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Kurzfassung

Das bereits seit langem bestehende Konzept des maschinellen Lernens als Basis für
künstliche Intelligenz war bislang für die meisten Menschen nur ein Science-Fiction-
Abenteuer, in dem rebellierende Roboter die Menschheit bedrohten. Erst das Aufkommen
und der vermehrte Einsatz neuer Anwendungen wie Sprachmodelle oder Bildsynthese
hat den Nutzen von künstlicher Intelligenz einer breiten Öffentlichkeit bewusst gemacht.

Im Bereich des maschinellen Lernens sind künstliche neuronale Netze mathematische
Modelle, die von im Gehirn von Tieren beobachteten Strukturen und Prozessen inspiriert
sind. Die Untergruppe der Spiking Neural Networks (SNNs) konzentriert sich auf die
Nachahmung der pulsbasierten Kommunikation von Nervenzellen, die über zeitlich
gesteuerte Reize kommunizieren, anstatt numerische Werte zu übertragen. Obwohl
Spiking Neural Networks derzeit in der Praxis nur selten zum Einsatz kommen, sind sie
als Ergebnis bahnbrechender Studien zur Modellierung des biologischen Denkens für das
Verständnis von intelligentem Leben unerlässlich.

Während es problemlos möglich ist Spiking Neural Networks auf gewöhnlichen Compu-
tern zu simulieren, kann der Vorgang ähnlich wie bereits in anderen Bereichen (z. B.
Rendering, Kryptographie, . . . ) üblich, durch speziell entwickelte Hardware signifikant
beschleunigt werden. Für die Durchführung spezifischer Aufgaben optimierte Schaltungen
verbessern sowohl die Geschwindigkeit als auch die Energieeffizienz und können auch bei
der Integration in ansonsten weniger leistungsstarke Systeme unterstützend wirken.

Field-Programmable Gate Arrays (FPGAs) sind integrierte Schaltungen, welche es durch
aufspielen einer Konfiguration erlauben, generische Logikblöcke frei anzuordnen und
zu verbinden. Mit ihrer Funktionalität können nahezu beliebige digitale Schaltungen
nachgebildet werden. Sie eignen sich sehr gut zur Entwicklung und Erprobung von
für spezielle Aufgaben optimierte Schaltungen und bieten gleichzeitig deutlich kürzere
Entwicklungs- und Produktionszeiten.

Diese Arbeit stellt in einem modularen Ansatz entwickelte Grundbausteine vor, die für
den Aufbau von Spiking Neural Networks in FPGAs notwendig sind. Weiters beinhaltet
sie ein Hardware-/Software-Framework für die Integration in softwarebasierte Anwendun-
gen. Mithilfe der Implementierung und des Frameworks wird auf die Abschätzung der
erforderlichen Hardware-Ressourcen und die damit einhergehenden Simulationsgeschwin-
digkeit verschieden strukturierter Netze eingegangen. Die Ergebnisse sollen Entwicklern
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bei der Modellierung von Netzwerken mit bestmöglicher Struktur und bei der Auswahl
eines FPGA-Bausteins geeigneter Größe und Geschwindigkeit unterstützen. Darüber
hinaus ermöglicht das erarbeitete Modell einen Vergleich mit anderen Technologien, um
eine Entscheidung hinsichtlich der Verwendung von FPGAs als geeignete Lösung für den
jeweiligen Anwendungsfall zu unterstützen.

Für einen zur Klassifizierung von handschriftlich erstellten Ziffern entwickelten Beispie-
laufbau werden Messergebnisse in Bezug auf Leistung, Stromverbrauch und Ressour-
cennutzung präsentiert. Die Ergebnisse stimmen mit dem zuvor abgeleiteten Modell
weitgehend überein, einzelne aufgetretene Abweichungen und deren Abhängigkeit von
der Netzwerkstruktur werden analysiert und diskutiert.



Abstract

Although the concept of machine learning has been around for a long time, to most people
it was nothing more than the stuff of science fiction, where rebelling robots threaten to
overthrow humanity. Only recently, the introduction of easily accessible technologies
(e.g. large language models, image synthesis tools, . . . ) made a wide public aware of the
advantages of utilizing artificial intelligence.
Artificial neural networks are mathematical models inspired by the structures and
processes observed in the brains of animals. Spiking Neural Networks (SNNs) are a subset
focusing on the fact that excitable cells communicate via spikes, encoding information
in their timing, rather than transmitting values. While being practically employed less
often than other network types, they are very interesting for understanding the nature of
intelligent life, because they were invented following groundbreaking studies on modeling
the biological brain.
The behavior of spiking neural networks can be simulated with general purpose hardware.
This is perfectly fine, but as it can be seen in other areas (e.g. rendering, cryptography,
. . . ) systems dedicated to a specific tasks can benefit greatly from hardware accelera-
tors. Purpose-built designs improve performance and energy efficiency, as well as help
integrating a specific technology in an otherwise less powerful system.
Field-Programmable Gate Arrays (FPGAs) are a type of integrated circuit, containing
an array of logic blocks and interconnects, that can be configured to form virtually any
digital circuit. They are perfectly suited for evaluating the optimization potential that
comes with a dedicated circuit-level design, while having much shorter development and
production times.
This work will introduce a modular FPGA-based implementation, providing the basic
building blocks for constructing networks, and a hardware/software framework for
embedding SNNs into real-world applications. Employing the implementation and
the framework, we focus on measuring the required hardware resources and resulting
performance of different networks, depending on their specific structures. The results will
aid in modeling the SNN implementation against different parameters, such as hardware
resources and power consumption, allowing the designers to properly select the SNN
network structure and the FPGA device. Additionally, such model can aid designers in
making a conscious decision when determining whether an FPGA is a viable device for
their use-case.
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Furthermore, we present testing results, in regards to performance, power consumption
and resource utilization, based on an example setup, built to classify handwritten digits.
The results are in line with our model, with small discrepancies that are further analyzed
and discussed, as they are dependent on the occupation and the size of the FPGA device.
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CHAPTER 1
Introduction

In the last five decades, there has been a steady increase in the number and density of
transistors packed into integrated circuits [22]. Along with continuous improvements in
thermal management and the steadily increasing switching frequencies, we gained the
computational power to solve increasingly complex problems. With an abundance of
readily available computational resources, the challenges started shifting.

Scientist and programmers have a hard time coming up with algorithms for complex
tasks, like interpreting language or recognizing pictures. Many problems lack a clear
mathematical definition and therefore don’t have an analytical solution. Computers
struggle with complex tasks, which can often be summarized as: given some input, “do
what a human would do!” Therefore, simulating the processes that lead to human decision
making is the most obvious solution.

Machine learning is an active field of research [5], that aims to help computers in finding
their own algorithms. Artificial neural networks are specific algorithms that try to imitate,
what was achieved in nature through an evolutionary process. They are an abstract
interpretation of how the brains of living beings operate. Given a set of samples, neural
networks are able to learn how to solve the corresponding task on their own.

Training a network often requires an extensive collection of inputs and can be a lengthy
and resource intensive process. It isn’t guaranteed to yield the expected results and
might not be viable for critical applications that demand 100 % accuracy. Despite these
drawbacks, neural networks are getting increasingly popular [3], especially for tasks like:
classification, pattern recognition, function approximation and regression analysis.

Spiking neural networks (SNN) are a subset of artificial neural networks, focusing on
a more precise simulation of biological processes. They mimic the spiking behavior of
excitable cells, like the neurons in human brains. On one hand, the increased biological
plausibility of such models could help us understand the nature of life. On the other
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1. Introduction

hand, more abstract implementations have the potential to improve the abilities and
performance of existing technologies.

In this work, we discuss the possible advantages of using FPGAs for the simulation of
SNNs. We will introduce a modular implementation, providing the basic building blocks
for constructing networks, and a hardware/software framework for embedding SNNs into
real-world applications.

We will employ the framework to estimate latency, performance and resource utilization
for any given network structure. On one hand, we provide the exact number of clock
cycles per simulation interval, depending on the number and arrangement of neurons.
On the other hand, we give an estimation of the required resources based on a multitude
of measurements, performed in various network configurations.

Our absolute performance metric will allow developers to compare a potential FPGA
implementation to other options. Furthermore, will the estimated resource utilization
assist in the selection of appropriately sized FPGAs.
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CHAPTER 2
Background

This chapter gives a basic introduction to artificial neural networks and spiking neural
networks in particular. Later, we take a look at FPGAs, discuss their viability and
inspect their structure and components.

2.1 Artificial Neural Networks
Artificial neural networks (ANNs) are mathematical models inspired by the structures
and processes observed in the brains of animals. Similar to their biological counterparts,
they are compositions of nodes organized in complex networks. Following the conventional
nomenclature, nodes are referred to as neurons, whereas the structures interconnecting
them are called synapses.
Artificial neurons are elementary units, each processing an input signal according to
its underlying mathematical model, before propagating the results towards all neurons
connected to its output. The non-linear transfer function characterizing a neuron is also
known as its activation function.
Neurons are connected through synapses, which shape and combine the output signals of
multiple neurons to provide input for another neuron. Synapses are based on mathematical
models as well. They can emulate complex electrochemical processes, but more often
simply compute a weighted sum.
Figure 2.1 shows a generic model of a neuron. The synapses scales the incoming signals
x according to the synaptic weights w before combining them. The resulting signal is
then transformed by the neuron’s activation function f and propagated to its output y.
Figure 2.2 shows a representation of a small network. Its neurons are grouped into
layers, visually arranged in columns. Each neuron’s input is composed from outputs
of the previous layer. There are no connections within a layer or across multiple layers.
Since all possible connections exist, the layers are considered fully connected.
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2. Background
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Figure 2.1: Generic model of synapse and neuron

The first (leftmost) layer is the input layer. Neurons of the input layer are placeholders,
whose output is injected by an external source. The last (rightmost) layer is the output
layer. Its neurons perform normally, but their output is considered the overall output
of the network. All layers in-between are called hidden layers, because their signals
aren’t visible from the outside.

𝓍2
𝓍1
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Figure 2.2: Example of a Neural Network

Each neuron and each synapse has a set of adjustable parameters. The available
parameters depend on the underlying models. A common occurrence are the connection
weights stored within the synapses. Fine-tuning these and other parameters for each
entity defines the overall behavior of the network. A well-structured network with a
capable model can be configured to solve astoundingly complex tasks. ANNs have
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2.1. Artificial Neural Networks

been used in many fields, most notably for classification, pattern recognition, function
approximation and regression analysis.
Reasonably large networks, suitable for solving complex task, have a huge amount of
configurable parameters. Due to the inability to properly adjust them manually, another
concept of nature is emulated – the process of learning [20]. A specifically designed
algorithm repeatedly challenges the network and subsequently tries to modify parameters
to improve the accuracy of its output. Thereby a general structure with randomly
initialized parameters can be trained by providing it with examples of a problem and its
intended solutions.
Learning oftentimes requires a huge amount of input samples where the desired output
is known. Depending on the complexity of the task, it can be a lengthy process that
occupies computational resources while consuming significant amounts of energy. In
return, a well-trained network can not only handle the data it was trained on, but also
provides good approximations for inputs it hasn’t experienced before.

2.1.1 Spiking Neural Networks
Spiking neural networks (SNNs) are a type of ANN that focus on a specific aspect of
biological brains [19], [15]. In SNNs information is transmitted through spikes, rather than
numerical values. Spikes are events triggered by neurons, that propagate to connected
neurons, encoding information solely through their distribution over time.
In an SNN, synapses combine the spikes from multiple outputs into a continuous input
signal. A simple implementation amplifies the signals according to weights associated
with each source and output the combined sum. In more complex models, synapses
behave like an RC circuit filtering the signal, and introduce delays, jitter or noise. In
general, a synapse models the way spikes propagate and how big of an incentive they are
for other neuron to generate spikes of their own.
For neurons, the Hodgkin–Huxley model [12] is well known for closely approximating the
behavior of excitable cells. It describes the development of the membrane voltage Vm

based on an input current I according to the electric circuit depicted in figure 2.3.

VNaCm VK Vl
glgKgNa IVm

Figure 2.3: Schematic of the Hodgkin–Huxley Model

The behavior of the circuit can be described by a set of differential equations. Alan
Hodgkin and Andrew Huxley were able to predict the initiation and propagation of action
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2. Background

potentials in the squid giant axon and received the 1963 Nobel Prize in Physiology or
Medicine for their work.

I = Cm
dVm

dt
+ ḡKn4(Vm − VK) + ḡNam3h(Vm − VNa) + ḡl(Vm − Vl)

dn

dt
= αn (Vm) · (1 − n ) − βn (Vm) · n

dm

dt
= αm(Vm) · (1 − m) − βm(Vm) · m

dh

dt
= αh (Vm) · (1 − h ) − βh (Vm) · h

It is not always the goal to accurately simulate nature. Thus we will later introduce
another more elementary model, which is better suited for optimization.

2.2 Field-Programmable Gate Arrays
Field-programmable gate arrays (FPGA) are a type of integrated circuit (IC). They fill a
niche between microcontrollers and application-specific integrated circuits (ASIC).

Microcontrollers are general-purpose integrated circuit, which performs a task by executing
a programmable sequence of predefined operations. There are many different families,
focusing on various fields of applications. Some are fast and power-hungry; others are
slow but very energy efficient. Models can specialize on signal processing and some even
offer accelerators for neural networks.

In scenarios where microcontrollers won’t meet the requirements, ASICs become an
option. They are purpose-built for a specific application. Unfortunately, designing ASICs
on the circuit level is a complex and time-consuming process, followed by a significant
investment in having them manufactured.

These options sometimes results in situations, where microcontrollers aren’t well suited
and ASICs would be too expensive. In these cases, FPGAs can be a viable option.
They contain an array of logic blocks and interconnects, that can be configured to form
virtually any digital circuit. Hence, they provide design freedom down to the circuit
level, combined with a convenient development cycle using programmable off-the-shelf
components.

2.2.1 Structure and Components
The structure of most FPGAs follows a very similar basic concept, but the nomenclature
varies from manufacture to manufacture. For illustration purpose, let’s take a closer
look at the Xilinx 7-series of FPGAs. Figure 2.4 shows one of eight regions within an
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2.2. Field-Programmable Gate Arrays

XC7A100T. The majority of the area (blue) is filled with configurable logic blocks. Also
strewn in are some other useful components like block RAM (red) or DSP slices (green).
On the edge, we see clocking resources (yellow) and interfaces to I/O pads (grey).

DSPLogicRAM Clock I/O

Switch BoxCLB Switch BoxCLB
Switch BoxCLB Switch BoxCLB
Switch BoxCLB Switch BoxCLB

Figure 2.4: Layout of an FPGA Region

All components are arranged on a grid with switch boxes connecting them to the horizontal
and vertical busses of wires running in between. Programming an FPGA configures
not only the individual components to perform basic logical functions, but also their
interconnections through the switch boxes. Using FPGAs ultimately enables us to
synthesize complex digital designs without the costly process of manufacturing custom
ICs.

After getting familiar with the overall structure, let’s take a closer look at the most
important components.

Configurable Logic Blocks

Figure 2.5 shows a simplified version of a configurable logic block (CLB), consisting of
the following elements:

• A look-up table (blue), built from a small memory that stores the truth table
of some combinatorial logic. When addressing the memory, it applies the logical
function and outputs the result. The memory content is part of the FPGAs
configuration and enables the implementation of time-independent logic.

• The full adder (green) is an optional component, found in many modern FPGAs.
Circuits for adding or subtracting binary numbers are a common occurrence in most

7



2. Background

digital designs and providing optimized resources oftentimes results in a significant
performance boost.

• A D flip-flop (red) memory element that stores a value whenever triggered by its
clock signal. The signal used as input is determined by the FPGAs configuration.
DFFs can be bypassed when building combinatorial logic across multiple CLBs.

LUTLUT FA DFF
cin

cout

clk

clk
in out

Figure 2.5: Simplified circuit of a Configurable Logic Block

Actual CLBs, like the ones of the Xilinx 7 Series FPGAs, depicted in figure 2.6 [23], are
a little bit more complex. A CLB contains a pair of slices, each composed of four 6-input
look-up tables, a 4-bit carry chain and eight storage elements.

The 6-input look-up tables have a second output, enabling them to represent two
individual 5-input functions that share the same inputs. It is also possible to pair look-up
tables for 7-input functions or combine all four of them into an 8-input function.

Utilizing the 4-bit carry chain, a single slice can implement a 4-bit addition or subtraction.
The carry-in and -out signals are connected to the adjacent slices through dedicated
wires. This structure allows for low-latency carry chains across multiple cascaded slices,
that could otherwise bottleneck a design.

The storage elements can be configured as flip-flops or latches. Their inputs either connect
to an external signal, one of the look-up table’s outputs or the result of the carry-chain.
A slice also features several output signals, which can either source from the storage
elements or directly from one of their input options.

The XC7A100T features 15,850 logic slices with a total of 63,400 look-up tables and
126,800 flip-flops.

Clocking and Interfaces

Most FPGAs are optimized for synchronous logic, focusing on storage elements, triggered
by a global clock signal. Therefore, they provide high speed clock distribution trees with
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INIT1
INIT0

Figure 2.6: Configurable Logic Block of Xilinx 7 Series FPGAs

high fan-out, short propagation delay and minimal skew. In addition, resources like
mixed-mode clock managers (MMCM) and phase locked loops (PLL) provide a means to
synthesize clock signals with specific frequencies and phase relations.

An IC can only be useful when processing data. Thus FPGAs provide a large amount
of general-purpose IO-pins. Sometimes, even analog-to-digital and digital-to-analog
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2. Background

converters or dedicated interfaces for accessing external memory, e.g., DDR-RAM, or
peripherals, e.g., PCIe, are available.

Memory Resources

A lot of applications require memory, but look-up tables and flip-flops can only provide
small amounts. To overcome this limitation, many FPGAs have columns of dedicated
memory blocks mixed into their array. They are faster than distributed memory built
from CLBs and take up less area of the IC.

The Xilinx 7 Series FPGAs incorporate dedicated block RAM resources. Depending on
the specific model, devices offer between 5 and 1,880 RAMB36 primitives, each capable
of storing up to 36 Kb. RAMB36 blocks can be used in different configurations: 32K x 1,
16K x 2, 8K x 4, 4K x 9, 2K x 18, 1K x 36, as well as 512 x 72. It is also possible
to combine 2 RAMB36 blocks, to form a single 64K x 1 memory without the use of
any additional resources. Furthermore RAMB36 primitives can be split into pairs of
individual RAMB18 blocks configurable to 16K x 1, 8K x 2 , 4K x 4, 2K x 9, 1K x 18 or
512 x 36.

As discussed earlier, look-up tables are a type of memory that stores the truth table of a
logical function. Usually the memory is programmed during the configuration phase of
the FPGA, but in Xilinx 7 Series FPGAs a portion of the memory can also be accessed by
the digital design. Slices, whose look-up tables can also function as distributed memory
are referred to as SLICEM, whereas pure logic slices are called SLICEL. With 32 x 2 bits
of memory in every 6-input LUT, the 4 LUTs within a SLICEM can store up to 32 x 8
bits of data.

The XC7A100T offers 135 blocks of dedicated RAM with a total capacity of 4,860 Kb.
Furthermore 4,752 of its 15,850 slices can be used as distributed RAM, offering an
additional 1,188 Kb of memory.

Signal Processing

Another feature are digital signal processing (DSP) slices, that speed up frequently used
arithmetic operations. They are especially useful for multiplications that would take up
a lot of CLBs. Using a compact and dedicated circuit reduces resource utilization and
increases the maximum achievable clock frequency.

2.2.2 Toolchain
Having tens of thousands up to millions of look-up tables, flip-flops and other configurable
resources makes it impossible to handle them without some level of abstraction. Creating
an FPGA design works slightly different from writing software. Instead of using a
programming language, digital circuits are defined using a hardware description language
(HDL). The code mainly states where to use memory cells and what combinatorial
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2.2. Field-Programmable Gate Arrays

logic connects their inputs and outputs. Thus, forming functional entities that can be
instantiated and combined to eventually create a design that performs the desired task.

Another step in software development would be testing and debugging. When creating a
hardware design, we can simulate from the individual components up to the design as a
whole. This has the advantage that any intermediate signal which would be buried deep
inside the physical circuitry can be observed. Running a simulation requires harnessing
the component using a testbench that stimulates its inputs and compares the output to
a reference.

The implementation process is automated and involves the following steps:

• Synthesis: The described hardware is translated into a digital circuit and mapped
onto the target technology, using the components available on the selected FPGA.

• Placement: Every component is assigned a location within the array of the FPGA.
The tools employ strategies to place highly interconnected parts close together,
keeping the signal delays small.

• Routing: The placed components are connected through the available switches and
wires. The tools take care to meet the timing constraints and verify functionality
at the desired clock frequency.

The whole process is based on heuristics and might take several iterations until the design
fits onto the FPGA while also meeting the given timing constraints. The final result is a
bit stream which can be used to program the FPGA.
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CHAPTER 3
Related Works

Spiking neural networks are based on functional models of the physical processes within
neurons. The well known Hodgkin–Huxley model [12] describes an excitable cell using
an equivalent electric circuit. There have been a lot of improvements [8] and alternatives
[16, 18] to the Hodgkin Huxley model, that are even more accurate in simulating the
actual behavior of neurons. On the other end of the spectrum, there are also more loose
interpretations, that aim to preserve the general properties, but reduce the complexity
[13] of the calculations. Most implementations fall back to some variation of the leaky
integrate-and-fire model and a conservative structure of multiple fully connected neuron
layers.

It has been shown, that various training methods applicable to classical ANNs (e.g.
backpropagation [17]) are also applicable for SNNs. Furthermore an implementation [6]
shows the viability of a biologically more plausible approach called spike-timing-dependent
plasticity.

There are numerous software frameworks supporting the simulation of SNNs (e.g. Brian2
[21], snnTorch) with various levels of optimization and hardware acceleration. Some
projects (e.g. SpiNNaker [9]) aiming to simulate large scale SNNs directly in hardware
employ a large amount of computational nodes composed of classical microprocessors to
form a purpose built supercomputer. Others (e.g. Neurogrid [2]) attempt to perform
parts of the simulation using analog circuitry.

FPGAs can be used to simulate very specific networks more efficiently than generic
computer hardware. Recently there have been attempts to implement SNNs in FPGAs
[4]. While it is proven that FPGAs can simulate small- to mid-scale networks, each
implementation is very specific. Estimating the hardware utilization and performance of
SNNs prior to implementation can be a challenging task.
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CHAPTER 4
Methodology

This chapter introduces a digital design for hardware accelerated simulation of spiking
neural networks in FPGAs. The implementation is split into two main components –
neurons and synapses – that can be instantiated and arranged to form interconnected
networks. In addition, there are modules to properly format input and output values
using a Poisson encoder and rate decoder, respectively.

The resulting networks are not meant to be trained while running on an FPGA. Rather,
training shall be performed offline on a more conventional system, whereafter computed
parameters, e.g., connection weights, are transferred into the FPGA design. Pre-trained
networks are easier to optimize and thereby require fewer resources while yielding better
performance.

The implementation simulates an SNN for a predefined amount of time. It divides the
simulation time into small discrete steps - so called clock ticks. Every time the simulation
clock advances, the network updates the state of its components. The implemented
modules are designed to update their state within a constant amount of time, making
the overall run-time independent of the applied input or internal state of the network.
It solely depends on the network structure, making the design suitable for real-time
applications.
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4.1 Neurons

The implementation is modular and able to easily adopt a variety of neuron models.
For the scope of this work, we focused on the leaky integrate-and-fire (LIF) model
[1], according to the schematic in figure 4.1. Although not biologically plausible, LIF
incorporates the core concept of neurons in the simplest possible way. It is a staple
in most every simulation framework available and has been successfully used in many
applications.

CR ϑI(t) V(t)
Figure 4.1: Schematic of a neuron based on the Leaky Integrate-and-Fire model

In LIF, neurons are represented by their membrane voltage V . Applying an input current
I charges the capacitor C. At the same time, some of its charge leaks through the parallel
resistor R. The model’s differential equation looks like:

I(t) = C
dV (t)

dt
+ V (t)

R

It describes the development related to the time-dependent input current I until the
membrane voltage V reaches a constant threshold ϑ. Once activated, the neuron generates
an output spike using the stored charge and subsequently resets to its initial state.

Figure 4.2 shows an example. The neuron processes an input current consisting of
differently scaled spikes that cause the output voltage to rise. During periods of low input
activity, the voltage drops due to the internal leakage. Once the threshold is reached,
the generated output spike causes the voltage to reset to its initial value.

𝑓 𝜗
Figure 4.2: Example of a neuron’s internal voltage and output spike generation
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4.1.1 Implementation
Considering clock ticks having a duration Δt and an initial membrane voltage V (t0) = V0,
the value at tn+1 = tn + Δt is approximated as:

Vn+1 = 1 − Δt

CR
Vn + Δt

C
In

In this equation, 1 − Δt
CR can be interpreted as a constant factor β describing the leakage,

whereas Δt
C In represents the voltage change caused by the input current.

Choosing Δt is a tradeoff between preserving the accurate behavior of the model and
faster, more efficient computation. While a bigger Δt results in the loss of temporal
resolution, small values can unnecessarily increases the number of computational steps.
Instead of directly specifying Δt, the module is parameterized with a value β and the
simulation time is given by the number of clock ticks.

Scaling the input by the constant factor Δt
C is offloaded to the preceding synapses, where

it can be factored into the connection weights. Thus, updating the membrane voltage
requires scaling the previous value by β before adding the preprocessed input.

4.1.2 Optimization
In the digital design, we group multiple neurons into a single module, which has the
following advantages:

• In FPGAs multiplications are expensive operations. They tend to be either slow
or require an extensive amount of resources. Having multiple neurons share their
signal processing circuitry saves resources and significantly increases the number of
neurons that can be simulated.

• Sharing an input and output interface reduces the amount of logic needed for
synchronization and handshaking. Instead of a single input and output, the module
receives a stream of input values and generates a stream of output values.

• Time multiplexing the computational resources also enables the efficient storage of
the neuron potentials in dedicated memory blocks. A cyclic counter addresses the
state (membrane voltage) of the neuron whose input (electric charge) is currently
received through the interface. After processing the neuron, the updated state is
written back to the memory and stored until the next iteration.

In the implementation, the initial value equals 0 and the threshold 1. The input is a
fixed-point value in the range [−1, 1]. Even though negative inputs are permitted, the
membrane voltage is reset every time it drops below 0. The computation requires a single
multiply-accumulate operation followed by a comparison with the threshold. If the value
exceeds 1 it is reset and a spike is generated at the output.
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4.2 Synapses
The implementation aims to simulate a layered network, where the neurons of consecutive
layers are fully connected and each neuron’s output is considered an input to all neurons
in the following layer. The amount of influence, a specific input has on a neuron’s
behavior is determined by the connection’s weight, stored within the synapses.

Figure 4.3 shows an example of signals propagating through a synapse. The different spike
trains are scaled according to their weights before being accumulated into a combined
signal.

𝑤1𝑤2𝑤3
∑

Figure 4.3: Example of synapses combining multiple spike trains

4.2.1 Implementation
Considering an N-wide layer, whose neurons indicate spikes with Boolean values x1 . . . xN ∈
{0, 1} and a set of constant weights wj,1 . . . wj,N specifying their significance for a neuron
j of the following layer, the synapses calculate the neuron’s input yj using:

yj =
N

i=1
wj,ixi

4.2.2 Optimization
The module represents the interconnection between two layers of neurons. Grouping all
synapses connecting two adjacent layers has the following advantages:

• The task of the synapses between two layers is computing multiple weighted sums.
Since the same calculation is repeated several times, there is potential for sharing
hardware resources.

• All computations are based on the same set of inputs coming from the preceding
neuron layer, while all results are forwarded to the succeeding neuron layer. Sharing
interfaces reduce the complexity of inter-module communication as well as the
amount of logic needed for synchronization and handshaking.
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• Having more weights and thus more data to store within a single module results
in efficient use of memory resources. This addresses the issue of FPGAs having
memory blocks of fixed sizes, that can’t be split or shared between modules. Having
a single module utilizing multiple memory blocks, with only a portion of the last
block unused, is preferable to having empty padding in a lot of smaller modules.

The module’s input interface accepts a sequence of boolean values, each representing
the presence or absence of a spike from one of the neurons within the preceding layer.
This approach guarantees a constant amount of input and thus a constant execution
time of the module. Internally, processing a single input requires loading a set of weights.
Since the neuron, that generated the current input, is known implicitly from the value’s
position within the input stream, the memory storing the weights can be addressed using
a cyclic counter.

The computation of weighted sums is parallelized using an array of accumulators - one for
each output. The accumulators add individual weights, if and only if the corresponding
input indicates the presence of a spike. The synchronous computation leads to the
completion of a full set of outputs after receiving a full set of inputs. To simplify the
output interface, values are serialized using a shift register.

To approximate the spiking behavior of a neural network, the described process of
computing weighted sums is repeated in each clock tick the simulation advances. The
accumulators are automatically reset after a set of computations concludes. The module’s
state machine handles handshaking at the interfaces and ensures a seamless operation
and constant flow of data.

The design is pipelined to achieve maximal throughput while, at the same time, being
able to perform at high clock frequencies. The module is optimized to handle one input
per clock cycle and generates one output per clock cycle as long as the connected layers
have the same number of neurons. When the input layer is wider, the shift register will be
empty before a new set of outputs gets available. Thus the design can only provide output
after receiving enough input. Conversely, with a wider output layer, the shift register
won’t be empty before the accumulators finish a new set of outputs. In consequence, the
input is pushed back until the output has been transmitted. In summary, the module is
designed to always keep up with its interfaces and is only limited by their throughput.
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4.3 Poisson Encoder
The implementation provides a Poisson encoder to assist in rate-encoding input signals.
It converts intensity values in the range [0, 1) to spike trains, where spikes have an
average rate proportional to the input intensity, while the interval between spikes is
Poisson-distributed.

Another popular alternative is latency-coding, where the information is encoded in the
precise timing of spikes rather than their average rate. Most commonly a higher intensity
causes an earlier spike than a lower intensity value. We opted for rate-encoding because
it can generate inputs over an arbitrary timespan and is potentially more robust due to
the repetition of the input signal.

The modular nature of the design allows to replace the input layer with a latency-codec
or any other kind of more complex coding system, like for example temporal order coding
[10].

4.3.1 Implementation
The behavior is approximated by generating a random number in the range [0, 1) and
comparing it to the intended rate. If the rate is smaller than the random number, a
spike is generated. Repeating the process for every clock tick, results in the desired
output. The spike trains depicted in figure 4.3 were generated using this method. The
blue, green and red signals have an intensity of 1/8, 1/6 and 1/4. Short trains like these
randomly deviate from the requested rate. Only when looking at longer periods, they
would approach the desired rate and distribution [11].

The implementation is based on a modified version of Knuth’s subtractive random number
generator algorithm [14] used in Microsoft’s .net framework. Although this might not be
the most popular choice for a hardware design, it is easy to implement and generates the
exact same sequence as the prototype used for verification of the design. The algorithms
downside is its limitation to generating exactly 31 random-bits per cycle. Since most
networks will only require a single instance we accept the slight overhead, as a consequence
of sticking with the algorithm.

4.3.2 Optimization
The module represents an input layer of multiple neurons that share a common random
number generator. At the beginning of a simulation, it requests and buffers an intensity
value for each neuron. Afterwards it repeatedly generates random numbers and compares
them to the buffered values. The results, stating whether the corresponding neurons
generate spikes, are forwarded to the next layer. After cycling through all neurons the
simulation advances a tick and the process repeats until the simulation ends.

The design is optimized to match the speed of the connected synapses. It processes one
neuron per clock cycle and generates its output for the current tick. The implemented
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handshaking at the interfaces guarantees that input is accepted as early as possible and
a steady stream of outputs is provided as long as the succeeding modules can handle
it. Additionally, when using a FIFO, multiple sets of inputs can be queued, enabling
seamless execution without any overhead between simulations.

4.4 Rate Decoder
A rate decoder provides a way to interpret the network output. It translates the spike
trains of the output neurons into rates. To do so, the module simply counts the number
of spikes each output neuron generates throughout the simulation. The computed values
are directly proportional to the rates.

The rate decoder is ideally suited for our system, processing rate encoded inputs and
running for a predefined duration. Another method would be interpreting the time until
the first spike occurs. In that case the first output neuron to spike is considered the
winner. This method, although it might be less robust, shortens the simulation time
depending on how fast a specific input causes an output spike.

The current decoder is a placeholder that allows efficient testing of networks. If required,
the modular design allows for easily replacement with other decoding systems.

4.4.1 Optimization
The module instantiates a counter for each output neuron. At the beginning of a
simulation, the counters are reset to zero. Every time a spike registers the corresponding
counter increments by one. During the last tick of the simulation the final values are
presented at the module’s output.
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CHAPTER 5
Experimental Setup

This chapter introduces the experimental setup used for testing and benchmarking
the previously outlined digital design. It consists of a hardware framework providing
programmatic access to an embedded SNN in combination with a software application
that utilizes a pre-trained network to classify handwritten digits.

5.1 Hardware Framework
The hardware framework is specifically designed for the Digilent Nexys 4 FPGA board
[7] depicted in Figure 5.1. The Nexys 4 is built around a Xilinx Artix-7 FPGA
(XC7A100T-1CSG324C) [24], [25], which is considered a mid-range FPGA with a good
price-performance ratio. The framework only uses very basic features of the development
board, thus, it should be easy to adapt to other Xilinx based platforms.

The framework aims to provide a computational platform with programmatic access to
an embedded SNN. The most flexible approach is integrating the SNN into a minimalistic
soft-core microcontroller. Software running on the microcontroller can then directly
interact with the SNN, providing input data and subsequently retrieving the results. The
big advantage of this design is the low-latency high-throughput interface to the SNN,
which is ideal for measuring performance. Care must be taken, as the presence of the
microcontroller inside the same FPGA might have negative effect on the performance of
the SNN.

The framework consists of a block design composed of various components from the
IP repository provided by Xilinx with its development environment Vivado. The most
essential components and their interconnections are depicted in Figure 5.2.

The Framework is based on the FPGA-optimized soft processor architecture MicroBlaze.
The connected Debug Module exposes the MicroBlaze to the JTAG interface of the
FPGA. Using JTAG not only allows resetting, halting and resuming execution of the
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Figure 5.1: Digilent Nexys 4 FPGA Board
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Figure 5.2: Block design of the framework

MicroBlaze processor, but also grants full access to its registers and memory regions.
The block design also features an UART interface for redirection of standard input and
output. The FPGA board conveniently integrates an adapter that exposes JTAG and
UART on a single USB connector that also acts as a power supply.

From the framework’s perspective, the SNN is encapsulated within a nested block design,
having two streaming interfaces for its input and output data respectively. The MicroBlaze
is configured with its own set of streaming interfaces, whose connection to the SNN are
routed through FIFO structures. The FIFOs buffer data and thereby compensates for
different data rates during read and write bursts. The software can access the streaming
interfaces through dedicated assembler instructions.

To minimize negative effects due to the framework residing in the same FPGA as the
SNN, it has been optimized to use as few hardware resources as possible. On one hand,
this enables the use of additional resources to optimize performance of the SNN. On the
other hand, unused resources grant the compiler more freedom when placing and routing
the design, thus increasing the chances of fulfilling the timing requirements.
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The instantiated soft processor and its peripheral components are configured to optimize
for minimal area. Furthermore, the framework makes use of the external memory
available on the FPGA board by instantiating an external memory controller. Thereby,
the instruction and data sections of the processor are relocated into the 16 MiB of external
memory provided by the Nexys 4 board, preserving the FPGA’s internal memory blocks
for the SNN.

The FIFOs not only compensate different data rates during read and write bursts, but
also implement a means for clock domain crossing. Being able to run the framework at a
considerably lower clock frequency than the SNN reduces the pressure on the synthesis
tool. Having two clock domains ensures that the framework does not bottleneck the clock
frequency of the SNN.
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Figure 5.3: Visualization of different clock domains in the framework, with green meaning
a more relaxed clock frequency requirement, while blocks in red try to maximize clock
frequency

5.2 Software Application
In this section we introduce an example application that utilizes the implemented SNN
to classify handwritten digits. The application will be the basis for testing and verifying
the digital design as well as benchmarking its performance and resource utilization on
FPGAs.

The following sections introduce a widely used database of handwritten digits and its
general structure, as well as the input and output interfaces of the spiking neural network
designed to classify them.

5.2.1 MNIST Database
The MNIST database is a large collection of handwritten digits. Each entry contains
a 28 x 28 pixel grayscale image and is labeled with the digit it represents. The images
are preprocessed to appear similarly sized and centered. Furthermore the pixel values
are normalized for a uniform contrast and anti-aliased to smooth transitions between
foreground and background. Figure 5.4 shows some examples taken from the database.

The database is popular for testing classification algorithms. It is split into 60,000 data
points for training and an additional 10,000 data points for testing. By presenting the
training set to an algorithm it can first “learn” about handwritten digits. Afterwards the
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Figure 5.4: Examples of handwritten digits from the MNIST database

algorithm is tasked with classifying each entry of the test set and graded according to its
success rate. Most machine learning algorithms reach success rates above 90% with the
most optimized ones being correct about 99.5% of the time.

The database can be retrieved from its official website 1. It comes in a custom file format
that is simple, well documented and implemented in most machine learning framework.

5.2.2 Network Structure
The proposed application already outlines the basic structural requirements of the neural
network. The input images consists of 28 · 28 = 784 individual pixels which basically
dictates the width of the input layer. It would be possible to down-scale or crop the
images to reduce the number of inputs, but for the purpose of evaluating and testing the
implemented network, using 784 input neurons is perfectly reasonable. Furthermore, the
task of classifying handwritten digits mandates an output layer of exactly 10 neurons
that represent the digits from 0 to 9.

There is no restriction on the number of hidden layers or their respective widths. The
only limitations arise later, when trying to fit the network onto an actual FPGA. An early
estimation of the required hardware resources suggested one or two hidden layers with a
combined total between 100 and 400 neurons. To stay on the safe side, the application
implements one hidden layer containing 100 neurons.

Besides the network structure there are different methods of encoding the input and
interpreting the output signals. The two most widely used methods are temporal coding

1http://yann.lecun.com/exdb/mnist/
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5.2. Software Application

and rate coding. While temporal coding may lead to the network making faster decisions,
it also comes with the downside of introducing varying simulation times. With temporal
coding, the network concludes processing one input as soon as a neuron of the output
layer generates a spike. Therefore, the runtime heavily depends on the input data. In
contrast, using rate encoding, the network decides on the output neuron generating
the most spikes in a constant amount of simulation time. This makes it the preferred
choice for the purpose of testing our implementation by generating a constant workload
independent of input data and prior training.

For the purpose of testing and verifying the implemented spiking neural network, we
decided on the following structure:

• 784 input neurons and 10 output neurons.

• 1 hidden layer containing 100 neurons.

• use of rate encoding for input and output.

• a simulation time of 4096 ticks per input image.

Figure 5.5 depicts the general layout of the example application.

poisson
encoder

hidden
layer

input
layer

output
layer

rate
decoder

input

MNIST
image

output

spike
counts

Figure 5.5: General layout of the Spiking Neural Network

Figure 5.6 shows the embedded block design containing the spiking neural network. It
instantiates the previously introduced modules and parameterized the neurons layers to
the previously agreed on widths.

The block design has been embedded into the previously introduced hardware framework.
The overall system was successfully built to run at 250 MHz. Its functionality has been
verified by comparing the individual spike trains to a reference implementation. It proved
to work both, in simulation and on actual hardware.
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Figure 5.6: Block design of the Spiking Neural Network

5.2.3 Training

In the introduced design, the process of training adjusts the weights defining the inter-
connections between neurons. Currently, the weighs are the only parameters affected
by training, although with the modular design, other parameters (e.g. threshold of LIF
neurons) could be added in the future. The training is performed on a conventional
software platform and the computed parameters are deployed onto the FPGA.

The design decisions for the current implementation ensure that the performance of a
network is independent of its training. Changing the values of individual weights won’t
change the workload or number of clock cycles required to deliver results. The same
holds true for the amount of hardware resources, as long as trivial cases (e.g. all zeros)
are avoided. Therefore, measurements on performance and resource utilization can be
carried out using untrained and randomly initialized networks.

Although, most measurements are accurate, even without prior training, testing and
verifying a network’s functionality as well as showcasing its functionality requires a
valid set of connecting weights. For that reason, we trained the model on MNIST and
transferred the weights on the FPGA memory.

The training was carried out using snnTorch 2, a Python package for performing gradient-
based learning with spiking neural networks. The process is based on backpropagation
through time using surrogate gradients [17] to overcome the challenges introduced by
the non-differentiability of spikes. snnTorch provides a detailed tutorial at: https:
//snntorch.readthedocs.io/en/latest/tutorials/tutorial_5.html.

The sample included with snnTorch trains a network constructed around a hidden layer
of 1000 neurons to classify the training set of the MNIST database. After completing
the process, the network reaches an accuracy of 93.8 % on the test set. Reducing the
hidden layer to 100 neurons causes a slight decrease in accuracy of about 0.5 %. Using
the acquired values in our implementation drops the accuracy to 88.5 %.

The drop is due to some differences in the implementation of the neuron model. Our
implementation is based on 18-bit fixed-point arithmetic, while snnTorch uses floating-
point numbers. To account for the limited value range, the neuron potential is clipped

2https://snntorch.readthedocs.io/en/latest/readme.html
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to prevent negative numbers and the reset mechanism is slightly different to the default
method used in snnTorch.

We expect a similar accuracy, close to 94 %, after backporting our implementation to
snnTorch. But since this works focuses on pretrained networks in FPGAs, we will consider
optimizing the training method, as well as evaluating other, potentially better methods,
a topic for future work.
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CHAPTER 6
Results

In this chapter we showcase the models and the actual testing results for the implemen-
tation of SNN on FPGA using our framework.

6.1 Performance
One of the main reasons for porting spiking neural networks to FPGAs is the expected in-
crease in performance. Compared to software implementations built upon general-purpose
processors, FPGAs are capable of reconnecting basic hardware structures according to
their configuration. This enables forming application specific circuits with a high level
of parallelization. There are two decisive factors that play a role in the performance of
hardware designs: the clock frequency, describing how many computational steps are
executed per second, and the number of steps required, to complete the overall task.

The clock frequency depends on the amount of work scheduled for each computational
step. The clock period has to be long enough so that all signal processing finishes before
the cycle ends. The clock frequency thereby depends on the critical path, which is the
signal having the most complex operation, taking the longest time to finish. The synthesis
tools, responsible for mapping designs to hardware, aim to optimize the critical path
by placing components closer together and thereby reducing the propagation delay of
signals. Still, at some point the only method of increasing the clock frequency any further
is reducing the complexity of operations.

The concept of pipelining splits complex operations into multiple smaller steps, whose
sequential execution yields the final result. When a signal passes through a stage of
the pipeline, the next signal can follow immediately. Although each operation takes
multiple cycles to finish, the parallel execution of stages still produces one result per cycle.
Ultimately, proper pipelining allows for higher clock frequency, while maintaining the
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same throughput per cycle. This comes at the cost of the signal being delayed for multiple
clock cycles, as well as some additional hardware resources making up the pipeline stages.

The hardware platform chosen for testing (Digilent Nexys 4) is based on the Xilinx
Artix-7 architecture with a speed grade of -1. Checking the AC characteristics in the
data sheet (DS181), gives a basic idea of the theoretically achievable clock frequency.
While clock buffers support a maximum of 464 MHz, other essential components, like for
example block RAM, are limited to 388.20 MHz. In practice, these upper bounds are
hardly ever reached, because the limiting factor is most certainly the signal propagation
delay of the routed wires. Looking at an example, the reference guide (UG984) of the
highly optimized MicroBlaze processor states a maximum frequency of 260 MHz for
Artix-7 FPGAs of the highest speed grade.

After carefully fine-tuning and optimizing the pipelined structures, our design was able
to pass all timing constraints at up to 250 MHz and slightly above. Considering the
lower speed grade and the rather extensive designs, using up to 50-80% of the available
hardware resources, further improvements are hardly possible and the additional resources
required would be in no relation to the marginal gain in performance.

Let’s define the task of the implemented spiking neural network in advancing the simula-
tion one tick. Once the amount of clock cycles required is known, the runtime of any
simulation will be predictable. While the problem is ideal for parallel processing, the
amount of parallelism is limited by the available hardware resources. We were able to run
each layer of the network synchronous, but the neurons within a layer are still processed
sequentially. The optimized circuit is capable of processing one neuron per layer in each
clock cycle. Thus, the limiting factor is the widest layer, requiring one cycle per neuron
to advance a simulation tick.

In our example application the input layer has 784 neurons. As it is the widest layer,
the whole network advances one tick every 784 clock cycles. With the rather arbitrarily
chosen 4096 ticks to decide on a handwritten digit, the application is capable of analyzing
one image every 12.8 ms when operating at 250.88 MHz. This purely demonstrates how
to estimate performance for a given network.

6.2 Power Consumption
Measuring the exact power consumption of the introduced digital design is a complicated
task. Since we are interested the most in the power consumption under load, the spiking
neural network requires the hardware testing framework to provide it with input. As
soon as both components are placed inside the same FPGA, it gets impossible to measure
their power consumption separately.

Another challenge is our FPGA being situated on a development board, generously filled
with other components. Some of them are necessary, i.e., power supply, others purely
optional. Measuring the whole board includes all of its components and the bulk of them
might very well exceed the power consumption of the FPGA on its own.
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Since we neither focused specifically on power consumption, nor prepared an adequate
measurement setup, we have to solely rely on the estimations by the development envi-
ronment. The power consumption report of the hardware testing framework instantiating
the spiking neural network of our example application running at 250 MHz is depicted in
figure 6.1. We deduct that our design on FPGA uses very little power. The reported
0.83 W are split into 0.104 W of static and 0.726 W dynamic power consumption. Un-
fortunately the tool’s confidence level is only low, due to the widely changing switching
factors of the interconnected elements in the design, as they depend on the input pixels.

Figure 6.1: Power consumption report

The difficulty in estimating power consumption is that the majority is dynamic consump-
tion, which strongly depends on the application. Transistors require dynamic power
whenever they change their state. Thus, a network with a lot of spikes requires more
energy than an idle circuit. The tools are hardly able to determine how active a circuit
is on average use. Therefore, the values given are only rough estimates, which can be
helpful in guiding the design choices, but should also not be considered absolute truth.

Our FPGA requires no cooling at all, giving confidence in a low power consumption.
Compared to CPUs or GPUs with their cooling systems capable of dissipating multiple
hundred watts of heat, FPGAs are more closely related to smaller, passively cooled
microcontrollers. When aiming for a low power consumption, FPGAs and in extension
ASICs are the most promising devices.

6.3 Resource Utilization
In this chapter, we analyze the amount of resource the components of the introduced
digital design utilize, when synthesized in different configurations. There are three types
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of resources that are of interest: logic resources like look-up tables, flip-flops and carry
chains, dedicated memory blocks and digital signal processing slices. The amount of
resources an instance requires depends not only on its parameters, e.g., number of parallel
structures, bit-width of operands, but is also affected by the targeted clock frequency and
the amount of optimization the synthesis tool applies during the implementation process.

6.3.1 Neurons

The neurons module represents a layer of N neurons. It receives a sequence of N weighed
sums from the preceding synapses and outputs a series of N Boolean values, indicating
the generation of spikes, to the succeeding synapses. Each input corresponds to a specific
neuron and is processed according to the implemented leaky integrate-and-fire model.
The module updates each neuron in turn, evaluating their activation conditions for output.
Once all neurons are handled, the simulation advances to the next time tick, expecting a
new set of inputs.

Each neuron is described by an internal state depending on the implemented model. In
our design, the only variable we keep track of is the neuron’s current membrane voltage.
Since neurons are updated sequentially, all of their states can be stored in dedicated
memory resources. Carefully following the basic design pattern, ensuring a single read
and write operation in each clock cycle, enables the synthesis tools to automatically infer
the proper amount of block RAM for us.

The leaky integrate-and-fire model is based around a multiply-add operation, required
to update a neuron’s membrane voltage. Unfortunately, multiplications tend to be
resource intensive and slow, when implemented using logic primitives only. For this
reason, many FPGAs incorporate dedicated hardware, supporting efficient multiplication
as well as other commonly used mathematical operations. Our design explicitly requests
the instantiation of the digital signal processing slices, available in the targeted FPGA
architecture, to efficiently calculate the neurons’ state according to their input signals.

Logic Resources

As discussed, our design heavily relies on dedicated memory and signal processing slices,
only leaving the module’s state machine to be built from logic primitives. The control
circuit handles resets and handshaking signals, while also keeping track of the currently
processed neuron, to correctly address memory. Altogether this is achieved by a rather
small amount of logic that is mostly independent of the number of neurons in the module.

Table 6.1 lists the slice logic from the utilization report of all (N = 100) neurons within
the first layer of our example application. Compared to the overall available resources
and the requirements of other modules, the utilization of 46 slices or 0.29 % is hardly
noticeable.
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+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Slice | 46 | 15850 | 0.29 |
| SLICEL | 27 | | |
| SLICEM | 19 | | |
| LUT as Logic | 58 | 63400 | 0.09 |
| using O5 output only | 2 | | |
| using O6 output only | 29 | | |
| using O5 and O6 | 27 | | |
| Slice Registers | 185 | 126800 | 0.15 |
| Register driven from within the Slice | 58 | | |
| Register driven from outside the Slice | 127 | | |
| LUT in front of the register is unused | 114 | | |
| LUT in front of the register is used | 13 | | |
| Unique Control Sets | 13 | 15850 | 0.08 |
+--------------------------------------------+------+-----------+-------+

Table 6.1: Logic utilization report of neurons

Memory Resource

The internal state of our neurons consists of a single variable, storing the current membrane
voltage. As for the value range, we clip the voltage when dropping below 0 and reset
it once reaching the threshold value of 1, generating a spike in the process. There is
no discernible advantage in using floating point numbers, because we are really just
interested in a very limited range. Thus, we chose an 18-bit fixed-point representation
for the range [0, 1), resulting in a resolution of 2−18 ≈ 3.815 · 10−6. The number format
closely relates to the precision of the weights stored within the synapses.

Block RAM is available in chunks of 18 kbit, configurable as 16K x 1, 8K x 2 , 4K x 4,
2K x 9, 1K x 18 or 512 x 36. Choosing a data width of 18 bits allows for 1024 neurons per
BRAM18 primitive. In our example application, the widest layer contains 100 neurons,
which uses about 10 % of a single memory block. As long as the layers do not fill a single
block, reducing the bit length won’t save any resources.

Table 6.2 shows the memory utilization reported for the implementation of the 100
neurons within the first layer of our example application. The output layer, even though
having only 10 neurons, uses another RAMB18 primitive, bringing the total to 0.74% of
the available block RAM resources.

+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Block RAM Tile | 0.5 | 135 | 0.37 |
| RAMB18 | 1 | 270 | 0.37 |
| RAMB18E1 only | 1 | | |
+--------------------------------------------+------+-----------+-------+

Table 6.2: Memory utilization report of neurons

Signal Processing Resources

The membrane voltage is calculated each simulation tick. First, the stored value is
multiplied by a constant smaller than 1 (e.g. 99 %), which accounts for the leakage. Then
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the input from the synapses is added. When the new value exceeds the threshold, the
module outputs a 1 to signal the generation of a spike. Otherwise no spike is generated
and the module outputs 0. In case an underflow occurred and the value dropped below
0, it is reset. Likewise, an overflow and the resulting spike resets the value. Still in the
range [0, 1), it is again stored in memory before the computation of the next neuron
begins. Once all neurons have been handled, the simulation advances a tick and the
process starts over.

The available DSP slices can be configured to perform a multiply-add (A·B+C) operation.
They feature a 25 x 18 multiplier that is perfectly suited to scale our 18-bit values A with
a constant factor (B before adding the current input C. Clipping negative results, as well
as performing a comparison to the threshold can easily be done with some supplementary
logic.

Table 6.3 shows the DSP utilization reported for the implementation of the first layer from
our example application. Within a layer, neurons are updated sequentially. Therefore
each layer requires a single DSP slice. Considering the output layer, the overall utilization
totals at 2 DSP48E1 primitives or 0.83 % of the available resources.

+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| DSPs | 1 | 240 | 0.42 |
| DSP48E1 only | 1 | | |
+--------------------------------------------+------+-----------+-------+

Table 6.3: DSP utilization report of neurons

6.3.2 Synapses

The synapses module represents the interconnection between two consecutive layers of
neurons. It receives a sequence of Boolean values, indicating the generation of spikes,
from the preceding N -wide neuron layer and outputs a series of weighted sums to the
succeeding M -wide neuron layer. The width Lw of the stored connection weights can be
adjusted in the modules parameters, while the width Ls = Lw + ld(N) of the weighted
sums adapts for the highest possible output value.

Logic Resources

The synapses module instantiates M accumulators with a bit-width of Ls. Figure 6.2
shows the basic structure of an accumulator. During the synthesis process, they map to
look-up tables and carry chains performing the addition, as well as a set of flip-flops to
store the results. The accumulators are built of M ·Ls look-up tables, M · Ls/4 4-bit
carry chains and M ·Ls flip-flops. On the targeted FPGA architecture, the structure is
placed in M · Ls/4 logic slices, using all 4 look-up tables, the 4-bit carry chain and 4 of
the 8 flip-flops available in each slice.
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Figure 6.2: Schematic of an accumulator instance

Once the accumulators finish, the weighted sums are loaded into a shift register and
serially presented at the module’s output. Figure 6.3 shows a partial schematic of the
shift register. The shift register stores M output values of length Ls and thus requires
M ·Ls flip-flops. The 4 look-up tables in a logic slice actually have 2 outputs each and
can compute two individual functions as long as they share the same 5 input signals.
Therefore, 2 two-input multiplexers with a shared select signal fit into a single look-up
table. Fully populating the 4 look-up tables and 8 flip-flops in every slice, results in a
total requirement of M ·Ls/8 slices.
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Figure 6.3: Partial schematic of the shift register

Additionally, there is a small amount of control logic handling resets and handshaking.
Its size is mostly independent of the parameters, with the exception of two counters for
tracking input and output. The module’s resource utilization has a linear dependence on
the width of the adjacent neuron layers. Thus, having a reasonable large synapses, we
can ignore the constant overhead of the control logic, as well as the logarithmic overhead
of its counters.

The optimizations applied throughout the synthesis and implementation processes are
more relevant, as they depend on the settings and the given timing constraints, inferring
additional logic. Oftentimes signals with high fan-out are replicated multiple times and
placed close to where they are needed, effectively improving routability. Unfortunately,
the exact amount of additional resources is hard to predict.
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In our example the synapses, connecting the input layer to the hidden layer (N1 = 784,
M1 = 100, Ls = 28), are expected to utilize 4,200 look-up tables and 5,600 flip-flops
occupying at least 1,050 slices. In comparison, table 6.4 lists the slice logic distribution
from the utilization report. The predicted number of look-up tables (LUT as Logic) and
flip-flops (Slice Registers) are within a safety margin of 5%. In contrast, the number
of slices differs quite a lot. During placement the resources are assigned locations and
spread across the FPGA. A lot of slices are only partially used, resulting in a higher
reported number. The estimate is still reasonable, because, once approaching the limit of
available resources, the tools will pack the design as dense as possible to still fit onto the
FPGA.

+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Slice | 1332 | 15850 | 8.40 |
| SLICEL | 840 | | |
| SLICEM | 492 | | |
| LUT as Logic | 4361 | 63400 | 6.88 |
| using O6 output only | 1162 | | |
| using O5 and O6 | 3199 | | |
| Slice Registers | 5726 | 126800 | 4.52 |
| Register driven from within the Slice | 5669 | | |
| Register driven from outside the Slice | 57 | | |
| LUT in front of the register is unused | 44 | | |
| LUT in front of the register is used | 13 | | |
| Unique Control Sets | 8 | 15850 | 0.05 |
+--------------------------------------------+------+-----------+-------+

Table 6.4: Reported slice logic distribution of synapses

Compared to other modules, the synapses are very resource intensive. Therefore, we
synthesized and implemented many different synapses with varying parameters and
timing constraints to verify our results and implement a proper model. All tests were
performed, building the first synapses of our example application, assuming a fixed input
width of N = 784. First, we stepwise increased the output width M until the FPGA
runs out of memory for storing the weights. Then, we decreased the bit-length Lw of
the weights from 18 to 9 bits and finally down to 4 bits. All designs have been compiled
with the default strategy constrained by a 100 MHz clock, as well as with a strategy for
optimal performance and a clock frequency of 200 MHz.

Table 6.5 and the diagrams in figure 6.4, 6.5 and 6.6 compare the estimated look-up tables
utilization of different configurations to the values actually reported by the synthesis
tool. Similarly, Table 6.6 and figure 6.7, 6.8 and 6.9 show a comparison for the flip-flop
utilization. We can clearly see the overhead resulting from the optimization strategies
applied by the synthesis and implementation tools.

The results show that utilization increases when optimizing for performance rather than
area. Occasionally, when at a very low overall utilization, the standard strategy gave a
lower priority to area and used up more resources than the performance optimized version.
This happened with look-up tables at (Lw = 18, M = 50) in Table 6.5 and is also visible
at the first data point of Figure 6.4. The flip-flops in Table 6.6 at (Lw = 18, M = 50),
(Lw = 9, M = 100), (Lw = 4, M = 200) show the same behavior. This is also visualized
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Lw M
# look-up tables

estimated reported @ 100 MHz reported @ 200 MHz

18

50 2,100 2,888 (+37.5 %) 2,836 (+35.0 %)
100 4,200 4,327 (+ 3.0 %) 5,668 (+35.0 %)
150 6,300 6,456 (+ 2.5 %) 8,483 (+34.7 %)
200 8,400 8,575 (+ 2.1 %) 11,316 (+34.7 %)
250 10,500 10,720 (+ 2.1 %) 14,153 (+34.8 %)

9

100 2,850 2,929 (+ 2.8 %) 3,848 (+35.0 %)
200 5,700 5,845 (+ 2.5 %) 7,667 (+34.5 %)
300 8,550 8,695 (+ 1.7 %) 11,494 (+34.4 %)
400 11,400 11,593 (+ 1.7 %) 15,329 (+34.5 %)
500 14,250 14,475 (+ 1.6 %) 19,155 (+34.4 %)

4

200 4,200 4,283 (+ 2.0 %) 5,657 (+34.7 %)
400 8,400 8,525 (+ 1.5 %) 11,264 (+34.1 %)
600 12,600 12,780 (+ 1.4 %) 16,901 (+34.1 %)
800 16,800 16,977 (+ 1.1 %) 22,535 (+34.1 %)

1,000 21,000 21,224 (+ 1.1 %) 28,153 (+34.1 %)

Table 6.5: Look-up table utilization of synapses (N = 784)
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Figure 6.4: Look-up table utilization of synapses (N = 784) with 18-bit weights

in the first data point of Figure 6.7, Figure 6.8 and Figure 6.9. Although the results were
unexpected, it only ever happened when actual utilization would not affect the successful
completion of the synthesis/implementation run. Once the tools were under pressure,
the behavior was as expected.
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Figure 6.5: Look-up table utilization of synapses (N = 784) with 9-bit weights
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Figure 6.6: Look-up table utilization of synapses (N = 784) with 4-bit weights

Another issue arose with the huge discrepancy of look-up tables between the standard
and performance optimizing strategy. While flip-flops only increase at a reasonable
maximum of about 10 %, look-up tables reached a surplus of more than 33 %. An
investigation revealed that this phenomenon results from the synthesis tool not combining
look-up tables in order to meet the timing constraints. As discussed earlier, a look-up
table can implement 2 two-input multiplexers as long as they share the same select
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Lw M
# flip-flops

estimated reported @ 100 MHz reported @ 200 MHz

18

50 2,800 2,911 (+ 4.0 %) 2,862 (+ 2.2 %)
100 5,600 5,726 (+ 2.3 %) 6,176 (+10.3 %)
150 8,400 8,538 (+ 1.6 %) 9,248 (+10.1 %)
200 11,200 11,334 (+ 1.2 %) 12,312 (+ 9.9 %)
250 14,000 14,159 (+ 1.2 %) 15,395 (+10.0 %)

9

100 3,800 3,884 (+ 2.2 %) 3,866 (+ 1.7 %)
200 7,600 7,736 (+ 1.8 %) 8,177 (+ 7.6 %)
300 11,400 11,510 (+ 1.0 %) 12,252 (+ 7.5 %)
400 15,200 15,335 (+ 0.9 %) 16,321 (+ 7.4 %)
500 19,000 19,160 (+ 0.8 %) 20,387 (+ 7.3 %)

4

200 5,600 5,688 (+ 1.6 %) 5,672 (+ 1.3 %)
400 11,200 11,304 (+ 0.9 %) 11,738 (+ 4.8 %)
600 16,800 16,940 (+ 0.8 %) 17,575 (+ 4.6 %)
800 22,400 22,525 (+ 0.6 %) 23,428 (+ 4.6 %)

1,000 28,000 28,148 (+ 0.5 %) 29,246 (+ 4.5 %)

Table 6.6: Flip-flop utilization of synapses (N = 784)
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Figure 6.7: Flip-flop utilization of synapses (N = 784) with 18-bit weights

signal. Unfortunately, select is a combination of multiple signals that cannot be buffered.
Preprocessing the select signal in a separate look-up table adds additional propagation and
routing delay that reduces the maximum clock rate. When optimizing for performance,
the select signal is oftentimes evaluated in the same look-up table as the multiplexer,
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Figure 6.8: Flip-flop utilization of synapses (N = 784) with 9-bit weights
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Figure 6.9: Flip-flop utilization of synapses (N = 784) with 4-bit weights

which effectively doubles the utilization of the shift register.

One more realization was that the number of occupied flip-flops is actually higher than
reported. When looking at the slices of the accumulators, only 4 of 8 available flip-flops
are used. Since the remaining 4 flip-flops share the same control set (clock, clock enable
and set/reset signals) that is unique to the accumulators and their individual handshaking
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signals, they are practically unusable anywhere else. When considering this fact, the
actual number of occupied flip-flops is twice as high as previously estimated. The same
applies to the shift register, when the look-up tables are not combined.

The experiments show that the utilization is most accurately estimated when considering
the slices instead of look-up tables or flip-flops. The overhead of control logic and
optimization adds up to 10 %. Furthermore, when utilization is an issue, it is necessary
to force the synthesis tool to combine the look-up tables, which comes at the cost of a
potentially lower clock frequency and needs careful consideration, when planning the
network layout.

Memory Resources

A synapse module connecting N neuron outputs to M neuron inputs stores a total of
N ·M weights. The bit-width Lw, as well as the number format, i.e., signed fixed-point,
depends on the chosen neuron model. In reasonable large networks the total memory
requirements of N ·M ·Lw bits warrant the use of dedicated RAM blocks. The module
addresses N sets of M weights, perfectly mapping to an N deep memory and M ·Lw

wide.

The required memory can be mapped to the available blocks. First select the widest
configuration that fits the required depth and then take as many blocks as necessary to
reach the required width. The number B of block RAM resources can be calculated as
follows:

B =






MLw/36 /2, if N ≤ 512
MLw/18 /2, if N ≤ 1024
MLw/9 /2, if N ≤ 2048
MLw/4 /2, if N ≤ 4096
MLw/2 /2, if N ≤ 8192

MLw/2, if N > 8192 and N ≤ 65536

In our example, the synapses connecting the input layer to the hidden layer (N1 = 784,
M1 = 100, Lw = 18) require 50 RAMB36E1, whereas the synapses connecting the hidden
layer to the output layer (N2 = 100, M2 = 10, Lw = 18) require 2.5 RAMB36E1 or
rather 2 RAMB36E1 and 1 RAMB18E1. These results are identical to the numbers in
the memory utilization report in table 6.7 and table 6.8. Together, the synapses utilize
52.5 out of 135 available block RAMs or approximately 39% of the dedicated memory
resources.

The amount of available memory turned out to be the limiting factor, when it comes to
implementing bigger networks. With the synapses of our example application already
taking up 40 % of the available memory, we are limited to a maximum of about 250
neurons in our hidden layer. Lowering the bit-width of the weights increases the possible
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+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Block RAM Tile | 50 | 135 | 37.04 |
| RAMB36 | 50 | 135 | 37.04 |
| RAMB18 | 0 | 270 | 0.00 |
+--------------------------------------------+------+-----------+-------+

Table 6.7: Memory utilization report of synapses (N1 = 784, M1 = 100, Lw = 18)

+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Block RAM Tile | 2.5 | 135 | 1.85 |
| RAMB36 | 2 | 135 | 1.48 |
| RAMB18 | 1 | 270 | 0.37 |
+--------------------------------------------+------+-----------+-------+

Table 6.8: Memory utilization report of synapses (N2 = 100, M2 = 10, Lw = 18)

number of neurons. Also spreading them over multiple hidden layers decreases the number
of connections, effectively reducing the required memory. When looking for a network to
solve a specific problem, finding a well working model and structure that is light on the
resources is a major challenge.

6.3.3 Poisson Encoder

Given a set of intensity values, the Poisson encoder generates randomly distributed
spike trains for the network’s input neurons. In our example application, each neuron is
associated with a pixel of the input image. The bright pixels, making up the background,
rarely cause spikes, whereas dark pixels, considered part of the handwritten digit, lead to
highly active neurons.

The module is built around a pseudorandom number generator (PSNR). During a
simulation, each of the cached input values is compared to a freshly generated random
number. The Boolean results, stating whether the associated neurons emitted a spike,
are forwarded to the output. Repeating the process for every simulation tick results in
Poisson distributed spike trains, whose average rates correspond with the input values.

Logic Resources

The Poisson encoder is controlled by a finite state machine that manages the flow of data,
addresses memory and triggers the generation of random numbers. It handles resets and
handshaking at the interfaces, always keeping track of the input, current simulation tick
and output. Table 6.9 list the reported logic utilization of the module in our example
application. The amount of resources has a logarithmic dependence on the number of
input neurons and the amount of simulation ticks that is usually significantly smaller
than the constant part.
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+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Slice | 279 | 15850 | 1.76 |
| SLICEL | 174 | | |
| SLICEM | 105 | | |
| LUT as Logic | 242 | 63400 | 0.38 |
| using O6 output only | 210 | | |
| using O5 and O6 | 32 | | |
| LUT as Memory | 90 | 19000 | 0.47 |
| LUT as Shift Register | 90 | | |
| using O5 output only | 88 | | |
| using O6 output only | 2 | | |
| Slice Registers | 1578 | 126800 | 1.24 |
| Register driven from within the Slice | 331 | | |
| Register driven from outside the Slice | 1247 | | |
| LUT in front of the register is unused | 1204 | | |
| LUT in front of the register is used | 43 | | |
| Unique Control Sets | 11 | 15850 | 0.07 |
+--------------------------------------------+------+-----------+-------+

Table 6.9: Logic utilization report of the Poisson encoder

Memory Resources

The Poisson encoder operates on a set of intensity values - one for each input neuron.
Since they are only provided at the start of a simulation, the values need to be cached
throughout the run. The initial write operation, as well as the repeated read operations
in each tick of the simulation, happen sequentially and in the same order. This particular
usage pattern, is ideally suited for the use of dedicated block RAM, whose addressing
can be provided by a pair of cyclic counters.

In our example application, input consists of a 28 by 28 grid of 8-bit values representing
a grayscale image of a handwritten digit. The data (784 x 8 bits) conveniently fits into a
single RAMB18 primitive, configured to either 1024 x 18 bits or 2048 x 9 bits. Table 6.10
lists the reported memory utilization, showing the expected result.

+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Block RAM Tile | 0.5 | 135 | 0.37 |
| RAMB18 | 1 | 270 | 0.37 |
| RAMB18E1 only | 1 | | |
+--------------------------------------------+------+-----------+-------+

Table 6.10: Memory utilization report of the Poisson encoder

Another memory requirement stems from the incorporated PRNG. Its cyclic buffer is
constantly updated, based on previously generated values. Since this process requires
access to multiple storage locations at once, it can’t easily be implemented using block
RAM. However, there is still a more efficient method than simply chaining flip-flops.

The PRNG uses distributed memory, configuring look-up tables to act as shift registers.
Its memory utilization is reported as “LUT as Shift Register” and table 6.9 list 90 instances
or 0.47 % of the total available. The PRNG is currently limited to 31 random bits per
clock cycle and its implementation uses a constant amount of resources, independent of
the module’s parameterization.
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Signal Processing Resources

The generation of random numbers within the PRNG, as well as the comparison to the
input values require add/subtract operations. The module utilized general logic slices
including their low-latency carry chains, rather than DSP slices. The 32-bit addition of
the PRNG has been split into multiple pipeline stages not to bottleneck the design at
higher clock frequencies. Overall, the signal processing is responsible for a significant
portion of the module’s logic resources reported in table 6.9. Since the PRNG is not
affected by any of the module’s parameters, its resource utilization is constant.

6.3.4 Rate Decoder
The rate decoder manages a set of counters, keeping track of the number of spikes neurons
generate during a simulation run. The spike counts are proportional to the rates, at
which the output neurons get activated. The values are provided as overall output of
the neural network and for the application to interpret. In our example, each of the ten
output neurons represents a digit and the application considers the digit with the highest
activity as the most likely one depicted on the handwritten input.

The module receives a sequence of Boolean values from the output layer. Each value
corresponds to a specific neuron, stating whether it generated a spike. For each input, the
module loads the value of the associated counter, increments it if it signals a spike, and
stores it back to memory. The process is repeated for every time tick until the simulation
ends. Finally, the counters are presented at the module’s output and subsequently reset
in preparation for another run.

Logic Resources

The rate decoder is based on a finite state machine that keeps track of the input, its
associated neuron and counter, as well as the current simulation tick. It also handles
resets and handshaking at the input and output interfaces. Table 6.11 lists the reported
logic utilization of the module in our example application. The amount of resources has
a logarithmic dependence on the number of neurons in the output layer and the amount
of simulation ticks. In comparison to other modules, it uses an insignificant amount of
logic resources.

Memory Resource

Each counter stores the amount of spikes occurred for each output neuron. Assuming
a spike could occur in every tick, a simulation lasting T ticks requires counters of
length log2(T + 1) to reflect the full values range [0, T ]. This number can be reduced
by shortening the simulation time or choosing a neuron model that guarantees spike
generation at a lower maximum rate than one per tick.

The design supports any number of counters, whose length can be either specified manually
or defaults to the worst-case amount of bits required for the given number of simulation
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6.3. Resource Utilization

+--------------------------------------------+------+-----------+-------+
| Site Type | Used | Available | Util% |
+--------------------------------------------+------+-----------+-------+
| Slice | 24 | 15850 | 0.15 |
| SLICEL | 19 | | |
| SLICEM | 5 | | |
| LUT as Logic | 25 | 63400 | 0.04 |
| using O6 output only | 20 | | |
| using O5 and O6 | 5 | | |
| LUT as Memory | 10 | 19000 | 0.05 |
| LUT as Distributed RAM | 10 | | |
| using O6 output only | 2 | | |
| using O5 and O6 | 8 | | |
| Slice Registers | 82 | 126800 | 0.06 |
| Register driven from within the Slice | 53 | | |
| Register driven from outside the Slice | 29 | | |
| LUT in front of the register is unused | 25 | | |
| LUT in front of the register is used | 4 | | |
| Unique Control Sets | 5 | 15850 | 0.03 |
+--------------------------------------------+------+-----------+-------+

Table 6.11: Logic utilization report of the rate decoder

ticks. In our example application, having 10 output neurons and a simulation time of 4096
ticks, the module instantiated 10 counters with a default length of log2(4096 + 1) = 13
bits.

The module is designed to use block RAM, but at very little capacities, hence the synthesis
tool prefers to utilize distributed memory. Instead of wasting 99.3 % of a RAM block,
it instantiates 10 look-up tables across 3 different slices. The relevant resources “LUT
as memory” are already included in table 6.11. Theoretically, 7 look-up tables yielding
32 x 14 bits in 2 slices should suffice, but, for reasons of optimization, the synthesis tool
spreads out resources to connect together short wires and prevent congestion during
routing.

Signal Processing Resources

All counters are processed sequentially, requiring only a single adder for conditional
incrementing. With the availability of low-latency carry chains, the module prefers
general logic resources over DSP slices. The resources utilized by the 13-bit adder of our
example application are minuscule and already included in table 6.11.
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CHAPTER 7
Conclusion

In this work, we discussed the possible advantages of using FPGAs to simulate spiking
neural networks. We presented a modular implementation, providing the network’s basic
building blocks, and also a hardware and software framework for embedding spiking
neural networks into real-world applications. Finally, we provided testing results, in
regards to performance, power consumption and resource utilization, based on an example
setup, built to classify handwritten digits of the MNIST database.

The presented results elaborate on how to calculate the performance of any given network
structure, based on the measurements of our example application. Furthermore they
provide means to estimate the required hardware resources and thus aid in the selection
of an appropriately sized FPGA. Some of the main takeaways regarding performance
and resource utilization of spiking neural networks on FPGAs are:

• The performance is limited by the amount of parallel structures that fit into the
available hardware resources of an FPGA. Our implementation, running at about
250 MHz on the lowest speed grade XC7A100T, takes one clock cycle per neuron
of the widest network layer to advance the simulation for one tick of time. This
turned out to be a good balance between performance and resource utilization. A
lower parallelization would degrade the performance to the level of microcontrollers,
while higher parallelization severely limits the size of the neural networks that can
be fit onto an FPGA.

• The resource utilization is the limiting factor when it comes to network size.
The weights defining the neuron’s connections can quickly consume the available
memory. Similarly, the many parallel circuits, computing the weighted sums, take
up a major portion of the logic resources. Whether a network fits into a specific
FPGA, depends on the number of interconnections and the bit-width of their
defining weights, rather than the amount of neurons. Using an XC7A100T, we
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7. Conclusion

could fit a 200-neuron layer when using 18-bit weights and a 400-neuron layer
with 9-bit weights, the limiting factor always being the interconnections to the
784-neuron input layer of our example application.

The results of this work may be extended by exploring alternative concepts. Besides the
implementation of additional neuron models, we are especially interested in comparing
the current time-driven approach to an event-based system. Furthermore an evaluation
of learning algorithms and their eligibility for an on-chip implementations would be a
major step towards autonomous, self-improving systems.
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