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Kurzfassung

Covering Arrays sind interessante kombinatorische Objekte, die Bekanntheit erlangt
haben durch ihre Anwendbarkeit für kombinatorisches Testen, einem Zweig von Software
Testen. Die Generierung von Covering Arrays wird normalerweise als Optimierungspro-
blem betrachtet, wo es gewünscht ist, ein Covering Array mit einer minimalen Anzahl von
Zeilen zu finden. Durch Fortschritte in den vergangenen Jahren wurden exakte Methoden
sehr effizient und anpassungsfähig, das heißt sie können bei zahlreichen Problemen an-
gewandt werden. Für Covering Array Generierung mittels exakter Methoden existieren
mehrere Kodierungen. Die Anwendung von exakten Methoden für einzelne Teile eines
Covering Array Generierungsalgorithmus dagegen wurde nur selten untersucht. Der Zweck
dieser Arbeit ist eine Untersuchung der Möglichkeit, Algorithmen zur Erzeugung von
Covering Arrays mit exakten Methoden zu verbessern. Im Zuge dieser Arbeit wurden
zwei neue Algorithmen entwickelt, die exakte Methoden, genauer gesagt SAT solving,
pseudo-Boolean constraint solving und MaxSAT solving, anwenden, um Teilprobleme von
Covering Array Generierungsalgorithmen zu lösen. Der vorgestellte ClassifyBalancedCAs
Algorithmus kann Covering Arrays klassifizieren, also alle nicht-äquivalenten Covering
Arrays einer gegebenen Größe zählen, und diese Menge von Covering Arrays generieren.
In einigen Fällen ist der ClassifyBalancedCAs Algorithmus schneller als alle existierenden
Algorithmen zur Klassifizierung von Covering Arrays, besonders wenn eine Optimierung
namens balancebasiertes Pruning verwendet wird. Zusätzlich wurde der IPO-MAXSAT
Algorithmus entwickelt, bei dem MaxSAT verwendet wird, um optimale Lösungen für
Teilprobleme der In-Parameter-Order (IPO) Strategie zu finden. Dadurch, dass optimale
Lösungen für Teilprobleme verwendet werden, können die Fähigkeiten und Limitierungen
der IPO Strategie untersucht werden. Experimente zeigen, dass die Verwendung von opti-
malen Lösungen für Teilprobleme die Qualität der produzierten Covering Arrays erhöht.
Sie zeigen aber auch, dass die generierten Covering Arrays dennoch nicht optimal sind.
Die präsentierten Algorithmen demonstrieren, dass es vorteilhaft sein kann, existierende
Covering Array Algorithmen mit exakten Methoden zu erweitern.
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Abstract

Covering arrays are interesting combinatorial objects that gained much popularity due
to their application in combinatorial testing, which is a branch of software testing. The
generation of covering arrays is usually treated as an optimization problem, where it is
desired to find a covering array with a minimal number of rows. Over the past years
exact methods have evolved to be efficient and highly adaptive, meaning they can be
applied to many different problems. While several encodings for covering array generation
with some exact methods exist, the application of exact methods for only part of a
covering array generation algorithm has rarely been studied. The purpose of this thesis
is examining the possibility of enhancing covering array generation algorithms with exact
methods. In the course of this thesis two new algorithms were developed applying exact
methods, in particular SAT solving, pseudo-Boolean constraint solving and MaxSAT
solving, to subproblems occurring in algorithms for covering array generation. The
proposed algorithm ClassifyBalancedCAs is capable of covering array classification, that
is counting all non-equivalent covering arrays of a given size, and exhaustive generation
of all such covering arrays. In several cases the ClassifyBalancedCAs algorithm is faster
than all existing covering array classification algorithms, especially when an optimization
called balance-based pruning is used. Additionally, the IPO-MAXSAT algorithm was
developed, where MaxSAT is used to find optimal solutions for subproblems occurring in
the greedy In-Parameter-Order (IPO) strategy. Using optimal solutions for subproblems
allows to investigate the capabilities and limitations of the IPO strategy. Experiments
show that better solutions for subproblems lead to higher quality of the generated covering
arrays, however, using optimal solutions for subproblems is not sufficient to generate
optimal covering arrays. The presented algorithms show that enhancing covering array
generation algorithms with exact methods can be beneficial.
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CHAPTER 1
Introduction

A covering array (CA) is a combinatorial array with values from a finite alphabet, where
for every selection of a given number of columns all possible tuples have to occur at
least once in some row. As a generalization of orthogonal arrays, which are thoroughly
described in [HSS99], CAs have been studied both with regards to their combinatorial
aspects (see [Col04] for a survey), and for their applications in practice. The requirements
on tuple occurrences make CAs a useful tool in software testing. More specifically,
combinatorial testing (CT) is a black box testing technique, where input space coverage is
achieved by deriving test sets from CAs. When deriving a test set from a CA, every row
of the CA is converted to a test and every column of the array corresponds to a parameter
of the tested system. Using such a test set ensures due to the way CAs are defined that
all interactions of up to a given number of parameters are tested. Empirical studies
have shown that most software bugs depend on interactions of only a small number of
parameters [HWKK20], meaning with a proper testing oracle these bugs can be found
with CT. While exhaustive testing is infeasible in most cases, CT is a viable alternative
that allows thorough testing with a smaller number of test cases. For an introduction to
CT, see [KKL13].

The generation of CAs is usually considered an optimization problem, where for given
parameters defining the properties of a CA the goal is to find a CA with a minimal or small
number of rows. Finding a small CA is especially useful in the case of CT where additional
rows lead to additional tests and therefore more testing effort. However, the generation of
optimal CAs is a challenging problem with complexity yet unknown [KS19]. Many different
algorithms for CA generation exist: heuristic algorithms with a focus on execution speed
[LKK+07, CDFP97, BC09], metaheuristic algorithms [WKS21, AZL12, TJAG16] with a
focus on minimizing the number of rows of the generated CAs as well as exact algorithms
[HPSS06, IMTJ18, KMN+20] giving an exact answer to the question whether a CA is
optimal. Each of these techniques has different strengths and weaknesses. Heuristics
allow fast generation of CAs but the arrays generated with heuristics are usually far from
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1. Introduction

optimal. Metaheuristics are slower than pure heuristic algorithms and might require
more intermediate storage but they often allow to drastically reduce the number of rows
when compared to heuristic algorithms. However, although they produce good CAs
and in many cases optimal CAs, they do not provide any guarantees or information on
solution quality. A solution delivered by a metaheuristic can be optimal or just a local
optimum. Exact algorithms, whether they are based on an existing exact method or are
a problem-specific algorithm, are able to generate optimal CAs and prove optimality of
the generated CA. Although the applicability of exact algorithms in practice is limited
due to scalability issues, they are quite interesting from a theoretical point of view. Not
only can they prove the existence and non-existence of specific CA instances, they can
also be used for exhaustive generation and classification of CAs.

The aim of this thesis is the generation of optimal or close to optimal CAs, which is
addressed using exact methods. An advantage of exact methods is the ability to solve
problems without developing a problem-specific algorithm. Only an encoding is required,
then an existing solver can be used for generating a solution to the problem. The flexibility
of exact methods has led to the development of optimized solvers, which are very efficient
and can be used instead of problem-specific algorithms that need to be developed and
optimized separately for every domain. Exact methods have also been applied to the
problem of CA generation. CAs have for example been constructed with the exact
methods CSP and SAT [HPSS06, BMTI10]. The problem of CA generation was encoded
as constraint set or propositional formula and CAs were derived from the solutions found
by the corresponding solver. For several instances, the application of exact methods
allowed to draw conclusions on the optimal size of a CA. However, a major downside
of encoding the complete problem of CA generation for a given size is scalability. In an
exponential search space, iterating over all feasible solutions potentially takes exponential
time. Applying exact methods only to subproblems of an algorithm can reduce the search
space of the individual calls to the considered exact method solver and therefore might
increase efficiency. The application of exact methods for only part of a CA generation
algorithm has rarely been studied. In fact, to the best of the authors knowledge, the
only work pertaining CA generation making use of an exact method for generating array
parts fulfilling the coverage criteria of CAs is [LMZ16]. This thesis attempts to mitigate
this shortcoming by exploring the applicability of exact methods to subproblems of
existing CA generation algorithms. Two new algorithms based on existing CA generation
algorithms, using an exact method (SAT, pseudo-Boolean constraints or MaxSAT) for
occurring subproblems, were developed and implemented. The ClassifyBalancedCAs
algorithm uses an exact method for efficiently finding all feasible solutions in an algorithm
where exact solving is required, while the IPO-MAXSAT algorithm replaces a heuristic
solution in a CA generation strategy with an optimal solution generated via an exact
method, allowing conclusions on the abilities of the considered strategy regarding solution
quality under optimal circumstances.

The first proposed algorithm, ClassifyBalancedCAs, is a CA classification algorithm
making use of column extension and backtracking. Algorithms of this type have been
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previously proposed e.g. in [IMTJ18] and [KMN+20]. The number of CAs of a given
size is counted by exhaustively generating those CAs. In addition to using SAT or
pseudo-Boolean constraint solving for exhaustive generation of solutions to a subproblem
(generation of columns), ClassifyBalancedCAs is the first algorithm capable of classifying
a variant of CAs called balanced covering arrays. The ClassifyBalancedCAs algorithm
is for several instances the fastest currently existing CA classification algorithm. Using
a technique called balance-based pruning, the runtime can be reduced further for some
special cases.

The second algorithm developed in the course of this thesis is called IPO-MAXSAT. It
combines the In-Parameter-Order (IPO) strategy described in [LKK+07] with MaxSAT
solving to receive optimal solutions for the occurring subproblems called horizontal
extension and vertical extension. With a greedy algorithm for the occurring subproblems,
IPO is an excellent strategy for fast generation of CAs that is also implemented in
tools that are used in practice for CT, see [WKS+20] and [YLKK13]. Using MaxSAT
for the subproblems leads to the generation of CAs with fewer rows, and an increased
runtime when compared to other IPO algorithms. While the IPO-MAXSAT algorithm
will not be as useful in practice due to the drastically increased runtime, the usage of
optimal solutions for subproblems allows to experiment with different kinds and degrees
of solution optimality and investigate the performance of the IPO strategy with these
optimal solutions. Experiments show that higher quality of subproblem solutions leads to
higher quality of the generated CAs. However, in general no optimal CAs are generated
with IPO-MAXSAT.

The remainder of this thesis is structured as follows: In Chapter 2 the required con-
cepts are introduced. Definitions for CAs and related notions are given, together with
explanations of used concepts, in particular symmetry breaking and exact methods. In
Chapter 3 existing work in the area of CA generation is discussed, with a focus on row
and column extension algorithms, i.e. algorithms starting with an empty or partial
array and extending it with additional rows or columns until a CA of the desired size
is constructed. Additionally, CA generation algorithms based on exact methods are
summarized. Afterwards, in Chapters 4 and 5 the contribution of this thesis is given. In
Chapter 4 the ClassifyBalancedCAs algorithm is presented, which is an exact column
extension algorithm capable of CA classification. Additionally, with an experimental
evaluation the ClassifyBalancedCAs algorithm is compared to existing CA classification
algorithms. In Chapter 5 the algorithm IPO-MAXSAT is described, which enhances the
existing heuristic algorithm IPO with the exact method MaxSAT. While the developed
algorithm is not competitive to IPO with regard to runtime, replacing an intermediate
step with an exact method allows to draw conclusions on the capabilities and limitations
of the IPO algorithm, as discussed in Section 5.4. Finally, Chapter 6 concludes the
thesis with a summary of the developed algorithms and the lessons learned, together
with possible future work.
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CHAPTER 2
Preliminaries

In this chapter, preliminaries and notations required in the remainder of this thesis are
introduced. First, since the focus of this thesis is on CA generation, definitions for CAs
and related concepts will be given. Afterwards, the exact methods applied in this thesis
will be briefly introduced.

2.1 Covering array definitions
A CA is defined analogously to [CD07]:

Definition 1. A covering array (CA) denoted as CAλ(N ; t, k, v) is an N × k array over
an arbitrary alphabet Σv with v symbols, where every t-tuple over Σv occurs at least λ
times as a row in every selection of t columns. The parameter t is called the strength
of the covering array, k is the number of columns of the array, and v is the number of
symbols in the array. When λ = 1, the subscript can be omitted in the notation. The
number of rows N , also called size, can be omitted when inessential in the context.

Without loss of generality, the alphabet Σv = {0, . . . , v − 1} will be used throughout
this thesis. The parameter v is also called alphabet size, since it defines the size of the
used alphabet. To simplify discussion about concepts of CAs, several additional existing
notions commonly used in the literature are introduced here.

Definition 2. A selection of t columns with corresponding values is called t-way inter-
action. It is denoted as a set {(c1, u1), . . . , (ct, ut)}, where 1 ≤ c1 < . . . < ct ≤ k and
ui ∈ Σv for i = 1, . . . , t.

In this thesis, the following notation is used to describe sets of t-way interactions:
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2. Preliminaries

A =

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 1 2 2
0 2 2 2 2 0 1
1 0 1 1 2 0 2
1 1 0 2 2 2 0
1 1 2 0 0 1 1
1 2 1 2 1 1 0
2 0 2 2 0 2 2
2 1 2 1 1 0 0
2 2 0 0 2 1 2
2 2 1 1 0 2 1

Figure 2.1: A covering array CA(12; 2, 7, 3).

Definition 3. The set of all t-way interactions on columns 1, . . . , k is denoted as Tv,k,t.
This is the set

Tv,k,t = {{(c1, u1), . . . , (ct, ut)}|1 ≤ c1 < . . . < ct ≤ k, ui ∈ Σv for i = 1, . . . , t}}

The size of the set Tv,k,t is vt k
t because there are k

t possible selections of t out of k
columns and vt possible selections of values for every column selection.

Definition 4. A row r⃗ = (a1, . . . , ak) of an N × k array A is said to cover a t-way
interaction τ = {(c1, u1), . . . , (ct, ut)} if the values in the row r⃗ match the values of τ in
the respective columns, i.e. aci = ui for i = 1, . . . , t. An array A is said to cover a t-way
interaction τ if A has a row that covers τ . In this thesis, for an array A the index set of
the rows that cover an interaction τ is denoted as A ↿τ .

During the construction of a CA it might be that not all array entries are assigned at the
same time. In this case, some entries of an array A have a value assigned, while other
array entries have not been assigned a value. Such array entries without value are called
unassigned or star-values. Then the definition of A ↿τ can be extended to contain the
indices of all rows that can cover τ . These are the indices of the rows that match τ on
all positions that do not contain a star-value.

Using these definitions, a CA is an array where all t-way interactions are covered. An
example of a CA(12; 2, 7, 3) is given in Figure 2.1. In every selection of t = 2 columns,
every tuple over the alphabet Σ3 = {0, 1, 2} occurs at least once as a row. For example
the 2-way interaction {(2, 2), (4, 2)} is covered in the fourth and eighth row, therefore
the set of row indices where {(2, 2), (4, 2)} is covered is the set A ↿{(2,2),(4,2)}= {4, 8}
Existence of a CA(t, k, v) is trivial, since the vk × k array containing all vk tuples over the
alphabet Σv = {0, . . . , v −1}, those are all elements of {0, . . . , v −1}k, is also a CA(t, k, v).
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2.1. Covering array definitions

However, finding a CA(t, k, v) with a small or even minimal number of rows is a difficult
problem that is actively researched and of practical interest in CT.

Definition 5. The covering array number (CAN) denoted as CAN(t, k, v) for given (t, k, v)
is the minimum number of rows N where a CA(N ; t, k, v) exists. The CAN problem is the
problem of finding CAN(t, k, v) for given parameters (t, k, v). A CA(N ; t, k, v) is called
optimal if N = CAN(t, k, v), i.e. if it has a minimum number of rows.

An online table of the currently best known upper bounds for CAN, together with the
source of the bound, is maintained at [Col].

In addition to minimizing the number of rows N for given (t, k, v), it is also possible to
maximize the number of columns k for given (N ; t, v). Therefore, a dual bound to CAN
is the maximal number of columns k of a CA(N ; t, k, v) for given parameters N , t and v.
This bound is denoted as CAK(N ; t, v) and can be defined as follows:

Definition 6. CAK(N ; t, v) is defined as the maximal number of columns k where a
CA(N ; t, k, v) exists, i.e.

CAK(N ; t, v) = max{k : ∃CA(N ; t, k, v)}

CAK and CAN are simply two different viewpoints. As the following equations show,
CAK values can be determined from CAN values and vice versa.

CAK(N ; t, v) = max{k : CAN(t, k, v) ≤ N}
CAN(t, k, v) = min{N : CAK(N ; t, v) ≥ k}

In the literature mostly the CAN bound is used. This is also related to the application
of CT, where a function with k parameters is tested using a CA with k columns, i.e.
the number of columns is an input parameter to CA generation. Since the number of
columns is often fixed, it is natural to use the CAN bound to discuss the limits of CA
generation for a specific instance.

Two important generalizations of CAs that are also widely used in the practice of CT are
the mixed covering array (MCA) and the constrained CA. An MCA allows a more flexible
specification of the alphabet size than CAs. While the alphabet size v of a CA is the same
for every column, when defining an MCA a list of alphabet sizes v1, . . . , vk is given, where
for every column c ∈ {1, . . . , k} the alphabet size vc of column c is defined separately.
In the context of CT, this is required when testing systems where not every parameter
has the same number of possible values. Constrained CAs on the other hand allow to
impose constraints on the rows occurring in the array, i.e. the occurrence of specific value
combinations might be forbidden. Such constraints can be specified as lists of forbidden
parameter interactions (as m-way interactions for some m ≤ k) or as a formula. Since
constraints might prevent some t-way interactions from occurring in the array at all,
the definition of coverage is repaired to only enforce coverage of t-way interactions not
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2. Preliminaries

forbidden by the given constraints. For CT, constrained CAs allow to exclude forbidden
input parameter combinations from the generated tests. Constrained MCAs are also
often referred to as constrained CAs. In this thesis, MCAs and constrained CAs are not
considered.

CAs have the property that every t-way interaction appears at least once in the array. A
related notion is the packing array (PA), defined in [SM02, SM04]. This is an array with
a definition similar to CAs, with the difference that every t-way interaction appears at
most once in the array. A formal definition looks as follows:

Definition 7. A packing array (PA) denoted as PAλ(N ; t, k, v) is an N × k array over
an arbitrary alphabet Σv with v symbols where every t-tuple over Σv occurs at most λ
times as a row in every selection of t columns. The parameter t is also called the strength
of the packing array. When λ = 1, the subscript can be omitted in the notation. The
number of rows N , also called size, can be omitted when inessential in the context.

While for CAs the minimum number of rows (CAN) for given parameters t, k, v is of
interest, for PAs there is a maximum number of rows where a PA for given parameters
t, k, v exists. PAs exists for every parameter combination t, k, v, since an array with zero
rows is a PA. A trivial upper bound on the number of rows of a PAλ(N ; t, k, v) is N ≤ λvt

because each of the vt possible tuples in a selection of t columns can appear at most λ
times. However, the exact upper bound is more interesting:

Definition 8. The packing array number (PAN) denoted as PAN(t, k, v) for given (t, k, v)
is the maximum number of rows N where a PA(N ; t, k, v) exists.

Intersections of CAs and PAs have been described and examined in [KHKS23] under the
name balanced CAs. This variant of CAs is the focus of the next subsection.

2.1.1 Balance for covering arrays
The notion of balanced CAs as defined in [KHKS23] is used.

Definition 9. For vectors λ = (λ1, . . . , λt), y = (y1, . . . , yt) ∈ Nt a (λ, y)-balanced
covering array denoted as CAy

λ(N ; t, k, v) is an N × k array over an arbitrary alphabet
Σv with v symbols, where for 1 ≤ j ≤ t every j-tuple over Σv occurs at least λj and at
most yj times as a row in every selection of j columns.

The set of all (λ, y)-balanced CAs for given parameters N, t, k and v is denoted as
CAy

λ(N ; t, k, v).

The definition of balanced CAs allows to impose restrictions on the number of occurrences
of j-way interactions of size j ≤ t.

It is easy to see that when λ ≥ λ′ and y ≤ y ′, then CAy
λ(N ; t, k, v) ⊆ CAy ′

λ′(N ; t, k, v).
This follows from λ imposing an at least bound on the number of tuple occurrences,

8



2.1. Covering array definitions

while y imposes an at most bound. With a partial ordering on balance vectors defined
as (λ, y) ≼ (λ′, y ′) if and only if λ ≥ λ′ and y ≤ y ′, for λ, λ′, y , y ′ ∈ Nt, balance vectors
(λ, y) are called stronger than balance vectors (λ′, y ′), if (λ, y) ≼ (λ′, y ′).

With stronger balance vectors, the differences between the number of occurrences of
different tuples are smaller and the array is considered to be more balanced.

In [KHKS23] several bounds are described for balance vectors λ = (λ1, . . . , λt) and
y = (y1, . . . , yt) where no solutions exist, or where stronger balance vectors (λ′, y ′) exist
with CAy

λ(N ; t, k, v) = CAy ′
λ′(N ; t, k, v).

In particular, when the inequalities

λi ≤ N

vi
, for 1 ≤ i ≤ t or (2.1)

yi ≥ N

vi
, for 1 ≤ i ≤ t (2.2)

are not satisfied, no balanced CA CAy
λ(N ; t, k, v) can exist. When on the other hand any

of the following inequalities are violated, it is possible to choose stronger balance vectors,
without reducing the search space and without losing solutions:

λi ≥ v · λi+1, for 1 ≤ i < t, (2.3)
yi ≤ v · yi+1, for 1 ≤ i < t, (2.4)

yi+1 ≤ yi − (v − 1)λi+1, for 1 ≤ i < t, (2.5)
λi+1 ≥ λi − (v − 1)yi+1, for 1 ≤ i < t, (2.6)

λi ≥ N − (vi − 1)yi, for 1 ≤ i ≤ t, (2.7)
yi ≤ N − (vi − 1)λi, for 1 ≤ i ≤ t. (2.8)

Remark 1. As is stated in [KHKS23, Remark 1], when the inequalities above are not
violated but equality holds, then some balance constraints are implied by others:

• Equation (2.3): If λi = v · λi+1 and every (i + 1)-way interaction is enforced to
occur at least λi+1 times, then it is guaranteed that every i-way interaction occurs
at least λi times.

• Equation (2.4): If yi = v · yi+1 and every (i + 1)-way interaction is enforced to occur
at most yi+1 times, then the at most yi constraints are implied and can be omitted.

• Equation (2.5): If λi = N − (vi − 1)yi and every i-way interaction occurs at most
yi times, then it is implied that every i-way interaction occurs at least λi times.

• Equation (2.6): If yi = N − (vi − 1)λi and every i-way interaction occurs at least
λi times, then all i-way interactions also occur at most yi times.

9
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A =

0 0 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0

, B =

0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 0

Figure 2.2: Two equivalent covering arrays CA(5; 2, 4, 2).

• Equation (2.7): If yi+1 = yi − (v − 1)λi+1 and there are constraints ensuring all
(i + 1)-way interactions appear at least λi+1 times and all i-way interactions appear
at most yi times, then it is not necessary to enforce that all (i + 1)-way interactions
appear at most yi+1 times, since this is implied by the other constraints.

• Equation (2.8): Similarly, if λi+1 = λi − (v − 1)yi+1, all i-way interactions occur
at most λi times and all (i + 1)-way interactions occur at most yi+1 times, then it
follows that all (i + 1)-way interactions appear at least λi+1 times.

Additionally, when searching for (λ, y)-balanced CAs with at least k columns the following
bounds for λ = (λ1, . . . , λt) and y = (y1, . . . , yt) vectors are given:

λi ≥ CAN(t − i, k − i, v), (2.9)
yi ≤ PAN(t − i, k − i, v). (2.10)

It was shown in [KHKS23] that every CAy
λ(N ; t, k, v) fulfills the inequalities (2.9) and 2.10,

therefore those inequalities can potentially be used for search space reduction without
omitting any of the desired solutions, i.e. CAs with N rows of strength t with alphabet
size v and at least k columns. In this thesis, search space reduction using this method is
referred to as balance-based pruning.

2.1.2 Covering array equivalences and symmetry breaking
Certain actions on CAs are guaranteed to again result in a CA. Such actions are row
permutations, column permutations and symbol permutations within a column, see e.g.
[CKRSP10]. If a CA B can be produced from a CA A via such operations, then A and
B are called equivalent1. In [KHKS23] it was argued that for balanced CAs the same
equivalences hold as for CAs. An example of two equivalent CAs is given in Figure
2.2, where B can be constructed from A by permuting the symbols in the first and
fourth column with the symbol permutation σ(0) = 1 and σ(1) = 0. Additionally, the
first two rows are swapped with the last three rows. This amounts to sorting the rows
lexicographically after applying the symbol permutations.

The maximal size of the equivalence class consisting of row permutations, column
permutations and symbol permutations within a column on an array of size N × k

1The term isomorphic is also used in the literature.
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over an alphabet of size v is N !k!(v!)k. This is because there are N ! possible row
permutations, k! possible column permutations and for each of the k columns there are
v! possible symbol permutations. Since row, column and symbol permutations can be
arbitrarily combined, this yields a maximal size of N !k!(v!)k. While the equivalence
class is not always of maximal size (because some combinations of equivalence actions
yield automorphisms), the often huge number of equivalent solutions can cause immense
overhead for a search algorithm. Therefore, for an algorithm performing exact search it
is of great importance to apply symmetry breaking to reduce the search space, meaning
the number of considered equivalent solutions is reduced via additional constraints or by
adapting the used algorithm to skip some equivalent solutions.

Incomplete symmetry breaking removes some equivalent solutions but not necessarily all.
However, it is usually computationally cheaper than complete symmetry breaking, where
only one solution of each equivalence class is accepted.

Methods to break some symmetries

For the symmetries known for CAs it is possible to individually break each kind of
symmetry. An early work where symmetry breaking is applied to CAs is [HPSS06]. Row
and column symmetries are broken by imposing a lexicographic ordering on rows, as
well as columns. It is easy to see that with such constraints neither row permutations
alone, nor column permutations alone, will generate any new CA that is permitted by
the constraints. Additionally, permutations of symbols within a column are broken by
setting the first symbol of every row to ’0’, and by enforcing that the remaining symbols
are ordered increasingly by their number of occurrences in the column. For example, a
’1’ occurring 10 times in a column and a ’2’ occurring 5 times in the same column would
not be allowed with this constraint. With the mentioned constraints, all symmetries
arising from column permutations, all symmetries arising from row permutations and
all symmetries arising from symbol permutations within a column are broken. However,
as stated in [FFH+02] for general matrix models where row and column permutations
lead to equivalent solutions, breaking individual symmetries is not sufficient to break
all symmetries. Breaking individual symmetries is also not sufficient for CAs, since
symmetries arising from combinations of different kinds of equivalence actions still exist.
The example given in Figure 2.2 displays two equivalent CAs, both with lexicographically
ordered rows and columns and with the first row containing only the symbol ’0’.

Enforcing a lexicographic ordering on rows and columns is a straightforward way for
symmetry breaking in matrix models with row and column permutations as symmetry
actions that has been applied to CAs [HPSS06, IMTJ18, YZ06] and also investigated for
general matrix models with this kind of symmetry [FFH+02, KNW10].

Symbol permutations within a column are a less common symmetry than row and
column permutations in other problems than CA generation and have therefore not been
researched that extensively. As mentioned above, one option for breaking the symmetry
of symbol permutations within a column is an ordering of the symbols in every column
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with regard to their occurrence count in that column. This method has been applied in
[HPSS06], as well as in [BMTI10]. In [YZ08] a different approach is used for breaking
symmetries arising from symbol permutations: The authors presented a search-based
algorithm where the values are assigned one-by-one. This allows to use the least number
heuristic (LNH), where for the assignment of a value u > 0 in a column c, the value
u − 1 has to occur already in column c. In [TJIM16] a weaker kind of symbol symmetry
breaking is used. For the first v rows of every column a symbol u can only be assigned
to row i if u < i. For example, the first row can only be assigned the symbol ’0’. The
second row is only allowed to be assigned the symbols ’1’ or ’0’.

An important concern when combining different symmetry breaking methods is com-
patibility, as was also mentioned in [HPSS06]. For example, assume a lexicographically
increasing row ordering is combined with a symbol symmetry breaking method of setting
the first row of every column to ’1’. While both symmetry breaking methods would be
fine individually, when combined they forbid all solutions. For an array with (1, . . . , 1)
as first row, no lexicographically larger row containing the symbol ’0’ in the first column
exists, and therefore the array cannot be a CA.

Methods to break all symmetries

Although the above methods allow to drastically reduce the search space, in some cases it
is desired to accept only one solution of each equivalence class. This requires a criterion
for deciding which unique object of each equivalence class is accepted. For example,
an ordering can be defined on the considered objects and the accepted objects can be
restricted to the minimal element of each equivalence class with regard to the defined
ordering. Accepting only the lexicographic leader of each equivalence class is also called
the lex-leader method. Constraints enforcing lex-leadership of the considered objects
in their equivalence class can then be used to break all symmetries, see e.g. [CGLR96].
In the case of CAs, the array can be linearized. A linearization consists of an arbitrary
ordering of the array entries, such that the array can be written as a vector. The linearized
arrays, i.e. the vectors resulting from the linearization, can then be lexicographically
ordered and, for each equivalence class, the lexicographically minimal array with regard to
the used linearization is the desired solution. A schematic of the column-wise linearization
of a 4 × 3 array looks as follows:


x1 x5 x9
x2 x6 x10
x3 x7 x11
x4 x8 x12


 → (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12).

In this thesis, only a column-wise linearization is used. Other well-known linearizations
are a row-wise linearization and snake lex, described in [GMRD09].

When one constraint is created per array reachable via any combination of row, column
or symbol permutations within a column, then all symmetries are broken. For example,
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the array 


x2 x6 x10
x1 x5 x9
x3 x7 x11
x4 x8 x12




resulting from swapping the first two columns would be excluded by the constraint

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ≤lex

(x2, x1, x3, x4, x6, x5, x7, x8, x10, x9, x11, x12)

to break this symmetry. Lex-leader symmetry breaking via one constraint per equivalent
solution uses N !k!(v!)k − 1 constraints in the case of CAs.

A computational method with lower complexity to break symmetries induced by row
and column permutations is given in [KNW10], and the method is generalized in [YH11]
for other kinds of symmetries. The method is based on a lexicographic ordering of the
considered arrays as well. A feasibility check is used, where partial arrays constructed
during a search are already checked for minimality. If a partial array cannot lead to a
lexicographically minimal array, then it is discarded and its extensions are not explored
by the search algorithm. Unlike the method described above, instead of considering all
N !k!(v!)k − 1 arrays that are reachable via symmetry actions, only the arrays for all
but one kind of symmetry are generated. For example, all k!(v!)k − 1 arrays reachable
from a given array A via any combinations of column permutations and permutations
of symbols within columns are generated. To check whether an equivalent array that is
lexicographically smaller than A exists, the rows of the generated k!(v!)k − 1 arrays are
sorted and compared with A. If any such array is lexicographically smaller than A, then
it is known that A is not a lex-leader. If, on the other hand, no lexicographically smaller
array than A is found, then A is indeed lexicographically minimal. This method has
lower complexity than exhaustively generating all arrays in the equivalence class of A. In
the case of CAs, the enumeration of all equivalent solutions would require generation and
comparison of all k!(v!)kN ! equivalent arrays. However, the complexity of the described
method is only O(k!(v!)kkN log N) if a sorting algorithm with complexity O(kN log N)
is used for sorting the rows. The factor k in the complexity of the sorting algorithm is
the complexity of comparing two rows of an array with k columns.

To reduce the number of feasibility checks required, computationally cheap symmetry
breaking methods only removing some symmetries can be combined with the powerful
but expensive feasibility check, as long as consistency of the used methods is maintained.

2.2 Exact methods
Exact methods like SAT solving have gained much popularity in recent decades. With
exact methods, it is not necessary to develop a custom algorithm and implement it to
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solve a problem. Instead, an encoding can be used. In the case of SAT solving this
refers to an encoding of the considered problem as a propositional formula in conjunctive
normal form (CNF). Once an encoding is established, a solver for an exact method can be
used to find a solution to the encoded problem, and after back-translation also a solution
to the original problem. Due to the flexibility and applicability of exact methods, the
development of solvers is an active research field where highly optimized solvers exist for
different formalisms. An example displaying the advances of the field is the well-known
SAT competition2, which takes place every year and encourages both developers of SAT
solvers to develop and submit more advanced solvers as well as users of SAT solving to
submit hard benchmarks for a more challenging competition.

In this thesis the applicability of exact methods to CA generation is examined, more
specifically the applicability to subproblems of CA generation algorithms. The exact
methods applied in this thesis are SAT solving, (linear) pseudo-Boolean constraint solving
and MaxSAT solving. A more thorough introduction to these topics can be found in
[BHvMW21], here only the most important notions and notations used in this thesis are
explained.

2.2.1 Notions related to SAT solving

SAT solvers usually accept as input a propositional formula in conjunctive normal form
(CNF), which is a specific format of a formula. For every propositional formula there
exists an equivalent formula in CNF, therefore only formulas in CNF are considered here.
Such a formula consists of the following parts:

• Propositional variables: Propositional variables are denoted as single letters in this
thesis, possibly with an index, e.g. x, xi, hj , . . .

• Literals: Propositional variables and propositional variables negated with the
symbol ’¬’, e.g. ¬x, are literals.

• Clauses: A disjunction of a finite number of literals is a clause. A disjunction of
literals is depicted using the symbols ’∨’ or ’ ’. Examples for clauses are x3 ∨ ¬rj

and 3
i=0 xi, where the latter is a short notation for x0 ∨ x1 ∨ x2 ∨ x3. Clauses can

also be empty or consist of only one literal, e.g. xi.

A formula in CNF is then a conjunction of clauses, where a conjunction is either depicted
with the conjunction symbols ’∧’ or ’ ’, or as a set of clauses. Examples for propositional

2See http://www.satcompetition.org/ for more information about the SAT competition.
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formulas in CNF are

C1 ∧ C2 ∧ C3,
3

i=1
Ci,

{C1, C2, C3} and
{Ci|i = 1, . . . , 3},

where C1, C2 and C3 are clauses. All of these examples denote the same formula, using
different notations.

The above defines the syntax of formulas in propositional logic, as used in this thesis.
In the next step, the semantic of such formulas is described. A vital part of defining
the semantics of formulas are truth assignments: A truth assignment for a formula in
propositional logic (in CNF) is a function assigning a truth value to every propositional
variable contained in the considered formula. A truth assignment is then with simple
rules extended to an evaluation function assigning a truth value to the formula. Let
A : V → {0, 1} be a truth assignment assigning a value to every propositional variable,
where V denotes the set of propositional variables. Then an evaluation function I is
defined as follows:

• I(P ) = A(P ) for propositional variables P .

• I(¬P ) = 1 − A(P ) for propositional variables P .

• I(C) = 1 for a clause C if C contains a literal ℓ with I(ℓ) = 1, otherwise I(C) = 0.

• I(F ) = 1 for a formula F in CNF if for every clause C in F I(C) = 1, otherwise
I(F ) = 0.

Note that the above definition only defines truth values for formulas in CNF. While
the given evaluation function can be easily be extended for arbitrary formulas, such an
extension is not required for the contents of this thesis. A truth value of 1 is also called
true, while a truth value of 0 is called false. A formula F is called satisfiable if there
exists a truth assignment such that F evaluates to 1 or true under this assignment. An
assignment where F evaluates to true is also called a satisfying assignment, a model or
a solution to F . A SAT solver is a tool determining for a given propositional formula
in CNF whether it is satisfiable. The output of a SAT solver is either a satisfying
assignment for the given formula or that no such assignment exists, meaning the formula
is unsatisfiable.
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2.2.2 A brief introduction to linear pseudo-Boolean constraints
Linear pseudo-Boolean constraints are of the form

n

i=1
ciLi ≥ m,

n

i=1
ciLi ≤ m, or

n

i=1
ciLi = m,

where for i = 1, . . . , n the Li are literals as defined above for CNF formulas in propositional
logic, i.e. propositional variables or negated propositional variables, and the ci and m
are integers. Non-linear pseudo-Boolean constraints exist, but in this work only linear
pseudo-Boolean constraints are considered.

A truth assignment A : V → {0, 1} satisfies a pseudo-Boolean constraint n
i=1 ciLi ≥ m if

the inequality n
i=1 ciI(Li) ≥ m is satisfied, where I(P ) = A(P ) and I(¬P ) = 1 − A(P )

for propositional variables P . An evaluation of the other types of pseudo-Boolean
constraints (with ≤ and =) is defined analogously.

A set of pseudo-Boolean constraints S is satisfied by a truth assignment A if every pseudo-
Boolean constraint in S is satisfied by A. Similar to a SAT solver, a pseudo-Boolean
constraint solver takes as input a set of pseudo-Boolean constraints S and outputs a
satisfying truth assignment for S if one exists and otherwise that no satisfying assignment
exists.

Every SAT problem can easily be specified as a pseudo-Boolean constraint formulation.
A propositional formula in CNF F = {Ci|i = 1, . . . , n} consisting of n clauses of the
form Ci = ni

j=0 Li,j for i = 1, . . . , n is satisfied by a truth assignment A iff the set of
pseudo-Boolean constraints { ni

j=1 Li,j ≥ 1|i = 1, . . . , n} is satisfied by A.

2.2.3 MaxSAT
MaxSAT is a problem related to the SAT problem, however, instead of being a decision
problem MaxSAT is an optimization problem. Propositional variables, literals and clauses
are defined as for propositional logic formulas in CNF. In this thesis a type of MaxSAT
called weighted partial MaxSAT is considered. A weighted partial MaxSAT formula
consists of two types of clauses: hard clauses and soft clauses. Hard clauses are normal
clauses, as required for a propositional formula in CNF. Soft clauses are clauses associated
with a weight w ∈ N. In this thesis, soft clauses are denoted as (w, C), where w ∈ N is
called the weight of the clause and C is a clause.

A MaxSAT solver given a MaxSAT formula F consisting of hard and soft clauses outputs
a truth assignment A, such that all hard clauses evaluate to true under A and the weight
of violated soft clauses, i.e. soft clauses that evaluate to false under A, is minimal. If
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the formula consisting only of the hard clauses of F is not satisfiable, then no such
truth assignment exists. In this case the MaxSAT solver returns as answer that F is
unsatisfiable. A truth assignment satisfying all hard clauses and minimizing the weight
of violated soft clauses is called optimal solution to the MaxSAT formula F . When
optimality is clear from the context, optimal might be omitted and the optimal solution
is simply called a solution to F .
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CHAPTER 3
Existing Approaches and

Algorithms for CA Generation

In addition to CAs being interesting mathematical structures, the application of CAs in
combinatorial testing has led to the development of various CA generation algorithms,
see [TJIMAG19] for a survey. In this chapter, a short introduction to the most related
CA generation techniques shall be given.

3.1 Extension algorithms
Algorithms that step-by-step extend an empty or small array to a CA of the desired size
are categorized as extension algorithms in this thesis. In most cases, such extension steps
consist of the addition of either rows or columns.

3.1.1 Row extension algorithms
As stated in Definition 1, a CA is a two-dimensional array, where every t-way interaction
of the columns occurs in some row of the array. Since the defining condition is based
on an existence property, it is always possible to build a CA by appending sufficiently
many different rows to an (initially possibly empty) array. Row extension algorithms
are based on this property. They add rows to the processed array, until a CA is found.
Several algorithms with different strategies for selecting the new rows exist. A popular
subcategory of row extension algorithms are one-test-at-a-time (OTAT) algorithms, where
exactly one row is added in each iteration.

One of the earliest CA generation algorithms, Automatic Efficient Test Generator (AETG)
[CDFP97], follows the OTAT strategy. This algorithm generates M candidate rows at
every extension step, where M is an algorithm parameter. Candidate rows are produced
by first selecting a (parameter,value)-pair that occurs in a maximum number of t-way
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interactions not covered in the array generated so far. Afterwards, in a random parameter
order, for every parameter a value is chosen such that a maximum number of additional
t-way interactions, i.e. t-way interactions not covered in the current array, is covered.
Once M candidate rows are produced, the candidate row covering the largest number of-
additional t-way interactions is selected and added to the generated array. This continues
until the array becomes a CA, which is guaranteed to happen because at every iteration
at least one new t-way interaction is covered.

A similar approach is used by the tool Test Case Generator (TCG). Here, the number
of generated candidate rows per step is not a parameter, but based on the maximum
alphabet size of the CA or MCA to be generated. Further, when an MCA is generated,
the columns to be included in the final array are sorted by alphabet cardinality such that
columns with a larger alphabet are assigned a value first. However, the row added to the
array is chosen the same way as by AETG: The candidate row that covers the largest
number of t-way interactions not covered in the array generated so far is used for the
array extension.

Another important row extension algorithm is the Deterministic Density Algorithm
(DDA) algorithm [BC09]. When generating a new row, for every column and for every
(column,value)-pair that is considered for assignment a density is defined, based on the
number of t-way interactions that might be covered when assigning the respective column
or value. In a first step, column densities are calculated and compared to select the
column that is assigned a value next. The column with maximum density is selected, and
value densities are only calculated for this column. The value with the highest density in
the considered column is then selected and the generated row is assigned the selected
value in the position of the selected column. Once all values of a row are assigned, the
row is added to the array and a new row is generated using the same method. Rows
are generated and added to the array until all t-way interactions are covered and the
generated array is a CA.

The algorithms mentioned above use heuristics to generate candidate rows covering a
large number of t-way interactions. The algorithm proposed in [YZK+10] uses linked
lists storing the t-way interactions that need to be covered to generate candidate rows
for extension. It constructs at every extension step a candidate row from the linked lists
covering a maximal number of t-way interactions not covered in the array to be extended.
The maximal number of t-way interactions that can be covered with a new row is stored
as a weight. At every step the algorithm attempts to find a row covering that number of
t-way interactions. If no such row is found, the weight is decreased by one. The algorithm
terminates once all t-way interactions are covered. Although optimal rows are selected
for extension from the linked lists, the algorithm does not always outperform the row
extension algorithm AETG with regard to size of the generated CAs in the presented
evaluation.
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3.1.2 Column extension algorithms
Although less popular than row extension algorithms, there have also been attempts
of greedy column extension algorithms. Such an algorithm uses a fixed number N of
rows, and the first t columns are initialized to contain all vt t-tuples over Σv. If there
are more than vt rows, the remaining rows can be assigned arbitrary values, depending
on the algorithm. This yields a CA with t columns. Additional columns are added
to the CA in a way that the extended array is also a CA. Adding a column to a CA
introduces new t-way interactions to be covered. After addition of the new column, all
t-way interactions have to be covered. Depending on the CA to be extended, there might
not exist a column that is suitable for the extension, meaning there might not exist a
column where all required t-way interactions are covered after the extension step. In
that case, the generated CA is returned. The problem with this approach is that it is
not possible to guarantee the generation of a CA(t, k, v) for given parameters t, k, v. The
algorithm might return a CA with less than k columns when no further column extension
is possible. This is problematic for CT, where a CA with one column per parameter
of the system to be tested is required. Nevertheless, some examples of greedy column
extension algorithm are given in this subsection.

The IFS algorithm [KS16] starts with calculating a store, containing all columns that
can possibly be added to the generated CA. Afterwards, the CA is extended greedily
by selecting suitable columns from the store. To reduce the number of possible columns
stored in the store and to provide a guiding heuristic for the greedy algorithm, the concept
of α-balance was introduced, which corresponds to (λ, y)-balance with the lower bound
λ = α and no upper bound y , this can for example be achieved with y = (N, . . . , N).
The IFS algorithm served as inspiration for the ClassifyBalancedCAsalgorithm presented
in Chapter 4 of this thesis.

Additionally, there exists a greedy column extension algorithm based on pseudo-Boolean
constraints [LMZ16]. Again, a version of balance is employed to serve as guiding heuristic
when choosing an appropriate column. A pseudo-Boolean constraint solver is used to
generate columns for extension. Since the algorithm is based on an exact method, it will
be reviewed again in subsection 3.2.

CA classification via column extension with backtracking

While greedy column extension algorithms are not of much practical or theoretical interest,
an introduction of backtracking makes column extension algorithms suitable for CA
classification and exhaustive CA generation.

First classification results have been presented in [CKRSP10]. The used algorithm
computes all possible initializations of the first t columns, and all possible column
extensions of every intermediate array. Symmetry breaking is applied to count only one
CA of every equivalence class.

This algorithm has later been adopted and refined in [TJIM16]. Again, all possible
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initializations of the first t columns are computed. Rows and columns are ordered
lexicographically, this allows to iterate over all possible column extensions by taking
the value of the previous column as base value and incrementing the value of the new
column by one. To count only non-equivalent CAs, for every column extension leading
to a CA complete symmetry breaking is performed via a minimality check, checking
for lexicographic leadership of the generated array. One problem with the approach for
generating columns for extension is that many unnecessary candidate columns are tried
when a column extension cannot lead to a CA due to a value assigned in an early row.
Therefore, in [IMTJ18] the algorithm is adapted to assign one cell of a column at a time.
Additionally, the minimality check is improved to be more efficient.

A similar but slightly different approach was followed in [KMN+20]. Again, a column
extension algorithm for CA classification is presented, but both column extension and
the minimality check are mapped to other problems and solved by external programs.
Column extension is mapped to a covering problem and the minimality check uses nauty,
a tool able to determine graph isomorphisms. Classification results are only presented
for CAs of strength two (t = 2).

3.1.3 IPO: A combination of column and row extension

An important and widely used strategy for CA generation is the In-Parameter-Order (IPO)
strategy, introduced in [LT98] for strength t = 2 and generalized for higher strength in
[LKK+07]. The IPO strategy uses a combination of column and row extension to extend
an array one column at a time, while ensuring that for every number of columns k′ with
t ≤ k′ ≤ k a CA is generated. The strategy consists of three phases: array initialization,
horizontal extension (column extension) and vertical extension (row extension). At the
beginning, the generated array is initialized as vt × t array containing all vt t-tuples over
Σv as rows. This array is a CA with t columns. Afterwards, horizontal and vertical
extensions are executed until the desired array size is reached. In horizontal extension,
the current array is extended with an additional column. That column is desired to
cover a large number of t-way interactions. If the extended array is again a CA, the
next horizontal extension is executed. If, on the other hand, not all t-way interactions
are covered after horizontal extension and the array is not a CA anymore, then it is
repaired with a vertical extension step to become a CA again: Every missing t-way
interaction is added to the generated array, either by adding new rows or by assigning
values to star-values, where star-values are array entries that have not been assigned a
value. If a new row r is added to the array for a t-way interaction τ , then all columns
of r involved in τ are assigned the required values to cover τ . The other columns of r
remain star-values and can sometimes be used in vertical extension to cover required
t-way interactions without having to add additional rows to the generated array. After
vertical extension all missing t-way interactions are covered, the generated array is again
a CA and the strategy continues with the next horizontal extension, if the desired CA size
is not reached yet. Repairing coverage of the constructed arrays with vertical extensions
(row extensions) allows to generate CAs with an arbitrary number of columns, although
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the strategy is based on column extension. Combining column and row extension allows
to generate compact arrays at a decent execution speed. The IPO strategy has been
extensively researched and used in several other algorithms, adapting horizontal and/or
vertical extension.

In [LT98], where the IPO strategy was initially proposed, two algorithms for horizontal
extension are given. One algorithm attempts to find a column, such that the number of
rows that need to be added in vertical extension is minimized. Due to the exponential
time complexity of this algorithm, a second horizontal extension algorithm is proposed
that is greedy and, with slight adaptions, also used in state-of-the-art IPO algorithms.
This algorithm iterates over all rows from top of the array to bottom. For every row of
the new column the value covering the largest number of t-way interactions not covered
in the current array is selected and assigned. For vertical extension, a greedy algorithm
is used, covering one missing t-way interaction at a time. For every missing interaction,
the algorithm first iterates over the array and attempts to find star-values that can be
used to cover the interaction. If this is not possible, then a new row is added to the
array with values assigned only in positions required to cover the currently considered
missing t-way interaction. For strength t = 2 the proposed greedy algorithm for vertical
extension produces optimal results. In [FLL+08] the IPOG-F algorithm is proposed with
an adapted approach for horizontal extension. Instead of iterating over the rows in a
fixed order, for every assignment the (row,value)-pair maximizing the number of covered
t-way interactions is selected and assigned. The authors of [KS18] developed the FIPOG
algorithm, which is a fast version of the IPO algorithm, by optimizing data structures
and various algorithmic details. Several state-of-the-art CA generation tools are based
on algorithms implementing the IPO strategy, for example [YLKK13] with IPOG-F and
[WKS+20] with FIPOG.

Various adaptations of the IPO algorithm generating smaller CAs than the basic greedy
algorithm have been proposed. In [DLY+15] the problem of vertical extension is reduced
to a graph coloring problem and solved with a graph coloring algorithm. This potentially
reduces the number of rows that are added during vertical extension, and therefore
also the size of the resulting CA. In [YZ11] the MIPOG algorithm is proposed, where
star-values are integrated in horizontal extension instead of vertical extension. During
horizontal extension, for every row an assignment maximizing the number of covered
t-way interactions is selected, where values can be assigned to the value in the new column
of the considered row, as well as to all star-values in the considered row. Including
star-values in horizontal extension allows to make more informed choices during horizontal
extension and therefore generate smaller CAs. Additionally, star-values can be ignored
in vertical extension because they are already considered in horizontal extension. Finally,
the SIPO algorithm proposed in [WKS21] generates improved solutions for horizontal
extension by applying the metaheuristic search method Simulated Annealing. Starting
from an initial horizontal extension solution, Simulated Annealing is used to optimize the
values of the newly added column and star-values, where the optimization goal is to cover
as many t-way interactions as possible, as well as to keep star-values in the array. The
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latter objective is added to prevent the algorithm from assigning values to star-values that
do not need to be assigned. Applying a metaheuristic after every horizontal extension
step reduces the size of the generated CAs, at the cost of increasing the runtime of the
algorithm.

3.2 Approaches based on exact methods
An early work on covering array generation with CSP and SAT solving was presented
in [HPSS06]. A CA is mapped to two matrices of variables: A matrix corresponding
directly to the values of the CA and another matrix encoding for every row and selection
of t columns the covered t-way interaction. Three CSP formulations using only one
matrix or both are given. Further, a SAT formulation using both matrices is described.
The formulations presented in this thesis and other existing SAT formulations for CAs
are closely related to the SAT formulation given in [HPSS06], therefore it is repeated
here: The constraints below are defined for all 1 ≤ i ≤ N , 1 ≤ j ≤ k, 1 ≤ j′ ≤ k

t ,
x, x′ ∈ {0, . . . , v − 1} and y, y′ ∈ {0, . . . , vt − 1}.

x

mijx (3.1)

¬mijx ∨ ¬mijx′ , for x < x′ (3.2)

y

aij′y (3.3)

¬aij′y ∨ ¬aij′y′ , for y < y′ (3.4)
¬aij′y ∨ mijx for appropriate i, j′, y, j, x to channel the values of aij′y and mijx, (3.5)

j′
aij′y (3.6)

The intended meaning of the variables mijx is that the array entry in the i-th row and
j-th column of the generated CA is assigned the value x, if the variable is set to true.
Thereby, the clauses (3.1) and (3.2) ensure that every array entry is assigned exactly one
value. The variables aij′y correspond to the j′-th selection of t columns of the generated
array, and y determines the value of the entries in this column selection and the i-th
row. Phrasing the meaning differently, if a variable aij′y is set to true, then the t-way
interaction on columns given by j′ and with parameter values given by y is covered in the
i-th row. Again, clauses (3.3) and (3.4) ensure a unique assignment of values to every
row and column selection. Since these two sets of variables can contradict, it is necessary
to channel them with constraints as in (3.5). The clauses are generated such that the
appropriate array values given by mijx are enforced for every variable aij′y that is set
to true in a model. Finally, clauses (3.6) ensure coverage of all t-way interactions. It is
stated in [HPSS06] that clauses (3.1,3.3,3.4) can be omitted without changing the CAs
derivable from solutions to the formula because every solution to the formula where the
clauses are omitted can be transformed to a solution to the original formula.
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3.2. Approaches based on exact methods

In [HPSS06] only local search SAT solvers are used to solve the generated SAT formulas.
Local search SAT solvers only attempt to find a satisfying assignment, instead of exploring
the full search space until existence or non-existence of a satisfying assignment is proven.
Since only part of the search space is explored, symmetry breaking constraints are
less important than for exact search and might even slow down the search, therefore
no symmetry breaking constraints are included in the given SAT formula. Symmetry
breaking for CA generation is only discussed for CSP solving in [HPSS06]. For the CSP
formulations lexicographic ordering of rows and columns is enforced, and symbols within
a column are selected such that they are ordered by their number of occurrences, i.e. for
symbols x, y ∈ {1, . . . , v −1} with x ≤ y the symbol x has to occur at least as often in the
respective column as the symbol y. Additionally, the first row of every generated CA is
only allowed to contain the symbol 0. The value 0 is excluded from the occurrence count
restriction because setting one row to a fixed value is easier to enforce and propagate
than a constraint depending on occurrence counts.

The SAT formulation given in [HPSS06] is extended with symmetry breaking constraints
and solved with complete SAT solvers in [BMTI10]. For symmetry breaking, the con-
straints described for the CSP formulation in [HPSS06] are added to the SAT formula.
However, a translation of the symmetry breaking constraints to propositional logic is not
provided by the authors. Additionally, the applicability of the order encoding for CA
generation is explored. The order encoding does not use variables mijx, where a value x
is assigned to position (i, j) of a matrix. Instead, a variable m′

ijx denotes that the value
at position (i, j) is at most x. To ensure validity of assignments, it is necessary to add
the following constraints to the formula for every matrix position (i, j) and every value
1 ≤ x ≤ v − 1:

m′
ij(v−1)

¬m′
ij(x−1) ∨ m′

ijx

The first constraint ensures that every array entry is assigned at most the value v − 1,
while the second constraint says when a variable m′

ij(x−1), denoting that the array entry
at position (i, j) is assigned a value that is at most x − 1, is set to true, then the variable
m′

ijx denoting that the entry has at most the value x needs to be set to true as well.
When constraints concern a range of elements, the order encoding is more efficient than
the one-hot encoding, where every value is encoded separately as for the model given in
[HPSS06]. Three models are given that differ in the usage of the order encoding: The
first model corresponds to the model from [HPSS06], extended with symmetry breaking
constraints. The second model uses an order encoding to encode the values represented by
both variable groups mentioned above. Finally, the third model is called mixed encoding,
it uses order encoding for the variables mijx and the one-hot encoding for the variables
aij′y as in [HPSS06]. In the comparison, the model using only order encoding and the
mixed encoding performed better than the original encoding from [HPSS06], i.e. the
SAT solver required less time to solve the generated formulas. There was no major
performance difference between the two models using order encoding.
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In [LMZ16] a greedy column extension algorithm is presented that uses pseudo-Boolean
constraint solving to generate columns suitable for extension. The algorithm is greedy,
so at every extension step only one solution is needed and symmetry breaking is not
required. The first t − 1 columns are generated randomly. Afterwards, constraints are
used to ensure coverage of all t-way interactions and, as a heuristic to increase the number
of columns of the resulting array, 1-balance of the generated columns is maximized, i.e.
the symbols of a newly generated column all occur with about the same cardinality.
Only encoding one column of a CA allows for a simplified formula when compared to
a formula encoding a full CA as done in [HPSS06] and [BMTI10]. Again, due to the
relevance of the given encoding to this work, the encoding is repeated here and put
into context with the encoding from [HPSS06]. Assume an array A with k columns is
extended with an additional column. The column for extension can then be generated as
follows using pseudo-Boolean constraints: Similar to the variables mijx used in [HPSS06]
and described above, variables Pi,u are used for 1 ≤ i ≤ N and u ∈ Σv to define the
values of array entries. If a variable Pi,u is set to true in a model, then the entry in
the i-th column of the newly generated column is set to the value u. Only one column
is added at a time, therefore no variable index denoting the corresponding column is
necessary. In [HPSS06] additional variables aij′y were required to encode where every
t-way interaction is covered. Such variables are not required when only one column is
added at a time. First of all, for every array entry it is ensured that exactly one value is
assigned with constraints

u∈Σv

Pi,u = 1

for every row i ∈ {1, . . . , N}. In [HPSS06], this task was fulfilled by the clauses given in
(3.1) and (3.2). To create constraints ensuring coverage, the notion of p-sets is defined:
For a (t − 1)-way interaction τ , a p-set is the set of indices of the rows where τ is covered.
Using the notation introduced in this thesis, for a given array A with k columns and
alphabet size v, a p-set is a set A ↿τt−1 for arbitrary τt−1 ∈ Tv,k,t−1. Coverage is then
enforced by constraints

i∈A↿τt−1

Pi,u ≥ 1,

for every τt−1 ∈ Tv,k,t−1 and every value u ∈ Σv. These constraints fulfill the same
purpose as the clauses from [HPSS06] given in Equations (3.3)-(3.5), however, a reduced
number of clauses is required. This is because in every row only one value can be set
and therefore coverage of a t-way interaction τ = {(c1, u1), . . . , (ct, ut)} with ct = k + 1
in a row r only depends on the assignment of the variable Pr,ut , while in [HPSS06] all
the Boolean variables mrc1u1 , . . . , mrctut have to be set to true for τ to be covered in
row r. This demonstrates how the complexity of the generated formulation is reduced
by restricting the scope of the formulation to a column instead of a whole array. The
two constraint types given above already ensure correctness of the generated columns.
However, to provide a guiding heuristic for the algorithm, additional balance constraints
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are used: 
N

v


≤

1≤i≤N

Pi,u ≤


N

v


,

for every u ∈ Σv. These constraints ensure for every generated column that all symbols
appear almost the same amount of time, up to a difference of 1. Using the notation of
[KHKS23], the algorithm generates (λ, y)-balanced CAs with λ1 = N

v and y1 = N
v

and no balance defined in other positions of λ, y . Since the algorithm is greedy, generation
of a CA with a certain number of columns for given parameters is not guaranteed, even
when such a CA exists.

An exact algorithm for CA generation called EXACT is presented in [YZ06] and [YZ08].
This algorithm does not employ a solver for an exact method. Instead, an application
specific exact algorithm using branching, propagation and backtracking is proposed. For
generating a CA(N ; t, k, v) the EXACT algorithm starts with an N × k array, where the
values of array entries are not specified except for the vt × t subarray in the upper left
corner of the array. The values of this subarray are set such that all vt t-tuples over
{0, . . . , v − 1} are contained as a row. One value of the array is assigned at a time, either
via propagation when an array entry is completely determined by constraints, or by
branching when no propagation is possible. If a conflict occurs, the algorithm backtracks
by deleting some array assignment. Coverage constraints ensure that every generated
array is a CA and partial symmetry breaking constraints are employed to reduce the
number of solutions to be visited. In particular, row and column lexicographic order
is enforced, in a way that it does not conflict with the values already assigned in the
vt × t subarray in the upper left corner of the array. Symmetries arising from symbol
permutations within a column are broken with the least number heuristic (LNH): A
new value u > 0 can only be assigned in a column c if column c already contains the
value u − 1. This reduces symmetries by limiting the number of options when choosing a
value in some partially assigned column c. The EXACT algorithm terminates as soon as
some solution of the desired size is generated. No classification or exhaustive search are
performed. In addition to symmetry breaking, a kind of balance can be used to reduce
the number of solutions: for interactions of size up to a user-defined parameter SL, the
difference between the occurrence count of SL-way interactions on a specific column
selection is at most 1. This condition can be expressed using (λ, y)-balance with the
constraint that yi − λi ≤ 1 for 1 ≤ i ≤ SL. However, while providing a speedup through
search space reduction in some cases, depending on the value SL, such a constraint might
forbid all solutions of a given size.

The approaches for exact methods described above (except for [LMZ16]) start with a
fixed CA size and determine whether a CA fulfilling the given conditions exist. Finding
an optimal CA then requires several executions of the used method, until for given t, k, v
existence of a CA(N ; t, k, v) is shown, together with non-existence of a CA(N − 1; t, k, v).
In this case, the computed CA(N ; t, k, v) is optimal. There are also approaches integrating
the task of finding an optimal CA into the used exact method.
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In [AIMTJ13] a MaxSAT formulation for CA generation is developed, where minimizing
the number of rows is encoded as optimization objective in MaxSAT. For this purpose, a
row usage flag ur is introduced for every row r = 1, . . . , N , where N is an upper bound
on the number of rows of the generated array. Constraints ensure that no values are
assigned in rows where the flag ur is assigned false. When minimizing the number of
violated singleton clauses ¬ur for r = 1, . . . , N , the number of rows of the resulting array
is optimal.

Another approach for integrating optimization of array size with an exact method is
incremental SAT solving, as done in [YKA+15]. Incremental SAT solving is a technique
for fast solving of several related SAT formulas. More specifically, when a formula F ′

is generated from a formula F via addition of new clauses or temporary assumptions,
then solving F ′ incrementally after solving F can be more efficient than solving F
and F ′ completely independent. In [YKA+15] a propositional formula for generation of
(constrained) CAs is presented, where the number of array rows allowed by the formulation
can be reduced with incremental SAT solving. Using incremental solving, optimal CAs
can be computed more efficiently than with the separate solver calls required by most of
the approaches described previously.

In addition to generation of CAs, exact methods like SAT solving, SMT solving and
CSP solving have also been employed for generation of constrained CAs, in particular
for checking whether a generated (partial) array violates the defined constraints, see
for example [YBA+16] or [YLN+13]. Especially when using an exact method for CA
generation, solvers for exact methods are a natural way to verify validity of the generated
arrays with regards to constraints. One example is [YKA+15], already mentioned above,
where incremental SAT solving is combined with a SAT formulation for generation of
constrained CAs to find optimal constrained CAs. In [AMO+22] the MaxSAT formulation
from [AIMTJ13] for unconstrained CAs is adapted and extended to support the generation
of optimal constrained CAs. Additionally, incomplete MaxSAT solvers are used with the
developed MaxSAT formulation for faster generation of not necessarily optimal CAs. As
mentioned before, in this thesis only CAs without constraints are considered.
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CHAPTER 4
A Column Extension Algorithm

for CA Classification

In this section the ClassifyBalancedCAs algorithm is described, a new column extension
algorithm with backtracking. This type of algorithm and related algorithms were also
described in Section 3.1.2. The algorithm given in this section has a similar structure as
the CA classification algorithm presented in [IMTJ18], however, the ClassifyBalancedCAs
algorithm employs a different strategy for building suitable columns, in particular an exact
solver, and it incorporates the notion of balance, which allows for additional optimizations
and generation of balanced CAs.

4.1 Structure of the ClassifyBalancedCAs Algorithm

The described algorithm generates for given balance vectors (λ, y), number of rows N ,
strength t and alphabet size v all non-equivalent (λ, y)-balanced CAy

λ(N ; t, k, v) for all
t ≤ k ≤ CAKy

λ(N ; t, v). When no balance vectors (λ, y) are given, then the set of all
non-equivalent CA(N ; t, k, v) is generated for all t ≤ k ≤ CAK(N ; t, v).

The ClassifyBalancedCAs algorithm starts with an empty matrix and uses column exten-
sion with backtracking to generate CAs. Columns are generated using an exact method.
While many different exact methods are possible for this purpose, formulations for SAT
solvers and pseudo-Boolean constraint solvers are provided in this thesis. Incomplete
symmetry breaking based on lexicographic ordering of columns, rows and symbols within
a column is included in the presented formulations for column generation. Additionally,
complete symmetry breaking is ensured with an additional feasibility check of partial
arrays, enforcing all generated arrays to be lexicographically minimal in their equivalence
class.
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The formulations for column generation using the exact methods SAT solving or pseudo-
Boolean constraint solving are given in Section 4.2, and a description of the complete
symmetry breaking technique is given in Section 4.3.

A pseudocode of ClassifyBalancedCAs is available in Algorithm 1. A given array A
is recursively extended with all columns fulfilling the coverage, balance and symmetry
breaking requirements, such that all feasible extensions of A are explored. When no array
is given as parameter, the algorithm starts with an array with N rows and 0 columns,
i.e. an {0, . . . , v − 1}N×0 array. In the parameter list of Algorithm 1 this empty array
is denoted as A = ∅, where ∅ is the default value for A. To store the generated CAs,
the algorithm keeps a set called foundCAs that is initialized to an empty set in line 1.
Immediately afterwards, the candidate columns for extension are discovered: A SAT or
pseudo-Boolean formula Φ encoding the conditions for candidate columns is generated by
the function GenerateFormula(A, t, v, λ, y) in line 2. The formula is generated in a
way such that all columns derivable from solutions to Φ fulfill the coverage and, if required,
balance constraints, when added to the array A. Additionally, the formula contains
partial symmetry breaking constraints enforcing a lexicographic ordering of rows, columns
and an ordering of symbols within a column, such that all symbol permutations produce
a lexicographically larger column. A detailed description of the generated formula is
given in Section 4.2. In a next step, the formula Φ is given to a SAT or pseudo-Boolean
constraints solver and all columns derivable from solutions to Φ are stored in a list called
store, see line 3. Once all the candidate columns are computed, it is time to extend the
array A. Using a loop, every column col in store is considered and used for extension of A
(line 4). Since the columns derived from solutions to Φ may lead to equivalent solutions, i.e.
solutions that should be removed by symmetry breaking, for every column col a feasibility
check of A when extended with col is executed in the function Admissible([A, col])
in line 5 as described in Section 4.3. If it turns out that an extension column is not
admissible according to the applied symmetry breaking, then the column is ignored. If,
on the other hand, Admissible([A, col]) confirms that col is a valid extension column,
then further actions are taken for the array A extended with col: if [A, col] has at least t
columns, then it is already a CA and added to the set foundCAs for reporting, see lines
6-8. Afterwards, using a recursive call to ClassifyBalancedCAs([A, col], N, t, v, λ, y)
all extensions of [A, col] to a lexicographically minimal CA are explored and the reported
CAs are again added to the set foundCAs in line 9. Finally, once all columns have been
explored, the algorithm returns the arrays stored in foundCAs (line 12).

Example 1. In Figure 4.1 a search tree of the ClassifyBalancedCAs algorithm for the
instance N = 5, t = 2, v = 2 is given. At every step of the search tree, depicted
with a rectangle, a set of candidate columns for extension is calculated and stored in
store. As mentioned above, candidate columns are all columns fulfilling the coverage and
balance requirements, together with some basic symmetry breaking. For every candidate
column the algorithm first checks lex-leadership of the extended array with a call to the
Admissible function. If the column does not lead to a lexicographically minimal array,
it is discarded. In the figure, such cases are indicated with a dashed ellipse, connected
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Algorithm 1 ClassifyBalancedCAs(A = ∅, N, t, v, λ, y)
1: foundCAs ← ∅
2: Φ ← GenerateFormula(A, N, t, v, λ, y)
3: store ← GetAllSolutions(Φ) ▷ initialize Store, call SAT or PB solver
4: for col ∈ store do
5: if Admissible([A, col]) then ▷ Call the feasibility check given in Section 4.3
6: if numColums([A, col]) ≥ t then
7: foundCAs ← foundCAs ∪ [A, col] ▷ Report found CA
8: end if
9: foundCAs ← foundCAs ∪ ClassifyBalancedCAs([A, col], N, t, v, λ, y)

10: end if
11: end for
12: return foundCAs

with the respective candidate column via an arrow. If the column is admissible, then the
extensions to A, extended with the candidate column, are explored using a recursive call
to Algorithm 1 and an arrow points from the candidate column to the box corresponding
to the array extended with the candidate column. The levels of the depicted search tree
correspond to the size of the array. For example, at level k = 2 the array A is of size 2
and it will be extended with a candidate column to a CA(5, 2, 3, 2) with k = 3 columns.
The search tree is traversed via depth-first search, i.e. when considering a candidate
column for extension of an array A, the subtree arising from extension of A with the
candidate column is completely examined before considering the next candidate column
for extension to A. In the given example the store at level k = 4 is empty, this means
no candidate columns exist and the algorithm backtracks to level k = 3, where the next
candidate column is examined. No CA(5; 2, k, 2) with k = 5 columns exists, however, the
search tree shows that there is one such CA with k = 4 columns, two CAs with k = 3
columns and one CA with k = 2 columns.

4.2 Exact methods for generation of feasible columns
In this section the connection between the proposed ClassifyBalancedCAs algorithm and
exact methods is described: To compute candidate columns for column extension first a
propositional logic formula in CNF or a set of pseudo-Boolean constraints is generated,
where the formula in propositional logic is called ΦSAT and the pseudo-Boolean constraint
formulation is called ΦP B in this section. In a second step, an exact solver is used to
compute all models of the generated problem formulation and the candidate columns
are derived from the computed models. In the following, a detailed description of the
generated formulations is given. In the remainder of this section, the array considered
for extension is denoted as A, with strength t, number of columns k, number of rows N
and the alphabet Σv. Recall that a pseudo-Boolean constraint of the form Σn

i=1xi ≥ 1
for Boolean variables xi is equivalent to a propositional clause n

i=1 xi. In the following,
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Figure 4.1: Search tree of the ClassifyBalancedCAs algorithm when generating all non-
equivalent CA(5; 2, k, 2) for 2 ≤ k ≤ CAK(5; 2, k, 2).

for every constraint type a pseudo-Boolean formulation will be given, together with an
equivalent formulation in propositional logic. For constraints of the form Σn

i=1xi ≥ 1 no
further explanation of the translation to propositional logic will be provided. In Section
3.2 several existing problem formulations for CA generation were given. While there are
some differences, most problem formulations can be divided into the following types of
constraints:

• Validity of array assignments

• Coverage constraints

• Symmetry breaking

– Lexicographic ordering of columns
– Lexicographic ordering of rows
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– Symmetry breaking for symbol permutations within a column

Symmetry breaking constraints are only present in problem formulations for exact search.

The same constraint types are considered in this work. In addition to the listed constraint
types also balance constraints are used, to enable generation of balanced CAs by the
ClassifyBalancedCAs algorithm.

4.2.1 Variables and constraints for validity of array assignments
Column extension consists of extending a given array A with an additional column
(u1, . . . , uN )T ∈ {0, . . . , v − 1}N . An example for the extension of an array with a column
of unknown values is given in Equation 4.1:

0 0 0 u1
0 0 0 u2
0 0 1 u3
0 1 0 u4
0 1 1 u5
1 0 0 u6
1 0 1 u7
1 1 0 u8
1 1 1 u9
1 1 1 u10

. (4.1)

In the developed SAT and pseudo-Boolean formulations the set of Boolean variables

{xr,ℓ|r ∈ {1, . . . , N}, ℓ ∈ Σv}

is used to derive a column for extension. More specifically, given a truth assignment A,
the r-th row is assigned a value ℓ if A(xr,ℓ) = 1, i.e. the variable xr,ℓ corresponding to the
r-th row and the value ℓ evaluates to true under the given truth assignment. To ensure
that the derived array entries are well-defined, constraints are required. For example, it
is not possible that one array entry is assigned two different values. Additionally, each
array entry needs to be assigned some value. This means for every row r and every model
of ΦSAT and ΦP B, exactly one variable in the set {xr,ℓ|ℓ ∈ Σv} is assigned true.

In ΦP B, this can be easily realized with pseudo-Boolean constraints

v−1

ℓ=0
xr,ℓ = 1, for every row r = 1, . . . , N.

In ΦSAT , encoding an exactly-one constraint is not that straightforward. First, the
exactly-one constraint is divided into an at-least-one and an at-most-one constraint. The
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clauses
v−1

ℓ=0
xr,ℓ, for every row r = 1, . . . , N

ensure that every row of the new column is assigned at least one value. An at-most-one
constraint could be realized with a naive encoding as follows:

¬xr,i ∨ ¬xr,j , for every row r = 1, . . . , N and all values 0 ≤ i < j ≤ v − 1.

However, this encoding would introduce O(Nv2) clauses. Instead, the sequential counter
encoding from [Sin05] is used, which introduces auxiliary variables yi for i = 0, . . . , v − 2
but only requires N(3v−4) clauses. Adding the following clauses to ΦSAT , it is guaranteed
that every array entry is assigned at most one value:

¬xr,i ∨ yi, for every i = 0, . . . , v − 2,

¬yi−1 ∨ yi, for every i = 1, . . . , v − 2,

¬xr,i ∨ ¬yi−1, for every i = 1, . . . , v − 1.

Remark 2. In the binary case (v = 2) it is possible to only use solution variables
{xr|r ∈ {1, . . . , N}}, where the value of the new column in the r-th row is set to 1 if xr

is assigned true in the corresponding model, while the entry is set to 0 if xr evaluates to
false in the corresponding model. In this case, the at-most-one constraints can be omitted
since no Boolean variable can be assigned true and false at the same time. SAT and
pseudo-Boolean constraint formulations for binary CAs can be derived from the given
formulations by omitting the at-most-one constraints and replacing in the remaining
constraints the variables xr,1 with variables xr, and all variables xr,0 with the literals
¬xr for every row r = 1, . . . , N . It is also possible to omit the at-least-one constraints
if a solver is used that only returns complete models. For a solver capable of returning
partial models, these constraints are required.

4.2.2 Coverage constraints
When a new column (u1, . . . , uN )T is added to an array A, then all t-way interactions
τ containing the new column need to be covered. Since a t-way interaction can be
depicted as a (t − 1)-way interaction extended with a (column,value)-combination, the
t-way interactions to be covered are exactly the t-way interactions occurring in the set
{τt−1 ∪ {(k + 1, ℓ)}|τt−1 ∈ Tv,k,t−1, ℓ ∈ Σv}, where Tv,k,t−1 denotes the set of (t − 1)-way
interactions on the first k columns of an array with alphabet size v. A t-way interaction
τt−1 ∪ {(k + 1, ℓ)} is covered iff the value ℓ occurs in some row r of the new column, that
is ur = ℓ, where τt−1 is covered in the r-th row of A. Coverage can be ensured by ΦP B

with at-least-one constraints for every combination of a (t − 1)-way interaction with a
value ℓ:

r∈A↿τt−1

xr,ℓ ≥ 1, for every τt−1 ∈ Tv,k,t−1 and all ℓ ∈ Σv,
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τ2 ℓ coverage constraints τ2 ℓ coverage constraints
{(1, 0), (2, 0)} 1 x1 + x2 + x3 ≥ 1 {(1, 0), (2, 0)} 0 ¬x1 + ¬x2 + ¬x3 ≥ 1
{(1, 0), (2, 1)} 1 x4 + x5 ≥ 1 {(1, 0), (2, 1)} 0 ¬x4 + ¬x5 ≥ 1
{(1, 1), (2, 0)} 1 x6 + x7 ≥ 1 {(1, 1), (2, 0)} 0 ¬x6 + ¬x7 ≥ 1
{(1, 1), (2, 1)} 1 x8 + x9 + x10 ≥ 1 {(1, 1), (2, 1)} 0 ¬x8 + ¬x9 + ¬x10 ≥ 1
{(1, 0), (3, 0)} 1 x1 + x2 + x4 ≥ 1 {(1, 0), (3, 0)} 0 ¬x1 + ¬x2 + ¬x4 ≥ 1
{(1, 0), (3, 1)} 1 x3 + x5 ≥ 1 {(1, 0), (3, 1)} 0 ¬x3 + ¬x5 ≥ 1
{(1, 1), (3, 0)} 1 x6 + x8 ≥ 1 {(1, 1), (3, 0)} 0 ¬x6 + ¬x8 ≥ 1
{(1, 1), (3, 1)} 1 x7 + x9 + x10 ≥ 1 {(1, 1), (3, 1)} 0 ¬x7 + ¬x9 + ¬x10 ≥ 1
{(2, 0), (3, 0)} 1 x1 + x2 + x6 ≥ 1 {(2, 0), (3, 0)} 0 ¬x1 + ¬x2 + ¬x6 ≥ 1
{(2, 0), (3, 1)} 1 x3 + x7 ≥ 1 {(2, 0), (3, 1)} 0 ¬x3 + ¬x7 ≥ 1
{(2, 1), (3, 0)} 1 x4 + x8 ≥ 1 {(2, 1), (3, 0)} 0 ¬x4 + ¬x8 ≥ 1
{(2, 1), (3, 1)} 1 x5 + x9 + x10 ≥ 1 {(2, 1), (3, 1)} 0 ¬x5 + ¬x9 + ¬x10 ≥ 1

Table 4.1: pseudo-Boolean constraints to ensure coverage when extending the array from
Equation (4.1) with a fourth column to a CA(10; 3, 4, 2).

where A ↿τt−1 is the set of all rows of A that cover the interaction τt−1. Similarly, in
ΦSAT coverage is ensured with clauses

r∈A↿τt−1

xr,ℓ, for every τt−1 ∈ Tv,k,t−1 and all ℓ ∈ Σv,

Coverage clauses only exist if the array A that is extended has at least t − 1 columns.
Otherwise, if the extended array has less than t columns, no t-way interactions exist on
the extended array. If A has at least t − 1 columns, then the number of coverage clauses
or pseudo-Boolean constraints is vt k

t−1 , since |Tv,k,t−1| = vt−1 k
t−1 and |Σv| = v.

Example 2. The pseudo-Boolean constraints in Table 4.1 enforce coverage of a new
column when extending the array given in Equation (4.1) with a fourth column to a
CA(10; 3, 4, 2). Similarly, in a SAT formulation the clauses in Table 4.2 can be used to
enforce coverage, as the clauses in Table 4.2 are equivalent to the pseudo-Boolean con-
straints in Table 4.1. Each constraint or clause ensures coverage of the 3-way interaction
τ2 ∪ {(4, ℓ)}, where τ2 and ℓ are given in the respective columns. To give an example,
coverage of the 3-way interaction {(1, 0), (2, 0), (4, 0)} is ensured with the pseudo-Boolean
constraint ¬x1 + ¬x2 + ¬x3 ≥ 1 or the propositional clause ¬x1 ∨ ¬x2 ∨ ¬x3, because
the 2-way interaction {(1, 0), (2, 0)} occurs in rows 1, 2 and 3 and the given constraint
and clause ensure that the extension column contains a 0 in one of these rows. Since
the alphabet of the considered array is binary, the literals ¬xr are used for r = 1, . . . , N
instead of xr,0.

4.2.3 Balance constraints
The ClassifyBalancedCAs algorithm is capable of generating balanced CAs. For this
purpose, additional constraints are required. To recapitulate, an array is (λ, y)-balanced
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τ2 ℓ coverage clauses τ2 ℓ coverage clauses
{(1, 0), (2, 0)} 1 x1 ∨ x2 ∨ x3 {(1, 0), (2, 0)} 0 ¬x1 ∨ ¬x2 ∨ ¬x3
{(1, 0), (2, 1)} 1 x4 ∨ x5 {(1, 0), (2, 1)} 0 ¬x4 ∨ ¬x5
{(1, 1), (2, 0)} 1 x6 ∨ x7 {(1, 1), (2, 0)} 0 ¬x6 ∨ ¬x7
{(1, 1), (2, 1)} 1 x8 ∨ x9 ∨ x10 {(1, 1), (2, 1)} 0 ¬x8 ∨ ¬x9 ∨ ¬x10
{(1, 0), (3, 0)} 1 x1 ∨ x2 ∨ x4 {(1, 0), (3, 0)} 0 ¬x1 ∨ ¬x2 ∨ ¬x4
{(1, 0), (3, 1)} 1 x3 ∨ x5 {(1, 0), (3, 1)} 0 ¬x3 ∨ ¬x5
{(1, 1), (3, 0)} 1 x6 ∨ x8 {(1, 1), (3, 0)} 0 ¬x6 ∨ ¬x8
{(1, 1), (3, 1)} 1 x7 ∨ x9 ∨ x10 {(1, 1), (3, 1)} 0 ¬x7 ∨ ¬x9 ∨ ¬x10
{(2, 0), (3, 0)} 1 x1 ∨ x2 ∨ x6 {(2, 0), (3, 0)} 0 ¬x1 ∨ ¬x2 ∨ ¬x6
{(2, 0), (3, 1)} 1 x3 ∨ x7 {(2, 0), (3, 1)} 0 ¬x3 ∨ ¬x7
{(2, 1), (3, 0)} 1 x4 ∨ x8 {(2, 1), (3, 0)} 0 ¬x4 ∨ ¬x8
{(2, 1), (3, 1)} 1 x5 ∨ x9 ∨ x10 {(2, 1), (3, 1)} 0 ¬x5 ∨ ¬x9 ∨ ¬x10

Table 4.2: Coverage clauses for extending the array from Equation (4.1) with a fourth
column to a CA(10; 3, 4, 2).

with λ = (λ1, . . . , λt) and y = (y1, . . . , yt) if every i-way interaction occurs at least λi

and at most yi times in the array for i = 1, . . . , t.
Using pseudo-Boolean constraints, it is quite simple to model balance in ΦP B with the
following constraints:

r∈A↿τi−1

xr,ℓ ≥ λi, for 1 ≤ i ≤ t, all τi−1 ∈ Tv,k,i−1 and all ℓ ∈ Σv, (4.2)

r∈A↿τi−1

xr,ℓ ≤ yi, for 1 ≤ i ≤ t, all τi−1 ∈ Tv,k,i−1 and all ℓ ∈ Σv. (4.3)

Similar to coverage constraints, each constraint ensures balance of the i-way interaction
τi−1 ∪ {(k + 1, ℓ)}, where the constraints from (4.2) enforce the lower bound λi on
occurrences of τi−1 ∪ {(k + 1, ℓ)}, and the constraints given in (4.3) enforce the upper
bound yi. Note that balance constraints for i-way interactions are only generated when
the array A has at least i − 1 columns, i.e. k ≥ i − 1, otherwise the set Tv,k,i−1 is empty.
Another noteworthy case is i = 1: if i = 1, then the set Tv,k,0 only contains the empty
interaction ∅, which is covered by every row. Therefore, balance of 1-way interactions is
correctly enforced with constraints

N

r=1
xr,ℓ ≥ λ1, for all ℓ ∈ Σv,

N

r=1
xr,ℓ ≤ y1, for all ℓ ∈ Σv.

Modeling balance constraints in ΦSAT is not that straightforward. Similar to the clauses
for validity of array assignments in section 4.2.1, the sequential counter encoding from
[Sin05] is used to encode the balance constraints in propositional logic in CNF.
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4.2. Exact methods for generation of feasible columns

A constraint that at most n out of m variables y1, . . . , ym are allowed to be set to true is
realized with clauses

m−1

i=1
¬yi ∨ si,1,

n

j=2
¬s1,j ,

m−1

i=2

n

j=1
¬si−1,j ∨ si,j ,

m−1

i=2

n

j=2
¬yi ∨ ¬si−1,j−1 ∨ si,j and

m

i=2
¬yi ∨ ¬si−1,n,

where the variables si,j for i ∈ {1, . . . , m − 1}, j ∈ {1, . . . , n} are new auxiliary variables.
For every such constraint (m − 1)n additional variables are introduced. The constraint
that at least n out of m variables y1, . . . , ym have to be set to true in every model
corresponds to a constraint that at most m − n out of m variables y1, . . . , ym are allowed
to be set to false, therefore such a constraint can be realized with clauses

m−1

i=1
yi ∨ si,1,

m−n

j=2
¬s1,j ,

m−1

i=2

m−n

j=1
¬si−1,j ∨ si,j ,

m−1

i=2

m−n

j=2
yi ∨ ¬si−1,j−1 ∨ si,j and

m

i=2
yi ∨ ¬si−1,m−n,

where the variables si,j for i ∈ {1, . . . , n − m − 1}, j ∈ {1, . . . , n} are again new auxiliary
variables.

Such a translation is applied to every at-most and at-least constraint defined in (4.2) and
(4.3). This translation yields a high number of additional variables and clauses, however,
the search space reduction gained from balance constraints in many cases outweighs
the additional complexity of the generated formula, as is also demonstrated by the
experimental evaluation presented in Section 4.4.
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4. A Column Extension Algorithm for CA Classification

As shown in [KHKS23, Remark 1] and repeated in Remark 1 in Section 2.1.1 in this
thesis, under some conditions certain balance constraints are redundant. Since it is
not necessary to enforce redundant constraints, the generated pseudo-Boolean or SAT
formulation can be simplified by omitting those redundant constraints.

Example 3. Continuing the example from before, when the ((4, 2, 1), (6, 3, 2))-balanced
array- with N = 10 rows given in Equation (4.1) is extended with an additional column
in a way that the balance is maintained, then first of all it is determined which balance
constraints are redundant. With λ = (4, 2, 1) and y = (6, 3, 2), the constraints

• λ1 = 4 because of λ1 = 2 · λ2,

• λ2 = 2 because of λ2 = 2 · λ3,

• λ3 = 1 because this is already enforced by coverage constraints,

• y1 = 6 because of y1 = N − λ1 and

• y3 = 2 because of y3 = y2 − λ3

are redundant for the given reasons and can therefore be omitted from the formulations
ΦP B and ΦSAT . The only remaining balance constraint is y2 = 3, which provides an
upper bound on the number of times a two-way interaction is allowed to appear in the
array. In ΦP B, the constraint y2 = 3 results in the pseudo-Boolean constraints listed in
Table 4.3. For every constraint, the corresponding τi−1-way interaction is given, together
with the value ℓ that is used in the new column to extend τi−1 to the i-way interaction
τi−1 ∪{(k +1, ℓ)} whose balance is enforced by the constraint. Using the sequential counter
encoding described above, the balance constraints can be translated to a propositional logic
formula in CNF. To give an example for this translation, applying the sequential counter
encoding to the pseudo-Boolean constraint x1 + x2 + x3 + x4 + x5 ≤ 3 results in the clauses

¬x1 ∨ s1,1, ¬x2 ∨ s2,1, ¬x3 ∨ s3,1, ¬x4 ∨ s4,1, ¬s1,2, ¬s1,3, ¬s1,1 ∨ s2,1, ¬s1,2 ∨ s2,2,

¬s1,3 ∨ s2,3, ¬s2,1 ∨ s3,1, ¬s2,2 ∨ s3,2, ¬s2,3 ∨ s3,3, ¬s3,1 ∨ s4,1, ¬s3,2 ∨ s4,2, ¬s3,3 ∨ s4,3,

¬x2 ∨ ¬s1,1 ∨ s2,2, x2 ∨ ¬s1,2 ∨ s2,3, ¬x3 ∨ ¬s2,1 ∨ s3,2, x3 ∨ ¬s2,2 ∨ s3,3,

¬x4 ∨ ¬s3,1 ∨ s4,2, x4 ∨ ¬s3,2 ∨ s4,3, ¬x2 ∨ ¬s1,3, ¬x3 ∨ ¬s2,3, ¬x4 ∨ ¬s3,3, ¬x5 ∨ ¬s4,3.

To receive a SAT formulation for balance constraints, the same translation is applied to
all pseudo-Boolean balance constraints. However, due to the complexity of this encoding
no complete example is given here.
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4.2. Exact methods for generation of feasible columns

τ1 ℓ balance constraints
{(1, 0)} 1 x1 + x2 + x3 + x4 + x5 ≤ 3
{(1, 0)} 0 ¬x1 + ¬x2 + ¬x3 + ¬x4 + ¬x5 ≤ 3
{(1, 1)} 1 x6 + x7 + x8 + x9 + x10 ≤ 3
{(1, 1)} 0 ¬x6 + ¬x7 + ¬x8 + ¬x9 + ¬x10 ≤ 3
{(2, 0)} 1 x1 + x2 + x3 + x6 + x7 ≤ 3
{(2, 0)} 0 ¬x1 + ¬x2 + ¬x3 + ¬x6 + ¬x7 ≤ 3
{(2, 1)} 1 x4 + x5 + x8 + x9 + x10 ≤ 3
{(2, 1)} 0 ¬x4 + ¬x5 + ¬x8 + ¬x9 + ¬x10 ≤ 3
{(3, 0)} 1 x1 + x2 + x4 + x6 + x8 ≤ 3
{(3, 0)} 0 ¬x1 + ¬x2 + ¬x4 + ¬x6 + ¬x8 ≤ 3
{(3, 1)} 1 x3 + x5 + x7 + x9 + x10 ≤ 3
{(3, 1)} 0 ¬x3 + ¬x5 + ¬x7 + ¬x9 + ¬x10 ≤ 3

Table 4.3: Balance constraints for extending the array from Equation (4.1) with a fourth
column to a ((4, 2, 1), (6, 3, 2))-balanced CA(10; 3, 4, 2).

4.2.4 Symmetry breaking: row permutations
To prevent visiting two arrays that are identical up to row permutations, a lexicographic
ordering of rows is enforced. In ΦP B this ordering is enforced with constraints

¬xr,ℓ +
v−1

j=ℓ

xr+1,j ≥ 1, for all pairs of identical rows r and r + 1, and ℓ ∈ Σv \ {0},

while in ΦSAT the lexicographic ordering is ensured with clauses

¬xr,ℓ ∨
v−1

j=ℓ

xr+1,j , for all pairs of identical rows r and r + 1, and ℓ ∈ Σv \ {0}.

If two consecutive rows are not identical, then they are already in lexicographic order,
since the same constraint was enforced during generation of earlier columns. Similarly, if
there are identical rows, they will always be consecutive. If such consecutive identical
rows with indices r and r + 1 exist, then the constraints ensure that the value ur+1
assigned to row r +1 is greater or equal to the value ur assigned to row r. The constraints
can be read as follows: Either a value xr,ℓ is not set to true, or there is a value j ≥ ℓ with
xr+1,j assigned to true.

Example 4. The array given in (4.1) has two consecutive pairs of identical rows, those
are rows (1, 2) and rows (9, 10). Using the following two pseudo-Boolean constraints,
lexicographic ordering of the rows after extending the array with a fourth column is
ensured.

¬x1 + x2 ≥ 1,

¬x9 + x10 ≥ 1.
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4. A Column Extension Algorithm for CA Classification

The first constraint is satisfied by an interpretation if either ¬x1 is assigned true, which
means the new column contains the value 0 in the first row, or if x2 is assigned true,
which means the second row of the new column contains the value 1. The relationship
u1 ≤ u2 is obviously satisfied for all values u1, u2 ∈ {0, 1} satisfying u1 = 0 or u2 = 1.
Similarly, the propositional clauses

¬x1 ∨ x2,

¬x9 ∨ x10

can be added to ΦSAT to guarantee a lexicographic ordering of rows.

4.2.5 Symmetry breaking: column permutations
Similar to the lexicographic ordering of rows, a lexicographic ordering on columns is
enforced to prevent the ClassifyBalancedCAs algorithm from visiting solutions that are
identical up to column permutations. To enforce the ordering, constraints ensure that
the new column (u1, . . . , uN )T is lexicographically larger than the most recently added
column, that is column k of A, denoted with (y1, . . . , yN )T here to define these constraints.
Note that (y1, . . . , yN )T already has assigned values yi ∈ Σv for i = 1, . . . , N when the
constraints are created. The pseudo-Boolean constraints

v−1

j=yr

xr,j +
r−1

r′=1

v−1

j=yr′ +1
xr′,j ≥ 1, for all r = 1, . . . , N with yr > 0

ensure a lexicographic ordering of columns when added to ΦP B. Column (u1, . . . , uN )T

is lexicographically larger than column (y1, . . . , yN )T if at the first position with ui ̸= yi,
we have ui > yi. An equivalent condition can be formulated as follows: For every
r = 1, . . . , N , there is either yr ≤ ur or there is some row r′ < r with yr′ < ur′ . The
first part of the constraints, v−1

j=yr
xr,j is greater than or equal to one if yr ≤ ur in the

solution corresponding to the considered assignment. The second part of the constraints,
r−1
r′=1

v−1
j=yr′ +1 xr′,j is greater than or equal to one if there is a row r′ < r with yr′ < ur′

in the corresponding solution. It is easy to see that the sum of the two terms is greater
than or equal to one if the condition for lexicographic ordering stated above is met. For
rows with yr = 0 it is not necessary to add a constraint, because every possible value of
ur will satisfy 0 ≤ ur. The following clauses that are equivalent to the constraints above
are added to ΦSAT to enforce a lexicographic ordering of columns:

v−1

j=yr

xr,j ∨
r−1

r′=1

v−1

j=yr′ +1
xr′,j , for all r = 1, . . . , N with yr > 0.

Enforcing lexicographic ordering of columns and rows is a common method of symmetry
breaking and is also referred to as double-lex constraints in the literature [KNW10].
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4.2. Exact methods for generation of feasible columns

Example 5. For the CA given in Equation (4.1), the extension column (u1, . . . , uN )T

needs to be lexicographically larger than (0, 0, 1, 0, 1, 0, 1, 0, 1, 1)T , which is the third column
of the array, i.e. the column that was most recently added. This is achieved with the
pseudo-Boolean constraints

r = 3: x3 + x1 + x2 ≥ 1,

r = 5: x5 + x1 + x2 + x4 ≥ 1,

r = 7: x7 + x1 + x2 + x4 + x6 ≥ 1,

r = 9: x9 + x1 + x2 + x4 + x6 + x8 ≥ 1 and
r = 10: x10 + x1 + x2 + x4 + x6 + x8 ≥ 1,

where constraints are only added for the rows 3, 5, 7, 9 and 10 with a value greater
than 0 in the third column. Since the considered array has a binary alphabet, every
clause ensures there is either a ’1’ in the considered row of (u1, . . . , uN )T , or there is a
’1’ in a row higher up where the third column contains a ’0’. The equivalent clauses in
propositional logic are

r = 3: x3 ∨ x1 ∨ x2,

r = 5: x5 ∨ x1 ∨ x2 ∨ x4,

r = 7: x7 ∨ x1 ∨ x2 ∨ x4 ∨ x6,

r = 9: x9 ∨ x1 ∨ x2 ∨ x4 ∨ x6 ∨ x8 and
r = 10: x10 ∨ x1 ∨ x2 ∨ x4 ∨ x6 ∨ x8.

4.2.6 Symmetry breaking: symbol permutations
The remaining kind of equivalence action of CAs that requires symmetry breaking
constraints are symbol permutations. Different methods to break symmetries induced
by symbol permutations exist. Here, symmetries induced by symbol permutations are
broken via a lexicographic ordering on the first appearances of every symbol within a
column, meaning a symbol ur > 0 is only allowed to occur at row r, if the symbol ur − 1
occurs in a row with a lower index, that is ur′ = ur − 1 for some row r′ < r. To give an
example, in the column (0, 0, 1, 0, 1, 2, 2)T the first appearance of ’0’ is in the first row,
the first appearance of ’1’ is in the third row and the first appearance of ’2’ is in the sixth
row. The first appearance of ’0’ occurs before the first appearance of ’1’, which again
occurs before the first appearance of ’2’. If now a symbol permutation swapping ’1’ and
’2’ is applied, this results in the column (0, 0, 2, 0, 2, 1, 1)T , where the first appearance of
’2’ occurs in the third row, which is before the first appearance of ’1’ in the sixth row and
therefore violates the described constraint. This symmetry breaking condition implies
that the first row of every column is set to ’0’, since the symbol ’0’ has to occur before
every other symbol. This method of symmetry breaking for symbol permutations is
similar to the LNH heuristic used for CA generation in [YZ08]. The algorithm described
there assigns entries of an array one-by-one. According to the LNH heuristic, a cell can
only be assigned a value ur if the value ur − 1 is already assigned to some cell in the
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4. A Column Extension Algorithm for CA Classification

same column. If a fixed assignment order is used, filling each column from the top, the
LNH heuristic is equivalent to the symbol permutation symmetry breaking used here.
Additionally, this method only allows symbol permutations yielding a lexicographically
minimal array with regard to a column-wise linearization for complete symmetry breaking.
The pseudo-Boolean constraints

x1,0 ≥ 1 and

¬xr,ℓ +
r−1

r′=2
xr′,ℓ−1 ≥ 1 for all rows r ∈ {2, . . . , N}, and all ℓ ∈ {2, . . . , v − 1}

break symmetries according to the described method when added to ΦP B. The first
constraint x1,0 ≥ 1 simply sets the value in the first row to ’0’, while the constraint
¬xr,ℓ + r−1

r′=2 xr′,ℓ−1 ≥ 1 ensures for a value ℓ ≥ 2 occurring in a row r ≥ 2 that the
value ℓ − 1 occurs in some row r′ < r. It is not necessary to add such constraints for the
value ℓ = 1 because the value ’0’ always occurs in the first row and therefore before the
first occurrence of ’1’. The equivalent SAT formulation for ΦSAT consists of the clauses

x1,0 and

¬xr,ℓ ∨
r−1

r′=2
xr′,ℓ−1 for all rows r ∈ {2, . . . , N}, and all ℓ ∈ {2, . . . , v − 1}.

4.2.7 Blocking clauses: finding all columns suitable for extension
SAT and pseudo-Boolean solvers in general only return one model for a given formula or
set of constraints, or they determine that no model exists. For the proposed ClassifyBal-
ancedCAs algorithm performing exhaustive search, it is at every extension step required
to receive all columns that are suitable for extension of the given array A, that means
all models of the constructed formula or constraint set. For this purpose, a method
called blocking clauses [McM02] is used: The solver is executed to solve the formula
or constraint set and returns one solution. Using an additional clause or constraint,
the formula or constraint set is extended such that the reported solution is forbidden.
Consider for example the column (u1, . . . , u10)T = (0, 0, 1, 1, 0, 1, 0, 0, 1, 1)T , which is one
possible solution for extension of the array given in Equation (4.1). A constraint

x1 + x2 + ¬x3 + ¬x4 + x5 + ¬x6 + x7 + x8 + ¬x9 + ¬x10 ≥ 1

invalidating the model corresponding to the solution column (0, 0, 1, 1, 0, 1, 0, 0, 1, 1)T can
be added to ΦP B. Afterwards the solver is again executed with the modified formula
and the process is repeated until no further solutions exist. Similarly, the clause

x1 ∨ x2 ∨ ¬x3 ∨ ¬x4 ∨ x5 ∨ ¬x6 ∨ x7 ∨ x8 ∨ ¬x9 ∨ ¬x10

can be added to ΦSAT to cause the SAT solver to deliver a different solution in the next
iteration.
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Since this approach requires many calls to a SAT or pseudo-Boolean constraint solver,
incremental solving is used, which is a technique implemented in most modern SAT and
pseudo-Boolean constraint solvers that improves the solving efficiency when many similar
formulas are solved iteratively.

4.3 Complete symmetry breaking with a lex-leader
feasibility check

The symmetry breaking constraints included in the SAT and pseudo-Boolean formulations
do not forbid all equivalent solutions. To enable classification, but also to further reduce
the search space, an additional feasibility check is executed to verify whether a partial
array is minimal in its equivalence class and therefore might have extensions that are
also minimal in their equivalence classes. A feasibility check or minimality check has
previously been applied to CAs in [IMTJ18]. While there are small differences, the
basic structure of the algorithm is the same. For a given array A, all arrays equivalent
to A up to a combination of column permutations and symbol permutations within a
column are constructed. For every such array the rows are then sorted and the resulting
array is lexicographically compared to A, using a column-wise linearization. If A is
lexicographically minimal, then it is lexicographically smaller than every such constructed
array. The feasibility check outputs true and the search continues with all extensions of A.
If A is not minimal, then some constructed array will be lexicographically smaller than
A. The feasibility check outputs false and the array A is discarded from the search and
not further extended. A description of the feasibility check can be found in Algorithm
2. A permuted array P is constructed that is empty at first (line 2). Additionally,
a set remaining is constructed, containing all columns of A that do not occur in P .
Since P is initially empty, the set remaining contains all columns of A at this point
(line 2). Afterwards, a recursive function check-minimality(A, P ,remaining) is used
to step-by-step construct all possible arrays P from columns of A, permuted with all
possible symbol permutations (line 3). The function check-minimality(A, P ,remaining)
receives as parameters the array A that is checked for lex-leadership, that is minimality
in its equivalence class, together with an array P , that can be extended to an array
equivalent to A by adding the columns of the set remaining to P . At every recursion level,
P is extended with one column in every possible way: To every column in remaining,
every possible symbol permutation σ is applied, and P is extended with the resulting
column, yielding an array P ′ (line 7), whose rows are sorted in the next step (line 8). The
thereby constructed array is the lexicographically minimal array that can be constructed
from the chosen columns and symbol permutations. Every such constructed array P ′

is compared to the first |P ′| columns of A, where |P ′| is the number of columns of P ′.
Because a column-wise linearization is used, if P ′ is lexicographically smaller than A,
then every extension of P ′ to an array equivalent to A will be lexicographically smaller
than A. Therefore, A is not minimal and the algorithm returns false (line 10). If, on
the other hand, P ′ is lexicographically larger than A, then the selected column and
symbol permutation of P ′ will not yield any array that is lexicographically smaller than
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A and this branch can be ignored. If P ′ is equal to the first |P ′| columns of A, then
further exploration is necessary to decide whether A is minimal. In a recursive call
check-minimality(A,remaining\{col}, P ′) further extensions to P ′ are explored (line
12). If minimality of A can be refuted in this call, then false is returned. Otherwise,
the algorithm continues with the remaining extensions to the array P that was given
as parameter. Finally, once all column and symbol permutations have been explored
and minimality of A was not refuted, the algorithm returns true in line 18 to confirm
minimality of A.

Algorithm 2 Admissible(A)
1: P ← empty column list ▷ Initialize P as empty list of columns
2: remaining ← set of all columns of A ▷ Initialize set of all columns
3: return check-minimality(A, P ,remaining)

4: function check-minimality(A, P , remaining)
5: for all col in remaining do
6: for all σ symbol permutation on Σv do
7: P ′ ← [P, σ(col)]
8: P ′ ← SortRows(P ′)
9: if P ′ <lex A[1, . . . , |P ′|] then ▷ A is not minimal

10: return False
11: else if P ′ = A[1, . . . , |P ′|] then
12: if check-minimality(A,remaining\{col}, P ′) = false then
13: return false
14: end if
15: end if
16: end for
17: end for
18: return true
19: end function

In order to optimize the algorithm, several improvements were made that are not depicted
in Algorithm 2 for the sake of simplicity. First of all, no columns or rows are actually
copied during the search. Instead, index lists are used, together with an array of size
v called permutation storing the symbol permutation of the current recursion level. To
give some examples, the set remaining initially consists of an index list {1, . . . , k}, that
is reduced during the search, as columns are removed from the set, for example to {3, 5},
when P contains all columns of A, except for the third and fifth column. Ordering of
remaining does not matter. Additionally, an index list rows is used, storing the row
permutation leading to the sorted array P ′. The list rows is initialized as [1, . . . , N ] and
the indices are permuted later on. For an array with 6 rows a permuted index list might
be [2, 1, 3, 6, 5, 4]. A symbol permutation of a column of an array with alphabet size v = 3
could be [2, 1, 0]. In this case, a symbol ’0’ in A is interpreted as symbol ’2’ in P , a ’1’ in
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A corresponds to a ’1’ in P and a symbol ’2’ in A corresponds to a ’0’ in P . Altogether,
when a column (u1, . . . , uN ) of A is added to P using the row permutation defined by
rows and the symbol permutation defined by permutation, then the r-th row of the new
column of P contains the symbol permutation[urows[r]].

Secondly, the sorting step is optimized by reusing information from the previous recursion
level. At every recursion level, a sorted array P with |P | columns is given or, more
precisely, the information that is required to further extend the array P , for example
the row ordering rows. The array P is then extended with an additional column to an
array P ′ and the rows are sorted. However, the rows of P ′ are sorted lexicographically,
meaning if two rows differ on the first |P | columns, then their ordering is completely
determined by the first |P | columns. Only the ordering of rows that are equal on their
first |P | positions may change from adding one additional column to P . This means
when the row ordering of P is known, together with the groups of rows that are equal in
P , then the ordering of P stored in rows can be reused and only each group of rows equal
in P needs to be sorted according to the value of the new column added to P ′. Using
this optimization, the complexity of row comparison during the sorting of P ′ is reduced
from O(|P ′|) to O(1), because only the values in the newly added column are compared.
Additionally, not one section of size N is sorted, but the sorting areas are reduced to
several sections of sizes N1, . . . , Nm for some m ≤ N , with N1 + . . . + Nm = N . This
optimization also affects the comparison of P ′ to the first |P ′| columns of A. Sorting P ′

will not change anything in the first |P | = |P ′| − 1 columns of P ′. Because P is only
extended recursively when P matches the first |P | columns of A, for comparison of P ′

with A it is sufficient to compare the newest column of P ′ with the column |P ′| of A,
which again reduces the effort of array comparison from O(N |P |) to O(N).

The applied sorting algorithms are quicksort and a modified version of selection sort.
While quicksort generally has a lower time complexity than selection sort, for alphabet
v > 2 the modified implementation of selection sort performed faster and is therefore
used for these alphabet sizes.

Example 6. The feasibility check described in this section is demonstrated using the
array

A =




0 0 0
0 0 1
0 1 1
1 0 1
1 1 0



 , (4.4)

which also occurs in the example search tree of ClassifyBalancedCAs in Figure 4.1 and
is not a lexicographically minimal array in its equivalence class. Figure 4.2 displays a
possible search tree of the feasibility check when checking for lexicographic minimality
of A. In the figure also the mentioned optimizations are included, i.e. using index lists
instead of storing columns and dividing the columns to be sorted into sections of several
rows. For every column, the sections of A are depicted in the upper left corner of the
figure. The sections are chosen such that in every subarray consisting of the rows in one
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section and all columns to the left of the partitioned column, all rows are identical. For
example, column 2 of A is divided into two sections, where the subarray of the first section
only contains (0) as row, while the subarray of the second section only contains (1) as row.
The third column is divided into four sections, where the corresponding four subarrays
contain the rows (0, 0), (0, 1), (1, 0) and (1, 1), respectively. After initializing remaining
with [1, 2, 3] because A has three columns and the row permutation rows with [1, 2, 3, 4, 5]
because A has five rows, the search can begin. In the depicted example search tree, the
search begins with taking column 2 from remaining and negating it. The considered
array is binary, therefore the only symbol permutations are identity, that is σ(0) = 0 and
σ(1) = 1, and negation, that is σ(0) = 1 and σ(1) = 0. The array P ′ resulting from
extension of the empty array P with the negated column 2 of A is then sorted. This
results in the column (0, 0, 1, 1, 1)T , which is compared to the first column of A, which is
(0, 0, 0, 1, 1)T and therefore lexicographically smaller than P ′. Because P ′ can not lead to
an array lexicographically smaller than A, the branch is discarded and the empty array P
is instead extended with the identity column 2 of A. After sorting, the extended array
P ′ is (0, 0, 0, 1, 1)T , which is equal to the first column of A, and recursively P ′ is further
extended. In the next step, the array (0, 0, 0, 1, 1)T constructed from column 2 of A with
the row permutation (1, 2, 4, 3, 5) is further extended with column 1 of A, which is also
permuted with rows=(1, 2, 4, 3, 5). Every section of the second column of A is sorted
individually. This results in the new column (0, 0, 1, 0, 1)T , which is equal to the second
column of A. Only column 3 is still in remaining. In the next step, the permuted array
is extended with column 3 of A and again sorted sectionwise. Since the result is equal
to A, no refutation for minimality of A was found and a different column permutation
is tried at the previous recursion level. After appending column 3 of A negated and
sorting sectionwise, the resulting array P ′ is lexicographically smaller than A and false is
returned by the feasibility check, because A is not minimal.

4.4 Experimental evaluation of ClassifyBalancedCAs
The classification results determined with the ClassifyBalancedCAs algorithm were
described in [KHKS23] and are available online at [MAT], however, due to the large
amount of data and because the classification results are not the focus of this thesis they
are not repeated here. Instead, this section focuses on evaluating the performance of
the algorithm. For this purpose, first the runtime of ClassifyBalancedCAs is compared
to other algorithms for CA classification, in particular the algorithms described in
[TJIM16], [IMTJ18] and [KMN+20]. Afterwards, two versions of ClassifyBalancedCAs
using different exact methods (SAT or pseudo-Boolean constraints) are compared. As
described in the previous section, the ClassifyBalancedCAs algorithm applies either a SAT
solver or a pseudo-Boolean constraint solver. For the experiments either the SAT solver
MiniSat 2.2.0 [ES04] was used, or clasp 3.3.6 [GKS12] was used as a pseudo-Boolean
constraint solver. The ClassifyBalancedCAs algorithm was implemented in C++ and all
experiments with the algorithm were conducted on a server with an AMD EPYC 7502P
processor with 32 cores at 2.5 GHz base clock and 3.35 GHz boost clock and 128GB of

46



4.4. Experimental evaluation of ClassifyBalancedCAs

123
000 1
001 2
011 3
101 4
110 5

A=

remaining columns: 1,2,3
rows: 1,2,3,4,5

column 2 negated

column 1 of P' sorted:

0 3
0 5
1 1
1 2
1 4

remaining columns: 1,3
rows before: 1,2,3,4,5

0 1
0 2
0 4
1 3
1 5

remaining columns: 1,3
rows before: 1,2,3,4,5

column 2

abort because P'>lexA
continue because column 1 of P' 
equal to column 1 of A

Column 1 of A:

0
0
0
1
1

0
0
1
0
1

0 1
0 2
1 4
0 3
1 5

remaining columns: 3
rows before: 1,2,4,3,5

column 1

0
1
1
1
0

0 1
1 2
1 4
1 3
0 5

remaining columns: 
rows before: 1,2,4,3,5

abort because P'=A and 
remaining is empty

column 3

0 2
1 1
0 4
0 3
1 5
 
 

remaining columns: 
rows before: 1,2,4,3,5

return false because P'<lexA

column 3 negated

rows after sorting: 3,5,1,2,4 rows after sorting: 1,2,4,3,5

rows after sorting: 1,2,4,3,5

rows after sorting: 1,2,4,3,5 rows after sorting: 2,1,4,3,5

Column 2 of A:

Column 3 of A:

column 1 of P' sorted:

column 2 of P' sorted:

continue because column 2 of P' 
equal to column 2 of A

column 3 of P' sorted: column 3 of P' sorted:

Figure 4.2: Search tree of the feasibility check when checking for lexicographic minimality
of the array A given in Equation (4.4).

RAM. The runtimes of other algorithms for comparison were taken from the respective
papers. Since the algorithms for comparison were executed on different machines, the
comparability of the given times is limited, especially when the runtime difference is
small.

A comparison of ClassifyBalancedCAs with the algorithms from [TJIM16] and [IMTJ18]
is given in Table 4.4. The columns headed by ’N ’, ’t’ and ’v’ provide values for the
respective parameters of a CA(N ; t, k, v), while the column headed by ’k’ provides the
maximum k where a CA(N ; t, k, v) exists for the given N , t and v, i.e. the column
provides CAK(N ; t, v). Except for the last column (’PB with pruning time (s)’), the
runtimes in the table are given for the classification of all CAs with the corresponding
number of rows N , strength t and alphabet size v, i.e. a runtime corresponds to the
classification of all arrays CA(N ; t, i, v) for i from t to CAK(N ; t, v). Three variants of
ClassifyBalancedCAs are provided for comparison:

• The column headed with ’SAT time (s)’ displays the runtime of the ClassifyBal-
ancedCAs variant generating formulas in propositional logic and using MiniSAT
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2.2.0 as SAT solver.

• The column headed with ’PB time (s)’ displays the runtime of the ClassifyBal-
ancedCAs variant generating pseudo-Boolean constraints and using clasp 3.3.6 for
solving the generated problems.

• Lastly, to display the advantage of balance-based pruning, the runtimes of an
ClassifyBalancedCAs variant applying this pruning method is given in the column
headed with ’PB with pruning time (s)’. The column headed by ’λ for pruning’
displays the balance vector λ that was used to restrict the search space. The vector
λ was chosen according to [KHKS23, Lemma 1] (repeated in Equation (2.9) in
this thesis), such that no CAs with k columns are removed from the search space,
where k is the value given in the column headed by ’k’. While the variant with
balance-based pruning generates less information than the other algorithms, as
there is no guarantee that all CAs with less than k columns are classified, it can
provide a major runtime advantage when one is only interested in CAs with a larger
number of columns.

As mentioned, the times for the compared algorithms other than ClassifyBalancedCAs
were copied from the respective papers. Since the times were not always given in seconds,
a conversion into seconds is provided where necessary. The runtimes from the considered
ClassifyBalancedCAs variants are always given in seconds and rounded down, i.e. a
runtime of 0 means the program terminated in less than one second. For some instances no
runtime was given in [TJIM16], those instances are marked with a ’-’ in the corresponding
table cells. Similarly, for some instances no result was computed with variants of the
ClassifyBalancedCAs algorithm and the corresponding table cells are marked with ’-’.
For instances with a runtime longer than 5 seconds, the time of the fastest algorithm is
depicted in bold. For smaller runtimes a meaningful comparison is not possible. It can
be seen that for all instances where the best time is marked, the ClassifyBalancedCAs
algorithm was faster than the algorithms from [TJIM16] and [IMTJ18] with a speedup
factor larger than 100 on the three instances (N = 20, t = 2, v = 4), (N = 25, t = 2, v = 5)
and (N = 36, t = 2, v = 6).

For the instances (N = 14, t = 2, v = 3) and (N = 38, t = 2, v = 6) no result was
computed with the pseudo-Boolean variant of the ClassifyBalancedCAs algorithm. While
the proposed algorithm would most likely be faster than the algorithm given in [IMTJ18],
a comparison was not possible due to the extensive runtime. The runtimes given in
[IMTJ18] for these instances are 4720,168 hours and 7404,128 hours, which correspond
to 196 days in the first case and 308 days for the second instance.

The column headed with ’PB with pruning time (s)’ was considered separately since, as
mentioned above, this variant only considers a reduced search space. The times given
in this column are marked bold when balance-based pruning provides a considerable
speedup when compared to the algorithm variant without pruning. Especially for the
instance (N = 33, t = 3, v = 3) balance-based pruning provides a huge advantage by
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reducing the runtime from 290 seconds to less than one second. However, balance-based
pruning does not always help. First of all, it can only be applied for t > 2 and N > vt.
Second, in some cases the runtime reduction is not noteworthy. See for example the
instance (N = 16, t = 3, v = 2) where the runtime is only reduced from 90000 to 87604.
In this case the classification without balance constraints using a SAT solver is faster
than using pseudo-Boolean constraints with balance-based pruning.

Table 4.4: Runtime comparison of different variants of ClassifyBalancedCAs with the
classification algorithms from [TJIM16] and [IMTJ18].

ClassifyBalancedCAs
N t v k time from [TJIM16] time from [IMTJ18] SAT time (s) PB time (s) λ for pruning PB with pruning time (s)
4 2 2 3 85 µs < 1 s 0.002 s 0 0
5 2 2 4 197 µs < 1 s 0.003 s 0 0
6 2 2 10 0.025 s 0.034 s 0 0
7 2 2 15 0.373 s 0.57 s 1 0
8 2 2 35 5.51 h = 19836 s > 12 h 2754 2764
8 3 2 4 666 µs < 1 s 0.002 s 0 0
10 3 2 5 0.012 s 0.005 s 0 0 (5,2,1) 0
12 3 2 11 0.851 s 1.088 s 0 0 (6,2,1) 0
15 3 2 12 1.39 h = 5004 s 0.443 h = 1594 s 228 384 (7,2,1) 70
16 3 2 14 1052.65 h = 3789540 s 130.573 h = 470062 s 55929 90000 (7,2,1) 87604
16 4 2 5 0.158 s 0.189 s 0 0
21 4 2 6 694.6 s 0.346 s 0 0 (10,5,2,1) 0
24 4 2 12 53.39 h = 192204 s 72.846 s 7 9 (12,6,2,1) 1
9 2 3 4 0.006 s 0.011 s 0 0
11 2 3 5 1.78 s 0.028 s 0 0
12 2 3 7 252.38 s 1.52 s 0 1
13 2 3 9 4.14 h = 14904 s 0.368 h = 1324 s 353 301
14 2 3 10 - 4720.168 h = 16992604 s - -
27 3 3 4 - 0.156 s 0 0
33 3 3 6 - 1.453 h = 5230 s 317 290 (11,3,1) 0
16 2 4 5 629.66 s 2.216 s 0 0
19 2 4 6 - 0.545 h = 1962 s 71 71
20 2 4 6 - 1645.534 h = 5923922 s 28642 56758
25 2 5 6 - 0.383 h = 1378 s 10 6
36 2 6 3 - 56.981 h = 205131 s 2052 1234
37 2 6 4 - 100.768 h = 362764 s 467755 265063
38 2 6 4 - 7404.128 h = 26654860 s - -

In Table 4.6 the performance of ClassifyBalancedCAs, both with a SAT solver and with a
pseudo-Boolean constraint solver, is compared with the runtime of the algorithm described
in [KMN+20]. There are no columns for balance-based pruning, because balance-based
pruning is only applicable for t > 2 and [KMN+20] only considers instances with t = 2.
As above, the runtime of the algorithm from [KMN+20] was copied from the paper and
the times in the table are the times required to classify all CAs with the given number
of rows N , strength t and alphabet size v. In [KMN+20] only the times per extension
step are given, i.e. the time to produce all CAs with k + 1 columns when all CAs with k
columns are given, therefore the time depicted in Table 4.6 is the sum of the times listed
in [KMN+20] for an instance. An example is given in Table 4.5. The total time required
to generate all CAs for the given parameters is the sum of the times given there, i.e. the
time to generate all CAs with (N = 38, t = 2, v = 6) is 156h + 1074s + 143.7s = 156h.

As in Table 4.4, in Table 4.6 the runtime of the fastest algorithm per instance is marked
bold, if the runtime is longer than 5 seconds. In this table we see that there is no
clear winner. While ClassifyBalancedCAs with a pseudo-Boolean solver is faster on
two instances, the algorithm from [KMN+20] outperforms ClassifyBalancedCAs on

49



4. A Column Extension Algorithm for CA Classification

Table 4.5: Excerpt of the data from Table 1 in [KMN+20] to show how runtimes are
described there.

N t v k No. of CAs time from [KMN+20]
38 2 6 2 3 -
38 2 6 3 30491 156.0 h
38 2 6 4 8865 1074.0 s
38 2 6 5 0 143.7 s

four instances and there are several more instances where ClassifyBalancedCAs did
not terminate within a reasonable timeframe. An interesting observation is that the
algorithm from [KMN+20] was faster on the instance (N = 19, t = 2, v = 4), however,
ClassifyBalancedCAs was faster on the larger instance (N = 20, t = 2, v = 4). This
suggests that ClassifyBalancedCAs scales better with regard to the number of rows N .
The runtime of the instances (N = 27, t = 2, v = 5) and (N = 28, t = 2, v = 5) supports
this observation. While the algorithm from [KMN+20] outperforms ClassifyBalancedCAs
on both instances, the ratio

(time of ClassifyBalancedCAs algorithm)
(time of algorithm from [KMN+20])

decreases for higher N : for N = 27 the ratio is 483/62 = 7.79, while for N = 28 it is only
957672/245914 = 3.89. However, the proposed ClassifyBalancedCAs algorithm seems to
scale worse with regard to the alphabet size v. Although it outperforms the algorithm
from [KMN+20] on some instances for v = 3 and v = 4, for higher alphabet the algorithm
from [KMN+20] is always faster than the algorithm presented in this thesis.

To compare the performance of the ClassifyBalancedCAs variants with a SAT solver
and with a pseudo-Boolean constraint solver, Figures 4.3, 4.4 and 4.5 depict the runtime
of both ClassifyBalancedCAs versions (SAT and pseudo-Boolean constraints (PB)) for
different balance vectors, i.e. different amounts of search space reduction. Additionally,
the black line headed ’# backtracks’ depicts the number of backtracks, which corresponds
to the total number of CAs during the search and the size of the search space. In all
three Figures we can make similar observations. With appropriate scaling, the runtime of
the ClassifyBalancedCAs variant with pseudo-Boolean constraints directly corresponds
to the size of the search space. The variant using a SAT solver on the other hand suffers
from a lot of overhead from enforcing the balance constraints, which can be seen as high
fluctuation of the blue line in the figures. When balance vectors require many balance
constraints to be enforced, the variant using SAT solving and the sequential counter
encoding for balance constraints is much slower than the variant using pseudo-Boolean
constraints, where balance constraints can be handled naturally. However, when balance
constraints can be skipped due to redundancy, as shown in [KHKS23, Remark 1] and
also described in Remark 1 of this thesis, the runtime of the variant with a SAT solver is
similar to the runtime of the variant using a pseudo-Boolean constraint solver, and even
performs better in several cases.
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Figure 4.3: Runtime of the ClassifyBalancedCAs algorithm when classifying the instance
CAy

λ(15; 3, k, 2) for different balance vectors. Times are given both for the Classify-
BalancedCAs variant with the SAT solver MiniSAT and for the variant with clasp as
pseudo-Boolean constraints solver.

Figure 4.4: Runtime of the ClassifyBalancedCAs algorithm when classifying the instance
CAy

λ(33; 3, k, 3) for different balance vectors. Times are given both for the Classify-
BalancedCAs variant with the SAT solver MiniSAT and for the variant with clasp as
pseudo-Boolean constraints solver.
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Table 4.6: Runtime comparison of ClassifyBalancedCAs where a SAT solver or a pseudo-
Boolean solver is used for column generation with the classification algorithm from
[KMN+20].

ClassifyBalancedCAs
N t v k time from [KMN+20] SAT time (s) PB time (s)
10 2 3 4 <1 s 0 0
11 2 3 5 <1 s 0 0
12 2 3 7 <1 s 0 1
13 2 3 9 1703 s 353 301
14 2 3 19 1065 days - -
17 2 4 5 <1 s 0 0
18 2 4 5 <1 s 0 1
19 2 4 6 41 s 71 71
20 2 4 6 45,33 h = 163201 s 28642 56758
26 2 5 6 <1 s 5 3
27 2 5 6 62 s 655 483
28 2 5 6 68,3 h = 245914 s - 957672
37 2 6 4 6 h = 21600 s 467755 265063
38 2 6 4 156 h - -
39 2 6 5 101 d - -

To conclude this section, the ClassifyBalancedCAs algorithm is a new classification
algorithm that is able to compete with and partly outperform state-of-the-art CA
classification algorithms following a column extension strategy. One weakness of the
developed algorithm is scalability with regards to the alphabet size v. Table 4.4 showed
some examples where balanced-based pruning can be applied. We saw that balance-based
pruning can sometimes provide a huge runtime improvement, however, it can only be
applied for some cases and even when it can be applied it not always brings much of
an improvement. When balance constraints are enforced, it is advantageous to use a
pseudo-Boolean constraint solver, where balance constraints can be handled naturally,
instead of a SAT solver where an encoding is required. At least with the sequential
counter encoding used in this thesis the performance with balance constraints and SAT
solving was worse than when using the tool clasp as pseudo-Boolean constraint solver.
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Figure 4.5: Runtime of the ClassifyBalancedCAs algorithm when classifying the instance
CAy

λ(85; 4, k, 3) for different balance vectors. Times are given both for the Classify-
BalancedCAs variant with the SAT solver MiniSAT and for the variant with clasp as
pseudo-Boolean constraints solver.
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CHAPTER 5
An Adaption of the IPO

Algorithm using MaxSAT

The IPO-MAXSAT algorithm presented in this section is based on the popular IPO
strategy that was also mentioned in Section 3.1.3. In general, the IPO strategy consists
of three parts: Array initialization, horizontal extension and vertical extension.

Array initialization makes use of the fact that every t-way interaction occurs at least
once in a CA. For the first t columns, a vt × t array having as rows all vt possible t-tuples
over the alphabet Σv is generated. Such an array is part of every CA, up to equivalence.

In the step called horizontal extension the array is then extended with additional columns,
with the aim of reaching k columns for an input parameter k. The column for extension
is usually generated heuristically such that the array resulting from extension with the
new column covers a large number of t-way interactions, but not necessarily all t-way
interactions.

If all t-way interactions of the current array are covered, then the IPO strategy simply
continues with horizontal extension to add more columns to the array. However, if some
t-way interactions are missing, the current array is not a CA anymore. This is fixed in the
step called vertical extension. Extending the array in vertical direction, rows are added
to the array until all t-way interactions are covered. Again, this usually happens via a
heuristic or greedy algorithm. When adding new rows to the array, only row entries that
are required to cover the missing t-way interactions are assigned a value. Other entries
of the newly added rows remain unassigned (star-values). These star-values might then
in later vertical extension steps be used to cover additional t-way interactions without
introducing new rows.

The extension steps of the IPO strategy are displayed schematically in Figure 5.1. For a
binary CA with star-values (marked in red) first a horizontal extension step is executed,
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Figure 5.1: Example for extension steps of the IPO strategy with horizontal extension
marked blue, vertical extension marked green and star-values surrounded with a red
border.

adding a new column (marked in blue) with values (h1, . . . , h6)T . Afterwards a vertical
extension step is executed to ensure coverage of all t-way interactions. In this step t-way
interactions are covered, either by assigning values to existing star-values or by adding
new rows to the array (marked in green).

When implemented using greedy algorithms, the IPO strategy can be an excellent strategy
for CA generation, yielding arrays with a decently small number of rows without taking
too much time. In this thesis, the IPO strategy was implemented using a different
approach: Instead of getting small, non-optimal solutions very fast, a MaxSAT solver is
used to compute optimal solutions for every extension step, both horizontal and vertical
extension. While this worsens the runtime, smaller arrays are generated than with
heuristic extension strategies. To apply a MaxSAT solver, before every extension step a
weighted partial MaxSAT formula is generated and solved by the MaxSAT solver. The
solution found by the solver is then used to derive a new column or row for extension.
Figure 5.2 displays an example for the problem translation of horizontal extension (column
extension) to a weighted partial MaxSAT formula and the derivation of a column from
the model found by the MaxSAT solver.

In the following, first the MaxSAT formulation for horizontal extension is described, and
afterwards the MaxSAT formulation for vertical extension. Finally, several variants of the
IPO-MAXSAT algorithm are introduced and an experimental evaluation is presented.

5.1 Horizontal extension via a MaxSAT formulation
In horizontal extension an array is extended with an additional column with the goal
of covering as many t-way interactions as possible. Additionally, although they are
usually not considered in horizontal extension, in the formulation presented here existing
star-values are taken into consideration and can be assigned if this helps to increase
coverage. As secondary optimization goal, if two solutions achieve the same amount of
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MaxSAT instance:
(¬x1,{(5,0)} ∨ ¬x1,{(5,1)}),

(20, x1,{(5,1)} ∨ x3,{(5,1)} ∨ x6,{(5,1)}), . . .

MaxSAT model:
(x1,{(5,0)} = 0, x1,{(5,1)} = 1,

x2,{(5,0)} = 0, x2,{(5,1)} = 1, . . .)

translate

solve

derive extension

Figure 5.2: Schematics of the column extension (horizontal extension) performed by the
IPO-MAXSAT algorithm.

coverage, then a solution leaving more values unassigned is preferred. In other words, a
secondary goal is that the resulting array contains a maximal number of star-values that
can be used for optimization of t-way coverage in later extension steps.

The formula generated for horizontal extension, called Ψhor in the following, consists of
hard clauses ensuring validity of the generated models, meaning that an array assignment
can be derived from every solution of Ψhor. The optimization goals are realized via
weighted soft clauses in Ψhor, using a higher weight for the primary optimization goal of
maximizing coverage and a lower weight for the secondary optimization goal of maximizing
the amount of star-values in the resulting array. Every optimal solution of Ψhor then
corresponds to an optimal array extension.

5.1.1 Variables
For the definition of variables and constraints, the set C∗

r denotes for r = 1, . . . , N the
set of column indices where row r contains a star-value. Additionally, l denotes the index
of the column that is added to the array next.

The solution, that is the array extension, is then derived from single value variables
xr,{(c,u)} for r = 1, . . . , N , every c ∈ C∗

r ∪ {l} and every u ∈ Σv, where an array entry
at row r and column c is assigned a value u if the variable xr,{(c,u)} is assigned to true
in the corresponding model of Ψhor. Note that {(c, u)} is also a 1-way interaction.
If for an array entry in a row r and column c all variables xr,{(c,u)} for u ∈ Σv are
assigned false, then the array entry remains unassigned and becomes a star-value. In
addition to the single value variables, Ψhor also contains value group variables xr,τ
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defining several values in a row at once. Such variables are defined for r = 1, . . . , N and
τ = {(c1, u1), . . . , (ci−1, ui−1), (l, ui)}, where τ is an i-way interaction with 2 ≤ i ≤ t,
cj ∈ C∗

r , uj ∈ Σv for j = 1, . . . , i − 1 and ui ∈ Σv.

Similar to single value variables, value group variables define the values of several array
entries as follows: If a variable xr,{(c1,u1),...,(ci−1,ui−1),(l,ui)} is assigned true in a model,
then for j = 1, . . . , i − 1 the array entry at row r in column cj is assigned the value uj

in the corresponding solution. Additionally, column l of row r is assigned the value ui.
Hard constraints are used to prevent a conflict between the assignments of single value
variables and value group variables.

5.1.2 Hard constraints
Hard constraints ensure that every model of Ψhor describes a valid array assignment.
For this purpose, the consistency of single value variables and value group variables is
enforced by hard clauses

¬xr,τ ∨ xr,{(c,u)}

in Ψhor for every variable xr,τ , where τ is an i-way interaction with 2 ≤ i ≤ t and
(c, u) ∈ τ . Additionally, hard clauses

¬xr,{(c,u1)} ∨ ¬xr,{(c,u2)}

ensure for every row r = 1, . . . , N and every column c ∈ C∗
r ∪ {l} that no two values

u1, u2 ∈ Σv are assigned to the same array cell. To avoid duplicate clauses (due to
commutativity) clauses are only added for values u1, u2 ∈ Σv with u1 < u2. The number
of clauses created by this encoding of at most one value constraints grows quadratic in
v. Although encodings with a better asymptotic growth exist, in this case a quadratic
growth is acceptable because only small values of v are used. Since star-values, which
are unassigned array entries, are desired, there are no clauses enforcing that every array
cell takes on some value.

5.1.3 Soft constraints
Soft constraints are not required for models of Ψhor to be valid array assignments.
However, they are required to find good array assignments meeting the optimization
goals of horizontal extension.

The secondary maximization goal is maximization of the number of star-values. The
number of star-values is maximal if the number of assigned array cells is minimal, therefore
the weighted soft clauses

(1, ¬xr,{(c,u)})

for r = 1, . . . , N , c ∈ C∗
r ∪ {l} and u ∈ Σv ensure that the number of star-values is

maximal. A clause weight of 1 gives this optimization goal a low priority. To ensure
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5.2. Vertical extension via a MaxSAT formulation

that coverage maximization takes precedence over star-value optimization, the number of
star-value maximization clauses w is used as weight for the coverage clauses described
next.

The primary and more important optimization goal is maximization of the number of
covered t-way interactions. The horizontal extension of IPO is only executed when the
current array is a CA, meaning that all t-way interactions in the array that is extended are
already covered. Only t-way interactions of the form τ = {(c1, u1), . . . , (ct−1, ut−1), (l, ul)}
containing the newly added l-th column have to be considered. Recall that for an array
A with star-values and a t-way interaction τ the set A ↿τ denotes the index set of all rows
of A where τ is covered or can be covered by assigning star-values. More specifically,
A ↿τ contains the indices of all rows r⃗ = (r1, . . . , rl−1) of A where for every position (c, u)
of τ either rc = u or rc is a star-value. A does not have an l-th column at this point,
therefore all values in the l-th column of A are considered to be star-values. Further,
let τ ↿C denote the interaction τ restricted to columns occurring in the column set C,
formally written τ ↿C= {(c, u) | (c, u) ∈ τ ∧ c ∈ C}. Using these notations, coverage of a
t-way interaction τ is added to Ψhor as optimization goal with a clause

(w,
r∈A↿τ

xr,(τ↿C∗
r ∪{l})),

where w = Nv + N
r=1 v|C∗

r | is the number of clauses for star-value maximization. Since
the clauses for star-value maximization have weight 1, w corresponds to the sum of the
weight of the star-value maximization clauses. While a lower weight would be sufficient
(not covering an interaction τ can yield at most t additional star-values and therefore t
non-violated star-value maximization clauses), the chosen weight w certainly ensures that
coverage takes precedence over star-value maximization. Similar to the coverage clauses
presented in Section 4.2.2, every coverage clause corresponds to one t-way interaction
τ and is satisfied by a model if the induced array assignment covers the corresponding
t-way interaction τ . Since there are vt l−1

t−1 t-way interactions that need to be covered
when an l-th column is added, there are vt l−1

t−1 soft clauses for coverage maximization in
the MaxSAT formulation Ψhor.

5.1.4 Number of variables and clauses
To give an overview on the size of the formula Ψhor, the numbers of variables are depicted
in Table 5.1 and the numbers of clauses per constraint type are listed in Table 5.2. The
total number of variables and clauses in Ψhor can be calculated by summing the values
in the respective tables.

5.2 Vertical extension via a MaxSAT formulation
The coverage clauses used in horizontal extension are only soft clauses, therefore coverage
of all t-way interactions is not guaranteed. Vertical extension is executed to ensure
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Table 5.1: Numbers of variables in Ψhor per variable type.
Variable group Number of variables
Single value variables xr,{(c,u)} Nv + N

r=1 |C∗
r |v

Value group variables (xr,τ ) N

r=1
t

i=2
|C∗

r |
i−1 vi

Table 5.2: Numbers of hard (h) and soft (s) clauses in Ψhor per constraint type.
Constraints Number of clauses
Consistency of variable groups (h) N

r=1
t

i=2
|C∗

r |
i−1 vii

At most one value per array entry (h) O( N

r=1(1 + |C∗
r |)v2)

Star-value maximization (s) N

r=1(1 + |C∗
r |)v

Coverage clauses (s) vt l−1
t−1

coverage of the remaining t-way interactions. This is done by adding new rows or by
assigning values to star-value positions. In this section, a MaxSAT formulation Ψvert is
described that can be used to derive optimal vertical extensions for an array A, to extend
A to a CA. Optimality in this case means a minimal number of added rows and again, as
secondary goal, maximization of the number of star-values in the extended array.

In the following, let M be the set of t-way interactions on columns of A that are not
covered in A, let R be the set of row indices of all rows considered for vertical extension,
those are the row indices {r | ∃τ ∈ M : r ∈ A ↿τ } together with the indices of all newly
added rows, and let C be the set of all columns occurring in an interaction in M , that
is C = {c | ∃τ ∈ M, u ∈ Σv : (c, u) ∈ τ}. The developed MaxSAT formulation for
vertical extension requires an upper bound on the number of newly added rows. One
option is to use the trivial upper bound |M |, that can be derived from creating a new
row for each missing interaction in M and adding those rows to A. For the vertical
extension formulation Ψvert only the subarray comprised of rows in R and columns in C is
considered, because other parts of A cannot be used to cover additional t-way interactions
from M and are therefore not relevant for vertical extension.

The problem of vertical extension is quite similar to the problem of generating a CA,
with the difference that there is a reduced set of interactions to be covered, and there
are preassigned values. In both cases, the goal is to cover all required t-way interactions.
It is possible to adapt SAT or MaxSAT formulations for CA generation as presented
in [AIMTJ13] and [YKA+15] to derive a MaxSAT formulation for vertical extension.
In [AIMTJ13] a MaxSAT formulation for optimal CA generation is described, where
hard clauses ensure that the generated model corresponds to a CA, and soft clauses
are used to minimize the number of rows of the array. In [YKA+15] optimality of the
generated CAs is ensured with incremental SAT solving, meaning instead of optimization
via MaxSAT, several consecutive SAT calls are used to generate an optimal CA. For
adapting the formulations to vertical extension all coverage clauses relating to t-way
interactions already covered in the array are omitted. Additionally, since only a subset
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5.2. Vertical extension via a MaxSAT formulation

of the generated array needs to be assigned new values, variables corresponding to
already assigned areas of the generated array can be omitted or assigned a fixed value,
depending on the existing assignments. Another difference to existing formulations is the
maximization of star-value occurrences.

5.2.1 Variables
The MaxSAT formulation Ψvert uses three kinds of variables. First, value variables xr,c,u

for rows r ∈ R, columns c ∈ C and values u ∈ Σv define assignments of single values. In
an array extension derived from a model of Ψvert, the array entry at row r and column
c is assigned value u if xr,c,u is set to true in the corresponding assignment. Second,
coverage flags cr,τ are set to true in a model if the t-way interaction τ ∈ M is covered in a
row r ∈ R. These coverage flags fulfill a similar function to the value group variables used
in Ψhor, however, they are only defined for t-way interactions τ ∈ M . Finally, row usage
flags yr indicate for a newly added row r ∈ R whether it is used for vertical extension. If
a flag yr is false in a model of Ψvert, then no values are assigned in row r and the row r
is not added to A in this vertical extension step. Such row flags have previously been
used with MaxSAT in [AIMTJ13] to minimize the number of rows of the generated CAs.

5.2.2 Hard clauses
As in Ψhor, hard clauses ensure that every model of Ψvert corresponds to a valid solution
for vertical extension. This means, every array entry is assigned at most one value, the
assignments of different variable types are consistent with each other and all missing
t-way interactions are covered when the array is extended with the derived extension.

That every array entry is assigned at most one value can be achieved with clauses

¬xr,c,u1 ∨ ¬xr,c,u2 ,

for every row r ∈ R, column c ∈ C and u1, u2 ∈ {0, . . . , v − 1} with u1 < u2. The
condition u1 < u2 is added to avoid duplicate clauses. Again, every array entry is
assigned at most one value but there is no constraint to assign at least one value to an
array entries. Array entries that are not assigned any value are allowed and even desired,
as these result in star-values.

The second hard constraint, that is quite similar to consistency of the two variable types
in Ψhor, ensures consistency of value variables with coverage flags. If a coverage flag xr,τ

is set to true, then the value variables corresponding to row r and the entries of the t-way
interaction τ need to be set to true as well in every model of Ψvert. For this purpose,
clauses

¬cr,τ ∨ xr,ci,ui , (5.1)

are added to Ψvert for every row r ∈ R, every t-way interaction τ ∈ M with τ =
{(c1, u1), . . . , (ct−1, ut−1), (ct, ut)}, ct = l and i = 1, . . . , t.
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Consistency of row and coverage flags is ensured with clauses

¬cr,τ ∨ yr,

for every newly added row r ∈ R and every t-way interaction τ ∈ M . These clauses
simply ensure that if a row r is used to cover a t-way interaction, then the row flag yr

is also set to true, such that the row r is added to A in vertical extension. This link of
coverage and row flags was also presented in [YKA+15].

The array A considered for extension already has assigned values. While it is possible
to propagate these values during formula generation and simplify the formula Ψvert

accordingly, an easier solution is to add a singleton clause

xr,c,u

to Ψvert for every row r ∈ R and column c ∈ C, where A already has the value u assigned.
Using these singleton clauses, consistency of the developed solution for vertical extension
with the existing values of A is guaranteed.

In Ψhor, coverage was realized via soft clauses. In Ψvert, coverage is not optional and
therefore realized with hard clauses

r∈R

cr,τ

for every missing interaction τ ∈ M . Such a clause ensures that the t-way interaction τ
is covered in at least one row after vertical extension.

In vertical extension, without symmetry breaking there may exist several equivalent
solutions. For example, if only n out of the |M | rows considered for extension are actually
required, then |M |

n options exist to select rows to be added to A. To break this kind of
symmetry, clauses

yr−1 ∨ ¬yr,

are added to Ψvert for every new row r, where r − 1 is also a newly added row. While
these clauses are not required for receiving a correct solution, they can speed up the
search by reducing the solution space of Ψvert. With these clauses, if n rows are to be
added to A, those rows will always be the first n rows out of the |M | rows considered for
extension. This kind of symmetry breaking was also proposed in [YKA+15].

5.2.3 Soft clauses
Similar to Ψhor, star-values are maximized in Ψvert using soft clauses with weight 1. The
clauses

(1, ¬xr,c,u),

62



5.2. Vertical extension via a MaxSAT formulation

are added to Ψvert for every row r ∈ R, every column c ∈ C and every value u ∈ Σv.
Using the small weight of 1 again allows to define a primary optimization goal, that is
minimization of the number of used rows, using a higher weight.

Minimization of the number of used rows is done via minimization of the number of row
usage flags that are set to true. Using clauses

(w, ¬yr)

with weight w = |R| · |C| for every newly added row r, the MaxSAT solver solving Ψvert

strives to minimize the number of used rows. The weight w = |R| · |C| ensures that
this optimization goal takes precedence over maximization of the number of star-values.
There cannot be more than |R| · |C| violated star-value maximization clauses because
there are at most |R| · |C| array positions that may be assigned a value and due to the
constraints for unique assignments at every array position, no two clauses (1, ¬xr,c,u1),
(1, ¬xr,c,u2) can be violated for the same array position (r, c), r ∈ R, c ∈ C.

5.2.4 Number of variables and clauses

The number of variables of Ψvert per variable group is given in Table 5.3 and the number
of clauses in Ψvert is given in Table 5.4, again per clause purpose. Altogether, Ψvert

contains O(|R|(|C|v + |M |)) variables and O(|R|(|C|v2 + |M |t)) clauses. Exact numbers
of the generated variables and clauses are not given, as these depend on the structure of
the given array A.

Table 5.3: Numbers of variables in Ψvert per variable group.
Variable group Number of variables
Value variables (xr,c,u) |R| · |C|v
Coverage flags (cr,τ ) |R| · |M |
Row flags (yr) |M |

Table 5.4: Numbers of hard (h) and soft (s) clauses in Ψvert per constraint purpose.
Constraints # Clauses
Validity of assignments (h) O(|R| · |C|v2)
Consistency of coverage flags and values (h) O(|R| · |M |t)
Consistency of row and coverage flags (h) O(|R| · |M |)
Consistency with existing values (h) O(|R| · |C|)
Coverage clauses (h) |M |
Row order (h) |M | − 1
Star-value maximization (s) |R| · |C|v
Row usage minimization (s) |M |
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5.3 IPO-MAXSAT variants
In the previous sections two MaxSAT formulations were presented, one for horizontal
extension (Ψhor) and one for vertical extension (Ψvert). By adapting these formulations,
different variants of IPO-MAXSAT can be created. In the presented formulations, existing
star-values are considered and can be assigned in both horizontal and vertical extension.
However, a vertical extension step is always preceded by a horizontal extension step. This
means, when star-values are considered in horizontal extension, then all t-way interactions
coverable via assignment of star-values are already covered during horizontal extension,
and considering star-values in both horizontal and vertical extension will not improve
performance of the algorithm. It is always sufficient to consider star-values in either
horizontal extension, or vertical extension. In state-of-the-art greedy implementations of
the IPO strategy, star-values are usually considered only in vertical extension. Based on
the above observation, a few different IPO-MAXSAT variants are defined:

• IPO-MAXSATh,v*: Star-values are only considered in vertical extension and ignored
during horizontal extension. The formula Ψhor for horizontal extension is adapted
to this variant by setting C∗

r = ∅ for every row r ∈ {1, . . . , N} in the construction
of Ψhor. The formula Ψvert remains the same as described above.

• IPO-MAXSATh*,v: In the second variant, star-values are only considered in horizon-
tal extension and ignored during vertical extension. The formula Ψhor is created the
way it is defined above, such that star-values are considered. To ignore star-values
in vertical extension, the set R that is used for the construction of Ψvert is defined
to contain only newly added rows, that means R is only allowed to contain rows
r > N . Although an adaption of Ψvert is not strictly necessary, since it will not be
possible to cover more t-way interactions during vertical extension using star-values,
the adaption can be used to simplify the formula Ψvert and might improve the
runtime of the MaxSAT solver.

• IPO-MAXSATh*,vg: The third variant differs from the other two insofar that the
MaxSAT formulation Ψvert for vertical extension is not used at all. Instead, a
simple greedy algorithm that is commonly used in state-of-the-art IPO algorithms
is employed for vertical extension. For every t-way interaction τ that needs to
be covered, the greedy algorithm iterates over the given array A until a row is
found where τ can be covered by assigning star-values. If such a row is found, the
star-values are assigned the values required to cover τ . If τ can not be covered in
any existing row, then A is extended with an additional row that covers τ and only
contains star-values in positions that are not required to cover τ . For horizontal
extension the formulation Ψhor is used, with star-values considered in horizontal
extension.

The names of the IPO-MAXSAT variants are chosen such that the ∗ denotes where star-
values are considered, in horizontal extension (h) or vertical extension (v). Additionally,
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the ’g’ in the final variant IPO-MAXSATh*,vg denotes that a greedy algorithm is used
for vertical extension.

5.4 Experimental Evaluation of IPO-MAXSAT
In this section an experimental evaluation and comparison of the three introduced
IPO-MAXSAT variants is presented. For the evaluation four different MaxSAT solvers
were used. First, for every IPO-MAXSAT variant the performance of the different
MaxSAT solvers is compared. Afterwards, for every variant of IPO-MAXSAT the best-
performing solver is selected and its performance is compared to state-of-the-art CA
generation algorithms and bounds on CA sizes. All these experiments were carried out
for three different CA instances: for generation of a CA(N ; 2, k, 2), a CA(N ; 3, k, 2) and
a CA(N ; 2, k, 3), with k ≤ 100. The experiments were conducted on the same machine
as the ClassifyBalancedCAs evaluation, that is a server with an AMD EPYC 7502P
processor with 32 cores at 2.5 GHz base clock and 3.35 GHz boost clock and 128GB of
RAM. For each computation a time limit of one hour was set. While the maximum k for
which CA generation is attempted was set to 100, for several instances the algorithm
reached a timeout and therefore already stopped at some k < 100.

5.4.1 Evaluation with different solvers
For the experiments with IPO-MAXSAT, four different solvers are used: Clasp 3.3.6
[GKS12], once with a branch-and-bound algorithm and once with an algorithm based on
unsatisfiable cores. Further, the solvers EvalMaxSAT [Ave21] and UWrMaxSAT [Pio21]
from the MaxSAT evaluation 20211 are used, which are both based on a core-guided
OLL procedure. While Clasp is not a dedicated MaxSAT solver, as the experiments show
it performed reasonably well when using the branch-and-bound algorithm option and
even outperformed the other MaxSAT solvers on some instances.

Comparisons of the size, that is the number of rows, of the generated CAs for every
IPO-MAXSAT variant and every used MaxSAT solver are displayed in Figure 5.3. Each
subfigure displays the results of the four used solvers for one class of CAs and one
IPO-MAXSAT variant. The subfigures in the same column display the results for one
class of CAs, while the subfigures in the same row display the results for one variant of
IPO-MAXSAT. To distinguish IPO-MAXSAT variants and solvers in the figures, each
IPO-MAXSAT variant is depicted with a different symbol in the graphs, while the results
of every solver have a unique color. The horizontal axis displays the number of generated
columns, while the vertical axis displays the number of rows of the generated arrays.
Each line in the graphs represents one IPO-MAXSAT execution for the generation of a
CA(t, 100, v), where different values for t and v were used. Due to the structure of the
IPO strategy, after every horizontal extension either the generated array is already a
CA, or a vertical extension is executed ensuring coverage of all t-way interactions in the

1https://maxsat-evaluations.github.io/2021/
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(a) CA(N ; 2, k, 2) with h,v* (b) CA(N ; 3, k, 2) with h,v* (c) CA(N ; 2, k, 3) with h,v*

(d) CA(N ; 2, k, 2) with h*,v (e) CA(N ; 3, k, 2) with h*,v (f) CA(N ; 2, k, 3) with h*,v

(g) CA(N ; 2, k, 2) with h*,vg (h) CA(N ; 3, k, 2) with h*,vg (i) CA(N ; 2, k, 3) with h*,vg

Figure 5.3: Comparison of variants of IPO-MAXSAT using different MaxSAT solvers by
means of three classes of CAs.

generated array. This means, when generating a CA(t, 100, v), then for every 2 ≤ k ≤ 100
a CA(t, k, v) will be generated in an intermediate step. In the given graphs the size
(number of rows N) of every such intermediate array is presented. The generation of a
CA(t, 100, v) was terminated after one hour, therefore results are only given for some
k < 100 when the considered algorithmic variant of IPO-MAXSAT did not terminate
within one hour with the used MaxSAT solver.

As the figures show, the only class of CAs where a CA(t, 100, v) was generated is CA(2, k, 2)
in the first column. Additionally, for this class of CAs all solvers and IPO-MAXSAT
variants produce CAs of the same size. For the other classes of CAs, in the second and
third column, there are small differences in the size of the generated CAs. However, as
expected, there is no MaxSAT solver outperforming another with regard to size of the
generated CAs. For the runtime on the other hand, there are differences based on the
solver. These differences are visible when some line terminates at smaller k than others.
In such a case, the execution corresponding to the line ending at a smaller k was slower
and did not generate as many CAs within the given time limit. Especially the solver
Clasp with the algorithm variant based on unsatisfiable cores did not perform too well.
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For every other used MaxSAT solver, there is at least one instance where it outperformed
the other MaxSAT solvers with regard to number of columns k generated within the
time limit.

5.4.2 Comparison with the state of the art
For a comparison with the state of the art for CA generation, for every IPO-MAXSAT
variant the best solver (the one computing the largest number of columns) is selected per
CA instance and the execution result is compared with state-of-the-art approaches and
also with the best known upper bounds on CAN.

IPO-MAXSAT is compared against the following algorithms and bounds:

• SIPO is an IPO algorithm where Simulated Annealing is used to find better
solutions for horizontal extension [WKS21]. Similar to IPO-MAXSAT, the SIPO
algorithm uses improved solutions for intermediate extension steps, where improved
means coverage of more t-way interactions and also occurrence of more star-values.
However, Simulated Annealing is only applied to solutions for horizontal extension
and the metaheuristic Simulated Annealing that is used by the SIPO algorithm
does not necessarily find an optimal solution for horizontal extension. The results
presented were achieved using the algorithmic parameters prooposed in [WKS21]
and 10000 base iterations.

• FIPOG is a state-of-the-art IPO algorithm for CA generation using greedy ap-
proaches for both horizontal and vertical extension. The algorithm is described in
[KS18].

• NIST Tables are a large online repository of CAs that is available under [Cov].
The CAs were generated with the IPOG-F algorithm proposed in [FLL+08].

• CA Tables: the currently best known upper bounds on CAN, collected from all
currently known CA generation approaches. These bounds are available online
under [Col].

In every row of Figure 5.4, for one class of CAs a comparison on the size of the generated
CAs (left in Figure 5.4) and, for some approaches, runtime (right in Figure 5.4) is
presented. No runtimes are given for NIST tables and CA tables, since these are online
resources where no runtime is available. For CA tables a runtime also is not applicable,
since some bounds were achieved via mathematical constructions or similar means.

First, the performance of the different variants of IPO-MAXSAT is compared. It can be
seen that the variants IPO-MAXSATh*,v and IPO-MAXSATh*,vg, where star-values are
considered in horizontal extension, produce CAs with fewer than or the same number
of rows as the variant IPO-MAXSATh,v*, where star-values are considered in vertical
extension. While there is no difference for the generation of binary CAs of strength 2
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(a) Size N of CA(N ; 2, k, 2) (b) Runtime for CA(N ; 2, k, 2)

(c) Size N of CA(N ; 3, k, 2) (d) Runtime for CA(N ; 3, k, 2)

(e) Size N of CA(N ; 2, k, 3) (f) Runtime for CA(N ; 2, k, 3)

Figure 5.4: Comparison of variants of IPO-MAXSAT against state-of-the-art IPO algo-
rithms and best known CAs.

(CA(N ; 2, k, 2)), for CA(N ; 3, k, 2) the gap between the two kinds of algorithms is already
visible and even more magnified in the results for CA(N ; 2, k, 3). This suggests that
treating and assigning star-values during horizontal extension is beneficial for the size of
the generated CAs. There is no significant difference in the size of the CAs generated
by the two variants considering star-values in horizontal extension, IPO-MAXSATh*,v
and IPO-MAXSATh*,vg, although the variant IPO-MAXSATh*,vg only uses a greedy
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algorithm for vertical extension instead of an optimal solution like the proposed MaxSAT
approach. This shows that, at least for the considered instances, finding a good solution
for horizontal extension is much more important than the quality of the vertical extension
solution. It can also be seen that all IPO-MAXSAT variants produce equally sized CAs
for strength two with a binary alphabet (CA(2, k, 2)). This instance is a special case,
because for strength two and binary alphabet the CAN value CAN(2, k, 2) is known for
k ∈ N. The IPO-MAXSAT algorithm produced CAs with an optimal number of rows for
k with CAN(2, k, 2) even, and a CA with one more row than necessary for CAN(2, k, 2)
odd. This phenomenon might be caused by two 2-way interactions in the same selection
of two columns missing after a horizontal extension step. One way to counteract this
might be to minimize the number of missing t-way interactions sharing the same selection
of columns. However, this additional optimization objective is not included in the current
work.

For the runtime of the different variants, it is difficult to make conclusions due to the small
number of data points and because the runtimes of every instance were collected from a
single execution. However, it is visible that there is no major difference in runtime for the
generation of binary CAs of strength two, where the CAs generated by different variants
are of the same size. For the other two instances, CA(N ; 3, k, 2) and CA(N ; 2, k, 3), it
can be seen that the runtime of IPO-MAXSATh,v* increases steeper than the runtime
of the variants where star-values are considered in horizontal extension. This might be
due to the increased number of rows of the generated CAs and the therefore increased
complexity of the generated MaxSAT formulations.

When comparing the sizes of the CAs generated by IPO-MAXSAT with CAs generated
by the state-of-the-art approaches selected for comparison, it can be seen that even the
worst variant of IPO-MAXSAT is consistently at least as good and in most cases even
better than the greedy FIPOG algorithm and the IPOG-F algorithm, which is displayed
as ’NIST Tables’ in the graphics. The SIPO algorithm, which also considers star-values
in horizontal extension, is better than the IPO-MAXSAT variant IPO-MAXSATh,v*
considering star-values only in vertical extension and worse than the IPO-MAXSAT
variants considering star-values in horizontal extension. This is because SIPO only uses
a heuristic solution instead of the exact solutions used by IPO-MAXSAT. Only for the
instance CAN(2, k, 2) SIPO outperforms all IPO-MAXSAT variants in some cases and
finds optimal CAs where IPO-MAXSAT does not. A comparison with the best currently
known CAN bounds, depicted as ’CA Tables’, shows that the CAs produced by IPO-
MAXSAT are optimal for the instance CAN(2, k, 2) when the number of required rows is
even and for a few small CAs of the other classes. However, in general IPO-MAXSAT
does not produce optimal CAs. This means CA generation might be further improved
with better optimization criteria, or a larger area of optimization. It is notable that while
IPO-MAXSAT cannot compete with ’CA Tables’, when comparing the difference between
CA sizes generated by greedy algorithms, IPO-MAXSAT and the bounds given in ’CA
Tables’, as k increases the difference between the greedy algorithms and IPO-MAXSAT
grows faster than the difference between IPO-MAXSAT and ’CA Tables’. This shows
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that the advantage of IPO-MAXSAT with regards to optimality of the generated CAs
grows with instance size. Unfortunately the runtime scalability of IPO-MAXSAT does
not permit generating large CAs in reasonable time.

For the runtime results, the ranking of the compared approaches is opposite to the size
ranking of generated CAs. The greedy FIPOG algorithm that produces the largest arrays
has a runtime below one second. Neither the IPO-MAXSAT variants nor the SIPO
algorithm can compete with FIPOG with regards to execution speed. The SIPO algorithm
that produces slightly larger arrays than IPO-MAXSAT uses a considerable computation
time but is faster than IPO-MAXSAT, except for the trivial instance CAN(2, k, 2), where
the SIPO algorithm would be faster without decrease in quality if a smaller number of
base iterations was used. This shows that investing more resources in finding better
solutions for the IPO extension steps yields higher quality solutions, meaning smaller
CAs.

To conclude, while IPO-MAXSAT does not generate new optimal CAs and is too slow to
be efficiently used in practice, it provides insight in the capabilities and limitations of the
popular IPO strategy and will hopefully enrich the research on better IPO algorithms.
Additionally, when CAs smaller than those provided by heuristic algorithms are desired,
the runtime of CA generation is not a concern and no better method for generation of
the required CA instance is publicly available, the IPO-MAXSAT algorithm is a viable
option.
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CHAPTER 6
Conclusion and Future Work

In this thesis two new CA generation algorithms making use of exact methods were
presented.
The algorithm ClassifyBalancedCAs is a classification algorithm for CAs based on column
extension. The algorithm consists of two major parts: First, an exact method (SAT or
pseudo-Boolean constraint solving) is used to generate columns suitable for extension.
Second, a feasibility check is used to discard column extension candidates not meeting the
symmetry breaking requirements. While similar classification algorithms have been used
before, the application of SAT solving and pseudo-Boolean constraint solving for column
generation for this type of algorithm is novel. Additionally, a faster feasibility check for
complete symmetry breaking was proposed in this thesis. As the results in Section 4.4
show, for several instances the ClassifyBalancedCAs algorithm is faster than existing
classification algorithms. In addition to CA classification, the ClassifyBalancedCAs
algorithm is capable of classification of balanced CAs as introduced in [KHKS23]. When
using the information from [KHKS23, Lemma 1] (repeated in this thesis in Equation
(2.9)) for balance-based pruning, the proposed algorithm gains further speedup, also for
classification of CAs.
The IPO-MAXSAT algorithm on the other hand is based on the IPO strategy, which
starts with a small initial array and step-by-step extends it to the desired size. MaxSAT
solving is applied to find optimal solutions to the occurring subproblems called horizontal
extension (i.e. extension with an additional column) and vertical extension (i.e. extension
with additional rows), where optimal for horizontal extension means that a maximal
number of t-way interactions is covered when the solution column is combined with the
current array and only required values are assigned, since unassigned values provide
potential for optimizations in later extension steps. For vertical extension an array
extension is optimal if it adds a minimal number of rows to the considered array. As
secondary objective, again the number of assigned values is minimized. Different variants
of the IPO-MAXSAT algorithm are proposed and compared in this thesis. Two major

71



6. Conclusion and Future Work

outcomes are that handling of unassigned values during horizontal extension reduces the
size of the generated CAs, and that for the considered instances an exact algorithm for
vertical extension, i.e. using the developed MaxSAT formulation and an exact MaxSAT
solver, does not improve the performance of IPO-MAXSAT when compared to a simple
greedy algorithm, neither in terms of time nor in terms of size of the generated CAs.

Each algorithm uses exact methods for a different purpose: The ClassifyBalancedCAs
algorithm applies SAT solving or pseudo-Boolean constraint solving to find all solutions to
the subproblem of generating a new column that can be used for extending the considered
array to a CA. Finding all solutions is required by classification algorithms. Employing an
exact method does not improve the algorithm result but improves the runtime by making
use of optimized solvers that exist for the exact methods in use. The IPO strategy used
by the IPO-MAXSAT algorithm on the other hand is usually implemented as heuristic
algorithm where at every extension step a good solution is wanted, but in general there
is no need for the extension solution to be optimal. The IPO-MAXSAT algorithm uses
an optimal solution instead. This improves the size of the generated CAs, however, there
is a trade-off with runtime, since exact MaxSAT solving is considerably slower than the
greedy algorithm that is usually employed for this subproblem in state-of-the-art CA
generation algorithms based on the IPO strategy. While the IPO-MAXSAT algorithm
is slower than existing IPO algorithms and does not generate CAs smaller than the
currently best known CA sizes, using an exact solution for a subproblem allows to explore
the capabilities of the strategy and might support the search for new strategies to find
good solutions for the considered subproblem.

This thesis showed the possibility of enhancing CA generation algorithms with exact
methods, however, there is still much future work to explore in this field. Other CA
generation algorithms can be enhanced, and there are more exact methods that can be
utilized, for example integer linear programming, CSP or satisfiability modulo theories. In
addition, the algorithms presented in this thesis might be extended and/or improved. Both
algorithms might be improved with different encodings for the used exact methods. While
they perform reasonably well for CA instances with a binary alphabet, the performance
rapidly decreases for higher alphabet sizes, especially for the IPO-MAXSAT algorithm.
Better encodings might help to alleviate this problem. Additionally, the algorithms can
be extended to support more variants of CAs. A straightforward extension would be the
support of MCAs, where each column can have a different alphabet size. When using
arrays as test sets for CT, such that array columns correspond to input parameters of the
system under test, this is a necessary extension. After all, not every software parameter
has the same input domain size. Another important structure that is commonly used
in practice are constrained CAs. Of particular interest for the topic of this thesis is the
specification of such constraints as a formula. Since exact solving is included in both
algorithms presented here, it would be possible to include a formula for constraints in the
encodings generated by the algorithms and therefore support constrained CAs. However,
such support also comes with new challenges, especially for the ClassifyBalancedCAs
algorithm, where symmetry breaking is used extensively. With constraints defined on
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specific columns much of the symmetry of CAs is lost. To the best of the authors
knowledge complete symmetry breaking within constrained CAs has not been studied
yet. Further, while the ClassifyBalancedCAs algorithm supports the generation and
classification of balanced CAs, such support is not yet available for the IPO-MAXSAT
algorithm. This is mostly due to the difficulty of specifying a balance vector when the
array is growing also in vertical direction. The IPO-MAXSAT algorithm always starts
with an initial array with t columns and vt rows when generating a CA(t, k, v). This
reduces the size of the subproblems occurring during early horizontal extension. However,
an array with vt rows will not satisfy a balance vector with λ1 > vt−1. On the contrary,
starting with a larger initial array fulfilling the imposed balance constraints will remove
the earlier mentioned advantage of starting with small arrays when using the IPO strategy.
Additionally, it is difficult to choose a meaningful balance vector when the number of
rows of the generated CA is not known beforehand. Finding ways to include balance in
the IPO-MAXSAT algorithm and other algorithms implementing the IPO strategy will
be subject to future work.
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