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Abstract: Light Detection and Ranging (LiDAR) is a well-established active technology for the direct
acquisition of 3D data. In recent years, the geometric information collected by LiDAR sensors has
been widely combined with optical images to provide supplementary spectral information to achieve
more precise results in diverse remote sensing applications. The emergence of active Multispectral
LiDAR (MSL) systems, which operate on different wavelengths, has recently been revolutionizing
the simultaneous acquisition of height and intensity information. So far, MSL technology has been
successfully applied for fine-scale mapping in various domains. However, a comprehensive review of
this modern technology is currently lacking. Hence, this study presents an exhaustive overview of the
current state-of-the-art in MSL systems by reviewing the latest technologies for MSL data acquisition.
Moreover, the paper reports an in-depth analysis of the diverse applications of MSL, spanning across

]

fields of “ecology and forestry”, “objects and Land Use Land Cover (LULC) classification”, “change

v ou

detection”, “bathymetry”,

v ou

topographic mapping”, “archaeology and geology”, and “navigation”.
Our systematic review uncovers the potentials, opportunities, and challenges of the recently emerged
MSL systems, which integrate spatial-spectral data and unlock the capability for precise multi-

dimensional (nD) mapping using only a single-data source.

Keywords: multispectral laser scanning; point clouds; intensity; hyperspectral LIDAR; sensors

1. Introduction

LiDAR is a renowned and widely used technology [1]. Fast and accurate acquisition of
3D information is the primary advantage of this 3D surveying technology. Laser sensors can
be mounted on or carried by several platforms: crewed and uncrewed airborne, satellite,
terrestrial, and mobile (including hand-held, backpack, and vehicle-based LiDAR). Addi-
tionally, LIDAR data play an important role in the generation of 3D models ranging from
cities and other sites, Digital Surface Models (DSMs), and Digital Terrain Models (DTMs).
LiDAR technology has evolved dramatically since its appearance in the late 90s. One of the
latest and rapidly developing achievements in laser scanning technology is multispectral
LiDAR and hyperspectral LIDAR (HSL) systems, having the ability to concomitantly obtain
both geometrical and spectral information of the surveyed scene [2]. The utilization of
intensity information, in conjunction with LiDAR’s geometric data, has enabled the ex-
traction of additional features that could serve various purposes in remote sensing and
photogrammetry. While passive multi/hyperspectral images have actively shown satisfac-
tory results for land use and land cover classification as well as target detection, their lack
of 3D information limits their capabilities, especially for interpreting complex scenes. Even
though LiDAR data can be combined with multi/hyperspectral passive images to improve
scene characterization [3-5], registration problems in space (i.e., alignment and resolution)
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as well as time (i.e., changing observation conditions and dynamic scene), make this fusion
challenging [6]. This drawback has prompted the development of MSL and HSL scanners
as single-data source solutions to simultaneously acquire 3D geometric and radiometric
information and alleviate the mentioned problems. For these reasons, MSL systems are
currently gaining interest. Compared to conventional monochromatic (single-wavelength)
LiDAR data, MSL data ensure a higher level of reliability and accuracy in object detection
and scene classification [7-15]. Furthermore, MSL technology is able to acquire numerous
textures of targets [16]. Additionally, delineation of individual trees is quite often difficult
when only geometric spatial information of LiDAR data is taken into account [17]. Notably,
contrary to optical imagery sensors, LIDAR is an active remote sensing sensor that has
independent data acquisition of external illumination conditions, perfectly addressing the
common shadow issue in the processing of optical images. Moreover, as reported by the
results in [18,19], MSL data can dramatically enhance object detection in comparison to
multispectral images. That is why MSL is becoming a popular source of research data for
nD mapping, considering the intensities information as further dimensions.

1.1. Paper’s Contribution

A MSL technology offers numerous opportunities for remote sensing and photogram-
metric applications. However, a comprehensive literature review on this emerging technol-
ogy is currently lacking. Therefore, this study aims to fill this gap by providing a detailed
overview on the current state-of-the-art of MSL technology and its applications. To pro-
pose a comprehensive roadmap for the comprehension and exploitation of MSL systems,
this review paper focuses on the latest advancements in multispectral sensor technology,
with a special highlight on the recent technology and applications in the domain of MSL.
Essentially, this study addresses the following research inquiries:

What is the historical evolution, current status, and prospective future of MSL technology?
What advantages do MSL data offer in comparison to multispectral images as well as
monochromatic LiDAR data?

e  What categorizations exist for MSL data, and what are the inherent potentials and
challenges associated with each?
Are there established benchmark datasets available for MSL?
What is the scope of the application of MSL within the fields of remote sensing
and photogrammetry?

e What are the prospective benefits, opportunities, and challenges linked with
MSL technology?

The historical development and recent technological advances for the acquisition of
multispectral (MS) data are outlined in Section 2. Section 3 reviews the existing literature
on MSL data types and benchmarks. Several applications, organized per research domains,
are reported in Section 4. Potentials, opportunities, and challenges of MSL are discussed
in Section 5. Finally, Section 6 draws some conclusions and outlines new perspectives for
future studies and developments. Figure 1 provides a summary of the presented state-of-
the-art in MSL technologies and processing steps. It is worth noting that the processing
aspects (grey part) of MSL data are not in the scope of this article and will be presented in
following review papers by the same authors. A detailed summary of reviewed studies on
MSL data is given in Table Al of Appendix A.
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Figure 1. Summary of the current state-of-the-art in MSL technology. This paper focuses on the left
side of the figure, highlighted in red.

1.2. Literature Search Strategy

To conduct a comprehensive literature review and present the findings, we initiated
the process by formulating a search query using two widely recognized academic databases,
namely Scopus [20] and Web of Science [21]. The details of this initial screening are re-
ported in Table 1. The search query was designed as a combination of two distinct parts.
The first part encompassed terms of “multispectral”, “multi-wavelength”, “bispectral”,
“hyperspectral”, and “dual-wavelength”, which denote the multispectral nature of the
data, while the second parts refer to LIDAR instruments. Subsequently, we applied a set of
exclusion criteria to refine the results. Articles that did not directly contribute to remote
sensing and photogrammetry or failed to validate the proposed study or were older than
2005 were excluded from the review process. We considered seven applications of “ecology
and forestry”, “objects and LULC classification”, “change detection”, “bathymetry”, “topo-
graphic mapping”, “archaeology and geology”, and “navigation”, as mentioned. Following
a rigorous screening process, 89 high-quality papers were identified as suitable for in-depth
analysis and review.

Table 1. The search strategy for screening relevant papers in the domain of MSL.

Platform Search Query Number of Found Papers
Scopus “multispectral LIDAR” OR “multi-wavelength LIDAR” OR “bispectral 401
LiDAR” OR “dual-wavelength LIDAR” OR “hyperspectral LIDAR” OR
“multispectral laser” OR “multi-wavelength laser” OR “bispectral
laser” OR “dual-wavelength laser” OR “hyperspectral laser” OR
Web of Science “multispectral light detection and ranging” OR “multi-wavelength 278

light detection and ranging” OR “bispectral light detection and

ranging” OR “dual-wavelength light detection and ranging” OR

“hyperspectral light detection and ranging”
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2. Multispectral Sensors

Multispectral sensors can be divided into two main groups: passive (optical) and
active sensors. A comparison of multispectral sensors is reported in Table 2. Basically,
passive sensors rely on and are affected by environmental illumination. Conversely, MSL
sensors mostly have lower coverage, as they are capable of mitigating the environmental
illumination influence on spectral information collection [22]. Moreover, passive sensors
have a limited capacity to penetrate objects (e.g., vegetation, water surface) [23]. Even
when stereo imagery is acquired, it is very difficult to determine the depth of water
columns and derive nautical information, such as lake volume, channel cross-sections,
and seabed properties. Furthermore, multispectral optical sensors typically produce two-
dimensional images.

Table 2. Multispectral passive vs. active sensors.

Multispectral Passive Sensors (Cameras)

Multispectral Active Sensors (LiDAR)

v Less computational burden, especially for v Incorporating both spectral and precise 3D
large-scale mapping geometrical information
v Easier interpretability v/ Shadowless intensity images (active sensor)
v Benefiting from numerous automated v Without relief displacement error
Advantages processing methods (esp. deep learning) v Independent data acquisition of
v Greater data availability weather conditions
v Mostly having higher spectral resolution v Feasibility of 3D point cloud classification and
v Broader coverage object recognition
v Some free data (e.g., Sentinel or Landsat series) v More accurate results (3D view)
v/ Having higher spatial resolution in general
X Lack of geometrical information
X Higher misinterpretation and misclassification X  More computationally expensive
error (2D view) X More sophisticated data interpretation
Disadvantages X Shadow probability (passive sensor) (irregular distribution)
X Relief displacement problem X Attracted much less attention in developing
X Measuring the spectral response as a function automated processing techniques
of distance (e.g., depth into a forest canopy) X Lower coverage rate

is impossible

In conjunction with 2D data, the shadowing effect and relief displacement are generally
drawbacks of optical imagery, causing processing issues and even misinterpretations [24].
Anisotropy caused by directional reflectance combined with varying view angles presents a
challenge to automatic classification, particularly when passive optical sensors are used [25].
On the other hand, MSL sensors provide information on the full 3D distribution of ma-
terials with improved penetration capacity. This is the main advantage, especially for
detecting semi-transparent objects such as vegetation and fences. Laser scanning also
provides clear information in shadowed areas, which is another advantage of MSL over
multi/hyperspectral images (see Figure 2). This merit is particularly significant in urban
areas with high buildings, which are the primary cause of shadows on aerial images. As
the recorded spectral values in passive optical sensors depend on sunlight conditions,
the spectral values for a specific object may not be comparable between different images,
making change detection cumbersome. Understanding LiDAR intensity is discussed in [26].
Using MSL, Kukkonen et al. [12] found that it provided comparable accuracy to monochro-
matic LiDAR data combined with aerial imagery for predicting dominant tree species,
capable of distinguishing between conifers and broadleaved trees more precisely. Also,
they concluded that MSL data performed less well in predicting species-specific volume
models than monochromatic or MSL data combined with aerial images. Laser scanner
sensors also have the advantage of separating tree canopy and ground data, whereas
passive optical sensors often offer mixed signals [27]. While we are witnessing continuous
advancements coming from computer vision and robotics to support the processing of
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multispectral optical images, unfortunately, there is still limited understanding of MSL
data. Indeed, modern processing techniques, especially deep learning (DL) architectures,
developed for this type of data, are highly limited compared to conventional raster-based
DL models for processing MS images.

Figure 2. Aerial optical image (left) versus MSL-based false-color image (right), Optech Titan LiDAR [16].

2.1. Multispectral Passive Sensors

Table 3 provides a list of frequently used multispectral sensors. Basically, multispectral
passive sensors provide 2D images from the scene. Furthermore, digital optical sensors and
photogrammetric software enable the creation of extensive 3D point clouds through the
matching of stereo aerial images automatically. It is worth noting that while photogrammet-
ric point clouds and MSL serve as single-data source options for acquiring both geometric
and radiometric information, a study conducted by Kukkonen et al. [28] showcased the no-
table superiority of MSL over photogrammetric point clouds in the prediction of boreal tree
species’ volumes. This superiority is attributed to MSL’s ability to provide more detailed
structural information compared to photogrammetric-based data [28].

Table 3. Currently available passive multispectral sensors in remote sensing. Abbreviations: GSD:
Ground Sample Distance; MSI: Multispectral Instrument; OLI: Operational Land Imager; WV110:
WorldView-110 camera.

Multi sg;s::::le Sensor Platform Operator Spectral Bands GSD (m) Altitude (km)  Stereo  Revisit (Day)
DJI P4 MS [29] Drone DJI 5 0.095 Flexible Yes Flexible
Parrot Sequoia [30] Drone Parrot 4 0.05 Flexible Yes Flexible
Sentera 6X MS [31] Aerial Sentera 5 0.026 Flexible Yes Flexible
10 (B2-B4 & B8)
S2A MSI [32] Sentinel-2A ESA 13 20 (B5-B7 & B12-B13) 790 No 10
60 (other bands)
10 (B2-B4 & B8)
S2B MSI [32] Sentinel-2B ESA 13 20 (B5-B7 & B12-B13) 790 No 10
60 (other bands)
OLI-1 [33] Landsat 8 NASA 9 30 705 No 16
OLI-2 [34] Landsat 9 NASA 9 30 705 No 16
ASTER [35] Terra NASA/METI 14 15 705 Yes 16
MSI [36] Pleiades-1 Astrium 4 2.8 695 Yes 1
WV110 [37] WorldView-2 MAXAR 8 1.84 773 Yes 1.1
WV110 [38] WorldView-3 MAXAR 8 1.25 617 Yes 1
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2.2. Multispectral Laser Systems

MSL sensors with the capability of 3D data acquisition in two or more wavelength
channels are among the leading advances in 3D data collection. Sensor properties (e.g.,
wavelength, instrument size, and measurement range) are selected with respect to the
intended application, causing instruments with different wavelengths. The power of some
laser wavelengths and their eye safety make it difficult to apply them to long-range airborne
laser scanning (ALS) [39]. Considering human eye sensitivity to visible wavelengths, it is
safer to have multiple laser scanner channels in the 1.3-1.6 micrometre range. The majority
of monochromatic ALS systems operate in the near-infrared (NIR) region of the electro-
magnetic spectrum due to the fact that most topographic features reflect NIR in sufficient
amounts required for registration on the receiver [39,40]. According to the literature review,
532 nm (green), 1064 nm (NIR), and 1550 nm (short-wavelength infrared, SWIR) are the
most commonly available laser wavelengths in ALS [24]. In the case of terrestrial or UAV-
based laser scanners, Velodyne and Ouster are widely used sensors, operating primarily in
the wavelength range around 900 nm [41]. Available dual-wavelength laser scanners are
mostly hydrographic and bathymetric systems for coastal zone and shallow water map-
ping, which are equipped with green and sometimes with red and infrared wavelengths in
addition to the green channel. In all laser scanner systems, for eye safety reasons, the beam
divergence of the green wavelength (0.7-1.0 mrad) is usually greater compared to NIR and
SWIR laser scanners (approximately 0.2-0.5 mrad), leading to a larger footprint at the same
distance from the sensor. However, because of the mentioned footprint sizes, information
from individual wavelengths is even more complementary. Nevertheless, co-registration
problems are likely to arise when combining the data positions [42]. Additionally, modern
MSL systems emit different wavelengths at different angles, resulting in separate scan lines
and differences in the positions of measurements. Comparing spectral profiles derived
from MSL/HSL has revealed that this cutting-edge technology is capable of collecting
spectral information as trustable as laboratory measurements using spectrometers [43,44].
MSL data acquisition techniques can generally be divided into three approaches: Combi-
nation of Single-Wavelength Flights (CSWF), Multi-Wavelength LIDAR (MWL), and HSL
systems, operating at different wavelengths. In the following subsections, the mentioned
techniques are discussed in detail. Figure 3 illustrates the distribution of employed MSL
systems in the literature, categorized according to their types. This analysis is based on a
comprehensive review of 89 technical papers (see Table Al). As shown, MWL emerges as
the predominant category (74.2%) within MSL systems, while HSL and CSWF respectively
exhibit comparatively lower utilization rates.

CSWF

MWL

HSL

Figure 3. Distribution of employed MSL systems in the literature—based on Table A1.
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2.2.1. Combination of Single-Wavelength Flights (CSWF)

Combining several independent single-wavelength flight missions is one of the com-
mon approaches of MSL data acquisition, undertaken in attempts to overcome pre-existing
technical and commercial constraints. In order to acquire MSL data, Briese et al. [45] ex-
ploited three monochromatic airborne laser scanners, namely RIEGL VQ-820-G [46], RIEGL
VQ-580 [47], and RIEGL LMS-Q680i [48], operating at the respective laser wavelengths
of 532 nm, 1064 nm, and 1550 nm. In another study, Junttila [49] utilized three terrestrial
laser scanners: Leica HDS6100 [50], FARO 5120 [51], and FARO X330 [52], each operating
at distinct wavelengths of 690 nm, 905 nm, and 1550 nm, respectively. In addition to
MSL, thanks to the ongoing development of laser scanning techniques, various types of
LiDAR sensors have become available during recent years, entailing single-wavelength
Linear Mode LiDAR (LML), Single Photon LiDAR (SPL), Geiger Mode LiDAR (GML), Full
Waveform Digitization (FWD) LiDAR, and Multi-Pulse in Air (MpiA) LiDAR [24]. The
sensitivities of SPL and GML to single photons distinguish them from conventional LML.
Moreover, sensitive SPL systems are capable of being operated at higher flying altitudes,
making them efficient for data acquisition over large areas and country-wide mapping [53].
Despite the high sensitivity and wide coverage of monochromatic LIDAR sensors, some
researchers have discovered significant confusion between ground-level objects (e.g., low
vegetation, asphalt, gravel, and rock areas) when they investigated their potential for land
cover classification [54,55]. Motivated by this issue, Matikainen et al. [55] explored the
potential of combining the information from the first and second channels of the multispec-
tral Titan laser scanner with SPL and obtained promising results. Therefore, their work
can be considered the next step in this type of MSL data capturing. Table 4 shows some
monochromatic LiDAR sensors that would be useful for generating MSL datasets.

Table 4. List of some single-wavelength LiDAR sensors that can be used in multi-sensor MSL systems.
PRF = pulse repetition frequency; A = airborne; T = terrestrial.

Wavelength LiDAR Sensor Producer Platform Beam[ﬁlr\;zligence LOOkH[IOg] Angle PRF [kHz]
VQ-840-G [56] RIEGL A&T 1.0-6.0 40 <200
Green VQ-820-G RIEGL A 1 1-60 <520
Aquarius [57] Optech A 1 0-+25 33,50, 70
Red HDS6100 Leica T 0.22 360 x 310 NA
VQ-580 RIEGL A 0.2 60 <380
VUX-1HA [58] RIEGL A&T 0.5 360 <1000
MiniVUX-3 UAV [59] RIEGL A 0.8 360 <300
Gemini [60] Optech A 0.25 & 0.8 0-50 33-167
NIR ALTM Galaxy T1000 [61] Optech A 0.25 10-60 50-1000
Pegasus [62] Optech A 0.25 +37 100-500
TerrainMapper [63] Leica A 0.25 20-40 <2000
CityMapper [64] Leica A 0.25 40 <700
FARO S120 FARO T 0.19 360 x 305 97
Trimble TX5 [65] Trimble T 0.19 360 x 300 97
VQ-480i [66] RIEGL A 0.3 60 <550
SWIR LMS-Q680i RIEGL A <0.5 60 <400
FARO X330 FARO T 0.19 360 x 300 97
Orion [67] Optech A 0.25 10-50 0.05/0.06

2.2.2. Multi-Wavelength LiDAR (MWL)

Further developments in the mounting capabilities of aircrafts and other platforms
have made the acquisition of MSL data possible by integrating distinct monochromatic
LiDAR sensors simultaneously mounted on the same platform. Figure 4 depicts the
operational mechanism of multispectral LiDAR data acquisition by MSL systems. In
effect, this figure shows a multispectral point cloud gathered by the “HeliALS-TW” MSL
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(developed by the Finnish Geospatial Research Institute (FGI)), which is a composite
of three monochromatic RIEGL laser scanners bolted together, namely, the VUX-1HA,
miniVUX-3UAYV, and VQ-840-G, acting at wavelengths of 1550 nm, 905 nm, and 532 nm,
respectively [68]. Merging the point clouds of these three mentioned channels results in
multispectral point cloud data.

In 2006, the federal institute for materials research and testing (BAM) developed the
first four-wavelength airborne MSL to take advantage of such systems for the inspection
of building surfaces [69]. The Salford Advanced Laser Canopy Analyser (SALCA) is the
first multispectral full waveform terrestrial LIDAR, designed in 2010 for characterizing
forest canopies [70]. This experimental MSL performs in two wavelengths in the near and
middle-infrared (1040 and 1550 nm). In 2012, Boston University developed a full-waveform
terrestrial dual-wavelength MSL named DWEL (Dual-Wavelength Echidna LiDAR) for
the automated retrieval of forest structure [71]. This dual-wavelength MSL functions at
1064 nm and 1548 nm. In the same year, Wei et al. [72] designed an MSL system for
vegetation applications, called Multi-Wavelength Canopy LiDAR (MWCL). This terrestrial
MSL operates with four lasers of different wavelengths chosen according to nitrogen
stresses that make changes in the spectral reflectance of rice leaves. Their experimental
results demonstrate the high capability of recording the physiology of the canopy, which
is not possible when solely employing traditional monochromatic LIDAR. Moreover, to
obtain three-wavelength LiDAR data, Briese et al. [73] conducted two flight missions with
the same flight plans within four days in 2013. In the first mission, a RIEGL VQ-820-G
and RIEGLVQ-580 were combined, whereas a RIEGL VQ-820-G and RIEGL V(Q-480i were
employed in the second mission.

)
VUX-1HA VQ-840-G
& S5 '," i ~ T \
: B 078 . S
— ‘ G S : : i
~ £ < e 2 :'{*[’ %
% . . :
Channel 1 (SWIR) Channel 2 (NIR) Channel 3 (Green)
L J

Figure 4. Operational mechanism of multispectral LIDAR data acquisition by the “HeliALS-TW”
MSL system.

Lindberg et al. [74] utilized a dataset collected similarly to [73]. According to their
report, while the proportion of returns at different heights above the ground and the
level of detail almost resembled, the point density of RIEGL VQ-820-G data was slightly
higher than the other two wavelengths. Furthermore, as the RIEGL VQ-820-G scanner is
principally designed for bathymetric mapping, it has a higher scanning sensitivity than
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the two other scanners. Moreover, the green wavelength of the RIEGL VQ-820-G sensor
has twice as much angular divergence, which leads to a larger footprint, density, and
noise. Optech Titan is the first commercial MSL that was launched in 2014 by Teledyne
Optech (Vaughan, ON, Canada). A Titan LiDAR system is able to simultaneously capture
spectral information at three channels with wavelengths of 1550 nm (C1 = SWIR), 1064 nm
(C2 = near infrared, NIR), and 532 nm (C3 = green), at different looking angles of 3.5°
forward, 0° nadir, and 7° forward, respectively. This sensor acquires three separate point
clouds. Detailed specifications of Optech Titan MSL can be found in [75] and Table 5.
Regarding the reflectance behavior of different wavelengths while interacting various
ground objects, the green channel of the Titan sensor allows for shallow water mapping,
while the second channel (NIR) is beneficial for detecting vegetation. Furthermore, soil
identification can be facilitated by utilizing SWIR and green channels. During recent years,
the performance of Optech Titan multispectral data has been extensively explored in varied
applications such as land cover classification, forest mapping, water depth measurement,
etc. (see Table Al). Recently, the RIEGL company has launched a dual-wavelength system,
namely RIEGL VQ-1560i-DW [76] on the market, involving two wavelengths of 532 nm
and 1064 nm. This laser scanner has been successful in mapping vegetation and agriculture
by providing the capability of calculating the Green Normalized Difference Vegetation
Index (GNDVI).

The combination of the previously mentioned MSL data acquisition approaches was
employed and compared by Hopkinson et al. [77] with three ALS flight missions over two
years to characterize and classify a forest environment. The first one was conducted by
Aquarius (532 nm) and Orion (1550 nm) sensors co-mounted in a Piper Chieftan survey
aircraft. The Gemini (1064 nm) sensor was deployed for the second flight, and the Titan
sensor was applied in the last mission. As reported by their results, the multispectral
Titan sensor dramatically surpassed MSL data capturing through the CSWF approach.
Gong et al. [78] successfully developed a four-wavelength (556 nm, 670 nm, 700 nm, and
780 nm) ground observation MSL system for remote sensing classification and monitoring
of vegetation. Similarly, Woodhouse et al. [79] and Wallace et al. [80] developed a set of
four-wavelength MSL systems for vegetation information extraction. In 2021, Teledyne
Optech unveiled its latest MSL, named Coastal Zone Mapping Imaging LiDAR (CZMIL)
Supernova, representing a dual-wavelength airborne MSL, specifically designed for topo-
bathymetry scanning applications. A summary of some practical and experimental MSL
systems is presented in Table 5. It is noteworthy that unlike the airborne MSL, all terrestrial
MSL scanners are still experimental, and no commercial instrumentation is yet available. A
comprehensive review of terrestrial MSL laser scanners can be found in [81].

Table 5. List of some developed MSL sensors. M = mobile; C = channel; RR = range resolution;
PD = point density; NA= not available.

Beam

LiDAR Sensor Producer Wavelength M‘aln. Divergence L°°km§ PRF [kHz] PD [points/m?]
[nm] Application Angle [°]
[mrad]
Teledvn C1: 1550 C1: 035 Cl: 35 Bj;hytn;egzy :
Optech Titan, A gete}::he C2: 1064 Multi-purpose C2:0.35 C2:0 900 To g ia hy:
P C3: 532 C3:0.7 C3:7 pography:
>45 pts/m
C1: 1550 Forest C1: 0.5 C1: 360 C1: 1017 C1: 1400
HeliALS-TW, A FGI C2: 905 inv‘;netir C2: 05 x 1.6 C2: 120 C2: 300 C2: 500
C3: 532 y C3: 1 C3: 28 x 40 C3: 200 C3: 1600
HawkEves, A Cl: 515 D;gﬁgi‘vd C1:75 +14 C1:40 Cl: 1
[831] ’ Leica C2: 515 bathvmetry & C2:4.75 front/back C2: 200 C2:5
C3: 1064 ymetry C3:05 420 left/right ~ C3: 500,000 C3: 12
topography
Deep and
VQ-880-GH, A C1: 532 shallow C1: 700
[83] RIEGL C2: 1064 bathymetry & 0.7-2 40 C2: 279 NA

topography
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Table 5. Cont.

. Wavelength Main . Beam Looking .
LiDAR Sensor Producer [ . . Divergence S PRF [kHz] PD [pomts/mz]
nm] Application Angle [°]
[mrad]
CZMIL Cl: 532 ]?s;ealilgad C1:30 Shallow water < 8
Supernova, A Optech C2: 532 bathvmetrv & 7 40 C2: 210 D ter > 1
[84] C3: 1064 ymetry C3: 240 cep water =
topography
Agriculture &
VQ-1560i-DW, A RIEGL CC; .150362 4 gforestry, CZC:: 10?82525 14 1000 2-60
bathymetry
Chiroptera4X, A Leica Cl.: 532 Bathymetry & 3 fronjt:/llfack, 140 Bathymetry.: >5
[85] C2: 1064 topography 420 left/right 500 Topography: >10
Boston C1: 1064 Forest £119
DWEL, T University C2: 1548 inventory 1.25,2.5,0r5 front/back 20 NA
: £119 left/right
C1: 670 .
C2: 810 Inspe'ctl.on of
BAM, T BAM C3- 980 building NA 30 10,000 NA
C4: 1930 surfaces
C1:555 C1: 0.3 x 0.6
Wuhan C2: 670 Vegetation C2: 0.3 x 0.6
MWCL, T University C3: 700 mgapping C3:0.2 x 0.6 25 08 NA
C4: 780 C4:02 x 0.6

2.2.3. Hyperspectral LIDAR (HSL)

In contrast to passive sensing, which distinguishes between multispectral and hyper-
spectral just based on the number of channels used, LIDAR sensing relies solely on the light
source as the differentiating factor. In fact, most of LiDAR sensors utilize a supercontinuum
(SC) light source and send nanosecond pulses of directional broadband light using cascaded
nonlinear optical interactions in an optical fiber, referred to as HSL [42,86]. This is due to
the fact that when supercontinuum light source is used, the number of received bands can
be decided. On the contrary, laser scanners that use a traditional LiDAR sensor but operate
at different wavelengths are known as MSL. Essentially, supercontinuum lasers are the
only way to increase the number of channels and enable a hyperspectral implementation
for laser scanners [87]. The effect of a supercontinuum light source in creating HSL systems
is discussed in detail in a review study by Li et al. [88].

The first experimental HSL system was presented in 2007 by FGI, with six wavelengths
ranging from 600 to about 2000 nm [42]. The University of Maryland developed spectral
LAser Detection And Ranging (LADAR) in 2011, operating across 25 spectral channels
(1080-1620 nm) [89]. In 2012, FGI designed a full waveform HSL with eight spectral
channels for terrestrial laser scanning [86]. This laser scanner performs at the spectral range
of 4802200 nm and produces 1 ns pulse at a repetition rate of 24 kHz. Wallace et al. [43]
proposed a prototype HSL system, leveraging a super-continuum laser source to have four
laser wavelengths in conjunction with Time-Correlated Single Photon Counting (TCSPC)
receiver technology, which harnesses the advantages of improved depth resolution and
sensitivity of the TCSPC technique. In addition, to enhance the spectral resolution of
HSL scanners, innovative Acoustic-Optical Tuneable Filter-based terrestrial HSL systems
(AOTEF-HSL) have recently been proposed [22,90-94]. In such laser scanners, AOTF acts
as a spectral bandpass filter on the outgoing laser from the super-continuous laser in the
emission unit. The developed AOTF-HSL systems have different numbers of wavelengths,
from eight [95] to 91 channels [87]. So far, prototype AOTF-HSL systems have been designed
for a variety of applications, including aiding in point cloud matching in SLAM [93],
vegetation red edge parameter extraction [22], coal/rock classification [87], wood-leaf
separation [91], and point cloud classification [92]. Most developed HSLs obtain spectral
information in the visible and near-infrared ranges (400-1000 nm) [44]. To take advantage
of the longer wavelength range, which has shown more promising results for classification
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and detection (e.g., vegetation water content), Sun et al. [44] proposed an eight-channel
HSL covering visible, NIR, and even SWIR (450-1460 nm). For further information on HSL
technology, readers are referred to [96].

2.2.4. Historical Development of Multispectral LIDAR

The historical evolution of MSL merits examination from two perspectives: (i) experi-
mental vs. industrial MSL systems and (ii) development of MSL systems with more than
two wavelengths. Based on our review, BAM [69] emerges as the pioneering MSL, concep-
tualized in 2006. This experimental terrestrial MSL is specifically crafted for the inspection
of building surfaces, performing with four wavelengths (670-1930). With the introduction
of the SC light source, the first experimental HSL was developed in 2007 by FGI as the
next generation of MSL. In 2010, the first full waveform MSL, named SALCA [70], was
experimentally devised for the purpose of forest mapping. This MSL is dual-wavelength
and terrestrial. Since 2010, substantial and ongoing efforts have been dedicated to the
introduction of new MSL and HSL systems such as MWCL and HeliALS-TW, with the focus
primarily on increasing spectral resolution by incorporating TCSPC receiver technology
and developing AOTF-based MSL/HSL (refer to Sections 2.2.2 and 2.2.3).

Concerning commercial MSL systems, Optech Titan was the first manufactured system
in 2014. Operating across three wavelengths, this airborne MSL has received substantial
attention for its efficacy in diverse applications (see Table A1). After the Optech Titan,
RIEGL VQ-1560i-DW, RIEGL VQ-880-GH, Leica Chiroptera4X, CZMIL Supernova (Tele-
dyne Optech), and HawkEye-5 are dual-wavelength industrial MSL sensors introduced in
2017, 2018, 2021, and 2023, respectively. Since they act in the green and NIR spectrum, they
are predominantly considered as bathymetric multispectral scanners.

3. Multispectral LiDAR Data

In general, compared to conventional monochromatic LiDAR, MSL is more profitable
in classifying ground-level classes such as asphalt and low vegetation. The reason is that
identifying elevated objects, such as buildings, trees, and powerlines, is more geometrically
based, whereas ground-level objects all have a similar geometric structure, and detection
must primarily rely on spectral information [16]. Figure 5 illustrates the superiority of MSL
data over monochromatic LiDAR. In the zoomed area, three ground-level objects—road,
soil, and grass—are entirely indistinguishable based on height values alone, as they fall
within the same height range. Moreover, even though a single intensity channel may aid in
identifying these classes, it still remains challenging, particularly in distinguishing soil and
grass due to the lack of significant contrast between their values. In contrast, multispectral
LiDAR data distinctly reveals these objects, addressing the limitations encountered with
monochromatic LiDAR. The high potential of MSL systems in discriminating between
various types of unique land covers, including three types of asphalt, two types of roof
materials, and two types of soil, is proven by Ekhtari et al. [15] and Matikainen et al. [16].

In terms of data format, MS data can be grouped into rasterized 2D images and 3D
point clouds. The development of LiDAR technologies has led to higher point density.
More importantly, since MSL provides individual point clouds for each spectral channel,
the data volume is substantial. While point clouds have richer 3D spatial information
than images and thus describe the features of objects in a manner closer to reality, they
are unstructured and irregularly distributed. That is why unstructured point cloud data
have been transformed into structured data by voxelization or projection in a noticeable
number of studies. As well as being time-efficient when processing large-scale MSL data,
two-dimensional interpolated MSL data have the benefit of employing established image
processing techniques. Even so, data conversion by interpolation of 3D point clouds brings
quantization errors and spatial information loss. Consequently, directly processing 3D
multispectral point clouds has become much more attractive and has made significant
progress. A number of studies have demonstrated that the direct point-wise classification of
multispectral data outperforms the common approach of rasterizing the point cloud prior
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to processing [3,93,97]. For instance, 2D surface models generally provide favorable results
for detecting a large fraction of the tallest dominant trees, although methods utilizing the
whole 3D point cloud data are needed for detecting suppressed smaller trees [68,98]. With
the aim of reducing mixed species classes, Lindberg et al. [99] proposed a method in which
raster cells are smaller (0.5 m) than what has previously been used (i.e., a typical size of
15 m x 15 m) and extracted the intensity-based features inside small raster cells using a
moving window average approach. In this approach, to ensure that information from every
channel is always present in every raster cell, the size of each raster cell was chosen to
be large enough. As summarized in Figure 6, the majority of conducted research on MSL
technology (53.9%) is based on 3D point clouds.

-

A f ~ AT

Monochromatic LIDAR

Figure 5. Multispectral versus monochromatic LiDAR data.

3D point clouds

2D images

Figure 6. Percentage of the used MSL data type among the reviewed studies presented in Table AT.
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MSL Benchmark Datasets

So far, two public multi/hyperspectral datasets have been released within the geo-
matics community, facilitating the development and comparison of new algorithms for
data processing. The first dataset was released in 2017 by ISPRS WG 1I1/5 in collaboration
with Teledyne Optech [100,101]. The data were collected using the Optech Titan MSL
over a natural coastal area. In 2018, IEEE GRSS organized a contest on the fusion of MSL
and hyperspectral images using a dataset acquired by the National Center for Airborne
Laser Mapping (NCALM) over the University of Houston [102]. The dataset covers the
university campus and its neighborhood, containing 19 urban land cover/use classes. This
dataset consists of MSL data, passive RGB imagery (5 cm GSD), passive hyperspectral data
(48 bands at 380-1050 nm with 1m GSD), and rasterized ground truth for validation and
is available upon request. Summary information about these benchmarks are reported in
Table 6, whereas Figure 7 depicts these datasets.

Table 6. Summary of released MSL/HSL benchmark datasets.

LiDAR Area of Auxiliary
Dataset, Year Producer Data Type System Wavelength Area Type Coverage Data
ISPRS WG
ISPRS WG III/5 and - SWIR, NIR, Natural Tobermory
I11/5, 2015 Teledyne 3D Optech Titan and green coastal (ON, Canada) NA
Optech
University of
RGB and hy-
IEEE GRSS, NCALM 2D Optech Titan SWIR, NIR, Urban Houston . perspectral
2018 and green campus and its image
neighborhood &

(b)

Figure 7. MSL benchmark datasets: (a) ISPRS WG III/5 dataset [101]; (b) IEEE GRSS MSL dataset [102].

4. Multispectral LIDAR Applications

As industrialization advances, the conventional methods of identifying and categoriz-
ing objects using optical images are no longer sufficient for achieving demanding precise
outcomes [16,103]. With the ability to concurrently capture 3D point clouds in different
wavelengths, MSL technology has attracted increasing attention for a variety of applica-
tions during the last decade. The applications of this revolutionary active remote sensing
technology are comprised of the following: forest and urban trees/plants inventories,
objects and LULC classification, change detection, bathymetry mapping and coastal zone
management, topographic mapping, archaeology and geology, and last but not least, facil-
itating navigation systems. The following Sections 4.1-4.7 provide detailed information
on the applications mentioned above, which are based on reviewing 89 technical papers
(see Table AT). Figure 8 shows the percentage frequency distribution of reviewed papers
per application.
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Ecology and forestry

Navigation

Archaeology and geology

Topographic mapping

Objects & LULC classification Bathymetry

Change detection

Figure 8. Subdivision of conducted research on MSL per application—based on Table Al.

4.1. Ecology and Forestry

Most of the published research on MSL is in the domain of ecology and forestry (42.7%).
Forest inventory plays a pivotal role in forest management. Traditionally, ecological studies
have relied on laborious, time-consuming, and costly field visits to gather necessary infor-
mation. However, remote sensing-based inventorying offers highly promising technology
for these tasks without any destructive sampling and large-scale fieldwork. Thanks to
the better canopy penetration capability of LIDAR sensors over optical ones, the use of
laser scanners for accurate estimation of forest variables (such as tree height, basal area,
stem volume, diameter at breast height, and above-ground biomass) has been an active
research focus [104,105]. Nevertheless, traditional monochromatic laser scanners cannot
capture enough information for tree and plant species classification, and a mix of tree
species can even complicate that [28,80]. To date, passive multispectral optical sensors
and their integration with airborne laser scanners have been widely used for forest tree
species classification [106-108]. As different tree species reflect light at different wave-
lengths, modern MS laser scanners improve tree species identification accuracy compared
to monochromatic LiDAR systems, particularly when tree species diversity is fairly high
(about seven or more species) [13]. In MSL sensors, features describing the 3D structure
of tree crowns as well as spectral information can be used for more detailed analysis of
backscatters. Hence, the characterization of tree species, even identifying invasive ones, is
one of the primary and most popular applications of multi-wavelength laser scanning [109].
Plant reflectance is high at NIR/SWIR wavelengths and low at the green wavelength
due to their chlorophyll content, making a combination of the green laser channel and
NIR/SWIR wavelength potentially useful for vegetation analysis. In a similar manner
to the conventional Normalized Difference Vegetation Index (NDVI) derived from the
visible red and NIR spectral bands, multiple wavelengths of MSL facilitate the calculation
of NDVI/pseudo NDVI (pNDVI) or other vegetation indices. Tian et al. [110] employed an
HSL with 64 wavelength channels (535 nm-850 nm with a 5 nm step), to classify six plant
species using fusion of deep learning-based features and vegetation indices.

MSL technology also has the potential to enhance the accuracy of individual tree
detection, especially in dense forests with clumped trees, which is quite often challenging
using only geometric information [109]. This capability was first explored by Dai et al. [17],
and they applied the mean shift segmentation method in a joint domain of spatial and
spectral features. Also, the spectral information of MSL was utilized for refining under-
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segmented crown segments. Theirs results showed a noticeable improvement in dealing
with clumped crowns compared to monochromatic wavelength laser scanning. In another
study, according to the findings of Huo and Lindberg [111], incorporating intensity values
in conjunction with a point density metric resulted in a noteworthy increase of up to 14%
in F-scores.

Furthermore, MSL can also be helpful in the more accurate estimation of other
parameters of trees. The research conducted by Gaulton et al. [70], utilizing SALCA
dual-wavelength MSL, demonstrated improvement in the estimation of canopy cover,
gap fraction, and leaf area index. Using three-wavelength Optech Titan LiDAR, Good-
body et al. [112] modeled three forest inventory attributes (i.e., Lorey’s height, gross
volume, and basal area) as well as three overstorey species diversity characteristics, in-
cluding Shannon index, Simpson index, and species richness. Their findings revealed
that although the incorporation of intensity metrics yielded a modest enhancement in
accuracy, the significance of these metrics becomes particularly pronounced when dealing
with lower-resolution data in the context of 1 m and 2 m voxel models. The results of
Maltamo et al. [113] substantiated the better efficiency of MSL in the prediction of forest
canopy fuel parameters, including canopy fuel weight, canopy base height, biomass of
living and dead trees, and height and biomass of the understory tree layer and site fertility.
In 2023, Rana et al. [114] showed that MSL is superior to the combination of traditional
monochromatic LIDAR and color-infrared image in monitoring seedling stands. In addi-
tion, the use of MSL makes the physiological and health condition analysis of vegetation
possible [43,49,115] and furthermore enables a better understanding of periodic changes in
carbon content [116]. Junttila [49] discovered that varying levels of leaf water content in
Norway spruce seedlings exhibit distinct spectral responses while measured using terres-
trial MSL. Their experiments demonstrated that the normalized ratio of two wavelengths,
specifically at 905 nm and 1550 nm, holds significant utility in the estimation of leaf water
content. Lately, Shao et al. [91] substantiated that HSL can also be helpful for more accurate
wood-leaf separation, which mostly relies on monochromatic LiDAR.

4.2. Objects and LULC Classification

Accurate land use land cover classification plays an essential role in urban planning,
monitoring climate changes, and ecosystem protection [117]. In the early studies of LULC
classification, multispectral image data were used as the primary source of sensing Earth
surface objects in order to facilitate more detailed object detection. Therefore, MSL is
a new promising sensor for automated mapping of land cover [118]. The use of MSL
technology allows for achieving 3D land cover classification at a finer scale using only
MS point cloud data. MSL data have a comparable level of detail to aerial images, which
are currently the primary data source in map updating. Several studies have confirmed
that laser scanner intensity has merit in classifying urban land cover without the aid
of passive multispectral images [119-124]. Chen et al. [116] observed that the spectral
patterns of impervious surfaces (e.g., road, rooftops) and single-return vegetation (i.e.,
grass) have similar patterns in optical imagery. Using MSL, up to 70% overall accuracy can
be achieved in land cover mapping solely based on intensity measurements [9]. On the other
hand, incorporating both geometric and radiometric records, the accuracy could increase.
Hence, MSL systems, integrating both spectral and geometric information, support the
classification of point clouds and could have a vital role in nationwide mapping in the
future [103]. Besides ecology, LULC mapping has attracted remarkable research attention
based on MSL technology (39.3%).

4.3. Change Detection

With the rapid development of society, there are increasing demands for more precise
monitoring of surface changes. Recently, the potential of automated change detection from
multitemporal airborne MSL was explored for the first time by Matikainen et al. [125]. It was
concluded that even small changes can be revealed by direct comparisons between height
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and intensity data from different dates. As a result of conducted research, MSL data could
significantly contribute to increasing the level of automation in nationwide mapping, the
frequency of its updates, and consequently improve the contents of topographic databases,
which are currently mainly based on visual interpretation of the images [103,125,126].

4.4. Bathymetry

Generally, MSL instruments are not specifically tailored for hydrographic mapping,
but as they encompass a green laser, they have exhibited bathymetric capabilities [127]. The
first usage of MSL dates in this domain dates back to 2016 when Fernandez-Diaz et al. [128]
mapped bathymetry by extracting DSM and intensity images of three channels as well as
employing Mahalanobis distance and the maximum likelihood classifiers. Moreover, in
the next year, using MSL point cloud data gathered by the Optech Titan sensor and also by
extracting several geometric and radiometric features, Morsy et al. [129] classified water
areas from land by employing a rule-based classification. In another study using a similar
sensor, Yan et al. [130] mapped the water surface based on a 3D maximum likelihood
classifier. These studies demonstrated that for mapping the water bodies” areas, MSL is
especially more beneficial than conventional monochromatic LiDAR systems. Furthermore,
MSL could facilitate the monitoring of hydromorphological status by estimating some
critical indicators such as water depth, leaf area index, and chlorophyll content [131].

4.5. Topographic Mapping

Recently, Ali et al. [132] proposed the idea of generating DTM from MSL data. They
extracted DTM from each channel of the Optech Titan MSL sensor separately and made
a comparison between them. They also examined the potential of four different ground-
filtering algorithms, including Adaptive TIN (ATIN), Elevation Threshold with Expansion
Window (ETEW), progressive morphological algorithms, and maximum local slope using
LiDAR open-source ALDPAT v.1.0 software. Their results showed that in the water area,
the slope-based and ETEW methods performed well for the third channel. However, for
the other two channels, the morphology-based method yielded better results.

4.6. Archaeology and Geology

One of the interesting and firstly introduced application areas of MSL is archaeolog-
ical prospection [73]. In 2006, Wehr et al. [69] detected the damaged areas of building
surfaces caused by enhanced moisture content and/or vegetation using the designed
four-wavelength MSL. Shao et al., 2019 [94] employed a designed AOTF-HSL to preserve
historical timber buildings. They classified building ages and wood species using the spec-
tral information of an eye-safe 81-channel HSL. Additionally, MSL data can assist geological
studies and mining operations. Hartzell et al. [133] utilized intensity images acquired from
an integrated system that included the RIEGL VZ-400 TLS (NIR) and Nikon D700 camera
(RGB) to distinguish between four different types of rock. Using AOTF-HSL, Shao et al,,
2019 [87], managed to identify four-type coal/rock specimens. Newly, Sun et al. [44]
showed that spectral profiles collected by hyperspectral LIDAR can effectively reveal the
ore species, especially those in the SWIR range. According to their experiments, HSL has
demonstrated encouraging capability for geological material detection and classification
and furthermore for tunnel modeling and also mineral disaster prevention applications.

4.7. Navigation

The feasibility of HSL systems for autonomous vehicle perception was recently ex-
plored by Taher et al. [134]. A frame-based single photon-sensitive HSL with 30 spectral
channels ranging from 1200 to 1570 nm was developed for this purpose. Their results
demonstrated that spectral information from an HSL can accelerate scene recognition
accuracy in a complicated road environment from 50% to 94% with two channels and
30 channels, respectively. Furthermore, Jiang et al. [93] developed an intensity calibration-
free method to aid point cloud matching in SLAM. Their method is based on designing
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an HSL that collects intensity data in eight wavelengths at the same incident angle and
range, and subsequently, computing spectral ratio value vectors between consecutive laser
scans, and finally applying them in point cloud matching. So, their method improved the
accuracy of LIDAR SLAM positioning by combining LiDAR's intensity information with
its range measurements.

5. Discussion

According to Sections 4.1-4.7, MSL technology exhibits a diverse range of applications,
spanning from ecology and forestry to navigation. The incorporation of additional spectral
information alongside geometric data presents invaluable opportunities for deriving new
spectral features, particularly vegetation, water, and built-up indices. These capabilities
open avenues for new opportunities in various applications, including but not limited to
enhancing plant/tree species classification, enabling more precise forest inventory assess-
ments, conducting physiological and health condition analyses, generating fine-grained
3D urban maps, automating change detection processes, improving the accuracy of wa-
ter surface mapping, achieving detailed DTM and DSM separation, preserving historical
buildings, detecting and classifying geological materials, supporting autonomous driving,
and facilitating point cloud matching in SLAM. Nonetheless, challenges persist in the
widespread implementation of MSL technology. The foremost hurdle across numerous
applications involves the judicious selection of suitable spectral bands tailored to specific
applications and existing objects. Additionally, a prevalent challenge encountered in MSL
applications is the mitigation of systematic radiometric strip differences, necessitating
meticulous attention to proper radiometric calibration processes [73]. Furthermore, the
requirement for detecting several hundred photons per wavelength channel is imperative
to attain a high level of accuracy in navigation applications [134]. Comprehensive insights
into the potentials, opportunities, and challenges of MSL technology for each application
are meticulously outlined in Table 7.

Table 7. Summary of the challenges, potentials, opportunities, and challenges of MSL technology.

Application Potentials Opportunities Challenges
Aiding plant/tree species
classification
Gathering spatial-spectral . ¥nicreasmg accuracy Of. Better exploit plant reflectance
. . . individual tree segmentation . :
information from canopies . in the different wavelengths
Ecology and forestry . and wood-leaf separation N
and under canopies . . Improve characterization of
NP Physiological and health . .
Vegetation indices .2 single species
condition analyses
More accurate estimation of
other tree parameters
Fine-grained 3D uraban Understand relationships
. between wavelengths and
Incorporating spectral mappig needed classes
Objects and LULC Facilitating detecting . .
e features - A proper radiometric
classification ground-level objects

Built-up indices

Proposing single-data
source solution

calibration is necessary to
reduce systematic differences
between radiometric strips

Change detection

More precise automated
monitoring of surface changes

Replace visual interpretation
of multi-temporal images

Upscaling, costs, appropriate
radiometric calibration
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Table 7. Cont.
Application Potentials Opportunities Challenges
More accurate water surface Dea.hng with other
Richer spectral information mappin challenging shore areas (e.g.,
Bathymetry pectra’ i "PPINg delta wetland, rocky shore,
Water indices Monitoring of and shore with
hydromorphological status .
land depression)
Topographic mapping Imp.roved DIM generatl(?n by Detailed DTM/DSM Filtering areas with water
using spectral information separation

Archaeology and geology

Different reflectance behavior
of object at different
wavelengths

Preserve historical buildings
Detecting the damaged areas
of building
Geological material detection
and classification
Supporting mining operations
Tunnel modeling
Mineral disaster prevention

Appropriate wavelength
selection with respect to the
actual surface status
Systematic radiometric strip
differences should be reduced
by a proper radiometric
calibration process

Navigation

Requiring less illumination
power
Less prone to motion blur

Autonomous driving
Assisting point cloud
matching in SLAM

Detection of multiple
hundreds of photons per
wavelength channel is
required for achieving high

Providing useful information
of material-specific spectral
signatures

Higher scene recognition
accuracy in a complicated
road environment

accuracy
Optimal channel selection
should be carried out

6. Conclusions

In the last two decades, geometrical information from LiDAR has been actively com-
bined with passive multispectral information from optical images to achieve more accurate
results. This paper has demonstrated how multispectral laser scanning can unlock more
precise mapping with respect to the use of a single-data source. By meticulously analyzing
existing research, it is revealed that MSL technology opens new doors across various appli-
cation domains in the field of remote sensing and photogrammetry. The paper delves into
seven key applications of MSL systems, encompassing “ecology and forestry”, “objects
and LULC classification”, “change detection”, “bathymetry”, “topographic mapping”,
“archaeology and geology”, and “navigation”. Each application is comprehensively exam-
ined, providing insights into their potentials, opportunities, and challenges. Due to wider
application possibilities, active MSL/HSL systems provide new opportunities for fine-
grained 2D and nD mapping. Therefore, MSL /HSL technology, by reducing the discussed
challenges associated with common data fusion approaches, is a compelling alternative to
existing multi-data source approaches for fine mapping. Thus, MSL is expected to quickly
adapt to academic and industrial societies as a single-data source solution. The major
limitation to this adaptation is the cost of the systems, since they might be multiple times
that of monochromatic LiDAR systems. In spite of this, the commercial development of
multi-wavelength laser scanners can facilitate the use of this technology. Even so, HSL and
MSL technologies have paved the way for nD geometric—radiometric data acquisition and
consequently more reliable 2D/nD mapping. Therefore, MSL and HSL data processing are
expected to remain active areas of research in the coming years. Upon comprehensively
reviewing past research on contemporary MSL/HSL technology (see Table A1), we found
that still there are a lot of opportunities for further investigations, as follows:

o  The majority of MSL/HSL systems are designed for experimental purposes. Notably,
there is currently no commercially available HSL system at the moments. Conse-
quently, there is a need to introduce new MSL/HSL systems to the market.
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e Due to the promising capabilities of NASA’s GEDI spaceborne LiDAR (launched in
late 2018) in canopy height and aboveground biomass estimation, satellite-based MSL
can be also anticipated in the near future [135].

e  Given that spectral information constitutes the primary advantage of MSL technology
over monochromatic LiDAR, there is an increased demand for precise radiometric cali-
bration [136]. Therefore, it is worthwhile to consider the incorporation of a radiometric
calibration component in the design of the new generation of MSL /HSL systems.

e A notable limitation of Titan data is the presence of inhomogeneity within the point
clouds, as significant discrepancies in the data between the across-track and along-
track directions are visible [137]. Given that the 3-wavelength Optech Titan data are
currently the most commonly utilized data in various studies, it becomes evident that
there is a demand for the development and exploration of new commercial MSL/HSL
systems with enhanced specifications in the near future. To address the mentioned
issue and achieve a more uniform point spacing, upcoming MSL systems can consider
either reducing the aircraft speed or increasing the scan frequency [137].

e  Multispectral LIDAR instruments ought to be both cost-effective and compact in size,
thereby facilitating their adoption into academic and industrial domains.

e  The majority of SC-based HSL systems currently feature fewer than 10 spectral chan-
nels. Therefore, there is a need for the introduction of new HSL systems that offer
a broader range of spectral information. Overcoming eye-safety issues is a primary
consideration in this context.

e  More attempts should be made for directly processing 3D MSL/HSL point clouds
instead of considering rasterized data form.

e  Benchmark datasets in MSL/HSL for scientific purposes, especially those with ground
truth data, are still lacking.

e  During recent years, forestry and LULC mapping have received by far the most atten-
tion from scholars. More studies are needed to be dedicated to the other mentioned
applications of MSL, especially archaeology, navigation, and change detection.

e  Multispectral laser scanning is expected to yield a broader spectrum of applications,
such as extending to precision agriculture, disaster risk management, distinguishing
pollution in environment, and detecting obscured targets [136].

e Increased attention should be directed towards thorough exploration of the potential
opportunities of HSL systems.
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Appendix A

Table A1. Exhaustive review of technical papers on MSL data processing, organized by publication date. Abbreviations: ' = Point cloud; ! = Image; DBM = Deep
Boltzmann Machine; NDFI = Normalized Difference Feature Index; PRI = Photochemical Reflectance Index; MNDWI = Modified Normalized Difference Water
Index; CHM = Canopy Height Model; LDA = Linear Discriminant Analysis; SVM = Support Vector Machine; RF = Random Forest.

Publications Data Sources Application Feature(s) Type Method(s)
Hakula et al., 2023 [68] HeliALS-TW Tree species classification Several geometric, radiometric and P Object-based RF
return type features
Rana et al., 2023 [114] Optech Titan Monitoring seedling stands Geometric, intensities P Linear regression
Axelsson et al., 2023 [138] VQ-1560i-DW Tree species daSSIﬁC.atlop and stem Several geometric, radiometric and P LDA and k-nearest neighbors models
volumes estimation return type features
. e Intensities, average reflectance, Clred T RF, SVM, and backpropagation neural
Shao al., 2023 [90] AOTF-HSL Persimmon tree components classification edge, NDVI, NDRE network methods
Xiao et al., 2022 [119] Optech Titan LULC classification Z, intensity, and SVD-based and P Improved RandLA-Net
deep features
Tian et al., 2022 [110] Designed HSL Plant species classification Deep features and vegetation indices TVI-CNN
Zhang et al., 2022 [121] Optech Titan LULC classification Deep P MPT + network
Taher et al., 2022 [134] Designed HSL Autonomous vehicle perception Intensities and geometric IRF
Li et al., 2022 [139] Optech Titan LULC classification Deep P AGFP-Net
. . . L e . . - P Object-based RF, gradient boosting,
Mielczarek et al., 2022 [109] VQ-1560i-DW Invasive tree species identification Statistical features of intensities, GNDVI Xgboost, and SAMME.R
Luo et al., 2022 [10] Optech Titan LULC classification DSM, intensities, pPNDVIs P Decision tree
Sun et al., 2022 [44] Designed HSL Objects (manufactgrmg ma't('erla!s, plants Intensities P Rule-based
and ore species) classification
Morsy et al., 2022 [8] Optech Titan LULC classification Z, pPNDVIs P Rule-based
Lindberg et al., 2021 [99] Optech Titan Tree species classification Mean and std of intensities ILDA
Shao et al., 2021 [91] AOTF-HSL Wood-leaf separation Intensity ratio, first derivative of P Rule-based
spectral reflectance
P Adaptive TIN, elevation threshold,
O. Ali et al., 2021 [132] Optech Titan DTM generation Z and intensities progressive morphological algorithms,
and maximum local slope
Shi et al., 2021 [122] Optech Titan LULC classification Multi-scale St"I‘\tIlsDtéclzl features and P SVM
Intensity images, DTM, DSM, n DSM,
Ghaseminik et al., 2021 [123] Optech Titan LULC classification slope, aspect, eigen I Object-based RF
value-based features,
Zhao et al., 2021 [140] Optech Titan LULC classification Deep P FR-GCNet
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Table Al. Cont.

Publications Data Sources Application Feature(s) Type Method(s)
Ps -and-Excitation (SE)
. . e queeze-and-Excitation
Jing et al., 2021 [141] Optech Titan LULC classification Deep PointNets+
Pan et al., 2020 [142] Optech Titan LULC classification Deep TCNN
Imangholiloo et al., 2020 [143] Optech Titan Forest inventory CHM, pNDVI, 1'11te.3n51t1es and its ratio I Object-based RF
and statistical features
Jiang et al., 2020 [92] AOTF-HSL Points cloud classification Intensity ratios P Rule-based classification
. . . . I) . . .
Huo & Lindberg, 2020 [111] Optech Titan Individual tree detection Ma?qmunr} height, point d.e n51ty{ . Local hel.gh.t m.a ximum filter and
vegetation ratio, and average intensities similarity maps
. Geometric-spectral statistical features,
Combination of Geometric-spectral GLCM-based and
Matikainen et al., 2020 [55] SPL100 and LULC classification P I Object-based RF
Ootech Titan GLDV-based textural features, pNDVI,
p brightness, pNDBI, intensity ratios
Geometric-spectral statistical features,
Maltamo et al., 2020 [113] Optech Titan Prediction of forest canopy fuel parameters echo class proportion, sum of I'LDA and linear regression
intensities, ratio of two channels
Forest inventory and diversitv attribute Geometric-spectral statistical features,
Goodbody et al., 2020 [112] Optech Titan y . y NDFI, sum of all channels, ratios of two PRF
modelling
channels and CVI
P .
Lietal., 2020 [19] Optech Titan Buildings extraction Deep Graph Geometric Moments (GGM)
convolution
Jiang et al., 2020 [93] AOTF-HSL SLAM points cloud matching Spectral ratio P Tterative Closest Point (ICP)
. - . Geometric-spectral statistical features P
Yan et al., 2020 [144] Optech Titan Predicting forest attributes and pNDVIs RF
Integration of FARO - P . .
Junttila et al., 2019 [145] X330 and Detecting tree infestation Spectral sta.ltlstlcal fee?tures and R.egrfsss.lons and hn.ear
Trimble TX5 density bandwidth discriminant analysis
Geometric statistical features, channel
Kukkonen al., 2019 [28] Optech Titan Tree species classification intensities, sum of two channels, sum of I k-nearest neighbors
all channels, ratios of two channels
P . . . .
Jiang al., 2019 [22] AQOTF-HSL Vegetation red edge parameters extraction Intensities First-order differential of the
spectral reflectance
P . . . .
Shao et al., 2019 [87] AOTF-HSL Coal/rock classification Intensities Naive Bayzlsr{(;osg\llﬁc regression,
. .. I DBM-based deep feature extraction,
Pan et al., 2019 [124] Optech Titan LULC classification Deep, intensities, GDVI, GRVI, GNDVI, PCA-based and RF-based low level

MNDWI, Geometric-spectral GLCM

feature selection, SVM




Sensors 2024, 24, 1669

22 of 30

Table Al. Cont.
Publications Data Sources Application Feature(s) Type Method(s)
P . . . .
Wang and Gu, 2019 [146] Optech Titan LULC classification Geometric-spectral eigen values Tensr(:blélggili(;ljillsggﬁmant
Pilarska et al., 2019 [147] VQ-1560i-DW Urban tree classification Spectral statistical features and pNDVI P svMm
Tree species classification and predictin, Intensity, geometric-spectral statistical
Kukkonen al., 2019 [12] Optech Titan pecie B p & features, channels ratios, binary sum of I LDA model
species’ volume proportions ;
two channels, and density
I toot .
Matikainen et al., 2019 [103] Optech Titan Change detection DSM, intensities, pNDVI, and NDBI Object bacslz(:sﬁjlzcst?g;ule based
Shao et al., 2019 [94] AOTF-HSL Architectural heritage preservation Intensities P Naive Bayes and SVM

Integration of Leica

Junttila et al., 2018 [49] HDS6100, FARO
5120 and FARO X330
Karila et al., 2018 [118] Optech Titan
Ekhtari et al., 2018 [7] Optech Titan
Dai et al., 2018 [17] Optech Titan
Pilarska, 2018 [148] VQ-1560i-DW
Chen et al., 2018 [116] Optech Titan
Huo et al., 2018 [149] Optech Titan
Axelsson et al., 2018 [150] Optech Titan
Dalponte et al., 2018 [11] Optech Titan
Yan et al., 2018 [130] Optech Titan
Kaszczuk et al., 2018 [151] MSL
Goraj et al., 2018 [131] VQ-1560i-DW
Chen, 2018 [152] Optech Titan

Estimating leaf water content

LULC classification and road detection

LULC classification
Individual tree detection
LULC classification and road detection
Quantifying the carbon storage in
urban trees

LULC classification

Tree species classification

Predicting forest stand characteristics

Water surface mapping

Plants condition analysis
Identifying hydromorphological indicators
LULC classification

Spectral statistical features, normalized
difference indices and spectral ratios

Spectral statistical features, intensity
ratios, GLCM homogeneity, ratios of
two channels, PNDVI, and NDBI) and
DSM features (std, GLCM homogeneity,
and quartiles difference)
nDSM and intensities
Geometric features and intensities
nDSM, intensities, and GNDVI
nDSM, intensity images, pNDVI,
and pNDWI
Intensities, nDSM, pNDVI,
morphological profiles, and a novel
hierarchical morphological profiles
Statistical features of heights
and intensities
Statistical features of heights
and intensities
Elevation, elevation variation, intensity,
intensity variation, number of returns
and NDFIs
NA
Statistical features of intensities,
and NDVI
Deep

P Simple linear regression

I Object-based RF

P SVM and rule-based classification
P Mean shift segmentation and SVM
I Rule-based classification
13VM, watershed segmentation, and
allometry-based linear regression

I'syMm

P LDA model

P Ordinary least squares regression

P maximum likelihood

NA
I Regression

I3D CNN
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Table Al. Cont.

Publications

Data Sources

Application

Feature(s) Type

Method(s)

Matikainen et al., 2017 [16]
Yu et al., 2017 [153]

Morsy et al., 2017 [154]

Karila et al., 2017 [18]

Morsy et al., 2017 [129]

Matikainen et al., 2017 [126]

Morsy et al., 2017 [97]

Budei et al., 2017 [13]
Teo and Wu, 2017 [14]
Morsy et al., 2016 [155]

Ahokas et al., 2016 [137]

Hopkinson et al., 2016 [77]

Nabucet et al., 2016 [156]
Bakuta et al., 2016 [157]

Fernandez-Diaz et al., 2016 [128]

ZOU et al., 2016 [158]

Junttila et al., 2016 [115]

Optech Titan
Optech Titan

Optech Titan

Optech Titan

Optech Titan

Optech Titan

Optech Titan

Optech Titan
Optech Titan
Optech Titan

Optech Titan

Integration of

Aquarius and Orion,

Gemini, and
Optech Titan
Optech Titan

Optech Titan
Optech Titan

Optech Titan

Integration of FARO

X330 and Leica
HDS6100

LULC classification
Tree species classification

LULC classification

Road mapping

Land /water classification

LULC classification, road mapping, and
change detection

LULC classification

Tree species classification
LULC classification
LULC classification

Tree species and LULC classification

Forest land surface classification and
vertical foliage partitioning
Urban vegetation mapping

LULC classification

LULC classification, bathymetry mapping,
thick vegetation canopies mapping

LULC classification

Measuring leaf water content

41 features based on DSM, DTM, and
intensityimages of three channels
145 features based on Z, density,
number of returns, 2D and 3D convex
hull, spatial statistical features

Z, and pNDVIs

Mean, std, quantiles and ratios of
channels, pNDVI, DSM differences
Elevation difference and roughness,

intensity coefficient of variation (ICOV)
and intensity density (ID), point density
(PD) and multiple returns (MR)

DSM, DTV, intensity images

Z/DSM and three pNDVIs

pNDVIs, intensities, CHM
nDSM, intensities, NDFIs, curvatures
NDWI, pNDWI, MNDWI
DSM and several statistical features of
intensity images

Intensities

CHM and NDFI
nDSM, intensities, morphological
granulometric features

DSM and intensities

pNDVI, elevation difference
ratio_green, ratio_count

Spectral statistical features, ratios of
intensities, and NDFI

I Object-based RF

P Object-based RF

P Gaussian
decomposition-based clustering

I Object-based RF

P Rule-based classification

I Object-based RF

P Maximum likelihood and
rule-based classification
IRF
I Object-based SVM
P Rule-based classification

I Object-based RF

I Minimum distance, maximum
likelihood and parallelepiped
classification routines

I Object-based rule-based classification
I Integration of maximum likelihood
and rule-based classification
I Mahalanobis distance and the
maximum likelihood

I Object-based rule-based classification

P Simple linear regression
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Table Al. Cont.

Publications

Data Sources

Application

Feature(s) Type

Method(s)

Morsy et al., 2016 [9]
Matikainen et al., 2016 [125]

Miller et al., 2016 [159]

Hakala et al., 2015 [160]
Bakuta, 2015 [161]

Shi et al., 2015 [162]

Junttila et al., 2015 [163]

Lindberg et al., 2015 [74]

Wichmann et al., 2015 [120]
Gong et al., 2015 [78]

Hartzell et al., 2014 [133]

Wallace et al., 2014 [43]

Gaulton et al., 2013 [164]

Briese et al., 2013 [73]

Wang et al., 2013 [54]
Wallace et al., 2012 [80]
Woodhouse et al., 2011 [79]
Gaulton et al., 2010 [70]

Wehr et al., 2006 [69]

Optech Titan

Optech Titan

Optech Titan

Designed HSL
Optech Titan

MWCL

Full waveform HSL

Integration of
VQ-820-G and
VQ-580, VQ-820-G
and VQ-480i
Optech Titan
Wuhan MSL
Integration of RIEGL
VZ-400 TLS and
Nikon D700 camera

TCSPC

SALCA

Integration of
VQ-820-G and
VQ-580, VQ-820-G
and VQ-480i
Pegasus and Q680i
SELEX GALILEO
Designed MSL
SALCA

BAM

LULC classification
Change detection

LULC classification

Monitoring pine chlorophyll content
LULC classification

LULC classification

Trees drought detection

Tree species classification

LULC classification
LULC classification

Rock type identification

Recovery of arboreal parameters

Estimating vegetation moisture content

Archaeological prospection

LULC classification
Forest canopy parameter estimation
Measuring plant physiology
Measurement of canopy parameters

Inspection of building surfaces

DSM and intensities
Spectral statistical features, intensity
ratios, NDVI, DSM and its statistical

features, homogeneity of DSM
Height, return number,
intensities, pPNDVI
MCARI750, MSR2, SR6 and NDVI
nDSM, intensities
Vegetation indices (NDVI, GNDVI,
and SRPI)
Spectral statistical features, NDVI, and
a modified water index

nDSM and maximum reflectance of first
return for each wavelength

Intensities and pNDVI
Intensities

Intensities

Intensities, NDVI, and PRI

NDFIs, ratios of intensities, NDWI and
moisture stress index

Intensities

Z, echo width, and intensities
NDVI and PRI
Z, PRI and NDVI
Intensities

Intensities, NDVI, NDMI

I Maximum Likelihood

I Object-based RF

I Maximum likelihood

P Regression
P Terrasolid software

Psym

P Rule-based classification

I Rule-based classification

P Mahalanobis distance
Tsvm

I Minimum distance

I Reversible jump Markov chain
Monte Carlo

P Major axis regression

I Visual interpretation

Tsvm
I MCMC and RIMCMC simulation
P TREEGROW model
P Rule-based
I Object-based classification with
commercial software
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