
Recommendation for
Orchestration Architectures in
Serverless Edge Computing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software und Information Engineering

eingereicht von

Kian Pouresmaeil
Matrikelnummer 01529142

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Mitwirkung: Univ.Ass. Dipl.-Ing. Philipp Alexander Raith, BSc

Wien, 24. Mai 2021
Kian Pouresmaeil Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Recommendation for
Orchestration Architectures in
Serverless Edge Computing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software and Information Engineering

by

Kian Pouresmaeil
Registration Number 01529142

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Assistance: Univ.Ass. Dipl.-Ing. Philipp Alexander Raith, BSc

Vienna, 24th May, 2021
Kian Pouresmaeil Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Kian Pouresmaeil

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Mai 2021
Kian Pouresmaeil

v

Acknowledgements

First and foremost, I want to thank my advisors, Schahram Dustdar and my co-supervisor,
Philipp Raith. I especially want to express my gratitude to Phillip for his commitment,
our productive discussions, and the invaluable feedback I received.

Furthermore, I want to thank my friends and family for their unwavering support during
my studies, always believing in me, cheering me up when I was feeling down, and
distracting me when I needed it.

Finally, I want to thank Jasmin for always looking after me, for her immense patience,
and for her endless support.

vii

Kurzfassung

Cloud Computing kann die Arbeitslast neuer Anwendungen, wie autonomer Fahrzeuge
oder Augmented Reality, nicht effizient bewältigen. Um dieses Problem zu lösen, ent-
stand ein neues Paradigma namens Edge Computing. Dies ermöglicht die Verarbeitung
in unmittelbarer Nähe der Nutzer, welche unter anderem eine geringere Latenzzeit er-
möglicht, die für diese neuen Anwendungen unerlässlich ist. Trotz allem bringt Edge
Computing auch neue Herausforderungen mit sich. Bei dem neuen Paradigma müssen
die Entwickler mit heterogenen Hardware- und Netzwerkinfrastrukturen umgehen, wel-
che die Bereitstellung der Anwendung und das Ressourcenmanagement erschwert. Als
Lösung für diese Herausforderungen entstand ein neues Paradigma namens Serverless
Edge Computing. Dabei wird von den Entwicklern eine Applikation in Form von state-
less Funktionen bereitgestellt, welche dann von einem Serviceprovider gehostet werden.
Dadurch übernehmen die Serviceprovider die Verantwortung für die Bereitstellung von
Anwendungen und das Ressourcenmanagement. Dies bedeutet, dass Entwickler sich
nicht mehr um die Heterogenität des Edge Computings kümmern müssen. Ein wichtiger
Teil des idealen Ressourcenmanagements ist die Ressourcenorchestrierung, die für die
effiziente Handhabung von Systemressourcen und das Erreichen von Service-Level-Zielen,
wie z. B. Latenz, unerlässlich ist. In der aktuellen Literatur findet man viele verschiedene
Orchestrierungsarchitekturen, was darauf hinweist, dass die Suche nach einer optimalen
Strategie ein komplexes Problem darstellt.

In dieser Arbeit stellen wir ein Framework vor, welches in der Lage ist Orchestrierungsar-
chitekturen auf der Basis aussagekräftiger Leistungsmetriken zu empfehlen. Zu diesem
Zweck erweitern wir ein serverless Experimentierframework, indem wir neue Funktionali-
tät implementieren. Zu den neuen Funktionen gehören, unter anderem, die dynamische
Erstellung heterogener Infrastrukturen mit Kubernetes-Clustern und die Unterstützung
mehrerer Orchestrierungsarchitekturen. Unser Framework basiert auf einem System-
modell, das in der Lage ist die Funktionsweise einer Orchestrierungsarchitektur auf
einer heterogenen Infrastruktur darzustellen. Um die Fähigkeiten unseres Frameworks
zu demonstrieren, untersuchen wir zwei verschiedene Szenarien. Dabei betrachten wir
jeweils eine zentrale, eine dezentrale und eine verteilte Orchestrierungsarchitektur. Die
Szenarien basieren auf bekannten Anwendungsfällen für Edge-Cloud-Systeme namens
Smart City und Industrial IoT. Damit wir die verschiedenen Orchestrierungsstrategien
aussagekräftig bewerten können, basieren wir unsere Empfehlungen auf aussagekräftige

ix

Leistungsmetriken aus der Sicht von Benutzern und Plattformanbietern, sowie auf die
Auswirkungen der Infrastruktur auf die Orchestrierungsarchitektur.

Unsere Ergebnisse zeigen, dass aus Sicht der Nutzer eine zentralisierte Architektur die
beste Wahl für ein Industrial IoT-Szenario ist. Im Gegensatz dazu ist eine dezentralisierte
Architektur die beste Wahl für ein Smart City-Szenario. Aus der Sicht von den beiden
anderen Perspektiven, erwies sich die dezentrale Architektur in beiden Szenarien als
effektiver, als die beiden anderen Architekturen.

Abstract

Cloud computing cannot efficiently handle the workload of new applications such as
autonomous vehicles or augmented reality. To overcome this problem, a new paradigm
named edge computing rose. It allows processing closer to users, enabling, among other
things, lower latency, which is vital for these new applications. Nevertheless, edge com-
puting introduces new challenges. In the edge computing paradigm, developers have to
handle heterogeneous hardware and network infrastructures, making application deploy-
ment and resource management challenging. To overcome the deployment difficulties,
another new paradigm named serverless edge computing came to life. Developers deploy
their applications as stateless functions, which are hosted by a service provider. Thus,
developers do not have to worry about the heterogeneous nature of edge computing, and
the service provider takes over the deployment and resource management responsibility.
One major part of ideal resource management is resource orchestration, which is vital for
efficiently handling system resources and reaching Service Level Objectives such as latency.
Current literature supports many different orchestration architectures, suggesting that
finding an optimal strategy is a complex problem.

This thesis introduces a framework capable of recommending orchestration architectures
based on expressive performance metrics. For this purpose, we extend a serverless
experimentation framework by implementing new functionalities, such as dynamically
creating heterogeneous infrastructures with Kubernetes clusters and supporting multiple
orchestration architectures. Our framework is based on a system model capable of
describing the operation of an orchestration architecture on a heterogeneous infrastructure.
To showcase our framework’s capabilities, we investigate two different scenarios using
a centralized, decentralized, and distributed orchestration architecture. The scenarios
are based on known edge-cloud system use cases: Smart City and Industrial IoT. To
properly evaluate the different orchestration strategies, we base our recommendation on
meaningful performance metrics from a user’s and platform provider’s perspective, as
well as the impact of the infrastructure on the orchestration architecture.

Our results show that from a user’s perspective, a centralized architecture is the best
choice for an IIoT scenario. In contrast, a decentralized architecture is the best choice
for a Smart City scenario. Considering the other two perspectives, the decentralized
architecture proved more effective than the other two architectures in both scenarios.

xi

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Aim of the Thesis and Expected Results 3
1.3 Approach . 4
1.4 Structure . 5

2 Background 7
2.1 Edge Intelligence in the Edge-Cloud Continuum 7
2.2 Serverless Edge Computing . 8
2.3 Orchestration Architectures . 9
2.4 Tools and Technologies . 12

3 State of the Art 17
3.1 Recommendation Systems and Surveys 17
3.2 Architecture . 18
3.3 Evaluations . 20

4 Framework 23
4.1 System Model . 23
4.2 Experimental Setup . 24
4.3 Custom Schedulers . 29

5 Evaluation 33
5.1 Approach . 33
5.2 Methodology . 37
5.3 Results . 43

6 Recommendation 103
6.1 Discussion . 103
6.2 User Perspective . 110

xiii

6.3 Platform Provider Perspective . 111
6.4 Impact of the Infrastructure on the Architecture 112

7 Conclusion 115
7.1 Research Questions . 116
7.2 Future Work . 118

List of Figures 121

List of Tables 127

List of Algorithms 129

Bibliography 131

CHAPTER 1
Introduction

1.1 Problem Statement and Motivation
Due to the emergence of edge intelligence applications, new requirements for latency,
geo-distribution, mobility support, and more have been introduced [74]. For example,
applications such as autonomous vehicles or augmented reality require low latency. The
new requirements are essential for these applications to operate smoothly. Otherwise,
they would not manage to respond in real-time to changes in their environment and,
therefore, make the application futile. [65, 57].

Traditional cloud data centers are geographically centralized and far from end de-
vices/users. Therefore, using only cloud centers is not feasible for handling these
challenges. To combat these weaknesses of cloud data centers, edge computing has
been proposed [43].

Edge computing allows computation closer to users, enabling better Quality-of-Experience
(QoE) and Quality-of-Service (QoS). However, the edge computing paradigm itself can
only partially replace cloud computing. The edge cannot match cloud data centers’
sheer computational power and resource capacity. Nevertheless, these technologies
complement each other, achieving better QoE for users [41]. Furthermore, edge intelligence
applications operate on multiple layers between edge and cloud [74]. Therefore, observing
both paradigms as the edge-cloud continuum is crucial to gaining a comprehensive
understanding.

Edge computing also comes with its challenges. In particular, resource management is
a significant concern due to heterogeneity being a recognizable aspect in this domain.
Edge computing elements use various platforms, hardware, and network technologies
[27]. Moreover, among other challenges, heterogeneity plays a vital role in why deploying
applications at the edge is challenging [24].

1

1. Introduction

One way to help the developer in this situation is the new paradigm called serverless
computing [5]. Here, the responsibility of resource management shifts away from the user
and to the service provider. In serverless computing, also known as Function-as-a-Service
(FaaS), developers can deploy an application as a stateless function. Initially, serverless
computing was created for the cloud, but it also found its way to the edge over time.
Placing serverless functions on the edge has the advantage of low latency compared to the
cloud layer. Therefore, moving them to the edge is particularly suitable for latency-critical
functions. However, moving to edge also means that serverless systems must work with
resource-constrained hardware or, in general terms, restricted infrastructures. Therefore,
serverless platforms should only add minimal overhead to avoid performance loss [9].
Moreover, function placement is NP-hard, making it a complex problem to solve [55].
As mentioned above, in serverless computing, the platform provider is responsible for
proper resource management. A significant aspect of this management is resource or-
chestration, which refers to automated consideration of the resource requirements of
workloads and efficient handling of available system resources [44]. It is paramount to ad-
dress appropriate scheduling and scaling strategies to establish appropriate orchestration
[44, 64]. In this context, scaling refers to allocating resources in real-time to maintain
application performance requirements and QoS. For example, resources should scale up
when the demand rises and scale down when the demand decreases. Scheduling aims
to find suitable host nodes for workloads based on their resource requirements while
maximizing the utilization of available resources [44]. The most mentioned explicit goals
in current literature are improved and effective resource management or the guarantee
of Service Level Objectives (SLOs) in latency reduction, application performance, or
application response time [13].
Based on current serverless frameworks, it is not possible to clearly indicate, which
resource orchestration approach performs best. The current literature supports different
serverless frameworks for the edge-cloud continuum, following different approaches and
architectures. For example, the work of Baresi et al. [6] follows an optimization driven
approach, while Han et al. [21] follow an AI driven approach. Additionally, both
frameworks use different architectures despite having the same goal. Further frameworks
can be found in Chapter 3. As there are different approaches to solving the same problem,
it implies that the most effective approach has not yet been determined, as well as it is a
complex problem to solve. Furthermore, a preliminary literature research found a lack of
frameworks for orchestration architecture strategy testing,
Different architectures need to be explored in greater depth. We explore a range of
architectures, including centralized, decentralized, and distributed architectures. While
in a centralized approach, an all-known master element is responsible for all orchestration
decisions, in decentralized architectures, the orchestration decisions are divided into intra-
cluster and inter-cluster decisions. Unlike centralized and decentralized architectures,
distributed architectures do not have a master element, so every cluster or node makes
its own decisions [30].
To this end, we create a framework for orchestration architecture evaluation based on

2

1.2. Aim of the Thesis and Expected Results

the benchmarking tool Galileo [59]. We can use most of the components in Galileo
out of the box, while the load-balancer and autoscaler need to be fine-tuned for each
orchestration architecture. Furthermore, Galileo does not provide any custom scheduler,
so it relies on the default Kubernetes scheduler instead. Given that various orchestration
architectures have distinct scheduling approaches, we designed custom schedulers, which
are also compatible with the Galileo framework. Moreover, we develop a framework that
facilitates the whole process, from creating virtual machines to gathering metrics from
experiments. This allows us and future users to conduct multiple different experiments
with less overhead.

This research project aims to reduce the complexity required to decide when and what
orchestration architecture should be used by investigating the performance of orchestra-
tion architectures on different infrastructures from different perspectives. In order to
accomplish this, we implement various orchestration architectures in Kubernetes [34] and
benchmark their performance based on key performance indicators (KPIs). Furthermore,
we work on a level where our approach and reasoning is not constrained by the tools and
technologies we use, and therefore generally applicable. For example, the framework can
be extended to other orchestration platforms. Finally, we form a recommendation for
orchestration architectures derived from the evaluation of our collected data.

1.2 Aim of the Thesis and Expected Results
Motivated by the problems described in Section 1.1, this thesis investigates the per-
formance of orchestration architectures in serverless computing. Therefore, based on
KPIs, we evaluate the main orchestration architecture strategies, namely centralized,
distributed, and decentralized [30]. For that reason, custom orchestration components,
such as schedulers, adjusted to an orchestration architecture need to be implemented.

In order to gather the necessary data, we implement the mentioned orchestration architec-
tures in Kubernetes, and use a predefined stack of data. Benchmarking is conducted using
an extension of the open-source tool Galileo, a pre-written autoscaler and load-balancer
[59, 58], and scheduler. This thesis answers the following research questions:

RQ1 How can we describe and categorize heterogeneous edge-cloud systems
and orchestration architectures? Nowadays, there exists numerous amount of
edge-cloud systems [60]. These systems are usually heterogeneous regarding hardware,
network, and more. Furthermore, there exist multiple different orchestration architectures.
Considering the various scenarios, a categorization would undoubtedly be helpful to create
a specific structure. A systematic description capable of modeling the heterogeneous
infrastructures and orchestration architectures builds the foundation for a unified approach
to evaluating such systems. This description also forms the basis for our framework.
It is expected to define a categorization of edge-cloud systems, which can be used for
RQ3, and a system model capable of describing heterogeneous edge-cloud systems and
orchestration architectures.

3

1. Introduction

RQ2 What KPIs are appropriate to evaluate an orchestration architecture?
There exists a wide variety of performance metrics for the edge-cloud continuum [3].
Potential KPIs are CPU/RAM resource usage, network throughput, application response
time, and scheduling duration [3, 8]. KPIs are vital to evaluate orchestration architectures
objectively. It is expected to find several metrics representing the performance of an
orchestration architecture.

RQ3 How can we create a system that allows and illustrates the differences
between orchestration architectures and heterogeneous infrastructures and
can make recommendations for those? This work aims to make recommendations
considering orchestration architecture and infrastructure from the perspective of a user, a
platform provider, and the impact of different infrastructures on the architectures. From
the user’s point of view, we recommend an architecture that can process requests as quickly
as possible. From the platform provider’s perspective, we concern us with the operating
costs. Regarding the infrastructure impact, we want to provide a recommendation
indicating which architecture is least affected by its infrastructure. The recommendation
is based on the categorization from RQ1 and the obtained KPIs from RQ2. The different
architectures are expected to have different impacts and perform differently in the same
circumstances. We do not expect to find the most optimal solution for each architecture.
Instead, we create a framework based on the system model from RQ1, which allows users
to find the best solution. We are evaluating this solution based on a detailed use case
study.

By answering these questions, this thesis contributes significantly to expanding knowledge
about the impact of different orchestration architectures. Furthermore, it supports
engineers during the design phase by simplifying the complexity required to decide the
more suitable architecture in specific scenarios.

1.3 Approach
This thesis aims to create a recommendation for orchestration architectures in serverless
edge computing. In order to reach this goal, we decided to use empirical experiments to
gather data and use that data later to create a recommendation. The overall approach is
described as follows.

Before starting the experiments, it is crucial to research existing orchestration architectures
for serverless edge computing. Since our recommendation should correlate with the
real world, we create infrastructures that mimic real-world edge scenarios and their
constraints as closely as possible. Furthermore, we combine the different infrastructures
with centralized, decentralized, and distributed orchestration architectures to investigate
the performance of each orchestration architecture in different scenarios.

We must base our evaluation on impactful metrics to assess different approaches to
orchestration architectures on different infrastructures. Therefore, we assess the outcome
of our experiments based on expressive performance metrics relevant to edge-cloud

4

1.4. Structure

systems found in current literature [3, 8]. The key performance indicators are categorized
into four different measurement levels: system, network, application, and orchestration.
This categorization should allow us to approach the evaluation in a more structured way.
Moreover, it helps readers quickly identify the strengths and weaknesses of orchestration
architectures.

We use our extension of the open-source tool Galileo [59] as the benchmarking tool for
our experiments. Among other things, custom schedulers, tailored to an orchestration
architecture, are implemented to assign the collected KPIs to an architecture more
effectively. Experiments are categorized into scenarios, where each scenario consists of an
orchestration architecture, a heterogeneous infrastructure, a specific user request pattern,
and network settings.

We evaluate the performance of the different orchestration architectures and compare them
to each other. Based on the findings of the experiments, the strengths and weaknesses
of the different strategies are discovered, and a meaningful evaluation can be given.
Finally, a recommendation can be formed based on the evaluation and findings during
the literature research regarding edge-cloud scenarios.

1.4 Structure
The remainder of this thesis is structured as follows. Chapter 2 outlines the relevant
background information of this work. In particular, we give an overview of edge intelligence
in the edge-cloud continuum, serverless edge computing, and orchestration architectures
and describe the tools and technologies used for our framework. Chapter 3 represents
the related work, highlighting work relevant to this subject area, such as evaluations
in the edge-cloud continuum and architectures of state-of-the-art serverless computing
frameworks. It not only shows other recommendation approaches but also introduces
other related work in the context of this thesis. The system model our framework is
based on together, with its workflow and custom schedulers, is described in Chapter 4.
Chapter 5 details the approach and methodology of our recommendation and evaluation
of the results. The discussion of the results and the recommendation of orchestration
architectures from different perspectives on different scenarios are presented in Chapter
6. Lastly, Chapter 7 concludes this thesis, answers our formulated research questions,
and outlines future work.

5

CHAPTER 2
Background

This section presents the fundamental concepts of edge intelligence, edge-cloud contin-
uum, serverless computing, and different orchestration architectures in the literature.
Furthermore, information about the tools used in the experiments is also presented.

2.1 Edge Intelligence in the Edge-Cloud Continuum
Cloud computing is a paradigm that offers on-demand computing services through a
pool of computing resources. Among other things, storage and computing resources
are services provided by the cloud [27]. These cloud data centers have the performance
requirements for hosting AI models. However, they are often far away from the users
[43]. This distance results in higher latency, which is not feasible for current training and
inference tasks in AI applications. Furthermore, moving the resources closer to the users
mitigates the bandwidth pressure caused by the massive amount of generated data [57].

Therefore, edge computing has been introduced, allowing applications to be executed closer
to the users and thereby reduce latency compared to cloud computing [6]. Within the
edge computing paradigm, applications and services are handled at the edge of a network
instead of sending them to the cloud. One other unique characteristic, besides low latency,
is heterogeneity. In edge computing, heterogeneity refers to the various technologies,
architectures, and infrastructures used by edge computing elements. Significantly, the
variations in software and hardware technologies in the end devices are the main factors
of the heterogeneity [27].

Edge computing alone cannot match cloud computing’s computational power and resource
capacity. Combining these two technologies allows edge computing to reach its fullest
potential. This cloud and edge computing combination is also called the edge-cloud
continuum [48]. Moreover, edge intelligence applications operate on multiple layers, so
the two paradigms must be considered together [74].

7

2. Background

Edge intelligence is a technology where edge computing and AI are integrated together
[57]. There has yet to be a clear definition [74, 14] for edge intelligence. However, current
literature agrees that it at least refers to executing an AI model on the edge [57]. Using
the edge enables very low latency and context-aware AI applications, which can handle
massive amounts of data from heterogeneous data sources [57]. Edge intelligence can
be further classified into AI for edge and AI on edge. The former describes a research
direction where AI technologies are used to solve constrained optimization problems in
edge computing. The latter researches how to run AI models on the edge while adhering
to QoS standards [14].

There are multiple possible use cases for edge intelligence in different domains, such
as smart agriculture, smart cities, and more. Raith and Dustdar [57] present several
use cases for edge intelligence applications. They describe how a hypothetical company
selling agricultural products could use edge intelligence to improve its business. To name
one use case, the company could use AI that estimates soil fertility to help farmers with
optimal seeding.

In edge intelligence applications, inference is one of the main operational tasks. While
it benefits from the edge in the form of lower latency, bandwidth reduction, and more,
the task also suffers from one of the drawbacks of edge computing: resource-constrained
devices and the resulting performance issues. The inference task is susceptible to latency
and performance issues. Therefore, it is vital to provide sophisticated orchestration to
handle the heterogeneity found in edge computing [57].

Since edge computing consists of multiple heterogeneous elements and technologies,
resource management has proven challenging. Some resource management solutions
exist, but most are unsuitable for highly distributed and heterogeneous environments
[69]. The heterogeneity can also be observed in the scenarios of [60]. Based on real-
world use cases, the authors demonstrate that edge computing applications consist of
different network technologies and heterogeneous computing devices. They introduce
multiple infrastructure scenarios and describe the different hardware used in them. The
hardware also differs vastly in computational power between these scenarios. Some use
computation-heavy hardware, such as edge data centers or compute clusters, while others
only use single-board computers and mobile devices. Furthermore, different network
capacities can be observed between these scenarios as well. This heterogeneity makes
operating data-intensive applications challenging. In order to deal with the complexity of
such systems, serverless computing has proven itself an increasingly compelling option[62].

2.2 Serverless Edge Computing
Serverless computing, also called Function as a Service (FaaS), is a service model where
the user only needs to provide the application in the form of stateless functions. The
provider manages other service responsibilities, such as resource allocation, load balancing,
and more. Serverless computing follows an event-driven architecture. Providers define a
set of event sources that can trigger user-defined functions. Some of the possible events

8

2.3. Orchestration Architectures

are, for example, an HTTP request from a user interface or a change to a database. Users
can then define rules and bindings to event sources to control when a function should
be executed [44]. FaaS can be used in different application domains. While the most
familiar domain for serverless computing is the web service domain, serverless computing
has also found its way into Big Data Analytics, Internet of Things, Machine Learning,
and more. Although each domain still faces challenges with serverless computing, its
potential is evident [9].

Serverless platforms come with distinctive attributes that, among other things, include
auto-scaling capabilities. This feature enables automatic scaling of resources to meet
demand. It should also be able to scale to zero when there is no traffic. Therefore, billing
can be implemented, where users are only charged when functions are executed, and
nothing is charged when functions are scaled to zero. Another characteristic of serverless
platforms is that many already support function code written in multiple languages,
including Java, Python, JavaScript, and more. Furthermore, providers set limits to
runtime requirements of function code, such as maximum memory, maximum execution
duration, and more, to preserve the system’s flexibility [44].

As mentioned earlier, some edge computing challenges are also related to serverless
computing. The most significant challenge is to improve overall performance since edge
devices are resource-constrained. Therefore, serverless platforms must keep overhead
to a minimum to avoid performance degradation. Another strategy to handle resource
constraints is offloading, where workloads that cannot be executed locally are dispatched
to other devices on the same or higher layer. Another challenge is latency because
it is vital to keep communication between devices as fast as possible, especially for
latency-critical applications. In similar scenarios, cold starts can also create bottlenecks.
A cold start occurs when a function is executed for the first time. An overhead is created
in this case due to the need to initialize the container and the underlying services [9].
Furthermore, function placement is NP-hard, making it a challenging problem to solve
[55]. To mention edge intelligence-related challenges, dealing with latency and bandwidth
consumption in model executions and providing an optimal splitting of inference tasks
across the edge-cloud continuum proves difficult. These challenges are attributable to the
heterogeneity of the required AI accelerators for the various tasks and environments [48].
Furthermore, there has yet to be a clear indication of which orchestration architecture
performs best. Current literature supports multiple approaches and architectures, see
Section 3.2, indicating that the best approach is yet to be found. Therefore, this thesis
examines the performance and impact of centralized, decentralized, and distributed
orchestration architectures.

2.3 Orchestration Architectures
This section briefly introduces the main orchestration architecture strategies named
centralized, distributed, and decentralized [30]. A visual illustration of these architectures
can be seen in Figure 2.1. Furthermore, it describes the primary responsibilities of

9

2. Background

(a) (b) (c)

Figure 2.1: Orchestration architectures. (a) Centralized; (b) Decentralized; (c) Dis-
tributed. Adapted from [13]

orchestration management.

2.3.1 Architectures
Centralized

Centralized approaches can be compared to a master-worker model, where a single control
component exists with a complete overview of the distributed system. Moreover, only one
controller component makes decisions regarding task- and resource allocation between
nodes. See Figure 2.1a for a figurative representation of the architecture. On the one
hand, a centralized approach makes it easier to evolve toward upcoming technologies and
maintain the system. On the other hand, through the single point of failure that the
central component represents, scalability and reliability suffer [45, 13, 30].

Decentralized

Like the centralized approach, decentralized architectures also contain a global controller
component. However, in contrast, local controller components that manage a group of
nodes also exist. In other words, intra-cluster decisions are made on a central controller,
whereas inter-cluster decisions are made on the local cluster controller. This strategy
is depicted in Figure 2.1b. Although this approach performs better than a centralized
approach regarding scalability and reliability, it needs to improve in maintenance and
evolution toward upcoming technologies [45, 13, 30].

Distributed

In a distributed approach, there is no master node. Computing clusters, even when
consisting of a single node, can make decisions autonomously. The nodes/clusters
can sometimes communicate and exchange local information with each other. While
distributed architectures provide reliability and scalability, they suffer at the expense of
expanding to upcoming technologies and maintaining the system [45, 13, 30]. During
this thesis, we define distributed systems as architectures with computing clusters that

10

2.3. Orchestration Architectures

do not communicate with one another. Figure 2.1c represents a figurative depiction of
the architecture.

2.3.2 Orchestration management responsibilities
As mentioned above, orchestration management is a critical task of serverless edge
computing. The aim of this orchestration layer should be able to predict on-demand
resources and provide an efficient scheduling strategy. Most serverless systems use a
load-balancer, autoscaler, scheduler, and resource monitor to handle the orchestration [58].
While the load-balancer manages the resource usage to avoid overloading a single resource,
the resource monitor collects resource utilization information and communicates it to the
control components. In our case, load-balancer, autoscaler, and scheduler are included in
the controller, which allows the controller to resolve scheduling challenges, among others,
on resource-level and instance-level [37]. These challenges are not to be underestimated
since scheduling serverless functions on a serverless platform based on user Service-level
Agreement is an NP-hard problem [44]. Additionally, the performance of the individual
control components also contributes significantly to the system’s performance.

Regarding resource provisioning, CPU and RAM usage are typical values that the
controller considers. The controller allocates resources when a new instance requests
them. One of the critical challenges of resource provisioning is to provide the perfect
amount of resources. In order to avoid over-provisioning, controllers can often dynamically
adjust resources with the help of the real-time resource monitor. However, it is also
possible to use Deep Reinforcement Learning or other AI technologies to further aid the
controller with resource provision decisions [37].

On instance level, the load-balancer takes control of the routing. It is designed as a
router, which helps in routing requests between nodes while keeping the load as equal
as possible between the nodes. The main approaches can be classified into hash-based
or multi-objective-based. The hash-based strategy is the more basic one, where a hash
function is used for each function, deciding its routing. If the target is unavailable,
it looks step-wise for the next node. In contrast, multi-objective-based strategies for
selecting the target node are based on multiple factors such as response time, resource
utilization, and more [37].

Furthermore, not only scheduling, but also scaling plays a vital role in the orchestration
layer. Scaling refers to automatically scaling resources to meet varying resource demands
from functions. In order to reach high resource efficiency, resources are expected to scale
out when there is a rise in demand and scale in when the demand diminishes. While there
are multiple types of scaling, we only describe horizontal scaling since this mechanism is
used in our framework. Horizontal scaling refers to the capability to provide and remove
new machines to meet the current demand [44]. In our case, we scale function instances
as Kubernetes Pods, described in Section 2.4.1.

Ultimately, these resource mechanisms are used to reach, among others, high resource
utilization, high availability, high scheduling throughput, and application-specific QoS

11

2. Background

[64]. As already mentioned, we utilize Kubernetes to implement our orchestration layer.
Since multiple well-known open source frameworks, such as Knative [29], OpenWhisk
[50], and OpenFaas [39], also utilize Kubernetes, we can assume Kubernetes to be a solid
choice.

2.4 Tools and Technologies
The following sections introduce tools and technologies used in the experiments.

2.4.1 Kubernetes
The content of this section is based on the official documentation of Kubernetes [34].

Kubernetes is a container orchestration platform that was open-sourced by Google in 2014.
Due to its popularity, a lot of tools and extensions exist. It follows a declarative style,
where users describe the desired status of an object within the system, and Kubernetes
tries to match the current state to the desired state. Furthermore, Kubernetes uses
container deployment as its deployment strategy. One of the benefits of containers is
their lightweight nature, unlike, for example, virtual machines. As mentioned earlier,
edge computing elements are constrained in resources. Therefore, using a lightweight
deployment is beneficial, enabling the edge elements to reserve more resources for
computational tasks.

Furthermore, Kubernetes comes with many features that facilitate the deployment of
applications. It enables users to run a distributed system resiliently by providing features
such as self-healing containers, service discovery and load-balancing, automated rollouts
and rollbacks, and more.

The following subsections cover some components of interest for the thesis. Figure 2.2
depicts the architecture of Kubernetes.

Cluster basic elements

In simple terms, when deploying Kubernetes, a cluster is created. Each cluster consists
of worker machines that can run the applications.

• Nodes
In Kubernetes, these worker machines are called nodes. Depending on the circum-
stances, these Nodes can be physical or virtual machines controlled by the control
plane. In order to run the workload, Kubernetes places containers (mostly Docker
containers [15]) into Pods, which runs on Nodes.

• Pods
These nods host Pod(s), the computing units that run the application. A Pod is a
group of one or more containers with shared storage and network resources. Pods

12

2.4. Tools and Technologies

Control Plane

Master Node

kube-apiserver

kube-controller-
manager kube-scheduler etcd

Node

kubelet kube-proxy

Pods

Node

kubelet kube-proxy

Pods

Node

kubelet kube-proxy

Pods

Figure 2.2: Kubernetes architecture

usually have a specification on how to run the containers and are always co-located
and co-scheduled on the same node in a shared context. The most common use
case of Pods is to run a single container and use the Pod as a wrapper for the
container since Kubernetes manages Pods but not the containers directly.

Control plane components

The control plane is the mind of the cluster, which makes all global decisions. The control
plane consists of four different components, described as follows.

• kube-apiserver
The kube-apiserver component exposes the REST Kubernetes API. It behaves like
the front end of the control plane and enables users access to the cluster’s shared
state, with which all other components also interact. Moreover, it configures and
validates data for objects such as pods, nodes, controllers, and more.

• etcd
Etcd is a consistent and highly available key-value store system. Kubernetes uses
etcd to store all cluster data, such as configurations, current cluster state, metadata,
and more.

13

2. Background

• kube-scheduler
The kube-scheduler’s responsibility lies in assigning newly created pods to nodes
when no assigned node is stated in the pod configuration. The selection of a node
is based on multiple factors, which can also be controlled by the user, such as data
resource requirements, policy constraints, affinity and anti-affinity specifications,
and more. Furthermore, Kubernetes allows users to write custom schedulers as well.
Since the default implemented scheduler from Kubernetes cannot fully meet the
requirements of edge applications [63], we decided to implement a custom scheduler
for our experiments.

• kube-controller-manager
This component runs the controller processes of the cluster. These processes are
non-terminating loops that regulate the cluster. Each controller has its control
loop, which observes at least one resource type. They watch the current state of the
cluster through the API server and, if needed, request changes to get the current
state closer to the desired state. These request changes are sent to the API server,
which then initiates the needed actions to execute the wanted changes inside the
cluster.

Node Components

The following components run on every node. Their function is to maintain running pods
and provide the runtime environment.

• kubelet
Each node in the cluster has a kubelet agent running. Its purpose is to manage

containers and ensure they are created and running within given specifications.

• kube-proxy
Similar to kubelet, each node runs a kube-proxy. It is a network proxy that enables
network communication to the pods from inside and outside.

2.4.2 Ansible
The content of this section is based on the official documentation [2].

Ansible was created to reduce the complexity of system configuration, deploying software,
and more on multiple computers. It is an IT automation tool with simplicity and ease of
use as its main goals and a focus on security and reliability. For transport, OpenSSH [49]
is used, which significantly reduces the security exposure. Furthermore, it is designed to
be audible to humans, even if they are unfamiliar with the program.

In order to use Ansible, the Ansible CLI tools must be installed on a machine, which is
called the control node. Afterward, the IP addresses of the target devices or hosts need
to be set. The basic units of Ansible execution are called playbooks. These playbooks

14

2.4. Tools and Technologies

are written in YAML syntax, which consists of tasks to be executed on the target hosts.
Playbooks are further divided into plays, roles, tasks, and handlers. A play is the primary
context of an execution and maps the hosts to the tasks. Inside a play, roles can be used,
which consist of a limited distribution of reusable Ansible content, such as tasks, handles,
files, and templates. A task defines an action to be applied to a host. Handlers are tasks
that can only be triggered by a previous task.

2.4.3 Galileo
We extend the framework created by Raith et al. [59]. This framework was created
to provide a tool for evaluating resource management strategies for edge-cloud clusters.
It is based on Galileo [61] and was, among other things, extended to Kubernetes with
additional system monitoring instruments. The end product of the extension created by
Raith et al. allows for conducting scalable and reproducible experiments and fine-grained
monitoring on Kubernetes clusters.

The primary analytics data from the framework can be divided into two categories: traces
and resource usage. The resource usage is captured by their fine-grained monitoring tool
telemd. Its task is collecting monitoring data from Kubernetes pods, such as CPU, I/O,
network, and more. Traces, however, hold much information about the HTTP requests,
such as round-trip time, latency, execution time, execution location, and more.

The experimental workflow of the framework is divided into three phases: pre-experimental,
runtime, and post-experimental. The framework handles the runtime phase entirely,
while user input is necessary for the other two phases. For the pre-experimental phase,
users must provide an application, the cluster nodes, clients creating HTTP requests,
and a workload. Any containerized function works for the application as long as it
exposes an HTTP endpoint. The framework is responsible for the runtime of experiments,
including the setup of control components, spawning applications, configuring clients, and
managing the recording of telemetry and trace data. Afterward, for the post-experimental
phase, the framework provides a gateway for Jupyter Notebooks, allowing users to access
recorded data during the experiments easily.

15

CHAPTER 3
State of the Art

This chapter provides an overview of recommendation surveys, similar work regarding
evaluating aspects of serverless computing, and orchestration architectures in state-of-
the-art frameworks.

3.1 Recommendation Systems and Surveys
During the literature research, only one paper [73] was found that shared a similar idea
to this thesis. The authors created a simple recommendation system, which facilitates
users in selecting an appropriate hardware accelerator for their edge applications. Unlike
us, they based their recommendation only on latency, power consumption and a cost
evaluation. Furthermore, they conducted the experiments on different hardware, and
used multiple machine learning inference tasks as their application for their benchmarks.
As there is limited literature regarding recommendation systems for edge computing, this
section also covers surveys of recommendation systems for cloud computing to showcase
the many different approaches for a recommendation system. The two following studies
analyzed existing cloud service recommendation systems and their approaches, exposed
issues with current systems, and proposed future research directions.

Sun et al. [66] surveyed state-of-the-art cloud service selection approaches. The analysis
is based on multiple aspects, such as selection techniques, data representation models,
considered characteristics, and more. Furthermore, they provide a more in-depth analysis
of different service selection approaches: optimization-driven, logic-driven, and multi-
criteria-based decision-making. The authors also identified eight open issues regarding
cloud service selection approaches.

Aznoli and Navimipour [4] conducted a review of existing techniques in cloud recom-
mender systems. The techniques were divided into four categories: collaborative filtering,
demographic-based, knowledge-based, and hybrid. Furthermore, the authors highlighted

17

3. State of the Art

the advantages and disadvantages of each mechanism and compared and reviewed the
strategies in terms of scalability, availability, and more.

3.2 Architecture
To showcase that current literature comprises multiple orchestration architectures and
approaches, this section provides an overview of different state-of-the-art orchestration
frameworks and their architectures.

3.2.1 Centralized
Pfandzelter and Bermbach[54] propose tinyFaaS, an innovative lightweight FaaS system
specifically designed to run on low-performance edge nodes. Moreover, it is designed to
run on a single node. It follows a centralized architecture style where a management
service creates functions within the platform. When a new function is requested, the
service orchestrates all necessary steps to add it to the platform. Furthermore, it is
possible to delete and modify functions at runtime.

Wang et al. [68] developed LaSS, a platform focusing on latency-sensitive serverless
computations on the edge. Its architecture is based on the architecture of Apache
OpenWhisk [50]. The authors redesigned the controller of the original decentralized
approach from OpenWhisk to a centralized approach. Moreover, they implemented a
profound allocation strategy, in which, during the presence of overload, each function
has a guaranteed minimum of resources and resource reclamation methods, in which
resources from over-provisioned functions are reassigned to under-provisioned ones.

Xiong et al. [70] created KubeEdge, an infrastructure for the edge computing environment
to extend the cloud capabilities to the edge based on Kubernetes. The architecture
consists, among others, of an edge controller, which can be integrated into Kubernetes
as a controller plugin. This controller aims to manage edge nodes and the cloud as one
logical cluster, allowing KubeEdge to schedule, deploy, and manage container applications
across the cloud and edge. The authors also introduce KubeBus, which connects the
edge and cloud into one virtual network, and a MetadataSyncService, which synchronizes
metadata between cloud and edge.

3.2.2 Decentralized
Yu et al. [71] propose a scalable and low-latency serverless platform called Pheromone,
which follows data-centric function orchestration. Regarding the architecture, the authors
propose a decentralized, two-tier scheduling approach. Each request first gets processed
by the global coordinator, which handles a disjoint set of workflows and routes the request
to a local scheduler at a node. The decision is based on node-level information reported
by local schedulers. The global coordinator aims to forward requests from overloaded to
free nodes and to drive the execution of a large workflow running on multiple nodes. The
local scheduler tries to keep data locality as high as possible and makes its decisions based

18

3.2. Architecture

on the information given by the function executors. Furthermore, it only routes function
requests to idle executioners to avoid concurrent invocations and resource conflicts.

Li et al. [36] propose a scalable, flexible, and high-performance serverless platform named
funcX, essentially serving, managing, and distributing tasks as a broker. It follows a
decentralized structure with a global management service as an entry point and locally
deployed funcX endpoints. The service provides, among others, monitoring features,
function registration, and function output handling. Function requests from users are
registered by the service and then forwarded to a suitable endpoint by a forwarder. These
endpoints have multiple components that handle scheduling, load balancing, resource
allocation tasks, and function execution. The function’s output is then delivered to the
service and made available to the user.

Moritz et al. [47] present a decentralized cluster-computing framework called Ray to
handle the new requirements of emerging AI applications. Its architecture consists of
two layers: the application layer and the system layer. The application layer contains
an API and its computation model, while the system layer handles task scheduling and
data management. In the system layer lays, among others, their global control state,
which maintains the entire control state of the system and enables all system components
to be stateless. Furthermore, the authors claim that every component in the system
layer is fully fault-tolerant and horizontally scalable. The authors developed a bottom-up
approach for task scheduling. Firstly, tasks created at a node are submitted to its
local scheduler. However, if the node is overloaded or cannot satisfy a task’s resource
requirement, the task is forwarded to the global scheduler to find a more suitable node.

3.2.3 Distributed
Baresi et al. [6] created a serverless-based framework called NEPTUNE for large-scale
edge applications. It can allocate CPU resources dynamically, use GPU power, balance
the workload on multiple nodes, and place functions considering the user’s location. A
three-level control hierarchy is introduced to manage the functions. Each controller
works independently of the others, and controllers do not interact on the same level. The
highest layer employs a single controller, which splits the topology into non-overlapping,
independent communities. At the next level, another controller is used for each community
to manage routing, horizontal scaling, and GPU/CPU utilization. Lastly, at the lowest
level, each function instance is managed by a controller handling vertical scaling to ensure
that the set response times are met.

The design from NEPTUNE is inspired by the work of Baresi and Quattrocchi [7] called
PAPS, a framework for large-scale edge applications. The framework follows a hierarchical
architecture consisting of three control layers. The first layer partitions the topology
into potentially overlapping and delay-aware communities. The second layer operates at
the community level and controls horizontal resource allocation and function placement.
Lastly, the third layer works at the node level and is in charge of vertical scaling to
minimize Service Level Agreement violations.

19

3. State of the Art

Ciavotta et al. [12] propose a serverless-based and distributed architecture called DFaaS
to balance the traffic load across edge nodes. In the suggested architecture, each edge
node consists of three components: Agents, Proxy, and FaaS platform. Every agent
is responsible, among others, for creating and managing a peer-to-peer network used
for discovering other agents and communicating topology updates, monitoring different
metrics, and configuring the proxy. Proxies receive incoming load information and the
current load distribution from the local agent. They use this information to partition
the load among the local FaaS platform and others on different nodes. Lastly, the FaaS
platform instantiates and executes the functions.

3.3 Evaluations
Since the recommendation is based on KPIs, this section presents evaluations in the edge
cloud continuum.

Palade et al. [51] evaluated the response time, throughput, and success rate of functions
deployed on Kubeless [31], Apache OpenWhisk, OpenFaaS [39] and Knative [29]. The
JMeter framework collects the metrics, and the serverless platforms were installed on
a bare-metal, single-master Kubernetes cluster. While we only focus on quantitative
metrics, Palade et al. also analyzed qualitative metrics such as programming language
support, open source license, ease of deployment, and more. In contrast to us, their
framework entirely depends on the control components of Kubernetes.

Mohanty et al. [46] provided a feature comparison of the open-source serverless frameworks
Kubless, OpenFaaS, Fission [20], and OpenWhisk. Furthermore, the authors evaluated
the performance of Kubless, Fission, and OpenWhisk deployed on a Kubernetes cluster.
In contrast to us, the authors assessed the performance under different loads. However,
they only analyze the response time and ratio of successfully received responses.

Lynn et al. [42] provided an overview and multi-level feature analysis of seven enterprise
serverless computing platforms for the enterprise environment. They collected their
information from vendor websites, platform documentation, and websites from specialists
comparing these platforms.

Lloyd et al. [38] investigated how functions deployed on AWS Lambda and Azure functions
influence the performance of microservices. While our focus lies more in quantitative
metrics such as round-trip-time or CPU usage, Lloyd et al. focused on identifying factors
influencing the performance of function microservices for serverless computing platforms.
Some of the factors are load-balancing and infrastructure elasticity. While we used a
local Kubernetes cluster, the authors used AWS lambdas and Azure functions for their
experiments.

By invoking concurrent functions, Lee et al. [35] evaluated the CPU performance,
network bandwidth, and I/O throughput of public enterprise serverless environments.
They analyze fewer quantitative metrics than us, but unlike us, they also analyze
qualitative metrics, such as language support and feature comparison. Furthermore,

20

3.3. Evaluations

we only focused on serverless computing, while they also showcased the difference
between serverless computing and virtual machines regarding cost efficiency and resource
utilization. Additionally, all our experiments were conducted on a local Kubernetes
cluster, while Lee et al. used various serverless enterprise environments such as AWS
Lambda and Azure Functions.

Böhm and Wirtz [8] presented a quantitative analysis of three different edge orchestration
strategies, named Capillary Container Orchestrator [67], Boundless Resource Orchestrator
[72], and Enhanced Container Scheduler [22]. Furthermore, they provided domain-specific
quantitative metrics, which can be used to evaluate edge orchestration strategies. Unlike
us, all experiments were conducted on the same infrastructure, consisting of a three-layer
architecture following a heterogeneous device structure. The authors deployed a CPU-
intensive application to evaluate the strategies based on their metrics. Like us, their aim
is to create a recommendation system that should be able to create a suggestion per an
agreed QoS.

21

CHAPTER 4
Framework

This chapter describes the extension of the Galileo framework used for collecting metric
data and the custom-made schedulers. This thesis requires multiple experiments, so
creating an easy-to-use experiment setup is vital. The complete framework consists of
four main steps, where many tasks are automated, which ensures a rapid setup. After
experimenting, the collected data needs to be preprocessed and analyzed. We support
a wide range of metrics requiring a different degree of preprocessing before they can
be used. The first section of this chapter describes the system model we use for our
framework. The next section gives more information about the steps of the setup flow
in Figure 4.1. The last section describes the developed schedulers for the centralized,
decentralized, and distributed architecture.

4.1 System Model
The framework manages a set of clusters C = {Cluster1, Cluster2, ..., C}, where each
cluster consists of a set of nodes N = {Node1, Node2, ..., N}, for each Clusteri ∈
C. Since it should be possible to define multiple resource capabilities and different
areas of responsibility for the nodes, each node is represented as a tuple Node =
(role, cores, ram, initialcpu). In this representation, role represents a node role, cores
represents an amount of CPU cores, ram represents a RAM amount, and initialcpu
represents a value for initial CPU usage. Furthermore, the zone name for cluster c is
described as nzone

c . This attribute can be helpful as zone names can be used as a grouping
mechanism, for example, dividing a large cluster into smaller clusters based on similar
characteristics such as location. As a result, tasks can be allocated more efficiently.

The framework oversees a set of function replicas F with f ∈ F . The location of a
function replica f is denoted as fn, implicating that the function runs on the node n.
Each function is further described with a CPU requirement f req

CP U in milliCPU and RAM
requirement f req

RAM in megabytes. MilliCpu represents the CPU time a function requests

23

4. Framework

[32]. Furthermore, we introduce trtt
f , which describes a function’s round-trip time target

duration f .

Moreover, the framework handles a set of clients U , where a client u ∈ U generates
requests. Ru,n represents the set of requests from client u sent from node n.

Furthermore, each node is connected through an inter-network. The framework supports
the possibility of emulating network latency between nodes, where we define ln1,n2 as the
latency value between node n1 and node n2.

As for the orchestration components, firstly, we define LB as the set of load-balancers
with lb ∈ LB. Then we introduce rrr,f , which represents to which function replica f a
request r is routed.
Then we define AS as the set of autoscalers with as ∈ AS, and drc,rtt as the desired
amount of function replicas for cluster c based on the round-trip time target duration rtt.
Then, we define SCHED as the set of schedulers with sched ∈ SCHED and pf,n as the
placement of a function replica f in node n. Table 4.1 lists all symbols.

Variable Description
C Set of clusters
N Set of nodes
nzone

c Zone name of cluster c
F Set of function replicas
fn function replica on node n
f req

CP U CPU requirement of function in milliCPUf
f req

RAM RAM requirement of function in megabytes f
trtt
f Target round-trip time of function f

U Set of clients
Ru,n Set of requests from user u from node n
ln1,n2 Network latency between node n1 and node n2
LB Set of load-balancers
rrr,f Function replica routing target f for client request r
AS Set of autoscalers
drc,rtt The desired amount of function replicas for cluster c, based on round trip time rtt
SCHED Set of schedulers
pf,n The placement of a function replica f on node n

Table 4.1: Symbols

4.2 Experimental Setup
In order to conduct the different experiment settings, we created an edge-cloud VM-based
provisioning system that uses the Galileo framework [59], with some extensions. Figure 4.2
depicts all components of the provisioning system. The complete framework can be

24

4.2. Experimental Setup

broken down into four significant steps, described as follows. An overview of the structure
is illustrated in Figure 4.1. In this figure, parts marked as legacy are implementations we
can use directly from Galileo. The steps marked as partially extended/new describe steps
in which we either extend existing implementations or, in addition to this, incorporate our
custom implementations in the step. Steps marked as new are parts where we cannot use
existing implementations of Galileo and, therefore, include our custom implementations.

1. Set up VMs
1. Execute install VM bash

script

2. VMs successfully installed

3. Extract IP-address and
hostname from VMs

1. Execute ansible script
installing K3s cluster

2. Kubernetes cluster created
with master and worker nodes

3. Execute bash script which
labels the nodes with their

roles

3. Deploy Components

2. Deploy controller component
with load-balancer, autoscaler

and scheduler

3. Deploy galileo workers

4. Deploy telemd daemonset

2. Install K3s

5. Deploy edge-chaos

6. Set tc parameters on
controllers

4. Conduct Experiment
1. Start experiment

2. Collect information

3. Analyze collected
information in galileo jupiter

notebooks

1. Start Storage VM

Legend
Legacy

Partially Extended/New

New

Figure 4.1: The setup flow of an experiment using the framework

1. Set up VMs

As different infrastructures are tested, the creation of VMs must be simple and automated.
Since VM creation is not part of the Galileo framework, we provide different bash scripts,
which can create and tear down our infrastructures. The script enables the user to control
the amount and resource configuration for each VM creation and is easily configurable.
In other words, it creates C and N from Table 4.1.

To facilitate the cluster configuration in the following steps, we recommend that the
created VMs follow a specific naming scheme that includes cluster roles and information
in its name. The bash install script also controls this configuration. This script makes
creating fully customizable clusters with different node types and zones possible. This
corresponds to nzone

c and roles, cores, ram from the Node tuple. Furthermore, we provide
a script that extracts the IP addresses of the newly created VMs, which is vital information
needed for the next step.

25

4. Framework

2. Install K3s

After the VMs are up and running, the next step is to create the cluster. Like Step
1, installing K3s is not part of the original Galileo framework. Since we want to be as
lightweight as possible, we decided to go with K3s [25], a lightweight Kubernetes built
for IoT and Edge. For the actual install process, instead of installing and configuring
all the requirements manually, we use the official Ansible playbook [26] provided by
K3s to install K3s. Configuring the host file and some configuration variables in the
playbook allows it to create a K3s cluster fully automatically. Usually, using Ansible
requires manually creating the host configuration by typing in the IP addresses of the
cluster nodes. In order to overcome this shortcoming, we provide a bash script that
automatically fetches the IP addresses of the newly created VMs and creates the host
configuration file. Since we use Ansible, users can effortlessly add custom tasks after
cluster initialization to prepare the cluster for further experiments.

InfluxDB MariaDB

Redis

Storage VM

go-load-
balancer

galileo-worker

telemd

Client Host

Controller Host

Worker

FN telemd

Worker

FN telemd

...

galileo-worker

Client Host

...

Cluster

go-load-
balancer

galileo-worker

telemd

Client Host

Controller Host

Worker

FN telemd

Worker

FN telemd

...

galileo-worker

Client Host

...

Cluster

...

Edge Chaos

etcd

autoscaler

scheduler

autoscaler

scheduler

Figure 4.2: All components of the provisioning system

26

4.2. Experimental Setup

3. Deploy Components

Figure 4.2 illustrates the system after deploying all components. The following paragraphs
introduce the components of Figure 4.2, and their responsibilities.

After the clusters are set, it is time to start a storage VM, where the storage systems
run, including a Redis, InfluxDB, and MariaDB instance. These three storage systems
are used for event publishing and metric processing. Furthermore, we start an etcd
instance, which is used for our load-balancer. This storage system is a prerequisite for
the Galileo framework and needs to be done manually. Afterward, deployment of custom
orchestration and the Galileo components can start.

Firstly, the controller components such as autoscaler (AS), scheduler(SCHED), and
load-balancer(LB) are deployed, where the autoscaler and load-balancer are provided by
the Galileo framework. The autoscaler [16] and scheduler [16] are written in Python, and
the load-balancer in GO. They create and manage the set of function replicas F .

The responsibility of the autoscaler is to manage the dynamic allocation of function
replicas during the experiment. It is based on the official default Kubernetes HPA [33]
and uses round trip time to determine the number of replicas. Equation (4.1) is used for
calculating the number of desired replicas and relates to drc,rtt.

desiredReplicas = ceil[currentReplicas ∗ (currentMetricV alue/desiredMetricV alue)]
(4.1)

The currentMetricValue correspondents to the 50th percentile of round trip time (trtt
f)

values of user requests sent and completed in the last ten seconds. The desiredMetricValue
corresponds to a chosen target duration (see Table 4.2 and Table 5.4). Furthermore, the
scale-down is inspired by OpenFaaS [39], where scale-down happens gradually. In this
case, the largest possible scale-down is 20 pods for each scale-down decision. Moreover, if
there are no completed user requests in the last seconds, the autoscaler also scales down
30% of the currently running pods. Furthermore, there is a controllable reconcile interval
integrated into the autoscaler. More information about this parameter can be found in
Table 4.2.

Scheduling (pf,n) new replicas and therefore defining the location of a replica (fn) is the
responsibility of the scheduler component. The Galileo Framework provided no scheduler.
Therefore, we developed custom schedulers for each orchestration architecture. In general,
all schedulers work similarly in the sense that the most optimal node is selected based on
the CPU utilization. For a more detailed overview of the schedulers, see Section 4.3.

The earlier mentioned etcd store provides up-to-date weight values for the Go-based
load-balancer [17]. The load-balancer follows a weighted round-robin strategy, where the
weights are based on latency. Its task is to handle the requests from galileo workers by
forwarding the calls to Pods following the weight distribution published in etcd. The
forwarding of requests refers to rrr,f

27

4. Framework

The next step is to deploy the galileo workers, which represent the clients U . They act
like users and generate the workload. The Galileo framework allows multiple workload
profiles as well. Finished requests with information such as latency, round-trip time,
source, and target cluster are published to Redis. This request refers to Ru,n and can
help further understand how the application and cluster perform.

Then the telemd [18] deamonsets are deployed. They collect the resource usage of each
node and publish them to Redis. This data can be used to get more insights into how a
cluster handles the workload.

Afterward, edge-chaos [19] is started. Edge-chaos allows us to create CPU stress, which
is needed for the weak worker nodes (see Section 5.1.1). It is used for the initialcpu
value from the Node tuple.

Lastly, the network latency and available bandwidth between the compute units in the
system gets emulated using the Linux network traffic shaping tool tc, representing ln1,n2.
This integration is also part of our extension of the Galileo framework, and the latency
and bandwidth values are fully customizable.

We also provide a bash script to teardown all mentioned components, which is helpful
when multiple experiments are conducted consecutively.

4. Conduct Experiment
All required components are up at this point, and it is possible to start an experiment. For
an experiment, a set of parameters is supported. To get closer to real-world applications
and depict the impact of cascading delays during orchestration, we created multiple
parameters, such as a delay for the scheduler, a maximum amount of replicas, and a target
duration and reconciliation interval for the autoscaler. The following Table 4.2 introduces
the different parameters added to the framework. We also further improved how an
experiment is started so that it is possible to run multiple experiments consecutively
and with different parameter sets. Furthermore, since we provide a bash script for
shutting down clusters, we can run consecutive experiments on multiple cluster setups.
Unfortunately, it is impossible to run multiple experiments simultaneously since the
original Galileo framework does not support this.

Table 4.2: Parameter values

Name Description Unit
delay This value describes how long the scheduling decision is artificially delayed. s
reconcile interval This value describes at what intervals the autoscaler calculates if an up or down scale is necessary. s
max scale This value describes the maximum amount of replicas the autoscalers are allowed to scale up globally. #
target duration This value describes the target latency value used by the autoscaler to make its scaling decisions. s

As an extension of the Galileo framework, we also provide the possibility to save the
Kubernetes logs from pods to log files through a bash script. At this stage, only logs
of control components are saved into log files. However, this can easily be extended to

28

4.3. Custom Schedulers

other components as well. Furthermore, it is also possible to customize where and how
the log data is saved.

4.3 Custom Schedulers
This work involved the development of three different schedulers: one for the central-
ized orchestration, one for the decentralized orchestration, and one for the distributed
orchestration. This subsection describes the developed schedulers in a more detailed way.

Centralized Scheduler

The centralized scheduler is the only scheduler in the cluster and has the ability, to get
information about all nodes, regardless of their zone affiliation. The algorithm is held
relatively simple. At first, the scheduler waits for a delay amount of seconds. Then,
the scheduler searches for the node with the lowest CPU utilization, which has enough
resources to host the new function instance. Algorithm 4.1 illustrates the algorithm
as pseudocode. In line 6, node is Ready refers to a Kubernetes node status, and node
has enough resources checks if a node has enough CPU and RAM resources to host a
Kubernetes Pod. The function get_min_cpu_usage looks for the node with the currently
lowest amount of CPU usage, and the function bind_pod instructs Kubernetes to run
the newly created Pod on the provided Kubernetes node.

Algorithm 4.1: Centralized Scheduler
Input: Kubernetes Pod in status Pending pod, a scalar delay, All Kubernetes

Nodes capable of hosting function instances nodes
1 if delay > 0 then
2 wait(delay)
3 end
4 ready_nodes = ∅;
5 foreach node in nodes do
6 if node is Ready AND node has enough resources then
7 ready_nodes = ready_nodes ∪ node;
8 end
9 end
// get_min_cpu_usage returns the node with the lowest CPU workload

10 best_node = get_min_cpu_usage(ready_nodes);
// bind_pod binds the pod to the node

11 bind_pod(pod, node);

Distributed Scheduler

The distributed scheduler works very similarly to the centralized one. However, there
are schedulers, one for each zone, and each scheduler only manages nodes within the

29

4. Framework

same zone. Therefore, in contrast to the centralized strategy, a distributed scheduler
searches for the node with the lowest CPU utilization, which has enough resources to
host the new function instance only inside its zone. There is no communication between
the schedulers. Algorithm 4.2 illustrates the algorithm as pseudocode.

Algorithm 4.2: Distributed Scheduler
Input: Kubernetes Pod in status Pending pod, a scalar delay, Kubernetes

Nodes capable of hosting function instances in the same zone as the
scheduler nodes

1 if delay > 0 then
2 wait(delay)
3 end
4 ready_nodes = ∅;
5 foreach node in nodes do
6 if node is Ready AND node has enough resources then
7 ready_nodes = ready_nodes ∪ node;
8 end
9 end
// get_min_cpu_usage returns the node with the lowest CPU workload

10 best_node = get_min_cpu_usage(ready_nodes);
// bind_pod binds the pod to the node

11 bind_pod(pod, node);

Decentralized Scheduler

The decentralized scheduler follows a two-step approach. The first step happens in the
cloud, where, in our first idea, the cluster zone with the lowest average node CPU usage
is selected. However, because the cloud zone only contains strong nodes, while the other
zones host strong and weak nodes with a preload of 50% CPU usage, the cloud zone’s
average CPU usage is significantly lower than the other zones. As a result, the global
scheduler schedules all the pods to the cloud. With way more function instances on the
cloud than on the other clusters, the load-balancer started to route every request to the
cloud since more instances on a zone allowed for better distribution and, eventually, a
lower latency. However, since we want to analyze the whole infrastructure and not just
one zone, we decided to, contrary to the centralized and distributed scheduler, consider
not only the CPU usage of the nodes but also the source location of the scaling request.

The pseudocode for the first step is illustrated in Algorithm 4.3. The algorithm starts
with waiting for a delay amount of seconds. Then, similarly to the distributed scheduler,
the scheduler looks for the node with the lowest CPU utilization, which has enough
resources within a specific zone. In this case, we look at the origin zone of the scaling
request. If there is such a node, we use the zone of this node. Otherwise, we search for

30

4.3. Custom Schedulers

the zone with the lowest CPU utilization of suitable nodes. Then, we delegate the pod
to the local scheduler responsible for the found zone.

The function cal_avg_cpu_usage_per_zone firstly aggregates the CPU utilization of all
suitable nodes for each zone. Then, it determines the average value per each zone and
returns the average values and their corresponding zone.
The function get_zone_with_min_avg_cpu_usage uses the return value of
cal_avg_cpu_usage_per_zone and returns the zone with the lowest average CPU uti-
lization.

After the global scheduler rescheduled the pod, the chosen local scheduler schedules
the pod to the node with the lowest CPU usage of its zone. The local scheduler in the
decentralized architecture works the same as the scheduler in the distributed architecture
(see Algorithm 4.2)

31

4. Framework

Algorithm 4.3: Decentralized Global Scheduler
Input: Kubernetes Pod in status Pending pod, a scalar delay, All Kubernetes

Nodes capable of hosting function instances nodes, Map of zone name as
key and local scheduler as value local_schedulers

1 if delay > 0 then
2 wait(delay)
3 end
4 origin_zone = pod.origin_zone;
5 ready_nodes = ∅;
6 foreach node in nodes do
7 if node.zone = origin_zone AND node is Ready AND node has enough

resources then
8 ready_nodes = ready_nodes ∪ node;
9 end

10 end
11 if ready_nodes is Empty then
12 foreach node in nodes do
13 if node is Ready AND node has enough resources then
14 ready_nodes = ready_nodes ∪ node;
15 end
16 end

// calc_avg_cpu_usage_per_zone aggregates the CPU usage of each node

for each zone and calulcates the average value. Retains the

information which avg value is for which zone

17 avg_cpu_usage_per_zone =
calc_avg_cpu_usage_per_zone(ready_nodes);

// get_zone_with_min_avg_cpu_usage returns the zone with the lowest

average CPU usage

18 selected_zone =
get_zone_with_min_avg_cpu_usage(avg_cpu_usage_per_zone);

19 local_scheduler = local_schedulers[selected_zone];
// reschedule_pod sends the pod to the local scheduler to be

scheduled there

20 reschedule_pod(pod, local_scheduler);
21 end
22 else
23 local_scheduler = local_schedulers[origin_zone];

// reschedule_pod sends the pod to the local scheduler to be

scheduled there

24 reschedule_pod(pod, local_scheduler);
25 end

32

CHAPTER 5
Evaluation

This chapter describes the evaluation procedure, visualized in Figure 5.1. Firstly, the
requirements for a meaningful evaluation must be set. Therefore, the first section
describes the chosen categorization and investigated metrics for the experiments. The
categorization is based on real-world scenarios, and the metrics are chosen based on
their description and significance found in current literature. Summarized in Step 1 in
Figure 5.1. Section 5.2, Step 2 in Figure 5.1, illustrates the process of an experiment.
There, we describe the setup of an experiment and the different steps from creating
the experimental environment to the actual execution. There are three steps: the first
two steps create the experimental environment, and the last step illustrates the actual
execution of the experiment and the information processing. In order to ensure the
reliability of the results, every experiment is repeated five times. The last section in this
chapter, Step 3 in Figure 5.1, presents the results of the experiments.

5.1 Approach
Since the evaluation should be related to the real world, it is crucial that we first create
an edge-cloud categorization based on real scenarios. This categorization helps us to build
the experimental infrastructure in a way that correlates to the real world. Furthermore,
to conduct an adequate evaluation, focusing on impactful performance metrics is essential.
Consequently, we present various metrics, all impacting an orchestration architecture’s
quality of service.

5.1.1 Edge-Cloud Categorization

There are many different scenarios in which edge computing is used. Two of them are
named urban sensing and Industrial IoT (IIoT) [60].

33

5. Evaluation

Step 1 Step 3

Step 2Approach
Consists of creating an Edge-Cloud

categorization and defining
orchestration performance metrics

Methodology
Consists of illustrating the

experimental setup and describing
the metric data processing

Results
Consists of the results of the

experiments and an assessment
based on these results

Figure 5.1: Evaluation procedure

Urban sensing describes a scenario where smart cities are trying to provide environmental
data for citizens and the government. One way to realize this concept is to deploy IoT
nodes with cameras and sensing abilities all over the city. The collected data can then
be used for monitoring applications, accident risk prediction, crowd behavior, and more.
Following the Chicago project Array of Things [10], technologies such as Wi-Fi and
cellular networks were used for its network infrastructure. For the nodes, Single Board
Computers (SBCs) with sensors and cameras were utilized [60].

Industrial IoT is a key enabling technology for Industry 4.0 [60]. The edge computing
paradigm supports IIoT in multiple situations. The edge for instance, can improve
the flexibility of the network middleware. Furthermore, it enhances the interaction
with generated information and enables advanced data analytics [11]. In contrast to
urban sensing, IIoT uses more powerful edge computing hardware such as embedded AI
hardware, small-form-factor computers, edge data centers, and more. Moreover, IIoT
has a stronger network infrastructure, providing high down and upload rates.

Generally, this thesis looks at the scenarios from a higher level and only observes the
different network and resource constraints. Therefore, we use a simple categorization
based on high/low network and resource constraints, both elicited from the scenarios and
the paper by Raith et al. [58]. This categorization allows us to emulate the heterogeneous
nature of edge computing, including its different network traffic, latency, bandwidth,
and computation resources. These computation resources can be further divided into
strong and weak worker nodes, where they differ in their computational power in form of
CPU power and RAM capacity. Latency values and available bandwidth are adjusted
to the specific scenarios, which allows us to mimic real-life network constraints to an
adequate level. A more detailed description of the different node types, infrastructure
setup/constraints, and network constraints are available in Section 4.2.

34

5.1. Approach

In the context of this work, a low constraint environment (both network and resource)
corresponds to an IIoT scenario, and the high constraint environment corresponds to
an urban sensing scenario. Furthermore, a high resource constraint environment is
characterized by edge clusters having more than 50% weak worker nodes. Otherwise,
the environment is classified as low constraint. In the context of this thesis, such an
environment, together with an orchestration architecture, outlines the setup of the
experiments.

Furthermore, each cluster for an orchestration has a different allocation of worker node
types. These decisions are based on resource heterogeneity, a recognizable aspect of edge
computing. However, since the experiment is conducted on virtual machines, we lose
the heterogeneity of CPU resources. Therefore, CPUs in the high constraint setting
begin with 50% stress. This artificially created performance degradation allows us to
get closer to resource heterogeneity from real-world devices. Network categorization
is configured by network latency and available bandwidth in the experimental setup.
A highly constrained network has a higher latency than a low one and has a limited
bandwidth, while the bandwidth of the low one is not meaningfully limited. Table 5.1
provides a brief overview of the configuration of both constraint levels.

Table 5.1: Configurations of each constrain level

Constrain level CPU Initial CPU Stress RAM Latency Bandwidth
high weak 50% weak high limited
low strong 0% strong low unlimited

5.1.2 Orchestration Performance Metrics

In order to judge the quality of an orchestration architecture, it is essential to gather
information about the current state of the nodes. Therefore, it is essential to find a
suitable set of QoS parameters for an empirical experiment [8]. Based on the works [8]
and [3], the following part introduces the essential metrics categorized in measurement
levels for evaluating the QoS of an orchestration architecture. All the definitions of
the used metrics can be found in Table 5.2. We introduce the following levels: system,
network, application, and orchestration.

System level

This level represents the physical resources used percentage-wise by the machines. While
we analyze the average CPU and RAM usage summarized per cluster and node type,
since many nodes are active in the cluster, we do not analyze the CPU or RAM utilization
for each node separately. Furthermore, we gathered percentages of CPU and RAM usage
for each pod. So, in addition to cluster and node types, we also look at the following pod
types per cluster: load-balancer, function replica, scheduler, and autoscaler. For these

35

5. Evaluation

Table 5.2: Selected performance metrics

Measurement level Name (Metric) Short Description Abbreviations Unit Range
System level RAM usage Ram usage relative to the

node’s capacity.
ram % 0-100

CPU usage CPU usage relative to the
node’s capacity.

cpu % 0-100

Network level Network throughput The sum of reads and writes
per second in the network.

net MB/s 0-X

Network latency Latency values of user re-
quests.

lat ms 0-X

Application level Round trip time Round trip time of user re-
quests.

rtt s 0-X

Application throughput Average number of requests
processed.

at # 0-X

Orchestration level Zone crossings Number of times a request got
processed in a different zone
than requested from.

zc # 0-X

Scheduling duration The time that a scheduling op-
eration took.

schedd ms 0-X

Scaling duration The time that a scaling opera-
tion took.

scaled ms 0-X

Times of scaling The amount of times scaling
occurred.

tos # 0-X

pods, the average CPU and RAM usage are examined. Further information about the
pod types can be found in Section 4.2.

Network level

This level represents the metrics correlating with in- and outgoing communication from
nodes and pods. In our case, network throughput refers to the amount of data sent and
received in a set amount of time. Network latency is the time delay between the start
and the received timestamp. However, it is essential to mention that the latency value
depends on the payload, but since our experiment uses the same payload size for all
requests, this is fine.

Regarding the throughput, we analyze the distribution of reads and writes on infrastruc-
ture and average values on pod per cluster level. The pod types we look into are the
same as the ones on the system level. Regarding network latency, we decided to look at
the distribution of latency values for all request paths.

Application level

Application-level metrics depend on the application running. Therefore, we are interested
in our application’s round trip time and the application throughput the architectures can
produce. Round trip time refers to the duration of a request to be processed by the system
and sent back to the user. In our case, application throughput refers to the number of

36

5.2. Methodology

answers received per interval. To better understand the application throughput, we also
consider the amount of sends per time interval.

Similar to network latency, the round trip time is also analyzed by the distribution of
values for all request paths. For the application throughput, we examine average values
only for each orchestration architecture in their environments.

Orchestration level

The metrics on the orchestration level refer to orchestration actions. The zone crossings
metric refers to the number of times a request got processed in a zone different from
the one the user is in. This metric is crucial regarding operational costs since inter-zone
communication is often more expensive than intra-zone communication. With the times
of scaling metric, we can analyze the resource efficiency of the orchestration architectures.
The metrics scaling duration and scheduling duration give us an insight into how fast an
architecture can make orchestration decisions. All these metrics are examined for each
orchestration architecture.

5.2 Methodology
This chapter provides an overview of configuring the framework for our experiments.
Furthermore, it includes how the framework collects the required metrics and how we
process them.

5.2.1 Experimental Setup
This section shares more information about how we set up our experiments. It follows a
similar structure as Section 4.2 to trace which configurations belong to which area of the
framework.

1. Set up VMs

In the context of our experiments, we differentiate between weak and strong VMs. See
Table 5.3 for further information. The chosen units are based on [60]. Since one of the

Table 5.3: VM types

VM type CPU RAM
Weak 2x Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz 3072 MB
Strong 8x Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz 16384 MB

categorization aspects of edge cloud systems is the resource constraint, we created two
cluster setups for each orchestration architecture. Figure 5.2 depicts the infrastructure
for high resource constraint environments with inter-network connections. We follow

37

5. Evaluation

the categorization we defined in Section 5.1.1, where every edge cluster containing more
than 50 % of weak worker nodes is considered highly constrained, and each cluster has a
different allocation of worker nodes. Figure 5.3 depicts the infrastructure for low-resource
environments and inter-network connections. Additionally, the cluster names only have
semantic value. In the framework, the zone names divide the infrastructure into the three
clusters illustrated in Figure 5.2 and Figure 5.3.

Centralized

Controller Node

Worker Node

Worker Node

Edge Cluster 3
Client

zone-c

Controller Node

Edge Cluster 1

Worker Node

Client

zone-a

Worker Node

Cloud zone-c

Worker Node Worker Node

Decentralized

Distributed/Autonomous

Worker Node

Worker Node

Cloud zone-c

Worker Node Worker Node

Worker Node

Worker Node

Edge Cluster 2
Client

zone-b

Worker Node

Worker Node

Worker Node

Edge Cluster 1

Worker Node

Client

zone-a

Worker Node

Worker Node

Controller Node

Edge Cluster 2

Worker Node

Client

zone-b

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Edge Cluster 1
Client

zone-a

Controller Node

Worker Node

Worker Node

Worker Node

Edge Cluster 2
Client

zone-b

Controller Node

Worker NodeWorker Node

Worker Node

Worker Node
Weak Node

Strong Node

Inter-network

Controller Node

Master Node Master Node

Controller Node

Master Node

Figure 5.2: High resource constraint infrastructure with inter-network connection for
centralized, decentralized and distributed orchestration

Regarding the naming scheme, each node has its corresponding zone and purpose in
its name, allowing us, in further steps, to execute tasks specific to zones and node
assignments.

2. Install K3s

In this step, the provided Ansible setup gets executed, thereby creating the cluster.
Furthermore, we extended the playbook by a post-installation role, which takes care of
adding custom Kubernetes labels and authorizing custom controllers to access Kubernetes

38

5.2. Methodology

Centralized

Controller Node

Worker Node

Worker Node

Edge Cluster 3
Client

zone-c

Controller Node

Edge Cluster 1

Worker Node

Client

zone-a

Worker Node

Cloud zone-c

Worker Node Worker Node

Decentralized

Distributed/Autonomous

Worker Node

Worker Node

Cloud zone-c

Worker Node Worker Node

Worker Node

Worker Node

Edge Cluster 2
Client

zone-b

Worker Node

Worker Node

Worker Node

Edge Cluster 1

Worker Node

Client

zone-a

Worker Node

Worker Node

Controller Node

Edge Cluster 2

Worker Node

Client

zone-b

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Edge Cluster 1
Client

zone-a

Controller Node

Worker Node

Worker Node

Worker Node

Edge Cluster 2
Client

zone-b

Controller Node

Worker NodeWorker Node

Worker Node

Worker Node
Weak Node

Strong Node

Inter-network

Controller Node

Master Node Master Node

Controller Node

Master Node

Figure 5.3: Low resource constraint infrastructure with inter-network connection for
centralized, decentralized and distributed orchestration

resources using the Kubernetes API. The custom labels define the role of each node in
our cluster and are set based on the node name. Regarding node role assignment, we
distinguish between four different labels:

• node-role.kubernetes.io/client=true
Nodes with "client" in their name contain this label. They create the workload for
the application. The workload consists of simple REST requests with an image as
a payload. Each of the requests has an average size of 621 KB.

• node-role.kubernetes.io/controller=true
This label denotes nodes with "controller" in their name. They serve as controllers
where orchestration actions such as scheduling and scaling are computed.

• node-role.kubernetes.io/worker=true
Nodes with "worker" in their name have this label and contain pods with the
application function running. The function consists of a pi digits calculator.

39

5. Evaluation

• ether.edgerun.io/zone=zone-x
Every node has zone-a, zone-b, or zone-c in its name; based on the node name,
each node gets a zone label. For example, a node containing the name zone-a has
the label ether.edgerun.io/zone=zone-a. All nodes in one zone are treated as one
cluster.

It is essential to mention that since we use Kubernetes with one master node and its
Kubernetes API, we cannot build a fully distributed infrastructure because all API
communication goes through the master node. For this to be possible, multiple detached
master nodes would be needed. Nevertheless, our evaluation is unaffected by this.

3. Deploy Components

We create our storage VM following the instructions from the Galileo framework. Af-
terward, the control components are deployed when the clusters are up and running.
For the centralized architecture, we deploy a global autoscaler, global load-balancer,
and global scheduler in the Cloud cluster. For the distributed architecture, each cluster
gets a local autoscaler, local load-balancer, and local scheduler. For the decentralized
architecture, we deploy one global scheduler in the Cloud cluster, and an autoscaler, a
load-balancer, and a local scheduler are deployed in all three clusters. The autoscaler
and load-balancer in the decentralized architecture combines the global and local setup.
The autoscalers get the information about all clusters but can only scale in their cluster.
The load-balancers process requests from clients from their cluster or requests that are
derived from load-balancers from another cluster.

Since we use a relatively low number of nodes and simplistic algorithms, the scheduling
and autoscaling decision delay is rather non-impactful. We conducted experiments with
multiple parameter sets to get closer to real-world applications and depict the impact
of cascading delays during orchestration. In order to create meaningful values for the
parameter sets, the scenarios and constraint-level setups in which the parameters are used
were considered. Table 5.4 describes the three different parameter sets. Furthermore, to
better compare the results of the experiments, the target duration and the max scale
amount for all experiments are set equal. The target duration conforms to a user request’s
desired round trip time value in seconds. Moreover, regarding the max scale value, while
global autoscalers were given the total max scale value, local autoscalers only allowed
a third of the maximum value. This way, we stay within the maximum replica amount
since we always have three local autoscalers or one global autoscaler.

Table 5.4: Parameter sets

When used Abbreviation Delay Reconcile interval Max scale Target duration
High constraint environment hc 0.5 6 90 0.3
Low constraint environment lc 0.1 2 90 0.3
High and Low constraint environment hc_lc 0.25 4 90 0.3

40

5.2. Methodology

Table 5.5: Network settings

Network Constrain Level Latency Edge-Cloud Latency Edge-Edge Latency Same Zone Bandwidth
high 90ms 45ms 15ms 100 Mbps
low 60ms 30ms 10ms 1Gbps

One of the key differences between the infrastructures is the latency between nodes (see
Table 5.1). The latency values are based on [58]. In a low network constraint environment,
the latency between edge and cloud is 60ms, between the edge clusters 30ms, and nodes
inside the same cluster 10ms. Regarding the high network constraint environment, we
increase both values by 50 %. Consequently, the values are 90ms, 45ms, and 15ms.
Concerning the available bandwidth, in the high network constraint environment, it
amounts to 100 Mbps, which corresponds to a Raspberry Pi 3 [40], since Raspberry
Pis can often be found in the edge continuum [60, 28]. In a low network constraint
environment, we do not limit the bandwidth. The network settings are represented in
Table 5.5.

4. Conduct Experiment

We conduct six experiments, analyzing each orchestration architecture in an IIoT and
urban sensing scenario, following the categorization defined in Section 5.1.1. Each galileo
worker generates workload in a sine wave pattern, as depicted by Figure 5.4. Similar to
[58], we use a simple application to mimic an inference task and enable more flexibility
for the experiments. Therefore, our experiments run an application that calculates 4000
digits of pi. The usage requirements of the function (f req

CP U , f req
RAM) are 500 milliCPU and

250 megabytes.

All desired metrics (see Section 5.1.2) are collected during the experiments. After the
experiment, the sought-after data gets loaded into a Jupyter Notebook, where further
data processing occurs.

5.2.2 Metric Data Processing
On the one hand, the data from the telemd service and on the other hand, HTTP traces
are used for processing the collected data. Telemd retrieves resource usage relevant data,
such as cpu, ram, and net metrics. A dedicated service from the Galileo environment exists
for the metric tos. The remaining metrics from Table 5.2 are collected by information
from the HTTP traces. Some of the metrics are also analyzed at the zone level. Since we
labeled each node with a zone label, it was easy to match each node to its zone.

System level measurements

Telemd allows us to analyze CPU and RAM usage on both node and pod levels for
system-level measurements. Since telemd uses Redis, each metric is accessible through
distinguished topics. In order to gather the average CPU usage per cluster, we use the

41

5. Evaluation

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

5

10

15

20

25

30

A
m

o
u
n
t

o
f

re
q
u
e
s
ts

Figure 5.4: User request profile

cpu topic from telemd, which gives us the CPU utilization of the last 5 seconds in %.
Regarding RAM usage, telemd only provides us with currently used RAM in kilobytes
in its ram topic. Therefore, further processing is needed to convert these values to the
relative usage in %. Similar actions are needed for converting the values returned by
the kubernetes_cgrp_memory, which returns the total RAM usage of kubernetes pods
in bytes. Unlike topic cpu, topic kubernetes_cgrp_cpu returns the CPU usage time of
individual Kubernetes pods. Further preprocessing is needed to turn these CPU usage
time values into an average usage.

Network level measurements

For metric net on the orchestration level, telemd provides the tx and rx bit rate of each
node for each subsystem through the rx and tx topics. In this case, preprocessing, in the
form of summing these values together, was needed to reach the desired metric. Topic
kubernetes_cgrp_net, which we use for pod-level analysis, already provides the sum of
the tx and rx bit rates. Metric lat is calculated using the information provided by the
HTTP request traces. No preprocessing is needed since the traces directly provide the
latency value for each request and their origin and destination cluster.

42

5.3. Results

Application level measurements

For analyzing the rtt, no additional preprocessing is needed since all information is
provided directly in the traces, similar to lat. Regarding at, since traces already provide
us with timestamps for finished requests, it is simple to prepare the at metric. Additionally,
the timestamps for sending requests are also examined for better comparison.

Orchestration level

Regarding zc, here as well, all information is directly extractable from the traces, so no
real preprocessing is needed. Since telemd does not support schedd nor scaled natively, we
used a telemd feature, which allows us to create custom topics. Therefore, for schedd, we
measured the duration of the scheduling process and published it into a custom-created
topic, which can be accessed by telemd. Something similar was done for scaled. Finally,
for tos metric, we can utilize a service from the Galileo benchmark tool, which allows us
to extract the number of running replicas during an experiment.

5.3 Results
The following section contains a comprehensive and detailed analysis that serves as the
base for the recommendation in Chapter 6. It displays and describes the collected metrics
throughout our experiments based on the used parameters. For the parameter sets, hc
and lc, the different orchestration architectures within the same constrained infrastructure
were used. Results of experiments conducted with parameter set hc_lc had the same
orchestration architecture in different constrained environments. Furthermore, for all
following plots, <architecture_hc> and <architecture_lc> stand for what architecture
and level of infrastructure constraint was used, where hc stands for high constraint and
lc for low constraint. For the bar graphs, average values are illustrated, where the black
bars depict the 95% confidence interval of the true mean. Shadows in the progress graphs
also stand for the 95% confidence interval of the true mean. The standard deviations of
each bar graph’s highest and lowest mean values are mentioned in the subsections below.

5.3.1 System level hc parameter set
Figure 5.5 depicts the average CPU and RAM usage for each cluster and architecture in
a high constraint environment. In centralized_hc, the highest average CPU usage was
measured in Edge-Cluster 1, with a CPU usage of 50.8% and a standard deviation of
20.9%. The lowest usage was found in the Cloud, with a value of 23.2% and a standard
deviation of 11.6%. Memory usage-wise, Edge-Cluster 1 also had the highest RAM usage
of 16.4% with a standard deviation of 5.3%. The lowest RAM usage goes to the Cloud
with a value of 7.8% and a standard deviation of 1%.

In decentralized_hc, the highest average amount of CPU usage is found in Edge-Cluster
1, with a value of 47.4% and a standard deviation of 19.3%. Similarly to centralized_hc,
also in decentralized_hc, the lowest average CPU usage was measured in the Cloud with

43

5. Evaluation

a value of 10.7% and a standard deviation of 12.9%. Regarding RAM usage, the highest
measured usage was found in Edge-Cluster 1 with a value of 14.4% and a standard
deviation of 5.5%, and the lowest in the Cloud with a usage of 5.4% and a standard
deviation of 1.8% .

Similarly to decentralized_hc and centralized_hc, for the distributed_hc experiments,
the highest measured amount of average CPU usage and average RAM usage was also
found in Edge-Cluster 1. The average CPU usage was 54.6% with a standard deviation
of 22.9%, and the average RAM usage was 15.5% with a standard deviation of 6.5%.
In Edge-Cluster 3, the lowest CPU usage was measured with a value of 44.4% and a
standard deviation of 20.7%, and the lowest RAM usage with a value of 12.3% and a
standard deviation of 4.8%.

Figure 5.6 presents the average CPU and RAM usage for each node type and architecture
in high constraint environments. In all three architectures, the average CPU usage of
weak nodes was close to each other. The highest amount was measured in distribtued_hc
with 67.7% and a standard deviation of 11.1%. Decentralized_hc had the lowest value
with 60.7% and a standard deviation of 7.9%. We have a similar situation for the strong
nodes, where the distributed_hc strong nodes had the highest CPU usage with 29.1%
and a standard deviation of 13.7%. The decentralized_hc strong nodes had the lowest
usage, with 18.8% average CPU usage and a standard deviation of 15%.

Regarding average RAM usage, centralized_hc and distributed_hc had the highest RAM
usage on weak nodes. Both had an average usage of 19.3%, where centralized had a
standard deviation of 2% and distributed_hc a standard deviation of 2.2%. Therefore,
decentralized_hc had the lowest average RAM usage for weak nodes, with 18.7% and a
standard deviation of 1.3%. On strong nodes, both centralized_hc and distributed_hc
had the highest average RAM usage of 7.7%. Centralized_hc had a standard deviation
of 1% and distributed_hc a standard deviation of 0.9%. Similarly to the weak nodes,
also with the strong nodes, the decentralized_hc infrastructure has the lowest average
RAM usage, with a value of 6.6% and a standard deviation of 1.8%

Figure 5.7 illustrates the average CPU usage of an autoscaler for each cluster. In
centralized_hc, the autoscaler had a consumption of 1% and a standard deviation of
0.21%. The CPU usage of autoscalers in decentralized_hc were all very close. The
autoscaler with the highest consumption was Edge-Cluster 2, with a value of 0.94% and
a standard deviation of 0.18%. The lowest was in the cloud, with 0.91% average CPU
usage and a standard deviation of 0.18%. Also, for distributed_hc, the CPU usage was
very similar across the clusters. The highest was measured in Edge-Cluster 2 with a
value of 1.64% and a standard deviation of 0.52%, and the lowest in Edge-Cluster 3 with
a value of 1.58% and a standard deviation of 0.45%.

As Figure 5.8 depicts, in centralized_hc, the average RAM usage of an autoscaler was
0.68% with a standard deviation of 0.04%. In decentralized_hc, all autoscalers of each
cluster had a very similar RAM consumption. The highest was at 0.7% with a standard
deviation of 0.04%, and the lowest was at 0.68% with a standard deviation of 0.03%.

44

5.3. Results

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

centralized_hc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

decentralized_hc

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

distributed_hc

Mean CPU % per Cluster

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

centralized_hc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

decentralized_hc

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

distributed_hc

Mean RAM % per Cluster

Figure 5.5: Average CPU and RAM usage per Cluster, high constraint infrastructure, all
architectures

The autoscalers in distributed_hc also all had a nearly identical average RAM usage of
0.7% and a standard deviation of 0.05%.

In Figure 5.9, we can see the average CPU usage of a function replica throughout the
experiments. 0.56% with a standard deviation of 0.55% is the highest average CPU
usage in centralized_hc. The lowest one is 0.38% with a standard deviation of 0.35%.
In decentralized_hc, only Edge-Cluster 1 and 2 had function replicas running. In Edge-
Cluster 1, we measured an average CPU usage of 1.4% with a standard deviation of 1.6%;
in Edge-Cluster 2, a usage of 1.5% and a standard deviation of 1.8%. The Edge-Cluster 1
in distribtued_hc measured the highest average CPU usage in the distributed architecture,
with a value of 2.7% and a standard deviation of 4.5%. Edge-Cluster 3 had the lowest
measured amount with 0.73% and a standard deviation of 0.65%.

The following figure, Figure 5.10, describes the average RAM usage of a function replica.
Looking at the centralized_hc architecture, we can see that the function replicas in
Edge-Cluster 1 had, in total, the highest average RAM usage of 0.51% and a standard
deviation of 0.26%. The lowest usage was found in the Cloud, with 0.2% and a standard
deviation of 0.02%. Similar to Figure 5.9, in this case, the decentralized_hc experiments
had only Edge-Cluster 1 and 2 function replicas running. A replica in Edge-Cluster
1 consumed an average of 0.62% of RAM with a standard deviation of 0.07% and in
Edge-Cluster 2 0.53% with a standard deviation of 0.09%. In distributed_hc, the highest
average RAM usage was the Edge-Cluster 1 with a usage of 0.7% and a standard deviation

45

5. Evaluation

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

centralized_hc

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

decentralized_hc

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

distributed_hc

Mean CPU % each Node Type

strong weak

Node Type

0

5

10

15

20

R
A

M
 a

v
g
 (

%
)

centralized_hc

strong weak

Node Type

0

5

10

15

20

R
A

M
 a

v
g
 (

%
)

decentralized_hc

strong weak

Node Type

0

5

10

15

20

R
A

M
 a

v
g
 (

%
)

distributed_hc

Mean RAM % each Node Type

Figure 5.6: Average CPU and RAM usage per Node Type, high constraint infrastructure,
all architectures

Cloud

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for autoscaler

Figure 5.7: Average CPU usage from autoscaler, high constraint infrastructure, all
architectures

of 0.09%. The lowest usage was in Edge-Cluster 3, with a value of 0.19% and a standard
deviation of 0.02%.

The next component whose CPU and RAM utilization we look at is the load-balancer.
Figure 5.11 illustrates the average CPU utilization. The load-balancer in centralized_hc
had a usage of 1.8% with a standard deviation of 1%. For decentralized_hc, we measured
in Edge-Cluster 1 an average CPU usage of 1.14% with a standard deviation of 1% as
the highest value and in the Cloud a 0.01% amount of usage with a standard deviation of
0.002% as the lowest value. The usage in distributed_hc is similarly distributed, where
the highest value is at 0.93% with a standard deviation of 0.86% in Edge-Cluster 2, and

46

5.3. Results

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for autoscaler

Figure 5.8: Average RAM usage from autoscaler, high constraint infrastructure, all
architectures

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

centralized_hc

Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for function replica

Figure 5.9: Average CPU usage from function replicas, high constraint infrastructure, all
architectures

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for function replica

Figure 5.10: Average RAM usage from function replicas, high constraint infrastructure,
all architectures

the lowest value of 0.87% with a standard deviation of 0.81% in Edge-Cluster 3.

Figure 5.12 depicts the average RAM usage of a load-balancer. The load-balancer in
centralized_hc had an average RAM usage of 0.18% with a standard deviation of 0.11%.
Average usage of 0.15%, with a standard deviation of 0.12%, was the highest measured
RAM in decentralized_hc in Edge-Cluster 2. The lowest one was in the Cloud, with
a mean value of 0.05% and a standard deviation of 0.003%. Similarly to the average
CPU usage, the mean RAM usage was evenly distributed in distributed_hc. All had an

47

5. Evaluation

Cloud

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
P
U

 u
s
a
g
e
 %

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for load-balancer

Figure 5.11: Average CPU usage from load-balancer, high constraint infrastructure, all
architectures

average usage of 0.09% and a standard deviation of 0.03%.

Cloud

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for load-balancer

Figure 5.12: Average RAM usage from load-balancer, high constraint infrastructure, all
architectures

The last control component we measured was the schedulers. Figure 5.13 illustrates
the average CPU usage of a scheduler during the experiments for each high constraint
infrastructure for all three architectures. As we can see from the figure, the scheduler of
centralized_hc had an average CPU usage of 4.1% with a standard deviation of 4.1%.
The average CPU utilization in the decentralized_hc strategy was all pretty even. The
highest amount was in the Cloud, with a value of 1.11% and a standard deviation of 0.5%.
The lowest one was at Edge-Cluster 2, with an amount of 1.08% and a standard deviation
of 0.5%. In distributed_hc, we can see a more significant difference between the clusters.
In Edge-Cluster 2, we measured the highest value of 7.6% with a standard deviation of
2.6%, and in Edge-Cluster 3, we measured the lowest value in decentralized_hc, with a
value of 3.2% and a standard deviation of 2.2%.

As we can see from Figure 5.14, the average RAM usage was for all infrastructures nearly
identical. The highest value was measured in Edge-Cluster 2 from the distributed_hc
scenario, with 0.71% and a standard deviation of 0.05%. The lowest value was measured
in the Cloud in decentralized_hc, with 0.68% and a standard deviation of 0.03%.

48

5.3. Results

Cloud

0

2

4

6

8

C
P
U

 u
s
a
g
e
 %

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0

2

4

6

8

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

2

4

6

8

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for scheduler

Figure 5.13: Average CPU usage from scheduler, high constraint infrastructure, all
architectures

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for scheduler

Figure 5.14: Average RAM usage from scheduler, high constraint infrastructure, all
architectures

5.3.2 System level lc parameter set

In Figure 5.15, we can see each architecture’s average CPU and RAM usage for each
architecture by their clusters. In centralized_lc, the highest value was in Edge-Cluster 2
with a mean of 29.8% and a standard deviation of 22.9%. The lowest was in the Cloud,
with a value of 21.3% and a standard deviation of 12.4%. We can see a similar structure
in decentralized_lc. Here, the highest mean is also in Edge-Cluster 2, with a mean value
of 33.2% and a standard deviation of 23.8%. The lowest value is in the Cloud as well,
with 14.6% and a standard deviation of 15.8%. On the contrary to centralized_lc and
decentralized_lc, distributed_lc follows a different pattern. While the highest mean value
was found in Edge-Cluster 2 with 32.3% and a standard deviation of 24.2%, the lowest
was found in Edge-Cluster 1 with an average value of 26.7% and a standard deviation of
24.1%.

RAM usage-wise, the infrastructures follow a nearly identical pattern as in CPU usage.
In centralized_lc, the highest mean value, 10.2%, was in Edge-Cluster 2 with a standard
deviation of 5.1%, and the lowest one in the Cloud with an average value of 6.7% and a
standard deviation of 4.8%. In the decentralized_lc infrastructure, the highest measured
average value was in Edge Cluster-2 with 8.9% with a standard deviation of 5.2%. 5.4%,
with a standard deviation of 1.9%, was the lowest mean value in decentralized_lc and

49

5. Evaluation

was measured in the Cloud. The average RAM usage pattern in distributed _lc differs
from its CPU usage pattern. For the average RAM usage, Edge-Cluster 3 has the highest
mean value of 9.5% with a standard deviation of 5.5%. The lowest one is in Edge-Cluster
1, with a value of 8.2% and a standard deviation of 5.4%.

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

10

20

30

C
P
U

 a
v
g
 (

%
)

centralized_lc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

10

20

30

C
P
U

 a
v
g
 (

%
)

decentralized_lc

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

10

20

30

C
P
U

 a
v
g
 (

%
)

distributed_lc

Mean CPU % per Cluster

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

R
A

M
 a

v
g
 (

%
)

centralized_lc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

R
A

M
 a

v
g
 (

%
)

decentralized_lc

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

R
A

M
 a

v
g
 (

%
)

distributed_lc

Mean RAM % per Cluster

Figure 5.15: Average CPU and RAM usage per Cluster, low constraint infrastructure, all
architectures

Figure 5.16 illustrates nodes’ mean CPU and RAM usage by their node types. If we
look at the CPU usage, we can see that the values for both strong and weak nodes are
close. The highest figure for weak nodes, 67.5%, was measured in decentralized_lc with a
standard deviation of 9.8%, and the lowest in centralized_lc with a value of 60.5% and a
standard deviation of 7.5%. For strong nodes, decentralized_lc also has the highest value,
with 17.9% and a standard deviation of 15%. The lowest value was in centralized_lc
with 17.5% and a standard deviation of 10.3%.

Regarding average RAM usage in weak nodes, the highest mean value was measured in
distributed_lc with 18% and a standard deviation of 0.9%. The lowest average value was
in centralized_lc with 17.3% and a standard deviation of 0.3%. For the strong nodes, the
highest mean figure was measured in centralized_lc with 6.6% and a standard deviation
of 1.1%, and the lowest in decentralized_lc with a mean value of 5.6% and a standard
deviation of 1.7%.

Looking at Figure 5.17, we can see the average CPU usage of the autoscaler across all
three infrastructures for each architecture. In centralized_lc, the mean usage was 1.2%
with a standard deviation of 0.33%. In decentralized_lc, we found the highest mean

50

5.3. Results

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

centralized_lc

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

decentralized_lc

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

distributed_lc

Mean CPU % each Node Type

strong weak

Node Type

0

5

10

15

R
A

M
 a

v
g
 (

%
)

centralized_lc

strong weak

Node Type

0

5

10

15

R
A

M
 a

v
g
 (

%
)

decentralized_lc

strong weak

Node Type

0

5

10

15

R
A

M
 a

v
g
 (

%
)

distributed_lc

Mean RAM % each Node Type

Figure 5.16: Average CPU and RAM usage per Node Type, low constraint infrastructure,
all architectures

usage with 1.22% and a standard deviation of 0.37% in Edge-Cluster 1. The Cloud had
the lowest mean usage with 1.1% and a standard deviation of 0.3%. In distributed_lc,
the highest value was in Edge-Cluster 1 at 1.24% with a standard deviation of 0.63%,
and the lowest was in Edge-Cluster 3 at 1.19% with a standard deviation of 0.64%.

Cloud

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

distributed_lc

Mean CPU % for autoscaler

Figure 5.17: Average CPU usage from autoscalers, low constraint infrastructure, all
architectures

If we look at Figure 5.18, we can see that an autoscaler in each infrastructure and cluster
had a mean usage of around 0.7%. Additionally, the standard deviation of each value
was around 0.04%.

Figure 5.19 depicts a function replica’s average CPU usage per infrastructure, archi-

51

5. Evaluation

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Mean RAM % for autoscaler

Figure 5.18: Average RAM usage from autoscalers, low constraint infrastructure, all
architectures

tecture, and cluster. We can see immediately that they all have a different outcome.
In centralized_hc, the highest mean value was in the Cloud with a figure of 0.48%
and a standard deviation of 0.52%, and the lowest was found in Edge-Cluster 2. In
decentralized_lc, only two clusters, Edge-Cluster 1 and Edge-Cluster 2, had replicas
running. The mean CPU usage in Edge-Cluster 1 was 4.5%, with a standard deviation
of 3.5%. Edge-Cluster 2 had a mean usage of 3.8% and a standard deviation of 2.4%.
The highest measured average value in distributed_lc was Edge-Cluster 2 with 4.7% and
a standard deviation of 7.2%. 3.5% in Edge-Cluster 3 was the lowest measured average
value and had a standard deviation of 2.7%.

Cloud Edge-Cluster 1 Edge-Cluster 2

0

1

2

3

4

5

6

7

C
P
U

 u
s
a
g
e
 %

centralized_lc

Edge-Cluster 1 Edge-Cluster 2

0

1

2

3

4

5

6

7

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

1

2

3

4

5

6

7

C
P
U

 u
s
a
g
e
 %

distributed_lc

Mean CPU % for function replica

Figure 5.19: Average CPU usage from function replicas, low constraint infrastructure, all
architectures

The following figure, Figure 5.20, illustrates the average RAM usage in the same way as
Figure 5.19. In centralized_lc, the usage was nearly identical over the three infrastructures
with a value of around 0.2% and standard deviation at 0.2%. Similarly, Function replicas
from Edge-Cluster 1 and Edge-Cluster 2 from decentralized_lc also had nearly equal mean
RAM usage at around 0.5%. The standard deviation in Edge-Cluster 1 was at 0.32%, and
in Edge-Cluster 2 was at 0.22%. On the contrary to decentralized_lc and centralized_lc,
in distributed_lc, there are more significant differences between the clusters. The highest
measured mean RAM usage was in Edge-Cluster 1, with a value of 0.6% and a standard
deviation of 0.13%. The lowest measured value, 0.21%, was measured in Edge-Cluster 3

52

5.3. Results

and had a standard deviation of 0.03%.

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Mean RAM % for function replica

Figure 5.20: Average RAM usage from function replicas, low constraint infrastructure,
all architectures

Figure 5.21 describes the average CPU usage of the load-balancer for each cluster in
low constraint infrastructures with all architectures. In centralized_lc, the mean value
was 0.87% with a standard deviation of 0.91% in the Cloud. In decentralized_lc, the
highest measured mean figure was in Edge-Cluster 1 with a value of 1.1% and a standard
deviation of 1.6%. The lowest measured average value was in the Cloud with 0.01%
and a standard deviation of 0%. If we look at distributed_lc, we can see that each
load-balancer from each cluster has nearly the same average CPU usage of 0.4% with a
standard deviation of around 0.3%.

Cloud

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

distributed_lc

Mean CPU % for load-balancer

Figure 5.21: Average CPU usage from load-balancers, low constraint infrastructure, all
architectures

Figure 5.22 depicts the average RAM usage of the load-balancers. In the Cloud of the
centralized_lc experiment, the load-balancer had a mean RAM usage of 0.13% and a
standard deviation of 0.05%. In decentralized_lc, in Edge-Cluster 1, the highest figure of
0.23% with a standard deviation of 0.21% was measured. The load-balancer in the Cloud
had the lowest figure of 0.05% with a standard deviation of 0%. Similar to the mean CPU
usage, the mean RAM usage is also closely even among the clusters in distributed_lc.
The mean value hovers around 0.08% with a standard deviation of around 0.02%.

The subsequent two figures, Figure 5.23 and Figure 5.24, illustrate the schedulers’ average
CPU and RAM usage per cluster, per architecture for low constraint infrastructures.

53

5. Evaluation

Cloud

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Mean RAM % for load-balancer

Figure 5.22: Average RAM usage from load-balancers, low constraint infrastructure, all
architectures

The mean CPU usage of the scheduler in the Cloud in centralized_lc was at 5.7% with a
standard deviation of 4.6%. In decentralized_lc, the highest measured mean usage was
in Edge-Cluster 1 with a value of 5.3% and a standard deviation of 4%, and the lowest
value with 5% and a standard deviation of 3.8% was measured in Edge-Cluster 2. If
we look at the data collected during the distributed_lc experiments, we found that the
highest average CPU usage was in Edge-Cluster 1 with a value of 3.2% and a standard
deviation of 3.9%. The lowest usage was found in Edge-Cluster 3 with 3% and a standard
deviation of 3.8%.

Cloud

0

1

2

3

4

5

6

C
P
U

 u
s
a
g
e
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0

1

2

3

4

5

6

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

1

2

3

4

5

6

C
P
U

 u
s
a
g
e
 %

distributed_lc

Mean CPU % for scheduler

Figure 5.23: Average CPU usage from schedulers, low constraint infrastructure, all
architectures

As mentioned above, Figure 5.24 describes the average RAM usage of schedulers. In
centralized_hc, the mean usage was 0.7% with a standard deviation of 0.03%. The
schedulers in all three clusters in decentrlizaed_hc had a nearly identical mean RAM
usage of 0.69% and a standard deviation of 0.03%. Similarly, in distribtued_hc, all
schedulers had a mean RAM usage of 0.7% with a standard deviation of 0.04%.

5.3.3 System level hc_lc parameter set with centralized architecture
The following figure, Figure 5.25, illustrates the average CPU and RAM usage per cluster
for the centralized architecture used in the high and low constraint environment. For the
low constraint environment, the highest mean value was in Edge-Cluster 2 with 29.7%

54

5.3. Results

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Mean RAM % for scheduler

Figure 5.24: Average RAM usage from schedulers, low constraint infrastructure, all
architectures

and a standard deviation of 22.3%. The lowest one was in the Cloud with 21.4% and
a standard deviation of 12%. In the low constraint environment, the highest one was
in Edge-Cluster 1, with a value of 49.7% and a standard deviation of 21.6%. Similarly
to the low constraint environment, the high constraint had the Cloud with the lowest
average CPU usage at 22.2% and a standard deviation of 11.5%.

The same pattern holds for average RAM usage in both environments. In the low
constraint environment, the highest average RAM usage was in Edge-Cluster 2 with 10%
and a standard deviation of 5.1%, and the lowest in the Cloud with 6.6% usage and a
standard deviation of 1.1%. For the high constraint environment, the highest mean usage
was at 16.1% with a standard deviation of 5.2% in Edge-Cluster 1. 7.6% and a standard
deviation of 1.1% was the lowest average RAM usage measured in the Cloud.

Figure 5.26 depicts nodes’ average CPU and RAM usage for low and high constraint
environments, categorized by node type per cluster. In this case, the average RAM and
CPU usage of both node types were very close for both environments. The mean CPU
usage for weak nodes in the low constraint environment was at 60% with a standard
deviation of 7.3%, and in the high constraint environment, it was at 60.6% with a standard
deviation of 6.5%. For the strong nodes, the mean CPU usage in the low constraint
environment was 18% with a standard deviation of 10%. In the other environment, the
usage was at 20.5% with a standard deviation of 11.2%.

We had a similar situation regarding the mean RAM usage. In the low constraint
environment, the value for the weak nodes was at 17% with a standard deviation of
0.3%, and in the high constraint environment, at 19% with a standard deviation of 1.6%.
Regarding strong nodes, the value in the low constraint environment was at 6.6% with
a standard deviation of 1.1%, and in the high constraint environment at 7.6% with a
standard deviation of 1.1%.

The following two figures, Figure 5.27 and Figure 5.28 illustrate the average CPU and
RAM usage of the autoscaler in low and high constraint environment with the centralized
architectures. Both mean CPU and RAM usage were very similar. The usage in the low
constraint environment was at 1.1% with a standard deviation of 0.3%, and in the high

55

5. Evaluation

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

centralized_lc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

centralized_hc

Mean CPU % per Cluster

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

centralized_lc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

centralized_hc

Mean RAM % per Cluster

Figure 5.25: Average CPU and RAM usage per Cluster, high and low constraint environ-
ment, centralized architecture

constraint, 1% with a standard deviation of 0.23%. Regarding average RAM usage, in
both environments, the was at around 0.7% with a standard deviation of 0.05%.

Figure 5.29 describes the average CPU usage of a function replica per cluster for both
constraint environments with a centralized architecture. In both environments, the
mean CPU usage value was highest in the Cloud and lowest in Edge-Cluster 2. In
centralized_lc, the highest value was at 0.55% with a standard deviation of 0.57%. In
centralized_hc, it was at 0.37% with a standard deviation of 0.5%. The lowest mean
value in centralized_lc was at 0.22% with a standard deviation of 0.22%, and 0.3% with a
standard deviation of 0.28% in centralized_hc. If we look at Figure 5.30, we can see that
the average RAM usage in centralized_lc was nearly identical, with a value of 0.2% and
a standard deviation of 0.02%. In centralized_hc, only Edge-Cluster 1 and Edge-Cluster
2 had a similar mean usage of 0.44% and a standard deviation of 0.18. Cloud only had a
mean usage of 0.2% with a standard deviation of 0.02%.

Looking at Figure 5.31 and Figure 5.32, we see that both average CPU and RAM usage
was higher in centralized_hc than in centralized_lc. For CPU usage, the higher mean
value was 1.3% with a standard deviation of 0.9%, and the lower value was 0.97% with a
standard deviation of 0.9%. Regarding mean RAM usage, in centralized_hc, the value
was at 0.2% with a standard deviation of 0.1%, and in centralized_lc at 0.12% with a
standard deviation of 0.05%.

Figure 5.33 illustrates the average CPU usage of the scheduler in both infrastructures

56

5.3. Results

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

centralized_lc

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

centralized_hc

Mean CPU % each Node Type

strong weak

Node Type

0

5

10

15

20

R
A

M
 a

v
g
 (

%
)

centralized_lc

strong weak

Node Type

0

5

10

15

20

R
A

M
 a

v
g
 (

%
)

centralized_hc

Mean RAM % each Node Type

Figure 5.26: Average CPU and RAM usage per Node Type, high and low constraint
environment, centralized architecture

Cloud

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

centralized_lc

Cloud

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

centralized_hc

Mean CPU % for autoscaler

Figure 5.27: Average CPU usage from autoscaler, high and low constraint environment,
centralized architecture

using a centralized architecture. We see that the usage in centralized_lc was higher than
in centralized_hc. The higher value was at 5.5% with a standard deviation of 4.5%, and
the lower value was at 4.2% with a standard deviation of 4%. Figure 5.24 depicts the
average RAM in the same way was Figure 5.33. The scheduler in both infrastructures
had a nearly identical mean RAM usage of 0.7% with a standard deviation of around
0.04%.

57

5. Evaluation

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Mean RAM % for autoscaler

Figure 5.28: Average RAM usage from autoscaler, high and low constraint environment,
centralized architecture

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

C
P
U

 u
s
a
g
e
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

C
P
U

 u
s
a
g
e
 %

centralized_hc

Mean CPU % for function replica

Figure 5.29: Average CPU usage from function replica, high and low constraint environ-
ment, centralized architecture

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Mean RAM % for function replica

Figure 5.30: Average RAM usage from function replica, high and low constraint environ-
ment, centralized architecture

5.3.4 System level hc_lc parameter set with decentralized architecture
Figure 5.35 illustrates the average CPU and RAM usage for both constraint environments
with a decentralized architecture divided by cluster. We directly see that there is a similar
trend between average CPU and average RAM usage. In decentralized_lc, the highest

58

5.3. Results

Cloud

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

centralized_lc

Cloud

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

centralized_hc

Mean CPU % for load-balancer

Figure 5.31: Average CPU usage from load-balancer, high and low constraint environment,
centralized architecture

Cloud

0.00

0.05

0.10

0.15

0.20

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Cloud

0.00

0.05

0.10

0.15

0.20

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Mean RAM % for load-balancer

Figure 5.32: Average RAM usage from load-balancer, high and low constraint environment,
centralized architecture

mean CPU usage was found in Edge-Cluster 2 with 32.2% and a standard deviation of
23.2%. The lowest one was found in the Cloud with 13.2% and a standard deviation of
14.6%. In decentralized_hc, Edge-Cluster 1 had the highest mean CPU usage of 48%
and a standard deviation of 20.5%. The cluster with the lowest mean CPU usage in
decentrlalized_hc was the Cloud with 10.5% and a standard deviation of 12.8%.

The same pattern follows for average RAM usage. In decentralized_lc, the highest mean
value, 9%, with a standard deviation of 5.3%, was measured in Edge-Cluster 2. The
lowest one was measured in the Cloud with 5.4% and a standard deviation of 1.9%. In
decentralized_hc, the highest mean RAM usage was in Edge-Cluster 1 with 14.6% and
a standard deviation of 5.7%, and the lowest in the Cloud with 5.4% and a standard
deviation of 1.8%.

The following figure, Figure 5.36, illustrates the average CPU and RAM usage for each

59

5. Evaluation

Cloud

0

1

2

3

4

5

6

C
P
U

 u
s
a
g
e
 %

centralized_lc

Cloud

0

1

2

3

4

5

6

C
P
U

 u
s
a
g
e
 %

centralized_hc

Mean CPU % for scheduler

Figure 5.33: Average CPU usage from scheduler, high and low constraint environment,
centralized architecture

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_lc

Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

centralized_hc

Mean RAM % for scheduler

Figure 5.34: Average RAM usage from scheduler, high and low constraint environment,
centralized architecture

node type in both decentralized scenarios. Looking at the mean CPU usage of weak nodes,
we can see that in decentralized_lc, the usage was 65.2%, with a standard deviation of
9.4%. In decentralized_hc, the mean CPU usage of weak nodes was lower with 61.5%
and a standard deviation of 8.5%. The mean CPU usage from strong nodes was also close
to each other. In decentralized_hc, the value was at 18.3% with a standard deviation of
14.4%, and in decentralized_lc at 16.6% with a standard deviation of 14.7%.

There is a similar pattern for mean RAM usage for each node type. In decentralized_hc,
the value from weak nodes was 18.8% with a standard deviation of 1.5%. Lower, 17.7%
with a standard deviation of 0.7%, was the mean RAM usage from weak nodes in
decentralized_lc. Also, regarding the strong nodes, the usage in decentralized_hc was
higher than in decentralized_lc, with 6.5% with a standard deviation of 1.8% and 5.6%
with a standard deviation of 1.7%.

60

5.3. Results

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

decentralized_lc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

decentralized_hc

Mean CPU % per Cluster

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

decentralized_lc

Clo
ud

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

decentralized_hc

Mean RAM % per Cluster

Figure 5.35: Average CPU and RAM usage per Cluster, high and low constraint environ-
ment, decentralized architecture

Figure 5.37 depicts the average CPU usage of the autoscaler for each cluster. In
decentralized_lc, the highest mean figure was in Edge-Cluster 1 with 1.1%, and a
standard deviation of 0.35%, and the lowest one was in the Cloud with 0.98% and a
standard deviation of 0.3%. While in decentralized_hc, the same pattern occurs. The
mean figures of the clusters were closer to each other. 0.95% with a standard deviation of
0.17% was the highest mean usage value measured in Edge-Cluster 1. The lowest average
CPU usage from the autoscaler was measured in the Cloud with 0.92% with a standard
deviation of 0.18%.

If we look at Figure 5.38, we see that the average RAM usage for each cluster in
decentralized_lc and decentralized_hc were close. The autoscaler in all clusters in both
infrastructures had an average RAM usage of around 0.7% and a standard deviation of
0.03%.

Figure 5.39 and Figure 5.40 illustrate a function replica’s average CPU and RAM usage.
In decentralized_lc, the mean CPU usage was higher in Edge-Cluster 1, with 3.3% and a
standard deviation of 3%, than in Edge-Cluster 2. However, Edge-Cluster 2 was lower,
with 3.1% and a standard deviation of 2.7%. The situation is flipped in decentralized_hc,
where the higher mean usage was measured in Edge-Cluster 2, with 1.5% and a standard
deviation of 1.8%, and the lower in Edge-Cluster 1, with 1.45% and a standard deviation
of 1.7%.

In decentralized_lc, the highest mean RAM usage was measured in Edge-Cluster 2 with

61

5. Evaluation

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

decentralized_lc

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

decentralized_hc

Mean CPU % each Node Type

strong weak

Node Type

0

5

10

15

R
A

M
 a

v
g
 (

%
)

decentralized_lc

strong weak

Node Type

0

5

10

15

R
A

M
 a

v
g
 (

%
)

decentralized_hc

Mean RAM % each Node Type

Figure 5.36: Average CPU and RAM usage per Node Type, high and low constraint
environment, decentralized architecture

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Mean CPU % for autoscaler

Figure 5.37: Average CPU usage from autoscaler, high and low constraint environment,
decentralized architecture

0.51% and a standard deviation of 0.23%, and the lowest in Edge-Cluster 1 with 0.42%
and a standard deviation of 0.27%. In decentralized_hc, it is the other way around.
There, the highest mean RAM usage was found in Edge-Cluster 1 with 0.64% and a
standard deviation of 0.08%. Function replica in Edge-Cluster 2 had a mean RAM usage
of 0.51% with a standard deviation of 0.07%.

Looking at Figure 5.41 and Figure 5.42, we see that both mean CPU and RAM usage
of the load-balancers in Edge-Cluster 1 and Edge-Cluster 2 were nearly identical in the
respective infrastructure. In decentralized_lc, the mean CPU usage was around 1.2%
with a standard deviation of 1.96%, and in decentralized_hc, 1.15% with a standard

62

5.3. Results

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Mean RAM % for autoscaler

Figure 5.38: Average RAM usage from autoscaler, high and low constraint environment,
decentralized architecture

Edge-Cluster 1 Edge-Cluster 2

0.0

0.5

1.0

1.5

2.0

2.5

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2

0.0

0.5

1.0

1.5

2.0

2.5

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Mean CPU % for function replica

Figure 5.39: Average CPU usage from function replica, high and low constraint environ-
ment, decentralized architecture

Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Mean RAM % for function replica

Figure 5.40: Average RAM usage from function replica, high and low constraint environ-
ment, decentralized architecture

deviation of 1.1%. In both infrastructures, the average CPU usage of the load-balancer
in the Cloud was close to 0%.

In decentralized_lc, the highest mean RAM usage was in Edge-Cluster 2, with a figure
of 0.26% and a standard deviation of 0.27%, while in decentralized_hc, the highest mean
value was in Edge-Cluster 1, with 0.14% and a standard deviation of 0.11%. For both
infrastructures, the lowest was in the Cloud with 0.055% and a standard deviation of
nearly 0%.

63

5. Evaluation

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Mean CPU % for load-balancer

Figure 5.41: Average CPU usage from load-balancer, high and low constraint environment,
decentralized architecture

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Edge-Cluster 1 Cloud Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Mean RAM % for load-balancer

Figure 5.42: Average RAM usage from load-balancer, high and low constraint environment,
decentralized architecture

Looking at Figure 5.43, we see a noticeable difference in mean CPU usage from a scheduler
between the two environments. In decentralized_lc, the CPU mean usage was nearly
identical in all clusters, with a value of around 4% and a standard deviation of 2%. In
contrast, in decentralized_hc, all clusters had a mean CPU usage of around 2% with a
standard deviation of around 2.3%.

Cloud Edge-Cluster 1 Edge-Cluster 2

0

1

2

3

4

C
P
U

 u
s
a
g
e
 %

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0

1

2

3

4

C
P
U

 u
s
a
g
e
 %

decentralized_hc

Mean CPU % for scheduler

Figure 5.43: Average CPU usage from scheduler, high and low constraint environment,
decentralized architecture

From Figure 5.44, we see that the schedulers in each cluster in decentralized_lc and
decentralized_hc had the same mean RAM usage of around 0.69%. The standard

64

5.3. Results

deviation was at 0.03%.

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

decentralized_hc

Mean RAM % for scheduler

Figure 5.44: Average RAM usage from scheduler, high and low constraint environment,
decentralized architecture

5.3.5 System level hc_lc parameter set with distributed architecture

Figure 5.45 illustrates each cluster’s average CPU and RAM usage in both infrastructures
with a distributed architecture. In distributed_lc, the mean CPU usage for Edge-Cluster
3 and 2 was very similar and the highest with a mean value of around 31.3% and a
standard deviation of 24%. The lowest one was in Edge-Cluster 1 with 25.6% and a
standard deviation of 23.7%. However, in distributed_hc, the highest mean value was
measured in Edge-Cluster 1 with a figure of 55% and a standard deviation of 22.4%,
and the lowest mean value, 44.6% with a standard deviation of 20.2%, was found in
Edge-Cluster 3.

There is a similar pattern for average RAM usage. In distributed_lc Edge-Cluster 3 and
2 also have a very similar and highest mean usage with around 9.5% and a standard
deviation of 5.6%. The lowest mean RAM usage was in Edge-Cluster 1 with 8.3% and a
standard deviation of 5.5%. Regarding distributed_hc, the highest mean usage was in
Edge-Cluster 1 with 15.9%, and a standard deviation of 6.7%, and the lowest one was in
Edge-Cluster 3 with a figure of 12.6% and a standard deviation of 4.9%.

The figure, Figure 5.46, depicts the average CPU and RAM usage for weak and strong
nodes for the distributed architecture in both infrastructures. When we look at the
mean CPU usage of weak nodes in distributed_hc, the figure was higher, with 67.5%
and a standard deviation of 10.4%, than in distributed_lc, with 63.3% and a standard
deviation of 9.7%. A similar situation with strong nodes, where the higher mean value
was measured in distributed_hc, with a value of 30% and a standard deviation of 13.3%,
and the lower in distributed_lc, with 17.1% and a standard deviation of 14%.

Not only in mean CPU usage but also in mean RAM usage, distributed_hc had a higher
usage than distributed_lc in strong and weak nodes. The mean usage in weak nodes was
19.8% with a standard deviation of 2.4%, and in strong nodes was 7.8% with a standard
deviation of 0.8%, in distributed_hc. In the low constraint infrastructure, the mean

65

5. Evaluation

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

distributed_lc

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

20

40

C
P
U

 a
v
g
 (

%
)

distributed_hc

Mean CPU % per Cluster

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

distributed_lc

Edge-
Clu

st
er

 3

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2

0

5

10

15

R
A

M
 a

v
g
 (

%
)

distributed_hc

Mean RAM % per Cluster

Figure 5.45: Average CPU and RAM usage per Cluster, high and low constraint environ-
ment, distributed architecture

RAM usage in weak nodes was at 18.1% with a standard deviation of 0.9%, and in strong
nodes, 5.9% with a standard deviation of 1.5%.

The following two figures, Figure 5.47 and Figure 5.48 illustrate the average CPU and
RAM usage of the autoscalers in the clusters for both environments. The figures suggest
that the mean RAM and CPU usage was nearly identical for each infrastructure. In
distributed_lc, the average CPU usage for autoscalers in all three clusters was around
1.1% with a standard deviation of 0.57%, and the mean RAM usage for all was at 0.7%
with a standard deviation of 0.04%. While the mean RAM usage in distributed_lc for all
clusters is similar to distributed_lc, the mean CPU usage of the autoscale for the three
clusters is higher, with a value of around 1.72% and a standard deviation of around 0.5%.

Figure 5.49 and Figure 5.50 illustrate the average CPU and RAM usage of a function
replica on a cluster for both distributed_lc and distributed_hc. Looking at Figure 5.49,
we see that the mean CPU usage of both Edge-Cluster 1 and 2 in distributed_lc is
nearly identical, with a figure of 4.7%, where they had a standard deviation of 7.4%.
The same case is in distributed_hc, where function replica in Edge-Cluster 1 and 2 have
a near identical mean CPU usage of 1.8% with a standard deviation of 3%. In both
environments, Edge-Cluster 3 had the lowest mean figure, with a value of 3.3% and a
standard deviation of 2.5& in distributed_lc, and 0.7% with a standard deviation of
0.6% in distributed_hc.

In distributed_lc, the mean RAM usage of a function replica was nearly identical in

66

5.3. Results

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

distributed_lc

strong weak

Node Type

0

20

40

60

C
P
U

 a
v
g
 (

%
)

distributed_hc

Mean CPU % each Node Type

strong weak

Node Type

0

5

10

15

20

R
A

M
 a

v
g
 (

%
)

distributed_lc

strong weak

Node Type

0

5

10

15

20

R
A

M
 a

v
g
 (

%
)

distributed_hc

Mean RAM % each Node Type

Figure 5.46: Average CPU and RAM usage per Node Type, high and low constraint
environment, distributed architecture

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
P
U

 u
s
a
g
e
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for autoscaler

Figure 5.47: Average CPU usage from autoscaler, high and low constraint environment,
distributed architecture

Edge-Cluster 1 and 2 with a value of 0.6% and a standard deviation of 0.15%. The
mean RAM usage in Edge-Cluster 3 was only 0.21% with a standard deviation of 0.02%.
Similarly, in distributed_hc, the lowest average RAM usage figure was measured in
Edge-Cluster 3, with 0.2% and a standard deviation of 0.025%. The highest mean value
was in Edge-Cluster 1 with 0.77% and a standard deviation of 0.12%.

Figure 5.51 depicts the average CPU usage of the load-balancer in a cluster for both dis-
tributed_lc and distributed_hc. In distributed_lc, the load-balancer in each cluster had
a similar mean CPU usage of 0.4% with a standard deviation of 0.3%. In distributed_hc,
the mean CPU usage of the load-balancers in each cluster was also close. The highest

67

5. Evaluation

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for autoscaler

Figure 5.48: Average RAM usage from autoscaler, high and low constraint environment,
distributed architecture

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

1

2

3

4

5

6

7

C
P
U

 u
s
a
g
e
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

1

2

3

4

5

6

7

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for function replica

Figure 5.49: Average CPU usage from function replica, high and low constraint environ-
ment, distributed architecture

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for function replica

Figure 5.50: Average RAM usage from function replica, high and low constraint environ-
ment, distributed architecture

mean value was in Edge-Cluster 2 with 0.94% and a standard deviation of 0.9%, and the
lowest in Edge-Cluster 3 with 0.89% and a standard deviation of 0.85%.

Looking at Figure 5.52, we see that the mean RAM usage of the load-balancer in
each cluster in their infrastructure was nearly identical. In distributed_lc, the mean
RAM usage in each cluster was at 0.08% with a standard deviation of 0.015%, and in
distributed_hc, 0.09% with a standard deviation of 0.035%.

68

5.3. Results

Edge-Cluster 1 Edge-Cluster 3 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

C
P
U

 u
s
a
g
e
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 3 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for load-balancer

Figure 5.51: Average CPU usage from load-balancer, high and low constraint environment,
distributed architecture

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.02

0.04

0.06

0.08

0.10

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.02

0.04

0.06

0.08

0.10
M

e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for load-balancer

Figure 5.52: Average RAM usage from load-balancer, high and low constraint environment,
distributed architecture

The average CPU usage of a scheduler in a cluster for both distributed_hc and dis-
tributed_lc is illustrated in Figure 5.53. In distributed_lc, the lowest mean CPU usage
was in Edge-Cluster 3 with 2.4% and a standard deviation of 2.9%, and the highest in
Edge-Cluster 2 with 2.8% and a standard deviation of 3.2%. Similarly, the highest in
distributed_hc was also Edge-Cluster 2 with 9.3% with a standard deviation of 2.3%,
and the lowest was also Edge-Cluster 3 with 3.7% with a standard deviation of 2.8%.

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

2

4

6

8

10

C
P
U

 u
s
a
g
e
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

2

4

6

8

10

C
P
U

 u
s
a
g
e
 %

distributed_hc

Mean CPU % for scheduler

Figure 5.53: Average CPU usage from scheduler, high and low constraint environment,
distributed architecture

Figure 5.54 represents the average RAM usage of a scheduler in each cluster for dis-

69

5. Evaluation

tributed_hc and distributed_lc. We see that in all clusters for both infrastructures, the
mean RAM usage was around 0.7%. The standard deviation was around 0.7%.

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
m

o
ry

 u
s
e
d
 i
n
 %

distributed_hc

Mean RAM % for scheduler

Figure 5.54: Average RAM usage from scheduler, high and low constraint environment,
distributed architecture

5.3.6 Network level hc parameter set
Figure 5.55 illustrates the distribution of network throughput per second for each
architecture in high constraint infrastructures in box plots. The quartiles (q1, q2,
q3) for centralized_hc were: (0.1MB/s, 0.2MB/s, 2.4MB/s), and its whiskers (whisklo,
whiskhi) were: (0.0MB/s, 5.9MB/s). For decentralized_hc, we measured similar values
where the quartiles were (0.0MB/s, 0.1MB/s, 3.1MB/s), and the whiskers (0.0MB/s,
7.7MB/s). The biggest box was in distributed_hc with (0.1MB/s, 0.4MB/s, 4.7MB/s)
as quartiles and (0.0MB/s, 11.7MB/s) as its whiskers.

centralized_hc decentralized_hc distributed_hc

0

10

20

30

40

50

M
B

/s

Network Throughput

Figure 5.55: Distribution of Network Throughput per second per infrastructure, high
constraint infrastructure, all architectures

The following figure, Figure 5.56, depicts the distribution of latency values in milliseconds
through box plots. Each experiment’s latency values are further categorized by the start
and end cluster from the user request path. For decentralized_hc, we have four different
paths. The quantiles one, two, and three (q1, q2, q3) for these paths are (from left
to right): (59.1ms, 90.4ms, 453.8ms), (116.1ms, 198.2ms, 535.4ms), (59.2ms, 90.9ms,
457.6ms) and (112.6ms, 166.7ms, 479.5ms). The low and high whiskers (whisklo, whiskhi)
are (from left to right): (51.7ms, 1045.7ms), (99.0ms, 1151.6ms), (51.4ms, 1052.5ms) and
(98.3ms, 1026.2ms). Distributed_hc features a lot of lower values. The quantiles from

70

5.3. Results

left to right are: (57.6ms, 72.9ms, 444.8ms), (57.8ms, 73.6ms, 432.6ms) and (57.6ms,
73.9ms, 461.3ms), and the whiskers from left to right are: (51.7ms, 1022.8ms), (51.5ms,
990.6ms) and (51.1ms, 1062.4ms). In centralized_hc, we have the most number of paths.
The quantiles for each path from left to right are: (162.8ms, 218.7ms, 408.6ms), (217.5ms,
281.4ms, 481.3ms), (218.1ms, 274.5ms, 468.9ms), (163.5ms, 208.5ms, 409.4ms), (218.1ms,
284.2ms, 474.2ms) and (217.5ms, 277.7ms, 457.3ms). For the low and high whiskers,
the following values were able to be collected (from left to right): (155.4ms, 777.2ms),
(208.5ms, 875.2ms), (208.9ms, 841.8ms), (155.8ms, 778.3ms), (209.0ms, 854.6ms) and
(208.7ms, 798.3ms).

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

2500

5000

7500

10000

L
a
te

n
c
y
 i
n
 m

s

decentralized_hc

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 3 -
Edge-Cluster 3

from-to

0

2500

5000

7500

10000

L
a
te

n
c
y
 i
n
 m

s

distributed_hc

Latency

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

from-to

0

2500

5000

7500

10000

L
a
te

n
c
y
 i
n
 m

s

centralized_hc

Latency

Figure 5.56: Distribution of latency values for each request path per architecture, high
constraint infrastructure, all architectures

Figure 5.57 describes the average net throughput of the autoscaler categorized by the
cluster for each architecture in a high constraint environment. In centralized_hc, the
mean usage was 0.2 MB/s with a standard deviation of 0.03 MB/s. In decentralized_hc,
all clusters had a similar mean of around 0.17 MB/s with a standard deviation of around
0.2 MB/s. Regarding distributed_hc, the highest mean value was measured in Edge-
Cluster 1 with 0.26 MB/s and a standard deviation of 0.5 MB/s, and the lowest in
Edge-Cluster 3 with 0.25 MB/s and a standard deviation of 0.05 MB/s.

The following figure, Figure 5.58 illustrates the average net throughput of a function
replica. The highest mean value was 0.45 MB/s with a standard deviation of 0.9 MB/s
in the Cloud in centralized_hc. The lowest was 0.27 MB/s, with a standard deviation
of 0.74 MB/s in Edge-Cluster 1. In decetralized_hc, the higher mean value was in
Edge-Cluster 2 with 1.1 MB/s and a standard deviation of 1.8 MB/s, while the lower
average figure was in Edge-Cluster 1 with 0.9 MB/s and a standard deviation of 1.5
MB/s. In distributed_hc, the highest measured mean value was in Edge-Cluster 2 with

71

5. Evaluation

Cloud

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s
centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

distributed_hc

Mean Net throughput for autoscaler

Figure 5.57: Average Net throughput of autoscaler high constraint infrastructure, all
architectures

0.83 MB/s and a standard deviation of 1.6 MB/s, and the lowest one was in Edge-Cluster
3 with 0.6 MB/s and a standard deviation of 1.3 MB/s.

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
B

/s

centralized_hc

Edge-Cluster 1 Edge-Cluster 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
B

/s

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
B

/s

distributed_hc

Mean Net throughput for function replica

Figure 5.58: Average Net throughput of function replica, high constraint infrastructure,
all architectures

Figure 5.59 depicts the average net throughput of a load-balancer for each architecture in
a high constraint environment. In centralized_hc, the mean usage was 32.4 MB/s with a
standard deviation of 18.68 MB/s. The highest mean value in decentralized_hc was in
Edge-Cluster 1 with 19.7 MB/s and a standard deviation of 14.3 MB/s. The lowest was
in the Cloud, with 2 MB/s and a standard deviation of 0.28 MB/s. In distributed_hc, all
load-balancers had a nearly identical usage of around 18 MB/s with a standard deviation
of around 11.7 MB/s.

The average net throughput of a scheduler for each architecture in a high constraint
environment is illustrated in Figure 5.60. The average net throughput of the scheduler in
centralized_hc was 0.23 MB/s with a standard deviation of 0.02 MB/s. The schedulers
in the clusters in decentralized_hc all had a similar net throughput of around 0.18
MB/s with a standard deviation of 0.02 MB/s. In distributed_hc, the highest mean net
throughput was measured in Edge-Cluster 2 with 0.31 MB/s and a standard deviation
of 0.06 MB/s. The lowest average value was Edge-Cluster-3, with 0.29 MB/s and a
standard deviation of 0.05 MB/s.

72

5.3. Results

Cloud

0

5

10

15

20

25

30

35

M
B

/s

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0

5

10

15

20

25

30

35

M
B

/s

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

5

10

15

20

25

30

35

M
B

/s

distributed_hc

Mean Net throughput for load-balancer

Figure 5.59: Average Net throughput of load-balancer, high constraint infrastructure, all
architectures

Cloud

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
B

/s

centralized_hc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
B

/s

decentralized_hc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
B

/s

distributed_hc

Mean Net throughput for scheduler

Figure 5.60: Average Net throughput of scheduler, high constraint infrastructure, all
architectures

5.3.7 Network level lc parameter set

Figure 5.61 depicts the distribution of network throughput per second for each architecture
in a low constraint infrastructure. In centralized_lc, we calculated the following quartiles
(q1, q2, q3): (0.1MB/s, 0.2MB/s, 1.5MB/s), and following whiskers (whisklo, whiskhi):
(0.0MB/s, 3.7MB/s). Decentralized_hc had a slightly bigger range with its quartiles
(0.1MB/s, 0.1MB/s, 2.8MB/s) and whiskers (0.0MB/s, 6.9MB/s). An even bigger range
was measured in distributed_lc with (0.0MB/s, 0.1MB/s, 3.8MB/s) for its quartiles and
(0.0MB/s, 9.3MB/s) for its whiskers.

The box plots in Figure 5.62 illustrate the distribution of latency values in milliseconds
and follow the same layout as Figure 5.56. For the four paths in decentralized_lc, we
found the following (from left to right) quartile values (q1, q2, q3): (41.9ms, 45.8ms,
55.6ms), (79.4ms, 91.3ms, 120.6ms), (41.9ms, 45.5ms, 55.0ms) and (81.1ms, 96.9ms,
123.9ms). Regarding the low and high whiskers (whisklo, whiskhi) in decentralized_lc, we
calculated the following values (from left to right): (36.6ms, 76.2ms), (68.1ms, 180.7ms),
(36.5ms, 74.6ms) and (67.5ms, 184.8ms). In distributed_lc, the quartiles and whiskers
were nearly identical across the request path. From left to right the following quartiles
(q1,q2,q3) : (41.9ms, 43.6ms, 49.2ms), (41.4ms, 43.1ms, 47.4ms) and (41.8ms, 43.6ms,
49.0ms), and following whiskers (whisklo, whiskhi): (36.2ms, 60.2ms), (36.2ms, 56.3ms)

73

5. Evaluation

centralized_lc decentralized_lc distributed_lc

0

20

40

60

80

100

M
B

/s

Network Throughput

Figure 5.61: Distribution Network Throughput per second per infrastructure, low con-
straint infrastructure, all architectures

and (36.5ms, 59.8ms) were found. In centralized_hc the quartiles (q1, q2, q3) for the
six paths were as follows (from left to right): (111.3ms, 113.0ms, 115.9ms), (146.5ms,
147.9ms, 150.6ms), (146.4ms, 148.0ms, 150.9ms), (111.4ms, 113.1ms, 116.3ms), (146.6ms,
148.1ms, 151.2ms) and (146.4ms, 148.0ms, 150.9ms). The whiskers for centralized_hc
are as follows (from left to right): (106.3ms, 122.8ms), (141.4ms, 156.8ms), (141.8ms,
157.6ms), (106.3ms, 123.7ms), (142.3ms, 158.0ms) and (141.8ms, 157.7ms).

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

5000

10000

m
s

decentralized_lc

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 3 -
Edge-Cluster 3

from-to

0

5000

10000

m
s

distributed_lc

Latency

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

5000

10000

m
s

centralized_lc

Latency

Figure 5.62: Distribution of latency values for each request path per architecture, low
constraint environment, all architectures

In Figure 5.63, we see each cluster’s average net throughput of an autoscaler of each
architecture in a low constraint infrastructure. In centralized_lc, the mean value was
0.2 MB/s with a standard deviation of 0.03 MB/s. In decentralized_lc, the mean net
throughput was for each cluster nearly identical. In each cluster, the autoscaler had
a mean net throughput of around 0.16 MB/s and a standard deviation of around 0.03
MB/s. Similarly, the autoscalers in the clusters in distributed_lc also had a nearly equal

74

5.3. Results

net throughput of around 0.18 MB/s with a standard deviation of 0.05 MB/s.

Cloud

0.00

0.05

0.10

0.15

0.20

M
B

/s

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

M
B

/s

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

M
B

/s

distributed_lc

Mean Net throughput for autoscaler

Figure 5.63: Average Net throughput of autoscaler low constraint infrastructure, all
architectures

Next, we have Figure 5.64, which describes the average net throughput of a function replica
of each cluster in each architecture in a low constraint infrastructure. In centralized_lc,
the highest mean net throughput was in the Cloud with 0.5 MB/s with a standard
deviation of 0.97 MB/s. The lowest cluster was Edge-Cluster 1, with 0.22 MB/s and
a standard deviation of 0.38 MB/s. In decentralized_lc, the higher measured mean
net throughput was in Edge-Cluster 2 with 3.2 MB/s and a standard deviation of 5.2
MB/s, and the lower one in Edge-Cluster 1 with 3 MB/s and a standard deviation of 4.9
MB/s. For distributed_lc, we see that the highest measured mean net throughput was
in Edge-Cluster 3 with 2.2 MB/s and a standard deviation of 3.5 MB/s. Edge-Cluster
2’s lowest mean throughput was measured at 1.8 MB/s and a standard deviation of 3.2
MB/s.

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
e
t

u
s
a
g
e
 M

B
/s

centralized_lc

Edge-Cluster 1 Edge-Cluster 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
e
t

u
s
a
g
e
 M

B
/s

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
e
t

u
s
a
g
e
 M

B
/s

distributed_lc

Mean Net throughput for function replicas

Figure 5.64: Average Net throughput of function replica, low constraint infrastructure,
all architectures

Figure 5.65 illustrates each cluster’s average net throughput of a load-balancer using each
architecture in low constraint infrastructure. In centralized_lc, the mean net throughput
of the load-balancer was 25.8 MB/s with a standard deviation of 23.6 MB/s. In contrast,
in decentralized_lc, the Cloud had the lowest mean net throughput of 2.4 MB/s with a
standard deviation of 0.57 MB/s. The highest was measured in Edge-Cluster 2 with 25.6
MB/s and a standard deviation of 25.1 MB/s. In distributed_lc, the values across the
clusters are relatively close. The highest mean net throughput was in Edge-Cluster 1,
with 16.6 MB/s and a standard deviation of 13 MB/s, and the lowest was in Edge-Cluster
3, with 15.8 MB/s and a standard deviation of 12.4 MB/s.

75

5. Evaluation

Cloud

0

5

10

15

20

25

M
B

/s
centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0

5

10

15

20

25

M
B

/s

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

5

10

15

20

25

M
B

/s

distributed_lc

Mean Net throughput for load-balancer

Figure 5.65: Average Net throughput of load-balancer, low constraint infrastructure, all
architectures

With Figure 5.66, we depict the average network throughput of a scheduler for each cluster
using all three architectures in low constraint infrastructures. In centralized_lc, we had a
mean value of 0.24 MB/s with a standard deviation of 0.04 MB/s. For decentralized_lc,
the average network throughput for each cluster was relatively close to each other. All
clusters had a mean value of around 0.22 MB/s with a standard deviation of around 0.06
MB/s. We have a similar case in distributed_lc, where the schedulers in each cluster had
a mean network throughput of around 0.2 MB/s with a standard deviation of around
0.09 MB/s.

Cloud

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

decentralized_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

distributed_lc

Mean Net throughput for scheduler

Figure 5.66: Average Net throughput of scheduler, low constraint infrastructure, all
architectures

5.3.8 Network level hc_lc parameter set with centralized architecture
Figure 5.67 describes the distribution of network throughput per second of both environ-
ments with a centralized architecture. The quartiles (q1, q2, q3) of centralized_lc were
at (0.1MB/s, 0.2MB/s, 2.0MB/s), and its whiskers (whisklo, whiskhi) were at (0.0MB/s,
4.9MB/s). Slightly smaller, in centralized_hc the quartiles were at (0.1MB/s, 0.2MB/s,
1.7MB/s), and the whiskers were at (0.0MB/s, 4.1MB/s).

In Figure 5.68, the distribution of latency values for user requests path for low and high
constraint environments with centralized architecture is illustrated. For centralized_lc and
centralized_hc, we had six different request paths. In centralized_lc the following quartiles

76

5.3. Results

centralized_lc centralized_hc

0

20

40

60

80
M

B
/s

Network Throughput

Figure 5.67: Distribution Network Throughput per second per infrastructure, high and
low constraint environment, centralized architecture

(q1,q2,q3) were calculated (from left to right): (111.3ms, 112.9ms, 115.8ms), (146.3ms,
147.9ms, 150.7ms), (146.4ms, 148.0ms, 150.8ms), (111.6ms, 113.4ms, 116.6ms), (146.4ms,
148.1ms, 151.1ms) and (146.6ms, 148.3ms, 151.7ms). Furthermore, (106.2ms, 122.5ms),
(141.2ms, 157.3ms), (142.2ms, 157.3ms), (106.3ms, 124.2ms), (141.6ms, 158.2ms) and
(141.5ms, 159.3ms), were the whiskers value (whisklo, whiskhi) from left to right. In
the centralized_hc, we measured higher latency values. For the quartiles (q1, q2, q3)
the following values were measured (from left to right): (161.2ms, 177.2ms, 339.3ms),
(217.8ms, 270.6ms, 382.8ms), (217.3ms, 252.4ms, 369.7ms), (161.4ms, 176.3ms, 331.4ms),
(217.2ms, 253.8ms, 379.1ms) and (217.2ms, 249.7ms, 362.7ms). The whiskers (whisklo,
whiskhi) values were (from left to right): (156.0ms, 606.3ms), (209.1ms, 626.9ms),
(209.1ms, 597.0ms), (155.6ms, 586.1ms), (208.3ms, 621.4ms) and (208.8ms, 580.3ms).

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

1000

2000

3000

m
s

centralized_hc

Latency

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

from-to

0

1000

2000

3000

m
s

centralized_lc

Latency

Figure 5.68: Distribution of latency values for each request path in centralized architecture,
low and high constraint environment

In Figure 5.69, we see that the mean network throughput of the autoscaler in both

77

5. Evaluation

centralized_hc and centralized_lc were nearly identical with a mean value of 0.2 MB/s
and a standard deviation of 0.03 MB/s.

Cloud

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
B

/s
centralized_lc

Cloud

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
B

/s

centralized_hc

Mean Net throughput for autoscaler

Figure 5.69: Average Net throughput of autoscaler in centralized architecture, low and
high constraint environment

Figure 5.70 describes the mean net throughput of function replicas in both infrastructures
with a centralized architecture. In centralized_lc, the highest mean value was 0.66 MB/s
with a standard deviation of 0.65 MB/s in the Cloud. Edge-Cluster 2 had the lowest
with 0.26 MB/s and a standard deviation of 0.3 MB/s. Similarly to centralized_lc,
centralized_hc had the highest measured mean value in the Cloud with 0.42 MB/s and a
standard deviation of 0.45 MB/s. However, the lowest mean value was in Edge-Cluster 1,
with 0.31 MB/s and a standard deviation of 0.34 MB/s.

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
B

/s

centralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
B

/s

centralized_hc

Mean Net throughput for function replica

Figure 5.70: Average Net throughput of function replica in centralized architecture, low
and high constraint environment

The following figure, Figure 5.71, represents the average network throughput of load-
balancer in centralized_lc and centralized_hc. Between these two architectures, there
is a recognizable difference, where in centralized_lc, the mean throughput was at 28.5
MB/s with a standard deviation of 22.6 MB/s, and in centralized_hc, 21.8 MB/s with a
standard deviation of 15.9 MB/S.

78

5.3. Results

Cloud

0

5

10

15

20

25

30

35

M
B

/s
centralized_lc

Cloud

0

5

10

15

20

25

30

35

M
B

/s

centralized_hc

Mean Net throughput for load-balancer

Figure 5.71: Average Net throughput of load-balancer in centralized architecture, low
and high constraint environment

Figure 5.72 illustrates the average network throughput of a scheduler for a centralized
architecture in both a low and high constraint environment. The mean value in central-
ized_lc was 0.24 MB/s with a standard deviation of 0.03 MB/s. This value was higher
than in centralized_hc, where it was 0.2 MB/s, with a standard deviation of 0.05 MB/s.

Cloud

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

centralized_lc

Cloud

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

centralized_hc

Mean Net throughput for scheduler

Figure 5.72: Average Net throughput of scheduler, low constraint in centralized architec-
ture, low and high constraint environment

5.3.9 Network level hc_lc parameter set with decentralized
architecture

Figure 5.73 represents the network throughput distribution of the decentralized architec-
ture in both high and low environments. We see that decentralized_lc had (0.1MB/s,
0.1MB/s, 2.8MB/s) as quartiles (q1,q2,q3), and (0.0MB/s, 7.0MB/s) as whiskers (whisklo,
whiskhi). Very similar values were measured in distributed_hc with the following quartiles
values: (0.0MB/s, 0.1MB/s, 3.1MB/s) and whiskers: (0.0MB/s, 7.8MB/s).

79

5. Evaluation

decentralized_lc decentralized_hc

0

25

50

75

100

M
B

/s

Network Throughput

Figure 5.73: Distribution Network Throughput per second per infrastructure, high and
low constraint environment, decentralized architecture

In Figure 5.74, we illustrate the distribution of the latency of user requests in decentralized
architecture for both low and high constraint environments as box plots. The user
requests are further categorized after their four request path. From left to right, for
decentralized_lc the quartiles (q1, q2, q3) were as follows: (41.7ms, 44.2ms, 54.6ms),
(78.1ms, 107.1ms, 167.3ms), (41.9ms, 44.6ms, 55.1ms) and (82.7ms, 107.3ms, 160.3ms).
Regarding the whiskers (whisklo, whiskhi), the values were as follows (from left to right):
(36.2ms, 73.9ms), (68.7ms, 300.8ms), (36.0ms, 74.9ms) and (68.5ms, 275.6ms). The
quartiles and whiskers for the box plots in decentralized_hc were higher than this. From
left to right, the quartiles were: (59.1ms, 95.1ms, 454.2ms), (114.4ms, 202.7ms, 513.9ms),
(58.9ms, 89.2ms, 450.1ms) and (117.5ms, 178.3ms, 538.8ms), and the whiskers were:
(51.1ms, 1044.0ms), (99.0ms, 1072.3ms), (51.2ms, 1036.6ms), (98.5ms, 1164.8ms).

Looking at Figure 5.75, we see that the average network throughput for the autoscalers
in decentralized_lc and decentralized_lc were both relatively close to each other. In
decentralized_lc, the autoscalers in each cluster had a mean throughput of around 16
MB/s with a standard deviation of around 0.03 MB/s. In decentralized_hc, the mean
network throughput was higher, with around 0.17 MB/s and a standard deviation of
around 0.02 MB/s for each cluster.

Figure 5.76 illustrates the average network throughput of a function replica in both
environments with a decentralized architecture. We can see a rather significant difference
between the two infrastructures. In decentralized_lc, we measured a mean value of 4.1
MB/s with a standard deviation of 4.3 MB/s in Edge-Cluster 1 and 3.5 MB/s with a
standard deviation of 4.1 MB/s in Edge-Cluster 2. On the other hand, in decentralized_hc,
we only have 0.95 MB/s with a standard deviation of 0.7 MB/s in Edge-Cluster 1 and
1.3 MB/s with a standard deviation of 0.9 MB/s in Edge-Cluster 2.

In Figure 5.77, we represent the average network throughput of load-balancers in de-
centralized_hc and decentralized_lc. In decentralized_lc, the lowest mean value was
measured in the Cloud with 2.3 MB/s and a standard deviation of 0.5 MB/s. The
other two clusters had a very similar mean usage, with a value of around 25.5 MB/s
and a standard deviation of around 24 MB/s. The same pattern can be observed in
decentralized_hc. The Cloud also had the lowest mean network throughput of 0.2 MB/s

80

5.3. Results

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

2500

5000

7500

10000

m
s

decentralized_hc

Latency

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

2500

5000

7500

10000

m
s

decentralized_lc

Latency

Figure 5.74: Distribution of latency values for each request path in decentralized archi-
tecture, low and high constraint environment

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
B

/s

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
B

/s

decentralized_hc

Mean Net throughput for autoscaler

Figure 5.75: Average Net throughput of autoscaler in decentralized architecture, low and
high constraint environment

with a standard deviation of 0.27 MB/s. Edge-Cluster 1 and 2 also had a similar mean
throughput of around 19 MB/s with a standard deviation of around 14 MB/s.

Figure 5.78 describes the average network throughput of the schedulers in each cluster
of the decentralized_lc and decentralized_hc infrastructure. We can see that all three
clusters in decentralized_lc had a nearly identical mean throughput of around 0.2 MB/s
with a standard deviation of around 0.05 MB/s. Similarly, in decentralized_hc, each
cluster had a similar mean network throughout. The mean network throughput was
around 0.18 MB/s with a standard deviation of 0.02 MB/s.

81

5. Evaluation

Edge-Cluster 1 Edge-Cluster 2

0

1

2

3

4

M
B

/s
decentralized_lc

Edge-Cluster 1 Edge-Cluster 2

0

1

2

3

4

M
B

/s

decentralized_hc

Mean Net throughput for function replica

Figure 5.76: Average Net throughput of function replica in decentralized architecture,
low and high constraint environment

Cloud Edge-Cluster 1 Edge-Cluster 2

0

5

10

15

20

25

30

M
B

/s

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0

5

10

15

20

25

30

M
B

/s

decentralized_hc

Mean Net throughput for load-balancer

Figure 5.77: Average Net throughput of load-balancer in decentralized architecture, low
and high constraint environment

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

M
B

/s

decentralized_lc

Cloud Edge-Cluster 1 Edge-Cluster 2

0.00

0.05

0.10

0.15

0.20

M
B

/s

decentralized_hc

Mean Net throughput for scheduler

Figure 5.78: Average Net throughput of scheduler, low constraint in decentralized
architecture, low and high constraint environment

5.3.10 Network level hc_lc parameter set with distributed
architecture

The following Figure 5.79 illustrates the network throughput per second distribution
of both environments with distributed architecture. For distributed_lc the quartiles
(q1, q2, q3) were (0.0MB/s, 0.1MB/s, 3.8MB/s) and the box plots’ whiskers (whisklo,
whiskhi) were (0.0MB/s, 9.3MB/s). Somewhat similar was distributed_hc with (0.1MB/s,
0.4MB/s, 4.7MB/s) as its quartile values and (0.0MB/s, 11.6MB/s) as its low and high

82

5.3. Results

whiskers.

distributed_lc distributed_hc

0

10

20

30

40

50

M
B

/s

Network Throughput

Figure 5.79: Distribution Network Throughput per second per infrastructure, high and
low constraint environment, distributed architecture

Figure 5.80 represents the distribution of the latency values in both environments with
distributed architecture. Each box plot describes a user request path. From left to right,
the following quartile values (q1, q2, q3) were measured in distributed_lc: (41.6ms,
43.3ms, 46.5ms), (41.4ms, 43.0ms, 46.9ms) and (41.7ms, 43.5ms, 47.6ms). For the box
plot whiskers (whisklo, whiskhi), the following values were found: (35.8ms, 53.8ms),
(35.9ms, 55.2ms) and (36.3ms, 56.4ms). For distributed_hc, the values for both quartiles
and whiskers were higher. The following quartiles: (57.8ms, 74.5ms, 456.1ms), (57.6ms,
74.3ms, 465.7ms) and (57.3ms, 73.9ms, 466.8ms), and whiskers:(51.4ms, 1052.3ms),
(51.2ms, 1077.2ms) and (51.3ms, 1057.6ms) were calculated for distributed_hc.

Looking at the bar graphs in Figure 5.81, we see that in distributed_lc, the mean network
throughput of the autoscaler in each cluster was nearly identical. The mean value for
each cluster was around 0.17 MB/s with a standard deviation of around 0.5 MB/s. We
have a similar case in distributed_hc, where each autoscaler in the clusters has a similar
mean network throughput. The value was around 0.26 MB/s with a standard deviation
of around 0.03 MB/s.

In Figure 5.82, we see a function replica’s mean network throughput in low and high
constraint environments using the distributed architecture. In distributed_lc, the highest
mean value was in Edge-Cluster 3 with 4 MB/s and a standard deviation of 3.2 MB/s.
The lowest mean value was in Edge-Cluster 2, with 3.1 MB/s and a standard deviation of
2.9 MB/s. In distributed_hc, the highest mean network throughput was in Edge-Cluster
2 with 0.9 MB/s and a standard deviation of 0.9 MB/s. The lowest mean was found in
the Edge-Cluster 3 with 0.69 MB/s and a standard deviation of 2.8 MB/s.

In Figure 5.83, we see the mean network throughput of the load-balancers in each cluster
in distributed_lc and distributed_hc. The highest mean value in distributed_lc was
found in Edge-Cluster 2 with 16.8 MB/s and a standard deviation of 13.3 MB/s, and the
lowest in Edge-Cluster 3 with 15.6 MB/s and a standard deviation of 12.5 MB/s. The
same pattern can be found in distributed_hc. The cluster with the highest mean network
throughput was Edge-Cluster 2, with 18 MB/s and a standard deviation of 11.4 MB/s.

83

5. Evaluation

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 3 -
Edge-Cluster 3

from-to

0

1000

2000

m
s

distributed_hc

Latency

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 3 -
Edge-Cluster 3

from-to

0

1000

2000

m
s

distributed_lc

Latency

Figure 5.80: Distribution of latency values for each request path in a distributed archi-
tecture, low and high constraint environment

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

M
B

/s

distributed_hc

Mean Net throughput for autoscaler

Figure 5.81: Average Net throughput of autoscaler in a distributed architecture, low and
high constraint environment

Edge-Cluster 3 had the lowest mean value, with 16.6 MB/s and a standard deviation of
10.7 MB/s.

Figure 5.84 illustrates the average network throughput of schedulers in each cluster of
distributed_lc and distributed_hc infrastructure. In distributed_lc, schedulers in all
clusters had a similar mean network throughput of around 0.19 MB/s with a standard
deviation of around 0.07 MB/s. In contrast, the mean values are more different for the
distributed_hc infrastructure. There, a scheduler’s highest mean network throughput
was in Edge-Cluster 2 with 0.32 MB/s and a standard deviation of 0.05 MB/s. The

84

5.3. Results

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

1

2

3

4

M
B

/s

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

1

2

3

4

M
B

/s

distributed_hc

Mean Net throughput for function replica

Figure 5.82: Average Net throughput of function replica in a distributed architecture,
low and high constraint environment

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

5

10

15

20

M
B

/s

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0

5

10

15

20

M
B

/s

distributed_hc

Mean Net throughput for load-balancer

Figure 5.83: Average Net throughput of load-balancer in a distributed architecture, low
and high constraint environment

lowest average value was in Edge-Cluster 3, with 0.3 MB/s and a standard deviation of
0.05 MB/s.

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
B

/s

distributed_lc

Edge-Cluster 1 Edge-Cluster 2 Edge-Cluster 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
B

/s

distributed_hc

Mean Net throughput for scheduler

Figure 5.84: Average Net throughput of scheduler, low constraint in distributed architec-
ture, low and high constraint environment

5.3.11 Application level hc parameter set

Figure 5.85 illustrates the round-trip-time (rtt) values distribution for all three archi-
tectures in high constraint infrastructures as box plots. Each box plot represents a

85

5. Evaluation

user request path. In decentralized_hc, four different request paths were found, and
the following quartiles (q1,q2,q3) were calculated (from left to right): (0.3s, 0.5s, 3.0s),
(0.6s, 0.9s, 4.7s), (0.3s, 0.5s, 3.1s) and (0.5s, 0.7s, 5.0s). The box plot whiskers (whisklo,
whiskhi) for this infrastructure were as follows (from left to right): (0.3s, 6.9s), (0.4s,
10.8s), (0.3s, 7.2s) and (0.4s, 11.6s). In distributed_hc, the quartiles and whiskers were
nearly identical across the three request paths. For the quartiles, the following values
were measured (from left to right): (0.3s, 0.5s, 2.8s), (0.3s, 0.5s, 2.9s) and (0.3s, 0.5s, 2.7s),
and for the whiskers (0.3s, 6.4s), (0.3s, 6.8s) and (0.3s, 6.4s) were measured (from left to
right). Similarly, in centralized_hc, the quartiles and whiskers were similar across six
request paths. For the quartiles, the following values were measured (from left to right):
(0.7s, 1.1s, 3.0s), (0.9s, 1.3s, 3.5s), (0.8s, 1.2s, 3.3s), (0.7s, 1.1s, 2.9s), (0.9s, 1.4s, 3.6s)
and (0.8s, 1.2s, 3.3s). The box plot whiskers (whisklo, whiskhi) for this infrastructure
were as follows (from left to right): (0.7s, 6.4s), (0.7s, 7.3s), (0.7s, 6.9s), (0.7s, 6.2s), (0.7s,
7.7s) and (0.7s, 6.9s).

Edge-
Clu

st
er

 1
 -

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 1
 -

Edge-
Clu

st
er

 2

Edge-
Clu

st
er

 2
 -

Edge-
Clu

st
er

 2

Edge-
Clu

st
er

 2
 -

Edge-
Clu

st
er

 1

from-to

0

10

20

30

s
e
c
o
n
d
s

decentralized_hc

Edge-
Clu

st
er

 1
 -

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2
 -

Edge-
Clu

st
er

 2

Edge-
Clu

st
er

 3
 -

Edge-
Clu

st
er

 3

from-to

0

10

20

30

s
e
c
o
n
d
s

distributed_hc

RTT

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

from-to

0

10

20

30

s
e
c
o
n
d
s

centralized_hc

RTT

Figure 5.85: Distribution of round-trip-time values for each request path per architecture,
high constraint infrastructure, all architectures

We illustrate two different plots in Figure 5.86. On the left side is the actual client
request progress throughout the experiment. We can see that the spikes in the line plot
are similar to the spikes depicted in Figure 5.4. On the right side, we represent the
average number of processed requests per second for all three architectures in a high

86

5.3. Results

constraint environment. The infrastructure with the lowest requests per second was
centralized_hc, with a mean value of 12.3 and a standard deviation of 7.1. The highest
one was distributed_hc with a mean value of 19.4 and a standard deviation of 12.5.

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

10

20

30

40

50

60

70

S
e
n
t

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Sent requests

centralized_hc

decentralized_hc

distributed_hc

centralized_hc decentralized_hc distributed_hc

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

F
in

is
h
e
d
 r

e
q
u
e
s
t

p
e
r

s
e
c
o
n
d

Average Application Throughput

Figure 5.86: Sent request progress and average finished requests per architecture, high
constraint infrastructure, all architectures

5.3.12 Application level lc parameter set

In order to illustrate the rtt values, we created box plots. We created one for each request
path in each experiment, which can be seen in Figure 5.87. In decentralized_lc, the
following quartiles (q1, q2, q3) were found (from left to right): (0.3s, 0.5s, 2.2s), (0.6s, 2.7s,
6.2s), (0.3s, 0.5s, 2.7s) and (0.9s, 2.6s, 6.2s). The box plot whiskers (whisklo, whiskhi)
were as follows (from left to right): (0.2s, 5.2s), (0.3s, 14.6s), (0.2s, 6.4s) and (0.3s, 14.0s).
For distributed_lc, both the quartiles and whiskers were lower. The quartiles were (from
left to right): (0.2s, 0.3s, 0.7s), (0.2s, 0.3s, 0.6s) and (0.2s, 0.3s, 1.0s), and whiskers were
(from left to right): (0.2s, 1.4s), (0.2s, 1.1s) and (0.2s, 2.0s). Even smaller boxes were
measured in centralized_lc. There, the following quartiles: (0.5s, 0.5s, 0.5s), (0.5s, 0.6s,
0.6s), (0.5s, 0.6s, 0.6s), (0.5s, 0.5s, 0.5s), (0.5s, 0.6s, 0.6s) and (0.5s, 0.6s, 0.6s), and the
following whiskers: (0.5s, 0.6s), (0.5s, 0.7s), (0.5s, 0.7s), (0.5s, 0.6s), (0.5s, 0.7s) and (0.5s,
0.7s) were measured.

In order to present the average application throughput, we also added the progress of the
sent user requests in Figure 5.88. The spikes and flats match our user profile in the line
plot on the right side. Distributed_lc had the highest average application throughput,
with 19.5 requests per second and a standard deviation of 14.7. The lowest mean figure
was measured in centralized_lc with 11.5 requests per second and a standard deviation
of 9.3.

87

5. Evaluation

Edge-
Clu

st
er

 1
 -

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 1
 -

Edge-
Clu

st
er

 2

Edge-
Clu

st
er

 2
 -

Edge-
Clu

st
er

 2

Edge-
Clu

st
er

 2
 -

Edge-
Clu

st
er

 1

from-to

0

10

20

30

s
e
c
o
n
d
s

decentralized_lc

Edge-
Clu

st
er

 1
 -

Edge-
Clu

st
er

 1

Edge-
Clu

st
er

 2
 -

Edge-
Clu

st
er

 2

Edge-
Clu

st
er

 3
 -

Edge-
Clu

st
er

 3

from-to

0

10

20

30

s
e
c
o
n
d
s

distributed_lc

RTT

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

5

10

15

20

25

30

s
e
c
o
n
d
s

centralized_lc

RTT

Figure 5.87: Distribution of round-trip-time values for each request path per architecture,
low constraint infrastructure, all architectures

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Time passed (minutes:seconds)

0

10

20

30

40

50

60

70

80

S
e
n
t

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Sent requests

centralized_lc

decentralized_lc

distributed_lc

centralized_lc decentralized_lc distributed_lc

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

F
in

is
h
e
d
 r

e
q
u
e
s
t

p
e
r

s
e
c
o
n
d

Average Application Throughput

Figure 5.88: Sent request progress and average finished requests per architecture, low
constraint infrastructure, all architectures

88

5.3. Results

5.3.13 Application level hc_lc parameter set with centralized
architecture

Figure 5.89 illustrates the distribution of rtt values across user request paths in cen-
tralized_lc and centralized_hc. We can see a difference between the box plot sizes. In
centralized_lc, the following quartiles (from left to right) were measured: (0.5s, 0.5s,
0.5s), (0.5s, 0.6s, 0.6s), (0.5s, 0.6s, 0.6s), (0.5s, 0.5s, 0.5s), (0.5s, 0.6s, 0.6s) and (0.5s,
0.6s, 0.6s). For the box plot whiskers (whisklo, whiskhi), in centralized_lc, the following
values were found (from left to right): (0.5s, 0.6s), (0.5s, 0.7s), (0.5s, 0.7s), (0.5s, 0.6s),
(0.5s, 0.7s) and (0.5s, 0.7s). As mentioned, the quartiles in centralized_hc are more
spread out. There we had the following quartiles (from left to right): (0.7s, 0.9s, 1.9s),
(0.9s, 1.2s, 1.9s), (0.8s, 1.2s, 1.9s), (0.7s, 0.8s, 1.8s), (0.8s, 1.2s, 1.9s) and (0.8s, 1.1s, 1.8s),
and the following whiskers (from left to right): (0.7s, 3.6s), (0.7s, 3.4s), (0.7s, 3.3s), (0.7s,
3.4s), (0.7s, 3.5s) and (0.7s, 3.2s).

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

from-to

0

5

10

15

s
e
c
o
n
d
s

centralized_lc

RTT

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

5

10

15

s
e
c
o
n
d
s

centralized_hc

RTT

Figure 5.89: Distribution of latency values for each request path in centralized architecture,
low and high constraint environment

In Figure 5.90, we illustrate the actual request workload from our clients and the
average application throughput per second. The line plot shows that the last spike
is less predominant than the user profile suggests. Regarding the average application
throughput, we see that it was in centralized_lc, with a mean value of 11.8 requests per

89

5. Evaluation

second and a standard deviation of 9.2, higher than in centralized_hc, with a mean value
of 10.8 requests per second and a standard deviation of 6.7.

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

10

20

30

40

50

S
e
n
t

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Sent requests

centralized_hc

centralized_lc

centralized_hc centralized_lc

0

2

4

6

8

10

12

F
in

is
h
e
d
 r

e
q
u
e
s
t

p
e
r

s
e
c
o
n
d

Average Application Throughput

Figure 5.90: Sent request progress and average finished requests in centralized architecture,
low and high constraint environment

5.3.14 Application level hc_lc parameter set with decentralized
architecture

In order to illustrate the distribution of rtt values in both decentralized_lc and decen-
tralized_hc, we created multiple box plots, where each box plot represents a request
path (see Figure 5.91). In decentralized_lc, the following quartiles (q1, q2, q3) were
measured (from left to right): (0.3s, 0.4s, 1.6s), (0.5s, 1.8s, 5.3s), (0.3s, 0.4s, 1.6s) and
(0.8s, 3.0s, 6.6s). The whiskers (whisklo, whiskhi) in the box plots in decentralized_lc
were (from left to right): (0.2s, 3.5s), (0.3s, 12.6s), (0.2s, 3.5s) and (0.3s, 15.2s). For
decentralized_hc, higher values were measured. The quartiles were at (from left to right):
(0.3s, 0.5s, 2.9s), (0.6s, 0.9s, 4.8s), (0.3s, 0.5s, 3.0s) and (0.6s, 0.7s, 5.3s), and the whiskers
were at (from left to right): (0.3s, 6.8s), (0.4s, 11.0s), (0.3s, 6.9s) and (0.3s, 12.4s).

Figure 5.92 represents the user request workload and the average application throughput
for decentralized_lc and decentralized_hc. While the line plot is similar to our user profile,
the difference between the lower and higher spikes was lower than in the user request
profile Figure 5.4. Regarding the mean application throughput, both infrastructures had
the same mean of 13 requests per second. Decentralized_hc had a standard deviation of
8.1, while decentralized_lc had a standard deviation of 9.5.

5.3.15 Application level hc_lc parameter set with distributed
architecture

Figure 5.93 illustrates the distribution of rtt values in box plots for distributed_lc and
distributed_hc. Each box plot represents a user request path. In distributed_lc, the
following quartiles (q1, q2, q3) were found (from left to right): (0.2s, 0.3s, 0.4s), (0.2s,

90

5.3. Results

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

5

10

15

20

25

s
e
c
o
n
d
s

decentralized_lc

RTT

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

from-to

0

5

10

15

20

25

s
e
c
o
n
d
s

decentralized_hc

RTT

Figure 5.91: Distribution of latency values for each request path in decentralized archi-
tecture, low and high constraint environment

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

10

20

30

40

50

60

S
e
n
t

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Sent requests

decentralized_hc

decentralized_lc

decentralized_hc decentralized_lc

0

2

4

6

8

10

12

14

F
in

is
h
e
d
 r

e
q
u
e
s
t

p
e
r

s
e
c
o
n
d

Average Application Throughput

Figure 5.92: Sent request progress and average finished requests in decentralized archi-
tecture, low and high constraint environment

0.3s, 0.6s) and (0.2s, 0.3s, 0.7s). Furthermore, these were the whiskers (whisklo, whiskhi)
for the box plots in distributed_lc (from left to right): (0.2s, 0.7s), (0.2s, 1.1s), and
(0.2s, 1.3s). The quartile and whiskers values in distributed_hc were higher than in

91

5. Evaluation

distributed_lc. There, the quartiles were (from left to right): (0.3s, 0.5s, 2.9s), (0.3s,
0.5s, 2.9s) and (0.3s, 0.5s, 2.8s), and the whiskers were (from left to right): (0.3s, 6.7s),
(0.3s, 6.8s) and (0.3s, 6.4s).

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 3 -
Edge-Cluster 3

from-to

0

2

4

6

8

10

12

s
e
c
o
n
d
s

distributed_lc

RTT

Edge-Cluster 1 -
Edge-Cluster 1

Edge-Cluster 2 -
Edge-Cluster 2

Edge-Cluster 3 -
Edge-Cluster 3

from-to

0

2

4

6

8

10

12

s
e
c
o
n
d
s

distributed_hc

RTT

Figure 5.93: Distribution of latency values for each request path in a distributed archi-
tecture, low and high constraint environment

The average application throughput and the user request workload are illustrated in
Figure 5.94. The request workload is very similar to our created user profiles. For the
mean application throughput, both infrastructures had the same mean value of around 19
requests per second. However, the standard deviation is different, where distributed_hc
had a value of 12.6, and distributed_lc had a value of 14.7.

5.3.16 Orchestration level hc parameter set

Figure 5.95 illustrates each architecture’s total zone crossings in high constraint infras-
tructures. A zone cross happens when a user request’s destination and source zone
are different. Since there were no zone crossings in distributed_hc, we omitted it from
the figure. The bar graph illustrates the mean values of zone crossings over the five
experiments. In centralized_hc, the crossing from Edge-Cluster 1 to the Cloud was
the most dominant, with a mean occurrence of 1486 and a standard deviation of 80.

92

5.3. Results

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

10

20

30

40

50

60

70

S
e
n
t

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Sent requests

distributed_hc

distributed_lc

distributed_hc distributed_lc

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

F
in

is
h
e
d
 r

e
q
u
e
s
t

p
e
r

s
e
c
o
n
d

Average Application Throughput

Figure 5.94: Sent request progress and average finished requests in a distributed architec-
ture, low and high constraint environment

The lowest amount was for Edge-Cluster 2 to Edge-Cluster 1, with a mean number
of 416 incidents and a standard deviation of 12. In decentralized_hc, the occurrence
of Edge-Cluster 2 to Edge-Cluster 1 crossings was, with 257 incidents and a standard
deviation of 43, higher than the other way around. The other way happened an average
of 184 times with a standard deviation of 36.

centralized_hc
0

200

400

600

800

1000

1200

1400

1600

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

decentralized_hc
0

200

400

600

800

1000

1200

1400

1600

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

Total amount of zone crossings

Figure 5.95: Total amount of zone crossings, high constraint infrastructure, all architec-
tures

In Figure 5.96, we illustrate the average scheduling duration of a newly created pod
for all three architectures in a high constraint environment. While the lowest duration
was in centralized_hc with a mean value of 86.7ms and a standard deviation of 50.7ms,
the highest was in decentralized_hc with a mean duration of 255.3ms with a standard
deviation of 79.8 ms.

The bar graphs in Figure 5.97 represent the mean scaling decision duration of an
autoscaler for all three architectures in a high constraint environment. The autoscalers in
distributed_hc took the longest, with an average decision time of 63ms and a standard
deviation of 64ms. The quickest decisions were made in decentralized_hc with a mean
value of 19.8ms and a standard deviation of 29.8ms.

93

5. Evaluation

centralized_hc decentralized_hc distributed_hc

0

50

100

150

200

250

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scheduling decision duration

Figure 5.96: Scheduling decision duration for a pod, high constraint infrastructure, all
architectures

centralized_hc decentralized_hc distributed_hc

0

10

20

30

40

50

60

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scaling decision duration

Figure 5.97: Scaling decision duration, high constraint infrastructure, all architectures

Figure 5.98 illustrates the progress of running replicas during the experiments for each
architecture with a high constraint infrastructure. In order to create a legible plot, we
did a ten-second resample on the number of currently running replicas and took the mean
of the samples. The resampling allowed us to create a readable plot that does not distort
the actual values too much. All three different setups had a similar scaling pattern.
However, centralized_hc scales the highest with up to 90 simultaneously running replicas,
while decentralized_hc only reached a maximum of 43 simultaneous replicas and thus
had the lowest scaling. Furthermore, in decentralized_hc, no replicas were running in
the Cloud cluster.

5.3.17 Orchestration level lc parameter set

In Figure 5.99, we illustrate the total zone crossings for our implemented architectures
in a low constraint environment. The distributed architecture is omitted since the

94

5.3. Results

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Time passed (minutes:seconds)

0

6

12

18

24

30

36

42

48

R
e
p
li
c
a
s
 r

u
n
n
in

g

centralized_hc

Cloud

Edge-Cluster 1

Edge-Cluster 2

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Time passed (minutes:seconds)

0

6

12

18

24

30

36

42

48

decentralized_hc

Cloud

Edge-Cluster 1

Edge-Cluster 2

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Time passed (minutes:seconds)

0

6

12

18

24

30

36

42

48

distributed_hc

Edge-Cluster 1

Edge-Cluster 2

Edge-Cluster 3

Replica running progress

Figure 5.98: Replica running progress, high constraint infrastructure, all architectures

architecture does not support zone crossings. In centralized_lc, the most zone crossings
were from Edge-Cluster 1 to the Cloud with a mean number of 1101 times and a standard
deviation of 104 times. Zone crossings from Edge-Cluster 1 to Edge-Cluster 2 were the
least frequent, with a mean number of 420 times and a standard deviation of 83. In
decentralized_hc, both supported zone crossings were relatively close to each other. A
zone crossing from Edge-Cluster 1 to Edge-Cluster 2 happened on average 480 times
with a standard deviation of 79. In comparison, a crossing from Edge-Cluster 2 to
Edge-Cluster 1 happened on average 459 times with a standard deviation of 205.

centralized_lc
0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

decentralized_lc
0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

Total amount of zone crossings

Figure 5.99: Total amount of zone crossings, low constraint infrastructure, all architectures

Figure 5.100 represents how long it took for a pod to complete the scheduling process.
The longest scheduling decision was in decentralized_lc with a mean value of 267ms and
a standard deviation of 79ms. The shortest duration was in centralized_lc with 89ms
and a standard deviation of 23.3ms.

Similarly, Figure 5.101 depicts how long it took for an autoscaler to create a scaling
decision. The longest duration was found in centralized_lc with a mean duration of
42.7ms and a standard deviation of 49.2ms. The shortest duration was in decentralized_lc
with 24.4ms and a standard deviation of 43.1ms.

Figure 5.102 illustrates the progress of up and down scaling of function replicas for

95

5. Evaluation

centralized_lc decentralized_lc distributed_lc

0

50

100

150

200

250

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scheduling decision duration

Figure 5.100: Scheduling decision duration for a pod, low constraint infrastructure, all
architectures

centralized_lc decentralized_lc distributed_lc

0

10

20

30

40

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scaling decision duration

Figure 5.101: Scaling decision duration, low constraint infrastructure, all architectures

each architecture in low constraint infrastructures. The actual data was resampled in a
ten-second sample to provide a more legible plot without distorting the data too much.
In centralized_hc, the autoscaler scaled aggressively in the first minutes and reached
up to 90 concurrent running replicas before going down at the end. Decentralized_lc
had a calmer scaling behavior, where a strong upscaling happened at the end of the
experiment, reaching a maximum of around 38 concurrent replicas. We could also observe
an alternating scaling behavior between Edge-Cluster 1 and Edge-Cluster 2. The scaling
trend in distributed_lc was similar to decentralized_lc, with the distinction that the
peak in distributed_lc was around 88 simultaneous running replicas higher than in
decentralized_lc. Moreover, there was no oscillating scaling pattern in distributed_lc.

96

5.3. Results

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00

Time passed (minutes:seconds)

0

5

10

15

20

25

30

35

40

R
e
p
li
c
a
s
 r

u
n
n
in

g

centralized_lc

Cloud

Edge-Cluster 1

Edge-Cluster 2

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

5

10

15

20

25

30

35

40

decentralized_lc

Cloud

Edge-Cluster 1

Edge-Cluster 2

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

5

10

15

20

25

30

35

40

distributed_lc

Edge-Cluster 1

Edge-Cluster 2

Edge-Cluster 3

Replica running progress

Figure 5.102: Replica running progress, low constraint infrastructure, all architectures

5.3.18 Orchestration level hc_lc parameter set with centralized
architecture

Figure 5.103 represents the number of zone crossings in centralized architecture for low
and high constraint infrastructures. Both plots have a similar pattern. In centralized_lc,
the crossing from Edge-Cluster 1 to the Cloud was the highest, with an average amount
of 1045 times and a standard deviation of 105 times. The crossing from Edge-Cluster 1
to Edge-Cluster 2 was the lowest occurrence, with an average amount of 699 times and a
standard deviation of 51. Centralized_hc has the same pattern, in the sense that the
crossing from Edge-Cluster 1 to the Cloud happened the most with around 1199 times
and a standard deviation of 78, and Edge-Cluster 1 to Edge-Cluster 2 happened the least
amount of times with an average of 386 times and a standard deviation of 106.

Total amount of zone crossings per orchestration strategy

centralized_lc
0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

centralized_hc
0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Cloud

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Cloud

Edge-Cluster 2 -
Edge-Cluster 1

Figure 5.103: Total amount of zone crossings in centralized architecture, low and high
constraint infrastructure

The bar graph in Figure 5.104 depicts the average decision duration of the scheduler for
scheduling a newly created pod. We see that on average, centralized_lc took, with 88ms
and a standard deviation of 24ms, longer for a decision than centralized_hc, with 84ms
and a standard deviation of 20.9ms.

97

5. Evaluation

centralized_lc centralized_hc

0

20

40

60

80

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scheduling decision duration

Figure 5.104: Scheduling decision duration for a pod in centralized architecture, low and
high constraint infrastructure

Similarly, the bar graphs in Figure 5.105 illustrate the average duration of a scaling
decision. While close, centralized_lc took, with 53.3ms and a standard deviation of
97.6ms, longer than centralized_hc, with 23.8 and a standard deviation of 77.9ms.

centralized_lc centralized_hc

0

10

20

30

40

50

60

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scaling decision duration

Figure 5.105: Scaling decision duration for a pod in centralized architecture, low and
high constraint infrastructure

Figure 5.106 illustrates the running replica development of centralized_hc and central-
ized_lc. Both had a strong scale-up, with centralized_lc reaching the maximum of 90
concurrent running replicas and centralized_hc reaching 89. Their scale-up, scale-down,
and non-scaling phases were nearly identical. While in centralized_hc, the Cloud was
the cluster with the most running replicas, in centralized_lc, it was Edge-Cluster 1.

98

5.3. Results

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Time passed (minutes:seconds)

0

6

12

18

24

30

36

42

48

R
e
p
li
c
a
s
 r

u
n
n
in

g

centralized_lc

Cloud

Edge-Cluster 1

Edge-Cluster 2

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00

Time passed (minutes:seconds)

0

6

12

18

24

30

36

42

48

centralized_hc

Cloud

Edge-Cluster 1

Edge-Cluster 2

Replica running progress

Figure 5.106: Replica running progress in centralized architecture, low and high constraint
infrastructure

5.3.19 Orchestration level hc_lc parameter set with decentralized
architecture

In Figure 5.107, we illustrate the amount of zone crossings user requests did in decen-
tralized architecture in high and low constraint environments. In decentralized_hc and
decentralized_lc, no zone crossings to the Cloud cluster took place. In decentralized_lc,
the number of times crossings from Edge-Cluster 1 to Edge-Cluster occurred were, on
average, 368 times with a standard deviation of 100. The other direction, Edge-Cluster 2
to Edge-Cluster 1, happened on average 314 times, with a standard deviation of 144. In
decentralized_hc, crossings from Edge-Cluster 2 to Edge-Cluster 1 happened more often
than the other way around. Crossings from Edge-Cluster 2 to Edge-Cluster 1 happened
on average 242 times with a standard deviation of 78, and Edge-Cluster 1 to Edge-Cluster
crossings occurred on average 199 times with a standard deviation of 47.

Total amount of zone crossings per orchestration strategy

decentralized_lc
0

100

200

300

400

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

decentralized_hc
0

100

200

300

400

N
u
m

b
e
r

o
f

z
o
n
e
 c

ro
s
s
in

g
s

Edge-Cluster 1 -
Edge-Cluster 2

Edge-Cluster 2 -
Edge-Cluster 1

Figure 5.107: Total amount of zone crossings in decentralized architecture, low and high
constraint infrastructure

Figure 5.108 represents the average scheduling decision of a pod in decentralized architec-
ture in low and high constraint infrastructure. We see that in both cases, the duration
was nearly identical. In decentralized_lc, the scheduling of a pod took on average 262ms
with a standard deviation of 130ms; in decentralized_hc, it took on average 258ms with

99

5. Evaluation

a standard deviation of 78ms.

decentralized_lc decentralized_hc

0

50

100

150

200

250

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scheduling decision duration

Figure 5.108: Scheduling decision duration for a pod in decentralized architecture, low
and high constraint infrastructure

The bar graphs in Figure 5.108 depict the average scaling decision in both infrastructures
with a decentralized architecture. We see that a scaling decision in decentralized_hc
took, on average, 29.3ms with a standard deviation of 76.1ms, while in decentralized_lc,
a scale decision was made in only 18.6ms with a standard deviation of 30.1ms.

decentralized_lc decentralized_hc

0

5

10

15

20

25

30

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scaling decision duration

Figure 5.109: Scaling decision duration for a pod in decentralized architecture, low and
high constraint infrastructure

With Figure 5.110, we illustrate the progress of running replicas throughout the experi-
ments in a high and low constraint environment with a decentralized architecture. Both
had a similar max replica count, with decentralized_lc being at 44 and decentralized_hc
being at 40. Furthermore, in decentralized_hc, a significant scale-up happened two times,
early and late into the experiments, while in decentralized_lc, a significant scale-up only
happened late into the experiment. Additionally, decentralized_hc had more replicas
running for a longer time than decentralized_lc.

100

5.3. Results

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

3

6

9

12

15

18

21

24

R
e
p
li
c
a
s
 r

u
n
n
in

g

decentralized_lc

Cloud

Edge-Cluster 1

Edge-Cluster 2

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Time passed (minutes:seconds)

0

3

6

9

12

15

18

21

24

R
e
p
li
c
a
s
 r

u
n
n
in

g

decentralized_hc

Cloud

Edge-Cluster 1

Edge-Cluster 2

Replica running progress

Figure 5.110: Replica running progress in decentralized architecture, low and high
constraint infrastructure

5.3.20 Orchestration level hc_lc parameter set with distributed
architecture

With a distributed architecture, the schedulers in both infrastructures took nearly
identical time to schedule a new function replica. Looking at Figure 5.111, we see that
the schedulers in distributed_lc took on average 128.4ms with a standard deviation of
53ms, and in distributed_hc 123.8ms with a standard deviation of 53.1ms.

distributed_lc distributed_hc

0

20

40

60

80

100

120

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scheduling decision duration

Figure 5.111: Scheduling decision duration for a pod in a distributed architecture, low
and high constraint infrastructure

Figure 5.112 illustrates the mean scaling decision duration for an autoscaler. We see that
distributed_hc took 57.8ms and a standard deviation of 56.3ms longer for a decision
than distributed_lc with 29.5ms and a standard deviation of 44.2ms.

In Figure 5.113, we illustrate the course of up and down scaling throughout the experiments
in distributed_lc and distributed_hc. In distributed_hc, we had an intense up scaling
right at the beginning, which was then constant for most of the experiments’ duration.

101

5. Evaluation

distributed_lc distributed_hc

0

10

20

30

40

50

60

D
e
c
is

io
n
 d

u
ra

ti
o
n
 i
n
 m

il
li
s
e
c
o
n
d
s

Scaling decision duration

Figure 5.112: Scaling decision duration for a pod in distributed architecture, low and
high constraint infrastructure

It reached a maximum of 79 concurrent running replicas. In distributed_lc, there was a
significant scale-up only in the second half of the experiments, while the first half was
relatively constant. It reached a maximum of 88 concurrent running replicas.

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time passed (minutes:seconds)

0

4

8

12

16

20

24

28

R
e
p
li
c
a
s
 r

u
n
n
in

g

distributed_lc

Edge-Cluster 1

Edge-Cluster 2

Edge-Cluster 3

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Time passed (minutes:seconds)

0

4

8

12

16

20

24

28

distributed_hc

Edge-Cluster 1

Edge-Cluster 2

Edge-Cluster 3

Replica running progress

Figure 5.113: Replica running progress in distributed architecture, low and high constraint
infrastructure

102

CHAPTER 6
Recommendation

This chapter includes a discussion and an assessment based on the earlier results. The
discussion contains more background information about the results, which is used for
the following recommendation. The recommendation is divided into three parts, each
from different perspectives: user, platform provider, and impact of infrastructure on
architecture. For the first two perspectives, we present the best architecture for our
two scenarios, urban sensing and IIoT, which correspond to high and low constraint
infrastructure. The parameter sets used for these two perspectives are hc for urban sensing
and lc for IIoT. For the third perspective, we look at the data from the experiments in
which we used the parameter set hc_lc.

6.1 Discussion
The discussion section is categorized by the corresponding orchestration performance
metric. Before we can start with the discussion, some background information is needed.

Firstly, regarding CPU usage, it is essential to mention that the 50% of CPU utilization
on weak nodes was artificially included (see Section 5.1.1).

The second insight relates to the global scheduler in a decentralized architecture. At
first, the decentralized scheduler only used CPU usage as a deciding tool, similar to the
schedulers of the other architectures. However, since the global scheduler works with
average CPU values from each zone, the zone-c, with all strong nodes, was chosen every
time. Having more function replicas in zone-c allowed for a better CPU usage distribution,
and consequently, no other zone was ever chosen. Therefore, we implemented a locality
aspect in the global scheduler of the distributed architecture to combat this behavior.
Since we implemented only a rudimentary locality awareness and the Cloud did not
create user requests, the global scheduler would only schedule function instances to the
Cloud when the other two clusters were full. With our user profile (see Figure 5.4),

103

6. Recommendation

this situation did not occur, and therefore, the Cloud cluster did not have any function
instances during the experiments on a decentralized architecture. While there are better
outcomes than this, we decided it was better than our first draft and stuck with it.

The following subsections concentrate on why values have behaved differently relative
to each other. We give a detailed overview of the results for the recommendations in
Section 6.2, Section 6.3, and Section 6.4.

6.1.1 System level
The main influential points in CPU and RAM usage are the number of running replicas,
the load distribution of the user workload, and the number of weak and strong nodes
in the clusters. The actual data regarding resource usage can be found in Section 5.3.2,
Section 5.3.3, Section 5.3.4, and Section 5.3.5.

For the low constraint infrastructure, we see that since the amount of weak nodes is
so low, all the clusters had a mean CPU usage of under 50%. The clusters with the
highest strong-to-weak ratio had the lowest resource usage. The only exception was the
Cloud cluster in the decentralized architecture. The low usage of the Cloud cluster in the
decentralized architecture was because no function replicas were running on this cluster.
The actual results can be seen in Figure 5.15, Figure 5.25, Figure 5.36, and Figure 5.45.

We want to highlight some aspects regarding resource usage for the control components in
the low constraint infrastructure. Firstly, the mean CPU usage of a function replica was
directly connected to the amount of running function replicas throughout the experiment.
We can see that the function replicas in the centralized architecture had a very low CPU
consumption due to the high number and longevity of function replicas. For the other
two architectures, the opposite was true. The average CPU usage of a function replica in
a low constraint environment is illustrated in Figure 5.19, Figure 5.29, Figure 5.39, and
Figure 5.49. Secondly, looking at the resource usage from the load-balancer, the difference
between the values in the different architectures was attributable to the fact that the load-
balancers in the distributed architecture only had to manage the workload of one client.
In contrast, the other architectures had to manage two clients. The slightly higher values
between centralized and decentralized came from the zone crossings in decentralized since
they create an overhead in decentralized architecture. The average CPU usage of the
load-balancer in a low constraint environment is illustrated in Figure 5.21, Figure 5.31,
Figure 5.41, and Figure 5.51. The average RAM usage is depicted in Figure 5.22,
Figure 5.32, Figure 5.42, and Figure 5.52. Lastly, the mean CPU usage of the schedulers
was directly connected to the number of up-scaling requests from the autoscaler. It is
vital to mention that in the decentralized architecture, the values of the global and local
scheduler in the Cloud cluster are not handled separately. The average CPU usage of
a scheduler in a low constraint environment is illustrated in Figure 5.23, Figure 5.33,
Figure 5.43, and Figure 5.53.

Since the number of weak nodes is so high in the high constraint infrastructure, we can see
its impact on pushing the resource usage of all the architectures around the 50% mark. In

104

6.1. Discussion

contrast to the low constraint infrastructure, the clusters with the lowest strong-to-weak
ratio had the lowest resource usage. The only exception was the Cloud since no replicas
were deployed on this cluster. The actual results can be seen in Figure 5.5, Figure 5.25,
Figure 5.36, and Figure 5.45.

Regarding the resource usage for the control components in the high constraint infras-
tructure, we had a similar situation as in the low constraint infrastructure. When we
look at the mean CPU usage of a function replica, we see that architectures with a high
scale amount had a low CPU consumption. The high values of the Edge-Cluster 1 and
Edge-Cluster 2 had an additional background. These two clusters had already reached
their local maximum of allowed running replicas but still had to burden the workload of
one client each. Thereby, these clusters’ nodes were overloaded, further increasing CPU
usage. The average CPU usage of a function replica in a high constraint environment is
illustrated in Figure 5.9, Figure 5.29, Figure 5.39, and Figure 5.49. The same argument
from the low constraint infrastructure holds for the resource usage of the load-balancers.
The only difference was that the zone transitions in the decentralized architecture had
less of an effect here. The average CPU usage of the load-balancer in a high constraint
environment is illustrated in Figure 5.11, Figure 5.31, Figure 5.41, and Figure 5.51. The
average RAM usage in Figure 5.22, Figure 5.32, Figure 5.42, and Figure 5.52. In the high
constraint infrastructure, the CPU usage of the schedulers was also directly connected
to the number of scaling requests from the autoscaler. The reason why the values from
Edge-Cluster 1 and Edge-Cluster 2 from the distributed architecture were so high goes
back to a misconfiguration of the autoscalers in these clusters. As mentioned in 5.2.1,
each local autoscaler could scale up to 30 running replicas. However, Edge-Cluster 1
and 2 could not host 30 function replicas in the high constraint infrastructure. As a
result, the autoscalers tried in vain to increase the number of replicas, and the schedulers
had to undergo the whole scheduling process before declining the scheduling of the
function replica. This situation highly increased the CPU usage of the scheduler in
Edge-Cluster 1 and Edge-Cluster 2. Despite the misconfiguration, we have gained insights
into the importance of resilience to node failures. Dealing with node failures is essential
to maintaining an acceptable performance level [56]. Among other things, proactive
or reactive behavior is crucial to alleviate this problem, and our framework supports
this with, for example, custom dynamic configurable control components. The average
CPU usage of a scheduler in a high constraint environment is illustrated in Figure 5.13,
Figure 5.33, Figure 5.43, and Figure 5.53.

As part of the cpu and ram metric, we also collected the resource usage categorized per
node type. However, it did not give us enough information to formulate an insight. We
assume that data like this would be more useful if a variety of nodes were included or if
the initial CPU stress between the nodes was closer together. Furthermore, we did not
dive deeper into the average RAM usage of function replicas, schedulers, and autoscalers.
The reason regarding the function replica was that since the function was mainly CPU
intensive, the RAM usage was negligible. We also did not analyze the scheduler or
autoscaler RAM consumption since it was almost identical for every architecture and

105

6. Recommendation

infrastructure. In addition, we did not analyze the CPU usage of the autoscaler any
further, as the main reason for the usage was not the number of scaling operations but
the preprocessing of the requests for the scaling decision. Since the preprocessing was
done independently of the scaling decision, we excluded it from our recommendation.

6.1.2 Network level
Before starting the discussion about the network throughput, it is essential to mention
that the decentralized architecture had three clients, while the other two architectures
only had two. Therefore, more requests were sent, so the overall network throughput
in the decentralized architecture was the highest on both infrastructures. The overall
network throughput, and also the network throughput for each control component can
be found in Section 5.3.6, Section 5.3.7, Section 5.3.8, Section 5.3.9, and Section 5.3.10.

The control nodes were the most network-hungry nodes for all architectures in both
infrastructures. The network throughput values were mostly low since the number of
worker nodes was much higher than the control nodes. This explains the high value
outliers in Figure 5.55, Figure 5.61, Figure 5.67, Figure 5.73, and Figure 5.79. When we
looked deeper into the network throughput of the control nodes, we found out that the
load-balancer had the most network throughput by far. The scheduler and autoscaler had
a negligible impact on the network throughput. Furthermore, since the scaling pattern
differed for the same architecture on different infrastructures, we concluded that the
infrastructure also impacted the controller nodes’ network throughput.

The main impact of the network throughput from the load-balancers was the number
of user requests they had to handle. In the distributed and decentralized architecture,
each load-balancer only had to process one client workload, while the load-balancer
from the centralized architecture had two. However, the reason why, in the low con-
straint infrastructure, the load-balancers from the centralized architecture had the same
throughput as the ones in the decentralized architecture was due to zone crossings. These
crossings create additional overhead for the decentralized architecture and increase the
network throughput since the requests need to be sent to the load-balancer of the other
zone. Furthermore, due to the nonexistence of function replica on the Cloud in the
decentralized architecture, the load-balancer’s depicted throughput was the idle network
throughput. The actual average network throughput of the load-balancers are illustrated
in Figure 5.59, Figure 5.65, Figure 5.71, Figure 5.77, and Figure 5.83.

The function replicas themselves also had an impactful role in the network throughput.
The fewer function replicas were running, or the worse the user requests were distributed,
the higher the average network throughput of a function replica was. The actual average
network throughput values of function replicas can be seen in Figure 5.58, Figure 5.64,
Figure 5.70, Figure 5.76, and Figure 5.82.

The network latency time indicates how long it took to process the request without the
execution time of the function. Overloaded function replicas, or worker nodes, greatly
impacted the latency values. The values for the low constraint infrastructure were

106

6.1. Discussion

influenced mainly by the artificially added latency values, described in Table 5.5. Since
the latency between Edge and Cloud was the biggest, and in the centralized architecture,
everything got sent to the Cloud, it made sense that the latency for the centralized
architecture was the highest. With the same mindset, it made sense that the distributed
architecture had the lowest latency values since there was no inter-cluster communication.
For the high constraint infrastructure, a different aspect also had a significant impact
in addition to the artificial higher latencies. There, nodes were overloaded with their
workload, especially in the distributed and decentralized architecture. In the function
replicas, queues started to form for processing the user requests. Since the function did
not start executing, even though it was already routed to a function replica, this waiting
time was also counted as part of the latency. The distribution of latency values for all
architectures and infrastructures can be found in Figure 5.56, Figure 5.62, Figure 5.68,
Figure 5.74, and Figure 5.80.

6.1.3 Application level
The collected data regarding at, and rtt can be found in Section 5.3.11, Section 5.3.12,
Section 5.3.13, Section 5.3.14, and Section 5.3.15.

Regarding the at metric, there were no significant differences between the infrastructures
and architectures. The sent pattern is slightly different across the architectures and
infrastructures because the clients created their requests synchronously, and depending
on the performance, the waiting time differed. The difference was, however, insignificant
since the total number of requests processed was around the same at the end, which can
be read from the average application throughput being similar across the infrastructures
and architectures. The distributed architecture had such a higher application throughput
because it had one more client than the other two architectures. Therefore, in total, more
requests were created and processed, thereby resulting in higher throughput. Moreover,
it is important to mention that the way this data was processed did not represent the
performance of an architecture. Since we only looked at the finished request per second,
it was possible that older requests, which just took a long time, finished at the same
time as newly started requests. Thereby, a high throughput did not equal a better
performance. Moreover, since the distributed architecture had one more client than
the other architectures, it further made it difficult to argue using this metric. The
average application throughput for each architecture and infrastructure is illustrated in
Figure 5.86, Figure 5.88, Figure 5.90. Figure 5.92, and Figure 5.94.

The metric rtt is an excellent way to represent the performance of an architecture. The
round trip time consists of the function execution time and the latency. A high round
trip time can arise when a function replica or a worker node is overloaded or due to high
latency.

For the low constraint environment, centralized achieved the best rtt values due to its
strong and evenly spread scaling behavior. The distributed architecture was a close
second due to its well-executed distribution of user requests. The distribution of rtt values

107

6. Recommendation

for the low constraint environment is illustrated in Figure 5.87, Figure 5.89, Figure 5.91,
and Figure 5.93. The distributed architecture provided the best round-trip time values
in the high constraint environment due to its evenly distributed scaling pattern. The
centralized architecture could not perform well due to its unevenly spread scaling. The
distribution of round trip time values for the high constraint infrastructure is illustrated
in Figure 5.85, Figure 5.89, Figure 5.91, and Figure 5.93,

As we have split the rtt values according to the request path, we can see the impact of the
latency caused by zone crossings in the decentralized architecture. It is essential to mention
that zone crossings created an overhead only in the distributed architecture and not in
the centralized architecture. This difference was because the decentralized architecture
requires additional communication between the local load-balancers, whereas in the
centralized architecture, everything is handled by a global load-balancer. Furthermore,
there was an interesting result when we compared the same architecture on different
infrastructures. While the centralized and distributed architecture performed visibly
worse on the high constraint infrastructure, the decentralized architecture had a similar,
if not even better, distribution of rtt values on the high constraint infrastructure than
the low constraint one. This difference is probably attributable to the higher and more
evenly spread scaling pattern of the decentralized architecture on the high constraint
infrastructure.

6.1.4 Orchestration level
The results of the metrics described in this section can be found in Section 5.3.16,
Section 5.3.17, Section 5.3.18, Section 5.3.19, and Section 5.3.20.

For the centralized architecture in both infrastructures, the Cloud cluster was the most
frequent target for the zone crossings. Since with the centralized architecture, each request
first went to the load-balancer placed in the Cloud. Leaving the Cloud again would
add some additional latency to the request. In contrast to the centralized architecture,
the decentralized architecture had relatively few zone transitions. However, since they
had rather different replica scaling patterns on the two infrastructures, we saw that a
high and steady replica count led to fewer zone crossings. As no function replicas and
clients were running in the Cloud, there were no zone crossings to or from the Cloud.
Regarding the distributed architecture, since there is no inter-zone communication, there
were zero zone crossings with the distributed architecture. The results of the zc metric
are illustrated in Figure 5.95, Figure 5.99, Figure 5.103, and Figure 5.107.

In order to illustrate the tos metric, we looked at the state of the clusters regarding
running replicas during the experiments. The results are illustrated in Figure 5.98,
Figure 5.102, Figure 5.106, Figure 5.110, and Figure 5.113.

For the high constraint infrastructure, the centralized architecture had, on average, the
most running replicas. Theoretically, the distributed architecture could have reached
a higher replica count. While the autoscalers in Edge-Cluster 1 and 2 reached their
local resource maximum, the autoscaler in Edge-Cluster 3 was limited by our scaling

108

6.1. Discussion

configuration. For all three architectures, the scaling pattern was relatively similar
in the high constraint environment. The scaling pattern differed between centralized,
distributed, and decentralized architecture in the low constraint environment. Here, the
centralized architecture scaled aggressively early, while the other two architectures only
scaled at the time of the peaks of the user profile. The centralized architecture also
reached the maximum of concurrent running function replicas, so it could have been
scaled up even higher. With that information, the centralized architecture might tackle
better unforeseen workloads, but the others are more resource-efficient.

We found that, on average, clusters in the high constraint environment had more replicas
running than in the low constraint environment. For the centralized architecture, we
saw that in the high constraint environment, most of the upscaling happened in the
Cloud. In contrast, in the low constraint environment, the scaling was more spread.
We estimate that due to the sheer resource difference between the Cloud and the other
clusters in the high constraint infrastructure, the Cloud was a more attractive schedule
target than the rest. This difference does not dominate the low constraint infrastructure,
allowing for more spread scheduling. While both infrastructures had a similar scaling
pattern, it is vital to mention that the maximum amount of replica was reached in the low
constraint environment, limiting the scaling. So, the scaling pattern may have differed
with a higher maximum replica count. Furthermore, when we look at the scaling pattern
in decentralized and distributed architectures, the different infrastructures alone have
caused different scaling patterns. The clusters reached their limit relatively early for
the distributed architecture in the high constraint environment. In contrast, in the low
constraint environment, a significant scaling only occurred at the end and held on short.
For most experiments, the distributed architecture in the low constraint environment
handled the workload with a meager number of function replicas. The decentralized
architecture had a similar scaling pattern for both infrastructures as the distributed
architecture. Furthermore, for both infrastructures, the decentralized architecture had,
across the three architectures, the lowest amount of running replicas.

In general, when we compared the number of average running replicas together with
latency and round trip time values, we were able to see that a high replica count most
possibly allowed for better workload distribution, causing fewer replica or node overloading
and, therefore, better round trip time and latency values. Furthermore, it also helped
reduce the network throughput of a function replica.

The schedd and scaled metrics can significantly impact the system’s overall performance.
A long scaling or scheduling decision can lead to a significant degradation of the overall
performance. For both high and low constraint environments, the scheduling decision
was significantly longer for the decentralized architecture than for the other two. The
longer decision time was because, in a decentralized architecture, a function replica had
to be processed by two schedulers before it could be scheduled. The scheduling duration
decisions are depicted in Figure 5.96, Figure 5.100, Figure 5.104, Figure 5.108, and
Figure 5.111. For the autoscalers, in our case, the most time-consuming task was the
preprocessing of processed requests to calculate the desired number of function replicas.

109

6. Recommendation

The duration of a decision, for both schedd and scaled, was, in our case, too short to have
a significant impact on performance. The scaling durations are illustrated in Figure 5.97,
Figure 5.101, Figure 5.105, Figure 5.109, and Figure 5.112.

The following sections contain the orchestration architecture recommendations from
different perspectives. The recommendations are based on the findings from Section 6.1.

6.2 User Perspective

This section only focuses on the rtt metric since it is most visible to the user and clearly
illustrates how fast a request is processed. Although latency also plays a vital role in
the duration of request processing, we omit the lat metric since the latency is indirectly
included in the rtt values. Table 6.1 contains the aggregated rtt values for all three
architectures using both infrastructures.

Architecture Constraint Level Mean Std Confidence Interval 95% Difference to target value in %
centralized low 0.55s 0.07s 0.55s-0.56s 85%
decentralized low 2.55s 3.72s 2.51s-2.60s 751%
distributed low 0.78s 1.10s 0.77s-0.79s 159%
centralized high 2.51s 2.71s 2.48s-2.55s 737%
decentralized high 2.10s 3.02s 2.06s-2.14s 601%
distributed high 1.68s 1.86s 1.66s-1.70s 461%

Table 6.1: Aggregated round trip time values for all three architectures using lc and hc
parameter sets

For the IIoT scenario, based on our collected data, the centralized architecture performed,
with an aggregated mean value of 0.55s and low spread the best. The distributed
architecture was also an acceptable contender, while the decentralized architecture is not
recommended due to its high aggregated mean value of 2.55s and very high aggregated
standard deviation of 3.7s. As we can see from the last column, no architecture reached
our target duration of 0.3s. With that comparison, we can see that centralized is the
clear winner with an increase of 86%, while decentralized is the worst by far with an
increase of 751%.

For the urban sensing scenario, we recommend the distributed architecture. In contrast
to the other scenario, distributed architecture significantly outperformed centralized and
decentralized architecture. While the percentage increase was very high for all three
architectures, the distribution was 461% (1.68s), by far the lowest. Also, its aggregated
confidence interval is around 0.5s smaller than the other two architectures.

With that information, both the centralized and distributed architecture are favorable
from the user perspective, depending on the infrastructure.

110

6.3. Platform Provider Perspective

Architecture Constraint Level Mean Std Confidence Interval 95%
centralized low 19 11 18-19
decentralized low 3 4 3-4
distributed low 8 7 7-8
centralized high 21 14 20-22
decentralized high 7 7 7-8
distributed high 18 8 18-19

Table 6.2: Aggregated number of replicas running over all clusters for all three architec-
tures using lc and hc parameter sets

Architecture Constraint Level Mean Std Confidence Interval 95%
centralized low 25.31% 19.31% 24.78%-25.85%
decentralized low 25.53% 22.93% 24.92%-26.13%
distributed low 30.30% 24.71% 29.70%-30.91%
centralized high 39.91% 22.34% 39.28%-40.55%
decentralized high 34.97% 24.05% 34.33%-35.60%
distributed high 49.69% 22.90% 49.10%-50.27%

Table 6.3: Aggregated CPU usage over all clusters for all three architectures using lc and
hc parameter sets

Architecture Constraint Level Mean Std Confidence Interval 95%
centralized low 774 350 610-938
decentralized low 472 146 366-577
distributed low 0 0 0
centralized high 951 541 698-1205
decentralized high 221 53 182-259
distributed high 0 0 0

Table 6.4: Aggregated amount of zone crossings for all three architectures using lc and
hc parameter sets

6.3 Platform Provider Perspective
In this section, we mainly focus on the hypothetical operating cost. For this, we consider
ram, cpu, net, zc, and tos metric.

When we bring these metrics together, we can select the decentralized architecture as the
cheapest for both scenarios. The main argument of this decision was the tos metric since
the amount of running replicas in the decentralized architecture was much lower than the

111

6. Recommendation

other two architectures. As we can see in Table 6.2, the aggregated number of replicas
running on average was 3 in the low constraint and 7 in the high constraint infrastructure,
by far the lowest. For the system level metrics, we concentrate mainly on cpu since both
the control component algorithms and application were predominantly CPU intensive,
and lower CPU usages allows for more applications to be used. From Table 6.3, we see
that decentralized shares the spot with the centralized architecture in the low constraint
infrastructure with the lowest aggregated mean CPU usage of 25%. However, since the
decentralized architecture in the highly restricted environment with 5% had the lowest
CPU usage, the resource usage also speaks in favor of the decentralized architecture as
the most low-cost. Metric net was not that expressive, as all three architectures mostly
had similar values. Except that, in the decentralized architecture, the net usage on
the Cloud cluster and some of its components was very low due to the lack of function
replicas on the cluster. The only metric that could massively affect the running cost so
that the distributed architecture would be the cheapest is zc since zone crossings are
associated with a price [1]. However, even in this case, although distributed had no zone
crossings in general, the number of crossings in decentralized was relatively low for the
provided workload, see Table 6.4.

6.4 Impact of the Infrastructure on the Architecture
Most of the metrics for each architecture were unaffected by the infrastructure. The
number of zone crossings was relatively similar for the centralized architecture in both
infrastructures. The same holds for the decentralized architecture. Furthermore, for all
three architectures, the infrastructure did not significantly impact the network throughput.
Similarly, for each architecture, the collected metrics on the container level did not show
any significant impact from the infrastructure. In general, the most significant differences
were on the cpu, ram, lat, rtt, and tos metric.

Regarding the cpu and ram metric, the high constraint environment had a higher average
CPU and RAM usage for all three architectures. Similar to the section above, we only
look closer at the CPU usage since the application and algorithms used in the experiment
were mostly CPU intensive. The average CPU usage in the high constraint infrastructure
was higher because the weak nodes, which start with a CPU load of 50%, outnumber the
strong nodes. As depicted in Table 6.5, the highest difference was 21% in the distributed
architecture, and the lowest was in the decentralized architecture with 10%.

The tos metric was one where we could identify a clear impact from the infrastructure.
We saw a more spread scaling behavior for the centralized architecture in the low
constraint infrastructure than in the high constraint one. Furthermore, the autoscaler
in the high constraint environment started to scale up relatively early. In contrast,
in the low constraint environment, only at the big spikes and the end of the user
profile did the autoscaler decide to scale up rapidly. These difference scaling patterns
substantially impacted the lat and rtt metrics. According to the average number of
replicas running in centralized and decentralized architectures, both infrastructures had

112

6.4. Impact of the Infrastructure on the Architecture

Architecture Constraint Level Mean Std Confidence Interval 95%
centralized low 25.57% 18.73% 25.03%-26.10%
centralized high 38.76% 22.06% 38.14%-39.38%
decentralized low 24.09% 22.22% 23.50%-24.67%
decentralized high 34.92% 24.45% 34.28%-35.57%
distributed low 29.46% 24.22% 28.87%-30.05%
distributed high 50.02% 22.14% 49.44%-50.59%

Table 6.5: Aggregated CPU usage over all clusters for all three architectures using hc_lc
parameter set

Architecture Constraint Level Mean Std Confidence Interval 95%
centralized low 21 11 20-22
centralized high 18 11 18-19
decentralized low 4 5 3-4
decentralized high 7 8 7-8
distributed low 8 7 8-9
distributed high 21 8 20-21

Table 6.6: Aggregated number of replicas running over all clusters for all three architec-
tures using hc_lc parameter sets

a similar number. The mean number of running replicas in distributed was in the high
constraint infrastructure nearly three times as high as in the low constraint one, as shown
in Table 6.6.

Since the latency values between clusters were artificially higher in the high constraint
infrastructure than the low constraint infrastructure, it was no surprise that the latency
values were lower in the low constraint infrastructures, see Table 6.7. The most significant
difference in latency values was in the distributed architecture with 205ms, and the lowest
difference with 162ms was in the decentralized architecture. The latency values in low
constraint infrastructures were mainly influenced by the artificially configured latency
values between Edge Clusters and the Cloud. At the same time, in the high constraint
environment, the impact of overloaded function replicas and queuing of user requests
was more prominent, especially for the distributed architecture.

For the rtt metric, we had a similar result as for the lat metric. Here, the centralized
and distributed architecture also performed significantly better in the low constraint
infrastructure, while the decentralized architecture performed equally in both infrastruc-
tures. We show the aggregated values in Table 6.8. The centralized architecture showed
the most prominent difference with 1.26s, and the decentralized architecture showed the
lowest difference with just 0.15s.

113

6. Recommendation

Architecture Constraint Level Mean Std Confidence Interval 95%
centralized low 130.99ms 23.37ms 132.68ms-133.31ms
centralized high 294.27ms 190.28ms 291.62ms-296.93ms
decentralized low 138.42ms 447.30ms 130.73ms-142.10ms
decentralized high 300.78ms 451.34ms 295.08ms-306.49ms
distributed low 45.77ms 7.60ms 45.69ms-45.85ms
distributed high 250.54ms 261.68ms 247.84ms-253.24ms

Table 6.7: Aggregated latency values for all three architectures using hc_lc parameter set

Architecture Constrain level Mean Std Confidence Interval 95% Difference to target value in %
centralized low 0.56s 0.08s 0.55s-0.56s 85%
centralized high 1.82s 2.04s 1.79s-1.85s 507%
decentralized low 1.92s 3.02s 1.88s-1.95s 539%
decentralized high 2.07s 2.90s 2.03s-2.11s 590%
distributed low 0.68s 1.01s 0.67s-0.69s 127%
distributed high 1.69s 1.81s 1.68s-1.71s 465%

Table 6.8: Aggregated round trip time values for all three architectures using hc_lc
parameter set

To wrap this section up, the decentralized architecture was the least affected by the
infrastructure. For all metrics shown, the decentralized architecture had the lowest
difference in value for all values, and for rtt, the values remained quite similar. While
the centralized architecture showed the most significant difference in performance in rtt,
the distributed architecture was the most affected by infrastructure for all other metrics
shown.

114

CHAPTER 7
Conclusion

Edge computing has been introduced as a new paradigm handling the QoS and QoE
of new applications, such as autonomous vehicles or augmented reality. With it came
significant application deployment challenges since edge computing needs to handle,
among other things, heterogeneous hardware and network technologies. For example,
before the edge computing paradigm, developers could choose the hardware for their
application deployment. However, this is challenging in edge computing due to the
heterogeneous nature of the paradigm. In order to combat these deployment challenges, a
different paradigm, serverless computing, came to life, where applications are implemented
as stateless functions. While this paradigm makes it easier for developers to deploy
applications, the service providers have to face the responsibility of resource management.
Part of resource management is optimal resource orchestration. Providing appropriate
scheduling and scaling strategies to manage the resources effectively without hurting
predefined SLOs is essential. Current literature presents multiple resource orchestration
architectures, implying that the best one has yet to be found. There are a lot of different
aspects which can play a role in finding an optimal architecture. Since a heterogeneous
infrastructure is an essential characteristic of edge-cloud computing, the architecture must
be able to perform in different scenarios. Secondly, there are many metrics, following
the taxonomy of [3], which reflect the performance of an edge-cloud system, making it
a difficult task to evaluate an orchestration architecture approach. Lastly, the optimal
orchestration architecture depends on the perspective. Different perspectives, such as
those of the user and the platform provider, are likely to have different interests. All
these make it challenging to make an optimal decision for an orchestration architecture
for an application.

Our work intends to improve this aspect of serverless edge computing by providing a
framework capable of recommending orchestration architectures for different infrastruc-
tures. We first perform an initial analysis of existing orchestration architectures used in
serverless edge computing. Based on this, our recommendation contains three architec-

115

7. Conclusion

tures: centralized, decentralized, and distributed. As heterogeneity is an essential part of
edge computing, we also analyze the different scenarios in which edge computing systems
are utilized to be closer to the real world. As a result, we test each architecture in an
urban sensing and IIoT scenario corresponding to a low and high constraint infrastructure.
Next, we research meaningful performance metrics on which to base our recommendation.
We classify the performance metrics into four categories: system, network, application,
and orchestration. To conduct the experiments, we use our framework, which extends
the Galileo benchmarking tool. The extension consists of deploying custom clusters
with specified constraints, implementing custom control components appropriate to the
operating principles of a chosen orchestration architecture, and extending preexisting
metric data processing. We base our framework on a system model capable of modeling
edge-cloud systems’ heterogeneous infrastructures and orchestration architectures. Utiliz-
ing our framework, we create a recommendation from three perspectives: user, platform
provider, and infrastructure impact of the architectures.

The results show that, from the user’s perspective, centralized architecture is recommended
in an IIoT scenario, while decentralized architecture is recommended in an urban sensing
scenario. From the other two perspectives, the decentralized architecture outperformed
the other two architectures in both scenarios.

7.1 Research Questions
In this section, the answers to the research questions addressed in this thesis are summa-
rized in order to highlight the key findings and contributions of the work.

RQ1 How can we describe and categorize heterogeneous edge-cloud systems
and orchestration architectures?

Since there are numerous edge-cloud systems, each with heterogeneous hardware, networks,
and more, a categorization is beneficial to create some structure. To create a meaningful
recommendation, we need to find edge cloud systems that are common and heterogeneous
for our experiments. Based on our literature research, we have decided on the urban
sensing and IIoT scenarios. Urban sensing is a component of the Smart City movement,
which aims to collect environmental data for the use of citizens and government, and the
IIoT is a crucial element of Industry 4.0. Looking further into their characteristics, we
found significant differences in their heterogeneous network and hardware systems and
categorized them based on these differences. Urban sensing was more constrained than
the IIoT scenario regarding hardware and network resources. For example, an urban
sensing scenario often consists of many sensors running on single board computers, while
using dedicated edge data centers or compute clusters can be observed in IIoT scenarios
[60]. Based on this, we created two different infrastructures that differ in the amount
of hardware and network constraints. The high constraint infrastructure illustrates the
urban sensing scenario, while the low constraint infrastructure depicts the IIoT scenario.
To keep the heterogeneity aspect, we decided for the network heterogeneity different
latency values between edge clusters. As far as hardware heterogeneity is concerned, we

116

7.1. Research Questions

have introduced two types of nodes, which differ in the size of CPU and RAM resources.
The low constraint infrastructure contains more resource-stronger nodes, while the high
constraint infrastructure contains more resource-weaker nodes.

Since more than this type of categorization is needed to use as a basis for our framework,
we also created a system model capable of describing the orchestration of edge-cloud
systems for different architectures and heterogeneous infrastructures. It can describe the
different hardware and network constraints and also covers the functionality of control
components, which is vital for modeling different orchestration architectures. This system
model served as the basis for our framework. Nevertheless, the system model can be
extended towards different use cases. One example would be adding energy consumption
information to the nodes, as sensors, operated with batteries, are often used in urban
sensing. Battery consumption can, therefore, play a significant role in this scenario.

RQ2 What KPIs are appropriate to evaluate an orchestration architecture?

To create a meaningful recommendation, expressive KPIs are vital. To find these
expressive KPIs, we conducted a literature research. Since we found a lot of different
metrics, we decided to pick metrics based on the possible interests of our perspectives,
the type of data collection capabilities of our framework, and general occurrence in
literature. We then divided the chosen metrics into four different categories: system
level, network level, application level, and orchestration level. The first level contains
the metrics describing the resource usage of singular components and nodes. We looked
at the percentage of CPU and RAM usage. For the network level, we decided to collect
the network throughput of nodes and single components and the system latency of the
requests. The application level describes metrics influenced by the used application and
consists of the round trip time of user requests and the application throughput. Finally,
the orchestration level contains metrics referring to the orchestration actions. This level
includes the number of times a user request was processed in a zone different from the
user’s location, the duration of a scheduling and scaling decision, and the general amount
of scaling done. While there are more metrics than we covered out there, the chosen
metrics should be enough to judge the performance of an orchestration strategy.

RQ3 How can we create a system that allows and illustrates the differences
between orchestration architectures and heterogeneous infrastructures and
can make recommendations for those?

Using the KPIs from RQ2 and the categorization and system model from RQ1, we
can develop a framework to find the most optimum orchestration architecture based on
predefined QoS metrics. Our framework is an extension of the end-to-end benchmark
framework Galileo. We extended some of the original framework’s features and added new
ones to ensure we covered all aspects of our newly created system model. We incorporated
dynamically creating VMs, which embody the nodes of the edge-cloud clusters. The
framework then entirely creates a K3S cluster from the VMs automatically. Then, control
and metric collection components get deployed onto the cluster. We extended the existing
autoscaler and load-balancer implementation of the original framework to fulfill the

117

7. Conclusion

requirements of the work behavior of the different orchestration architectures. Since
Galileo provided no custom scheduler, we implemented one for each architect. The
framework can deploy any component provided it is deployable on a Kubernetes cluster.
Next, we also integrated the network traffic shaping tool tc to create custom network
latency between clusters. Lastly, while the framework collected all the raw metric data
we needed, we still had to do some preprocessing before we used the collected data for
our chosen metrics. To summarize, we have extended the framework Galileo to include
the following features: dynamically building K3S clusters with fully configurable VMs,
extending existing control components and deploying custom components, integrating
the network traffic shaping tool TC, and preprocessing the collected metrics data.

To evaluate our framework and our chosen KPIs, we perform a use case study in
which we evaluate the different orchestration architectures, focusing on the orchestration
components and application behavior in different scenarios. From the evaluation of the
data collected with the framework, we then conducted a recommendation using the earlier
described KPIs based on three different perspectives: user, platform provider, and the
impact of different infrastructures on the architectures. We only considered the round trip
time from the user perspective and concluded that the centralized architecture performed
best in the IIoT scenario, with an aggregated mean value of 0.55s. In the urban sensing
scenario, the lowest aggregated mean value was in the distributed architecture, with 1.68s.
From the perspective of a platform provider, the best choice would be the decentralized
architecture for both scenarios due to its low aggregated number of running replicas of
3 in low constraint and 7 in high constraint infrastructure. Moreover, the mean CPU
usage of the nodes was the lowest in the decentralized architecture, and the number of
zone crossings was low in perspective of the workload. For the third perspective, we also
recommend decentralized architecture since it was least affected by the infrastructure of
all architectures. For all metrics considered by the perspective, the difference in values
between the high and low constraint infrastructures was the lowest.

7.2 Future Work
During this thesis, we identified areas for improvement and further used cases for our
framework. The following section introduces possible future research areas.

• For our recommendation, we did not consider the schedd and scaled metrics since,
in our case, the implementations were too simple to have a significant impact.
However, the impact of these two metrics should not be underestimated, especially
due to possible cascading delays with, for example, the reconciliation interval.
Imagine a scenario where the scheduling duration of one replica is 2 seconds, and
the reconciliation interval of the autoscaler is five seconds. If the autoscaler creates
ten new replicas, a problem could occur where the reconciliation interval is over
before all replicas are scheduled since it would take 20 seconds to schedule all ten
replicas. In this situation, a new scaling decision would be made without fully

118

7.2. Future Work

considering the old decision. This and similar problems present an ideal opportunity
to utilize our framework and investigate the impact of more sophisticated scheduling
and scaling algorithms.

• Since our control components use configurable parameters, it would be an interesting
use case for our framework to investigate further the effects of the control compo-
nents’ parameters on the system. For example, the reconcile interval parameter
alone can impact the scaling behavior [23].

• In our experiments, most of the network throughput was created by the load-
balancers, as described in 6.1.2. Experimenting with placement and decision
strategies of load-balancers can significantly impact response times and performance
[52]. The framework provides an opportunity to investigate different load-balancing
strategies and gain insights into different strategies’ strengths and weaknesses.

• While we already covered some interesting performance metrics, our recommenda-
tion can be extended by including additional QoS levels. For example, [3] introduces
a comprehensive taxonomy of performance metrics for evaluating the performance
of edge-cloud systems, which can be taken as inspiration for additional metrics.
Some additional metrics could be energy consumption, reliability, availability, and
more.

• Since industrial edge-cloud systems use commercial cloud providers [53], porting our
framework to an existing provider, such as AWS, Azure, and GCP, would improve
the data and results’ relevance.

• In the current state of our framework, we cannot differentiate between function
replicas processing user requests and idle replicas. This results in the problem that
sometimes, client requests are broken during a scale-down since the function replica
was shut down during processing. For future work, a sophisticated strategy must
be found to handle this situation.

• Finally, the ultimate objective of our framework is to turn it into a recommen-
dation system so that when a user provides different metrics, architectures, and
infrastructures, the system provides the most optimal solution.

119

List of Figures

2.1 Orchestration architectures. (a) Centralized; (b) Decentralized; (c) Dis-
tributed. Adapted from [13] . 10

2.2 Kubernetes architecture . 13

4.1 The setup flow of an experiment using the framework 25
4.2 All components of the provisioning system 26

5.1 Evaluation procedure . 34
5.2 High resource constraint infrastructure with inter-network connection for

centralized, decentralized and distributed orchestration 38
5.3 Low resource constraint infrastructure with inter-network connection for

centralized, decentralized and distributed orchestration 39
5.4 User request profile . 42
5.5 Average CPU and RAM usage per Cluster, high constraint infrastructure, all

architectures . 45
5.6 Average CPU and RAM usage per Node Type, high constraint infrastructure,

all architectures . 46
5.7 Average CPU usage from autoscaler, high constraint infrastructure, all archi-

tectures . 46
5.8 Average RAM usage from autoscaler, high constraint infrastructure, all archi-

tectures . 47
5.9 Average CPU usage from function replicas, high constraint infrastructure, all

architectures . 47
5.10 Average RAM usage from function replicas, high constraint infrastructure, all

architectures . 47
5.11 Average CPU usage from load-balancer, high constraint infrastructure, all

architectures . 48
5.12 Average RAM usage from load-balancer, high constraint infrastructure, all

architectures . 48
5.13 Average CPU usage from scheduler, high constraint infrastructure, all archi-

tectures . 49
5.14 Average RAM usage from scheduler, high constraint infrastructure, all archi-

tectures . 49

121

5.15 Average CPU and RAM usage per Cluster, low constraint infrastructure, all
architectures . 50

5.16 Average CPU and RAM usage per Node Type, low constraint infrastructure,
all architectures . 51

5.17 Average CPU usage from autoscalers, low constraint infrastructure, all archi-
tectures . 51

5.18 Average RAM usage from autoscalers, low constraint infrastructure, all archi-
tectures . 52

5.19 Average CPU usage from function replicas, low constraint infrastructure, all
architectures . 52

5.20 Average RAM usage from function replicas, low constraint infrastructure, all
architectures . 53

5.21 Average CPU usage from load-balancers, low constraint infrastructure, all
architectures . 53

5.22 Average RAM usage from load-balancers, low constraint infrastructure, all
architectures . 54

5.23 Average CPU usage from schedulers, low constraint infrastructure, all archi-
tectures . 54

5.24 Average RAM usage from schedulers, low constraint infrastructure, all archi-
tectures . 55

5.25 Average CPU and RAM usage per Cluster, high and low constraint environ-
ment, centralized architecture . 56

5.26 Average CPU and RAM usage per Node Type, high and low constraint
environment, centralized architecture . 57

5.27 Average CPU usage from autoscaler, high and low constraint environment,
centralized architecture . 57

5.28 Average RAM usage from autoscaler, high and low constraint environment,
centralized architecture . 58

5.29 Average CPU usage from function replica, high and low constraint environment,
centralized architecture . 58

5.30 Average RAM usage from function replica, high and low constraint environ-
ment, centralized architecture . 58

5.31 Average CPU usage from load-balancer, high and low constraint environment,
centralized architecture . 59

5.32 Average RAM usage from load-balancer, high and low constraint environment,
centralized architecture . 59

5.33 Average CPU usage from scheduler, high and low constraint environment,
centralized architecture . 60

5.34 Average RAM usage from scheduler, high and low constraint environment,
centralized architecture . 60

5.35 Average CPU and RAM usage per Cluster, high and low constraint environ-
ment, decentralized architecture . 61

122

5.36 Average CPU and RAM usage per Node Type, high and low constraint
environment, decentralized architecture 62

5.37 Average CPU usage from autoscaler, high and low constraint environment,
decentralized architecture . 62

5.38 Average RAM usage from autoscaler, high and low constraint environment,
decentralized architecture . 63

5.39 Average CPU usage from function replica, high and low constraint environment,
decentralized architecture . 63

5.40 Average RAM usage from function replica, high and low constraint environ-
ment, decentralized architecture . 63

5.41 Average CPU usage from load-balancer, high and low constraint environment,
decentralized architecture . 64

5.42 Average RAM usage from load-balancer, high and low constraint environment,
decentralized architecture . 64

5.43 Average CPU usage from scheduler, high and low constraint environment,
decentralized architecture . 64

5.44 Average RAM usage from scheduler, high and low constraint environment,
decentralized architecture . 65

5.45 Average CPU and RAM usage per Cluster, high and low constraint environ-
ment, distributed architecture . 66

5.46 Average CPU and RAM usage per Node Type, high and low constraint
environment, distributed architecture . 67

5.47 Average CPU usage from autoscaler, high and low constraint environment,
distributed architecture . 67

5.48 Average RAM usage from autoscaler, high and low constraint environment,
distributed architecture . 68

5.49 Average CPU usage from function replica, high and low constraint environment,
distributed architecture . 68

5.50 Average RAM usage from function replica, high and low constraint environ-
ment, distributed architecture . 68

5.51 Average CPU usage from load-balancer, high and low constraint environment,
distributed architecture . 69

5.52 Average RAM usage from load-balancer, high and low constraint environment,
distributed architecture . 69

5.53 Average CPU usage from scheduler, high and low constraint environment,
distributed architecture . 69

5.54 Average RAM usage from scheduler, high and low constraint environment,
distributed architecture . 70

5.55 Distribution of Network Throughput per second per infrastructure, high
constraint infrastructure, all architectures 70

5.56 Distribution of latency values for each request path per architecture, high
constraint infrastructure, all architectures 71

123

5.57 Average Net throughput of autoscaler high constraint infrastructure, all archi-
tectures . 72

5.58 Average Net throughput of function replica, high constraint infrastructure, all
architectures . 72

5.59 Average Net throughput of load-balancer, high constraint infrastructure, all
architectures . 73

5.60 Average Net throughput of scheduler, high constraint infrastructure, all archi-
tectures . 73

5.61 Distribution Network Throughput per second per infrastructure, low constraint
infrastructure, all architectures . 74

5.62 Distribution of latency values for each request path per architecture, low
constraint environment, all architectures 74

5.63 Average Net throughput of autoscaler low constraint infrastructure, all archi-
tectures . 75

5.64 Average Net throughput of function replica, low constraint infrastructure, all
architectures . 75

5.65 Average Net throughput of load-balancer, low constraint infrastructure, all
architectures . 76

5.66 Average Net throughput of scheduler, low constraint infrastructure, all archi-
tectures . 76

5.67 Distribution Network Throughput per second per infrastructure, high and low
constraint environment, centralized architecture 77

5.68 Distribution of latency values for each request path in centralized architecture,
low and high constraint environment . 77

5.69 Average Net throughput of autoscaler in centralized architecture, low and
high constraint environment . 78

5.70 Average Net throughput of function replica in centralized architecture, low
and high constraint environment . 78

5.71 Average Net throughput of load-balancer in centralized architecture, low and
high constraint environment . 79

5.72 Average Net throughput of scheduler, low constraint in centralized architecture,
low and high constraint environment . 79

5.73 Distribution Network Throughput per second per infrastructure, high and low
constraint environment, decentralized architecture 80

5.74 Distribution of latency values for each request path in decentralized architec-
ture, low and high constraint environment 81

5.75 Average Net throughput of autoscaler in decentralized architecture, low and
high constraint environment . 81

5.76 Average Net throughput of function replica in decentralized architecture, low
and high constraint environment . 82

5.77 Average Net throughput of load-balancer in decentralized architecture, low
and high constraint environment . 82

124

5.78 Average Net throughput of scheduler, low constraint in decentralized architec-
ture, low and high constraint environment 82

5.79 Distribution Network Throughput per second per infrastructure, high and low
constraint environment, distributed architecture 83

5.80 Distribution of latency values for each request path in a distributed architec-
ture, low and high constraint environment 84

5.81 Average Net throughput of autoscaler in a distributed architecture, low and
high constraint environment . 84

5.82 Average Net throughput of function replica in a distributed architecture, low
and high constraint environment . 85

5.83 Average Net throughput of load-balancer in a distributed architecture, low
and high constraint environment . 85

5.84 Average Net throughput of scheduler, low constraint in distributed architecture,
low and high constraint environment . 85

5.85 Distribution of round-trip-time values for each request path per architecture,
high constraint infrastructure, all architectures 86

5.86 Sent request progress and average finished requests per architecture, high
constraint infrastructure, all architectures 87

5.87 Distribution of round-trip-time values for each request path per architecture,
low constraint infrastructure, all architectures 88

5.88 Sent request progress and average finished requests per architecture, low
constraint infrastructure, all architectures 88

5.89 Distribution of latency values for each request path in centralized architecture,
low and high constraint environment . 89

5.90 Sent request progress and average finished requests in centralized architecture,
low and high constraint environment . 90

5.91 Distribution of latency values for each request path in decentralized architec-
ture, low and high constraint environment 91

5.92 Sent request progress and average finished requests in decentralized architec-
ture, low and high constraint environment 91

5.93 Distribution of latency values for each request path in a distributed architec-
ture, low and high constraint environment 92

5.94 Sent request progress and average finished requests in a distributed architec-
ture, low and high constraint environment 93

5.95 Total amount of zone crossings, high constraint infrastructure, all architectures 93
5.96 Scheduling decision duration for a pod, high constraint infrastructure, all

architectures . 94
5.97 Scaling decision duration, high constraint infrastructure, all architectures 94
5.98 Replica running progress, high constraint infrastructure, all architectures 95
5.99 Total amount of zone crossings, low constraint infrastructure, all architectures 95
5.100Scheduling decision duration for a pod, low constraint infrastructure, all

architectures . 96
5.101Scaling decision duration, low constraint infrastructure, all architectures . 96

125

5.102Replica running progress, low constraint infrastructure, all architectures . 97
5.103Total amount of zone crossings in centralized architecture, low and high

constraint infrastructure . 97
5.104Scheduling decision duration for a pod in centralized architecture, low and

high constraint infrastructure . 98
5.105Scaling decision duration for a pod in centralized architecture, low and high

constraint infrastructure . 98
5.106Replica running progress in centralized architecture, low and high constraint

infrastructure . 99
5.107Total amount of zone crossings in decentralized architecture, low and high

constraint infrastructure . 99
5.108Scheduling decision duration for a pod in decentralized architecture, low and

high constraint infrastructure . 100
5.109Scaling decision duration for a pod in decentralized architecture, low and high

constraint infrastructure . 100
5.110Replica running progress in decentralized architecture, low and high constraint

infrastructure . 101
5.111Scheduling decision duration for a pod in a distributed architecture, low and

high constraint infrastructure . 101
5.112Scaling decision duration for a pod in distributed architecture, low and high

constraint infrastructure . 102
5.113Replica running progress in distributed architecture, low and high constraint

infrastructure . 102

126

List of Tables

4.1 Symbols . 24
4.2 Parameter values . 28

5.1 Configurations of each constrain level . 35
5.2 Selected performance metrics . 36
5.3 VM types . 37
5.4 Parameter sets . 40
5.5 Network settings . 41

6.1 Aggregated round trip time values for all three architectures using lc and hc
parameter sets . 110

6.2 Aggregated number of replicas running over all clusters for all three architec-
tures using lc and hc parameter sets . 111

6.3 Aggregated CPU usage over all clusters for all three architectures using lc
and hc parameter sets . 111

6.4 Aggregated amount of zone crossings for all three architectures using lc and
hc parameter sets . 111

6.5 Aggregated CPU usage over all clusters for all three architectures using hc_lc
parameter set . 113

6.6 Aggregated number of replicas running over all clusters for all three architec-
tures using hc_lc parameter sets . 113

6.7 Aggregated latency values for all three architectures using hc_lc parameter
set . 114

6.8 Aggregated round trip time values for all three architectures using hc_lc
parameter set . 114

127

List of Algorithms

4.1 Centralized Scheduler . 29

4.2 Distributed Scheduler . 30

4.3 Decentralized Global Scheduler . 32

129

Bibliography

[1] Amazon. Amazon ec2 on-demand pricing. https://aws.amazon.com/ec2/
pricing/on-demand/, 2016. Accessed 23-11-2023.

[2] Ansible. https://docs.ansible.com/ansible/latest/index.html,
2021. Accessed 23-06-2023.

[3] M. S. Aslanpour, S. S. Gill, and A. N. Toosi. Performance evaluation metrics for
cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for
future research. Internet of Things, 12:100273, 2020.

[4] F. Aznoli and N. J. Navimipour. Cloud services recommendation: Reviewing the
recent advances and suggesting the future research directions. Journal of Network
and Computer Applications, 77:73–86, 2017.

[5] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter. Serverless Computing:
Current Trends and Open Problems, pages 1–20. Springer Singapore, Singapore,
2017.

[6] L. Baresi, D. Y. X. Hu, G. Quattrocchi, and L. Terracciano. Neptune: Network-
and gpu-aware management of serverless functions at the edge. In Proceedings of the
17th Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’22, page 144–155, New York, NY, USA, 2022. Association for Computing
Machinery.

[7] L. Baresi and G. Quattrocchi. Paps: A serverless platform for edge computing
infrastructures. Frontiers in Sustainable Cities, 3, 2021.

[8] S. Böhm and G. Wirtz. A quantitative evaluation approach for edge orchestration
strategies. In S. Dustdar, editor, Service-Oriented Computing, pages 127–147, Cham,
2020. Springer International Publishing.

[9] G. A. S. Cassel, V. F. Rodrigues, R. da Rosa Righi, M. R. Bez, A. C. Nepomuceno,
and C. A. da Costa. Serverless computing for internet of things: A systematic
literature review. Future Generation Computer Systems, 128:299–316, 2022.

131

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.ansible.com/ansible/latest/index.html

[10] C. E. Catlett, P. H. Beckman, R. Sankaran, and K. K. Galvin. Array of things: A
scientific research instrument in the public way: Platform design and early lessons
learned. SCOPE ’17, page 26–33, New York, NY, USA, 2017. Association for
Computing Machinery.

[11] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang. Edge computing in
iot-based manufacturing. IEEE Communications Magazine, 56(9):103–109, 2018.

[12] M. Ciavotta, D. Motterlini, M. Savi, and A. Tundo. Dfaas: Decentralized function-as-
a-service for federated edge computing. In 2021 IEEE 10th International Conference
on Cloud Networking (CloudNet), pages 1–4, 2021.

[13] B. Costa, J. Bachiega, L. R. de Carvalho, and A. P. F. Araujo. Orchestration in fog
computing: A comprehensive survey. ACM Comput. Surv., 55(2), jan 2022.

[14] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya. Edge intelligence:
The confluence of edge computing and artificial intelligence. IEEE Internet of Things
Journal, 7(8):7457–7469, 2020.

[15] Docker. https://www.docker.com/, May 2022. Accessed 23-06-2023.

[16] Edgerun. https://github.com/edgerun/faas-optimizations/, 2023. Ac-
cessed 23-06-2023.

[17] Edgerun. https://github.com/edgerun/go-load-balancer/, 2023. Ac-
cessed 23-06-2023.

[18] Edgerun. https://github.com/edgerun/telemd/, 2023. Accessed 23-06-
2023.

[19] Edgerun. https://github.com/edgerun/edge-chaos, 2023. Accessed 23-
06-2023.

[20] fission. fission: Fast and simple serverless functions for kubernetes. https://
github.com/fission/fission, Mar 2023. Accessed 07-03-2023.

[21] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung. Tailored learning-based
scheduling for kubernetes-oriented edge-cloud system. In IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications, pages 1–10, 2021.

[22] Y. Hu, H. Zhou, C. de Laat, and Z. Zhao. Concurrent container scheduling on
heterogeneous clusters with multi-resource constraints. Future Generation Computer
Systems, 102:562–573, 2020.

[23] C.-K. Huang and G. Pierre. AdapPF: Self-Adaptive Scrape Interval for Monitoring
in Geo-Distributed Cluster Federations. In ISCC 2023 - 28th IEEE Symposium on
Computers and Communications, pages 1–7, Tunis, Tunisia, July 2023. IEEE, IEEE.

132

https://www.docker.com/
https://github.com/edgerun/faas-optimizations/
https://github.com/edgerun/go-load-balancer/
https://github.com/edgerun/telemd/
https://github.com/edgerun/edge-chaos
https://github.com/fission/fission
https://github.com/fission/fission

[24] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen. Function delivery
network: Extending serverless computing for heterogeneous platforms. Software:
Practice and Experience, 51(9):1936–1963, 2021.

[25] K3s. https://k3s.io/, 2023. Accessed 23-06-2023.

[26] K3s-io. https://github.com/k3s-io/k3s-ansible, Jan 2022. Accessed
23-06-2023.

[27] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed. Edge computing: A
survey. Future Generation Computer Systems, 97:219–235, 2019.

[28] W. Kim and I. Jung. Simulator for interactive and effective organization of things
in edge cluster computing. Sensors, 21(8), 2021.

[29] Knative. https://github.com/knative/, Mar 2023. Accessed 07-03-2023.

[30] H. Kokkonen, L. Lovén, N. H. Motlagh, A. Kumar, J. Partala, T. Nguyen, V. C.
Pujol, P. Kostakos, T. Leppänen, A. González-Gil, E. Sola, I. Angulo, M. Liyanage,
M. Bennis, S. Tarkoma, S. Dustdar, S. Pirttikangas, and J. Riekki. Autonomy and
intelligence in the computing continuum: Challenges, enablers, and future directions
for orchestration, 2022.

[31] Kubeless. kubeless: Kubernetes native serverless framework. https://github.
com/vmware-archive/kubeless, Dec 2021. Accessed 07-03-2023.

[32] Kubernetes. Horizontal pod autoscaling. https://kubernetes.io/docs/
concepts/configuration/manage-resources-containers/. Accessed
23-11-2023.

[33] Kubernetes. Horizontal pod autoscaling. https://kubernetes.io/docs/
tasks/run-application/horizontal-pod-autoscale/. Accessed 23-06-
2023.

[34] Kubernetes. Kubernetes. https://kubernetes.io/docs/home/, Oct 2022.
Accessed 24-02-2023.

[35] H. Lee, K. Satyam, and G. Fox. Evaluation of production serverless computing
environments. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 442–450, 2018.

[36] Z. Li, R. Chard, Y. Babuji, B. Galewsky, T. J. Skluzacek, K. Nagaitsev, A. Woodard,
B. Blaiszik, J. Bryan, D. S. Katz, I. Foster, and K. Chard. uncx: Federated function
as a service for science. IEEE Transactions on Parallel and Distributed Systems,
33(12):4948–4963, 2022.

[37] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo. The serverless computing
survey: A technical primer for design architecture. 54(10s), sep 2022.

133

https://k3s.io/
https://github.com/k3s-io/k3s-ansible
https://github.com/knative/
https://github.com/vmware-archive/kubeless
https://github.com/vmware-archive/kubeless
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/home/

[38] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless comput-
ing: An investigation of factors influencing microservice performance. In 2018 IEEE
International Conference on Cloud Engineering (IC2E), pages 159–169, 2018.

[39] O. Ltd. https://www.openfaas.com/, 2023. Accessed 07-03-2023.

[40] R. P. Ltd. Buy a raspberry pi 3 model b – raspberry pi. https://www.
raspberrypi.com/products/raspberry-pi-3-model-b/. Accessed 23-06-
2023.

[41] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi. Resource scheduling in edge computing: A
survey. IEEE Communications Surveys Tutorials, 23(4):2131–2165, 2021.

[42] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha. A preliminary review of
enterprise serverless cloud computing (function-as-a-service) platforms. In 2017 IEEE
International Conference on Cloud Computing Technology and Science (CloudCom),
pages 162–169, 2017.

[43] R. Mahmud, R. Kotagiri, and R. Buyya. Fog Computing: A Taxonomy, Survey and
Future Directions, pages 103–130. Springer Singapore, Singapore, 2018.

[44] A. Mampage, S. Karunasekera, and R. Buyya. A holistic view on resource manage-
ment in serverless computing environments: Taxonomy and future directions. ACM
Comput. Surv., 54(11s), sep 2022.

[45] X. Masip, E. Marín, J. Garcia, and S. Sànchez. Collaborative Mechanism for Hybrid
Fog-Cloud Scenarios, chapter 2, pages 7–60. John Wiley Sons, Ltd, 2020.

[46] S. K. Mohanty, G. Premsankar, M. Di Francesco, et al. An evaluation of open source
serverless computing frameworks. CloudCom, 2018:115–120, 2018.

[47] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M. I. Jordan, and I. Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 561–577, Carlsbad, CA, Oct. 2018. USENIX
Association.

[48] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar. A serverless
computing fabric for edge amp; cloud. In 2022 IEEE 4th International Conference
on Cognitive Machine Intelligence (CogMI), pages 1–12, Los Alamitos, CA, USA,
dec 2022. IEEE Computer Society.

[49] OpenSSH. https://www.openssh.com/, 2023. Accessed 23-06-2023.

[50] OpenWhisk. https://openwhisk.apache.org/, 2016. Accessed 24-02-2023.

[51] A. Palade, A. Kazmi, and S. Clarke. An evaluation of open source serverless
computing frameworks support at the edge. In 2019 IEEE World Congress on
Services (SERVICES), volume 2642-939X, pages 206–211, 2019.

134

https://www.openfaas.com/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.openssh.com/
https://openwhisk.apache.org/

[52] J. Palecek. Improving serverless edge computing for network bound workloads. 2022.

[53] J. Pan and J. McElhannon. Future edge cloud and edge computing for internet of
things applications. IEEE Internet of Things Journal, 5(1):439–449, 2018.

[54] T. Pfandzelter and D. Bermbach. tinyfaas: A lightweight faas platform for edge
environments. In 2020 IEEE International Conference on Fog Computing (ICFC),
pages 17–24, 2020.

[55] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas. Joint service
placement and request routing in multi-cell mobile edge computing networks, 2019.

[56] V. Prokhorenko and M. Ali Babar. Architectural resilience in cloud, fog and edge
systems: A survey. IEEE Access, 8:28078–28095, 2020.

[57] P. Raith and S. Dustdar. Edge intelligence as a service. In 2021 IEEE International
Conference on Services Computing (SCC), pages 252–262, 2021.

[58] P. Raith, T. Rausch, S. Dustdar, F. Rossi, V. Cardellini, and R. Ranjan. Mobility-
aware serverless function adaptations across the edge-cloud continuum. In 2022
IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC),
pages 123–132, 2022.

[59] P. Raith, T. Rausch, P. Prüller, A. Furutanpey, and S. Dustdar. An end-to-end
framework for benchmarking edge-cloud cluster management techniques. In 2022
IEEE International Conference on Cloud Engineering (IC2E), pages 22–28, 2022.

[60] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, and S. Dustdar. Synthesizing
plausible infrastructure configurations for evaluating edge computing systems. In
3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20). USENIX
Association, June 2020.

[61] T. Rausch, P. Raith, P. Pillai, and S. Dustdar. A system for operating energy-aware
cloudlets: Demo. SEC ’19, page 307–309, New York, NY, USA, 2019. Association
for Computing Machinery.

[62] T. Rausch, A. Rashed, and S. Dustdar. Optimized container scheduling for data-
intensive serverless edge computing. Future Generation Computer Systems, 114:259–
271, 2021.

[63] Z. Rejiba and J. Chamanara. Custom scheduling in kubernetes: A survey on common
problems and solution approaches. ACM Comput. Surv., 55(7), dec 2022.

[64] M. A. Rodriguez and R. Buyya. Container-based cluster orchestration systems: A
taxonomy and future directions. Software: Practice and Experience, 49(5):698–719,
2019.

135

[65] R. Singh and S. S. Gill. Edge ai: A survey. Internet of Things and Cyber-Physical
Systems, 3:71–92, 2023.

[66] L. Sun, H. Dong, F. K. Hussain, O. K. Hussain, and E. Chang. Cloud service
selection: State-of-the-art and future research directions. Journal of Network and
Computer Applications, 45:134–150, 2014.

[67] S. Taherizadeh, V. Stankovski, and M. Grobelnik. A capillary computing architecture
for dynamic internet of things: Orchestration of microservices from edge devices to
fog and cloud providers. Sensors, 18(9), 2018.

[68] B. Wang, A. Ali-Eldin, and P. Shenoy. Lass: Running latency sensitive serverless
computations at the edge. HPDC ’21, page 239–251, New York, NY, USA, 2021.
Association for Computing Machinery.

[69] Z. Wang, M. Goudarzi, J. Aryal, and R. Buyya. Container orchestration in edge
and fog computing environments for real-time iot applications. In R. Buyya, S. M.
Hernandez, R. M. R. Kovvur, and T. H. Sarma, editors, Computational Intelligence
and Data Analytics, pages 1–21, Singapore, 2023. Springer Nature Singapore.

[70] Y. Xiong, Y. Sun, L. Xing, and Y. Huang. Extend cloud to edge with kubeedge. In
2018 IEEE/ACM Symposium on Edge Computing (SEC), pages 373–377, 2018.

[71] M. Yu, T. Cao, W. Wang, and R. Chen. Following the data, not the function:
Rethinking function orchestration in serverless computing, 2021.

[72] Z. Yu, J. Wang, Q. Qi, J. Liao, and J. Xu. Boundless application and resource
based on container technology. In S. Liu, B. Tekinerdogan, M. Aoyama, and L.-J.
Zhang, editors, Edge Computing – EDGE 2018, pages 34–48, Cham, 2018. Springer
International Publishing.

[73] X. Zhou, R. Canady, S. Bao, and A. Gokhale. Cost-effective hardware accelerator
recommendation for edge computing. In HotEdge, 2020.

[74] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. Edge intelligence: Paving
the last mile of artificial intelligence with edge computing. Proceedings of the IEEE,
107(8):1738–1762, 2019.

136

	Kurzfassung
	Abstract
	Introduction
	Problem Statement and Motivation
	Aim of the Thesis and Expected Results
	Approach
	Structure

	Background
	Edge Intelligence in the Edge-Cloud Continuum
	Serverless Edge Computing
	Orchestration Architectures
	Tools and Technologies

	State of the Art
	Recommendation Systems and Surveys
	Architecture
	Evaluations

	Framework
	System Model
	Experimental Setup
	Custom Schedulers

	Evaluation
	Approach
	Methodology
	Results

	Recommendation
	Discussion
	User Perspective
	Platform Provider Perspective
	Impact of the Infrastructure on the Architecture

	Conclusion
	Research Questions
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

