
Plant Detection and State
Classification with Machine

Learning

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Tobias Eidelpes, BSc
Matrikelnummer 01527193

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. Dr. Horst Eidenberger

Wien, 30. Dezember 2023
Tobias Eidelpes Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Plant Detection and State
Classification with Machine

Learning

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Tobias Eidelpes, BSc
Registration Number 01527193

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.-Prof. Dr. Horst Eidenberger

Vienna, 30th December, 2023
Tobias Eidelpes Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Tobias Eidelpes, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. Dezember 2023
Tobias Eidelpes

v





Danksagung

Ich danke vor allem dem Betreuer dieser Arbeit—Horst Eidenberger—für die rasche
und zeitnahe Bearbeitung meiner Anliegen sowie das aussagekräftige Feedback, das ich
laufend erhalten habe. Die von ihm vorgegebene Roadmap erleichtert das Arbeiten nicht
nur in der Anfangsphase, sondern auch später ungemein.

Meine Eltern sind diejenigen, die mir das Studium überhaupt erst ermöglicht haben. Die
laufende Unterstützung auch in den späteren Jahren—primär in Form von gemeinsamen
Mittagessen—ließ mich auf das konzentrieren, was wichtig ist.

Zu guter Letzt geht noch ein Dank an meine Studienkollegen, die bei Fragen, zu Diskus-
sionen und zum Entspannen immer erreichbar waren. Der gelegentliche Austausch macht
mir immer Freude und ich hoffe, dass wir dies auch in Zukunft aufrechterhalten können.

vii





Acknowledgements

I would especially like to thank the supervisor of this thesis—Horst Eidenberger—for
the quick and prompt processing of my requests as well as the meaningful feedback I
received on an ongoing basis. The roadmap he provided not only made this thesis easier
in the initial phase but also later on.

My parents are the ones who made my studies possible in the first place. The ongoing
support, even in the later years—primarily in the form of shared lunches—allowed me to
concentrate on what is important.

Last but not least, I would like to thank my fellow colleagues, who have always been
available for questions, discussions and relaxation. I always enjoy the occasional exchange
and I hope that we can continue to do those in the future.

ix





Kurzfassung

Wassermangel in Zimmerpflanzen kann ihr Wachstum negativ beeinflussen. Bestehende
Lösungen zur Überwachung von Wasserstress sind in erster Linie für landwirtschaftliche
Kontexte gedacht, bei denen nur eine kleine Auswahl an Pflanzen von Interesse ist. Bislang
gab es keine Forschung im Haushaltskontext, wo die Vielfalt der Pflanzen wesentlich größer
ist und es daher schwieriger ist, Wasserstress zu erfassen. Außerdem beinhalten derzeitige
Ansätze entweder keinen eigenen Pflanzenerkennungsschritt oder es kommt traditionelle
Feature Extraction zur Anwendung. Wir entwickeln einen Prototyp zur Erkennung und
nachfolgender Klassifizierung des Wasserstresses von Pflanzen, der ausschließlich auf
Deep Learning basiert.

Unser zweistufiger Ansatz besteht aus einem Erkennungs- und einem Klassifizierungs-
schritt. In der Erkennungsphase werden die Pflanzen identifiziert und aus dem Originalbild
ausgeschnitten. Die Ausschnitte werden an das Klassifizierungsmodell weitergeleitet, das
die Wahrscheinlichkeit für Wasserstress ausgibt. Wir verwenden Transfer Learning und
führen die Feinabstimmung der beiden Modelle anhand zweier Datensätze durch. Jedes
Modell wird mithilfe einer Hyperparameter-Suche optimiert und zunächst einzeln und
dann im Aggregat auf einem eigens erstellten Datensatz evaluiert. Wir stellen beide
Modelle auf einem Nvidia Jetson Nano bereit, der in der Lage ist, Pflanzen autonom
über eine angeschlossene Kamera zu klassifizieren. Die Ergebnisse der Pipeline werden
kontinuierlich über eine API veröffentlicht. Nachgeschaltete Bewässerungssysteme können
die Vorhersagen zum Wasserstress nutzen, um die Hauspflanzen ohne menschliches Zutun
zu bewässern.

Die beiden Modelle zusammengenommen erreichen einen mAP-Wert von 0.3581 in der
nicht optimierten Version. Beide Modelle sind in der Lage, mit verschiedenen Licht-
verhältnissen, verschiedenen Blickwinkeln und einer Vielfalt an Pflanzen umzugehen.
Die optimierte Pipeline erreicht einen mAP-Wert von 0.3838. Im Vergleich zur nicht
optimierten Version ist die Genauigkeit für nicht gestresste Pflanzen höher, aber geringer
für die gestresste Klasse. Die Spezifität für die nicht gestresste Klasse bleibt im Vergleich
zur nicht optimierten Basislinie auf demselben Niveau, ist aber um 12.1 Prozentpunkte
höher für die gestresste Klasse. Das gewichtete harmonische Mittel (F1-score) für bei-
de Klassen konnte um 2.4 Prozentpunkte verbessert werden. Diese Ergebnisse zeigen,
dass unser zweistufiger Ansatz funktioniert und ein vielversprechender erster Schritt zur
Klassifizierung des Zustands von Zimmerpflanzen ist.
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Abstract

Water deficiency in household plants can adversely affect growth. Existing solutions
to monitor water stress are primarily intended for agricultural contexts where only a
small selection of plants are of interest. To date, there has been no research in household
settings where the variety of plants is considerably higher and it is thus more difficult to
obtain accurate measures of water stress. Furthermore, current approaches either do not
detect plants in images first or use traditional feature extraction for plant detection. We
develop a prototype to detect plants and classify them into water-stressed or not using
deep learning based methods exclusively.

Our two-stage approach consists of a detection and a classification step. In the detection
step, plants are identified and cut out from the original image. The cutouts are passed
to the classifier which outputs a probability for water stress. We use transfer learning
to start from a robust base and fine-tune both models for their respective tasks. Each
model is optimized using hyperparameter optimization and first evaluated individually
and then in aggregate on a custom dataset. We deploy both models to an Nvidia Jetson
Nano which is able to survey plants autonomously via an attached camera. The results
of the pipeline are published continuously via an API. Downstream watering systems can
use the water stress predictions to water the plants without human intervention.

The two models in aggregate achieve a mAP of 0.3581 for the non-optimized version.
Both constituent models have robust feature extraction capabilities and are able to
cope with various lighting conditions, different angles and a wide variety of household
plants. The optimized pipeline achieves a mAP of 0.3838 on unseen images with higher
precision for the non-stressed but lower precision for the stressed class. Recall for the
non-stressed class remains at the same level compared to the non-optimized baseline but
is 12.1 percentage points higher for the stressed class. The weighted F1-score across both
classes was improved by 2.4 percentage points. These results show that our two-stage
approach is viable and a promising first step for plant state classification for household
plants.
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CHAPTER 1
Introduction

Machine learning has seen an unprecedented rise in various research fields during the
last few years. Large-scale distributed computing and advances in hardware manufactur-
ing have allowed machine learning models to become more sophisticated and complex.
Multi-billion parameter deep learning models show best-in-class performance in Natural
Language Processing (NLP) [BMR+20], fast object detection [BWL20] and various classi-
fication tasks [ZHT22; AH22]. Agriculture is one of the areas which profits substantially
from the automation possible with machine learning.

Large-scale as well as small local farmers are able to survey their fields and gardens with
drones or stationary cameras to determine soil and plant condition as well as when to
water or fertilize [RRL+20]. Machine learning models play an important role in that
process because they allow automated decision-making in real time. While machine
learning has been used in large-scale agriculture, it is also a valuable tool for household
plants and gardens. By using machine learning to monitor and analyze plant conditions,
homeowners can optimize their plant care and ensure their plants are healthy and thriving.

1.1 Motivation and Problem Statement
The challenges to implement an automated system for plant surveying are numerous.
First, gathering data in the field requires a network of sensors which are linked to a
central server for processing. Since communication between sensors is difficult without
proper infrastructure, there is a high demand for processing the data on the sensor itself
[MWL22]. Second, differences in local soil, plant and weather conditions require models
to be optimized for these diverse inputs. Centrally trained models often lose the nuances
present in the data because they have to provide actionable information for a larger area
[Awa19]. Third, specialized methods such as hyper- or multispectral imaging in the field
provide fine-grained information about the object of interest but come with substantial
upfront costs and are of limited interest for gardeners.

1



1. Introduction

To address all of the aforementioned problems, there is a need for an installation which is
deployable by homeowners, gathers data using readily available hardware and performs
computation on the device without a connection to a central server. The device should
be able to visually determine whether the plants in its field of view need water or not
and output its recommendation. The recommendation should then be used as a data
point off of which homeowners can automatically water their plants with an automated
watering system.

The aim of this work is to develop a prototype which can be deployed by gardeners to
survey plants and recommend watering or not. To this end, a machine learning model
will be trained to first identify the plants in the field of view and then to determine if
the plants need water or not. The model should be suitable for edge devices equipped
with a Tensor Processing Unit (TPU) or Graphics Processing Unit (GPU) but with
otherwise limited processing capabilities. Examples of such systems include Google’s
Coral development board and the Nvidia Jetson series of single-board computers (SBCs).
The model should make use of state-of-the-art algorithms from either classical machine
learning or deep learning. The literature review will yield an appropriate machine learning
method. Furthermore, the adaption of existing models (transfer learning) for object
detection to the domain of plant recognition may provide higher performance than would
otherwise be achievable within the time constraints.

The model will be deployed to the SBC and evaluated using established and well-known
metrics from the field of machine learning. The evaluation will seek to answer the
following questions:

1. How well does the model work in theory and how well in practice?
We will measure the performance of our model with common metrics such as
accuracy, F-score, Receiver Operating Characteristic (ROC) curve, Area Under the
Curve (AUC), Intersection over Union (IOU) and various mean Average Precision
(mAP) measures. These measurements will allow comparisons between our model
and existing models. We expect the plant detection part of the model to achieve
high scores on the test dataset. However, the classification of plants into stressed
and non-stressed will likely prove to be more difficult. The model is limited to
physiological markers of water stress and thus will have difficulties with plants
which do not overtly display such features.
Even though models may work well in theory, some do not easily transfer to
practical applications. It is, therefore, important to examine if the model is suited
for productive use in the field. The evaluation will contain a discussion about
the model’s transferability because theoretical performance does not automatically
guarantee real-world performance due to different environmental conditions.

2. What are possible reasons for it to work/not work?
Even if a model scores high on performance metrics, there might be a mismatch
between how researchers think it achieves its goal and how it actually achieves its

2



1.2. Methodological Approach

goal. The results have to be plausible and explainable with its inputs. Otherwise,
there can be no confidence in the model’s outputs. Conversely, if the model does
not work, there must be a reason. We estimate that the curation of the dataset for
the training and test phases will play a significant role. Explanations for model
out- or underperformance are likely to be found in the structure and composition
of the model’s inputs.

3. What are possible improvements to the system in the future?
The previous two questions will yield the data for possible improvements to the
model and/or our approach. With the decision to include a plant detection step
at the start, we hope to create consistent conditions for the stress classification.
A downside to this approach is that errors during detection can be propagated
through the system and result in adverse effects to overall performance. Although we
estimate this problem to be negligible, additional feedback regarding our approach
in this way might offer insight into potential improvements. If the model does
not work as well as expected, which changes to the approach will yield a better
result? Similarly to the previous question, the answer will likely lie in the dataset.
A heavy focus on dataset construction and curation will ensure satisfactory model
performance.

1.2 Methodological Approach
The methodological approach consists of the following steps:

1. Literature Review: The literature review informs the type of machine learning
methods which are later applied during the implementation of the prototype.

2. Dataset Curation: After selecting the methods to use for the implementation,
we have to create our own dataset or use existing ones, depending on availability.

3. Model Training: The selected models will be trained with the datasets curated
in the previous step.

4. Optimization: The selected models will be optimized with respect to their
parameters.

5. Deployment to SBC: The software prototype will be deployed to the SBC.

6. Evaluation: The models will be evaluated extensively and compared to other
state-of-the-art systems. During evaluation, the author seeks to provide a basis for
answering the research questions.

During the literature review, the search is centered around the terms plant classification,
plant state classification, plant detection, water stress detection, machine learning agri-
culture, crop machine learning and remote sensing. These terms provide a solid basis for

3



1. Introduction

understanding the state of the art in plant detection and stress classification. We will
use multiple search engines such as Google Scholar, Semantic Scholar, the ACM Digital
Library, and IEEE Xplore. It is common to only publish research papers in preprint form
in the data science and machine learning fields. For this reason, we will also reference
arXiv.org for these papers. The work discovered in this way will also lead to further
insights about the type of models which are commonly used.

In order to find and select appropriate datasets to train the models on, we will survey
the existing big datasets for classes we can use. Datasets such as the Common Objects
in Context (COCO) [LMB+15] and PASCAL Visual Object Classes (VOC) [EVW+10]
contain the highly relevant class Potted Plant. By extracting only these classes from
multiple datasets and concatenating them together, it is possible to create one unified
dataset which only contains the classes necessary for training the model.

The training of the models will happen in an environment where more computational
resources are available than what the SBC offers. We will deploy the final model with the
Application Programming Interface (API) to the SBC after training and optimization.
Furthermore, training will happen in tandem with a continuous evaluation process. After
every iteration of the model, an evaluation run against the test set determines if there
has been an improvement in performance. The results of the evaluation feed back into
the parameter selection at the beginning of each training phase. Small changes to the
training parameters, augmentations or structure of the model are followed by another test
phase. The iterative nature of the development of the prototype increases the likelihood
that the model’s performance is not only locally maximal but also as close as possible to
the global maximum.

In the final evaluation phase, we will measure the resulting model against the test set and
evaluate its performance with common metrics. The aim is to first provide a solid basis
of facts regarding the model(s). Second, the results will be discussed in detail. Third, we
will cross-check the results with the hypotheses from section 1.1 and determine whether
the aim of the work has been met, and—if not—give reasons for the rejection of all or
part of the hypotheses.

Overall, the development of our application follows an evolutionary prototyping process
[Dav92; SJJ07]. Instead of producing a full-fledged product from the start, development
happens iteratively in phases. The main phases and their order for the prototype at hand
are: model selection, implementation, and evaluation. The results of each phase—for
example, which model has been selected—inform the decisions which have to be made in
the next phase (implementation). In other words, every subsequent phase is dependent
on the results of the previous phase. All three phases, in turn, constitute one iteration
within the prototyping process. At the start of the next prototype, the results of the
previous iteration determine the path forward.

The decision to use an evolutionary prototyping process follows in large part from the
problem to be solved (as specified in section 1.1). Since the critical requirements have
been established from the start, it is possible to build a solid prototype from the beginning
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1.3. Thesis Structure

by implementing only those features which are well-understood. The aim is to allow the
developer to explore the problem further so that additional requirements which arise
during development can be incorporated properly.

The prototyping process is embedded within the concepts of the Scientific Method. This
thesis not only produces a prototype but also explores the problem of plant detection
and classification scientifically. Exploration of the problem requires making falsifiable
hypotheses (see section 1.1), gathering empirical evidence (see section 5.2), and accepting
or rejecting the initial hypotheses (see section 5.3). Empirical evidence is provided by
measuring the model(s) against out-of-sample test sets. This provides the necessary
foundation for acceptance or rejection of the hypotheses.

1.3 Thesis Structure
The first part of the thesis (chapter 2) contains the theoretical basis of the models which
we use for the prototype. Chapter 3 goes into detail about the requirements for the
prototype, the overall design and architecture of the recognition and classification pipeline,
and the structure and unique properties of the selected models. Chapter 4 expands on
how the datasets are used during training as well as how the prototype publishes its
classification results. Chapter 5 shows the results of the testing phases as well as the
performance of the aggregate model. Furthermore, the results are compared with the
expectations and it is discussed whether they are explainable in the context of the task
at hand as well as benchmark results from other datasets (COCO [LMB+15]). Chapter 6
concludes the thesis with a summary and an outlook on possible improvements and
further research questions.
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CHAPTER 2
Theoretical Background

This chapter is split into five parts. First, we introduce general machine learning concepts
(section 2.1). Second, we provide a survey of object detection methods from early
traditional methods to one-stage and two-stage deep learning based methods (section 2.2).
Third, we go into detail about image classification in general and which approaches
have been published in the literature (section 2.3). Fourth, we give a short explanation
of transfer learning and its advantages and disadvantages (section 2.4). The chapter
concludes with a section on hyperparameter optimization (section 2.5).

2.1 Machine Learning
The term machine learning was first used by Samuel [Sam59] in 1959 in the context of
teaching a machine how to play the game Checkers. Mitchell [Mit97] defines learning in
the context of programs as:

[Mit97, p.2] A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E.

In other words, if the aim is to learn to win at a game, the performance measure P is
defined as the ability to win at that game. The tasks in T are playing the game multiple
times, and the experience E is gained by letting the program play the game against itself.

Machine learning is thought to be a sub-field of Artificial Intelligence (AI). AI is a
more general term for the scientific endeavor of creating things which possess the kind of
intelligence we humans have. Since those things will not have been created naturally, their
intelligence is termed artificial. Within the field of AI there have been other approaches
than what is commonly referred to as machine learning today.

7



2. Theoretical Background

A major area of interest in the 1980s was the development of expert systems. These
systems try to approach problem solving as a rational decision-making process. Starting
from a knowledge base, which contains facts and rules about the world and the problem
to be solved, the expert system applies an inference engine to arrive at a conclusion. An
advantage of these systems is that they can often explain how they came to a particular
conclusion, allowing humans to verify and judge the inference process. This kind of
explainability is missing in the neural network based approaches of today. However, an
expert system needs a significant base of facts and rules to be able to do any meaningful
inference. Outside of specialized domains such as medical diagnosis, expert systems have
always failed at commonsense reasoning.

Machine learning can be broadly divided into two distinct approaches: supervised and
unsupervised. Supervised learning describes a process where the algorithm receives input
values as well as their corresponding output values and tries to learn the function which
maps inputs to outputs. This is called supervised learning because the model knows a
target to map to. In unsupervised learning, in contrast, algorithms do not have access
to labeled data or output values and therefore have to find patterns in the underlying
inputs. There can be mixed approaches as in semi-supervised learning where a model
receives a small amount of labeled data as an aid to better extract the patterns in the
unlabeled data. Which type of learning to apply depends heavily on the problem at
hand. Tasks such as image classification and speech recognition are good candidates
for supervised learning. If a model is required to generate speech, text or images, an
unsupervised approach makes more sense. We will go into detail about the general
approach in supervised learning because it is used throughout this thesis when training
the models.

2.1.1 Supervised Learning
The overall steps when training a model with labeled data are as follows:

1. Determine which type of problem is to be solved and select adequate training
samples.

2. Gather enough training samples and obtain their corresponding targets (labels).
This stage usually requires humans to create a body of ground truth with which
the model can compare itself.

3. Select the type of representation of the inputs which is fed to the model. The
representation heavily relies on the amount of data which the model can process in
a reasonable amount of time. For speech recognition, for example, raw waveforms
are rarely fed to any classifier. Instead, humans have to select a less granular and
more meaningful representation of the waveforms such as Mel-frequency Cepstral
Coefficients (MFCCs). Selecting the representation to feed to the model is also
referred to as feature selection or feature engineering.

8



2.1. Machine Learning

4. Select the structure of the model or algorithm and the learning function. De-
pending on the problem, possible choices are Support Vector Machines (SVMs),
Convolutional Neural Networks (CNNs) and many more.

5. Train the model on the training set.

6. Validate the results on out-of-sample data by computing common metrics and
comparing the results to other approaches.

7. Optionally go back to 4. to select different algorithms or to train the model with
different parameters or adjusted training sets. Depending on the results, one can
also employ computational methods such as hyperparameter optimization to find a
better combination of model parameters.

These steps are generally the same for every type of supervised or semi-supervised
machine learning approach. The implementation for solving a particular problem differs
depending on the type of problem, how much data is available, how much can reasonably
be labeled and any other special requirements such as favoring speed over accuracy.

2.1.2 Artificial Neural Networks
Artificial neural networks are the building blocks of most state-of-the-art models in use
today. The computer sciences have adopted the term from biology where it defines the
complex structure in the human brain which allows us to experience and interact with
the world around us. A neural network is necessarily composed of neurons which act
as gatekeepers for the signals they receive. Depending on the inputs—electrochemical
impulses, numbers, or other—the neuron excites and produces an output value if the
right conditions are met. This output value travels via connections to other neurons
and acts as an input on their side. Each neuron and connection between the neurons
has an associated weight which changes when the network learns. The weights increase
or decrease the signal from the neuron. The neuron itself only passes a signal on to its
output connections if the conditions of its activation function have been met. This is
typically a non-linear function. Multiple neurons are usually grouped together to form a
layer within the network. Multiple layers are stacked one after the other with connections
in-between to form a neural network. Layers between the input and output layers are
commonly referred to as hidden layers. Figure 2.1 shows the structure of a three-layer
fully-connected artificial neural network.

The earliest attempts at describing learning machines were by McCulloch and Pitts
[MP43] with the idea of the perceptron. This idea was implemented in a more general
sense by Rosenblatt [Ros57; Ros62] as a physical machine. At its core, the perceptron is
the simplest artificial neural network with only one neuron in the center. The neuron
takes all its inputs, aggregates them with a weighted sum and outputs 1 if the result is
above some threshold θ and 0 if it is not (see equation 2.1). This function is called the
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Input

Hidden

Output

Figure 2.1: Structure of an artificial neural network. Information travels from left to
right through the network using neurons and the connections between them.

activation function of a perceptron. A perceptron is a type of binary classifier which can
only classify linearly separable variables.

y =
�

1 if 	n
i=1 wi · xi ≥ θ

0 if 	n
i=1 wi · xi < θ

(2.1)

Due to the inherent limitations of perceptrons to only be able to classify linearly separable
data, Multilayer Perceptrons (MLPs) are the bedrock of modern artificial neural networks.
By adding an input layer, a hidden layer, and an output layer as well as requiring the
activation function of each neuron to be non-linear, a MLP can classify also non-linear
data. Every neuron in each layer is fully connected to all of the neurons in the next layer
and it is the most straightforward case of a feedforward network. Figure 2.1 shows the
skeleton of a MLP.

There are two types of artificial neural networks: feedforward and recurrent networks.
Their names refer to the way information flows through the network. In a feedforward
network, the information enters the network and flows only uni-directionally to the
output nodes. In a recurrent network, information can also feed back into previous nodes.
Which network is best used depends on the task at hand. Recurrent networks are usually
necessary when context is needed. For example, if the underlying data to classify is a time
series, individual data points have some relation to the previous and next points in the
series. Maintaining a bit of state is beneficial because networks should be able to capture
these dependencies. However, having additional functionality for feeding information
back into previous neurons and layers comes with increased complexity. A feedforward
network, as depicted in Figure 2.1, represents a simpler structure.
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2.1.3 Activation Functions
Activation functions are the functions inside each neuron which receive inputs and produce
an output value. The nature of these functions is that they need a certain amount of
excitation from the inputs before they produce an output, hence the name activation
function. Activation functions are either linear or non-linear. Linear functions are limited
in their capabilities because they cannot approximate certain functions. For example,
a perceptron, which uses a linear activation function, cannot approximate the XOR
function [MP17]. Non-linear functions, however, are a requirement for neural networks to
become universal approximators [HSW89]. We will introduce several activation functions
which are used in the field of machine learning in the following sections. There exist
many more than can be discussed within the scope of this thesis. However, the selection
should give an overview of the most used and influential ones in the author’s opinion.

Identity

The simplest activation function is the identity function. It is defined as

g(x) = x. (2.2)

If all layers in an artificial neural network use the identity activation function, the network
is equivalent to a single-layer structure. The identity function is often used for layers
which do not need an activation function per se but require one to uphold consistency
with the rest of the network structure.

Heaviside Step

The Heaviside step function, also known as the unit step function, is a mathematical
function that is commonly used in control theory and signal processing to represent a
signal that switches on at a specified time and stays on. The function is named after
Oliver Heaviside, who introduced it in the late 19th century. It is defined as

H(x) =
�

1, x ≥ 0
0, x < 0

. (2.3)

In engineering applications, the Heaviside step function is used to describe functions
whose values change abruptly at specified values of time t. We have already mentioned
the Heaviside step function in section 2.1.2 when introducing the perceptron. It can only
classify linearly separable variables when used in a neural network and is, therefore, not
suitable for complex intra-data relationships. A major downside to using the Heaviside
step function is that it is not differentiable at x = 0 and has a 0 derivative elsewhere.
These properties make it unsuitable for use with gradient descent during backpropagation
(section 2.1.5).
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Sigmoid

The sigmoid activation function is one of the most important functions to introduce
non-linearity into the outputs of a neuron. It is a special case of a logistic function and
used synonymously with logistic function in machine learning. It is defined as

σ(x) = 1
1 + e−x

. (2.4)

It has a characteristic S-shaped curve, mapping each input value to a number between
0 and 1, regardless of input size. This squashing property is particularly desirable for
binary classification problems because the outputs can be interpreted as probabilities.
Additionally to the squashing property, it is also a saturating function because large
values map to 1 and very small values to 0. If a learning algorithm has to update the
weights in the network, saturated neurons are very inefficient and difficult to process
because the outputs do not provide valuable information. In contrast to the Heaviside
step function (section 2.1.3), it is differentiable which allows it to be used with gradient
descent optimization algorithms. Unfortunately, the sigmoid function exacerbates the
vanishing gradient problem, which makes it unsuitable for training deep neural networks.

Rectified Linear Unit

The Rectified Linear Unit (ReLU) function is defined as

f(x) = max(0, x) =
�

x, x > 0
0, x ≤ 0

(2.5)

which means that it returns the input value if it is positive, and returns zero if it is
negative. It was first introduced by Fukushima [Fuk69] in a modified form to construct a
visual feature extractor. The ReLU function is nearly linear, and it thus preserves many
of the properties that make linear models easy to optimize with gradient-based methods
[GBC16]. In contrast to the sigmoid activation function, the ReLU function partially
mitigates the vanishing gradient problem and is therefore suitable for training deep neural
networks. Furthermore, the ReLU function is easier to calculate than sigmoid functions
which allows networks to be trained more quickly. Even though it is not differentiable
at 0, it is differentiable everywhere else and often used with gradient descent during
optimization.

The ReLU function suffers from the dying ReLU problem, which can cause some neurons
to become inactive. Large gradients, which are passed back through the network to
update the weights, are typically the source of this. If many neurons are pushed into
this state, the model’s capability of learning new patterns is diminished. To address this
problem, there are two possibilities. One solution is to make sure that the learning rate
is not set too high, which reduces the problem but does not fully remove it. Another
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solution is to use one of the several variants of the ReLU function such as leaky ReLU,
Exponential Linear Unit (ELU), and Sigmoid Linear Unit (SiLU).

In recent years, the ReLU function has become the most popular activation function
for deep neural networks and is recommended as the default activation function in
modern neural networks [GBC16]. Despite its limitations, the ReLU function has become
an essential tool for deep learning practitioners and has contributed to the success of
many state-of-the-art models in computer vision, natural language processing, and other
domains.

Softmax

The softmax activation function is often used as the last activation function of a neural
network to normalize the output of a network to a probability distribution over predicted
output classes. It takes a vector of numbers, known as logits, and scales them into
probabilities. The output of the softmax function is a vector with probabilities of each
possible outcome, and the probabilities in the vector sum to one for all possible outcomes
or classes. In mathematical terms, the function is defined as

σ(z⃗)i = ezi	K
j=1 ezj

i for i = 1, . . . , K and z⃗ = (z1, . . . , zK) ∈ RK (2.6)

where the standard exponential function is applied to each value in the vector z⃗ and the
result is normalized with the sum of the exponentials.

2.1.4 Loss Function
Loss functions play a fundamental role in machine learning, as they are used to evaluate
the performance of a model and guide its training. The choice of loss function can
significantly impact the accuracy and generalization of the model. There are various
types of loss functions, each with its strengths and weaknesses, and the appropriate
choice depends on the specific problem being addressed.

From the definition of a learning program from section 2.1, loss functions constitute the
performance measure P against which the results of the learning program are measured.
Only by minimizing the error obtained from the loss function and updating the weights
within the network is it possible to gain experience E at carrying out a task T . How
the weights are updated depends on the algorithm which is used during the backward
pass to minimize the error. This type of procedure is referred to as backpropagation (see
section 2.1.5).

One common type of loss function is the mean squared error (MSE) which is widely used
in regression problems. The MSE is a popular choice because it is easy to compute and
has a closed-form solution, making it efficient to optimize. It does have some limitations,
however. For instance, it is sensitive to outliers, and it may not be appropriate for
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problems with non-normal distributions. MSE measures the average squared difference
between predicted and actual values. It is calculated with

MSEtest = 1
m

�
i

(ŷ(test) − y(test))2
i (2.7)

where ŷ(test) contains the predictions of the model on the test set and y(test) refers to the
target labels [GBC16]. It follows that, if ŷ(test) = y(test), the error is 0 and the model has
produced a perfect prediction.

We cannot, however, take the results of the error on the test set to update the weights
during training because the test set must always contain only samples which the model
has not seen before. If the model is trained to minimize the MSE on the test set and
then evaluated against the same set, the results will be how well the model fits to the
test set and not how well it generalizes. The goal, therefore, is to minimize the error on
the training set and to compare the results against an evaluation on the test set. If the
model achieves very low error rates on the training set but not on the test set, it is likely
that the model is suffering from overfitting. Conversely, if the model does not achieve low
error rates on the training set, it is likely that the model is suffering from underfitting.

Goodfellow, Bengio, and Courville [GBC16] writes on MSE: “MSE was popular in the
1980s and 1990s but was gradually replaced by cross-entropy losses and the principle of
maximum likelihood as ideas spread between the statistics community and the machine
learning community” [GBC16, p.222]. Cross-entropy measures the difference in infor-
mation between two distinct probability distributions. Specifically, it gives a number
on the average total amount of bits needed to represent a message or event from the
first probability distribution in the second probability distribution. If there is the case
of binary random variables, i.e. only two classes to classify exist, the measure is called
binary cross-entropy. Cross-entropy loss is known to outperform MSE for classification
tasks and allows the model to be trained faster [SSP03].

2.1.5 Backpropagation
So far, information only flows forward through the network whenever a prediction for
a particular input should be made. In order for a neural network to learn, information
about the computed loss has to flow backward through the network. Only then can the
weights at the individual neurons be updated. This type of information flow is termed
backpropagation [RHW86]. Backpropagation computes the gradient of a loss function with
respect to the weights of a network for an input-output pair. The algorithm computes
the gradient iteratively starting from the last layer and works its way backward through
the network until it reaches the first layer.

Strictly speaking, backpropagation only computes the gradient but does not determine
how the gradient is used to learn the new weights. Once the backpropagation algorithm
has computed the gradient, that gradient is passed to an algorithm which finds a local
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minimum of it. This step is usually performed by some variant of gradient descent
[Cau47].

2.2 Object Detection
From facial detection to fully automated driving—object detection provides the basis for
a wide variety of tasks within the computer vision world. While most implementations
in the 1990s and early 2000s relied on cumbersome manual feature extraction, current
methods almost exclusively leverage a deep learning based approach. This chapter gives
an introduction to object detection, explains common problems researchers have faced
and how they have been solved, and discusses the two main approaches to object detection
via deep learning.

2.2.1 Traditional Methods
Before the advent of powerful GPUs, object detection was commonly done by manually
extracting features from images and passing these features on to a classical machine
learning algorithm. Early methods were generally far from being able to detect objects
in real time.

Viola-Jones Detector

The first milestone was the face detector by Viola and Jones [VJ01; VJ01] which is able to
perform face recognition on 384 by 288 pixel (grayscale) images with 15 fps on a 700 MHz
Intel Pentium III processor. The authors use an integral image representation where
every pixel is the summation of the pixels above and to the left of it. This representation
allows them to quickly and efficiently calculate Haar-like features.

The Haar-like features are passed to a modified AdaBoost algorithm [FS95] which only
selects the (presumably) most important features. At the end there is a cascading stage
of classifiers where regions are only considered further if they are promising. Every
additional classifier adds complexity, but once a classifier rejects a sub-window, the
processing stops and the algorithm moves on to the next window. Despite their final
structure containing 32 classifiers, the sliding-window approach is fast and achieves
comparable results to the state of the art in 2001.

HOG Detector

The Histogram of Oriented Gradients (HOG) [DT05] is a feature descriptor used in
computer vision and image processing to detect objects in images. It is a detector which
detects shape like other methods such as Scale-Invariant Feature Transform (SIFT)
[Low99]. The idea is to use the distribution of local intensity gradients or edge directions
to describe an object. To this end, the authors divide the image into a grid of cells and
calculate a histogram of edge orientations within each cell. Additionally, each histogram
is normalized by taking a larger region and adjusting the local histograms based on the
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larger region’s intensity levels. The resulting blocks of normalized gradients are evenly
spaced out across the image with some overlap. These patches are then passed as a
feature vector to a classifier.

Dalal and Triggs [DT05] successfully use the HOG with a linear SVM for classification
to detect humans in images. They work with images of 64 by 128 pixels and make
sure that the image contains a margin of 16 pixels around the person. Decreasing the
border by either enlarging the person or reducing the overall image size results in worse
performance. Unfortunately, their method is far from being able to process images in
real time—a 320 by 240 image takes roughly a second to process.

Deformable Part-Based Model

Deformable Part-Based Models (DPMs) [FMR08] were the winners of the VOC challenge
in the years 2007, 2008, and 2009. The method is heavily based on the previously
discussed HOG since it also uses HOG descriptors internally. The authors addition is
the idea of learning how to decompose objects during training and classifying/detecting
the decomposed parts during inference. The HOG descriptors are computed on different
scales to form a HOG feature pyramid. Coarse features are more easily identified at
the top of the pyramid while details are present at the lower end of the pyramid. The
coarse features are obtained by calculating the histograms over fairly large areas, whereas
smaller image patches are used for the detailed levels. A root filter works on the coarse
levels by detecting general features of the object of interest. If the goal is to detect a face,
for example, the root filter detects the contours of the face. Smaller part filters provide
additional information about the individual parts of the object. For the face example,
these filters capture information about the eyes, mouth and nose.

The idea of detecting detail at different scales is not unlike what happens with the
later CNNs. The individual layers of a CNN often describe higher level features in the
earlier layers and provide additional lower level information as the network increases in
depth. Girshick et al. [GID+15] argue that DPMs are in fact CNNs because they can be
formulated as CNNs by unrolling each step of the algorithm into a corresponding CNN
layer.

2.2.2 Deep Learning Based Methods
After the publication of the DPM, the field of object detection did not make significant
advances regarding speed or accuracy until 2012. Only the (re-)introduction of CNNs by
Krizhevsky, Sutskever, and Hinton [KSH12] with their AlexNet architecture and their
subsequent win of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 gave the field a new influx of ideas. The availability of the 12 × 106 labeled images
in the ImageNet dataset [DDS+09] allowed a shift from focusing on better methods to
being able to use more data to train models. Earlier models had difficulties with making
use of the large dataset since training was unfeasible. AlexNet, however, provided an
architecture which was able to be trained on two GPUs within six days. For an in depth
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overview of AlexNet see section 2.3.2. Object detection networks from 2014 onward either
follow a one-stage or two-stage detection approach. The following sections go into detail
about each model category.

2.2.3 Two-Stage Detectors

As their name implies, two-stage detectors consist of two stages which together form a
complete object detection pipeline. Commonly, the first stage extracts Regions of Interest
(ROIs) which might contain relevant objects to detect. The second stage operates on the
extracted ROIs and returns a vector of class probabilities. Since the computation in the
second stage is performed for every ROI, two-stage detectors are often not as efficient as
one-stage detectors.

R-CNN

Girshick et al. [GDD+14] were the first to propose using feature representations of CNNs
for object detection. Their approach consists of generating around 2000 region proposals
and passing these on to a CNN for feature extraction. The fixed-length feature vector
is used as input for a linear SVM which classifies the region. They name their method
R-CNN, where the R stands for region.

R-CNN uses selective search to generate region proposals [UvdSG+13].The authors use
selective search’s fast mode to generate the 2000 proposals and warp (i.e. aspect ratios
are not retained) each proposal into the image dimensions required by the CNN. The
CNN, which matches the architecture of AlexNet [KSH12], generates a 4096-dimensional
feature vector and each feature vector is scored by a linear SVM for each class. Scored
regions are selected/discarded by comparing each region to other regions within the same
class and rejecting them if there exists another region with a higher score and greater
IOU than a threshold. The linear SVM classifiers are trained to only label a region as
positive if the overlap, as measured by IOU, is above 0.3.

While the approach of generating region proposals is not new, using a CNN purely
for feature extraction is. Unfortunately, R-CNN is far from being able to operate in
real time. The authors report that it takes 13 s/image on a GPU and 53 s/image on
a Central Processing Unit (CPU) to generate the region proposals and feature vector.
In some sense, these processing times are a step backward from the DPMs introduced
in section 2.2.1. However, the authors showed that CNNs can function perfectly well
as feature extractors, even if their processing performance is not yet up to par with
traditional methods. Furthermore, R-CNN crushes DPMs on the VOC 2007 challenge
with a mAP of 58.5% [GDD+14] versus 33.7% (DPM-v5 [GFM; FGM+10]). This was
enough to spark renewed interest in CNNs and—with better availability of large datasets
and GPU processing capabilities—opened the way for further research in that direction.
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SPP-net

A year after the publication of R-CNN, He et al. [HZR+15] introduce the concept of
Spatial Pyramid Pooling (SPP) to allow CNNs to accept arbitrarily sized instead of
fixed-size input images. They name their method SPP-net and it outputs a fixed-length
feature vector of the input image.

SPP layers operate in-between the convolutional and fully-connected layers of a CNN.
Since the fully-connected layers require fixed-size inputs but the convolutional layers
do not, SPP layers aggregate the information from convolutional layers and pass the
resulting fixed-size outputs to the fully-connected layers. This approach allows only
passing the full image through the convolutional layers once and calculating features with
the SPP layer from these results. This avoids the redundant computations for each ROI
present in R-CNN and provides a speedup of 24-102 times while achieving even better
metrics on the VOC 2007 data set at a mAP of 59.2%.

Fast R-CNN

Fast R-CNN was proposed by Girshick [Gir15] to fix the three main problems R-CNN
and SPP-net have. The first problem is that the training for both models is multi-stage.
R-CNN fine-tunes the convolutional network which is responsible for feature extraction
and then trains SVMs to classify the feature vectors. The third stage consists of training
the bounding box regressors. The second problem is the training time which is on
the order of multiple days for deep convolutional networks. The third problem is the
processing time per image which is (depending on the convolutional network) upwards of
13 s/image.

Fast R-CNN deals with these problems by having an architecture which allows it to take
in images and object proposals at once and process them simultaneously to arrive at the
results. The outputs of the network are the class an object proposal belongs to and four
scalar values representing the bounding box of the object. Unfortunately, this approach
still requires a separate object proposal generator such as selective search [UvdSG+13].

Faster R-CNN

Faster R-CNN [RHG+15; RHG+17]—as the name implies—is yet another improvement
building on R-CNN, SPP-net and Fast R-CNN. Since the bottleneck in performance
with previous approaches has been the object proposal generator, the authors of Faster
R-CNN introduce a Region Proposal Network (RPN) to predict bounding boxes and
objectness in one step. As with previous networks, the proposals are then passed to the
detection network.

RPNs work by using the already present convolutional features in Fast R-CNN and
adding additional layers on top to also regress bounding boxes and objectness scores
per location. Instead of relying on a pyramid structure such as with SPP-net (see
section 2.2.3), RPNs use anchor boxes as a basis for the bounding box regressor. These
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anchor boxes are predefined for various scales and aspect ratios and serve as starting
points for the regressor to properly fit a bounding box around an object.

The RPN makes object proposal generation inexpensive and possible on GPUs. The
whole network operates on an almost real time scale by being able to process 5 images/s
and maintaining high state-of-the-art mAP values of 73.2% (VOC 2007). If the detection
network is switched from VGGNet [LD15] to ZF-Net [ZF14], Faster R-CNN is able to
achieve 17 images/s, albeit at a lower mAP of 59.9%.

Feature Pyramid Network

Feature Pyramid Networks (FPNs) were first introduced by Lin et al. [LDG+17] to
use the hierarchical pyramid structure inherent in CNNs to compute feature maps on
different scales. Previously, detectors were only using the features of the top most (coarse)
layers because it was computationally too expensive to use lower (fine-grained) layers.
By leveraging feature maps on different scales, FPNs are able to better detect small
objects because predictions are made independently on all levels. FPNs are an important
building block of many state-of-the-art object detectors.

A FPN first computes the feature pyramid bottom-up with a scaling step of two. The
lower levels capture less semantic information than the higher levels but include more
spatial information due to the higher granularity. In a second step, the FPN upsamples
the higher levels such that the dimensions of two consecutive layers are the same. The
upsampled top layer is merged with the layer beneath it via element-wise addition and
convolved with a one by one convolutional layer to reduce channel dimensions and to
smooth out potential artifacts introduced during the upsampling step. The results of
that operation constitute the new top layer and the process continues with the layer
below it until the finest resolution feature map is generated. In this way, the features
of the different layers at different scales are fused to obtain a feature map with high
semantic information but also high spatial information.

Lin et al. [LDG+17] report results on COCO with a mAP@0.5 of 59.1% with a Faster R-
CNN structure and a Residual Neural Network (ResNet)-101 backbone. Their submission
does not include any specific improvements such as hard negative mining [SGG16] or
data augmentation.

2.2.4 One-Stage Detectors
One-stage detectors, in contrast to two-stage detectors, combine the proposal generation
and detection tasks into one neural network such that all objects can be retrieved in a
single step. Since the proposal generation in two-stage detectors is a costly operation
and usually the bottleneck, one-stage detectors are significantly faster overall. Their
speeds allow them to be deployed to low-resource devices such as mobile phones while
still providing real time object detection. Unfortunately, their detection accuracy trailed
the two-stage approaches for years, especially for small and/or dense objects.
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You Only Look Once

You Only Look Once (YOLO) was the first one-stage detector introduced by Redmon
et al. [RDG+16]. It divides each image into regions and predicts bounding boxes and
classes of objects simultaneously. This allows it to be extremely fast at up to 155 fps
with a mAP of 52.7% on VOC 2007. The accuracy results were not state of the art at
the time because the architecture trades localization accuracy for speed, especially for
small objects. These issues have been gradually dealt with in later versions of YOLO as
well as in other one-stage detectors such as Single Shot MultiBox Detector (SSD). Since
a later version of YOLO is used in this work, we refer to section 3.3.1 for a thorough
account of its architecture.

Single Shot MultiBox Detector

SSD was proposed by Liu et al. [LAE+16] and functions similarly to YOLO in that it
does not need an extra proposal generation step but instead detects and classifies objects
in one go. The aim of one-stage detectors is to be considerably faster and at least as
accurate as two-stage detectors. While YOLO paved the way for one-stage detectors,
the detection accuracy is significantly lower than state-of-the-art two-stage detection
approaches such as Faster RCNN. SSD combines generating detections on multiple scales
and an end-to-end architecture to achieve high accuracy as well as high speed.

SSD is based on a standard CNN such as VGG16 [LD15] and adds additional feature
layers to the network. The CNN, which the detector is using to extract features, has its
last fully-connected layer removed such that the output of the CNN is a scaled down
representation of the input image. The extra layers are intended to capture features at
different scales and compare them during training to a range of default anchor boxes.
This idea comes from MultiBox [EST+14] but is implemented in SSD with a slight twist:
during matching of default boxes to the ground truth, boxes with a Jaccard overlap
(IOU) of less than 0.5 are discarded. In one-stage detector terms, the feature extractor is
the backbone whereas the extra layers constitute the head of the network. The outputs
of the extra layers contain features for smaller regions with higher spatial information.
Making use of these additional feature maps is what sets SSD apart from YOLO and
results in SSD being able to detect smaller and denser objects as well.

The authors report results on VOC 2007 for their SSD300 and SSD512 model varieties.
The number refers to the size of the input images. SSD300 outperforms Fast R-CNN
by 1.1 percentage points (mAP 66.9% vs 68%). SSD512 outperforms Faster R-CNN by
1.7% mAP. If trained on the VOC 2007, 2012 and COCO train sets, SSD512 achieves a
mAP of 81.5% on the VOC 2007 test set. SSD’s speed is at 46 fps which, although lower
than Fast YOLO’s 155 fps, is still in real time. Furthermore, SSD has a mAP which is
almost 22% higher than Fast YOLO.
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RetinaNet

One-stage detectors before 2017 always trailed the accuracy of top two-stage detectors on
common and difficult benchmark datasets such as COCO. Lin et al. [LGG+17] investigated
what the culprit for the lower accuracy scores could be and found that the severe class
imbalance between foreground and background instances is the problem. They introduce
a novel loss function called Focal Loss which replaces the standard cross-entropy loss.
Focal loss down-weights the importance of easy negative examples during training and
instead focuses on instances which are harder but provide more information.

Focal loss is based on cross-entropy loss but includes a scaling factor which decreases
while the classification confidence increases. In other words, if the confidence that an
object belongs to a particular class is already high, focal loss outputs a small value such
that the weight updates during backpropagation are only marginally affected by the
current example. The model can thus focus on examples which are harder to achieve a
good confidence score on.

Lin et al. [LGG+17] implement their focal loss with a simple one-stage detector called
RetinaNet. It makes use of previous advances in object detection and classification by
including a FPN on top of a ResNet [HZR+16] as the backbone and using anchors for the
different levels in the feature pyramid. Attached to the backbone are two subnetworks
which classify anchor boxes and regress them to the ground truth boxes. The results are
that the RetinaNet-101-500 version (with an input size of 500 px) achieves a mAP of
34.4% at a speed of around 11 fps on the COCO dataset.

2.3 Image Classification
Image classification, in contrast to object detection, is a slightly easier task because
there is no requirement to localize objects in the image. Instead, image classification
operates always on the image as a whole rather than individual parts of it. As has been
demonstrated in the last chapter, object detection methods often rely on advances in
image classification to accurately detect objects. After objects have been localized, we
humans want to know what kind of object it is and that is where image classification
methods become useful.

This section goes into detail about various image classification methods. We first give a
short summary on how image classification was commonly done before CNNs became
the de facto standard. Afterwards, we will introduce common and influential approaches
leveraging CNNs and discuss problems and solutions for training large networks.

2.3.1 Traditional Methods
Similarly to early object detection algorithms, traditional methods rely on manual feature
extraction and subsequent classification with classical algorithms. Passing raw images to
the algorithms is often not feasible due to the immense information contained in just one
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image. Furthermore, a raw image contains a signal to noise ratio which is too low for a
computer to successfully learn properties about the image. Instead, humans—with the
aid of image processing methods—have to select a lower-dimensional representation of
the input image and then pass this representation to a classifier. This process of manually
reducing the dimensions and complexity of an image to the part which is relevant is
termed feature engineering.

Manual feature engineering requires selecting an appropriate representation for the task
at hand. For example, if the task is to classify images which show an object with a
special texture, a feature engineer will likely select an image representation which clearly
pulls the texture into the foreground. In other words, engineers help the classifier by
preprocessing the image such that the most discriminative features are easily visible. The
methods with which an image representation is created is called feature descriptor.

In line with the different ways objects can present themselves on images, there have
been many feature descriptors proposed. Most of the feature descriptors used in object
detection are also used in image classification (see HOG and SIFT from section 2.2.1)
because their representational power is useful in both domains.

2.3.2 Deep Learning Based Methods
Manual feature engineering is a double-edged sword. Although it allows to have a high
amount of control, it also necessitates the engineer to select a meaningful representation
for training the downstream classifier. Often, humans make unconscious assumptions
about the problem to be solved as well as the available data and how best to extract
features. These assumptions can have a detrimental effect on classification accuracy later
on because the best-performing feature descriptor lies outside of the engineer’s purview.
Therefore, instead of manually preparing feature vectors for the classifier, researchers
turned to allowing an Artificial Neural Network (ANN) to recognize and extract the most
relevant aspects of an image on its own, without human intervention. Attention is thus
mostly given to the structure of the ANN and less to the preparation of inputs.

The idea of automatic generation of feature maps via ANNs gave rise to CNNs. Early
CNNs [LBD+89] were mostly discarded for practical applications because they require
much more data during training than traditional methods and also more processing power
during inference. Passing 224 by 224 pixel images to a CNN, as is common today, was
simply not feasible if one wanted a reasonable inference time. With the development of
GPUs and supporting software such as the Compute Unified Device Architecture (CUDA)
toolkit, it was possible to perform many computations in parallel. The architecture of
CNNs lends itself well to parallel processing and thus CNNs slowly but surely overtook
other image classification methods.

LeNet-5

LeNet-5, developed and described by Lecun et al. [LBB+98], laid the foundation of CNNs
as we still use them today. The basic structure of convolutional layers with pooling

22



2.3. Image Classification

layers in-between and one or more fully-connected layers at the end has been iterated
on many times since then. LeCun et al. [LBD+89] introduced the first version of LeNet
when describing their system for automatic handwritten zip code recognition. They
applied backpropagation with Stochastic Gradient Descent (SGD) and used the scaled
hyperbolic tangent as the activation function. The error function with which the weights
are updated is MSE.

The architecture of LeNet-5 is composed of two convolutional layers, two pooling layers
and a dense block of three fully-connected layers. The input image is a grayscale image
of 32 by 32 pixels. The first convolutional layer generates six feature maps, each with
a scale of 28 by 28 pixels. Each feature map is fed to a pooling layer which effectively
downsamples the image by a factor of two. By aggregating each two by two area in the
feature map via averaging, the authors are more likely to obtain relative (to each other)
instead of absolute positions of the features. To make up for the loss in spatial resolution,
the following convolutional layer increases the amount of feature maps to 16 which aims
to increase the richness of the learned representations. Another pooling layer follows
which reduces the size of each of the 16 feature maps to five by five pixels. A dense block
of three fully-connected layers of 120, 84 and 10 neurons serves as the actual classifier in
the network. The last layer uses the euclidean Radial Basis Function (RBF) to compute
the class an image belongs to (0-9 digits).

The performance of LeNet-5 was measured on the Modified National Institute of Standards
and Technology (MNIST) database which consists of 70 000 labeled images of handwritten
digits. The MSE on the test set is 0.95%. This result is impressive considering that
character recognition with a CNN had not been done before. However, standard machine
learning methods of the time, such as manual feature engineering and SVMs, achieved
a similar error rate, even though they are much more memory-intensive. LeNet-5
was conceived to take advantage of the (then) large MNIST database. Since there
were not many datasets available at the time, especially with more samples than in
the MNIST database, CNNs were not widely used even after their viability had been
demonstrated by Lecun et al. [LBB+98]. Only in 2012 Krizhevsky, Sutskever, and Hinton
[KSH12] reintroduced CNNs (see section 2.2.2) and since then most state-of-the-art image
classification methods have used them.

AlexNet

AlexNet’s main contributions are the use of ReLUs, training on multiple GPUs, Local
Response Normalization (LRN) and overlapping pooling [KSH12]. As mentioned in
section 2.1.3, ReLUs introduce non-linearity into the network. Instead of using the
traditional non-linear activation function tanh, where the output is bounded between −1
and 1, ReLUs allow the output layers to grow as high as training requires it. Normalization
before an activation function is usually used to prevent the neuron from saturating, as
would be the case with tanh. Even though ReLUs do not suffer from saturation, the
authors found that LRN reduces the top-1 error rate by 1.4% [KSH12]. Overlapping
pooling, in contrast to regular pooling, does not easily accept the dominant pixel values
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per window. By smoothing out the pooled information, bias is reduced and networks are
slightly more resilient to overfitting. Overlapping pooling reduces the top-1 error rate by
0.4% [KSH12]. In aggregate, these improvements result in a top-5 error rate of below
25% at 16.4%.

These results demonstrated that CNNs can extract highly relevant feature representations
from images. While AlexNet was only concerned with the classification of images, it did
not take long for researchers to apply CNNs to the problem of object detection.

ZFNet

ZFNet’s [ZF14] contributions to the image classification field are twofold. First, the
authors develop a way to visualize the internals of a CNN with the use of deconvolution
techniques. Second, with the added knowledge gained from looking inside a CNN, they
improve AlexNet’s structure. The deconvolution technique is essentially the reverse
operation of a CNN layer. Instead of pooling (downsampling) the results of the layer,
Zeiler and Fergus [ZF14] unpool the max-pooled values by recording the maximum
positions of the maximum value per kernel. The maximum values are then put back
into each two by two area (depending on the kernel size). This process loses information
because a max-pooling layer is not invertible. The subsequent ReLU function can be
easily inverted because negative values are squashed to zero and positive values are
retained. The final deconvolution operation concerns the convolutional layer itself. In
order to reconstruct the original spatial dimensions (before convolution), a transposed
convolution is performed. This process reverses the downsampling which happens during
convolution.

With these techniques in place, the authors visualize the first and second layers of the
feature maps present in AlexNet. They identify multiple problems with their structure
such as aliasing artifacts and a mix of low and high frequency information without any
mid frequencies. These results indicate that the filter size in AlexNet is too large at 11
by 11 and the authors reduce it to seven by seven. Additionally, they modify the original
stride of four to two. These two changes result in an improvement in the top-5 error rate
of 1.6% over their own replicated AlexNet result of 18.1%.

GoogLeNet

GoogLeNet, also known as Inception v1, was proposed by Szegedy et al. [SLJ+15] to
increase the depth of the network without introducing too much additional complexity.
Since the relevant parts of an image can often be of different sizes but kernels within
convolutional layers are fixed, there is a mismatch between what can realistically be
detected by the layers and what is present in the dataset. Therefore, the authors propose
to perform multiple convolutions with different kernel sizes and concatenating them
together before sending the result to the next layer. Unfortunately, three by three and
five by five kernel sizes within a convolutional layer can make the network too expensive
to train. The authors add one by one convolutions to the outputs of the previous layer
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before passing the result to the three by three and five by five convolutions. The one
by one convolutions have the effect that the channels of the inputs (feature maps) are
reduced and are thus easier to process by the subsequent larger filters.

GoogLeNet consists of nine Inception modules stacked one after the other and a stem
with convolutions at the beginning as well as two auxiliary classifiers which help retain the
gradient during backpropagation. The auxiliary classifiers are only used during training.
The authors submitted multiple model versions to the 2004 ILSVRC and their ensemble
prediction model consisting of seven GoogleNets achieved a top-5 error rate of 6.67%,
which resulted in first place.

VGGNet

In the quest for ever-more layers and deeper networks, Simonyan and Zisserman [SZ15]
propose an architecture which is based on small-resolution kernels (receptive fields) for
each convolutional layer. They make extensive use of stacked three by three kernels and
one by one convolutions with ReLUs in-between to decrease the number of parameters.
Their choice relies on the fact that two three by three convolutional layers have an
effective receptive field of one five by five layer. The advantage is that they introduce
additional non-linearities by having two ReLUs instead of only one. The authors provide
five different networks with increasing number of parameters based on these principles.
The smallest network has a depth of eight convolutional layers and three fully-connected
layers for the head (11 in total). The largest network has 16 convolutional and three
fully-connected layers (19 in total). The fully-connected layers are the same for each
architecture, only the layout of the convolutional layers varies.

The deepest network with 19 layers achieves a top-5 error rate on ILSVRC 2014 of 9%.
If trained with different image scales in the range of S ∈ [256, 512], the same network
achieves a top-5 error rate of 8% (test set at scale 256). By combining their two largest
architectures and multi-crop as well as dense evaluation, they achieve an ensemble top-5
error rate of 6.8%, while their best single network with multi-crop and dense evaluation
results in 7%, thus beating the single-net submission of GoogLeNet (see section 2.3.2) by
0.9%.

ResNet

The 22-layer structure of GoogLeNet [SLJ+15] and the 19-layer structure of VGGNet
[SZ15] showed that going deeper is beneficial for achieving better classification performance.
However, the authors of VGGNet already note that stacking even more layers does not
lead to better performance because the model is saturated. He et al. [HZR+16] provide
a solution to the vanishing gradient as well as the degradation problem by introducing
skip connections to the network. They call their resulting network architecture ResNet
and since it is used in this work, we will give a more detailed account of its structure in
section 3.3.2.
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DenseNet

The authors of DenseNet [HLV+17] go one step further than ResNets by connecting every
convolutional layer to every other layer in the chain. Previously, each layer was connected
in sequence with the one before and the one after it. Residual connections establish a link
between the previous layer and the next one but still do not always propagate enough
information forward. These shortcut connections from earlier layers to later layers are
thus only taking place in an episodic way for short sections in the chain. DenseNets are
structured in a way such that every layer receives the feature map of every previous layer
as input. In ResNets, information from previous layers is added on to the next layer via
element-wise addition. DenseNets concatenate the features of the previous layers. The
number of feature maps per layer has to be kept low so that the subsequent layers can
still process their inputs. Otherwise, the last layer in each dense block would receive too
many channels which increases computational complexity.

The authors construct their network from multiple dense blocks which are connected via
a batch normalization layer, a one by one convolutional layer and a two by two pooling
layer to reduce the spatial resolution for the next dense block. Each dense block consists
of a Batch Normalization (BN) layer, a ReLU layer and a three by three convolutional
layer. In order to keep the number of feature maps low, the authors introduce a growth
rate k as a hyperparameter. The growth rate can be as low as k = 4 and still allow the
network to learn highly relevant representations.

In their experiments, the authors evaluate different combinations of dense blocks and
growth rates against ImageNet. Their DenseNet-161 (k = 48) achieves a top-5 error rate
with single-crop of 6.15% and with multi-crop 5.3%. Their DenseNet-BC variant requires
only one third of the amount of parameters of a ResNet-101 network to achieve the same
test error on the CIFAR-10 dataset.

MobileNet v3

MobileNet v3 by Howard et al. [HSC+19] is the third iteration of the original MobileNet
architecture [HZC+17]. MobileNets use depthwise separable convolution instead of regular
convolution. In the latter, the kernel in each convolutional layer is applied to all channels
of the input simultaneously. Depthwise convolution applies the kernel to each channel
separately instead and the output is then convolved in a second layer with a one by one
kernel over all channels. The second step is also called a pointwise convolution because it
squeezes the number of channels per one by one input field into n output channels.

The effect of using depthwise separable convolutions is that the amount of computation
needed is severely reduced compared to standard convolutions. A standard convolutional
layer with a kernel size of DK × DK , an output feature map size of DF × DF , M input
channels and N output channels has a computational cost of

DK · DK · M · N · DF · DF . (2.8)
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A depthwise separable convolution, however, has a computational cost of

DK · DK · M · DF · DF + M · N · DF · DF . (2.9)

The first summand refers to the cost of the depthwise convolution and added to it is
the cost for the pointwise convolution. The authors demonstrate that the reduction in
computational cost is

1
N

+ 1
D2

K

(2.10)

which—at a kernel size of three by three—results in a smaller computational cost of
between eight to nine times. MobileNet v2 [SHZ+18] introduced inverted residuals and
linear bottlenecks and MobileNet v3 [HSC+19] brought squeeze and excitation layers
among other improvements. These concepts led to better classification accuracy at the
same or smaller model size. The authors evaluate a large and a small variant of MobileNet
v3 on ImageNet on single-core phone processors and achieve a top-1 accuracy of 75.2%
and 67.4% respectively.

2.4 Transfer Learning
Transfer learning refers to the application of a learning algorithm to a target domain
by utilizing knowledge already learned from a different source domain [ZQD+21]. The
learned representations from the source domain are thus transferred to solve a related
problem in another domain. Transfer learning works because semantically meaningful
information an algorithm has learned from a (large) dataset is often meaningful in other
contexts as well, even though the new problem is not exactly the same problem for which
the original model had been trained for. An analogy to day-to-day life as humans can be
drawn with sports. Intuitively, skills learned during soccer such as ball control, improved
endurance and strategic thinking are often also useful in other ball sports. Someone who
is adept at certain kinds of sports will likely be able to pick up similar types much faster.

In mathematical terms, Pan and Yang [PY10] define transfer learning as:

[PY10, p.1347] Given a source domain DS and learning task TS , a target
domain DT and learning task TT , transfer learning aims to help improve the
learning of the target predictive function fT (·) in DT using the knowledge in
DS and TS , where DS ̸= DT , or TS ̸= TT .

In the machine learning world, collecting and labeling data for training a model is often
time consuming, expensive and sometimes not possible. Deep learning based models
especially require substantial amounts of data to be able to robustly classify images or
solve other tasks. Semi-supervised or unsupervised (see section 2.1) learning approaches
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can partially mitigate this problem, but having accurate ground truth data is usually a
requirement nonetheless. Through the publication of large labeled datasets such as via
the ILSVRCs, a basis for (pre-)training exists from which the model can be optimized
for downstream tasks.

Transfer learning is not a panacea, however. Care has to be taken to only use models
which have been pretrained in a source domain which is similar to the target domain in
terms of feature space. While this may seem to be an easy task, it is often not known in
advance if transfer learning is the correct approach. Furthermore, choosing whether to
only remove the fully-connected layers at the end of a pretrained model or to fine-tune
all parameters introduces at least one additional hyperparameter. These decisions have
to be made by comparing the source domain with the target domain, how much data
in the target domain is available, how much computational resources are available and
observing which layers are responsible for which features. Since earlier layers usually
contain low-level and later layers high-level information, resetting the weights of the last
few layers or replacing them with different ones entirely is also an option.

To summarize, while transfer learning is an effective tool and is likely a major factor in
the proliferation of deep learning based models, not all domains are suited for it. The
additional decisions which have to be made as a result of using transfer learning can
introduce more complexity than would otherwise be necessary for a particular problem.
It does, however, allow researchers to get started quickly and to iterate faster because
popular network architectures pretrained on ImageNet are integrated into the major
machine learning frameworks. Transfer learning is used extensively in this work to train
a classifier as well as an object detection model.

2.5 Hyperparameter Optimization
While a network is learning, the parameters of its layers are updated. These parameters
are learnable in the sense that changing them should bring the model closer to solving
a problem. Updating these parameters happens during the learning/training phase.
Hyperparameters, on the other hand, are not included in the learning process because
they are fixed before the model starts to train. They are fixed because hyperparameters
concern the structure, architecture and learning parameters of the model and without
having those in place, a model cannot start training.

Model designers have to carefully define values for a wide range of hyperparameters.
Which hyperparameters have to be set is determined by the type of model which is being
used. A SVM, for example, has a penalty parameter C which indicates to the network
how lenient it should be when misclassifying training examples. The type of kernel to
use is also a hyperparameter for any SVM and can only be answered by looking at the
distribution of the underlying data. In neural networks the range of hyperparameters
is even greater because every part of the network architecture such as how many layers
to stack, which layers to stack, which kernel sizes to use in each CNN layer and which
activation function(s) to use in-between the layers is a parameter which can be altered.
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Finding the best combination of some or all of the available hyperparameters is called
hyperparameter tuning.

Hyperparameter tuning can be and is often done manually by researchers where they
select values which have been known to work well. This approach—while it works to
some extent—is not optimal because adhering to best practice precludes parameter
configurations which would be closer to optimality for a given data set. Furthermore,
manual tuning requires a deep understanding of the model itself and how each parameter
influences it. Biases present in a researcher’s understanding are detrimental to finding
optimal hyperparameters and the amount of possible combinations can quickly get
intractable. Instead, automated methods to search the hyperparameter space offer an
unbiased and more efficient approach to hyperparameter tuning. This type of algorithmic
search is called hyperparameter optimization.

2.5.1 Grid Search
There are multiple possible strategies to opt for when optimizing hyperparameters. The
straightforward approach is to do grid search. In grid search, all hyperparameters
are discretized and all possible combinations mapped to a search space. The search
space is then sampled for configurations at evenly spaced points and the resulting
vectors of hyperparameter values are evaluated. For example, if a model has seven
hyperparameters and three of those can take on a continuous value, these three variables
have to be discretized. In practical terms this means that the model engineer chooses
suitable discrete values for said hyperparameters. Once all hyperparameters are discrete,
all possible combinations of the hyperparameters are evaluated. If each of the seven
hyperparameters has three discrete values, the number of possible combinations is

3 · 3 · 3 · 3 · 3 · 3 · 3 = 37 = 2187. (2.11)

For this example, evaluating 2187 possible combinations can already be intractable
depending on the time required for each run. Further, grid search requires that the
resolution of the grid is determined beforehand. If the points on the grid (combinations)
are spaced too far apart, the chance of finding a global optimum is lower than if the grid
is dense. However, a dense grid results in a higher number of possible combinations and
thus more time is required for an exhaustive search. Additionally, grid search suffers
from the curse of dimensionality because the number of evaluations scales exponentially
with the number of hyperparameters.

2.5.2 Random Search
Random search [PDD+09] is an alternative to grid search which often provides configura-
tions which are similar or better in the same amount of time than ones obtained with grid
search [BB12]. Random search performs especially well in high-dimensional environments
because the hyperparameter response surface is often of low effective dimensionality
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[BB12]. That is, a low number of hyperparameters disproportionately affects the perfor-
mance of the resulting model and the rest has a negligible effect. We use random search
in this work to improve the hyperparameters of our classification model.

2.5.3 Evolution Strategies
Evolution strategies follow a population-based model where the search strategy starts
from initial random configurations and evolves the hyperparameters through mutation
and crossover. Mutation randomly changes the value of a hyperparameter and crossover
creates a new configuration by mixing the values of two configurations. Hyperparameter
optimization with evolutionary strategies roughly goes through the following stages
[BBL+23].

1. Set the hyperparameters to random initial values and create a starting population
of configurations.

2. Evaluate each configuration.

3. Rank all configurations according to a fitness function.

4. The best-performing configurations are selected as parents.

5. Child configurations are created from the parent configurations by mutation and
crossover.

6. Evaluate the child configurations.

7. Go to step three and repeat the process until a termination condition is reached.

This strategy is more efficient than grid search or random search but requires a substantial
amount of iterations for good solutions and can thus be too expensive for hyperparameter
optimization [BBL+23]. We use an evolution strategy based on a genetic algorithm in
this work to optimize the hyperparameters of our object detection model.

2.6 Related Work
The literature on machine learning in agriculture is broadly divided into four main
areas: livestock management, soil management, water management, and crop management
[BTD+21]. Of those four, water management only makes up about 10% of all surveyed
papers during the years 2018–2020. This highlights the potential for research in this
area to have a high real-world impact. Besides agriculture, algorithmic approaches to
watering house plants have not been studied at all to the best of our knowledge. Related
work thus mostly focuses on a small selection of plants which are used for agricultural
purposes. Nevertheless, the methods presented in those works are of interest for our own
work.
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Su et al. [SCL+20] used traditional feature extraction and preprocessing techniques to
train various machine learning models for classifying water stress for a wheat field. They
took top-down images of the field using an Unmanned Aerial Vehicle (UAV), segmented
wheat pixels from background pixels and constructed features based on spectral intensities
and color indices. The features are fed into a SVM with a Gaussian kernel and optimized
using Bayesian optimization. Their results of 92.8% accuracy show that classical machine
learning approaches can offer high classification scores if meaningful features are chosen.
One disadvantage is that feature extraction is often a tedious task involving trial and
error (see section 2.3.1). Advantages are the small data set and the short training time
(3 s) required to obtain a good result.
Similarly, López-García et al. [LIM+22] investigated the potential for UAVs to determine
water stress for vineyards using RGB and multispectral imaging. The measurements of
the UAV were taken at 80 m with a common off-the-shelf Advanced Photo System type-C
(APS-C) sensor. At the same time, stem water measurements were taken with a pressure
chamber to be able to evaluate the performance of an ANN against the ground truth.
The RGB images were used to calculate the Green Canopy Cover (GCC) which was also
fed to the model as input. The model achieves a high determination coefficient R2 of
0.98 for the 2018 season on RGB data with a relative error of RE = 10.84 %. However,
their results do not transfer well to the other seasons under survey (2019 and 2020).
Zhuang et al. [ZWJ+17] showed that water stress in maize can be detected early on
and, therefore, still provide actionable information before the plants succumb to drought.
They installed a camera which took 640 by 480 pixel RGB images every two hours. A
simple linear classifier (SVM) segmented the image into foreground and background
using the green color channel. The authors constructed a 14-dimensional feature space
consisting of color and texture features. A Gradient Boosted Decision Tree (GBDT)
model classified the images into water stressed and non-stressed and achieved an accuracy
of 90.39 %. Remarkably, the classification was not significantly impacted by illumination
changes throughout the day.
An et al. [ALL+19] used the ResNet50 model (see section 2.3.2) as a basis for transfer
learning and achieved high classification scores (ca. 95%) on maize. Their model was fed
with 640 by 480 pixel images of maize from three different viewpoints and across three
different growth phases. The images were converted to grayscale which turned out to
slightly lower classification accuracy. Their results also highlight the superiority of Deep
Convolutional Neural Networkss (DCNNs) compared to manual feature extraction and
GBDTs.
Chandel et al. [CCR+21] investigated deep learning models in depth by comparing
three well-known CNNs. The models under scrutiny were AlexNet (see section 2.3.2),
GoogLeNet (see section 2.3.2), and Inception v3. Each model was trained with a dataset
containing images of maize, okra, and soybean at different stages of growth and under
stress and no stress. The researchers did not include an object detection step before image
classification and compiled a fairly small dataset of 1200 images. Of the three models,
GoogLeNet beat the other two with a sizable lead at a classification accuracy of >94% for
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all three types of crop. The authors attribute its success to its inherently deeper structure
and application of multiple convolutional layers at different stages. Unfortunately, all
of the images were taken at the same 45◦ ± 5◦ angle and it stands to reason that the
models would perform significantly worse on images taken under different conditions.
Ramos-Giraldo et al. [RRL+20] detected water stress in soybean and corn crops with a
pretrained model based on DenseNet-121 (see section 2.3.2). Low-cost cameras deployed
in the field provided the training data over a 70-day period. They achieved a classification
accuracy for the degree of wilting of 88%.
In a later study, the same authors [RRM+20] deployed their machine learning model
in the field to test it for production use. They installed multiple Raspberry Pis with
attached Raspberry Pi Cameras which took images in 30 min intervals. The authors had
difficulties with cameras not working and power supply issues. Furthermore, running
the model on the resource-constrained RPis proved difficult and they had to port their
TensorFlow model to a TensorFlow Lite model. This conversion lowered their classification
scores slightly since it was sometimes off by one water stress level. Nevertheless, their
architecture allowed for reasonably high classification scores on corn and soybean with a
low-cost setup.
Azimi, Kaur, and Gandhi [AKG20] demonstrate the efficacy of deep learning models
versus classical machine learning models on chickpea plants. The authors created their
own dataset in a laboratory setting for stressed and non-stressed plants. They acquired
8000 images at eight different angles in total. For the classical machine learning models,
they extracted feature vectors using SIFT and HOG. The features are fed into three
classical machine learning models: SVM, k-Nearest Neighbors (k-NN), and a Decision
Tree (DT) using the Classification and Regression Tree (CART) algorithm. On the deep
learning side, they used their own CNN architecture and the pretrained ResNet-18 (see
section 2.3.2) model. The accuracy scores for the classical models was in the range of
60% to 73% with the SVM outperforming the two others. The CNN achieved higher
scores at 72% to 78% and ResNet-18 achieved the highest scores at 82% to 86%. The
results clearly show the superiority of deep learning over classical machine learning. A
downside of their approach lies in the collection of the images. The background in all
images was uniformly white and the plants were prominently placed in the center. It
should, therefore, not be assumed that the same classification scores can be achieved on
plants in the field with messy and noisy backgrounds as well as illumination changes and
so forth.
Venal, Fajardo, and Hernandez [VFH19] combine a standard CNN architecture with
a SVM for classification. The CNN acts as a feature extractor and instead of using
the last fully-connected layers of an off-the-shelf CNN, they replace them with a SVM.
They use this classifier to determine which biotic or abiotic stresses soybeans suffer
from. Their dataset consists of 65 184 64 by 64 RGB images of which around 40 000
were used for training and 6000 for testing. All images show a close-up of a soybean
leaf. Their CNN architecture makes use of three Inception modules (see section 2.3.2)
with Squeeze-Excitation (SE) blocks and BN layers in-between. Their model achieves an
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average F1-score of 97% and an average accuracy of 97.11% on the test set. Overall, the
hybrid structure of their model is promising, but it is not clear why only using the CNN
as a feature extractor provides better results than using it also for classification.

Aversano, Bernardi, and Cimitile [ABC22] perform water stress classification on images
of tomato crops obtained with a UAV. Their dataset consists of 6600 thermal and 6600
optimal images which have been segmented using spectral clustering. They use two
VGG-19 networks (see section 2.3.2) which extract features from the thermal (network
one) and optical (network two) images. Both feature extractors are merged together via
a fully-connected and softmax layer to predict one of three classes: water excess, well-
watered and water deficit. The authors select three hyperparameters (image resolution,
optimization algorithm and batch size) and optimize them for accuracy. The best classifier
works with a resolution of 512 px, SGD and a batch size of 32. This configuration achieves
an accuracy of 80.5% and an F1-score of 79.4% on the validation set. To test whether
the optical or thermal images are more relevant for classification, the authors conduct an
ablation study. The results show that the network with the optical images alone achieves
an F1-score of 74% while only using the thermal images gives an F1-score of 62%.

A significant problem in the detection of water stress is posed by the evolution of indicators
across time. Since physiological features such as leaf wilting progress as time passes, the
additional time domain has to be taken into account. To make use of these spatiotemporal
patterns, Azimi, Wadhawan, and Gandhi [AWG21] propose the application of a CNN
Long Short-Term Memory Network (CNN-LSTM) architecture. The model was trained
on chickpea plants and achieves a robust classification accuracy of >97%.

All of the previously mentioned studies solely focus on either one specific type of plant
or on a small number of them. Furthermore, the researchers construct their datasets in
homogeneous environments which often do not mimic real-world conditions. Finally, there
exist no studies on common household or garden plants. This fact may be attributed
to the propensity for funding to come from the agricultural sector. It is thus desirable
to explore how plants other than crops show water stress and if there is additional
information to be gained from them.
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CHAPTER 3
Prototype Design

The following sections establish the requirements as well as the general design philosophy
of the prototype. We will then go into detail about the selected model architectures and
data augmentations which are applied during training.

3.1 Requirements
The basic requirements for the prototype have been introduced in section 1.1 and stem
from the research questions defined in the same section. The aim of this work is to
detect household plants, classify them into water-stressed or healthy, and to continuously
publish the results via a Representational State Transfer (REST) API. To this end, a
portable SBC such as the Nvidia Jetson Nano stores the trained models locally and uses
them for inference on images which are periodically taken with an attached camera.

The prototype is thus required to be running the models on its own without help from a
central server or other computational resource. However, because the results are published
via a REST service, internet access is necessary to be able to retrieve the predictions.

Other technical requirements are that the inference on the device for both models does
not take too long (i.e. not longer than a few seconds per image). Even though plants are
not known to grow extremely rapidly from one minute to the next, keeping the inference
time low results in a more resource efficient prototype. As such, it is possible to run the
device off of a battery which completes the self-contained nature of the prototype.

From an evaluation perspective, the models should have high specificity and sensitivity.
In order to be useful for plant water-stress detection, it is necessary to identify as many
water-stressed plants as possible while keeping the number of false positives as low as
possible (specificity). If the number of water-stressed plants is severely overestimated,
downstream watering systems could damage the plants by overwatering. Conversely,
if the number of water-stressed plants is underestimated, some plants are likely to die
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3. Prototype Design

because no water-stress is detected (sensitivity). Furthermore, the models are required to
attain a reasonable level of precision as well as good localization of plants. It is difficult
to determine said levels beforehand, but considering the task at hand as well as general
object detection and classification benchmarks such as COCO [LMB+15], we expect a
mAP of around 40% and precision and recall values of 70%.

Other basic model requirements are robust object detection and classification as well as
good generalizability. The prototype should be able to function in different environments
where different lighting conditions, different backgrounds, and different angles do not
have an impact on model performance. Where feasible, models should be evaluated with
cross validation to ensure that the performance of the model on the test set is a good
indicator of its generalizability. In the same vein, models should not overfit or underfit
the training data which also results in bad generalizability.

During the iterative process of training the models as well as for evaluation purposes, the
models should be interpretable. Especially when there is comparatively little training
data available, verifying if the model is focusing on the right parts of an image gives
insight into its robustness and generalizability which can increase trust. Furthermore,
if a model is clearly not focusing on the right parts of an image, interpretability can
help debug where the problem lies. Interpretability is thus an important property of any
model so that the model engineer is able to steer the training and inference process in
the right direction.

3.2 Design
Figure 3.1 shows the overall processing loop which happens on the device. The camera is
directly attached to the Nvidia Jetson Nano via a Camera Serial Interface (CSI) cable.
Since the cable is quite rigid, the camera must be mounted on a small stand such as
a tripod. Images coming in from the camera are then passed to the object detection
model running on the Nvidia Jetson Nano. The model detects all plants in the image
and returns the coordinates of a bounding box per plant. These coordinates are used
to cut out each plant from the original image. The cutout is then passed to the second
model running on the Nvidia Jetson Nano which determines if the plant is water-stressed
or not. The percentage values of the prediction are mapped to a scale between one and
ten, where ten indicates that the plant is in a very dire state. This number is available
via a REST endpoint with additional information such as current time as well as how
long it has been since the state has been better than three. The endpoint publishes this
information for every plant which has been detected.

The water stress prediction itself consists of two stages. First, plants are detected and,
second, each individual plant is classified. This two-stage approach lends itself well to a
two-stage model structure. Since the first stage is an object detection task, we employ
an object detection model and pass the individual plant images to a second model—the
classifier.
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3.2. Design

Figure 3.1: Methodological approach for the prototype. The prototype will run in a loop
which starts at the top left corner. First, the camera attached to the prototype takes
images of plants. These images are passed to the models running on the prototype. The
first model generates bounding boxes for all detected plants. The bounding boxes are
used to cut out the individual plants and pass them to the state classifier in sequence.
The classifier outputs a probability score indicating the amount of stress the plant is
experiencing. After a set amount of time, the camera takes a picture again and the
process continues indefinitely.

While most object detection models could be trained to determine the difference between
water-stressed and healthy, the reason for this two-stage design lies in the availability of
data. To our knowledge, there are no sufficiently large enough datasets available which
contain labeling information for water-stressed and healthy. Instead, most datasets only
classify common objects such as plane, person, car, bicycle, and so forth (e.g. COCO
[LMB+15]). However, the classes plant and houseplant are present in most datasets and
provide the basis for our object detection model. The size of these datasets allows us
to train the object detection model with a large number of samples which would have
been unfeasible to label on our own. The classifier is then trained with a smaller data
set which only comprises individual plants and their associated classification (stressed or
healthy).

Both datasets (object detection and classification) only allow us to train and validate
each model separately. A third dataset is needed to evaluate the detection/classification
pipeline as a whole. To this end, we construct our own dataset where all plants per image
are labeled with bounding boxes as well as the classes stressed or healthy. This dataset
is small in comparison to the one with which the object detection model is trained but
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3. Prototype Design

suffices because it is only used for evaluation. Labeling each sample in the evaluation
dataset manually is still a laborious task which is why each image is preannotated by
the already existing object detection and classification model. The task of labeling thus
becomes a task of manually correcting the annotations which have been generated by the
models.

3.3 Selected Methods
In the following sections we will go into detail about the two selected architectures for
our prototype. The object detector we chose—YOLOv7—is part of a larger family of
models which all function similarly but have undergone substantial changes from version
to version. In order to understand the used model, we trace the improvements to the
YOLO family from version one to version seven. For the classification stage, we have
opted for a ResNet architecture which is also described in detail.

3.3.1 You Only Look Once
The YOLO family of object detection models started in 2015 when [RDG+16] published
the first version. Since then there have been up to 16 updated versions depending on
how one counts. The original YOLO model marked a shift from two-stage detectors to
one-stage detectors as is evident in its name. Two-stage detectors (see section 2.2.3) rely
on a proposal generation step and then subsequent rejection or approval of each proposal
to detect objects. Generating proposals, however, is an expensive procedure which limits
the amount of object detections per second. YOLO dispenses with the extra proposal
generation step and instead provides a unified one-stage detection approach.

The first version of YOLO [RDG+16] framed object detection as a single regression
problem which allows the model to directly infer bounding boxes with class probabilities
from image pixels. This approach has the added benefit that YOLO sees an entire image
at once, allowing it to capture more contextual information than with sliding window
or region proposal methods. However, YOLO still divides an image into regions which
are called grid cells, but this is just a simple operation and does not rely on external
algorithms such as selective search [UvdSG+13]. The number of bounding box proposals
within YOLO is much lower than with selective search as well (98 versus 2000 per image).

The architecture of YOLO is similar to GoogleNet (see section 2.3.2), but the authors
do not use inception modules directly. The network contains 24 convolutional layers
in total where most three by three layers are fed a reduced output from a one by one
layer. This approach reduces complexity substantially—as has been demonstrated with
GoogleNet. Every block of convolutional layers is followed by a two by two maxpool
layer for downsampling. The model expects an input image of size 448 by 448 pixels
but has been pretrained on ImageNet with half that resolution (i.e. 224 by 224 pixels).
After the convolutional layers, the authors add two fully-connected layers to produce an
output of size 7 × 7 × 30. This output tensor is chosen because the VOC data set has 20
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3.3. Selected Methods

classes C and each grid cell produces two bounding boxes B where each bounding box is
described by x, y, w, h and the confidence. With a grid size of S = 7, the output is thus
S × S × (B · 5 + C) = 7 × 7 × 30.

Each grid cell is responsible for a detected object if the object’s center coordinates (x, y)
fall within the bounds of the cell. Furthermore, every cell can only predict one object
which leads to problems with images of dense objects. In that case, a finer grid size is
needed. The w and h of a bounding box is relative to the image as a whole which allows
the bounding box to span more than one grid cell.

Since the authors frame object detection as a regression problem of bounding box
coordinates (center point (x, y), width w, and height h), object probabilities per box,
and class probabilities, they develop a loss function which is a sum of five parts. The first
part describes the regression for the bounding box center coordinates (sum of squared
differences), the second part the width and height of the box, the third part the confidence
of there being an object in a box, the fourth part the confidence if there is no actual
object in the box, and the fifth part the individual class probabilities (see equation 3.1).
The two constants λcoord and λnoobj are weighting factors which increase the loss from
bounding box coordinate predictions and decrease the loss from confidence predictions
for boxes without objects. These are set to λcoord = 5 and λnoobj = 0.5.
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The original YOLO model has a few limitations. It only predicts one class per bounding
box and can only accommodate two bounding boxes per grid cell. YOLO thus has
problems detecting small and dense objects. The most severe problem, however, is the
localization accuracy. The loss function treats errors in small bounding boxes similarly
to errors in big bounding boxes even though small errors have a higher impact on small
bounding boxes than big ones. This results in a more lenient loss function for IOUs of
small bounding boxes and, therefore, worse localization.
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YOLOv2

YOLOv2 [RF17] incorporates multiple improvements such as BN layers, higher resolution
inputs, a fully-convolutional architecture, anchor boxes, dimension priors, and multi-scale
training. Of particular interest is the use of anchor boxes to localize bounding boxes.
Instead of regressing arbitrary bounding box sizes, YOLOv2 predicts the bounding box
offsets from a set of predefined boxes which are called anchor boxes. The authors note
that finding a good set of prior anchor boxes by hand is error-prone and suggest finding
them via k-means clustering (dimension priors). They select five anchor boxes per grid
cell which still results in high recall but does not introduce too much complexity.

These additional details result in an improved mAP of 78.6% on the VOC 2007 dataset
compared to 63.4% of the previous YOLO version. YOLOv2 still maintains a fast
detection rate at 40 fps (mAP 78.6%) and up to 91 fps (mAP 69%).

YOLOv3

YOLOv3 [RF18] provided additional updates to the YOLOv2 model. To be competitive
with the deeper network structures of state-of-the-art models at the time, the authors
introduce a deeper feature extractor called Darknet-53. It makes use of the residual
connections popularized by ResNet [HZR+16] (see section 2.3.2). Darknet-53 is more
accurate than Darknet-19 and compares to ResNet-101 but can process more images
per second (78 fps versus 53 fps). The activation function throughout the network is still
leaky ReLU, as in earlier versions.

YOLOv3 uses multi-scale predictions to achieve better detection ratios across object
sizes. Inspired by FPNs (see section 2.2.3), YOLOv3 uses predictions at different scales
from the feature extractor and combines them to form a final prediction. Combining the
features from multiple scales is often done in the neck of the object detection architecture.

Around the time of the publication of YOLOv3, researchers started to use the terminology
backbone, neck and head to describe the architecture of object detection models. The
feature extractor (Darknet-53 in this case) is the backbone and provides the feature
maps which are aggregated in the neck and passed to the head which outputs the final
predictions. In some cases there are additional postprocessing steps in the head such as
Non Maximum Suppression (NMS) to eliminate duplicate or suboptimal detections.

While YOLOv2 had problems detecting small objects, YOLOv3 performs much better
on them (Average Precision (AP) of 18.3% versus 5% on COCO). The authors note,
however, that the new model sometimes has comparatively worse results with larger
objects. The reasons for this behavior are unknown. Additionally, YOLOv3 is still
lagging behind other detectors when it comes to accurately localizing objects. The COCO
evaluation metric was changed from the previous AP0.5 to the mAP between 0.5 to 0.95
which penalizes detectors which do not achieve close to perfect IOU scores. This change
highlights YOLOv3’s weakness in that area.
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YOLOv4

Keeping in line with the aim of carefully balancing accuracy and speed of detection,
Bochkovskiy, Wang, and Liao [BWL20] publish the fourth version of YOLO. The authors
investigate the use of what they term bag of freebies—methods which increase training
time while increasing inference accuracy without sacrificing inference speed. A prominent
example of such methods is data augmentation (see section 3.3.3). Specifically, the
authors propose to use mosaic augmentation which lowers the need for large mini-batch
sizes. They also use new features such as weighted residual connections [SGZ16], a
modified Spatial Attention Module (SAM) [WPL+18], a modified Path Aggregation
Network (PANet) [LQQ+18] for the neck, Complete Intersection over Union (CIoU) loss
[ZWL+20] for the detector and the Mish activation function [Mis20].

Taken together, these additional improvements yield a mAP of 43.5% on the COCO test
set while maintaining a speed of above 30 fps on modern GPUs. YOLOv4 was the first
version which provided results on all scales (S, M, L) that were better than almost all
other detectors at the time without sacrificing speed.

YOLOv5

The author of YOLOv5 [Joc20] ported the code from YOLOv4 from the Darknet
framework to PyTorch which facilitated better interoperability with other Python utilities.
New in this version is the pretraining algorithm called AutoAnchor which adjusts the
anchor boxes based on the dataset at hand. This version also implements a genetic
algorithm for hyperparameter optimization (see section 2.5.3) which is used in our work
as well.

Version 5 comes in multiple architectures of various complexity. The smallest—and there-
fore fastest—version is called YOLOv5n where the n stands for nano. Additional versions
with increasing parameters are YOLOv5s (small), YOLOv5m (medium), YOLOv5l
(large), and YOLOv5x (extra large). The smaller models are intended to be used in
resource constrained environments such as edge devices but come with a cost in accuracy.
Conversely, the larger models are for tasks where high accuracy is paramount and enough
computational resources are available. The YOLOv5x model achieves a mAP of 50.7%
on the COCO test dataset.

YOLOv6

The authors of YOLOv6 [LLJ+22] use a new backbone based on RepVGG [DZM+21]
which they call EfficientRep. They also use different losses for classification (varifocal
loss [ZWD+21]) and bounding box regression (Scylla Intersection over Union (SIoU)
[Gev22]/Generalized Intersection over Union (GIoU) [RTG+19]). YOLOv6 is made
available in eight scaled version of which the largest achieves a mAP of 57.2% on the
COCO test set.
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YOLOv7

At the time of implementation of our own plant detector, YOLOv7 [WBL22] was the
newest version within the YOLO family. Similarly to YOLOv4, it introduces more
trainable bag of freebies which do not impact inference time. The improvements include
the use of Extended Efficient Layer Aggregation Networks (E-ELANs) (based on Efficient
Layer Aggregation Networks (ELANs) [WLY22]), joint depth and width model scaling
techniques, reparameterization on module level, and an auxiliary head—similarly to
GoogleNet (see section 2.3.2)—which assists during training. The model does not use
a pretrained backbone, it is instead trained from scratch on the COCO dataset. These
changes result in much smaller model sizes compared to YOLOv4 and a mAP of 56.8%
with a detection speed of over 30 fps.

We use YOLOv7 in our own work during the plant detection stage because it was the
fastest and most accurate object detector at the time of implementation.

3.3.2 ResNet
Early research [BSF94; GB10] already demonstrated that the vanishing/exploding gradi-
ent problem with standard gradient descent and random initialization adversely affects
convergence during training and results in worse performance than would be otherwise
achievable with the same architecture. If a neural network is trained with gradient
descent by the application of the chain rule (backpropagation), weight updates are passed
from the later layers back through the network to the early layers. Unfortunately, with
some activation functions (notably tanh), the gradient can be very small and decreases
exponentially the further it passes through the network. The effect being that the early
layers do not receive any weight updates which can stop the learning process entirely.

There are multiple potential solutions to the vanishing gradient problem. Different weight
initialization schemes [GB10; SA15] as well as BN layers [IS15] can help mitigate the
problem. The most effective solution yet, however, was proposed as residual connections
by He et al. [HZR+16]. Instead of connecting each layer only to the previous and next
layer in a sequential way, the authors add the input of the previous layer to the output of
the next layer. This is achieved through the aforementioned residual or skip connections
(see figure 3.3).

He et al. [HZR+16] develop a new architecture called ResNet based on VGGNet (see
section 2.3.2) which includes residual connections after every second convolutional layer.
The filter sizes in their approach are smaller than in VGGNet which results in much
fewer trainable parameters overall. Since residual connections do not add additional
parameters and are relatively easy to add to existing network structures, the authors
compare four versions of their architecture: one with 18 and the other with 34 layers,
each with (ResNet) and without (plain ResNet) residual connections. Curiously, the
34-layer plain network performs worse on ImageNet classification than the 18-layer plain
network. Once residual connections are used, however, the 34-layer network outperforms
the 18-layer version by 2.85 percentage points on the top-1 error metric of ImageNet.
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Figure 3.2: Residual connections: information from previous layers flows into subsequent
layers before the activation function is applied. The shortcut connection provides a path
for information to skip multiple layers. These connections are parameter-free because of
the identity mapping. The symbol � represents simple element-wise addition. Figure
redrawn from He et al. [HZR+16].
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Figure 3.3: A bottleneck building block used in the ResNet-50, ResNet-101 and ResNet-
152 architectures. The one by one convolutions serve as a reduction and then inflation of
dimensions. The dimension reduction results in lower input and output dimensions for
the three by three layer and thus improves training time. Figure redrawn from He et al.
[HZR+16] with our own small changes.

43



3. Prototype Design

We use the ResNet-50 model developed by He et al. [HZR+16] pretrained on ImageNet
in our own work. The 50-layer model uses bottleneck building blocks instead of the two
three by three convolutional layers which lie in-between the residual connections of the
smaller ResNet-18 and ResNet-34 models. We chose this model because it provides a
suitable trade off between model complexity and inference time.

3.3.3 Data Augmentation
Data augmentation is an essential part of every training process throughout machine
learning. By perturbing already existing data with transformations, model engineers
achieve an artificial enlargement of the dataset which allows the machine learning model
to learn more robust features. It can also reduce overfitting for smaller datasets. In
the object detection world, special augmentations such as mosaic help with edge cases
which might crop up during inference. For example, by combining four or more images
of the training set into one the model better learns to draw bounding boxes around
objects which are cut off and at the edges of the individual images. Since we use data
augmentation extensively during the training phases, we will list a small selection of
them.

HSV-hue Randomly change the hue of the color channels.

HSV-saturation Randomly change the saturation of the color channels.

HSV-value Randomly change the value of the color channels.

Translation Randomly translate, i.e., move the image by a specified amount of pixels.

Scaling Randomly scale the image up and down by a factor.

Rotation Randomly rotate the image.

Inversion Randomly flip the image along the x or the y-axis.

Mosaic Combine multiple images into one in a mosaic arrangement.

Mixup Create a linear combination of multiple images.

These augmentations can either be defined to happen with a fixed value and a specified
probability or they can be applied to all images, but the value is not fixed. For example,
one can specify a range for the degree of rotation and every image is rotated by a random
value within that range. Or these two options are combined to rotate an image by a
random value within a range with a specified probability.
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Prototype Implementation

In this chapter we describe the implementation of the prototype. Part of the implemen-
tation is how the two models were trained and with which datasets, how the models are
deployed to the SBC, and how they were optimized.

4.1 Object Detection
As mentioned before, our approach is split into a detection and a classification stage.
The object detector detects all plants in an image during the first stage and passes the
cutouts on to the classifier. In this section, we describe what the dataset the object
detector was trained with looks like, what the results of the training phase are and how
the model was optimized with respect to its hyperparameters.

4.1.1 Dataset
The object detection model has to correctly detect plants in various locations, different
lighting conditions, and in partially occluded settings. Fortunately, there are many
datasets available which contain a large amount of classes and samples of common
everyday objects. Most of these datasets contain at least one class about plants and
multiple related classes such as houseplant and potted plant can be merged together to
form a single plant class which exhibits a great variety of samples. One such dataset
which includes the aforementioned classes is the Open Images Dataset (OID) [KRA+20;
KDA+17].

The OID has been published in multiple versions starting in 2016 with version one.
The most recent iteration is version seven which has been released in October 2022.
We use version six of the dataset in our own work which contains 9 011 219 training,
41 620 validation, and 125 436 testing images. The dataset provides image-level labels,
bounding boxes, object segmentations, visual relationships, and localized narratives on
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those images. For our own work, we are only interested in the labeled bounding boxes
of all images which belong to the classes Houseplant and Plant with their respective
class identifiers /m/03fp41 and /m/05s2s. These images have been extracted from the
dataset and arranged in the directory structure which YOLOv7 requires. The bounding
boxes themselves are collapsed into one single label Plant and converted to the YOLOv7
label format. In total, there are 79 204 images with 284 130 bounding boxes in the
training set. YOLOv7 continuously validates the training progress after every epoch on
a validation set of 3091 images with 4092 bounding boxes.

4.1.2 Training Phase
We use the smallest YOLOv7 model which has 36.9 × 106 parameters [WBL22] and has
been pretrained on the COCO dataset [LMB+15] with an input size of 640 by 640 pixels.
The object detection model was then fine-tuned for 300 epochs on the training set. The
weights from the best-performing epoch were saved. The model’s fitness for each epoch
is calculated as the weighted average of mAP@0.5 and mAP@0.5:0.95:

fepoch = 0.1 · mAP@0.5 + 0.9 · mAP@0.5:0.95 (4.1)

Figure 4.1 shows the model’s fitness over the training period of 300 epochs. The gray
vertical line indicates the maximum fitness of 0.61 at epoch 133. The weights of that
epoch were frozen to be the final model parameters. Since the fitness metric assigns
the mAP at the higher range the overwhelming weight, the mAP@0.5 starts to decrease
after epoch 30, but the mAP@0.5:0.95 picks up the slack until the maximum fitness at
epoch 133. This is an indication that the model achieves good performance early on
and continues to gain higher confidence values until performance deteriorates due to
overfitting.

Overall precision and recall per epoch are shown in figure 4.2. The values indicate that
neither precision nor recall change materially during training. In fact, precision starts
to decrease from the beginning, while recall experiences a barely noticeable increase.
Taken together with the box and object loss from figure 4.3, we speculate that the
pretrained model already generalizes well to plant detection because one of the categories
in the COCO [LMB+15] dataset is potted plant. Any further training solely impacts the
confidence of detection but does not lead to higher detection rates. This conclusion is
supported by the increasing mAP@0.5:0.95 until epoch 133.

Further culprits for the flat precision and recall values may be found in bad ground
truth data. The labels from the OID are sometimes not fine-grained enough. Images
which contain multiple individual—often overlapping—plants are labeled with one large
bounding box instead of multiple smaller ones. The model recognizes the individual
plants and returns tighter bounding boxes even if that is not what is specified in the
ground truth. Therefore, it is prudent to limit the training phase to relatively few epochs
in order to not penalize the more accurate detections of the model. The smaller bounding
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Figure 4.1: Object detection model fitness for each epoch calculated as in equation 4.1.
The vertical gray line at 133 marks the epoch with the highest fitness.
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Figure 4.2: Overall precision and recall during training for each epoch. The vertical gray
line at 133 marks the epoch with the highest fitness.
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Figure 4.3: Box and object loss measured against the validation set of 3091 images and
4092 ground truth labels. The class loss is omitted because there is only one class in the
dataset and the loss is therefore always zero.

boxes make more sense considering the fact that the cutout is passed to the classifier in
a later stage. Smaller bounding boxes help the classifier to only focus on one plant at a
time and to not get distracted by multiple plants in potentially different stages of wilting.

The box loss decreases slightly during training which indicates that the bounding boxes
become tighter around objects of interest. With increasing training time, however, the
object loss increases, indicating that less and less plants are present in the predicted
bounding boxes. It is likely that overfitting is a cause for the increasing object loss from
epoch 40 onward. Since the best weights as measured by fitness are found at epoch 133
and the object loss accelerates from that point, epoch 133 is arguably the correct cutoff
before overfitting occurs.

4.1.3 Hyperparameter Optimization

To further improve the object detection performance, we perform hyperparameter opti-
mization using a genetic algorithm. Evolution of the hyperparameters starts from the
initial 30 default values provided by the authors of YOLO. Of those 30 values, 26 are
allowed to mutate. During each generation, there is an 80% chance that a mutation
occurs with a variance of 0.04. To determine which generation should be the parent of
the new mutation, all previous generations are ordered by fitness in decreasing order.
At most five top generations are selected and one of them is chosen at random. Better
generations have a higher chance of being selected as the selection is weighted by fitness.
The parameters of that chosen generation are then mutated with the aforementioned
probability and variance. Each generation is trained for three epochs and the fitness of
the best epoch is recorded.

In total, we ran 87 iterations of which the 34th generation provides the best fitness of
0.6076. Due to time constraints, it was not possible to train each generation for more
epochs or to run more iterations in total. We assume that the performance of the first
few epochs is a reasonable proxy for model performance overall. The optimized version
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Figure 4.4: Object detection model fitness for each epoch calculated as in equation 4.1.
The vertical gray line at 27 marks the epoch with the highest fitness of 0.6172.

of the object detection model is then trained for 70 epochs using the parameters of the
34th generation.

Figure 4.4 shows the model’s fitness during training for each epoch. After the highest
fitness of 0.6172 at epoch 27, the performance quickly declines and shows that further
training would likely not yield improved results. The model converges to its highest
fitness much earlier than the non-optimized version, which indicates that the adjusted
parameters provide a better starting point in general. Furthermore, the maximum fitness
is 0.74 percentage points higher than in the non-optimized version.

Figure 4.5 shows precision and recall for the optimized model during training. Similarly
to the non-optimized model from figure 4.2, both metrics do not change materially during
training. Precision is slightly higher than in the non-optimized version and recall hovers
at the same levels.

The box and object loss during training is pictured in figure 4.6. Both losses start from
a lower level which suggests that the initial optimized parameters allow the model to
converge quicker. The object loss exhibits a similar slope to the non-optimized model in
figure 4.3. The vertical gray line again marks epoch 27 with the highest fitness. The box
loss reaches its lower limit at that point and the object loss starts to increase again after
epoch 27.
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Figure 4.5: Overall precision and recall during training for each epoch of the optimized
model. The vertical gray line at 27 marks the epoch with the highest fitness.
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Figure 4.6: Box and object loss measured against the validation set of 3091 images and
4092 ground truth labels. The class loss is omitted because there is only one class in the
dataset and the loss is therefore always zero.
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4.2 Classification
The second stage of our approach consists of the classification model which determines
whether the plant in question is water-stressed or not. The classifier receives the
cutouts for each plant from stage one (object detection). We chose a ResNet-50 model
(see section 3.3.2) which has been pretrained on ImageNet. We chose the ResNet
architecture due to its popularity and ease of implementation as well as its consistently high
performance on various classification tasks. While its classification speed in comparison
with networks optimized for mobile and edge devices (e.g. MobileNet) is significantly
lower, the deeper structure and the additional parameters are necessary for the fairly
complex task at hand. Furthermore, the generous time budget for object detection and
classification allows for more accurate results at the expense of speed. The 50 layer
architecture (ResNet-50) is adequate for our use case. In the following sections we describe
the dataset the classifier was trained on, the metrics of the training phase and how the
performance of the model was further improved with hyperparameter optimization.

4.2.1 Dataset
The dataset we used for training the classifier consists of 452 images of healthy and 452
stressed plants. It has been made public on Kaggle Datasets1 under the name Healthy
and Wilted Houseplant Images [Cha20]. The images in the dataset were collected from
Google Images and labeled accordingly.

The dataset was split 85/15 into training and validation sets. The images in the training
set were augmented with a random crop to arrive at the expected image dimensions of
224 pixels. Additionally, the training images were modified with a random horizontal
flip to increase the variation in the set and to train a rotation invariant classifier. All
images, regardless of their membership in the training or validation set, were normalized
with the mean and standard deviation of the ImageNet [DDS+09] dataset, which the
original ResNet-50 model was pretrained with. Training was done for 50 epochs and
the best-performing model as measured by validation accuracy was selected as the final
version.

Figure 4.7 shows accuracy and loss on the training and validation sets. There is a clear
upwards trend until epoch 20 when validation accuracy and loss stabilize at around
0.84 and 0.3, respectively. The quick convergence and resistance to overfitting can be
attributed to the model already having robust feature extraction capabilities.

4.2.2 Hyperparameter Optimization
In order to improve the aforementioned accuracy values, we perform hyperparameter
optimization across a wide range of parameters. Table 4.1 lists the hyperparameters
and their possible values. Since the number of all combinations of values is 11 520 and
each combination is trained for ten epochs with a training time of approximately six

1https://www.kaggle.com/datasets
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Figure 4.7: Accuracy and loss during training of the classifier. The model converges
quickly, but additional epochs do not cause validation loss to increase, which would
indicate overfitting. The maximum validation accuracy of 0.9118 is achieved at epoch 27.

minutes per combination, exhausting the search space would take 48 days. Due to time
limitations, we have chosen to not search exhaustively but to pick random combinations
instead. Random search works surprisingly well—especially compared to grid search—in
a number of domains, one of which is hyperparameter optimization [BB12].

Parameter Values
Optimizer Adam, SGD
Batch Size 4, 8, 16, 32, 64
Learning Rate 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.1
Step Size 2, 3, 5, 7
Gamma 0.1, 0.5
Beta One 0.9, 0.99
Beta Two 0.5, 0.9, 0.99, 0.999
Eps 0.00000001, 0.1, 1

Table 4.1: Hyperparameters and their possible values during optimization.

The random search was run for 138 iterations which equates to a 75% probability that
the best solution lies within 1% of the theoretical maximum (4.2). Figure 4.8 shows three
of the eight parameters and their impact on a high F1-score. SGD has less variation in
its results than Adam [KB17] and manages to provide eight out of the ten best results.
The number of epochs to train for was chosen based on the observation that almost all
configurations converge well before reaching the tenth epoch. The assumption that a
training run with ten epochs provides a good proxy for final performance is supported by
the quick convergence of validation accuracy and loss in figure 4.7. Table 4.2 lists the
final hyperparameters which were chosen to train the improved model.

1 − (1 − 0.01)138 ≈ 0.75 (4.2)
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Figure 4.8: This figure shows three of the eight hyperparameters and their performance
measured by the F1-score during 138 trials. Differently colored markers show the batch
size with darker colors representing a larger batch size. The type of marker (circle or cross)
shows which optimizer was used. The x-axis shows the learning rate on a logarithmic
scale. In general, a learning rate between 0.003 and 0.01 results in more robust and better
F1-scores. Larger batch sizes more often lead to better performance as well. As for the
type of optimizer, SGD produced the best iteration with an F1-score of 0.9783. Adam
tends to require more customization of its parameters than SGD to achieve good results.

Optimizer Batch Size Learning Rate Step Size
SGD 64 0.01 5

Table 4.2: Chosen hyperparameters for the final, improved model. The difference to
the parameters listed in Table 4.1 comes as a result of choosing SGD over Adam. The
missing four parameters are only required for Adam and not SGD.
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4.3 Deployment
After training of the two models (object detector and classifier), we export them to the
Open Neural Network Exchange (ONNX)2 format and move the model files to the Nvidia
Jetson Nano. On the device, a Flask application (server) provides a REST endpoint from
which the results of the most recent prediction can be queried. The server periodically
performs the following steps:

1. Call a binary which takes an image and writes it to a file.

2. Take the image and detect all plants as well as their status using the two models.

3. Draw the returned bounding boxes onto the original image.

4. Number each detection from left to right.

5. Coerce the prediction for each bounding box into a tuple ⟨I, S, T, ∆T ⟩.
6. Store the image with the bounding boxes and an array of all tuples (predictions) in

a dictionary.

7. Wait two minutes.

8. Go to step one.

The binary uses the accelerated GStreamer implementation by Nvidia to take an image.
The tuple ⟨I, S, T, ∆T ⟩ consists of the following items: I is the number of the bounding
box in the image, S the current state from one to ten, T the timestamp of the prediction,
and ∆T the time since the state S last fell under three. The server performs these tasks
asynchronously in the background and is always ready to respond to requests with the
most recent prediction.

This chapter detailed the training and deployment of the two models used for the plant
water-stress detection system—the object detector and the classifier. Furthermore, we
have specified the API which publishes the results continuously. We will now turn towards
the evaluation of the two separate models as well as the aggregate model.

2https://github.com/onnx
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CHAPTER 5
Evaluation

The following sections contain a detailed evaluation of the model in various scenarios.
First, we describe the test datasets as well as the metrics used for assessing model
performance. Second, we present the results of the evaluation and analyze the behavior
of the classifier with Gradient-weighted Class Activation Mapping (Grad-CAM). Finally,
we discuss the results and identify the limitations of our approach.

5.1 Methodology
In order to evaluate the object detection model and the classification model, we analyze
their predictions on test datasets. For the object detection model, the test dataset is
a 10% split of the original dataset which we describe in section 4.1.1. The classifier is
evaluated with a 10-fold cross validation from the original dataset (see section 4.2.1).
After the evaluation of both models individually, we evaluate the model in aggregate on a
new dataset. This is necessary because the prototype uses the two models as if they were
one. The aggregate performance is ultimately the most important measure to decide if
the prototype is able to meet the requirements.

The test set for the aggregate model contains 640 images which were obtained from
a google search using the terms thirsty plant, wilted plant and stressed plant. Images
which clearly show one or multiple plants with some amount of visible stress were added
to the dataset. Care was taken to include plants with various degrees of stress and in
various locations and lighting conditions. The search not only provided images of stressed
plants but also of healthy plants. The dataset is biased towards potted plants which
are commonly put on display in western households. Furthermore, many plants, such as
succulents, are sought after for home environments because of their ease of maintenance.
Due to their inclusion in the dataset and how they exhibit water stress, the test set
contains a wide variety of scenarios.
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After collecting the images, the aggregate model was run on them to obtain initial
bounding boxes and classifications for ground truth labeling. Letting the model do the
work beforehand and then correcting the labels allowed to include more images in the
test set because they could be labeled more easily. Additionally, going over the detections
and classifications provided a comprehensive view on how the models work and what
their weaknesses and strengths are. After the labels have been corrected, the ground
truth of the test set contains 766 bounding boxes of healthy plants and 494 of stressed
plants.

5.2 Results
This section presents the results of the evaluation of the constituent models as well as
the aggregate model. First, we evaluate the object detection model before and after
hyperparameter optimization. Second, we evaluate the performance of the classifier after
hyperparameter optimization and present the results of Grad-CAM. Finally, we evaluate
the aggregate model before and after hyperparameter optimization.

5.2.1 Object Detection
Of the 91 479 images around 10% were used for the test phase. These images contain a
total of 12 238 ground truth labels. Table 5.1 shows precision, recall and the harmonic
mean of both (F1-score). The results indicate that the model errs on the side of sensitivity
because recall is higher than precision. Although some detections are not labeled as
plants in the dataset, if there is a labeled plant in the ground truth data, the chance is
high that it will be detected. This behavior is in line with how the model’s detections
are handled in practice. The detections are drawn on the original image and the user is
able to check the bounding boxes visually. If there are wrong detections, the user can
ignore them and focus on the relevant ones instead. A higher recall will thus serve the
user’s needs better than a high precision.

Precision Recall F1-score Support
Plant 0.547 571 0.737 866 0.628 633 12 238.0

Table 5.1: Precision, recall and F1-score for the object detection model.

Figure 5.1 shows the AP for the IOU thresholds of 0.5 and 0.95. Predicted bounding boxes
with an IOU of less than 0.5 are not taken into account for the precision and recall values
of table 5.1. The lower the detection threshold, the more plants are detected. Conversely,
a higher detection threshold leaves potential plants undetected. The precision-recall
curves confirm this behavior because the area under the curve for the threshold of 0.5 is
higher than for the threshold of 0.95 (0.66 versus 0.41). These values are combined in
COCO’s [LMB+15] main evaluation metric which is the AP averaged across the IOU
thresholds from 0.5 to 0.95 in 0.05 steps. This value is then averaged across all classes
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Figure 5.1: Precision-recall curves for IOU thresholds of 0.5 and 0.95. The AP of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP across IOU thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.5727.

and called mAP. The object detection model achieves a state-of-the-art mAP of 0.5727
for the Plant class.

Hyperparameter Optimization

Turning to the evaluation of the optimized model on the test dataset, table 5.2 shows
precision, recall and the F1-score for the optimized model. Comparing these metrics with
the non-optimized version from table 5.1, precision is significantly higher by more than
8.5 percentage points. Recall, however, is 3.5 percentage points lower. The F1-score is
higher by more than 3.7 percentage points which indicates that the optimized model is
better overall despite the lower recall. We argue that the lower recall value is a suitable
trade off for the substantially higher precision considering that the non-optimized model’s
precision is quite low at 0.55.

Precision Recall F1-score Support
Plant 0.633 358 0.702 811 0.666 279 12 238.0

Table 5.2: Precision, recall and F1-score for the optimized object detection model.

The precision-recall curves in figure 5.2 for the optimized model show that the model
draws looser bounding boxes than the optimized model. The AP for both IOU thresholds
of 0.5 and 0.95 is lower indicating worse performance. It is likely that more iterations
during evolution would help increase the AP values as well. Even though the precision
and recall values from table 5.2 are better, the mAP@0.5:0.95 is lower by 1.8 percentage
points.

5.2.2 Classification
In order to confirm that the optimized classification model does not suffer from overfitting
or is a product of chance due to a coincidentally advantageous train/test split, we perform
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Figure 5.2: Precision-recall curves for IOU thresholds of 0.5 and 0.95. The AP of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP across IOU thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.5546.

stratified 10-fold cross validation on the dataset. Each fold contains 90% training and
10% test data and was trained for 25 epochs. Figure 5.3 shows the performance of the
epoch with the highest F1-score of each fold as measured against the test split. The mean
ROC curve provides a robust metric for a classifier’s performance because it averages
out the variability of the evaluation. Each fold manages to achieve at least an AUC
of 0.94, while the best fold reaches 0.99. The mean ROC has an AUC of 0.96 with a
standard deviation of 0.02. These results indicate that the model is accurately predicting
the correct class and is robust against variations in the training set.

The classifier shows good performance so far, but care has to be taken to not overfit the
model to the training set. Comparing the F1-score during training with the F1-score
during testing gives insight into when the model tries to increase its performance during
training at the expense of generalizability. Figure 5.4 shows the F1-scores of each epoch
and fold. The classifier converges quickly to 1 for the training set at which point it
experiences a slight drop in generalizability. Training the model for at most five epochs is
sufficient because there are generally no improvements afterwards. The best-performing
epoch for each fold is between the second and fourth epoch which is just before the model
achieves an F1-score of 1 on the training set.

Class Activation Maps

Neural networks are notorious for their black-box behavior, where it is possible to observe
the inputs and the corresponding outputs, but the stage in-between stays hidden from view.
Models are continuously developed and deployed to aid in human decision-making and
sometimes supplant it. It is, therefore, crucial to obtain some amount of interpretability
of what the model does inside to be able to explain why a decision was made in a certain
way. The research field of Explainable Artificial Intelligence (XAI) gained significance
during the last few years because of the development of new methods to peek inside these
black boxes.

One such method, Class Activation Mapping (CAM) [ZKL+15], is a popular tool to
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Figure 5.3: This plot shows the ROC curve for the epoch with the highest F1-score of
each fold as well as the AUC. To get a less variable performance metric of the classifier,
the mean ROC curve is shown as a thick line and the variability is shown in gray. The
overall mean AUC is 0.96 with a standard deviation of 0.02. The best-performing fold
reaches an AUC of 0.99 and the worst an AUC of 0.94. The black dashed line indicates
the performance of a classifier which picks classes at random (AUC = 0.5). The shapes
of the ROC curves show that the classifier performs well and is robust against variations
in the training set.
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Figure 5.4: These plots show the F1-score during training as well as testing for each of
the folds. The classifier converges to 1 by the third epoch during the training phase,
which might indicate overfitting. However, the performance during testing increases until
epoch three in most cases and then stabilizes at approximately 2-3 percentage points
lower than the best epoch. We believe that the third, or in some cases fourth, epoch
is detrimental to performance and results in overfitting, because the model achieves an
F1-score of 1 for the training set, but that gain does not transfer to the test set. Early
stopping during training alleviates this problem.
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Precision Recall F1-score Support
Healthy 0.665 0.554 0.604 766
Stressed 0.639 0.502 0.562 494
Micro Avg 0.655 0.533 0.588 1260
Macro Avg 0.652 0.528 0.583 1260
Weighted Avg 0.655 0.533 0.588 1260

Table 5.3: Precision, recall and F1-score for the aggregate model.

produce visual explanations for decisions made by CNNs. Convolutional layers essentially
function as object detectors as long as no fully-connected layers perform the classification.
This ability to localize regions of interest, which play a significant role in the type of class
the model predicts, can be retained until the last layer and used to generate activation
maps for the predictions.

A more recent approach to generating a CAM via gradients is proposed by Selvaraju et al.
[SCD+20]. Their Grad-CAM approach works by computing the gradient of the feature
maps of the last convolutional layer with respect to the specified class. The last layer is
chosen because the authors find that “[. . . ] Grad-CAM maps become progressively worse
as we move to earlier convolutional layers as they have smaller receptive fields and only
focus on less semantic local features.” [SCD+20, p.5]

Turning to our classifier, figure 5.5 shows the CAMs for healthy and stressed. While the
regions of interest for the healthy class lie on the healthy plant, the stressed plant is
barely considered and mostly rendered as background information (blue). Conversely,
when asked to explain the inputs to the stressed classification, the regions of interest
predominantly stay on the thirsty as opposed to the healthy plant. In fact, the large
hanging leaves play a significant role in determining the class the image belongs to.
This is an additional data point confirming that the model focuses on the semantically
meaningful parts of the image during classification.

5.2.3 Aggregate Model

In this section we turn to the evaluation of the aggregate model. We have confirmed the
performance of the constituent models: the object detection and the classification model.
It remains to evaluate the complete pipeline from gathering detections of potential plants
in an image and forwarding them to the classifier to obtaining the results as either healthy
or stressed with their associated confidence scores.

5.2.4 Non-optimized Model

Table 5.3 shows precision, recall and the F1-score for both classes Healthy and Stressed.
Precision is higher than recall for both classes and the F1-score is at 0.59. Unfortunately,
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Figure 5.5: The top left image shows the original image of the same plant in a stressed
(left) and healthy (right) state. In the top right image, the CAM for the class healthy is
laid over the original image. The classifier draws its conclusion mainly from the healthy
plant, which is indicated by the red hot spots around the tips of the plant. The bottom
right image shows the CAM for the stressed class. The classifier focuses on the hanging
leaves of the thirsty plant. The image was classified as stressed with a confidence of 70%.

these values do not take the accuracy of bounding boxes into account and thus have only
limited expressive power.

Figure 5.6 shows the precision and recall curves for both classes at different IOU thresholds.
The left plot shows the AP for each class at the threshold of 0.5 and the right one at 0.95.
The mAP is 0.3581 and calculated across all classes as the median of the IOU thresholds
from 0.5 to 0.95 in 0.05 steps. The cliffs at around 0.6 (left) and 0.3 (right) happen at a
detection threshold of 0.5. The classifier’s last layer is a softmax layer which necessarily
transforms the input into a probability of showing either a healthy or stressed plant. If
the probability of an image showing a healthy plant is below 0.5, it is no longer classified
as healthy but as stressed. The threshold for discriminating the two classes lies at the
0.5 value and is therefore the cutoff for either class.

5.2.5 Optimized Model

So far the metrics shown in table 5.3 are obtained with the non-optimized versions of
both the object detection and classification model. Hyperparameter optimization of the
classifier led to significant model improvements, while the object detector has improved
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Figure 5.6: Precision-recall curves for IOU thresholds of 0.5 and 0.95. The AP of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP across IOU thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.3581.

Precision Recall F1-score Support
Healthy 0.711 0.555 0.623 766
Stressed 0.570 0.623 0.596 494
Micro Avg 0.644 0.582 0.611 1260
Macro Avg 0.641 0.589 0.609 1260
Weighted Avg 0.656 0.582 0.612 1260

Table 5.4: Precision, recall and F1-score for the optimized aggregate model.

precision but lower recall and slightly lower mAP values. To evaluate the final aggregate
model which consists of the individual optimized models, we run the same test described
in section 5.2.3.

Table 5.4 shows precision, recall and F1-score for the optimized model on the same test
dataset of 640 images. All of the metrics are better for the optimized model. In particular,
precision for the healthy class could be improved significantly while recall remains at
the same level. This results in a better F1-score for the healthy class. Precision for the
stressed class is lower with the optimized model, but recall is significantly higher (0.502 vs.
0.623). The higher recall results in a three percentage point gain for the F1-score in the
stressed class. Overall, precision is the same, but recall has improved significantly, which
also results in a noticeable improvement for the average F1-score across both classes.

Figure 5.7 confirms the performance increase of the optimized model established in
table 5.4. The mAP@0.5 is higher for both classes, indicating that the model better
detects plants in general. The mAP@0.95 is slightly lower for the healthy class, which
means that the confidence for the healthy class is slightly lower compared to the non-
optimized model. The result is that more plants are correctly detected and classified
overall, but the confidence scores tend to be lower with the optimized model. The
mAP@0.5:0.95 could be improved by about 0.025.
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Figure 5.7: Precision-recall curves for IOU thresholds of 0.5 and 0.95. The AP of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP across IOU thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.3838.

5.3 Discussion
Overall, the performance of the individual models is state of the art when compared
with object detection benchmarks such as the COCO dataset. The mAP of 0.5727 for
the object detection model is in line with most other object detectors. Even though the
results are reasonably good, we argue that they could be better for the purposes of plant
detection in the context of this work. The OID was labeled by humans and thus exhibits
characteristics which are not optimal for our purposes. The class plant does not seem to
have been defined rigorously. Large patches of grass, for example, are labeled with large
bounding boxes. Trees are sometimes labeled, but only if their size suggests that they
could be bushes or similar types of plant. Large corn fields are also labeled as plants but
again with one large bounding box. If multiple plants are densely packed, the annotators
often label them as belonging to one plant and thus one bounding box. Sometimes the
effort has been made to delineate plants accurately and sometimes not which results in
inconsistent bounding boxes. These inconsistencies and peculiarities as well as the always
present error rate introduced by humans complicate the training process of our object
detection model.

During a random sampling of labels and predictions of the object detection model on
the validation set, it became clear that the model tries to always correctly label each
individual plant when it is faced with an image of closely packed plants. For images
where one bounding box encapsulates all of the plants, the IOU of the model’s predictions
is too far off from the ground truth which lowers the mAP accordingly. Since arguably all
datasets will have some inconsistencies and errors in their ground truth, model engineers
can only hope that the sheer amount of data available evens out these problems. In our
case, the 79 204 training images with 284 130 bounding boxes might be enough to provide
the model with a smooth distribution from which to learn from, but unless every single
label is analyzed and systematically categorized this remains speculation.

The hyperparameter optimization of the object detector raises further questions. The
mAP of the optimized model is 1.8 percentage points lower than the non-optimized
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version. Even though precision and recall of the model improved, the bounding boxes
are worse. We argue that the hyperparameter optimization has to be run for more than
87 iterations to provide better results. Searching for the optimal hyperparameters with
genetic methods usually requires many more iterations than that because it takes a
significant amount of time to evolve the parameters away from the starting conditions.
However, as mentioned before, our time constraints only allowed optimization to run for
87 iterations.
Furthermore, we only train each iteration for three epochs and assume that those already
provide a good measure of the model’s performance. It can be seen in figure 4.4 that the
fitness during the first few epochs exhibits some amount of variation before it stabilizes.
In fact, the fitness of the non-optimized object detector (figure 4.1) only achieves a stable
value at epoch 50. An optimized model is often able to converge faster which is supported
by figure 4.4, but even in that case it takes more than ten epochs to stabilize the training
process. We argue that three epochs are likely not enough to support the hyperparameter
optimization process. Unfortunately, if the number of epochs per iteration is increased by
one, the complete number of epochs over all iterations increases by the total number of
iterations. Every additional epoch thus contributes to a significantly longer optimization
time. For our purposes, 87 iterations and three epochs per iteration are close to the limit.
Further iterations or epochs were not feasible within our time budget.
The optimized classifier shows a strong performance in the 10-fold cross validation where
it achieves a mean AUC of 0.96. The standard deviation of the AUC across all folds
is small enough at 0.02 to indicate that the model generalizes well to unseen data. We
are confident in these results provided that the ground truth was labeled correctly. The
CAM (figure 5.5) constitute another data point in support of this conclusion. Despite
these points, the results come with a caveat. The ground truth was not created by an
expert in botany or related sciences and thus could contain a significant amount of errors.
Even though we manually verified most of the labels in the dataset and agree with the
labels, we are also not expert labelers.
The aggregate model achieves a mAP of 0.3581 before and 0.3838 after optimization. If
we look at the common benchmarks (COCO) again where the state of the art achieves
mAP values of between 0.5 and 0.58, we are confident that our results are reasonably
good. Comparing the mAP values directly is not a clear indicator of how good the model
is or should be because it is an apples to oranges comparison due to the different test
datasets. Nevertheless, the task of detecting objects and classifying them is similar across
both datasets and the comparison thus provides a rough guideline for the performance
of our prototype. We argue that the task of classifying the plants into healthy and
stressed on top of detecting plants is a more difficult task than just object detection.
Additionally to having to discriminate between different common objects, our model
also has to discriminate between plant states which requires further knowledge. The
lower mAP values are thus attributable to the more difficult task posed by our research
questions.
We do not know the reason for the better performance of the optimized versus the
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non-optimized aggregate model. Evidently, the optimized version should be better,
but considering that the optimized object detector performs worse in terms of mAP,
we would expect to see this reflected in the aggregate model as well. It is possible
that the optimized classifier balances out the worse object detector and even provides
better results beyond that. Another possibility is that the better performance is in
large part due to the increased precision and recall of the optimized object detector. In
fact, these two possibilities taken together might explain the optimized model results.
Nevertheless, we caution against putting too much weight on the 2.5 percentage point
mAP increase because both models have been optimized separately instead of in aggregate.
By optimizing the models separately to increase the accuracy on a new dataset instead
of optimizing them in aggregate, we do not take the dependence between the two models
into account. As an example, it could be the case that new, better configurations of
both models are worse in aggregate than some other option would be. Even though both
models are locally better (w.r.t. their separate tasks), they are worse globally when taken
together to solve both tasks in series. A better approach to optimization would be to
either combine both models into one and only optimize once or to introduce a different
metric against which both models are optimized.

Apart from these concerns, both models on their own as well as in aggregate are a
promising first step into plant state classification. The results demonstrate that solving
the task is feasible and that good results can be obtained with off-the-shelf object detectors
and classifiers. As a consequence, the baseline set forth in this work is a starting point
for further research in this direction.
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CHAPTER 6
Conclusion

In this thesis, we have developed a prototype system for plant detection and classification
using a machine learning model deployed on an edge device. The model consists of a
two-stage approach wherein the first stage detects plants and the second stage classifies
them. This approach has been chosen because of the limited availability of data to train
one model end-to-end and comes with downsides such as an increased error rate and
additional training, optimization, and evaluation complexity. Despite these downsides,
the prototype performs well in the homeowner context where the variety of plants is
limited. This conclusion is supported by the metrics discussed in chapter 5.

The optimization of the model has been shown to require a substantial amount of
computational resources and proved to be difficult to get right. The object detection
model in particular needs many iterations during the hyperparameter search to converge
to a global optimum. We attribute these difficulties to the model complexity of the
YOLO series and the numerous hyperparameters which are available. The classifier,
however, is comparatively simpler from an architectural standpoint and lends itself more
easily to optimization.

Revisiting the research questions posed in section 1.1, we can now assess the extent to
which our findings have addressed them.

1. How well does the model work in theory and how well in practice?

The optimized model achieves a mAP of 0.3838 which suggests that the prototype
works well on unseen data. The plant detection is robust, particularly for household
plants and the classifier shows strong performance for a wide array of common plants.
Contrary to our expectations, the stress classification is not more difficult than the
detection step. In fact, the problems we encountered during the optimization of the
detection model are likely to stem from the increased complexity of the detection

67



6. Conclusion

versus the classification task. The various different ways in which plants show water
stress does not seem to be a limiting factor for stress classification.

2. What are possible reasons for it to work/not work?

We have demonstrated possible reasons for why either the constituent models or the
aggregate model underperform. In general, we conclude that the prototype does
work and can be used within the context established in chapter 1. Our expectation
that dataset curation will play a major role in successfully implementing the
prototype turned out to be true. For example, some of the problems with the plant
detection model can be attributed to the inconsistent labeling information present
in the OID. Care had to be taken during the creation of the dataset the aggregate
model was evaluated on to not introduce a bias which favors the predictions.

3. What are possible improvements to the system in the future?

Specific improvements to the prototype include curating bigger datasets to train on,
running the hyperparameter optimization for more iterations and more epochs per
iteration, and including experts such as botanists to establish higher confidence in
the ground truth. Unfortunately, the first two suggestions result in a significantly
higher computational cost during training, optimization, and evaluation. This
observation applies to most machine learning models and there is always a trade-off
between model performance and training/optimization time.

6.1 Future Work
An interesting further research direction for plant detection and classification is exploring
the viability of single-stage approaches. Even though our two-stage approach leads to
acceptable results, we believe that incorporating the classification step into the plant
detection step would likely yield better results. A unified single-stage approach does
not fully deal with the problem of propagated errors but should substantially reduce
it. An advantage of this approach is that the resulting model could be optimized more
easily because the loss function is dependent on object detection as well as classification.
A disadvantage, however,—and this is the reason why we have not adopted such an
approach—is that a unified model also needs large datasets it can be trained on.

Additional datasets to train a plant detection and classification model on are needed.
While we were able to find separate datasets to train the individual models on, it also
meant that we were not able to implement the aforementioned single-stage approach. If
there is enough interest in this research problem, it should be possible to create large
datasets which encode expert knowledge. Since there is such a variety of plants and
how they express nutrient deficiencies or illnesses, only experts are able to create correct
ground truth labels for all or most of them. In the limited context of this thesis, we were
able to label common household plants with additional information from the Internet.
As soon as more exotic plants are added to the datasets, layman knowledge reaches its
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limits. Having more and better ground truth labels should result in better detection and
classification performance as well as a more robust evaluation.

Future research could add additional information to the datasets such that models are able
to work with more data. For example, including images of plants in the infrared spectrum
would provide a visual measure of evapotranspiration. This additional perspective might
allow the model to better discriminate between stressed and non-stressed plants. Other
valuable perspectives could be provided by sensor data which track soil moisture, humidity
and radiant flux. Although this has been done in single-plant agricultural settings, it has
not been tried in a multi-plant household context.
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