1https://www.gurobi.com/
2https://www.ibm.com/analytics/cplex-optimizer

11

https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

3. Methodological Approach

A basic LNS in essence follows a classical local search framework, but usually much
larger neighborhoods are considered in each iteration. The key-idea is to search these
neighborhoods not in a naive enumerative way but to apply some “more clever” problem-
specific procedure to solve the subproblem induced by each neighborhood in order to
obtain the best or a promising heuristic solution from the neighborhood. Some successful
approaches for doing so include using (mixed) integer programming techniques, like in
the approach presented in this thesis, or dynamic programming [CPvdV02].

Frequently, LNS follows a destroy and repair scheme: A current incumbent solution
is partially destroyed, typically by freeing a subset of the decision variables and fixing
the others to their current values, and then repaired again by finding best or at least
promising values for the freed variables.

3.3 Matheuristics
Matheuristics refer to a group of hybrid approaches, i.e., combinations of two differ-
ent algorithmic approaches. In particular, matheuristics combine metaheuristics and
mathematical programming techniques [MSV10, BR16]. The general motivation in doing
so is that while exact mathematical techniques can guarantee optimal solutions, the
performance tends to scale badly for larger instances in a lot of problems. On the other
hand, heuristics give no guarantee on finding optimal solutions but are often able to find
sufficiently good solutions in a reasonable time. The basic idea is therefore to combine
advantages of both approaches.

Puchinger and Raidl [PR05] classify two major categories of matheuristics. In collabora-
tive/cooperative combinations two methods are not part of each other but run in sequential
order or are executed in a parallel or intertwined fashion to exchange information. In
integrative/coercive combinations there is usually a primary method (master) with at
least one integrated subordinate method. Therefore, again there exists the possibility of
exact mathematical algorithms being subordinates to a master metaheuristic, like in the
approach presented in this thesis, or the other way around.

12

CHAPTER 4
The Battery Exchange Station

Location Problem

In the Battery Exchange Station Location Problem (BEXSLP) the task is to plan the
setup of new stations for exchanging batteries of electric scooters or to extend existing
stations with the aim of minimizing three different objectives while satisfying an expected
demand. The three objectives are (a) the setup cost for additional stations and extension
modules, (b) the cost for charging batteries, and (c) the total duration of detours for
users to exchange batteries.

We consider a time horizon of one day that is discretized into equally long consecutive
time intervals, for example hours. These intervals are indexed by T = {1, . . . , tmax}.
Moreover, we consider the planning horizon to be cyclic, i.e., the predecessor of the first
interval is the last one and the successor of the last one the first interval. In order to
select subsets of this cyclic planning horizon between two time points, we introduce the
notation of a (cyclic) timespan. Let J [k] be the element of an ordered list J at index k.
Then, a (cyclic) timespan J [k : k] of J with k, k ∈ {1, . . . , |J |} is defined as

J [k : k] = {J [k], . . . , J [k]} if k ≤ k

{J [1], . . . , J [k], J [k], . . . , J [|J |]} else.
(4.1)

We make the simplifying assumption that charging any battery always takes the same
time and only completely recharged batteries are provided to customers again. Moreover,
as trips in an urban environment are usually rather short, we further assume that trips
start and end in the same time interval.

We assume a battery swapping station can be set up at any of n different locations
referred to as L = {1, . . . , n}. Each location l ∈ L has associated

13

4. The Battery Exchange Station Location Problem

• setup cost cl ≥ 0 for setting up a station with an initial configuration of BEX
modules at this location;

• setup cost cmodul
l ≥ 0 for each additional BEX module at a location where a station

is set up or exists already;

• the capacity in terms of the number of battery slots of the initial station configuration
sini

l ∈ N;

• the maximum number of additional BEX modules allowed at location emax
l ∈ N;

• a timespan T ex
l = T [tex,start

l : tex,end
l] with tex,start

l , tex,end
l ∈ T , in which the station

is open for customers and batteries can be exchanged;

• a timespan T dch
l = T [tdch,start

l : tnch,end
l] with tdch,start

l , tdch,end
l ∈ T , indicating

daytime charging hours;

• and charging costs cdch
l ≥ 0 and cnch

l ≥ 0 for batteries during daytime and nighttime
(i.e., outside daytime) charging hours, respectively.

We also take into account that at some locations l ∈ L a station with a corresponding
configuration of BEX modules may have already been set up at a previous time. In
this case the costs cl for setting up the station are set to zero, and the initial station
configuration sini

l accounts for all existing slots including the already existing extension
modules. If feasible, such a station may still be extended by installing up to emax

l

additional BEX modules.

Customer travel demands are given for origin-destination (O/D) pairs Q; let m = |Q|
be the number of these O/D pairs. Moreover, let wq ≥ 0 be the expected travel time
for each O/D pair q ∈ Q when taking a most direct route without exchanging batteries.
Furthermore, let w̃l

q be the expected travel time for the O/D pair q ∈ Q when making a
fastest possible detour to location l ∈ L for exchanging batteries there. Clearly, w̃l

q ≥ wq

will hold for any q ∈ Q, l ∈ L.

We only consider one type of battery but different vehicle types that require different
numbers of batteries. We assume that all batteries of a vehicle are always together
exchanged at the same time. Let I ⊂ N be the set of vehicle types represented by the
corresponding numbers of needed batteries. The expected number of users with vehicle
type i ∈ I that need to change batteries on trip q ∈ Q during a time interval t ∈ T is
denoted as dt

qi.

A parameter δmin ∈ (0, 1] controls how much of the total customer demand over all time
intervals in T and vehicle types I has to be satisfied at least, i.e.,

dsat = δmin
q∈Q t∈T i∈I

i · dt
qi. (4.2)

14

Note that we weight demands by the number of batteries of their respective vehicle
type, such that vehicles with a smaller number of batteries are not favored during the
optimization as vehicles with more batteries require more resource for satisfying their
demand.
Due to production limitations, the number of total BEX modules available is restricted.
Towards this, zmodules ∈ N refers to the maximum number of available BEX modules.
Alternatively or additionally, the number of stations to be opened can be limited to at
most zstations ∈ N; already existing stations recognized by their zero setup cost do not
count here.
A solution is primarily given by a pair of vectors x = (xl)l∈L ∈ {0, 1}n and y = (yl)l∈L

with yl ∈ {0, . . . , emax
l } where xl = 1 indicates that a swapping station is to be used at

location l and yl is the corresponding number of additionally installed BEX modules.
Clearly, BEX modules may only be allocated at locations where a swapping station is
located, i.e., xl = 0 → yl = 0, or expressed as linear inequality

emax
l · xl ≥ yl, l ∈ L. (4.3)

It is assumed that customers who want to exchange batteries specify their trip data
(origin, destination, approximate time) online and are automatically assigned to an
appropriate station for the exchange (if one exists). This way, a better utilization of the
swapping stations can be achieved. Consequently, let assignment variables at

qli denote
the part of the expected demand of O/D pair q ∈ Q w.r.t. vehicle type i ∈ I which we
assign to a location l ∈ L during time interval t ∈ T ex

l .
A battery returned to a station l ∈ L during a time period t ∈ T ex

l can only be provided
to a customer again after tc time periods from T have passed. We denote the set of
times in which a battery is being charged when returned to a station at time t as
T ch

l (t) = T [χstart(t) : χend(t)] where χstart(t) is the time in T at which the battery starts
charging, i.e.,

χstart(t) = (t mod tmax) + 1, (4.4)
and χend(t) is the last time period in T at which the battery is being charged, i.e,

χend(t) = ((t + tc − 1) mod tmax) + 1. (4.5)

We have modeled that returned batteries are unavailable for tc time periods by effectively
reducing a station’s capacity of batteries available for exchange within the next tc time
periods after an exchange. Therefore, it must hold that

t ∈T ch
l

(t)∪{t} q∈Q i∈I
i · at

qli ≤ sini
l xl + smodulyl ∀l ∈ L, t ∈ T ex

l (4.6)

The goal of the BEXSLP is to minimize three different objectives. The first objective is
to minimize the setup costs for stations and their corresponding BEX modules, i.e.,

l∈L

(clxl + cmodul
l yl). (4.7)

15

4. The Battery Exchange Station Location Problem

The second objective is to minimize the total charging costs. For this purpose let cch
lt

refer to the costs for charging a battery at station l ∈ L during time interval t ∈ T , i.e.,

cch
lt = cdch

l for t ∈ T dch,

cnch
l else.

(4.8)

Then, considering the assignment variables at
qli over all locations, O/D pairs, vehicle

types, and opening times, the total charging costs are

l∈L q∈Q i∈I t∈T ex
l

cchret
lt · i · at

qli. (4.9)

Finally, besides minimizing the station setup and battery charging costs, our last objective
is to also minimize the total travel delay induced by the detours for charging, i.e., the
sum of the differences in travel times between the routes taken to charge at the assigned
stations and the corresponding direct routes, calculated by

l∈L q∈Q

w̃l
q − wq) ·

t∈T ex i∈I
at

qli. (4.10)

We combine the different objectives in a linear fashion with weights αsetup > 0, αcharging > 0
and αdelay > 0 to obtain the total objective function.

In summary, we express the BEXSLP by the following MILP.

min αsetup
l∈L

(clxl + cmodul
l yl) +

αcharging
l∈L q∈Q i∈I t∈T ex

l

cch
lt · i · at

qli +

αdelay
l∈L q∈Q

w̃l
q − wq ·

t∈T ex
l

i∈I
at

qli

(4.11)

emax
l · xl ≥ yl ∀l ∈ L (4.12)

l∈L|t∈T ex
l

at
qli ≤ dt

qi ∀t ∈ T , i ∈ I, q ∈ Q (4.13)

t ∈T ch
l

(t)∪{t} q∈Q i∈I
i · at

qli ≤ sini
l xl + smodulyl ∀l ∈ L, t ∈ T ex

l (4.14)

q∈Q l∈L t∈T ex
l

i∈I
i · at

qli ≥ dsat (4.15)

l∈L|cl>0
xl +

l∈L

yl ≤ zmodules (4.16)

xl ∈ {0, 1} ∀l ∈ L (4.17)
yl ∈ {0, . . . , emax

l } ∀l ∈ L (4.18)

16

0 ≤ at
qli ≤ min sini

l + emax
l · smodul

i
, dt

qi ∀l ∈ L, t ∈ T ex
l , i ∈ I, q ∈ Q (4.19)

The objective function (4.11) minimizes the total setup costs, the total charging costs,
as well as the total detours of customers as defined by Equations 4.7, 4.9, and 4.10.
Inequalities (4.12) link variables xl and yl and correspond to (4.3). Constraints (4.13)
enforce that the total demand assigned from an O/D pair q to locations does not exceed
dt

qi during all time periods. Inequalities (4.14) ensure that the required amount of battery
modules is available at all locations over all time periods. The minimal satisfied demand
to be fulfilled over all time intervals is expressed by inequality (4.15). In a similar
fashion Constraint(4.16) restricts the number available of BEX modules. Alternatively
or additionally, one may also specify an upper limit on the number of stations newly
opened zstations by

l∈L|cl>0
xl ≤ zstations. (4.20)

Finally, the domains of the variables are given in (4.17)–(4.19).

17

CHAPTER 5
A Matheuristic for the BEXSLP

5.1 Large Neighborhood Search
MILP solvers usually perform very well for problem instances up to a certain size but the
performance deteriorates quickly after a certain point. As in the BEXSLP potentially
large instances with a high number of locations and O/D pairs may be encountered,
it is therefore necessary to consider scalability aspects when solving this problem for
such instances. In the preliminary study concerning the related MBSSLP [JORR20], a
Large Neighborhood Search (LNS) was proposed for solving larger instances. As this
approach performed well for the MBSSLP, we aim to also employ such an approach for
the BEXSLP. Similarly, in one LNS iteration an incumbent BEXSLP solution is first
destroyed by closing stations in the solution and then repaired by choosing new stations
to open.

In our case, we use a relaxation of the above presented MILP (4.11) – (4.19) to repair
solutions, Thus combining heuristic and exact mathematical techniques. Such approaches
are often referred to as Matheuristics [PR05] and have been successfully employed in other
well-known optimization problems, such as the Capacitated Facility Location Problem
[LGC+16] or Vehicle Routing Problems [AS14, DS10]. In the following sections we first
show how an initial solution is constructed. Afterwards, we give a detailed description of
various destroy and repair operators designed for this problem.

5.2 Construction Heuristic
We base our construction heuristic on the above presented MILP (4.11) – (4.19) for
the BEXSLP. Specifically, the idea of our construction heuristic is to solve the linear
programming relaxation of this MILP, i.e., we allow the x and y variables to be continuous,
and then derive a feasible BEXSLP solution from the solution to this relaxation. For

19

5. A Matheuristic for the BEXSLP

getting a feasible solution we use a similar approach as presented in [JORR20] where a
feasible MBSSLP solution is obtained from a solution to the relaxed model by rounding
up all fractional values. However, for the BEXSLP further steps are necessary, as the
number of stations and modules may be limited. Let (x̃, ỹ, a) be a solution to the linear
programming relaxation of the MILP (4.11) – (4.19). As mentioned before, in a first step
all fractional x̃ and ỹ values are rounded up, i.e., x̃ = (x̃l)l∈L and ỹ = (ỹl)l∈L.
Next, if Constraint (4.20) is not satisfied, the number of stations is reduced. To enforce
the constraint, we sort the vector x̃ of our relaxed solution in descending order and
only keep the zstations stations with the highest values, resulting in a new (potentially
infeasible) solution (x , y , a) in which all non-selected stations with their associated
capacities and allocated demand are discarded.

Further, if Constraint (4.16) is violated, the number of total BEX modules needs to be
reduced as well, until only a total of at most zmodules modules remain in the solution.
As mentioned in Section 4, certain stations may already exist in BEXSLP instances,
thus the base modules of these stations are not included in this restriction. Moreover,
there may exist stations at locations l ∈ L for which sini

l < smodul. Therefore, removing
modules might result in an insufficient number of battery slots to satisfy all of the
necessary demand. The general strategy to address this problem is to first reduce the
number of modules in the solution to zmodules and then, if necessary, to remove stations
(including potential extension modules). Afterwards, we add a number of extension
modules equivalent to the number of removed modules to other stations in the solution.
This way, we replace base modules with extension modules, which offer more battery
slots.

Our procedure for reducing the number of modules in a solution is described by Al-
gorithm 2. When reducing the number of modules we prioritize stations which have
been newly constructed and which do not allow around the clock exchanging. If no
such candidates exist, we first resort to newly constructed stations with unrestricted
exchanging times and after that to stations which already pre-exist but possess at least
one extension module, as this counts towards zmodules. From the selected set of stations
we then select the station l with the lowest fractional part of ỹl of the original linear
programming relaxation solution. We then remove an extension module from this station
or if none exist remove the base module and therefore close the station.

Afterwards, while the number of provided battery slots in the new solution is smaller than

l∈L
sini

l x̃l + smodulỹl, i.e., less than in the solution of the linear programming relaxation,

we proceed as follows: We first close a random station at location l with sini
l < smodul.

We again prioritize stations which have been newly constructed and do not allow around
the clock exchanging. Then we add an equivalent amount of BEX modules, i.e., xl +yl, to
other random stations which may be extended with further modules, prioritizing stations
with exchange times which are a superset of the exchange times of the recently closed
station. The idea is, that the so extended stations are guaranteed to be able to handle
the demand of the closed station. If no such replacement stations exist, we pick a random

20

5.3. Destroy and Repair Operators

Algorithm 1: Repair BEXSLP Solution
Input : a solution (x̃, ỹ, a) to the BEXSLP with potentially fractional x and y

values
maximum number of allowed modules zmodules
maximum number of allowed stations zstations

Output: feasible BEXSLP solution (x, y, a)
1: x ← x̃
2: y ← ỹ

3: x ← keep top zstations according to x̃
4: (x, y) ← ensure_z_modules(x, y)

5: // Ensure that there are still enough battery slots
6: while

l∈L
sini

l xl + smodulyl <
l∈L

sini
l x̃l + smodulỹl do

7: l ← random station location l prioritizing already existing stations with no
around the clock exchange times

8: num_modules = xl + yl

9: xl = 0, yl = 0
10: while num_modules > 0 do
11: l ← random station location l prioritizing locations with exchange times

similar to l
12: modules_to_add = min(num_modules, emax

l − yl)
13: yl = yl + modules_to_add
14: num_modules = num_modules − modules_to_add

15: end while
16: end while
17: // Use LP to find a new demand assignment for the new x and y variables
18: a ← solve LP w.r.t. (x, y)
19: return (x, y, a)

one which can be extended with further modules.

Finally, we need to redistribute the allocated demand a. This is done with the MILP
(4.11) – (4.19) by restricting the domain of x and y according to the current configuration
of stations and modules. The procedure is illustrated in Algorithm 1.

5.3 Destroy and Repair Operators
We introduce several destroy and repair operators according to the following scheme. Let
(x, y, a) be a solution to the BEXSLP. Moreover, let L0(x) ⊆ L be the set of locations
with closed stations in x and L1(x) ⊆ L be the set of locations with open stations in x.

Algorithm 3 shows the basic procedure of our LNS proposed for solving BEXSLP

21

5. A Matheuristic for the BEXSLP

Algorithm 2: Ensure zmodules

Input : stations and modules (x, y) of a BEXSLP solution
maximum number of allowed modules zmodules
ỹ vector of extension modules of linear relaxed solution

Output: modified (x, y) with at most zmodules modules
1: while

l∈L|cl>0
xl +

l∈L
yl > zmodules do

2: Lcl ← non empty candidate set chosen according to following priority:

1. {l ∈ L | xl == 1 and cl > 0 and T ex
l = [1 : 24]}

2. {l ∈ L | xl == 1 and cl > 0}
3. {l ∈ L | xl == 1 and yl > 0 and T ex

l = [1 : 24]}
4. {l ∈ L | xl == 1 and yl > 0}

3: select station at location l with minimal (ỹl − ỹl) from Lcl
4: if yl > 0 then
5: yl = yl − 1
6: else
7: xl = 0
8: end if
9: end while

10: return (x, y, a)

instances and how our destroy and repair operators are applied. In each iteration
of the LNS, while the termination criterion has not yet been reached, an incumbent
solution is first destroyed. Specifically, a destroy operator first selects a set of ν locations
Ldestroy ⊆ L1(x). Then, each of those stations are destroyed by setting the number of
modules to zero and un-allocating all corresponding demand, i.e., xl = 0, yl = 0, and
at

qli = 0 ∀l ∈ Ldestroy, t ∈ T ex
l , q ∈ Q, i ∈ I. Afterwards, a repair operator is then

applied to make the solution feasible again. For this purpose, the operator first selects
a set of ν locations Lrepair ⊆ L0(x) \ Ldestroy. To generate the final repair set, we also
add all locations in Ldestroy, i.e. Lrepair = Lrepair ∪ Ldestroy. This last step is to guarantee
that the MILP used for repairing can always produce feasible solutions, as, if the selected
stations Lrepair would proof insufficient in this regard, the previous solution could always
be restored.

When repairing a solution, it has to be considered how much more demand needs to be
satisfied and how much demand from which O/D pairs is still available to be assigned to
a station. For this purpose, let D = (d t

qi)t∈T,q∈Q,i∈I be the demand not yet assigned to
any opened location in the destroyed solution, i.e.,

d
t
qi = dt

qi −
l∈L1(x)\Ldestroy

at
qli. (5.1)

22

5.3. Destroy and Repair Operators

Algorithm 3: Large Neighborhood Search for the BEXSLP
Input : a BEXSLP instance

a solution (x, y, a) to the given instance
size of the destroy set ν
size of the repair set ν

Output: a new solution (x , y , a) to the given instance

1: (x , y , a) ← ∅
2: while termination criterion not reached do
3: L_destroy ← set of ν station locations in the current solution
4: //Destroy the selected stations:
5: for each l ∈ L_destroy do
6: xl ← 0, yl ← 0
7: at

qli ← 0, ∀q ∈ Q, t ∈ T ex
l , i ∈ I

8: end for

9: L_repair ← set of ν station locations not in the current solution
10: L_repair ← L_repair ∪ L_destroy
11: (x, y, a) ← construct relaxed solution w.r.t. L_repair
12: (x, y, a) ← repair_solution(x, y, a)

13: if (x, y, a) is better than (x , y , a) then
14: (x , y , a) = (x, y, a)
15: end if
16: end while
17: return (x , y , a)

Moreover, let d−
sat be the amount of demand satisfied in the destroyed solution, i.e.,

d−
sat =

l∈L1(x)\Ldestroy t∈T ex
l

q∈Q i∈I
at

qli. (5.2)

Therefore, the goal of the repair function is to assign at least dsat = dsat − d−
sat demand

from D to the locations L = Ldestroy∪Lrepair. For this purpose, let I be an instance to the
BEXSLP. Then, I[L , D , dsat] is a residual instance of I in which L, D = (dt

qi)t∈T,q∈Q,i∈I ,
and dsat are replaced with L ,D , and dsat.

To decide which stations to open, with how much capacity and which demand to assign
to these stations, we use a similar procedure as for the construction heuristic. We first
employ the MILP (4.11) – (4.19) with continuous y variables on I[L , D , dsat]. Afterwards,
the resulting solution is repaired in the same fashion as for the construction heuristic,
i.e., as described in Section 5.2.

In the following sections, we will introduce the various destroy and repair operators
for the BEXSLP. In Chapter 6 these operators are then experimentally evaluated and

23

5. A Matheuristic for the BEXSLP

compared. We first present a randomized approach, followed by operators which focus
on individual objectives of our multi-part objective function. The idea is that all of these
operators may then be used together within our LNS by selecting different repair and
destroy operators in each iteration, thus alternately focusing on a different part of the
objective. In contrast to this procedure, we also propose a repair and destroy operator
making decisions based on the overall objective.

5.3.1 Randomized Operators
For these operators, the sets Ldestroy and Lrepair are generated in a randomized way.
The Randomized Destroy Operator selects ν station locations uniformly at random from
L1(x) to create the set of station locations to destroy Ldestroy. In a similar fashion, the
Randomized Repair Operator selects ν station locations from the set L0(x) to create the
set Lrepair.

5.3.2 Delay-Based Operators
The general idea of the delay-based operators is to remove locations which induce large
detours and to replace them with new locations that are placed more conveniently for
satisfying the remaining demand. The delay-based operators use tournament selection
for generating their respective location sets.

For the Delay-Based Destroy Operator the set Ldestroy is generated over ν iterations. In
each iteration first k candidate locations from L1(x) \ Ldestroy are selected at random.
Afterwards, from this candidate set the location with the largest induced travel delay per
unit of assigned demand, i.e.,

q∈Q
(w̃l

q − wq)
i∈I t∈T ex

l

at
qli

q∈Q i∈I t∈T ex
l

at
qli

(5.3)

is added to Ldestroy. Ties are broken randomly.

The Delay-Based Repair Operator works in a similar way. Locations from the set L0(x)
are added to Lrepair via tournament selection over ν iterations by again generating a
random candidate set of size k from the set L0(x) \ Lrepair and then selecting the most
promising candidate in each iteration. To identify promising locations, the idea is to
calculate for a location l the average induced delay over the so far unallocated demand,
i.e.,

q∈Q
(w̃l

q − wq)
i∈I t∈T ex

l

d t
qi

q∈Q i∈I t∈T ex
l

d t
qi

. (5.4)

However, a crucial aspect to consider is that a unit of demand cannot be covered by
multiple station locations at once. Therefore, we want to take into account that the

24

5.3. Destroy and Repair Operators

demand already covered by a previously selected location should not be considered in the
subsequent selection steps of our iterative procedure. However, estimating this demand
exactly would be too time consuming. Instead, we use a simplified estimation in which
we assume that the remaining demand dsat will be assigned evenly among all ν stations
of the resulting repair set. Further, we assume that one station can either completely
cover the remaining demand of an O/D pair or none of it. More formally, let l be a
location to be added to Lrepair. We then iteratively select the O/D pairs q ∈ Q which
induce minimal delay to l and then discard all of the uncovered demand

t∈T i∈I
d t

qi of

q. This procedure is repeated until the amount of discarded demand exceeds dsat
ν . This

demand is then no longer considered in the future iterations of the tournament selection.
Note however, that the demand is only considered discarded for deciding which locations
to add to Lrepair. When applying the MILP to Lrepair in order to repair the solution, all
of the so far uncovered demand is considered again.

5.3.3 Charging-Based Operators
For the charging-based operators we aim to estimate and in turn minimize the charging
costs which can be attributed to each station l ∈ L. Towards this, we follow the same
procedure as for the delay-based operators.

The Charging-Based Destroy Operator as well as the Charging-Based Repair Operator
again generate their respective sets via tournament selection over ν and ν iterations,
respectively. In each iteration the charging-based destroy operator selects from a set of
k random candidates of L1(x) \ Ldestroy the location with the lowest charging costs per
unit of assigned demand, i.e.,

q∈Q i∈I t∈T ex
l

cch
lt · i · at

qli

q∈Q i∈I t∈T ex
l

i · at
qli

. (5.5)

In a similar way, the charging-based repair operator selects from a set of k random
candidates of L0(x) \ Lrepair the location with the highest potential charging costs per
unit of unallocated demand, i.e.,

q∈Q i∈I t∈T ex
l

cch
lt · i · d t

qi

q∈Q i∈I t∈T ex
l

i · d t
qi

. (5.6)

Just as for the delay-based repair operator, we also take into account that the demand
already covered by a previously selected location should not be considered in subsequent
selection steps. Therefore, we use a similar procedure as used by the delay-based repair
operator to remove O/D pairs from future iterations, by iteratively discarding O/D pairs

25

5. A Matheuristic for the BEXSLP

q ∈ Q with the lowest charging costs w.r.t. to a selected candidate location l according to

i∈I t∈T
i · d

t
qi · cch

lt (5.7)

until the associated discarded demand again exceeds dsat
ν .

5.3.4 Construction-Based Operators
For the construction-based operators we focus on the construction cost portion (Equation
4.7) of our objective function. We again use a tournament selection procedure to select
locations in a controlled randomized way.

The Construction-Based Destroy Operator generates the set Ldestroy over ν iterations,
adding one location to Ldestroy in each iteration. To determine the locations to be added,
in each iteration first a set of k random candidate locations from L1(x) \ Ldestroy is
generated. Then the candidate l with the largest construction costs per battery slot, i.e.,

cl + cmodul
l yl

sini
l + smodul

l yl
(5.8)

is added to Ldestroy. In case of a tie, one location with the highest costs is selected at
random.

Equivalently, the Construction-Based Repair Operator again generates the set Lrepair over
ν iterations. In each iteration a set of k random candidate locations from L0(x) \ Lrepair
is generated. To estimate the potential construction costs of a location l, we assume the
capacity of a station at location l to be similar to the average capacity of the stations in
Ldestroy, i.e.,

yavg = l∈Ldestroy

yl

ν
. (5.9)

Consequently, the candidate location l with the lowest potential construction costs per
battery slot, calculated by

cl + cmodul
l min(yavg, emax

l)
sini

l + smodul
l min(yavg, emax

l)
, (5.10)

is added to Lrepair. Ties are broken randomly.

5.3.5 Weighted Sum Operators
In our experimental evaluation in Chapter 6 we will not only test each of the previously
introduced operators individually, but will also investigate a variant where in each
iteration of the LNS the destroy and repair operator is randomly selected from the delay-,
charging- and, construction-based operators. In contrast to this approach, we also want

26

5.3. Destroy and Repair Operators

to investigate a variant that considers all parts of the objective of the BEXSLP within a
single repair/destroy-operator, i.e., the weighted sum operators.

The Weighted Sum Destroy Operator follows the same procedure as the previously
introduced destroy operators by constructing the set Ldestroy over ν iterations, always
adding one location to Ldestroy in each iteration. For each iteration a set of k candidate
locations from L1(x)\Ldestroy is initially generated. Then, the candidate l that contributes
most to the objective value of x in relation to its capacity and assigned demand, i.e.,

αsetup
cl + cmodul

l yl

sini
l + smodul

l yl
+

αcharging
q∈Q i∈I t∈T ex

l

cch
lt · i · at

qli

q∈Q i∈I t∈T ex
l

i · at
qli

+

αdelay
q∈Q

(w̃l
q − wq)

i∈I t∈T ex
l

at
qli

q∈Q i∈I t∈T ex
l

at
qli

(5.11)

is added to Ldestroy.

Similarly, the Weighted Sum Repair Operator generates the set Lrepair over ν iterations.
In each iteration a set of k random candidate locations from L0(x) \ Lrepair is initially
generated. We then aim to estimate how much a candidate location l would contribute to
the objective value of the repaired solution in relation to its predicted capacity and the
so far uncovered demand. For this purpose we combine the metrics used for the delay-,
construction-, and charging-based repair operators:

αsetup
cl + cmodul

l min(yavg, emax
l)

sini
l + smodul

l min(yavg, emax
l)

+

αcharging
q∈Q i∈I t∈T ex

l

cch
lt · i · d t

qi

q∈Q i∈I t∈T ex
l

i · d t
qi

+

αdelay
q∈Q

(w̃l
q − wq)

i∈I t∈T ex
l

d t
qi

q∈Q i∈I t∈T ex
l

d t
qi

(5.12)

The candidate with the lowest value is then added to Lrepair. Ties are broken randomly.

Finally, the objective-based repair operator uses the same procedure used by the delay- and
charging-based repair operator to prevent already covered demand from being considered
in future iterations of the tournament selection. Considering a selected candidate location

27

5. A Matheuristic for the BEXSLP

l, O/D pairs q ∈ Q with minimal

αsetup clxl + cmodul
l min(yavg, emax

l) +

αcharging
i∈I t∈T ex

l

cch
lt · i · at

qli +

αdelay w̃l
q − wq ·

t∈T ex
l

i∈I
at

qli

(5.13)

are iteratively discarded until the associated discarded demand again exceeds dsat
ν .

5.3.6 Addressing Floating Point Issues
While using a MILP for repairing solutions within our LNS comes with a lot of advantages,
there is the caveat that MILP solvers usually introduce small mathematical imprecisions
due to floating point issues. If not considered, these imprecisions may accumulate over
time and eventually lead to noticeable rounding errors which may ultimately lead to
seemingly infeasible solutions. In our MILP (4.11) – (4.19) and its respective relaxations,
these issues are most pronounced w.r.t. the variables at

qli, t ∈ T ex
l , q ∈ Q, l ∈ L, i ∈ I

and their counterpart d t
qi t ∈ T , q ∈ Q, i ∈ I representing the not yet assigned demand.

Therefore, we explicitly adjust the mismatch between at
qli and d t

qi after each iteration.

In particular, we set d t
qi = max 0, dt

qi −
l∈L

at
qli ∀t ∈ T , q ∈ Q, i ∈ I.

28

CHAPTER 6
Experiments and Results

6.1 Test Instances
Similar to the approach taken for the MBSSLP [JORR20] we aim to create artificial
test instances for the BEXSLP, however some of the properties are chosen based on
information provided by Honda R&D.

We create six groups of instances identified by their number of station locations n and
number of O/D pairs m as (n, m). In particular we create the instance groups (50, 100),
(100, 200), (200, 400), (300, 600), (400, 800), (500, 1000). For each subgroup we generate
30 instances. In total we therefore generate 180 individual instances.

Potential locations of battery swapping stations as well as origin and destination locations
of customers are located within a square grid {1, . . . , ξ

√
n }2 with ξ = 800.

We generate an undirected network graph G = (V, E) following a similar approach as
in the MBSSLP [JORR20]. First, |V | = 5n random points are sampled from the grid.
Then, we extract a Euclidean spanning tree from a Delaunay triangulation of V and add
its edges to E. Finally, we add n additional randomly chosen pairs (u, v) ∈ V × V with
u = v as edges to E. Should an edge already exist in E, a new node pair is generated.

The set of possible locations for battery swapping stations L is generated by selecting n
nodes from V at random. Battery swapping stations may already pre-exist on certain
locations, i.e., for such a station at location l it holds that cl = 0. For each location l ∈ L
there is a 10% chance to have a pre-existing station. Otherwise, the costs for building
the station cl at l are chosen uniformly at random from {5000, . . . , 7000}.

The cost for adding a BEX module cmodul
l at l is chosen uniformly at random from

{2000, . . . , 4000}, as it was common for the Honda R&D instances that costs for additional
modules to be lower than those for constructing stations.

29

6. Experiments and Results

The initial number of battery slots sini
l of a station, either when constructed, or pre-

existing, is set to six and the number of battery slots added by an extension BEX module
smodul

l is eight. These values are set according to the provided instance information.

We select the maximal number of additional BEX modules emax
l allowed to be added at

a station at location l uniformly at random from {1, . . . , 5}.

We assume the cyclic planning horizon T = {1, . . . , 24} representing a day in 24 time
steps. Further, we consider three distinct groups of stations regarding their opening
times. Intuitively this may be viewed as each station belonging to a certain company
with a certain opening time policy. A station is assigned to a certain group according to
a weighted random procedure. In particular a station belongs to one of the following
three groups regarding their (cyclic) and continuous opening times:

1. [1 : 24], with a 45% probability

2. [6 : 20], with a 45% probability

3. [18 : 8], with a 10% probability

We define the interval of daytime charging hours as T dch
l = T [7 : 23], i.e., from 7a.m. to

11p.m. for all l ∈ L. Accordingly, the interval of nighttime charging hours is defined
as T nch

l = T \ T dch
l . The cost of charging during daytime charging hours cdch

l is chosen
uniformly at random from the interval {3, . . . , 5}. The cost of charging during nighttime
charging hours cnch

l is chosen uniformly at random from the interval {1, . . . , 3}.

We define the set of vehicle types I = {2, 4} where each vehicle type has the respective
number of batteries.

Origin and destination locations are chosen from a random subset V ⊆ V with |V | =
min(m

2 , 5n). To each v ∈ V a random weight γv is assigned according to lognormal
distribution with mean µ and standard deviation σ = 0.5. The weights represent
popularity values, i.e., nodes with higher weights have higher incoming and outgoing
traffic. In particular, for our instances we specify the mean µ of the lognormal distribution
used to generate the popularity values as µ = ln(25).

The traffic of an OD-pair (u, v) ∈ V × V , however, does not only depend on the weights
of its incident nodes but also on its length. Hence, we also assign weights γq to each
OD-pair q = (u, v) ∈ V × V such that γq corresponds to fPDF(w(puv)) with fPDF being
the probability density function of a lognormal distribution with mean µ = ln(5000) and
standard deviation σ = 0.2. The total demand dtotal

q of an O/D-pair q = (u, v) (over all
t ∈ T , i ∈ I) is then calculated as

dtotal
q = γu · γv · γq. (6.1)

We then set Q to be the set of O/D-pairs q of V × V for which dtotal
q is highest.

30

6.2. Experimental Results and Discussion

This total demand of each O/D-pair is distributed over the time steps T = {1, . . . , 24} and
recharging a battery requires two time periods, i.e., tc = 2, as was common in instances
provided by Honda R&D. We assume each customer to travel twice on the corresponding
path, once in the morning to get to work and once in the evening to travel back home and
we assume that customers need to swap batteries once per trip. The demand of each time
period t ∈ T is determined by two normal distributions Nmorning(8, 1) and Nevening(18, 2),
respectively. From each distribution 10 samples t are generated and transformed by

t := (t mod tmax) + 1 (6.2)

to fit in our cyclic horizon approach. Afterwards, dtotal
q is distributed over T according

to the frequency in which the time periods t ∈ T appear in the generated samples.

Next, the demand has to be distributed to the individual vehicle types. For this, we
assume that the proportion of vehicles with two batteries to vehicles with four batteries
is 4 : 1. The demand of each vehicle type i ∈ I is determined by a binomial distribution
B(1, 4

5). In other words, in our case a successful outcome of the experiment corresponds to
the vehicle type with two batteries and a negative outcome of the experiment corresponds
to the vehicle type with four batteries. We generate 100 samples from this distribution
and distribute the demand of O/D pair q ∈ Q at time slot t ∈ T according to the
frequency in which each vehicle type i ∈ I appears in the generated samples.

Instances are designed to be solved with dmin set to 1.0, i.e., all of the given demand has
to be satisfied.

We restrict the total number of BEX modules that are allowed to be used zmodules such
that at most 3% of the total available modules may be built. Towards this, we specify
zmodules = 0.03 · (

l∈L
emax

l + |{l ∈ L | cl > 0}|) . Note that zmodules has been chosen

according to information provided by Honda R&D.

We do not explicitly specify a maximum number of stations to be constructed zstations, as
the zmodules constraint was more relevant for the colleagues at Honda R&D. Further, by
specifying the zmodules constraint, we implicitly limit the number of newly constructed
stations anyway, as the base module of constructed stations is counted towards the
zmodules constraint.

6.2 Experimental Results and Discussion
In this section we evaluate the performance of our approach for solving the BEXSLP. We
evaluate the performance on our own instance scenario discussed in Section 6.1.

The presented algorithms were implemented in Julia1 1.6.1 using the JuMP package2

and Gurobi3 9.1 as underlying MILP solver.
1https://julialang.org/
2https://jump.dev/JuMP.jl/stable/
3https://www.gurobi.com/

31

https://julialang.org/
https://jump.dev/JuMP.jl/stable/
https://www.gurobi.com/

6. Experiments and Results

All test runs have been executed on an Intel Xeon E5-2640 v4 2.40GHz machine in
single-threaded mode with a global time limit of one hour per run. We set the maximum
allowed memory to be used depending on the instance group, see Table 6.1.

Table 6.1: Maximum allowed memory to be used for each instance group.

Instance Size Maximum allowed memory
(50, 100) 4 GB
(100, 200) 4 GB
(200, 400) 6 GB
(300, 600) 12 GB
(400, 800) 16 GB
(500, 1000) 24 GB

When considering the three parts of the objective function, we found that by changing
αdelay, the most notable differences in performance can be experienced. For this reason,
we evaluate three different alpha configurations which only differ in the αdelay parameter:

1. αsetup = 0.01, αcharging = 0.01, αdelay = 0.1

2. αsetup = 0.01, αcharging = 0.01, αdelay = 1.0

3. αsetup = 0.01, αcharging = 0.01, αdelay = 10.0

Therefore, if not explicitly specified otherwise it can be assumed that αcharging = 0.01
and αsetup = 0.01 is used for all shown results.

Further, if not explicitly specified otherwise we use ν = ν = 5 as the number of candidate
stations which are considered in a repair or destroy step. We also use k = 5 as the
number of candidates in a single round of the tournament selection used by the destroy
and repair operators.

We evaluate the quality of solutions in terms of optimality gaps. More specifically, let f
correspond to the objective value of the solution to some instance found by using any
approach (i.e., construction heuristic, LNS or solving the MILP with Gurobi) within the
time limit and let f̃ refer to the best found lower bound by Gurobi for the same instance.
Then the gap between f and f̃ is calculated by

gap = 100% · f − f̃

f̃
. (6.3)

All shown results are averaged over all 30 instances for each instance group. Highlighted
values refer to the best result per instance group and αdelay configuration, i.e., the lowest

32

6.2. Experimental Results and Discussion

gap, highest number of iterations and lowest repair time. The repair time always refers
to the total time required from selecting the stations considered for repairing a solution,
to the time needed to solve the respective MILP and further necessary steps to ensure
that none of the posed constraints have been violated in the process, as presented in
Algorithm 1. Further, for each instance the average repair time over all iterations is
considered.
We will first show the results obtained with our initial construction heuristic. In com-
parison, we will show results of solving the BEXSLP-MILP formulation with Gurobi.
Afterwards, the main part of this section concerns results obtained by using the matheuris-
tic. Here, we first compare the performance of our single objective strategies, i.e., destroy
and repair operators which focus on a single aspect of the multi-part objective. We will
then present the results of the weighted sum strategy, compared to the those of using
the different single objective operators within a single LNS run, i.e., the mixed strategy.
Afterwards, we show how our dedicated strategies fare compared to a randomized ap-
proach. Then we justify the choice of our parameters before summarizing and discussing
the most important results.

6.2.1 MILP and Construction Heuristic
First, we will present the results of solving the MILP formulation of the BEXSLP,
(4.11) – (4.19), with Gurobi. We compare these results to the results obtained by using
our construction heuristic (CH), introduced in Section 5.2.
Table 6.2 shows the average optimality gaps and corresponding median computation times
obtained when using Gurobi to solve the MILP formulation of the BEXSLP compared to
those obtained with our construction heuristic (CH). Column nopt refers to the number
of instances per instance group which could be solved to optimality with the MILP. It
can be seen that for both approaches gaps increase with increasing instance size. Further,
gaps generally also increase with increasing αdelay value.
Solving the MILP results in optimal solutions for all instances of the group (50, 100)
and almost all instances of the group group (100, 200). For instance group (100, 200) we
can see that for αdelay = 0.1 all but one instances could be solved to optimality and for
αdelay = 10.0 all but three instances.
However, gaps become significantly higher starting from instance group (300, 600) for
αdelay = 0.1 and already at instance group (200, 400) for αdelay = 1.0 and αdelay = 10.0.
It also becomes evident, that already for instance group (200, 400) optimal solutions can
only be achieved for αdelay = 0.1. The highest optimality gaps of 85.31% are obtained
for the largest instance group (500, 1000) when using αdelay = 10.0.
One can further see that the CH is actually able to achieve qualitative better solutions in
shorter time for the majority of instances with αdelay = 1.0 and for the largest instances
with αdelay = 10.0.
Regarding the reported median runtimes in Table 6.2, we can see that for instance groups
starting from (200, 400) the MILP solver terminates due to the specified time limit of 3600

33

6. Experiments and Results

Table 6.2: Average optimality gaps and median computation times for different αdelay
configurations obtained by using Gurobi to solve the MILP of the BEXSLP in comparison
with our construction heuristic (CH). Column nopt refers to the number of instances per
instance group which could be solved to optimality with the MILP.

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) nopt MILP CH nopt MILP CH nopt MILP CH
(50, 100) 30 0.00 33.71 30 0.00 32.66 30 0.00 48.63
(100, 200) 29 0.07 34.53 24 0.47 31.45 27 1.02 55.05
(200, 400) 8 4.44 39.56 0 45.06 41.03 0 61.23 69.46
(300, 600) 1 22.89 39.41 0 54.95 49.50 0 80.86 81.91
(400, 800) 0 30.05 40.08 0 57.83 50.71 0 84.29 83.81
(500, 1000) 0 37.61 41.36 0 61.59 53.42 0 85.31 84.72

run time (s)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) MILP CH MILP CH MILP CH
(50, 100) 30.84 53.56 232.76 53.79 122.03 54.08
(100, 200) 403.35 81.52 2058.73 80.41 1617.63 71.75
(200, 400) 3600.00 194.12 3600.00 203.38 3600.00 150.53
(300, 600) 3600.00 413.74 3600.00 433.19 3600.00 271.91
(400, 800) 3600.00 713.32 3600.00 729.71 3600.00 423.44
(500, 1000) 3600.00 1006.51 3600.00 999.51 3600.00 642.34

seconds before optimal solutions can be found. Looking at instances of the size (50, 100)
and (100, 200) it becomes evident that solutions become in general more difficult to solve
as αdelay increases. Concerning the CH we can see that run times increase according to
the instance size, with the maximum run time taken for the largest instance size (500,
1000) with αdelay = 0.1. It can generally be said that run times for αdelay = 0.1 and
αdelay = 1.0 are relatively similar but typically noticeably larger than those achieved with
αdelay = 10.0.

A possible explanation could be the following. With growing αdelay the overall objective is
more and more influenced by the delay part. In the CH we use relaxed x and y variables
and it is possible that this relaxed version can be more efficiently solved, for example by
constructing a large part of "fractional" stations to reduce the overall delay, than solutions
for lower αdelay values. Thus, the overall solving time for αdelay = 10.0 would be lower
than for αdelay = 1.0. However, for deriving feasible solutions we use the procedure in
Section 5.2, i.e., we first round up fractional values and then heuristically remove surplus
modules. This naturally somewhat decreases the quality of the solution. Naturally, this
effect becomes more evident for larger αdelay values, as for these, the relaxed solutions

34

6.2. Experimental Results and Discussion

contain a larger number of fractional x and y variables. This would therefore explain,
why we obtain larger gaps for larger αdelay values, despite the shorter run time of the CH.

Figures 6.1 and 6.2 further show a graphical comparison of the run times and optimality
gaps between the MILP and the CH.

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

10

20

30

40

50

60

70

g
a
p
 (

%
)

delay=0.1

MILP

CH

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

10

20

30

40

50

60

70

g
a
p
 (

%
)

delay=1.0

MILP

CH

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

20

40

60

80

100

g
a
p
 (

%
)

delay=10.0

MILP

CH

Figure 6.1: Comparison of optimality gaps of solving the BEXSLP with an MILP and
our used construction heuristic (CH) w.r.t. different αdelay values.

6.2.2 Large Neighborhood Search
The main part of this section is dedicated to results obtained by using the full matheuristic,
i.e., the initial CH results further refined by applying the presented operators in an
LNS scheme. First, we present and compare results obtained by using single objective
strategies, which focus on minimizing individual parts of the BEXSLP’s multi-part
objective. Then, we show two approaches which focus on all parts of the objective by
comparing the strategy making use of the weighted sum operators to a strategy, which
uses a randomly chosen single objective operator in every destroy and repair step. After
comparing the most promising single and multi objective strategies, we compare our

35

6. Experiments and Results

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

500

1000

1500

2000

2500

3000

3500

ru
n
 t

im
e
 (

s
)

delay=0.1

MILP

CH

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

500

1000

1500

2000

2500

3000

3500

ru
n
 t

im
e
 (

s
)

delay=1.0

MILP

CH

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

500

1000

1500

2000

2500

3000

3500

ru
n
 t

im
e
 (

s
)

delay=10.0

MILP

CH

Figure 6.2: Comparison of run times of solving the BEXSLP with an MILP and our used
construction heuristic (CH) w.r.t. different αdelay values.

results to a random LNS strategy. Finally, we give a summary by presenting the best
results of the matheuristic in comparison to the initial CH and the MILP approach.

Single Objective Strategies

In this section we present results of our LNS in which only destroy and repair operators
w.r.t. to a single objective of the BEXSLP’s multi-part objective function are used.
Specifically, we investigate three different LNS strategies, constr, delay and charging
using only the construction-, delay- and charging-based destroy and repair operators,
respectively.

Table 6.3 shows average optimality gaps, average iterations and median repair times for
strategies constr, delay and charging w.r.t. the different αdelay configurations. We can
see that similar to Table 6.2 optimality gaps generally increase with growing instance
size and growing αdelay value for all three operators. For αdelay = 0.1 constr performs
superior to delay and charging for instance groups upwards of (200, 400). For instance

36

6.2. Experimental Results and Discussion

Table 6.3: Average optimality gaps, average number of iterations and median repair times
for different αdelay configurations for the single objective strategies.

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) constr delay charging constr delay charging constr delay charging
(50, 100) 2.73 3.01 2.61 6.54 5.60 5.76 12.77 10.94 12.05
(100, 200) 2.77 1.97 2.80 6.69 5.61 6.81 22.41 18.27 25.82
(200, 400) 4.49 5.72 5.49 17.43 18.65 21.31 41.89 36.78 47.47
(300, 600) 5.13 6.88 6.31 28.41 29.13 32.32 62.37 59.42 67.99
(400, 800) 6.50 8.62 8.39 33.75 33.96 36.63 71.48 70.21 74.49
(500, 1000) 7.98 10.77 10.68 36.16 37.03 39.99 74.80 74.25 77.59

iterations
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) constr delay charging constr delay charging constr delay charging
(50, 100) 4898 6738 7252 4455 5608 6381 3858 6034 6323
(100, 200) 2897 4292 4656 2530 4855 4953 1613 2991 2672
(200, 400) 1707 2681 2888 1574 2657 2527 564 988 944
(300, 600) 1109 1829 1906 1009 1642 1708 398 492 403
(400, 800) 813 1261 1284 710 1138 1175 155 186 192
(500, 1000) 575 839 853 543 780 783 119 149 149

repair time (s)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) constr delay charging constr delay charging constr delay charging
(50, 100) 0.79 0.55 0.50 0.88 0.67 0.59 1.03 0.66 0.63
(100, 200) 1.44 0.89 0.81 1.75 0.84 0.86 2.66 1.43 1.55
(200, 400) 2.05 1.19 1.09 3.05 1.72 2.05 7.37 4.72 4.95
(300, 600) 2.78 1.57 1.46 7.02 3.71 3.59 15.67 10.90 11.74
(400, 800) 3.43 1.93 1.89 9.58 3.70 3.50 23.64 19.49 18.59
(500, 1000) 4.15 2.57 2.51 6.98 4.86 4.83 34.21 26.82 25.87

group (500, 1000) constr yields an optimality gap which is 2.7% lower than the second
best operator, namely charging. For αdelay = 1.0 constr still performs generally better
than the other operators, however the relative difference to the other strategies, especially
when compared to delay, decreases. When looking at αdelay = 10.0 we can see that delay
performs best for all instance groups. As expected, we can observe, that delay performs
better, the higher αdelay is, i.e., as minimizing the delay becomes more important LNS
operators destroying and repairing stations based on their induced delay produce better
results.

When looking at the number of iterations it becomes evident that the number of iterations
decreases as the size of an instances increases. While for the smallest instances several

37

6. Experiments and Results

thousand iterations can be achieved by every strategy for every αdelay configuration,
this decreases to iterations in the range of hundreds for the largest instances. It can
further be noticed that increasing αdelay generally leads to a lower number of iterations.
For αdelay = 0.1 and αdelay = 1.0 the charging operator generally allows for the highest
number of iterations while the construction operator yields the lowest number. For
αdelay = 10.0 the delay operator is generally favored except for instance groups (50, 100)
and (400, 800).

Naturally, there is a correlation between the repair times and the number of achieved
iterations. Therefore, we can see that charging typically has the lowest repair times for
αdelay = 0.1 and αdelay = 1.0 and delay generally achieves the lowest repair times for
αdelay = 10.0. It is further interesting to see that the choice of αdelay seems to have a
tremendous effect on the respective repair times. For instance group (500, 1000) repairing
the solution takes up to 10 times as long as repairing a solution when setting αdelay = 0.1.

A possible explanation for larger repair times concerning constr could be that this
strategy is designed to select stations based on their construction costs per battery slot.
In our generated test instances, construction costs of stations are not correlated to the
maximum number of extension modules that may be added. This means, that constr
may generally favor stations which allow to be extended by a large number of extension
modules. Consequently, these stations can, if all extension modules were added, possibly
be assigned a large amount of demand. This in turn makes it necessary for the MILP used
for assigning demand to cover a larger amount of possibilities, i.e., how many extension
modules to construct and more potential demand which can be assigned to every station,
when considering stations selected by constr compared to the other strategies.

Multi Objective Strategies

The so far shown strategies all focus on a single part of our multi-part objective function.
However, as the BEXSLP’s multi objective function is the weighted sum of multiple
individual objectives, a promising approach might be to combine our single objective
strategies. One way to combine these strategies is to use the weighted sum destroy and
repair operators described Section 5.3.5, resulting in the strategy wsum.

An alternative way to combine theses strategies is to use different destroy and repair
operators in each iteration of the LNS. Specifically, in each iteration of the LNS we
randomly choose either the delay, the construction, or the charging-based repair operator.
The destroy operator is also randomly decided in each iteration w.r.t. the counterparts
of the repair operators. We refer to this strategy as mixed. Note that in particular this
means that within a single iteration a repair operator is not necessarily paired with the
matching destroy operator.

Table 6.4 shows average gaps and iterations for the strategies mixed and wsum. One can
see that for αdelay = 0.1 and αdelay = 1.0 the difference in terms of average optimality
gaps is typically less than 1% with mixed being slightly more favored. For αdelay = 10.0
the difference becomes more evident, as mixed achieves about 3% better results for

38

6.2. Experimental Results and Discussion

Table 6.4: Average optimality gaps, average number of iterations and median repair
times for different αdelay configurations for the mixed objective strategies.

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) mixed wsum mixed wsum mixed wsum
(50, 100) 2.51 2.42 5.84 6.50 8.87 11.87
(100, 200) 2.72 2.60 5.84 6.06 17.71 20.15
(200, 400) 3.34 4.75 17.49 17.30 38.52 41.39
(300, 600) 5.07 4.84 27.35 28.35 60.98 62.21
(400, 800) 6.59 6.84 32.79 32.78 70.15 70.33
(500, 1000) 8.16 8.22 36.30 36.60 74.65 74.06

iterations
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) mixed wsum mixed wsum mixed wsum
(50, 100) 6685 6162 5572 5220 5966 4608
(100, 200) 3965 3343 4263 2908 2510 1825
(200, 400) 2565 1976 2271 1640 807 779
(300, 600) 1687 1363 1541 1133 458 419
(400, 800) 1157 850 1053 795 197 176
(500, 1000) 763 603 690 589 144 131

repair times (s)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) mixed wsum mixed wsum mixed wsum
(50, 100) 0.55 0.60 0.64 0.73 0.66 0.83
(100, 200) 0.95 1.11 0.94 1.38 1.69 2.15
(200, 400) 1.25 1.68 2.08 2.98 5.20 6.13
(300, 600) 1.69 2.15 3.73 5.81 11.41 13.36
(400, 800) 2.15 3.18 4.88 7.97 18.05 21.83
(500, 1000) 2.88 3.83 5.71 7.22 26.81 30.66

instance groups (50, 100), (100, 200) and (200, 400) and only performs slightly worse for
the largest size (500, 1000).

In terms of iterations it can be seen that mixed achieves a higher number of iterations for
every instance group and every αdelay setting. This is most likely due to the way in which
promising stations in the destroy/repair step are selected as combining the operators
construction, delay, and charging-based operators in each iteration takes naturally more
time than considering only a single operator. This also becomes evident when looking at

39

6. Experiments and Results

the median repair times, where for mixed less time is required than for wsum in every
configuration. The reduced number of iterations when compared to mixed might also be
an indicator for the slightly worse performance with regard to optimality gaps.

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

g
a
p
 (

%
)

delay=0.1

mixed

constr

delay

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

10

20

30

40

g
a
p
 (

%
)

delay=1.0

mixed

constr

delay

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

20

40

60

80

g
a
p
 (

%
)

delay=10.0

mixed

constr

delay

Figure 6.3: Comparison of mixed, constr and delay w.r.t. different αdelay values.

Figure 6.3 serves as a comparison of the most successful single objective strategies, constr
and delay and the most promising multi-part objective strategy mixed. We have already
established in Table 6.3 that constr performed best out of all single objective operators
for αdelay = 0.1 and αdelay = 1.0. Here we see that for αdelay = 0.1 mixed achieves lower
medians for instance groups (100, 200), (200, 400) and (400, 800) and matches constr for
sizes (300, 600) and (500, 1000). When looking at αdelay = 1.0 we can see that mixed
achieves lower medians than constr for all instance groups but (200, 400) and (500, 1000)
and better results than delay for all instances but (100, 200) and (500, 1000).

When looking at αdelay = 10.0 we can again confirm that delay performs better than
constr in this setting. However, mixed is able to match that performance for all instance
groups but (200, 400) and achieves even lower optimality gaps for instance group (100,
200).

40

6.2. Experimental Results and Discussion

Comparison with the Randomized Strategy

We were further interested in investigating whether our dedicated approaches were more
successful than a simple strategy, referred to as random, that constructs Ldestroy and
Lrepair completely at random. As we were interested in showing statistical significance, we
performed a one-sided Wilcoxon signed-rank test [Con99] on the optimality gaps for each
instance group comparing the solutions generated by mixed to the solutions generated by
random.

Table 6.5 summarizes the results. Entries marked with a star denote results where a
one-sided Wilcoxon signed-rank test has shown that a respective strategy performed
statistically significantly better with a 95% confidence interval. We can see that for
αdelay = 0.1 and αdelay = 1.0 the results for instance groups larger than (100, 200) w.r.t.
mixed are significantly better than those w.r.t. random. For αdelay = 10.0, this only holds
true for instance groups (400, 800) and (500, 1000). A possible explanation for this is
that for smaller instances a large number of iterations can be performed, resulting in
smaller differences between random and mixed.

Performing the one-sided Wilcoxon signed-rank test the other way around, i.e., to test
whether random is significantly better than mixed, w.r.t. a 95% confidence interval shows
that this is only the case for instance group (50, 100) and αdelay = 1.0.

Regarding the number of iterations, random generally achieves the largest number for all
αdelay variants for the instance sizes less than (400, 800) with the exception of αdelay = 1.0
and (300, 600).
This behavior can also be witnessed when looking at the repair times, where the random-
ized repair variant generally leads to smaller repair times.

Generally we would have expected random to always be faster than mixed as the procedure
of selecting stations for mixed is more time consuming than for random. However, it has
to be noted that the majority of the repair time can be attributed to solving the MILP
which assigns the freed demand among the new station candidates. It is possible, that
there is some inconsistency in the MILP solving times, which by chance simply leaned
towards mixed for the larger instance groups.

Figure 6.4 further shows a graphical comparison of mixed with random regarding opti-
mality gaps.

However, we have already seen in Figure 6.3 that delay is able to achieve better results
for αdelay = 10.0 than mixed. For this αdelay setting we have therefore also compared
delay to random with regard to statistical significance. Table 6.6 shows the results of
this comparison. We can see that with the delay strategy we also achieve significantly
better results for instance group (300, 600). This indicates that the performance of
mixed could potentially be improved by choosing the destroy and repair operators in a
weighted random fashion instead of completely random in each iteration. However, finding
appropriate weights for this is not straightforward and requires careful tuning and testing.
Another possibility would be the usage of an Adaptive Large Neighborhood Search

41

6. Experiments and Results

Table 6.5: Average optimality gaps, number of iterations and median repair times for
the strategies mixed and random w.r.t. different αdelay configurations. Entries marked
with a star denote results where a one-sided Wilcoxon signed-rank test has shown that a
respective strategy performed statistically significantly better than the other strategy
w.r.t. a 95% confidence interval.

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) random mixed random mixed random mixed
(50, 100) 2.74 2.51 *4.92 5.84 9.14 8.87
(100, 200) 3.35 2.72 5.69 5.84 17.52 17.71
(200, 400) 4.99 *3.34 19.14 *17.49 38.40 38.52
(300, 600) 6.65 *5.07 29.65 *27.35 60.97 60.98
(400, 800) 7.67 *6.59 34.55 *32.79 71.52 *70.15
(500, 1000) 10.44 *8.16 38.25 *36.30 75.59 *74.65

iterations
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) mixed random Mixed random Mixed random
(50, 100) 6685 7416 5772 6673 5966 6951
(100, 200) 3965 4863 4263 5225 2510 3156
(200, 400) 2565 2625 2271 2439 807 874
(300, 600) 1687 1721 1541 438 458 473
(400, 800) 1157 1059 1053 985 197 166
(500, 1000) 763 702 690 605 144 132

repair times (s)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) mixed random Mixed random Mixed random
(50, 100) 0.55 0.50 0.64 0.57 0.66 0.57
(100, 200) 0.95 0.76 0.94 0.77 1.69 1.36
(200, 400) 1.25 1.22 2.08 1.82 5.20 4.91
(300, 600) 1.69 1.71 3.73 4.52 11.41 11.47
(400, 800) 2.15 2.44 4.88 4.33 18.05 22.25
(500, 1000) 2.88 3.22 5.71 6.07 26.81 31.28

(ALNS) [GP+10]. In an ALNS different weights are assigned to different repair/destroy
methods. As the ALNS progresses, weights are adapted dynamically according to the
success of the respectively applied method. We did not investigate these techniques
further in this work, as ALNS typically requires a large number of iterations, which we do
not reach for our largest instances. Finally, it may also be that the individual operators
construction, charging and delay, work against each other in mixed. Therefore, the use of
a tabu list might potentially also improve the performance of mixed. We investigate the

42

6.2. Experimental Results and Discussion

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

g
a
p
 (

%
)

delay=0.1

mixed

random

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

10

20

30

40

g
a
p
 (

%
)

delay=1.0

mixed

random

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

20

40

60

80

g
a
p
 (

%
)

delay=10.0

mixed

random

Figure 6.4: Comparison of mixed with randomized approaches w.r.t. different αdelay
values.

use of a tabu list in Section 6.2.2.

We next show how solutions are improved over time. Towards this, Figure 6.5 shows
a comparison of the strategies mixed and random with regard to how the solution is
improved by the LNS over time. The plots show the development of the optimality gaps
over our selected run time of 3600 seconds averaged over all instances in the respective
instance group. To be able to aggregate over all instances at each time, we always use
the current best objective value at each time to calculate the respective optimality gaps.
Additionally, for the beginning, when no solution exists yet, we always use the solution
returned by the construction heuristic. This can be observed in Figure 6.5 as in most
plots the gaps do not immediately improve.

We can see that for smaller instances, the initial solution as well as the overall local
optimum, can be found within a very short time frame. As the instance group increases,
both the initial solution, as well as further improvement of this solution takes considerable
more time. Starting from instance group (200, 400), we can however already see that

43

6. Experiments and Results

Table 6.6: Comparison of gaps between delay and random for αdelay = 10.0. Entries
marked with a star denote results where a one-sided Wilcoxon signed-rank test has
shown that a respective strategy performed statistically significantly better than the
other strategy w.r.t. a 95% confidence interval.

gap (%)
αdelay = 10.0

(n, m) random delay
(50, 100) 9.14 8.87
(100, 200) 17.52 18.27
(200, 400) 38.40 36.78
(300, 600) 60.97 *59.42
(400, 800) 71.52 *70.21
(500, 1000) 75.59 *74.25

in general mixed improves the solution faster, and as has already been shown, tends to
find better solutions overall. This difference between mixed and random increases with
increasing instance size and is more noticeable for αdelay = 0.1 and αdelay = 1.0. We
can further see again that solution improvement generally slows down with increasing
αdelay value, most notable in this figure by the curve getting flatter with increasing αdelay
setting, i.e., for αdelay = 10.0 the solution converges considerably slower towards a local
optimum.

Choice of k and ν

As we have stated at the beginning of this section, we used k = 5 for the group size in
the tournament selection which is used in the delay, charging and in turn also the mixed
operator. Further, we decided on ν = ν = 5 as the number of stations which we destroy
and select for repairing in our operators. Here we want to argue why we settled on these
configurations.

Table 6.7 shows results for different configurations with regard to k and ν for mixed.
Note that in all configurations we assume that ν = ν . The configuration k = 5, ν = 5 is
the configuration which was used for the other presented results in this section.

We can see that the configuration k = 5, ν = 5 performs best in terms of iterations and
in most cases, also for median repair times. We can see that, as expected, increasing k to
10 increases the repair times and in turn decreases the number of iterations.

We can further see that increasing ν to 10 significantly increases repair times and in turn
leads to a much lower number of iterations. This was as expected, as we use a MILP
to repair the solution based on the set of repair candidates. Therefore, if we destroy a

44

6.2. Experimental Results and Discussion

larger set of stations and then repair the solution based on a larger set of candidates, the
MILP becomes more complex and in turn takes more time to solve.

Regarding the optimality gaps we can further see that the configuration k = 5, ν = 5
generally also performs best with the exception of instance group (300, 600) for αdelay = 1.0
and αdelay = 10.0, instance group (400, 800) for αdelay = 0.1 and instance group (200,
400) for αdelay = 10.0. In general the relative difference between the configurations seem
to be larger for the smaller instances and are decreasing with increasing instance size.

Table 6.7: Average optimality gaps, average iterations and median repair times for mixed
w.r.t. different k, ν and αdelay settings.

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

k = 10 k = 5 k = 10 k = 5 k = 10 k = 5
(n, m) ν = 5 ν = 5 ν = 10 ν = 5 ν = 5 ν = 10 ν = 5 ν = 5 ν = 10
(50, 100) 2.77 2.51 3.30 6.76 5.84 7.42 10.21 8.87 11.26
(100, 200) 4.01 2.72 3.60 5.88 5.84 7.80 18.24 17.71 19.93
(200, 400) 4.26 3.34 5.18 17.97 17.49 17.51 37.42 38.52 38.94
(300, 600) 5.15 5.07 5.63 28.61 27.35 27.20 61.65 60.98 59.57
(400, 800) 6.30 6.59 6.65 33.25 32.79 32.87 70.22 70.15 70.27
(500, 1000) 8.27 8.16 8.61 36.41 36.30 36.98 74.83 74.65 74.88

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

k = 10 k = 5 k = 10 k = 5 k = 10 k = 5
(n, m) ν = 5 ν = 5 ν = 10 ν = 5 ν = 5 ν = 10 ν = 5 ν = 5 ν = 10
(50, 100) 5927 6685 2636 5358 5772 1212 4764 5966 923
(100, 200) 3614 3965 986 3578 4263 643 2070 2510 731
(200, 400) 2080 2565 685 1944 2271 473 722 807 364
(300, 600) 1484 1687 457 1300 1541 364 434 458 198
(400, 800) 1053 1157 332 1011 1053 296 180 197 95
(500, 1000) 723 763 260 660 690 237 144 144 61

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

k = 10 k = 5 k = 10 k = 5 k = 10 k = 5
(n, m) ν = 5 ν = 5 ν = 10 ν = 5 ν = 5 ν = 10 ν = 5 ν = 5 ν = 10
(50, 100) 0.63 0.55 2.97 0.72 0.64 5.13 0.83 0.66 4.60
(100, 200) 1.05 0.95 5.55 1.13 0.94 7.20 1.95 1.69 6.06
(200, 400) 1.60 1.25 6.49 2.39 2.08 8.59 5.75 5.20 10.72
(300, 600) 1.92 1.69 7.91 4.65 3.73 11.88 13.41 11.41 20.18
(400, 800) 2.38 2.15 10.79 4.77 4.88 14.91 19.97 18.05 35.26
(500, 1000) 3.05 2.88 11.07 5.67 5.71 18.05 25.77 26.81 54.40

45

6. Experiments and Results

We argue that further increasing ν and k would only lead to a further decrease of the
number of iterations until an insufficient number of iterations would be achieved. On the
other hand, further lowering of k would lead the mixed operator ever further towards a
randomized approach, which generally does not improve performance as seen in Table
6.5. We also think that a lower size for ν would not further improve the performance,
as with ν = 5 the MILP used for repairing solutions performs reasonably fast, already
achieving a sufficient number of iterations.

Tabu List

An intuitive idea to improving the quality of the solutions further would be to aid the
respective operators in their task of choosing promising stations to destroy or repair. For
mixed we combine different operators that allow aim to optimize different parts of the
BEXSLP’s objective. It would be undesirable if operators were to select the same stations
to be destroyed that have just been added to the solution, due to operators aiming for
conflicting goals. We therefore tested a strategy based on tabu search [GL98, GP14] for
the strategy mixed.

The idea of our approach is to lock stations which have recently been selected from being
selected again. Specifically, we aim to prevent stations that have just been added to the
solution from being destroyed and vice versa. For this we use two separate tabu lists,
one for destroy operators and one for repair operators. Stations may only be selected if
they are currently not locked by the respective tabu list.

We have implemented the two tabu lists as FIFO-Queues with a fixed length of 5.
Therefore, stations in the tabu list cannot be select in the following 5 iterations. In each
iteration we add one station from Ldestroy to the repair tabu list and one station from
Lrepair to the destroy tabu list. Selection is performed randomly weighted by the number
of times each station has already been in the destroy and repair set, respectively.

Table 6.8 summarizes the results. We can see that except for instance group (50, 100)
with αdelay = 1.0 and instance group (200, 400) with αdelay = 10.0 the tabu search did
not improve the performance. The differences in performance are generally smallest for
αdelay = 0.1 and increase with increasing αdelay value.

A possible explanation for this could be that with increasing αdelay value solutions with
a larger number of constructed stations tend to be favourable, as a widespread network
of constructed stations generally decreases the detours that customers have to take to
reach a station. In this scenario it may be the case that restricting the set of stations to
choose from, e.g., by using the tabu list therefore actually has a negative impact on the
overall solution quality.

For smaller αdelay values a possible explanation could be that the mixed operator by
using different operators, having different metrics for choosing stations, inherently already
selects different stations in every iteration anyhow and is therefore not positively affected
by the tabu list.

46

6.2. Experimental Results and Discussion

As the proposed tabu procedure did not improve the performance in our case, we
ultimately decided on presenting and refining results without the usage of a tabu list.

Table 6.8: Optimality gaps for mixed compared to our tested tabu list w.r.t. different
αdelay settings.

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) mixed mixed + tabu mixed mixed + tabu mixed mixed + tabu
(50, 100) 2.51 3.23 5.84 5.27 8.87 10.20
(100, 200) 2.72 2.92 5.84 6.17 17.71 18.76
(200, 400) 3.34 4.49 17.49 18.12 38.52 38.18
(300, 600) 5.07 5.55 27.35 28.48 60.98 61.82
(400, 800) 6.59 6.76 32.79 33.79 70.15 71.76
(500, 1000) 8.16 9.05 36.30 38.44 74.65 76.19

6.2.3 Overview Comparison of all Approaches

Summarizing, Figure 6.6 and Table 6.9 give an overview of the results obtained for
different approaches towards solving the BEXSLP. MILP denotes the results of solving
the BEXSLP with the MILP model, (4.11) – (4.19), with Gurobi. CH refers to the results
obtained from the initial construction heuristic, presented in Section 5.2 and random and
mixed refer to the LNS with the random or respectively the mixed strategy.

It becomes evident that with the MILP approach we are able to find (close to) optimal
solutions for the smallest instance sizes (50, 100) and (100, 200) for every αdelay con-
figuration. However, starting from (200, 400) our LNS approach is able to consistently
achieve superior results. For αdelay = 0.1 mixed achieves gaps which are about 16% lower
than those achieved by the MILP approach for instance group (300, 600). For instance
group (500, 1000) we obtain results being 29% lower than those obtained by the MILP
approach. For αdelay = 1.0 we are able to improve on the MILP approach by 25 − 28%
when using mixed for instances larger than (100, 200). Also for αdelay = 10.0 we are able
to achieve results which are up to 23% better when using the LNS with mixed compared
to the MILP results. In this setting the difference decreases with growing instance size.
However, for instance group (500, 1000) mixed is still better by about 10%, however.

It is also interesting to note that in some cases the construction heuristic is already able
to achieve better results than the MILP approach, for example for instance groups larger
than (100, 200) for αdelay = 1.0. As specified in Section 5.2, we use a numerically relaxed
version of the MILP formulation with regard to fractional x and y variables for the
CH which we afterwards repair to guarantee a feasible solution. It is therefore possible
that by performing our procedure to ensure a feasible solution we already achieve better

47

6. Experiments and Results

solutions than the best exact solution which can be found by Gurobi within the specified
time limit.

However, we can see that the LNS approach further improves the initial solution obtained
by the construction heuristic significantly. For αdelay = 0.1, the LNS improves the initial
solution by up to 36%. The relative improvement however decreases somewhat with
instance size. The least improvement of the initial solution by the LNS can be noted for
the largest instances and the αdelay = 10 value. However, even for the largest instance
size in this configuration we are still able to improve this initial solution by 10%

We can further see that mixed performs better than the random approach for all instance
groups when setting αdelay = 0.1. For αdelay = 1.0 mixed achieves superior results for
instances larger than (100, 200). For αdelay = 10.0 mixed achieves better results for the
largest instance sizes (400, 800) and (500, 1000) and gaps are only marginally higher for
the smaller instances.

Table 6.9: Average optimality gaps for the MILP, the presented construction heuristic
(CH), random and mixed for different αdelay settings.

gap (%)
αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n, m) MILP CH random mixed MILP CH random mixed MILP CH random mixed
(50, 100) 0.00 33.71 2.74 2.51 0.00 32.66 4.92 5.84 0.00 48.63 9.14 8.87
(100, 200) 0.07 34.53 3.35 2.72 0.47 31.45 5.69 5.84 1.02 55.05 17.52 17.71
(200, 400) 4.44 39.56 4.99 3.34 45.06 41.03 19.14 17.49 61.23 69.46 38.40 38.52
(300, 600) 22.89 39.41 6.65 5.07 54.95 49.50 29.65 27.35 80.86 81.91 60.97 60.98
(400, 800) 30.05 40.08 7.67 6.59 57.83 50.71 34.55 32.79 84.29 83.81 71.52 70.15
(500, 1000) 37.61 41.36 10.44 8.16 61.59 53.42 38.25 36.30 85.31 84.72 75.59 74.65

48

6.2. Experimental Results and Discussion

0 500 1000 1500 2000 2500 3000 3500

run time (s)

5

10

15

20

25

30

g
a
p
 (

%
)

(50, 100), _delay = 0.1

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

5

10

15

20

25

30

g
a
p
 (

%
)

(50, 100), _delay = 1.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

10

15

20

25

30

35

40

45

50

g
a
p
 (

%
)

(50, 100), _delay = 10.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

5

10

15

20

25

30

35

g
a
p
 (

%
)

(100, 200), _delay = 0.1

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

5

10

15

20

25

30

g
a
p
 (

%
)

(100, 200), _delay = 1.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

20

25

30

35

40

45

50

55

g
a
p
 (

%
)

(100, 200), _delay = 10.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

5

10

15

20

25

30

35

40

g
a
p
 (

%
)

(200, 400), _delay = 0.1

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

20

25

30

35

40

g
a
p
 (

%
)

(200, 400), _delay = 1.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

40

45

50

55

60

65

70

g
a
p
 (

%
)

(200, 400), _delay = 10.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

5

10

15

20

25

30

35

40

g
a
p
 (

%
)

(300, 600), _delay = 0.1

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

g
a
p
 (

%
)

(300, 600), _delay = 1.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

g
a
p
 (

%
)

(300, 600), _delay = 10.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

10

15

20

25

30

35

40

g
a
p
 (

%
)

(400, 800), _delay = 0.1

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

35.0

37.5

40.0

42.5

45.0

47.5

50.0

g
a
p
 (

%
)

(400, 800), _delay = 1.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

72

74

76

78

80

82

84

g
a
p
 (

%
)

(400, 800), _delay = 10.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

10

15

20

25

30

35

40

g
a
p
 (

%
)

(500, 1000), _delay = 0.1

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

38

40

42

44

46

48

50

52

g
a
p
 (

%
)

(500, 1000), _delay = 1.0

random

mixed

0 500 1000 1500 2000 2500 3000 3500

run time (s)

76

78

80

82

84

g
a
p
 (

%
)

(500, 1000), _delay = 10.0

random

mixed

Figure 6.5: Comparison of how solutions are iteratively improved by random and mixed
w.r.t. different αdelay configurations and instance groups. 49

6. Experiments and Results

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

10

20

30

40

50

60

70

g
a
p
 (

%
)

delay=0.1

MILP

CH

random

mixed

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

10

20

30

40

50

60

70

g
a
p
 (

%
)

delay=1.0

MILP

CH

random

mixed

(5
0,

 1
00

)

(1
00

, 2
00

)

(2
00

, 4
00

)

(3
00

, 6
00

)

(4
00

, 8
00

)

(5
00

, 1
00

0)

(n, m)

0

20

40

60

80

100

g
a
p
 (

%
)

delay=10.0

MILP

CH

random

mixed

Figure 6.6: Comparison of solving the BEXSLP with an MILP, the presented construction
heuristic (CH), random and mixed with w.r.t. different αdelay values.

50

CHAPTER 7
Conclusion and Future Work

Although the adoption of electric vehicles has increased in the past years and is expected
to further grow, long charging times may be a hindering factor to a wide-spread usage. An
alternative idea, at least for smaller electric vehicles, like scooters, is to use exchangeable
batteries and to allow users to swap their batteries very quickly at dedicated stations.

In this work, we dealt with the Battery Exchange Station Location Problem (BEXSLP),
which concerns the planning of such stations.

We defined the BEXSLP as a mixed integer linear program (MILP) with a multi-part
objective, which is to be minimized, concerning the construction costs, charging costs and
delays induced by customers driving to the stations, while satisfying a defined amount of
demand. Towards solving the problem, we proposed and implemented a matheuristic,
combining the exact solving capabilities of MILP solvers with the scalability of heuristic
approaches. In our matheuristic we first apply a construction heuristic to obtain an
initial solution and then use a Large Neighborhood Search (LNS), based on a destroy
and repair scheme, to refine the solution. In each iteration of the LNS, we destroy a
set of stations and select a new set of promising stations to repair the solution. In the
construction heuristic and when repairing the solution we use a linear relaxation of the
presented MILP which allows us to solve the respective problem much faster. We further
presented the necessary steps to derive a feasible solution from this relaxed solution.

Towards selecting promising stations when destroying and repairing a solution we proposed
several operators, which focus on different parts of the multi-part objective. We further
showed two possibilities to combine multiple aspects (construction costs, charging costs,
induced delay) of the objective in a single approach. The mixed strategy selects a
different single-objective operator in each destroy and repair step and thus makes use of
all operators within a single run of the LNS. The weighted sum strategy uses a linear
combination of the objectives in every iteration.

51

7. Conclusion and Future Work

For evaluating the proposed matheuristic we created a novel set of test instances based on
approaches from literature. Early experiments showed that the problem difficulty changes
drastically depending on how much focus is laid on the delay part of the objective. We
therefore evaluated our matheuristic on different problem settings regarding delay, and,
for comparison purposes, evaluated the MILP formulation of the BEXSLP with Gurobi.
The results show that it is possible to find close to optimal solutions with the MILP
approach for the very small instances. For larger instances, however, our matheuristic
far surpasses the MILP approach in terms of solution quality in every evaluated problem
setting and achieves between ten to thirty percent lower optimality gaps.

We have further seen that while all evaluated operators perform better than the MILP
approach for larger instances, the most success was achieved by combining all single-
objective operators within a single LNS run, i.e., the mixed strategy.

7.1 Future Work
We have shown that the matheuristics outperforms the MILP approach in all benchmark
settings for larger instances. However, it became evident that a large focus on the delay
part of the objective also proved to be most burdensome for our approach. The results
here indicate further possibility for improvement. We noticed that while the mixed
strategy generally performed best out of the presented approaches, there were instances
where the delay strategy, focusing solely on optimizing the delay part of the objective,
proved to be slightly better. Possible future work in this regard therefore might be to
use a combined operator which, unlike the mixed strategy, does not pick the respective
operators completely at random but in a weighted random fashion. One possibility
would be to use an Adaptive Large Neighborhood Search (ALNS) which assigns starting
weights to the operators and dynamically adapts the weights based on their respective
performance. We however believe that finding appropriate weights to be an intricate task
which requires an adequate amount of fine tuning.

Regarding the use of a matheuristic, solving the BEXSLP is of course not limited to
our proposed approach. An interesting idea might be to use a genetic algorithm (GA)
as an alternative metaheuristic framework to our LNS. The GA could be used to select
promising stations and a MILP model solved for assigning demand to those stations. In
the same fashion could machine learning techniques be employed, which may over time
learn which station/location placements prove most promising towards finding a good
solution.

Our toolkit used for generating test instances also allows creation of vastly different
scenarios which undoubtedly influence the complexity of the problem. We settled on a
configuration which encapsulates a lot of aspects of the BEXSLP within a single instance
set, in what we believe to be a realistic fashion.

It could also be interesting to research adapted variants of the BEXSLP. For example,
it might be interesting to also consider limited charging times, in a similar fashion as

52

7.1. Future Work

we consider times where users can exchange batteries. It would also possible to specify
a constraint enforcing an overall budget for building stations and modules. By this,
one could for example look for solutions which minimize the delay, but, in terms of
construction costs, do not exceed a set amount of money. It might also be interesting to
specify a set of locations where competitors have constructed battery exchange stations.
One could then model the problem to enforce a minimal or maximal distance to each
competing location when planning the own set of locations.

53

List of Figures

6.1 Comparison of optimality gaps of solving the BEXSLP with an MILP and
our used construction heuristic (CH) w.r.t. different αdelay values. 35

6.2 Comparison of run times of solving the BEXSLP with an MILP and our used
construction heuristic (CH) w.r.t. different αdelay values. 36

6.3 Comparison of mixed, constr and delay w.r.t. different αdelay values. . . . 40
6.4 Comparison of mixed with randomized approaches w.r.t. different αdelay values.

. 43
6.5 Comparison of how solutions are iteratively improved by random and mixed

w.r.t. different αdelay configurations and instance groups. 49
6.6 Comparison of solving the BEXSLP with an MILP, the presented construction

heuristic (CH), random and mixed with w.r.t. different αdelay values. . . . 50

55

List of Tables

6.1 Maximum allowed memory to be used for each instance group. 32
6.2 Average optimality gaps and median computation times for different αdelay

configurations obtained by using Gurobi to solve the MILP of the BEXSLP in
comparison with our construction heuristic (CH). Column nopt refers to the
number of instances per instance group which could be solved to optimality
with the MILP. 34

6.3 Average optimality gaps, average number of iterations and median repair
times for different αdelay configurations for the single objective strategies. 37

6.4 Average optimality gaps, average number of iterations and median repair
times for different αdelay configurations for the mixed objective strategies. 39

6.5 Average optimality gaps, number of iterations and median repair times for
the strategies mixed and random w.r.t. different αdelay configurations. Entries
marked with a star denote results where a one-sided Wilcoxon signed-rank
test has shown that a respective strategy performed statistically significantly
better than the other strategy w.r.t. a 95% confidence interval. 42

6.6 Comparison of gaps between delay and random for αdelay = 10.0. Entries
marked with a star denote results where a one-sided Wilcoxon signed-rank
test has shown that a respective strategy performed statistically significantly
better than the other strategy w.r.t. a 95% confidence interval. 44

6.7 Average optimality gaps, average iterations and median repair times for mixed
w.r.t. different k, ν and αdelay settings. 45

6.8 Optimality gaps for mixed compared to our tested tabu list w.r.t. different
αdelay settings. 47

6.9 Average optimality gaps for the MILP, the presented construction heuristic
(CH), random and mixed for different αdelay settings. 48

57

List of Algorithms

1 Repair BEXSLP Solution . 21

2 Ensure zmodules . 22

3 Large Neighborhood Search for the BEXSLP 23

59

Bibliography

[AS14] Claudia Archetti and M Grazia Speranza. A survey on matheuristics for
routing problems. EURO Journal on Computational Optimization, 2(4):223–
246, 2014.

[BF12] Alireza Boloori Arabani and Reza Zanjirani Farahani. Facility location
dynamics: An overview of classifications and applications. Computers &
Industrial Engineering, 62(1):408–420, 2012.

[BLF92] Oded Berman, Richard C Larson, and Nikoletta Fouska. Optimal location of
discretionary service facilities. Transportation Science, 26(3):201–211, 1992.

[BPRR11] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hy-
brid metaheuristics in combinatorial optimization: A survey. Applied soft
computing, 11(6):4135–4151, 2011.

[BR16] Christian Blum and Günther R Raidl. Hybrid Metaheuristics: Powerful
Tools for Optimization. Springer, 2016.

[BT97] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization,
volume 6. Athena Scientific, 1997.

[CBW17] Makena Coffman, Paul Bernstein, and Sherilyn Wee. Electric vehicles revis-
ited: a review of factors that affect adoption. Transport Reviews, 37(1):79–93,
2017.

[CGI+20] Herminia I Calvete, Carmen Galé, José A Iranzo, José-Fernando Camacho-
Vallejo, and Martha-Selene Casas-Ramírez. A matheuristic for solving the
bilevel approach of the facility location problem with cardinality constraints
and preferences. Computers & Operations Research, 124, 2020.

[CKLT13] Ismail Capar, Michael Kuby, V. Jorge Leon, and Yu-Jiun Tsai. An arc
cover–path-cover formulation and strategic analysis of alternative-fuel station
locations. European Journal of Operational Research, 227(1):142 – 151, 2013.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

61

[Con99] William Jay Conover. Practical nonparametric statistics, volume 350. john
wiley & sons, 1999.

[CPvdV02] Richard K Congram, Chris N Potts, and Steef L van de Velde. An iter-
ated dynasearch algorithm for the single-machine total weighted tardiness
scheduling problem. INFORMS Journal on Computing, 14(1):52–67, 2002.

[CR74] Richard Church and Charles ReVelle. The maximal covering location problem.
In Papers of the regional science association, volume 32, pages 101–118.
Springer, 1974.

[Dan51] George B Dantzig. Maximization of a linear function of variables subject to
linear inequalities. Activity analysis of production and allocation, 13:339–347,
1951.

[DS10] Karl F Doerner and Verena Schmid. Survey: Matheuristics for rich vehicle
routing problems. In International Workshop on Hybrid Metaheuristics,
volume 6373 of (LNCS, pages 206–221. Springer, 2010.

[GL98] Fred Glover and Manuel Laguna. Tabu search. In Handbook of combinatorial
optimization, pages 2093–2229. Springer, 1998.

[Gon12] Jacek Gondzio. Interior point methods 25 years later. European Journal of
Operational Research, 218(3):587–601, 2012.

[GP+10] Michel Gendreau, Jean-Yves Potvin, et al. Handbook of Metaheuristics,
volume 2. Springer, 2010.

[GP14] Michel Gendreau and Jean-Yves Potvin. Tabu search. In Search methodologies,
pages 243–263. Springer, 2014.

[GZN16] Mehrnaz Ghamami, Ali Zockaie, and Yu Marco Nie. A general corridor
model for designing plug-in electric vehicle charging infrastructure to support
intercity travel. Transportation Research Part C: Emerging Technologies,
68:389–402, 2016.

[HMH17] Meysam Hosseini, Seyyed Ali MirHassani, and Farnaz Hooshmand. Deviation-
flow refueling location problem with capacitated facilities: Model and al-
gorithm. Transportation Research Part D: Transport and Environment,
54:269–281, 2017.

[Hod90] M. John Hodgson. A flow-capturing location-allocation model. Geographical
Analysis, 22(3):270–279, 1990.

[HRZ96] M. John Hodgson, Kenneth E. Rosing, and Jianjun Zhang. Locating vehicle
inspection stations to protect a transportation network. Geographical Analysis,
28(4):299–314, 1996.

62

[JORR20] Thomas Jatschka, Fabio F. Oberweger, Tobias Rodemann, and Günther R.
Raidl. Distributing battery swapping stations for electric scooters in an
urban area. In Nicholas Olenev, Yuri Evtushenko, Michael Khachay, and
Vlasta Malkova, editors, Optimization and Applications, volume 12422 of
LNCS, pages 150–165. Springer, 2020.

[KÇ18] Merve Keskin and Bülent Çatay. A matheuristic method for the electric
vehicle routing problem with time windows and fast chargers. Computers &
Operations Research, 100:172–188, 2018.

[KK17] Sadan Kulturel-Konak. A matheuristic approach for solving the dynamic
facility layout problem. Procedia Computer Science, 108:1374–1383, 2017.

[KL05] Michael Kuby and Seow Lim. The flow-refueling location problem for
alternative-fuel vehicles. Socio-Economic Planning Sciences, 39(2):125–145,
2005.

[KM78] Ravindran Kannan and Clyde L Monma. On the computational complexity
of integer programming problems. In Optimization and Operations Research,
volume 157 of LNE, pages 161–172. Springer, 1978.

[LGC+16] Carolina Lagos, Guillermo Guerrero, Enrique Cabrera, Stefanie Niklander,
Franklin Johnson, Fernando Paredes, and Jorge Vega. A matheuristic ap-
proach combining local search and mathematical programming. Scientific
Programming, 2016, 2016.

[LLCG17] Wenbo Li, Ruyin Long, Hong Chen, and Jichao Geng. A review of factors
influencing consumer intentions to adopt battery electric vehicles. Renewable
and Sustainable Energy Reviews, 78:318–328, 2017.

[LNdG19] Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama. Location
science. Springer, 2019.

[LW66] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.
Operations research, 14(4):699–719, 1966.

[ME13] S. A. MirHassani and R. Ebrazi. A flexible reformulation of the refueling
station location problem. Transportation Science, 47(4):617–628, 2013.

[MSV10] Vittorio Maniezzo, Thomas Stützle, and Stefan Voss. Matheuristics – Hy-
bridizing Metaheuristics and Mathematical Programming. Springer, 2010.

[NSdG15] Stefan Nickel and Francisco Saldanha-da Gama. Multi-period facility location.
In Location science, pages 289–310. Springer, 2015.

[Pap81] Christos H Papadimitriou. On the complexity of integer programming.
Journal of the ACM (JACM), 28(4):765–768, 1981.

63

[PR05] Jakob Puchinger and Günther R Raidl. Combining metaheuristics and exact
algorithms in combinatorial optimization: A survey and classification. In
International work-conference on the interplay between natural and artificial
computation, volume 3562 of LNCS, pages 41–53. Springer, 2005.

[PRP09] Jakob Puchinger, Günther R. Raidl, and Sandro Pirkwieser. Metaboosting:
enhancing integer programming techniques by metaheuristics. Matheuristics,
pages 71–102, 2009.

[RHL20] Nele Rietmann, Beatrice Hügler, and Theo Lieven. Forecasting the trajectory
of electric vehicle sales and the consequences for worldwide CO2 emissions.
Journal of Cleaner Production, 261, 2020.

[RND16] Achmad P Rifai, Huu-Tho Nguyen, and Siti Zawiah Md Dawal. Multi-
objective adaptive large neighborhood search for distributed reentrant per-
mutation flow shop scheduling. Applied Soft Computing, 40:42–57, 2016.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. Wiley, 1998.

[SH13] Pierre Schaus and Renaud Hartert. Multi-objective large neighborhood
search. In Principles and Practice of Constraint Programming, volume 8124
of LNCS, pages 611–627. Springer, 2013.

[TSC21] Renata Turkeš, Kenneth Sörensen, and Daniel Palhazi Cuervo. A matheuristic
for the stochastic facility location problem. Journal of Heuristics, 27:649–694,
2021.

[Wol20] Laurence A Wolsey. Integer programming. Wiley, 2020.

64

	Kurzfassung
	Abstract
	Contents
	Introduction
	Structure of the Work

	State of the Art and Related Work
	Previous Work
	Related Problems
	Matheuristics

	Methodological Approach
	Mathematical Programming Techniques
	Heuristics
	Matheuristics

	The Battery Exchange Station Location Problem
	A Matheuristic for the BEXSLP
	Large Neighborhood Search
	Construction Heuristic
	Destroy and Repair Operators

	Experiments and Results
	Test Instances
	Experimental Results and Discussion

	Conclusion and Future Work
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

