
Lemmaless Induction in Trace Logic

Ahmed Bhayat1 , Pamina Georgiou2 , Clemens Eisenhofer2 , Laura Kovács2 ,
and Giles Reger1

1 University of Manchester, Manchester, UK
2 TU Wien, Vienna, AT

Abstract. We present a novel approach to automate the verification of first-order
inductive program properties capturing the partial correctness of imperative pro-
gram loops with branching, integers and arrays. We rely on trace logic, an in-
stance of first-order logic with theories, to express first-order program semantics
by quantifying over program execution timepoints. Program verification in trace
logic is translated into a first-order theorem proving problem where, to date, effec-
tive reasoning has required the introduction of so-called trace lemmas to establish
inductive properties. In this work, we extend trace logic with generic induction
schemata over timepoints and loop counters, reducing reliance on trace lemmas.
Inferring and proving loop invariants becomes an inductive inference step within
superposition-based first-order theorem proving. We implemented our approach
in the RAPID framework, using the first-order theorem prover VAMPIRE. Our
extensive experimental analysis shows that automating inductive verification in
trace logic is an improvement compared to existing approaches.

1 Introduction

Automating the verification of programs containing loops and recursive data structures
is an ongoing research effort of growing importance. While different techniques for
proving the correctness of such programs are in place [5, 6, 10, 13], most existing tools
in this realm are heavily based on satisfiability modulo theories (SMT) backends [4,8]
that come with strong theory reasoning but have limitations in quantified reasoning.
In contrast, first-order theorem provers enable quantified reasoning modulo theories
[20, 27, 28], such as linear integer arithmetic and arrays. First-order reasoning can thus
complement the aforementioned verification efforts when it comes to proving program
properties with complex quantification, as evidenced in our original work on the RAPID
framework [11] which utilised the VAMPIRE theorem prover [2, 21].

At a high level, the RAPID framework [11] works by translating a program into trace
logic, adding a number of ad hoc trace lemmas, asserting a desired property, and then
running an automated theorem prover on the result. The effectiveness of this approach
depends on the underlying trace lemmas. This paper focuses on building induction sup-
port into the VAMPIRE theorem prover to reduce reliance on these lemmas.

To understand the role of these trace lemmas (and therefore, what support must be
added to the theorem prover) we briefly overview trace logic and the RAPID framework
in a little more detail. Trace logic is an instance of first-order logic with theories, such
that the program semantics of imperative programs with loops, branching, integers, and

http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0003-4856-4596
http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-6353-952X

arrays can be directly encoded in trace logic. A key feature of this encoding is track-
ing program executions by quantifying over execution timepoints (rather than only over
single states), which may themselves be parameterised by loop iterations. In princi-
ple, we can check whether a translated program entails the desired property in trace
logic using an automated theorem prover for first-order logic. In our case, we make use
of the saturation-based theorem prover VAMPIRE which implements the superposition
calculus [3]. However, a straightforward use of theorem proving often fails in estab-
lishing validity of program properties in trace logic, as the proof requires some specific
induction, in general not supported by superposition-based reasoning.

In our previous work [11], we overcame this challenge by introducing so-called
trace lemmas capturing common patterns of inductive loop properties over arrays and
integers. Inductive loop reasoning in trace logic is then achieved by generating and
adding trace lemma instances to the translated program. However, there are two signif-
icant limitations to using trace lemmas:
1. Trace lemmas capture inductive patterns/templates that need to be manually iden-

tified, as induction is not expressible in first-order logic. As such, they cannot be
inferred by a first-order reasoner, implying that the effectiveness of trace logic rea-
soning depends on the expressiveness of manually supplied trace lemmas.

2. When instantiating trace lemmas with appropriate inductive program variables, a
large number of inductive properties are generated, causing saturation-based proof
search to diverge and fail to find program correctness proofs in reasonable time.

In this paper we address these limitations by reducing the need for trace lemmas. We
achieve this by introducing a couple of novel induction inferences. Firstly, multi-clause
goal induction which applies induction in a goal oriented fashion as many safety pro-
gram assertions are structurally close to useful loop invariants. Secondly, array mapping
induction which covers certain cases where the required loop invariant does not stem
from the goal. Specifically, we make the following contributions:
Contribution 1. We introduce two new inference rules, multi-clause goal and array
mapping induction, for lemmaless induction over loop iterations (Sections 5–6). The
inference rules are compatible with any saturation-based inference system used for first-
order theorem proving and work by carrying out induction on terms corresponding to
final loop iterations.
Contribution 2. We implemented our approach in the first-order theorem prover VAM-
PIRE [21]. Further, we extended the RAPID framework [11] to support inductive rea-
soning in the automated backend (Section 7). We carry out an extensive evaluation
of the new method (Section 8) comparing against state-of-the-art approaches SEA-
HORN [12, 13] and VAJRA/DIFFY [5, 6].

2 Motivating Example

We motivate our work with the example program in Figure 1. The program iterates over
two arrays a and b of arbitrary, but fixed length length and copies array elements
into a new array c. Each even position in c contains an element of a, while each odd
position an element of b. Our task is to prove the safety assertion at line 14: at the end
of the program, every element in c is an element from a or b. This property involves (i)

1 func main() {
2 const Int[] a;
3 const Int[] b;
4 Int[] c;
5 const Int length;
6 Int i = 0;
7
8 while (i < length) {
9 c[2*i] = a[i]

10 c[(2*i) + 1] = b[i]
11 i = i + 1;
12 }
13 }
14 assert (∀posI.∃lI.((0 ≤ pos < (2 × length))
15 → c(main_end, pos) = a(l) ∨ c(main_end, pos) = b(l)))

Fig. 1: Copying elements from arrays a and b to even/odd positions in array c.

alternation of quantifiers and (ii) is expressed in the first-order theories of linear integer
arithmetic and arrays. Note that in the safety assertion, the program variable length is
modeled as a logical constant of the same name of sort integer, whilst the constant arrays
a and b are modeled as logical functions from integers to integers. The mutable array
variable c is additionally equipped with a timepoint argument main_end, indicating
that the assertion is referring to the value of the variable at the end of program execution.

Proving the correctness of this example program remains challenging for most state-
of-the-art approaches, such as [5,6,10,12], mainly due to the complex quantified struc-
ture of our assertion. Moreover, it cannot be achieved in the current RAPID framework
either, as existing trace lemmas do not relate the values of multiple program variables,
notably equality over multiple array variables. In fact, to automatically prove the asser-
tion, we need an inductive property/trace lemma formalizing that each element at an
even position in c is an element of a or b at each valid loop iteration, thereby also re-
stricting the bounds of the loop counter variable i. Naïvely adding such a trace lemma
would be highly inefficient as automated generation of verification conditions would
introduce many instances that are not required for the proof.

3 Related Work

Most of recent research in verifying inductive properties of array-manipulating pro-
grams focuses on quantified invariant generation and/or is mostly restricted to prov-
ing universally quantified program properties. The works [10, 13] generate universally
quantified inductive invariants by iteratively inferring and strengthening candidate in-
variants. These methods use SMT solving and as such are restricted to first-order theo-
ries with a finite model property. Similar logical restrictions also apply to [26], where
linear recurrence solving is used in combination with array-specific proof tactics to
prove quantified program properties. A related approach is described in [6], where

relational invariants instead of recurrence equations are used to handle universal and
quantifier-free inductive properties. Unlike these works, our work is not limited to uni-
versal invariants but can both infer and prove inductive program properties with alter-
nations of quantifiers.

With the use of extended expressions and induction schemata, our work shares some
similarity with template-based approaches [17, 22, 29]. These works [17, 22, 29] infer
and prove universal inductive properties based on Craig interpolation, formula slicing
and/or SMT generalizations over quantifier-free formulas. Unlike these works, we do
not require any assumptions on the syntactic shape of the first-order invariants. More-
over, our invariants are not restricted to the shape of our induction schemata. Rather, we
treat inductive (invariant) inferences as additional rules of first-order theorem provers,
maintaining thus the efficient handling of arbitrary first-order quantifiers. Our frame-
work can be used in arbitrary first-order theories, even with theories that have no in-
terpolation property and/or a finite axiomatization, as exemplified by our experimental
results using inductive reasoning over arrays and integers.

Inductive theorem provers, such as ACL2 [18] and HipSpec [7], implement power-
ful induction schemata and heuristics. However these provers, to the best of our knowl-
edge, automate inductive reasoning for only universally quantified inductive formulas
using a goal/subgoal architecture, for which user-guidance is needed to split conjectures
into subgoals. In contrast, our work can prove formulas of full first-order logic by inte-
grating and fully automating induction in saturation-based proof search. By combining
induction with saturation, we allow these techniques to interleave and complement each
other, something that pure induction provers cannot do. Unlike tools such as Dafny [23],
our approach is fully automated requiring no user annotations.

First-order theorem proving has previously been used to derive invariants with al-
ternations of quantifiers in our previous work [11]. Our current work generalizes the
inductive capabilities of [11] by reducing the expert knowledge of [11] in introducing
inductive lemmas to guide the process of proving inductive properties.

4 Preliminaries

Many-Sorted First-Order Logic. We consider standard many-sorted first-order logic
with built-in equality, denoted by ' . By s = F [u] we indicate that the term u is a
subterm of s surrounded by (a possibly empty) context F .

We use x, y to denote variables, l, r, s, t for terms and sk for Skolem symbols. A
literal is an atomA or its negation ¬A. A clause is a disjunction of literals L1∨ ...∨Ln,
for n ≥ 0. Given a formula F , we denote by CNF(F) the clausal normal form of F .

For a logical variable x of sort S we write xS . A first-order theory denotes the set
of all valid formulas on a class of first-order structures. Any symbol in the signature of
a theory is considered interpreted. All other symbols are uninterpreted. In particular,
we use the theory of linear integer arithmetic denoted by I and the boolean sort B. We
consider natural numbers as the term algebra N with four symbols in the signature: the
constructors 0 and successor suc, as well as pred and < respectively interpreted as the
predecessor function and less-than relation. Note that we do not define any arithmetic
on naturals. We assume familiarity with the basics of saturation theorem proving.

program ::= function

function ::= func main(){ subprogram }

subprogram ::= statement | context

context ::= statement; ... ; statement

statement ::= atomicStatement

| if(condition){ context } else { context }

| while(condition){ context }

Fig. 2: Grammar ofW .
4.1 Trace Logic L
Trace logic, denoted as L, is an instance of many-sorted first-order logic with theories.
Its signature isΣ(L) := SN∪SI∪SL∪SV ∪Sn, includes respectively the signatures of
the theory of natural numbers N (as a term algebra), the in-built integer theory I, a set
SL of timepoints (also referred to as locations), a set of symbols representing program
variables SV , as well as a set of symbols representing last iteration symbols Sn. For
more details on trace logic, refer to [11].

4.2 Programming Model W
We consider programs written in a WHILE-like programming language W , as given
in the (partial) language grammar of Figure 2. Programs in W contain mutable and
immutable integer as well as integer-array program variables and consist of a single
top-level function main comprising arbitrary nestings of while-loops and if-then-else
branching. We consider expressions over booleans and integers without side effects.

4.3 Translating Expressions to Trace Logic

Locations and Timepoints. We consider programs as sets of locations over time: given
a program statement s, we denote its location by ls of type L, the location/timepoint
sort, corresponding to the line of the program where the statement appears. When s
is a while-loop the corresponding location is revisited at multiple timepoints of the
execution. Thus, we model such locations as functions over loop iterations ls : N 7→ L,
where the argument of sort N intuitively corresponds to the number of loop iterations.
Further, for each loop statement swe model the last loop iteration by a symbol nls ∈ Sn

of target sort N. Let p be a program statement or context. We use startp to denote the
location at which the execution of p has started and endp to denote the location that
occurs just after the execution of p. We use main_end to denote the location at the end
of the main function.

Example 1. Consider line 6 of our running example in Figure 1. Term l6 corresponds
to the timepoint of the first assignment of 0 to program variables i while l8(0) and
l8(nl8) denote the timepoints of the loop at the first and last loop iteration respectively.
Further, we can quantify over all executions of the loops by quantifying over all iter-
ations smaller than the last e.g. ∀itN.it < nl8 → F [l8(it)] where F [l8(it)] is some
first-order formula.

Program Variables. Program variable are expressed as functions over timepoints. We
express an integer variable v as a function v : L 7→ I, where v ∈ SV . Let tp be a
term of sort L. Then, v(tp) denotes the value of v at timepoint tp. We model numeric
array variables v with an additional argument of sort I to denote the position of an array
access. We obtain v : L× I 7→ I. Immutable variables are modelled as per their mutable
counterparts, but without the timepoint argument.

Example 2. To denote program variable i at the location of the assignment in line 6,
we use the equation i(l6)' 0. For the first assignment of c within the loop, we write
c(l8(it), 2× i(l8(it)))' a(i(l8(it))) for some iteration it. As a is a constant array, the
timepoint argument is omitted.

Program Expressions. Let e be an arbitrary program expression. We write JeK(tp) to
denote the logical denotation of e at timepoint tp. We do not provide the full inductive
definition of the denotation function J K(tp) here, just a few of its cases. If e is an
integer variable v, then JeK(tp) = v(tp). If e is an integer array access of the form
v[e1], then JeK(tp) = v(tp, Je1K(tp)). If e is an expression of the form e1 + e2, then
JeK(tp) = Je1K(tp) + Je2K(tp).

Common Abbreviations. Let e,e1,e2 be program expressions, tp1, tp2 be two time-
points and v ∈ SV denote the functional representation of a program variable. The
trace logic formula v(tp1)' v(tp2) asserts that the variable v has the same value at
timepoints tp1 and tp2. We introduce definitions for two formulas that are widely used
in defining the axiomatic semantics of W in the next section. To ease the notational
burden, we ignore array variables in the definitions provided. Firstly, we introduce a
definition for the formula that expresses that the value of a variable v changes between
timepoints tp1 and tp2 whilst the values of all other variables remain the same.

Update(v, e, tp1, tp2) := v(tp2)' JeK(tp1) ∧
∧

v′∈SV \{v} v
′(tp1)' v′(tp2),

Secondly, we introduce a definition for the formula that expresses that the value of all
variables stays the same between timepoints tp1 and tp2

EqAll(tp1, tp2) :=
∧

v∈SV

v(tp1)' v(tp2)

4.4 Axiomatic Semantics of W in L.
The semantics of a program inW is given by the conjunction of the respective axiomatic
semantics of each program statement of W occurring in the program. In general, we
define reachability of program statements over timepoints rather than program states.
We briefly recall the axiomatic semantics of assignments and while-loops respectively,
again ignoring the array variable case.

Assignments. Let s be an assignment v = e, where v is an integer-valued program
variable and e is an expression. The evaluation of s is performed in one step such that,
after the evaluation, the variable v has the same value as e before the evaluation while
all other variables remain unchanged. We obtain

JsK := Update(v, e, starts, ends) (1)

While-Loops. Let s be the while-statement while(Cond){c} where Cond is the loop
condition. The semantics of s is given by the conjunction of the following properties:
(2a) the iteration nls is the first iteration where Cond does not hold anymore, (2b)
jumping into the loop body does not change the values of the variables, (2c) the values
of the variables at the end of evaluating the loop s are equal to the values at the loop
condition location in iteration nls. As such, we have

JsK := ∀itsN. (its < nls → JCondK(tps(its)))
∧ ¬JCondK(tp(nls)) (2a)
∧ ∀itN. (it < nls → EqAll(startc, tps(it)) (2b)
∧ EqAll(ends, tps(nls)) (2c)

4.5 Trace Lemma Reasoning

Trace logic L allows one to naturally express common program behavior over time-
points. Specifically, it allows us to reason about (i) all iterations of a loop, and (ii) the
existence of specific timepoints. In [11], we leveraged such reasoning with the use of so-
called trace lemmas, capturing common inductive properties of program loops. Trace
lemmas are instances of the schema of bounded induction for natural numbers(

P (bl) ∧ ∀xN.
(
(bl ≤ x < br ∧ P (x))→ P (suc(x))

))
→

∀xN.
(
bl ≤ x < br ∧ P (x)

) (3)

An example of a trace lemma would be the statement formalising that a certain pro-
gram variable’s value remains unchanged from a specific iteration to the end of loop
execution. In this work, instead of adding instances of (3) statically to strengthen loop
semantics, we move induction into the first-order prover. The advantage of adding in-
stances of (3) dynamically is that during proof search we have more information avail-
able and can thus perform induction in a more controlled and goal oriented fashion.

Nonetheless, due to some limitations in our first-order prover, we are unable to
completely do away with additional lemmas. Specifically, we need to nudge the prover
to deduce that a loop counter expression will, at the end of loop execution, have the
value of the expression it is compared against in the loop condition.

(A) Equal Lengths Trace Lemma We define a common property of loop counter
expressions. We call a program expression e dense at loop w if:

Densew,e := ∀itN.
(
it < nlw →

(
JeK(tpw(suc(it)))' JeK(tpw(it)) ∨
JeK(tpw(suc(it)))' JeK(tpw(it)) + 1

))
.

Let w be a while-statement, Cw := e < e’ be the loop condition where e’ is
a program expression that remains constant during iterations of w. The equal lengths
trace lemma of w, e and e’ is defined as(

Densew,e ∧ JeK(tpw(0)) ≤ Je’K(tpw(0))
)
→ (A)

JeK(tpw(nlw))' Je’K(tpw(nlw)).

Trace lemma A states that a dense expression e smaller than or equal to some
expression e’ that does not change in the loop, will eventually, specifically in the
last iteration, reach the same value as e’. This follows from the fact that we assume
termination of a loop, hence we assume the existence of a timepoint nlw where the
loop condition does not hold anymore. As a consequence, given that the loop con-
dition held at the beginning of the execution, we can derive that the loop counter
value immediately after the loop execution JeK(tpw(nlw)) will necessarily equate to
Je’K(tpw(0)) = Je’K(tpw(nlw)). Note that a similar lemma can just as easily be added
for dense but decreasing loop counters.

5 Multi-Clause Goal Induction for Lemmaless Induction

As mentioned above, the main focus of our work is moving induction into the saturation
prover. We achieve this by adding inference rules that apply induction to loop counter
terms. We leverage recent theorem proving effort on bounded (integer) induction in
saturation [14, 15]. However, as illustrated in the following, these recent efforts cannot
be directly used in trace logic reasoning since we need to (i) adjust bounded induction
for the setting of natural numbers, and (ii) generalise to multi-clause induction. We
discuss these steps using Figure 1. Verifying the safety assertion of Figure 1 requires
proving the trace logic formula:

∀posI.∃jI. (0 ≤ pos < (2× length) (4)
→ (c(main_end, pos)' a(j) ∨ c(main_end, pos)' b(j))

For proving (4), it suffices to prove that the following, slightly modified statement is a
loop invariant of Figure 1:

∀itN. it < nlw → ∀posI.∃jI. (0 ≤ pos < (2× i(tpw(it)))) (5)
→ (c(tpw(it), pos)' a(j) ∨ c(tpw(it), pos)' b(j))

where w refers to the loop statement in Figure 1. As part of the program semantics in
trace logic, we have formula (6) which links the value of c at the end of the loop to its
value at the end of the program. Moreover, using the trace lemma A, we also derive
formula (7) in trace logic:

∀posI.c(tpw(nlw), pos)' c(main_end, pos) (6)
i(tpw(nlw))' length (7)

It is tempting to think that in the presence of these clauses (6)–(7), a saturation-based
prover would rewrite the negated conjecture (4) to

¬(∀posI.∃jI. (0 ≤ pos < (2× i(tpw(nlw))))
→ (c(tpw(nlw), pos)' a(j) ∨ c(tpw(nlw), pos)' b(j)))

from which a bounded natural number induction inference (similar to the IntInd<

rule of [15]) would quickly introduce an induction hypothesis with (5) as the conclusion,

by induction over nlw. However, this is not the case, as most saturation provers work
by first clausifying their input. The negated conjecture (4) would not remain a single
formula, but be split into the following clauses where sk is a Skolem symbol:

a(x) 6' c(main_end, sk) b(x) 6' c(main_end, sk)
¬(sk ≤ 0) sk ≤ 2× length

These clauses can be rewritten using (6)–(7). For example, the first clause can be
rewritten to a(x) 6' c(tpw(nlw, sk)). However, attempting to prove the negation of any
of the rewritten clauses individually via induction would merely result in the addition
of useless induction formulas to the search space. For example, attempting to prove
∀itN. it < nlw → (∃xI. a(x)' c(tpw(it), sk)), is pointless as it is clearly false. The
solution we propose in this work is to use multi-clause induction, whereby we attempt
to prove the negation of the conjunction of multiple clauses via a single induction infer-
ence. For our running example Figure 1, we can use the following rewritten versions of
clauses from the negated conjecture a(x) 6' c(tpw(nlw, sk)), b(x) 6' c(tpw(nlw, sk)),
and sk ≤ 2× i(tpw(nlw)), with induction term nlw, to obtain the induction formula:

¬
(
∀xI. a(x) 6' c(i(tpw(0)), sk)
∧ ∀xI. b(x) 6' c(i(tpw(0), sk))
∧ sk ≤ 2× i(tpw(0))

)
∧ StepCase

→

∀itN. it < nlw →
¬
(
∀xI. a(x) 6' c(i(tpw(it), sk)
∧∀xI. b(x) 6' c(i(tpw(it), sk)
∧ sk ≤ 2× i(tpw(it))

)
(8)

where StepCase is the formula:

∀itN. it < nlw ∧
¬
(
∀xI. a(x) 6' c(i(tpw(it)), sk)
∧ ∀xI. b(x) 6' c(i(tpw(it)), sk)
∧ sk ≤ i(tpw(y)

) →
¬
(
∀xI. a(x) 6' c(i(tpw(suc(it)), sk)
∧ ∀xI. b(x) 6' c(i(tpw(suc(it)), sk)
∧ sk ≤ 2× i(tpw(suc(it)))

)
Using the induction formula (8), a contradiction can then easily be derived, establishing
validity of (4). In what follows, we formalize the multi-clause induction principle we
used above. To this end, we introduce a generic inference rule, called multi-clause goal
induction and denoted as MCGLoopInd.

C1[nlw] C2[nlw] . . . Cn[nlw]

CNF


 ¬(C1[0] ∧ C2[0] ∧ . . . ∧ Cn[0]) ∧

∀itN.
(
((it < nlw) ∧ ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it]))→
¬(C1[suc(it)] ∧ C2[suc(it)] ∧ . . . ∧ Cn[suc(it)]))

)
→ (∀itN. (it < nlw)→ ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it]))


For performance reasons, we mandate that the premises C1 . . . Cn be derived from

trace logic formulas expressing safety assertions and not from formulas encoding the
program semantics. The MCGLoopInd rule is formalised only as an induction infer-
ence over last loop iteration symbols. While restricting to nlw terms is of purely heuris-
tic nature, our experiments justify the necessity and usefulness of this condition (Sec-
tion 8).

1 func main(){
2 const Int alength;
3 Int[] a;
4 Int i = 0;
5 const Int n;
6
7 while(i < alength){
8 a[i] = a[i] + n;
9 i = i + 1;

10 }
11
12 Int j = 0;
13 while(j < alength){
14 a[j] = a[j] - n;
15 j = j + 1;
16 }
17 }
18 assert (∀posI.((0 ≤ pos < alength)
19 → a(main_end, pos) = a(main_start, pos)))

Fig. 3: Adding and subtracting n to every element of array a.

6 Array Mapping Induction for Lemmaless Induction
Multi-clause goal induction neatly captures goal-oriented application of induction. Nev-
ertheless, there are verification challenges where MCGLoopInd fails to prove inductive
loop properties. This is particularly the case for benchmarks containing multiple loops,
such as in Figure 3. We first discuss the limitations of MCGLoopInd using Figure 3,
after which we present our solution, the array mapping induction inference.

Let w1 be the first loop statement of Figure 3 and w2 be the second loop. Using
MCGLoopInd, we would attempt to prove

∀itN. it ≤ nlw2
→

∀posI. (0 ≤ pos < j(tpw2(it)))→ (a(tpw2(it), pos)' a(main_start, pos) (9)

However, formula (9) is not a useful invariant for proving the assertion. Rather, for w2

we need a loop invariant similar to

∀itN. it ≤ nlw2
→ ∀posI. (0 ≤ pos < j(tpw2

(it)))
→ (a(tpw2

(it), pos)' a(tpw2
(0), pos)− n (10)

and a similar loop invariant for loop w1. The loop invariant (10) is however not linked
to the safety assertion of Figure 3, and thus multi-clause goal induction is unable to
infer and prove with it. To aid with the verification of benchmarks such as Figure 3,
we introduce another induction inference which we call array mapping induction. In
this case, we trigger induction not on clauses and terms coming from the goal, but on
clauses and terms appearing in the program semantics.

The array mapping induction inference rule, denoted as AMLoopInd is given be-
low. Essentially, AMLoopInd involves analysing a clause set to heuristically devise a

suitable loop invariant. Guessing a candidate loop invariant is a difficult problem. The
AMLoopInd inference is triggered if clauses of the shapes of C1 and C2 defined below
are present in the clause set. Intuitively, C2 can be read as saying that on each round
of some loop w, some array a at position i is set to some function F of its previous
value at that position. Clause C1 states that i increases by m in each round of the loop.
Together the two clauses suggest that the loop is mapping the function F to each mth
location of the array starting from the array cell located at i(tpw(0)). This is precisely
what the induction formula attempts to prove. Note that for ease of notation, we present
the inference for the case where the indexing variable is increasing. It is straightforward
to generalise to the decreasing case. The AMLoopInd rule is3

C1 = i(tpw(suc(x)))' i(tpw(x)) +m ∨ ¬(x < nlw)

C2 = a
(
tpw(suc(x)), i(tpw(x))

)
'F [a

(
tpw(x), i(tpw(x))

)
] ∨ ¬(x < nlw)

CNF(StepCase→ Conclusion)
where w is some loop and F an arbitrary non-empty context. Let i0 be an abbreviation
for i(tpw(0)). Then:

StepCase : ∀itN.
(
∀yI. it < nlw ∧

y < i(tpw(it))− i0 ∧ y ≥ 0 ∧ y mod m = 0

→ a(tpw(it), i0 + y)'F [a(tpw(0), i0 + y)]
)
→

(∀yI. y < i(tpw(suc(it)))− i0 ∧ y ≥ 0 ∧ y mod m = 0

→ a(tpw(suc(it)), i0 + y)'F [a(tpw(0), i0 + y)])

Conclusion : ∀xI. x < i(tpw(nlw))− i0 ∧ x ≥ 0 ∧ x mod m = 0

→ a(tpw(nlw), i0 + x)'F [a(tpw(0), i0 + x)]

To prove StepCase , it is necessary to be able to reason that positions in the array
a remain unchanged until visited by the indexing variable. This can be achieved via
the addition of another induction to the conclusion of the inference. We do not provide
details of this induction formula here, but it is added to the conclusion by our implemen-
tation which we present in Section 7. The AMLoopInd inference is thus sufficient to
prove the assertion of Figure 3. While AMLoopInd is a limited approach for guessing
inductive loop invariants, we believe it can be extended towards further, more generic
methods to guess invariants, as discussed in Section 9. We conclude this section by not-
ing that our induction rules are sound, based on trace logic semantics. Since both rules
merely add instances of the bounded induction schema for natural numbers (3) to the
search space, soundness is trivial and we do not provide a proof.

Theorem 1 (Soundness of Lemmaless Induction). The inference rules MCGLoopInd
and AMLoopInd are sound.

7 Implementation

Our approach is implemented as an extension of the RAPID framework, using the first-
order theorem prover VAMPIRE.

3 In the conclusion we ignore the base case of the induction formula as it is trivially true.

Extensions to RAPID. RAPID takes as an input a W program along with a property
expressed in L. It outputs the semantics of the program expressed in L using SMT-LIB
syntax along with the property to be proven. For our “lemmaless induction” frame-
work, we have extended RAPID as follows. Firstly, we prevent the output of all trace
lemmas other than trace lemma A (Section 4.5). We added custom extensions to the
SMT-LIB language to identify trace logic symbols, such as loop iteration symbols, pro-
gram variables, within the RAPID encodings. This way, trace logic symbols to be used
for induction inferences are easily identified and can also be used for various proving
heuristics. We refer to this version (available online4) as RAPIDl−.

Extensions to VAMPIRE. We implemented the MCGLoopInd inference rule and a
slightly simplified version of the AMLoopInd rule in a new branch of VAMPIRE5. The
main issue with the induction inferences MCGLoopInd and AMLoopInd is their ex-
plosiveness which can cause proof search to diverge. We have, therefore, introduced var-
ious heuristics in the implementation to try and control them. For MCGLoopIndwe not
only necessitate that the premises are derived from the conjecture, but that their deriva-
tion length from the conjecture is below a certain distance controlled by an option. The
premises must be unit clauses unless another option multi_literal_ clauses is
toggled on. The option induct_all_loop_counts allows MCGLoopInd induc-
tion to take place on all loop counter terms, not just final loop iterators. In order for the
MCGLoopInd and AMLoopInd inferences to be applicable, we need to rewrite terms
not containing final loop counters to terms that do. However, rewriting in VAMPIRE
is based on superposition, which is parameterised by a term order preventing smaller
terms to be rewritten into larger ones. In this case, the term order may work against us
and prevent such rewrites from happening. We implemented a number of heuristics to
handle this problem. One such heuristic is to give terms representing constant program
variables a large weight in the ordering. Then, equations such as alength ' i(tpw(nlw))
will be oriented left to right as desired. We combined these options with others to form
a portfolio of strategies6 that contains 13 strategies each of which runs in under 10s.

8 Experimental Results

Benchmarks. For our experiments, we use a total of 111 examples whose verification
involved proving safety assertions of different logical complexity (quantifier-free, only
universally/existentially quantified, and with quantifier alternations). Our benchmarks
are divided into four groups, as indicated in Table 1: (i) the first 13 problems have
quantifier-free proof obligations; (ii) the majority of benchmarks, in total 68 examples,
contain universally quantified safety assertions; (iii) 7 problems come with the task of
verifying existentially quantified assertions; (iv) and the last 23 programs contain asser-
tions with alternation of quantifiers. The examples from (i)-(ii), a total of 81 programs,

4 See commit 285e54b7e of https://github.com/vprover/rapid/tree/
ahmed-induction-support.

5 See commit 4a0f319f of https://github.com/vprover/vampire/tree/
ahmed-rapid.

6 --mode portfolio --schedule rapid_induction..

https://github.com/vprover/rapid/tree/ahmed-induction-support
https://github.com/vprover/rapid/tree/ahmed-induction-support
https://github.com/vprover/vampire/tree/ahmed-rapid
https://github.com/vprover/vampire/tree/ahmed-rapid

Table 1: Experimental results.

Benchmark (1) (2) (3) (4)
atleast_one_iteration_0
atleast_one_iteration_1
count_down - - -
eq - -
find_sentinel - -
find1_0 -
find1_1 -
find2_0 -
find2_1 -
indexn_is_arraylength_0 -
indexn_is_arraylength_1 -
set_to_one
str_cpy_3 -
add_and_subtract - -
both_or_none -
check_equal_set_flag_1 -
collect_indices_eq_val_0 -
collect_indices_eq_val_1 - -
copy -
copy_absolute_0 -
copy_absolute_1 -
copy_and_add - -
copy_nonzero_0 -
copy_partial -
copy_positive_0 -
copy_two_indices - -
find_max_0 -
find_max_2 -
find_max_from_second_0 - -
find_max_local_2 - - - -
find_max_up_to_0 - - - -
find_max_up_to_2 - - - -
find_min_0 -
find_min_2 - -
find_min_local_2 - - - -
find_min_up_to_0 - - - -
find_min_up_to_2 - - - -
find1_4 - - -
find2_4 - -
in_place_max -
inc_by_one_0 -
inc_by_one_1 -
inc_by_one_harder_0 -
inc_by_one_harder_1 -
init - -
init_conditionally_0 - -
init_conditionally_1 -
init_non_constant_0 - -
init_non_constant_1 -
init_non_constant_2 -
init_non_constant_3 -
init_non_constant_easy_0 - -
init_non_constant_easy_1 -
init_non_constant_easy_2 -
init_non_constant_easy_3 -
init_partial -

Benchmark (1) (2) (3) (4)
init_prev_plus_one_0 - -
init_prev_plus_one_1 - -
init_prev_plus_one_alt_0 - -
init_prev_plus_one_alt_1 - -
insertion_sort - - - -
max_prop_0 -
max_prop_1 -
merge_interleave_0 - -
merge_interleave_1 - -
min_prop_0 -
min_prop_1 -
partition_0 -
partition_1 -
push_back -
reverse - -
rewnifrev - -
rewrev - -
skipped - -
str_cpy_0 - -
str_cpy_1 - -
str_cpy_2 - -
swap_0 -
swap_1 -
vector_addition -
vector_subtraction -
check_equal_set_flag_0 - -
find_max_1 - - - -
find_max_from_second_1 - - -
find1_2 - -
find1_3 - -
find2_2 - -
find2_3 - -
collect_indices_eq_val_2 - - -
collect_indices_eq_val_3 - - -
copy_nonzero_1 - -
copy_positive_1 - -
find_max_local_0 - - - -
find_max_local_1 - - -
find_max_up_to_1 - - - -
find_min_1 - - - -
find_min_local_0 - - - -
find_min_local_1 - - -
find_min_up_to_1 - - - -
merge_interleave_2 - - -
partition_2 - -
partition_3 - -
partition_4 - - - -
partition_5 - - -
partition_6 - - - -
partition-harder_0 - -
partition-harder_1 - -
partition-harder_2 - - -
partition-harder_3 - - -
partition-harder_4 - - -
str_len - -

Total solved 93 78 13 47

come from the array verification benchmarks of SV-COMP repository [1], with most
of these examples originating from [9, 13].7 These examples correspond to the set of
those SV-COMP benchmarks which use the C fragment supported by RAPID; specifi-
cally, when selecting examples (i)-(ii) from SV-COMP, we omitted examples containing
pointers or memory management. All SV-COMP examples from (i)-(ii) are adapted to
our input format, as for example arrays in trace logic are treated as unbounded data
structures. Further, the examples (iii)-(iv) are new examples crafted by us, in total 30
new examples. They contain existential and alternating quantification in safety asser-
tions. We intend to submit these 30 examples from (iii)-(iv) to SV-COMP.

Experimental Setting. We used two versions of RAPID in our experiments. First,
(1) RAPIDl− denotes our RAPID approach, using lemmaless induction MCGLoopInd
and AMLoopInd in VAMPIRE. Further, (2) RAPIDl+ uses trace lemmas for induc-
tive reasoning, as described in [11]. We also compared RAPIDl− with other verification
tools. In particular, we considered (3) SEAHORN and (4) VAJRA (and its extension
DIFFY that produced for us exactly the same results as VAJRA). SEAHORN converts the
program into a constrained horn clause (CHC) problem and uses the SMT solver Z3 for
solving. VAJRA and DIFFY implement inductive reasoning and recurrence solving over
loop counters; in the background, they also use Z3.

RAPID Experiments. Table 1 shows that RAPIDl− is superior to RAPIDl+, as it solves
a total of 93 problems, while RAPIDl+ only proved 78 assertions correct. Particularly,
RAPIDl− can solve benchmark merge_interleave_2 corresponding to our moti-
vating example 1, and other challenging problems such as find_max_local_1 also
containing quantifier alternations.

While RAPIDl− can solve a total of ten problems more than RAPIDl+, it is in-
teresting to look into which problems can now be solved. Many of the newly solved
problems are structurally very close to the loop invariants needed to prove them. This
is where multi-clause goal-oriented induction MCGoalInd makes the biggest impact.
For instance, this allows RAPIDl− to prove the partial correctness of find_max_
from_second_0 and find_max_from_second_1.

On the other hand, RAPIDl− also lost two challenging benchmarks that were pre-
viously solved by RAPIDl+, namely swap_0 and partition_5. This could be for
two reasons: (1) the strategies in the induction schedule of RAPIDl− are too restrictive
for such benchmarks, or (2) the step case of the induction axiom introduced by our two
rules are too difficult for VAMPIRE to prove. Strengthening lemmaless induction with
additional trace lemmas from RAPIDl+ is an interesting line of further work.

Comparing with other tools. Both, SEAHORN and VAJRA/DIFFY require C code as
input, whereas RAPID uses its own syntax. We translated our benchmarks to C code
expressing the same problem. However, a direct comparison of RAPID, and in par-
ticular RAPIDl−, with most other verifiers requiring standard C code as an input is

7 Artifact evaluation: in order to reproduce the results reported in this section, please follow
the instructions at https://github.com/vprover/vampire_publications/
tree/master/experimental_data/CICM-2022-RAPID-INDUCTION

https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION
https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION

not possible as we consider slightly different semantics. In contrast to SEAHORN and
VAJRA/DIFFY, we assume that integers and arrays are unbounded and that all array
positions are initialized by arbitrary data. Further, we can read/write at any array po-
sition without allocating the accessed memory beforehand. Apart from semantic dif-
ferences, RAPID can directly express assertions and assumptions containing quantifiers
and put variable contents from different points in time into relation. In order to deal with
the latter, we introduced history variables in the code provided to SEAHORN and VA-
JRA/DIFFY. Quantification was simulated by non-deterministically assigned variables
and by loops. As a result, SEAHORN verified 13 examples, whereas VAJRA/DIFFY
47 of our benchmarks. As VAJRA/DIFFY restrict their input programs to contain only
loops having very specific loop-conditions, several of our benchmarks failed. For ex-
ample, i < length is permitted, whereas a[i] 6= 0 is not. VAJRA/DIFFY could prove
correctness for nearly all the programs satisfying these restrictions. SEAHORN, on the
other hand, has problems with the complexity introduced by the arrays. It could solve
especially those benchmarks whose correctness do not depend on the arrays’ content.

9 Future Directions and Conclusion

We introduced lemmaless induction to fully automate the verification of inductive prop-
erties of program loops with unbounded arrays and integers. We introduced goal-oriented
and array mapping induction inferences, triggered by loop counters, in superposition-
based theorem proving. Our results show that lemmaless induction in trace logic out-
performs other state-of-the-art approaches in the area. There are various ways to further
develop lemmaless induction in trace logic. On larger benchmarks, particularly those
containing multiple loops, our approach struggles. For loops where the required invari-
ant is not connected to the conjecture, we introduced array mapping induction. How-
ever, the array mapping induction inference is limited in the form of invariants it can
generate. We would like to investigate other methods, such as machine learning for syn-
thesising loop invariants that are not too prolific. A completely different line of research
that we are currently working on, is updating the trace logic syntax and semantics of
W to deal with memory and memory allocation, aiming to efficiently reason about loop
operations over the memory.

As shown in [19], the validity problem for first-order formulas of linear arithmetic
extended with non-theory function symbols is Π1

1 -complete. Therefore, we do not ex-
pect any completeness result for inductive theorem proving. Proving relative complete-
ness results for our verification framework is an interesting question.
Acknowledgements. This research was partially supported by the ERC consolidator
grant ARTIST 101002685, the FWF research project LogiCS W1255-N23, the TU
Wien SecInt doctoral program, and the EUProofNet Cost Action CA20111. Our re-
search was partially funded by the Digital Security by Design (DSbD) Programme de-
livered by UKRI to support the DSbD ecosystem.

References
1. "sv-comp repository". https://gitlab.com/sosy-lab/benchmarking/

sv-benchmarks.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

2. Vampire website. https://vprover.github.io/.
3. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2, pages 19–
99. Elsevier Science, 2001.

4. Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV, pages 171–177, 2011.

5. Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Verifying array manipulating
programs with full-program induction. In TACAS, pages 22–39, 2020.

6. Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Diffy: Inductive Reasoning
of Array Programs Using Difference Invariants. In CAV, pages 911–935, 2021.

7. Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Automating inductive
proofs using theory exploration. In IJCAR, pages 392–406. Springer, 2013.

8. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

9. Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong vs. weak updates.
In ESOP, pages 246–266, 2010.

10. Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti Gupta. Quantified
invariants via syntax-guided synthesis. In CAV, pages 259–277, 2019.

11. Pamina Georgiou, Bernhard Gleiss, and Laura Kovács. Trace Logic for Inductive Loop
Reasoning. In FMCAD, pages 255–263, 2020.

12. Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. The SeaHorn
verification framework. In CAV, pages 343–361, 2015.

13. Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. Quantifiers on demand. In ATVA, pages
248–266, 2018.

14. Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei Voronkov.
Induction with generalization in superposition reasoning. In CICM, pages 123–137, 2020.

15. Petra Hozzová, Laura Kovács, and Andrei Voronkov. Integer induction in saturation. In
CADE, pages 361–377. Springer, 2021.

16. Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the verifast program verifier.
In APLAS, pages 304–311. Springer, 2010.

17. E. G. Karpenkov and D. Monniaux. Formula slicing: Inductive invariants from preconditions.
In HVC, pages 169–185, 2016.

18. Matt Kaufmann and J. Strother Moore. An industrial strength theorem prover for a logic
based on common lisp. IEEE Transactions on Software Engineering, pages 203–213, 1997.

19. Konstantin Korovin and Andrei Voronkov. Integrating linear arithmetic into superposition
calculus. In CSL, pages 223–237, 2007.

20. Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to terms with quantified
reasoning. In POPL, pages 260–270, 2017.

21. Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In CAV,
pages 1–35, 2013.

22. D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant generation. In
VMCAI, pages 169–188, 2013.

23. K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In
LPAR, pages 348–370, 2010.

24. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7, pages
371–443. Elsevier Science, 2001.

25. Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, pages
335–367. Elsevier Science, 2001.

https://vprover.github.io/

26. Pritom Rajkhowa and Fangzhen Lin. Extending VIAP to handle array programs. In VSTTE,
pages 38–49, 2018.

27. Giles Reger, Nikolaj Bjorner, Martin Suda, and Andrei Voronkov. AVATAR modulo theories.
In GCAI, pages 39–52, 2016.

28. Giles Reger, Johannes Schoisswohl, and Andrei Voronkov. Making theory reasoning simpler.
In TACAS, pages 164–180, 2021.

29. S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate Abstrac-
tion. In PLDI, pages 223–234, 2009.

	Lemmaless Induction in Trace Logic

