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Kurzfassung

Vom Beginn unseres Tages mit dem Trinken eines Glases Wasser, dem Packen unserer
Lunchbox oder dem Durchqueren einer Glastür, transparente Materialien sind allge-
genwärtig in unserem täglichen Leben. Die Identifizierung dieser Objekte kann jedoch
komplex sein, insbesondere unter unterschiedlichen Licht- oder Szenenbedingungen, und
noch herausfordernder für Roboter und deren autonome Wahrnehmungssysteme.

Die Herausforderung liegt in der Transparenz solcher Objekte. Diese Eigenschaft führt
oft zu äußerst fehlerbehafteten oder fehlenden Tiefeninformationen, was traditionelle
tiefenbasierte Ansätze unzureichend macht. Andererseits stoßen texturbasierte Methoden
auf Schwierigkeiten aufgrund von Reflexionen und der Notwendigkeit einer präzisen
Hintergrundmodellierung.

Wir addressieren diese Probleme mit einer Differentiable-Rendering Pipeline, um die
Position und Ausrichtung transparenter Objekte aus RGB-Bildern innerhalb einer Szene
robuster zu erkennen. Basierend auf 3D Modellen erstellt unsere Differentiable-Rendering
Pipeline eine 3D-Repräsentation einer Szene zu erstellen. Der Vorteil dieses Ansatzes
besteht darin, dass direkt im Bildraum unter Verwendung der Parameter der 3D-Szene
optimiert wird, basierend auf der Position und dem Aussehen von Objekten. Darüber
hinaus wird der Optimierer durch die Verwendung der 3D-Repräsentation angeleitet,
(deleted) realistische räumliche Anordnungen sicherzustellen (z.B. das Verhindern, dass
ein Objekt in einem anderen liegt). Die Kombination von 3D-Szenen und RGB-Bildern,
zusammen mit der Optimierung im Bildraum, erhöht die Flexibilität unseres Ansatzes
und ermöglicht Pose Refinement für transparente Objekte ohne zeit- oder datenintensivem
Training.

Im Rahmen dieser Arbeit werden drei Szenen aufgezeichnet und annotiert, um verschie-
dene Szenarien zu evaluieren. Diese Szenen dienen als wertvolle Daten zur Bewertung
und Validierung des vorgeschlagenen Ansatzes. Die Flexibilität und Effektivität unserer
Pipeline machen sie insbesondere in der Robotik anwendbar, in denen die Bestimmung
der genauen Position von transparenten Objekte entscheidend für viele Anwendungen ist.
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Abstract

From starting our day by drinking a glass of water, packing our lunch box, or passing
a glass door, transparent materials are prevalent throughout our daily lives. However,
identifying these objects can be complex, especially under varying lighting or scene
conditions, and even more challenging for robots or any autonomous perception system.
The challenge lies in the transparency of such objects. This property influences their depth
information, making traditional depth-based approaches insufficient; in such methods,
estimating the missing depth information is also a complex problem. Additionally, texture-
based methods face difficulties due to reflections and the need for precise background
modelling.

To overcome these issues, a pipeline is proposed that uses differentiable rendering to refine
the position and orientation of transparent objects from Red-Green-Blue (RGB) images
within a scene. The pipeline leverages Three Dimensional (3D) models and a differentiable
renderer to create a 3D representation of the scene of interest. The advantage of this
approach is that it optimizes directly in the image space using the parameters of the
3D scene, such as the position and appearance of objects. Furthermore, by utilizing
the 3D representation, the optimizer is guided to avoid unnatural collisions between
objects, ensuring realistic spatial arrangements (e.g., preventing one object from being
inside another). The combination of 3D scenes and RGB images, along with optimization
within the image space, enhances the flexibility of our approach, liberating it from the
need for extensive datasets and predetermined object shapes.

Three scenes containing transparent canisters are recorded and annotated to support this
thesis. These scenes serve as valuable data for evaluating and validating the proposed
approach. The flexibility and effectiveness of the proposed pipeline make it applicable
in various domains, including robotics and autonomous systems, where the accurate
position of transparent objects is crucial.
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CHAPTER 1
Introduction

Transparent objects are an integral part of our surroundings, ranging from glassware
and bottles to medical equipment like syringes and catheters. They are frequently
encountered in both laboratory and household settings, as their transparency offers
valuable insights into their contents. However, this very characteristic poses challenges in
their perception, as it introduces complexities associated with the reflection and refraction
of their surrounding environment [Bun21, LCL20].
In our daily interactions, we engage with objects by grasping them, holding them in our
hands, and using them for various tasks such as drinking or tidying up. In this procedure,
perceiving an object is the initial step, and our perception may vary based on factors
like the object’s surface material, lighting conditions, and other environmental influences.
Over time, we learn and adapt our perception based on these parameters, enhancing our
ability to recognize objects more accurately in the future. The next step is deciding on an
optimal angle, which allows for the most efficient manipulation, considering factors such
as stability, ease of control, and the object’s intended use. Similar to object recognition,
our skill in grasping objects is acquired through experience, adjusting our approach based
on previous attempts and outcomes, and learning the optimal angles and methods for
manipulation.
In contrast, the process for robots differs. Object perception for robots is a challenging
task, especially with environmental factors and the robot’s viewpoint influencing it.
This challenge becomes more pronounced with transparent objects. The transition from
perceiving objects to effectively manipulating them introduces a unique set of challenges
for robots. While recognizing objects is crucial, the subsequent step of accurately
manipulating them adds a layer of complexity. This complexity arises from the fact that
robots not only need to perceive objects precisely but also detect their pose, representing
their position and orientation. This challenge is particularly notable when dealing with
transparent objects, as robots must precisely identify them and understand how to grasp
them securely without causing damage or spillage.
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1. Introduction

(a) (b)

Figure 1.1: A robotic gripper, grabbing 1.1a a transparent jar from a correct angle, and
1.1b a glass of water from the wrong angle.1

Considering a scenario where a robot is tasked with tidying up a misplaced glass by picking
it up (shown in Figure 1.1a) and returning it to the sink. While humans instinctively
choose the most stable angle to grasp the glass from its side, this task presents challenges
for a robot, mainly if it contains hazardous liquid. Accurately estimating the pose of
the glass allows the robot to calculate the optimal grasping angle, ensuring the safe and
successful handling of the object and preventing undesirable consequences (Figure 1.1b).
Pose estimation in this context refers to determining the object’s orientation and location
relative to the robot’s viewpoint.

The difficulty in manipulating transparent objects arises from their visual properties.
Transparent objects lack distinct surface features and rely heavily on the background, as
shown in Figure 1.3. For example, in Figure 1.3a, poor lighting, thin glasses, and striped
patterns in the container affect glass visibility. The second glass, lying at the container’s
bottom, can be easily confused with surface reflections. Container textures dominate the
scene. In Figure 1.3b, lighting and container material impact the glass in the middle,
and its pose may be misinterpreted as if it is facing us.

Furthermore, transparent materials defy the Lambertian assumption [SLR+80] underpin-
ning optical 3D sensors, such as LiDAR and RGB-D cameras. This assumption relies on
objects reflecting light uniformly in all directions, resulting in consistent surface brightness
from any viewing angle. However, transparent objects disrupt this model by reflecting and
refracting light, shattering the Lambertian assumption. This disruption poses significant
challenges for obtaining accurate depth data from depth sensors, resulting in either invalid
data or unpredictable noise.

Figure 1.2 illustrates the two main reasons for corruption in depth information. Firstly
( 1.2a), the depth of specific regions is missing due to specular reflection on the surface

1 1.1a Sandra Liu and Edward Adelson, MIT (https://news.mit.edu/2022/flexible-way-grab-items-
feeling-0415) 1.1b https://spectrum.ieee.org/universal-jamming-gripper#toggle-gdpr
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(a) (b)

Figure 1.2: Cause of depth error of transparent material: 1.2a depth error is caused
by specular reflection; and 1.2b depth error is caused by light passing through the
transparent material. [XCY+20]

of a transparent object. Secondly ( 1.2b), instead of capturing the actual depth on the
object’s surface, the false distorted depth on the background behind the object is captured
because light passes through the transparent material and refraction occurs. This issue
further complicates the perception of transparent objects. For instance, considering a
scene from the Tracebot dataset (discussed in Chapter 4), illustrated in Figure 1.3c.
Apart from the background’s influence on the canister’s appearance, the corrupted depth
image in Figure 1.3d reveals that the canister’s depth information is notably absent from
the scene’s depth image. Depth image in this context refers to an image containing the
distance of each pixel in the observed scene from the camera view point.

To tackle this challenge, a method is proposed to refine the pose from RGB images
after a pose estimator. This approach ensures a more accurate pose, which can help
identify the best grasping angle for each object. To enable refining using RGB images, a
differentiable rendering is employed, which pertains to rendering engines that generate
images in a way that allows differentiation. The goal is to optimize rendered images
within the scene to align with observed segmentation, edges, and overall scene-level
plausibility. It liberates us from the necessity of depth information and the intricacies
posed by textureless objects.

This thesis focuses on the pose refinement of transparent objects. To achieve this goal, a
collection of loss functions is introduced that enables addressing this challenge through
inverse rendering, ultimately estimating and refining the Six Degrees of Freedom (6DoF)
poses of transparent objects. The 6DoF represents an object’s motion in 3D space, which
includes linear translation and axial rotation. Every loss function capitalizes on scene
information and enforces it as a constraint on the optimizer, guiding it to align the
positions of objects in both the rendered and authentic images.

3
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1. Introduction

(a) (b)

(c) (d)

Figure 1.3: Different applications of transparent object perception. 1.3a Two barely
visible glasses inside a grey container [SMP+19]. 1.3b Three circular glasses in a grey
container with a golden glow [SMP+19]. 1.3c A scene from the Tracebot dataset 4 and
how the background affects the perception of the canister. 1.3d The depth image of the
scene does not show any information about the canister.

1.1 Challenges and Research Questions
Transparent objects exhibit distinctive optical properties that set them apart from

opaque objects. Object perception relies on light reflecting from an object’s surface and
reaching our eyes. Transparency allows more light to pass through, resulting in a clearer
view of both the object and its background. As a result, transparent objects’ appearance
is heavily influenced by the surrounding scene through reflection and refraction. This
relationship is reversed for opaque objects.

The background’s texture affects transparent object perception in RGB images, which
is observable bleeding through (Figure 1.4a). The impact of the background on trans-
parent object perception varies based on the object’s shape, material, surface patterns,
orientation and background details (Figure 1.4b). The impact of orientation is noticeable
in Figure 1.4b, where a horizontally placed bottle is more visible than a vertical one.
Similarly, a star-shaped object appears denser and more noticeable than a square glass.
Moreover, the background can also affect object visibility, as seen in Figure 1.4d, where a
colourful background can blur object edges. The transparent object’s positioning, surface
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1.1. Challenges and Research Questions

(a) (b)

(c) (d)

Figure 1.4: Various factors affecting the perception of transparent objects are depicted
in the following figures. Figure 1.4a demonstrates the influence of background patterns
on the appearance of a transparent canister from the Tracebot dataset 4. Figure 1.4b
showcases the impact of different shapes and materials, while Figure 1.4c highlights the
role of lighting conditions and surface patterns. Lastly, Figure 1.4d illustrates the effect
of background color on object appearance. The final three scenes are sourced from the
Cleargrasp dataset [SMP+19].

pattern, and illumination of the scene (Figure 1.4c) can significantly impact its visibility,
making it more easily perceived than other objects when leaning on the container.

As shown, creating a comprehensive dataset covering all these variables is impractical,
time-consuming, and less adaptable when dealing with novel transparent object classes.
In contrast, collecting datasets for opaque objects is more straightforward due to the
limited impact of surface and background patterns on object perception. This absence
of a generalized dataset impacts the effectiveness of Neural Network approaches, which
are extensively employed. Neural networks require vast and diverse datasets for optimal
performance, as they are susceptible to insufficient data and tend to overfit. To ensure
robust generalization, it’s essential to encompass a broad spectrum of object shapes and
patterns.

Concerning depth images, the background’s depth information may be inadvertently cap-
tured instead of the object’s, or valid measurements may prove elusive when dealing with
transparent objects. In contrast, depth images enhance pose estimation and refinement
for opaque objects, contributing vital details that improve the method’s performance.

5



1. Introduction

However, this advantage does not apply to transparent objects. Efforts have been made
to rectify this limitation by addressing the depth information issue beforehand and
subsequently incorporating it into the estimation process. Yet, this remains a complex
problem, necessitating extensive time and experimentation.

A novel approach is used to utilize RGB images to address the limitations of relying on
extensive generalized datasets and the absence of depth information. This can be achieved
by leveraging the impacts of transparent objects on their environments, as depicted in
Figure 1.4. Despite their complexity, transparent objects influence their backgrounds,
providing valuable visual cues for pose estimation and refinement.By including this
influence in the rendered image, meaningful gradient information can be generated for
differentiable rendering. Consequently, this method becomes more adaptable and efficient
in scenarios where traditional approaches face limitations.

1.2 Approach and Contribution
Earlier in the previous section, the need for an approach that minimizes reliance

on extensive datasets, accommodates new objects effectively and minimizes contextual
factors affecting object visibility was highlighted. This thesis presents an innovative
solution for refining the pose of transparent objects to address these challenges. This
method employs a pipeline utilizing differentiable rendering. Differentiable rendering
enables calculating and propagating gradients for 3D objects through 2D images. This
technique generates a scene image for comparison with the actual captured view. Three
different loss functions have been formulated to define this pipeline, where each loss
represents metrics indicating deviation from the reference configuration, facilitating the
use of differentiable rendering for refinement.

The integration of loss functions with differentiable rendering allows us to optimize each
scene individually without requiring a learning algorithm. This process closely mirrors
how a human, relying on visual perception, comprehends an object by attempting to fit
their internal representation of the object to the observed scene [HZPB20]. Similarly,
when encountering an object, this method seeks similarities between the remembered
object and the observed one. These similarities involve imagining the object in a specific
position, aligning its shape in the scene, estimating the distance to the eye (or camera),
identifying edges, or recognizing its resting position on a table or other objects.

This approach leverages mesh and RGB information, combined with differentiable ren-
dering to simulate this perception. To get to the perfect match between the visible scene
and the object mesh, loss functions are defined to minimize the error from the perfect
match by utilizing image space and physical constraints to refine the object pose.

To summarize, the main contributions of this thesis are:

• The transparent objects’ pose refinement method is presented based on differentiable
rendering by defining loss functions using scene images, rendered images, and

6
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physical constraints.

• A dataset of transparent objects used in the Tracebot project has been recorded
and annotated.

1.3 Organization
This section provides an overview of the upcoming chapters’ structure. Chapter 2 offers a
brief introduction to the concept of inverse rendering, the BOP dataset and the evaluation
metrics employed in this study. It is followed by a literature review of related work.
Chapter 3 presents an in-depth explanation of our pose refinement pipeline using inverse
rendering techniques. Chapter 4 explores the transparent object dataset, outlining its
setup and the variety of objects it encompasses. Finally, Chapter 5 discusses various
design choices and the outcomes of our experimental evaluations.

7





CHAPTER 2
Background and Related Work

This chapter delves into the fundamental concepts and existing research relevant to the
proposed method for transparent pose refinement using differentiable rendering. It begins
by providing background information on Inverse Rendering, the BOP dataset, and the
Evaluation Metrics employed in this thesis. Subsequently, related works in three key
areas are reviewed: Pose Estimation, Pose Refinement, and Inverse Rendering.

2.1 Background
This section briefly overviews inverse rendering, explains the evaluation methodology used
for the experiments in Chapter 5, and delves into the BOP dataset, explicitly focusing
on T-Less for enhanced familiarity.

2.1.1 Inverse Rendering
Inverse rendering is a computational technique in computer vision and graphics that
entails estimating the three-dimensional properties of a scene or object based on a two-
dimensional reference image. Unlike traditional rendering, which generates 2D images
from 3D models, inverse rendering works bi-directionally. It starts by assuming 3D
structures, lighting conditions, and material properties that could produce a given 2D
image. If the assumption is incorrect, the method learns from the mistake and iteratively
refines the estimated 3D properties until they closely align with the observed 2D images.
This technique is particularly valuable for tasks like pose estimation, which is crucial
for determining objects’ precise position and orientation in a scene using RGB images.
Figure 2.1 illustrates the components of an inverse renderer (Mitsuba 2 [NDVZJ19]),
showcasing the iterative process of refining scene parameters to match a reference image
through rendering, loss calculation, and backpropagation loop. For this thesis, we used
Pytorch3D differentiable renderer [RRN+20].

9



2. Background and Related Work

Figure 2.1: Optimization loop of an inverse renderer (Mitsuba 2 [NDVZJ19]) refining
scene parameters in relation to a 2D reference image.

2.1.2 BOP Dataset

The Benchmark for 6D Object Pose Estimation (BOP) dataset is a comprehensive and
widely used computer vision benchmark designed explicitly for evaluating 6DoF object
pose estimation methods. The dataset contains diverse objects from different view points,
each associated with annotated ground truth poses. It provides RGB-D images, depth
maps, camera calibration information, and 3D models for each object. The dataset is
challenging due to its lighting conditions, object appearances, and location variability.
Therefore, It is extensively used to assess the robustness and accuracy of algorithms in
estimating the 6DoF pose of objects in cluttered and realistic scenes.

One subset of the BOP benchmark is T-Less [HHO+17], featuring thirty distinct industry-
relevant objects characterized by a lack of notable texture or discriminative colour. These
objects display symmetries and mutual similarities in shape or size; some are composite
structures. While this thesis focuses on only a few scenes from T-Less to establish
a baseline and ensure comparability with the current state of the art in object pose
estimation, it is noteworthy that the dataset does not include transparent objects.
Figure 2.2 showcases sample images of scenes one and two extracted from the T-Less
dataset used in this thesis.

2.1.3 Evaluation Metrics

In this section, we examine the evaluation metrics employed in this thesis.

10
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2.1. Background

(a) (b)

(c) (d)

Figure 2.2: Samples from the T-Less dataset [HHO+17] showcasing scenes one (a, b) and
scene two (c, d), each captured from distinct viewpoints.

Average Distance of Model Points. Average Distance of Distinguishable Model
Points (ADD) is the most widely used evaluation method introduced by Hinterstoisser
et al. (2013) [HLI+13]. This method evaluates the error between the estimated pose
P̂ and the ground truth pose P̄ of an object model M without indistinguishable views.
The ADD metric is computed as the average distance across corresponding model points,
expressed by the formula:

eADD(P̂ , P̄ ; M) = avg
xœM

ÎP̄x ≠ P̂xÎ2 (2.1)

In cases where the model M has indistinguishable views, the Average Distance of
Indistinguishable Model Points (ADI) error is calculated as the average distance to the
closest model point:

eADI(P̂ , P̄ ; M) = avg
x1œM

min
x2œM

ÎP̄x1 ≠ P̂x2Î2 (2.2)

A smaller ADD and ADI value implies a better alignment between predicted and
ground truth poses. An object model M is considered to have an indistinguishable
view ( [HMO16]) if:

11



2. Background and Related Work

÷P, ÷P Õ, ÷C : d(vc[PM ], vc[P ÕM ]) Æ ‘ · f(P, P Õ) Ø fl (2.3)

where vc[M ] ™ M is the part of the model surface visible from the camera C, the function
d measures a distance between two surfaces with poses P and P Õ, ‘ being the tolerance
controlling the level of distinguishable details, and fl being the minimum required distance
f between the poses. The threshold fl is required since they are many nearly identical
poses for which the surface distance is below ‘.

Maximum Symmetry-Aware Surface Distance (MSSD) . If the symmetry trans-
formations for a specific object are identified, the MSSD [DUB+17] enables the explicit
assessment of errors related to any equivalent, symmetrical pose of the model (indistin-
guishable views) by:

eMSSD(P̂ , P̄ , SM , VM ) = min
SœSM

max
xœVM

ÎP̂x ≠ P̄SxÎ2 (2.4)

where the set SM contains global symmetry transformations of the object model M and
VM is a set of the model vertices.

Maximum Symmetry-Aware Projection Distance (MSPD) . Similar to the
MSSD, but here the symmetrical pose of the model after projection to the 2D pixel space
is taken into account [HSD+20]:

eMSP D(P̂ , P̄ , SM , VM ) = min
SœSM

max
xœVM

Îproj(P̂x) ≠ proj(P̄Sx)Î2 (2.5)

where the function proj(.) is the 2D projection.

Visible Surface Discrepancy (VSD) . This metrics [HSD+20], considers the disparity
of the rendered depth images of the object under ground-truth pose p̄, donating D̄ and
estimated pose p̂, contributing D̂, by:

eV SD(D̂, D̄, V̂ , V̄ ) = avg
pœV̂ fiV̄

I
0, if p œ V̂ fl V̄ · |D̂(p) ≠ D̄(p)| < ·

1, otherwise
(2.6)

where the · is a misalignment tolerance.

Average Recall . In addition to considering multiple thresholds, this metric uses three
different error functions: the MSPD, the MSSD and the VSD. The average recall rates
over ten thresholds are computed per the error function. The overall performance score
is the average recall over the three resulting sub-scores. See [HSD+20] for a definition of

12



2.2. Related Work

the thresholds used per sub-score. For the calculation of the average recall, BOP toolkit1

is used.

2.2 Related Work
This section reviews the state-of-the-art methods for 6DoF pose estimation, a crucial step
preceding pose refinement, followed by pose refinement methods used for both opaque
and transparent objects. In the end, it finishes by reviewing approaches which use inverse
rendering in their methods.

2.2.1 Pose Estimation
Different methods for estimating poses are being studied in this subsection. Some
approaches focus on estimating object pose without leveraging the object model [GNZN23,
WSH+19, CLWX21, YCFB+21]. This section further explores techniques employing an
object model, aligning more closely with the approach discussed in subsequent sections
of this thesis.

Opaque Objects

The 6DoF object pose estimation challenge has been extensively explored in robotics
and computer vision. A prevalent strategy involves establishing 2D-3D correspondences,
subsequently applying a variant of the PnP/RANSAC algorithm [SSF+22, BR19, TSF18,
NGSL23, PPV19]. According to the BOP challenge, GDR-Net [WMTJ21] stands out
as the state-of-the-art pose estimation method. Alternatively, some approaches adopt
an end-to-end paradigm, directly predicting the pose as the network’s output [LWJ+18,
TCM15, XQL+19, DMW+21, LMM+22]. Another category utilizes the point cloud
representation of the scene, establishing a 3D-3D correspondence between scene points
and the object mesh [HB19, QHZ+23, HH, GLH+21]. However, this method is not
effective for transparent objects due to the noisy depth images, making scene point cloud
construction impractical.

Transparent Objects

Transparent objects have unique optical properties that make it difficult to estimate
their depth and recognize them accurately. This is because they reflect and refract
light in a way that produces variations in their appearance. As a result, detecting
and determining the position and orientation of transparent objects are complex tasks.
Some primary works have attempted to estimate the pose of a transparent object using
traditional feature extraction methods such as edge detection [LEB13, LR13] and SIFT
features [GHJYAJ19]. However, these approaches are less effective than using high-level
deep features. Later, researchers tried to eliminate depth image errors and enhance

1https://github.com/thodan/bop_toolkit
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2. Background and Related Work

the accuracy of the estimation. One approach [SMP+20] used a deep convolutional
network to adjust the depth image and combine the outputs of this network with mask
images, surface normals, and boundary detections. Another approach [XCY+20] used
surface norms, plane information, and UV maps combined with colour feature extraction
to estimate the object’s pose of interest. Other approaches extract 2D [BKC22] or
3D [LJAK20] key points from RGB or stereo images rather than using depth images.
Finally, Transnet [ZOC+22] explored the effectiveness of the category-level approach in
transparent object pose estimation and used a two-stage method to estimate the object’s
pose by reconstructing the depth image and feeding it to a transformer-based point cloud
embedding module. The latest method [CJS+23] used stereo cameras directly instead of
depth image reconstruction.

Overall, the field is moving from traditional feature extraction to deep learning-based
methods, focusing on addressing the depth estimation challenges of transparent objects
by reconstruction [CWX+23], enhancement, or using RGB stereo inputs.

2.2.2 Pose Refinement

Refinement methods for 3D pose are founded on the premise that the projection of a 3D
object model aligns with the object’s appearance in the image when the correct 3D pose
is applied. The following discussion will explore pose refinement methods for opaque and
transparent objects.

Recent research studies [ZSI19, SMD+18, XSNF17, SSH20, LWJ+18, MKNT18, CJS+23]
have shown that incorporating a pose refinement network after the initial pose estimator is
effective for 6DoF object pose estimation. Various methods, such as PoseCNN [XSNF17]
and AAE [SMD+18], utilize an ICP algorithm [Zha21] with depth information to realign
the known object model to the observed depth image. In contrast, others, like SSD-
6D [KMT+17] and HybridPose [SSH20], refine the pose by optimizing a modification of
the reprojection error.

Some other methods [ZLS14, LWJ+18, MKNT18, ZSI19, LCAS20] first render a 2D object
image based on the initial pose and then compare it with the observed image using pixel-
wise correspondence [ZLS14] or a CNN [LWJ+18, MKNT18, MKNT18, ZSI19, LCAS20]
to estimate the residual pose. However, many of these RGB-CNN-based methods
require extensive training data and may need to be more robust in practical scenarios.
Additionally, they rely on a cumbersome CNN for pose regression, sacrificing efficiency. A
later study [ILK+21] proposed a method that reuses image features extracted by a CNN
and defines a loss based on the texture colour on a pixel level to address these challenges.
However, these methods have limited performance as they cannot generalize to 3D poses
or 3D models that were not included in the training data. The final method we explored
is StereoPose [CJS+23], which specifically tackles the challenge of transparent objects.
This method utilizes the Parallax magnitude of a transparent object as observed in stereo
images. Parallax is affected by the shape and depth of the objects and represents the
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apparent shift in an object’s position relative to a background due to a change in the
observer’s viewpoint.

2.2.3 Differentiable Rendering
Differentiable rendering [MST+21, NDVZJ19, RRN+20, LB14] is a powerful concept that
provides inverse graphics capabilities by computing gradients for 3D scene parameters from
2D image observations. This novel technique recently gained popularity for 3D reconstruc-
tion [KLR18, NPLBY18, LLCL19], scene lighting estimation [ALKN19, LADL18], and
texture prediction [KTEM18, YHZ+18] as well as camera pose estimation [YCFB+21].

In the previous section 2.2.2, some methods employing rendering to compare the estimated
pose of an object to the reference image for refinement were mentioned. However,
they calculate the gradient separately from the renderer. Recent approaches based
on differentiable rendering have overcome this limitation [PBCC18, BEM23, WKY21,
GWZ+20]. These methods exploit knowledge about the 3D scene geometry and the
projection pipeline for optimization. The method [PBCC18] uses a renderer after an
encoder that estimates an object’s pose and category. They use the mask space to
refine the pose of an object by employing a category-level 3D object mesh instead of the
accurate mesh. NeMO [WKY21] proposes a pose refinement method by learning the
texture of a 3D model via contrastive loss. Another approach is using the feature space.
Authors in [BEM23] utilize a 2D feature correspondence between rendered and reference
images using a local gradient (Jacobian), although it only works for non-feature-less
objects. On the other hand, [GWZ+20] employs a small convolution network for feature
extraction, but their method is still limited to ideal scenarios. The most related work to
ours is Diff-DOPE [TWB+23], which uses RGB, mask, and depth images for calculating
their loss function. The idea behind this paper is very similar to this thesis. It is worth
noting that their work was published on September 30, 2023, indicating that both had
similar ideas.

15





CHAPTER 3
Inverse Rendering Pipeline for

Pose Refinement

This thesis proposes a novel solution to tackle the challenges associated with transparent
object pose estimation and refinement. This approach involves using a pipeline that
leverages differentiable rendering, producing a rendered view of the scene that can be
compared to the real scene captured view. By utilizing differentiable rendering, loss
definitions can be calculated, which, in its simplest form, quantifies the difference between
the reference and predicted images. Furthermore, the gradient of this loss can be computed
within the image space. This gradient provides valuable information that guides the
method in adjusting the predictions to minimize the loss and bring the predicted image
closer to the actual image. Calculating the gradient directly in the image space offers
several advantages. It eliminates the dependency on similar training images, reduces the
need for extensive training data, and enables the inclusion of new class objects without
prior exposure.

Figure 3.1 outlines the critical steps in the pipeline for a single image iteration in scene
1 containing a canister. The input combines mask, and depth images with the 3D
representation of the object. To address sensitivity to local changes and illumination,
the mask images were extracted from the RGB image through object detection methods.
Mask image in this context refers to a 2D image in black and white, showing the pixels
containing the object of interest in white. The iteration begins with an initial estimated
pose matrix (Figure 3.1(I)) representing the 6DoF pose (see details in Section 3.1).
This pose is applied to the object’s 3D representation, producing the transformed
3D representation (Figure 3.1 (II)). Passing through the renderer, this representation
generates the prediction mask image (Figure 3.1 (III)), forming the basis for the mask
loss calculation (Figure 3.1 (IV.b)). Combining the transformed 3D object representation
with the depth image yields a 3D scene representation (Figure 3.1 (IV.a)). This is used to
calculate the collision loss, constraining object positioning relative to the plane (Figure 3.1
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3. Inverse Rendering Pipeline for Pose Refinement

Figure 3.1: Overview of a single image iteration for scene 1. (I) The initialized optimized
pose matrix is applied to (II) the 3D object representation and passed through a differen-
tiable renderer to produce (III) a rendered mask image based on the current pose. Loss
is calculated between the rendered and reference masks (IV.b) for mask loss, and the
scene depth with the transformed 3D object (II) for collision loss (IV.a) is used to guide
the object onto the table. The losses flow back to refine the pose matrix (I) for the next
iteration. After n iterations, the optimized pose matrix is output.

(IV.a)), and others (for multi-object scenes). In Figure 3.1, the green part of the canister
(IV.a) represents the constraint area. In this particular iteration, the canister is shown
to be within the table, which is unrealistic. However, the canister will be forced to rest
on the table as desired in subsequent iterations. Following the loss calculations, the
gradient flows through the renderer and collision loss to the learned pose matrix (b.I) for
refinement, initiating the next iteration with the updated pose. The optimization loop
continues until it reaches a specified number of iterations (n) or a predefined minimum
loss value.

In the subsequent subsections, individual explanations for each part and component of
the pipeline have been provided.
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3.1. Initialization

3.1 Initialization

The optimization process commences with an initial pose, which can be obtained through
two approaches. It can either start with a pose provided by a pose estimation method,
which subsequently requires refinement or employ a heuristic process that begins with
one of the object’s most likely poses.

The heuristic approach begins with estimating the object’s potential positions within
the scene by calculating its stable poses. These stable poses represent configurations
where the object can stably rest on a surface, as opposed to falling. Depending on their
shape, objects may have multiple stable poses that are in close proximity. To simplify
the process, the Reverse Cuthill-McKee (RCM) algorithm [CM69] has been employed to
cluster these poses, selecting the most significant ones.

The RCM is a reordering strategy for sparse matrix computations to make them more
efficient for storage and processing. The fundamental principle of the RCM is to rearrange
the nodes of a graph so that the resulting adjacency matrix 1 has a lower bandwidth 2.
The problem has been reshaped into a graph format to group the stable poses using the
RCM algorithm. An adjacency matrix was constructed to accomplish this by categorizing
the angles with an angular difference of 15 degrees and excluding the in-plane rotation.
Later, by implementing the RCM algorithm, similar poses can be clustered, and the most
prominent ones for the initial pose would be chosen. Figure 3.2a showcases the different
stable poses for the drain tray object from Tracebot dataset 4.

The subsequent step in the heuristic initialization method involves positioning the object
as close as possible to the reference coordinates. By position of the object, values of the
t = [x, y, z] coordinate distances with respect to the camera frame is meant, which is
called a translation matrix. Estimating the translation matrix utilizes information from
the mask, depth, RGB images, and the camera’s intrinsic parameters. Algorithm 3.1
provides pseudocode for the heuristic estimation of x and y translations. Depending on
the object’s chosen stable pose, z translation would be set to the object height. The
inputs for this algorithm include plane coefficients (planeCoeff), mask image (maskImg),
and camera intrinsics matrix (camInsMatrix).

The plane coefficients and point cloud are obtained from the scene’s depth and RGB
using the RANdom SAmple Consensus (RANSAC) [Can81]. The initial step involves
determining the middle pixel within the masked area of the object. This choice ensures
an average point, offering a reliable estimate of the distance to the camera, even when
one object is partially obscured by another. The intersection of this middle point of the
mask image and the table plane is the x and y translation of the object. Subsequently,
the identified point is transformed into the camera frame and positioned on the plane.

1An adjacency matrix is a square matrix whose elements indicate whether pairs of vertices are
adjacent in the graph

2The bandwidth of a matrix counts the non-zero entries in each row and determines the maximum
separation.
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(a) (b)

Figure 3.2: The application of a heuristic for initializing the pose of an object in the
initial step. The left image showcases all stable poses for the drain tray object, while the
right image exhibits the canister’s initial pose. The canister’s pose is randomly selected
from stable poses and positioned using the algorithm outlined in pseudocode 3.1. Both
objects are from the Tracebot dataset 4.

Algorithm 3.1: Estimating the in-plane x and y translation of the object of
interest

Input: planeCoeff, maskImg, camInsMatrix
Output: xtranslation, ytranslation

1 xarray = x indexes of maskImg > 0 ;
2 yarray = y indexes of maskImg > 0 ;
3 y = mid(yarray) ;
4 x = mid(xarray) ;
5 p = inv(camInsMatrix).[x, y, 1];
6 pnorm = p;
7 t = (≠planeCoeff[≠1])/(planeCoeff[0] ú pnorm[0] + planeCoeff[1] ú pnorm[1] +

planeCoeff[2]) ;
8 xtrans = pnorm[0] ú t;
9 ytrans = pnorm[1] ú t;

10 return xtrans, ytrans;
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3.2. Loss Definitions

(a) (b)

(c) (d)

Figure 3.3: Representation of the multi-initialization process in the optimization, em-
ploying heuristics. Four stable poses are randomly selected and positioned within the
scene using Algorithm 3.1.

Figure 3.2b illustrates the initial optimization step for a single canister within a scene,
following the pseudocode 3.1 and by choosing one of the canister’s stable poses.

For the pipeline with heuristic initialization, the optimization process with various stable
poses is initialized to ensure a comprehensive exploration of stable poses and prevent
potential local optima during the optimization process(Figure 3.1). These poses are
individually optimized in sequence, and the best result is selected after the optimization
process.

3.2 Loss Definitions
The next step involves defining the optimisation objectives by determining the loss
functions. This section describes the loss definitions and calculations that are used in the
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3. Inverse Rendering Pipeline for Pose Refinement

Figure 3.4: Optimization loop output on six different iterations for the scene in Fig-
ure 3.1(a. II) (a. II). First row: predicted masks in each iteration. Second row:
corresponding mask losses. Third row: corresponding collision losses.

proposed method.

3.2.1 Silhouette Objective
The Silhouette Objective represents the most basic loss definition, mask loss. To compute
this loss, the optimized pose (or initial pose for the first iteration) and the object mesh
is provided to the renderer, generating a corresponding rendered image. The mask
images is rendered instead of RGB to reduce the sensitivity towards local changes and
lighting variations. The use of a mask image minimizes environmental influences on
object visibility. The loss would be calculated from the difference between the reference
mask (Iref ) and the estimated mask image(Iest)(eq 3.1), called difference mask.

dx,y = Iref ≠ Iest (3.1)

The pixel values of dx,y can be one of three possible values: 0, 1, or ≠1. A pixel value of
1 signifies that a portion of the object was not accurately estimated and is missing in the
estimated image, thereby contributing to the loss. On the other hand, a pixel value of
≠1 indicates that the estimated parts are incorrectly placed and appear in the estimated
image but not in the reference image. Lastly, a pixel value of 0 indicates that the parts
are estimated correctly and do not contribute to the loss or belong to the background.

Figure 3.5 presents the three components of mask loss calculation within a single optimiza-
tion step. Following the rendering of the estimation mask in Figure 3.5b, a comparison is
made with the reference mask displayed in Figure 3.5a, resulting in the difference mask
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3.2. Loss Definitions

(a) Reference mask (b) Estimation mask (c) Difference mask

Figure 3.5: Three components of the mask loss are depicted. Beginning with the reference
mask in Figure 3.5a, followed by the estimation mask after rendering in Figure 3.5b, the
resulting difference mask is illustrated in Figure 3.5c. This difference mask is subsequently
utilized to compute the mask loss.

illustrated in Figure 3.5c. This difference mask is subsequently employed for mask loss
calculation. Figure 3.4 showcases a sequence of optimization steps. Figure 3.4(I) displays
the estimation mask throughout the optimization steps, while Figure 3.4(II) exhibits
the corresponding mask losses computed from the reference mask and the respective
estimation masks.

As illustrated, the loss calculation depends on the target object’s pose, and the accuracy
of the 6DoF pose refinement is evaluated by comparing the rendered mask with the
ground-truth mask. This loss can be calculated through three different equations which
are called Sum of Squared Mask Difference Loss (LSSMD) (eq. 3.2), Sum of Positive
Squared Mask Differences Loss (LSP SMD) (eq. 3.3), and Symmetric Difference over
Union (LSDU ) (eq. 3.5) respectfully.

LSSMD, is defined as follows:

LSSMD =
ÿ

x

ÿ
y

d2
x,y (3.2)

By defining the loss from the above equation, the loss value is within the interval [0, 4t]
where t describes the number of pixels representing the object of interest in the mask
image. Therefore, the value of the loss depends on the object’s size in the mask image.

The following loss definition, LSP SMD , is defined as follows:

LSP SMD =
q

x

q
y dx,y[dx,y > 0]2q

x

q
y Iref

(3.3)

According to the definition in the numerator of the above equation, this loss function
only considers the parts of the object that still need to be correctly estimated from the
reference image. It disregards the parts in the estimated mask that are not found in the
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3. Inverse Rendering Pipeline for Pose Refinement

reference mask. In addition, the loss is normalized by dividing it by the object’s size in
the reference image, ensuring that the loss value falls within the interval [0, 1].

And the last loss definition, LSDU , is defined as follows:

Umask = Iref fi Iest (3.4)

LSDU =
q

x

q
y d2

x,y

Umask
(3.5)

This loss function is a normalized version of LSSMD, calculated using symmetric difference
over union. The numerator of this loss falls within the interval [0, 4t], where t represents
the number of pixels that make up the object. In contrast, the denominator falls within
the interval [0, 2t]. As a result, the loss value falls within the interval [0, 2].

3.2.2 Collision Objective

Real-world constraints dictate that objects rest on surfaces and should not float in the
air. In the case of multiple objects, they should not be positioned inside each other.
This constraint is addressed by defining a loss and employing differentiable rendering to
enforce realistic object placements.

To compute the collision loss (described in Algorithm 3.2), the initial step involves using
the depth image and the RANSAC [Can81] algorithm to detect the table and calculate
the plane’s frame matrix (Mplane). This computation transforms object points from the
camera frame (Pc≠frame) to the plane frame (Pp≠frame), after applying the estimated
pose matrix (Mest) to the points. This provides the distance of each object point to the
resting plane, which is assumed to be the table in this project. If an object point is inside
the plane, it will have a negative value. For each individual object (object b), its collision
with other objects (object o) in the scene is calculated. If a collision occurs, those points
also have negative values and are added to an array of all points which object b collides
with(Aobj≠signdis). Finally, the function calculates the collision array (Asigned≠dis) by
finding the objects each object collides with the most. In Figure 3.4(III), the position of a
canister relative to the plane is illustrated. In the first iteration (first image from the left),
the object appears to be inside the plane (and thus inside the table), which is unrealistic.
Consequently, in subsequent iterations, the collision loss acts to guide the object out of
the plane and onto its surface, ensuring contact and preventing the object from floating
in the air. In scenarios involving two objects, the loss ensures that the objects do not
intersect from within, avoiding a non-realistic situation. In Figure 3.6, the black points
represent the k-nearest neighbour points to the canister from the second object. The
vectors from the canister’s points indicate the direction of the distance between them
and points from the other object, verifying that these points are positioned outside the
canister.
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3.2. Loss Definitions

Algorithm 3.2: Calculating the signed distance of scene’s objects towards each
other

Input: Mplane, Pc≠frame, Mest

Output: Asigned≠dis

1 Pp≠frame = Mplane @ (Mest @ Pc≠frame);
2 if more than one object in the scene then
3 foreach object b in the scene do
4 Aobj≠signdis = Pp≠frame[b];
5 foreach object o other than b within the scene do
6 nearest = k nearest neighbouring points of the object o with respect to the object b;

7 distance = the distance of the respective points ;
8 if nearest points of object o inside object b then
9 distance = ≠1 ú distance; /* changing the sign of

distance for points inside */

10 end
11 Aobj≠signdis.add(min(distance));
12 end
13 Asigned≠dis.add(min(Aobj≠signdis);
14 end
15 end
16 return Asigned≠dis;

Figure 3.6: Signed distance between points of two objects. Black points show k-nearest
neighbours on the second object to canister points. Vectors from canister (red) points
represent the distance direction to the neighbour points, positioning neighbours outside
the canister surface.
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The collision loss is incorporated into the pipeline by adding it to any of the mask loss
(Lmask) calculations from the previous subsection. The combined loss is referred to as
the Masked Signed Distance Loss (LMSD):

LMSD = Lmask + “ ú min(Asigned≠dis) (3.6)

This equation considers the maximum collision distance between any two objects in the
scene. Here, “ is a coefficient that balances the mask loss and collision loss contributions.

3.2.3 Edge Objective
Edges are crucial for perceiving an object’s pose. Matching interior and exterior edges
while fitting the object’s mesh helps determine the best pose estimate. Therefore, when
the reference and estimated mask images have no overlap, the edge information is utilized
to guide the optimizer toward aligning the object with the reference edge map. To
generate the reference edge map, first, an edge image of the object is created, and then
the distance of each pixel to the nearest edge pixel is computed. This yields a 2D image
indicating the proximity of each pixel to the object’s correct position. Figure 3.7 displays
example edge map images. Later, the reference edge map image is multiplied by the edge
image from the rendered prediction to calculate the loss, measuring deviation from the
ideal position. However, this loss calculation is currently unstable and needs refinement.
Therefore, it is excluded from the pipeline representation earlier in this section and would
not be used in the experiments.
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Figure 3.7: The figure portrays the reference edge map images from scene 1 (top) and
scene 2 (bottom), indicating the proximity of each pixel to the nearest object edge within
the respective scenes.

27

-1 

.. 

.. 





CHAPTER 4
Transparent Object Dataset

This chapter presents an overview of the Transparent Object Dataset collected for the
Tracebot project1, which includes some of the scenes used in this thesis. The Tracebot
project, Traceable Robotic Handling of Sterile Medical Products, encompasses a variety of
transparent and non-transparent objects commonly found in medical laboratory settings.

As previously discussed in Chapter 1, the unique features of transparent objects, such as
reflecting and refracting, along with their shape, background, and overall scene setting,
significantly impact the perception of these objects. Furthermore, given the distinct
objects in the Tracebot project that are unavailable in other transparent object datasets,
we decided to record our dataset. As depicted in Figure 4.1, the dataset gathered for
this thesis contains two different objects: a canister and a drain tray. This dataset
comprises real-world scenes with objects’ ground-truth poses, which are beneficial for
pose estimation and refinement methods. The dataset includes object models, visible
masks, depth and RGB images, camera information, and scene parameters. It has three
distinct scenes, each featuring 104 diverse images.

Recording Setup The dataset was recorded using the Kuka LBR IIWA 14 R280
robotic arm (Figure 4.2) and the Intel RealSense D435 camera. The camera was mounted
on the robotic arm, with the objects placed on a table and the camera’s area of interest
focused on the objects within the scene (Figure 4.3). The recording involved four different
camera heights and a full 360-degree rotation around the objects, resulting in 26 images
per height and a total of 104 images per scene. Figure 4.4 shows that the camera heights
increase from top to bottom for the three scenes. The first scene featured a single canister;
the second included two canisters, and the third used two canisters placed on top of the
drain tray.

1https://www.tracebot.eu
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4. Transparent Object Dataset

Figure 4.1: Objects included in the Tracebot dataset. On the top, we show authentic
images of the mentioned objects. From left to right, there is a canister and drain tray.
On the bottom, we show the rendered CAD models for each object.

Figure 4.2: Kuka LBR IIWA 14 R280 robotics arm
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Figure 4.3: Scene recording setup. The camera, mounted on the robot arm, captures
images of the canister placed on the table, ensuring a clear focus on the object of interest.

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 4.4: The three different scenes are shown in this figure. Scene 1 containing a
single canister, scene 2 two canisters and scene 3 two canisters and a drain tray. From
top to down the height of the camera increases.
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(a) Camera views

(b) Camera view 26

Figure 4.5: Annotation process using 3D-DAT [SNS+23]

Object Annotation To annotate the 6D pose of the objects and generate object-wise
segmentation masks, we utilized the 3D-DAT tool [SNS+23]. We began by importing
the scene of interest and the object models and camera positions into Blender using
3D-DAT. Next, 3D-DAT created cameras with identical viewpoints to the actual images
(Figure 4.5a). We annotated each scene separately by switching our view from one camera
to another. Figure 4.5b shows the view from camera number 26, corresponding to image
26. In this scene, all three objects have already been annotated.
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CHAPTER 5
Results

This chapter investigates the various design choices and their associated limitations to
choose the best setting. Later, the most promising design option is compared to two
other state-of-the-art refiners according to BOP Challenge 2020.

5.1 Ablation Study - Noise
The following ablation studies aim to provide insight into various design decisions by
outlining the tradeoffs of each approach. This allows the selection of the optimal pipeline
configuration later. This section compares different loss calculation methods and performs
a convergence basin analysis. For both analyses, rotational and translational noise is
added along the three camera coordinate axes - the x-axis pointing left, the y-axis
upwards, and the z-axis into the image plane.

5.1.1 Mask Loss
Initially, the study begins with the central loss of our optimization, the mask loss. In order
to evaluate the effectiveness of various mask loss calculations as defined in chapter 3.2.1,
three types of losses were used - Sum of Squared Mask Difference Loss (LSSMD), Sum of
Positive Squared Mask Differences Loss (LSP SMD), and Symmetric Difference over Union
(LSDU ). The experiment involved adding noise to the translation matrix ([0, 0, 50mm])
and rotating the matrix along the x-axis by 45 degrees, which was then applied to the
ground truth pose. Subsequently, the outcomes across three scenes and two varying
learning rates (0.02, 0.015) were compared using the Average Distance of Indistinguishable
Model Points (ADI) 2.2 metric, where a lower value indicates a better configuration.

Figures 5.1, 5.2 and 5.3 present a comparative analysis of the performance of different
loss calculations for each scene in the dataset using the ADI metrics.
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5. Results

Figure 5.1: The ADI results of different mask loss calculations using two distinct learning
rates, 0.015 and 0.02 for scene 1. The pipeline was initialized with 50mm of translation
noise along the z-axis and 45 degree of rotation noise around the x-axis, applied to the
ground truth pose.

Figure 5.2: The ADI results of different mask loss calculations using two distinct learning
rates, 0.015 and 0.02 for scene 2. The pipeline was initialized with 50mm of translation
noise along the z-axis and 45 degree of rotation noise around the x-axis, applied to the
ground truth pose.
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5.1. Ablation Study - Noise

Figure 5.3: The ADI results of different mask loss calculations using two distinct learning
rates, 0.015 and 0.02 for scene 3. The pipeline was initialized with 50mm of translation
noise along the z-axis and 45 degree of rotation noise around the x-axis, applied to the
ground truth pose.

Figure 5.1 demonstrates that LSDU attains the best performance with a learning rate of
0.02 for scene 1. This is supported by its lower average ADI compared to the other losses
and the narrower range of ADI values for this configuration, although LSSMD performs
similarly well. It is clear that a learning rate of 0.015 is less consistent and more likely to
converge to local minima than a learning rate of 0.02. Moreover, the figure highlights
that LSP SMD (represented by the orange line) significantly underperforms. This can be
attributed to the definition of LSP SMD (see section3.3), which does not take into account
the insights that could be derived from the estimated mask. Consequently, it does not
yield as effective results as the other losses.

In scene 2, as depicted in Figure 5.2, LSDU with a learning rate of 0.02 outperforms other
configurations, while LSP SMD also underperforms for the same reason as for the scene
1. This figure also reveals that the second scene’s average ADI for all the configuration
exceeds the first. This is because the first scene is relatively simple, containing a solitary
object—the canister—whereas the second scene incorporates two objects, increasing
complexity.

The results for scene 3 depicted in Figure 5.3 highlight that generally mask loss is most
beneficial for the first two scenes, which exclusively feature the canister, as opposed to
the third scene, which contains two canisters and a drain tray and objects are in closer
proximity. This conclusion drives from the fact that the average ADI for the first two
scenes using the mask loss calculations is lower compared to the average ADI for the
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5. Results

(a) Reference mask image (b) Estimated mask image

Figure 5.4: Reference masks (left) and final estimated masks (right) corresponding to
image 12 from scene 3. The figure illustrates the challenges in pose refinement for this
scene, accentuated by the close proximity of objects. The bottom mask outlines the
individual positions of each object within the composite mask.

scene 3.

The third scene’s complexity is further depicted in Figure 5.4, which displays the outcome
of the final iteration for image number 12. All the mask loss calculations use the combined
mask image of the entire scene (shown at the top) to compute the loss. The bottom images
in the Figure 5.4 showcase the placement of each object within the mask individually. A
closer look at 5.4a versus 5.4b reveals that due to the loss calculation not considering
each object’s mask separately, the algorithm struggles to position the objects based on
the collective scene mask accurately. Consequently, it attempts to bridge the gaps in the
"white space" by broadening the objects to better match the white space in the reference
mask. As a result, as seen in 5.4b, the canisters are estimated to be closer to the camera,
thereby occupying a larger portion of the mask resulting in a smaller loss. At the same
time, the drain tray is positioned behind them.

After analyzing Figures 5.1, 5.2, and 5.3, it is evident that the box plots’ range using
LSDU with a learning rate of 0.02 is influenced by two factors. Firstly, the complexity
of the scenes increases from the first scene to the last, as discussed earlier. Secondly,
the camera height also plays a role. As mentioned in Chapter 4, the Tracebot dataset
includes recordings from four different camera heights for each scene. The average ADI
for the three scenes at different camera heights is presented in Table 5.1. The table
indicates that the average ADI increases for the second and third scenes as the camera
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5.1. Ablation Study - Noise

Figure 5.5: RGB (top) and mask (bottom) images of image 102 from scene 2. The mask
of the canister at the bottom of the mask image does not encode information about the
canister’s rotation.

height increases.

Height 1 Height 2 Height 3 Height 4
Scene 1 2.12 2.30 2.43 2.01
Scene 2 3.35 3.23 3.43 5.92
Scene 3 24.20 26.43 29.31 28.95

Table 5.1: The average ADI for the three scenes, recorded from four different camera
heights sorted from first as the lowest and fourth as the highest.

Figure 5.5 displays the RGB and mask images for image number 102 within the second
scene containing in recorded from the fourth camera height. As demonstrated, the mask
image fails to convey the rotation of the second canister since the two knobs atop the
canister are obscured due to the elevated angle of the camera. The other images that
exhibit a high ADI face a similar predicament since the pose of the canisters within
the estimation mask remains inaccurate despite the presence of white space in both
the estimation and reference masks. This discrepancy emphasizes that the mask image
alone may not provide sufficient information to accurately estimate an object’s pose,
particularly when the camera’s perspective leads to occlusions or lack of distinguishable
features.

Convergence Basin Analysis- Mask Loss

This test aims to determine the degree of error in translation or rotation matrices that
would still lead to convergence in mask loss and the accuracy of this convergence. Since
the mask loss did not work for the scene 3 and the LSDU with learning rate 0.02 was
performing better than other configurations, here the study in the first two scenes, using
Symmetric Difference over Union (LSDU ) and learning rate 0.02 is performed. The
influence of the noise is illustrated with both Average Distance of Distinguishable Model
Points (ADD) and Average Distance of Indistinguishable Model Points (ADI). Primarily,
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5. Results

Figure 5.6: The accuracy curve for the first two scenes having ADI (left) and ADD (right)
below 5mm showing response to rotation noise along the x-axis using LSDU .

ADI was used, but ADD is also considered here for a more comprehensive comparison,
despite minor differences between the canister knobs.

Rotation Noise along Axis - Mask Loss In this research, rotation noise was
incrementally introduced along the three axes (x, y, and z), ranging from 5 to 45 degrees
in 5-degree steps and 90 degrees. Quantitative results for both scenes regarding rotation
along the x-axis are displayed in Figure 5.6. This figure represents the percentage of
images with lower ADD or ADI than 5mm in both scenes combined.

Figure 5.6 reveals that assuming an indistinguishable view angle for the canister (using
ADI lower 5mm) leads to image convergence above 85% accuracy for both scenes when
noise is less than 45 degrees. Notably, scene 1 achieves superior convergence with accuracy
exceeding 98% for noise below 90 degrees, likely due to its lower complexity. However, the
ADD curve diverges from this trend, significantly dropping accuracy as noise increases
along the x-axis. For scene 1, accuracy remains above 60% with noise under 45 degrees,
but scene 2 falls below 50% for all noise levels. This difference can be attributed to the
camera’s viewpoint, where one object can partially obscure the other in scene 2(Figure 5.7
initial iteration). In such cases, the estimated pose of one object might converge to the
other’s position (Figure 5.7 final iteration), resulting in a high ADD error. ADI remains
lower in such scenarios because its error calculation considers the minimum distance
between estimated and ground truth object positions, favouring estimated object poses.
Additionally, the close proximity of the objects contributes to a lower ADI compared to
ADD.

Moreover, Figure 5.6 illustrates that the method maintains the correct pose without
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5.1. Ablation Study - Noise

(a) Initial iteratio (b) Final iteration

Figure 5.7: Convergence of image 1 from scene 2 - Initial and final iteration of object
mesh positions, with the final position closely matching the ground truth of the other
object for rotation noise of 45-degree along x-axis.

degradation upon initialization with no noise in both scenes. However, none of the images
from either scene would converge the rotation noise degree of 90 on the x-axis with
an ADD-ADI error below 5mm. In general, none of these scenes would converge for
90-degree noise along the x-axis. This is because, with a 90-degree rotation, there is
minimal overlap between the estimated and ground truth mask images, making it difficult
for our method to determine the direction towards the global optimum. Additionally,
the lack of extra information the mask loss provides restricts the direction towards the
global optimum. As a result, the optimizer moves randomly in search of the best pose,
leading to no convergence for 90-degree noise along the x-axis in both scenes.

Figure 5.8 shows the quantitative results for both scenes when rotating along the y-
axis. Along this axis, this method maintains the correct pose without degradation upon
initialization with no noise in both scenes. Comparing the ADI and ADD curves reveals
that the distinction between the knobs has the most significant influence along this axis,
as evidenced by the more noticeable difference between the two metrics. In addition,
compared to the rotation in the x-axis (Figure 5.6), the ADI error shows more robustness
to noise along y-axis, resulting in accuracies above 90% for rotation noise below 90 for
scene 2 and accuracies above about 99% for scene 1. The ADD accuracy curve does not
follow the same pattern. The accuracy drops to 0% for both scenes after the noise degree
is more than 20 for scene 2 and 40 for scene 1. The reason is that the canister’s diameter
is 45mm, and placing one knob’s estimated position on the other knob’s place would
result in a distance error of 40mm. Moreover, since rotation along the y-axis rotates the
canister in a way that the knobs’ positions would rotate, it is tough for the method to
differentiate these two knobs, resulting in displacing them since the overlap between the
ground truth and estimated mask images remains high and results in lower loss.

Rotation noise of 90 degree along the y-axis converges better than the x-axis, although it
is much more challenging than the other noise degrees and is still poor. For scene 1, the
ADI error below 5mm achieves the accuracy of 25% and for scene 2 the accuracy below
5%.
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Figure 5.8: The accuracy curve for the first two scenes having ADI (left) and ADD (right)
below 5mm showing response to rotation noise along the y-axis using LSDU .

Finally, the results with noise along the z-axis are examined as shown in Figure 5.9. This
axis displays greater noise robustness compared to the other two. Scene 1 with ADI
below 5mm reaches the accuracy of 100% for all the rotation noises below 90 degree
and 90% for the rotation noise 90 degree, which is remarkable compared to the other
axes. Same for the scene 2, rotation noise of 90 degree results in 60% accuracy for ADI
below 5mm. Noise along z, both high and low, leads to more mask overlap than noise
along the other axes, which leads to prime robustness and convergence along z. The
difference between the ADI and ADD in this axis is not as much as for the y-axis because,
by rotation along this axis, the knobs’ position does not get replaced by each other’s
positions. Their positions move along the axis. Therefore, there is less confusion.

An overall overview of all the rotation noises along all the axis, this method maintains the
correct pose without degradation upon initialization with no noise. As a general pattern,
firstly, none of the images from both scenes would converge the rotation noise degree of
90 on the x-axis. As discussed previously, a 90-degree rotation results in a minor mask
image overlap, making it challenging for the method to determine the direction toward
the global optimum. Secondly, the ADD value decreases for both scenes as the rotation
error increases. However, there are exceptions due to the randomness of the optimizer’s
direction. Thirdly, comparing the accuracy of both measures for the two scenes reveals
that scene 2 is more complex and more challenging to achieve high accuracy than scene 1.
Finally, comparing results across axes, decreasing robustness towards noise is found; first,
the z-axis, then the y-axis, and lastly, the x-axis. This implies the importance of mask
image overlap in locating global optima since z-axis rotations with the most overlap show
the highest robustness.
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5.1. Ablation Study - Noise

Figure 5.9: The accuracy curve for the first two scenes having ADI (left) and ADD (right)
below 5mm showing response to rotation noise along the z-axis using LSDU .

Translation Noise along Axis - Mask Loss In this analysis, translation noise was
incrementally introduced along the three axes (x, y, and z), ranging from 10 to 80 mm
in 10-mm steps. Quantitative results for both scenes regarding translation along the
x-axis is displayed in Figure 5.10. This figure shows the accuracy decreases after more
than 50mm of noise for both scenes. This is due to the method converging only when
there is an overlap between the reference and estimated mask images. The canister’s
diameter is 45mm. Hence, any noise beyond that results in no overlap. Consequently, the
optimizer drifts randomly and fails to find the optimal solution without image overlap
for all images. For scene 2, after 50mm of translation noise, the situation becomes even
more challenging. In this scene, there are two canisters placed close to each other. By
introducing translation noise along the x-axis to both objects, there are some views where
the initial pose of one object overlaps with the ground truth position of the other, leading
to converging on the position of the second object instead of the correct one. Figure
5.11 demonstrates the situation for image number 20, with an initial translation noise of
60mm.

For translation noise under 50mm, the correct pose can be obtained with an accuracy of
over 90%, where the scene 1 has an ADD less than 5mm. The accuracy for the same
situation with ADI metrics reaches 100%. However, for scene 2, although accuracy above
98% is achieved for ADI below 5mm and translation noise less than 50mm, the ADD for
the same situation has an accuracy below 60%. As previously discussed, the difference
is due to the definition of ADD-ADI and the two canister knobs, as well as the partial
coverage of one canister by the other due to the camera view. As observed, the translation
along the x-axis is not robust and depends on the objects’ diameters and mask overlap.
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5. Results

Figure 5.10: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to translation noise along the x-axis using LSDU .

(a) Initial iteratio (b) Final iteration

Figure 5.11: Convergence of image 20 from scene 2 - Initial and final iteration of object
mesh positions, with the final position closely matching the ground truth of the other
object for translation noise of 60mm along x-axis.
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5.1. Ablation Study - Noise

Figure 5.12: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to translation noise along the y-axis using LSDU .

Figure 5.12 shows the accuracy curves for the translation noise along the y-axis having
ADD-ADI below 5mm. For scene 1, the accuracy of the images converging with ADI
below 5mm reaches the accuracy of 100%. Moreover, for the ADD below 5mm reaches
the above 90%, this method can recover noise along the y-axis well for the first scene. For
scene 2, the accuracy curve for ADI below 5mm decreases by increasing the translation
noise, although it stays above 80% accuracy. For the accuracy curve having ADD below
5mm, the method can recover the correct pose with the accuracy below 60%. There is a
considerable gap between the ADD and ADI accuracy curve for the scene 2. The reason
behind this is that for some views like the one shown in Figure 5.13, after introducing
the translation error along the y-axis, since the initial mask images of each objects
has overlap with the ground truth mask images of the others, the method would not
necessary converges on the correct position or as it shows in the Figure 5.13 last iteration,
the method would try to just fit the objects within the scene in a way to have similar
pixel-wise white spaces in the estimated mask image as the ground truth mask image.
In the end, the method’s ability to withstand translation noise along the y-axis can
be observed in Figure 5.12. This is because the height of the canister is larger than
the applied noise, resulting in the mask’s overlap over all the noises and the method’s
convergence for all the scenes. However, it is essential to note that mask overlap plays a
significant role in the convergence of this method.

Figure 5.14 shows the accuracy curves for translation noise along the z-axis. The figure
displays the ADD-ADI values below 5mm. As it can be seen, scene 1 shows a similar
pattern to the noise along the y-axis for both ADI and ADD measurements. However, in
scene 2, the accuracy for images with ADI less than 5mm remains over 95%, and even
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5. Results

(a) Initial iteratio (b) Last iteration

Figure 5.13: Convergence of image 2 from scene 2 - Initial and final iteration of object
meshes positions for translation noise of 80mm along y-axis.

Figure 5.14: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to translation noise along the z-axis using LSDU .

after a translation noise of 60mm, the accuracy remains the same. On the other hand,
the accuracy curve for ADD values below 5mm behaves similarly to the translation noise
along the y-axis. This method is robust to translation noise along the z-axis, similar to
the y-axis because as we move along the z-axis, the ground truth and the initial mask
image have the most overlap. By getting closer to the camera, this is because the object
covers more pixels in the mask image. Conversely, by running away from the camera, it
covers fewer pixels. Therefore, the method can recover the error better than along the
x-axis.
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5.1. Ablation Study - Noise

5.1.2 Mask Loss Combined with Signed Distance
Here, the experiment continues by studying the Masked Signed Distance Loss (LMSD).
As defined in the previous chapter in eq 3.6, LMSD combines the mask loss with signed
distance with a balancing factor between the two. Based on the previous section, we
chose the Symmetric Difference over Union (LSDU ) to contribute as the mask loss since
it outperformed other mask loss calculations. The experiment starts by examining the
different balancing factors for the signed distance contribution to the whole loss (“) from
the interval [1, 0.001, 0.0001] by introducing noise to the translation matrix ([0, 0, 50mm])
and the rotation matrix along the x-axis with 45 degrees, applied to the ground truth
pose. Subsequently, the outcomes across three scenes and two varying learning rates,
[0.02, 0.015], are compared.

Figures 5.15, 5.16, and 5.18 present a comparative analysis of the performance of
different “ values for each scene in the dataset using ADI 2.2 metrics.

Upon examining Figure 5.15, we can see that LMSD with “ = 0.001 and learning rate
0.02 produced the best results for scene 1. It had a lower average ADI and a smaller
range. In contrast, using “ = 1 to value the signed distance resulted in an inconsistent
loss definition with a very high average ADI and long range. Similarly, for scene 2, LMSD

with “ = 0.001 also produced the best results with a lower average ADI and shorter
range, as shown in Figure 5.16.

In the third scene, results depicted in Figure 5.18, the method fails to converge with
LMSD, much like it did with LSDU (refer to Figure 5.3). Although incorporating the
signed distance into the Mask loss definition somewhat improves the outcome with LMSD

and “ = 1 at a learning rate of 0.015, the fundamental similarity between LMSD and
LSDU means the method still fails to converge. As previously discussed, scene 3 comprises
two canisters and a drain tray in close proximity, with the canisters mounted on the
tray. Emphasizing that physical constraints help the method for better convergence.
Interestingly, a lower learning rate produces better results for this more complex third
scene.

The Figure 5.18 illustrates that a better loss calculation can be achieved by combining
the LSDU with signed distance, which is also known as LMSD. This combination results
in a lower average and shorter range ADI for the first two scenes. However, it is essential
to note that this loss combination only addresses physical constraints and does not solve
the issue with the view, as seen in Figure 5.5.

Convergence Basin Analysis - Adding Signed Distance

Much like the Mask Loss 5.1.1, experiments are undertaken to evaluate the LMSD’s
ability to manage and converge with errors in translation or rotation matrices, as well as
to evaluate the accuracy of its convergence. Since the LMSD did not work for the scene
3 and the LMSD with learning rate 0.02 and “ = 0.001 was performing better than other
configurations, here studies the first two scenes, using LMSD with learning rate 0.02 and
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5. Results

Figure 5.15: The ADI results of different “ values in LMSD calculations using two distinct
learning rates, 0.015 and 0.02 for scene 1. The pipeline was initialized with 50mm of
translation noise along the z-axis and 45 degree of rotation noise around the x-axis,
applied to the ground truth pose.

Figure 5.16: The ADI results of different “ values in LMSD calculations using two distinct
learning rates, 0.015 and 0.02 for scene 2. The pipeline was initialized with 50mm of
translation noise along the z-axis and 45 degree of rotation noise around the x-axis,
applied to the ground truth pose.
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5.1. Ablation Study - Noise

Figure 5.17: The ADI results of different “ values in LMSD calculations using two distinct
learning rates, 0.015 and 0.02 for scene 3. The pipeline was initialized with 50mm of
translation noise along the z-axis and 45 degree of rotation noise around the x-axis,
applied to the ground truth pose.

Figure 5.18: This figure illustrates the ADI result of LSDU and LMSD for scene 1 and
scene 2
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5. Results

Figure 5.19: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to rotation noise along the x-axis using LSDU .

“ = 0.001. Both ADD and ADI are utilized for the noise influence illustrations. Despite
the minor differences between the canister knobs, ADD is also considered for a more
comprehensive comparison.

Rotation Noise along Axis - Adding Signed Distance In this experiment, rotation
noise was incrementally introduced along the three axes (x, y, and z), ranging from 5
to 45 degrees in 5-degree steps and 90 degrees. Quantitative results for both scenes
regarding rotation along the x-axis is displayed in Figure 5.19. It has been demonstrated
that it maintains the correct pose in both scenes when our pipeline starts with no noise
added to the ground truth, and we utilize the LMSD. Additionally, it does not converge
for the 90 degree rotation noise along the x-axis.

In the first scene results, for all rotation errors that are lower than 90 degrees, this
method achieves an accuracy above 99% for an ADI error below 5mm, which is similar
to the results obtained from the ablation study for mask loss 5.1.2 for rotation noise
along the x-axis. However, in this scene, the accuracy for ADD lower than 5mm has a
decreasing curve except for rotation noise of 35 degrees. This is interesting, especially
compared to the results of the accuracy curve adding rotation noise along the x-axis
using LSDU in the mask loss ablation study 5.1.2 (Figure 5.6), where the accuracy drops
below 80%, while here it remains above 80%. Table 5.2 presents the average ADD values
for the scene 1 where rotation noise of 35 degree along the x-axis was added. The table
shows the results for different camera heights. As illustrated, the maximum difference
in the results is below 0.30mm. In addition, the table demonstrates that using signed
distance positively affects having a lower error on a higher camera position for scene 1.
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5.1. Ablation Study - Noise

Loss definition Scene 1 Scene 2
H1 H2 H3 H4 H1 H2 H3 h4

LSDU 3.49 3.86 4.03 5.03 7.91 6.14 6.21 7.39
LMSD, “ = 0.001 3.60 3.55 4.01 4.79 7.52 6.80 6.19 7.61

Table 5.2: Average ADD with 35 degree rotation noise along x-axis for both scenes.

Figure 5.20: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to rotation noise along the y-axis using LMSD.

For the scene 2 results, the accuracy curve of ADI below 5mm shows a decreasing pattern
and achieves above 80% accuracy for the noise below 45 degree, which is similar to the
results of the rotation noise study along the same axis using LSDU . The results for the
ADD curve are also similar but with a higher decreasing slope. Specially for noise degree
of 35, where previously using LSDU method achieve the accuracy above 20% (Figure 5.6),
but with LMSD below 20%. The results of the average ADD values for this scene where
rotation noise of 35 degree along the x-axis is also presented in Table 5.2. The results
illustrate that for the second and fourth heights, the signed distance results obtain higher
ADD but lower ADD for the other heights. This inconsistency could also be due to the
optimizer’s random movements for finding the global optima.

Quantitative results for both scenes regarding rotation along the y-axis is displayed
in Figure 5.20. It has been demonstrated that it maintains the correct pose in both
scenes when our pipeline starts with no noise added to the ground truth, and we utilize
the LMSD. Similar to the ablation study using mask loss only (Figure 5.8), comparing
the ADI and ADD curves reveals that the distinction between the knobs has the most
significant influence along this axis, which was predictable. Adding signed distance to the
mask loss definition, only adds physical constrains and had no effect on distinguishing
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5. Results

Figure 5.21: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to rotation noise along the z-axis using LMSD.

the canister’s knobs better.

The accuracy of ADD drops to 0% for both scenes when the noise degree is more than 25
for scene 2 and 35 for scene 1. This occurs because the diameter of the canister is 45mm,
and if one knob’s estimated position is placed on the other knob’s location, there is a
distance error of 40mm. Additionally, since rotating along the y-axis causes the canister
to rotate in a way that the knob positions rotate, it becomes difficult for the method
to differentiate between the two knobs, resulting in displacement. The overlap between
the ground truth and estimated mask images remains high, resulting in a lower loss.
Rotation noise of 90 degrees along the y-axis converges better than the x-axis, although
it is much more challenging than the other noise degrees and is still poor. For scene 1,
an ADI error below 5mm achieves an accuracy of 25%, and for scene 2, the accuracy is
below 5%.

Lastly, the results for both scenes regarding rotation along the z-axis are examined, as
displayed in Figure 5.21. For the result of ADI below 5mm, scene 1 achieves the accuracy
of 100%, and scene 2 the accuracy above 90% for noise degree below 90. In contrast
to the other axis results on 90 degree rotation noise, both scenes achieve the accuracy
above 80% for the ADI below 5mm. For the ADD metrics, the accuracy drops for both
scenes. Upon comparing the ADD-ADI figures along this axis with the results presented
in the ablation study for mask loss (Figure ??), the similarities between the two loss
configurations are observed. It is noted that they do not have a significant impact on
convergence. However, it is emphasized that the mask overlap continues to play a crucial
role in the method’s convergence.
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5.1. Ablation Study - Noise

Figure 5.22: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to translation noise along the x-axis using LMSD.

Translation Noise along Axis - Adding Signed Distance In this research, trans-
lation noise was incrementally introduced along the three axes (x, y, and z), ranging
from 10 to 80 mm in 10-mm steps. Quantitative results for both scenes regarding trans-
lation along the x-axis, y-axis, and z-axis are displayed in Figures 5.22, 5.23, and 5.24
respectfully.

After analyzing the ADD-ADI values on the axes related to the figures presented in the
ablation study for mask loss concerning translation error, it has been observed that both
loss configurations are similar and do not have a significant impact on the convergence.
However, LMSD shows better robustness towards translation error. Nevertheless, it is
still essential for the mask overlap to be considered, as it plays a crucial role in the
method’s convergence.

5.1.3 Separate Object Optimization
In the previous two sections, the optimization process treated the scene as a whole without
distinguishing the position of each object within the mask images. This optimization
approach led to the convergence of one object into the position of others, as illustrated
in Figures 5.7 and 5.11. As a result, optimization was performed individually for each
object within the scene using objects’ separate visible mask images. Visible mask images
in this context refer to the mask image that shows the parts of an object that are visible
to the camera. If another object partially covers an object, the mask image of the second
object will not include the covered part. The same loss calculation as the previous part,
LMSD with gamma = 0.001, has been used for this experiment. Figure 5.25 illustrates
the ADI results of optimizing a scene united or per object using LMSD with “ = 0.001
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5. Results

Figure 5.23: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to translation noise along the y-axis using LMSD.

Figure 5.24: The accuracy curve for the first two scenes having ADI (left) and ADD
(right) below 5mm showing response to translation noise along the y-axis using LMSD.
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5.1. Ablation Study - Noise

Figure 5.25: The ADI results of optimizing a scene as a whole or per object using LMSD

with “ = 0.001 for all three scenes. The pipeline was initialized with 50mm of translation
noise along the z-axis and 45 degree of rotation noise around the x-axis, applied to the
ground truth pose.

for all three scenes. The pipeline was initialized with 50mm of translation noise along
the z-axis and 45 degree of rotation noise around the x-axis, applied to the ground truth
pose.

As shown, optimizing objects separately within a scene yields lower ADI for scenes two
and three. This technique does not affect scene one, which only contains one canister.
Moreover, convergence is not achieved for scene 3 as the loss calculation in both techniques
is identical. Consequently, the limitations of the pipeline continue with this technique.
Therefore, the convergence in case of no overlap in mask images is similar to the previous
subsection. Scene 1 is excluded from the experiments in this part since it only contains
one object. Therefore, the results are identical to the earlier sections.

The results of the robustness of optimizing each object separately towards rotation noise
compared to considering the scene as a unit is illustrated in Table 5.3 for scene two. This
table shows the accuracy of estimations having ADI-ADD below 5mm for the rotation
noise from 5 to 45 degree with 5 degree steps and 90 degree applied to all three axes.
Similar to optimizing the scene as a unit, this optimization does not converge when
applying a 90 degree rotation noise along the x-axis. However, it shows higher accuracy
for 45-degree noise rotation along this axis, which is due to solving the problem depicted
in Figure 5.7. Additionally, Table 5.3 shows that this configuration maintains the correct
pose by starting the pipeline with no zero.
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5. Results

Noise
(degree)

ADI ADD
x y z x y z

S U S U S U S U S U S U
0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00 46.15 42.31 100.00 99.04 99.04 100.00
10 99.03 99.04 100.00 100.00 100.00 100.00 30.76 41.35 35.57 26.92 50.96 52.88
15 93.26 91.35 99.03 99.04 93.26 98.08 40.38 30.77 7.69 6.73 55.77 47.12
20 93.26 88.46 99.03 99.04 94.23 96.15 39.42 22.12 1.92 3.85 46.15 39.42
25 84.42 90.38 96.15 99.04 92.30 97.12 37.50 31.73 1.92 0.00 36.54 41.35
30 93.26 91.35 92.30 97.12 94.23 95.19 25.96 23.08 0.00 0.00 32.69 20.19
35 90.38 91.35 92.30 95.19 94.23 94.23 23.07 18.27 0.00 0.00 25.00 25.96
40 90.38 89.42 91.34 93.27 92.30 93.27 21.15 24.04 0.00 0.00 22.12 13.46
45 80.76 77.88 90.38 90.38 92.30 89.42 14.42 15.38 0.00 0.00 19.23 12.50
90 - - 5.7 5.7 74.03 56.73 - - 0.00 0.00 0.00 0.00

Table 5.3: Illustrating the accuracy of estimations after rotational noise injection having
ADI-ADD below 5mm for two different optimization techniques. In this table, "S" stands
for separately optimizing objects and "U" for optimizing the scene as a unit.

As a general pattern, this optimization does not have a massive effect on the method’s
robustness considering ADI metrics compared to the previous optimization method.
However, it shows a higher accuracy in estimation regarding the ADD metrics, specifically
regarding rotation along the y-axis. The reason behind the minor difference between the
two techniques is that they have the same loss foundation. However, using distinct object
optimization ensures that the convergence of one object in the ground truth position of
the others does not occur, leading to more reliable results.

Regarding the injection of translation noise along the three axes (x, y, and z), ranging
from 10 to 60 mm in 10-mm increments, the accuracy of estimations having ADD-ADI
below 3mm for the separate object optimization technique are presented in comparison
to optimizing the entire scene as a unit in Table 5.4.

Comparing the results of two techniques along the x-axis shows that optimizing each
object separately positively increases the accuracy of estimations having both ADD-ADI
below 3mm. This optimization technique solves the problem of 60mm translation error
in situations like 5.11, yielding in more accurate estimation.

When comparing the results of two techniques on the y-axis, it was observed that
optimizing each object separately can increase accuracy, but only in some cases of applied
noise values. For instance, when there was 10mm translation noise along this axis, 57.69%
of all the separately optimized estimations had an ADI below 3mm. At the same time,
this value increased to 72% when optimizing the scene as a whole.

This occurs because when one object is covered by another, it impacts its mask image
by reducing the number of white pixels since the covered portion requires fewer pixels.
A similar effect occurs in the ground truth visible mask, leading to two mask images
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5.1. Ablation Study - Noise

Noise
(mm)

ADI ADD
x y z x y z

S U S U S U S U S U S U
0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 69.23 57.69 57.69 72.12 57.69 63.46 4.81 2.88 2.88 2.88 5.77 1.92
20 64.42 56.73 64.42 59.62 70.19 69.23 1.92 2.88 1.92 4.81 0.00 3.85
30 65.38 66.35 65.38 74.04 68.27 53.85 2.88 0.96 0.96 3.85 3.85 0.96
40 63.46 57.69 61.54 50.00 58.65 63.46 3.85 2.88 3.85 1.92 5.77 3.85
50 63.46 61.54 64.42 57.69 65.38 66.35 5.77 6.73 2.88 1.92 6.73 0.96
60 32.69 22.12 70.19 59.62 68.27 61.54 1.92 0.96 6.73 4.81 6.73 1.92

Table 5.4: Illustrating the accuracy of estimations having ADI-ADD below 3mm for
two different optimization techniques. In this table, "S" stands for separately optimizing
objects, and "U" for optimizing the scene as a unit.

(a) Separate optimization (b) United optimization

Figure 5.26: Contrasting the final iteration of separately optimizing objects within a
scene with the unified optimization of the entire scene in the convergence of image two
from scene 2, it is observed that optimizing the scene as a whole provides more accurate
pose estimation compared to separate optimization, for a translation noise of 10 mm
along the y-axis.

with minimal white space that the method needs to align. In such instances, the method
struggles to converge to the correct pose, resulting in higher ADD-ADI.

Figure 5.26 illustrates the final iteration of image two from scene 2 after applying 10mm
of translation noise along y-axis. The united optimization technique results in the correct
pose convergence, whereas the separate optimization technique encounters difficulties
and displaces the object upward.

Optimizing each object within the scene separately relies on having additional information
about the scene, the visible mask images of the objects. While this approach resolves
the issue of one object converging to the ground truth position of another, it also has
limitations, and its convergence is reliant on the distribution of white pixels in each
object’s visible mask image. Given that, on average, this approach produces more reliable
results, the subsequent two sections employ the separate optimization technique.
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5.2 Ablation Study - Heuristic
Thus far, as described in section 3.1, the method initialized by adding noise to the
ground truth poses to find the best modification for the pipeline using different loss
calculations. This chapter examines the result of starting the method using heuristic on
the three scenes using the best loss calculation from the previous section, LMSD with
“ = 0.001 using separate optimization technique. As explained earlier in section 3.1, the
initialization process simultaneously starts with four distinct stable poses for each object.
Ultimately, the best result is chosen as the output. Figure 5.27 shows the ADI result of
the three scenes in the Tracebot dataset. As can be seen, the method does not converge
in any of the scenes using heuristics.

The heuristic randomly selects a stable pose from all available poses for an object’s
initialization to keep it general. However, hypothesis clustering could perform more
effectively. Figure 3.2 showed the drain tray’s stable poses, for example. For the canister,
the situation is the same. Moreover, since lying down on the side is more stable than
standing, and the canister could lay down in any direction, the chances to choose the
standing stable pose are less than sitting on the side. As we discussed earlier in the
ablation studies in the previous sections, laying on the side, meaning 90 degree rotation
from the ground truth pose, leads to less mask image or no mask image overlap, which
makes the pipeline not converge.

Moreover, since the object can be in any position within the scene, we cannot know
with which stable pose to start the method. Having no other loss definition to guide the
optimizer towards the optimum solution leads to the method being unable to converge
in this situation. This pipeline is designed to refine the results obtained from a pose
estimator, and it cannot estimate the position of each object within the scene.

5.3 Comparison to State of the Art - BOP
This section evaluates the performance of the pipeline by comparing it to two state-
of-the-art pose refiners selected from the BOP challenge 2020, Pix2pose [PPV19] and
Megapose [LMM+22], on the multi-object scene T-Less dataset. Although the T-Less
dataset lacks transparent objects, it features textureless objects, which are particularly
challenging to refine regarding their poses. To facilitate comparison, Pix2pose is chosen
for its ability to handle textureless objects. Pix2pose’s refiner relies on an Iterative Closest
Point (ICP) method to minimize the difference between two point clouds by matching
objects’ point clouds obtained from RGB-D images and their point clouds constructed
from objects’ mesh after applying the estimated pose. Megapose is selected for its
ability to work with novel objects, which are objects that were not seen during training.
The Megapose refinement stage begins after the coarse pose estimation selects the best
template. Afterward, Megapose refinement generates RGB and depth images of each
object’s pose within the template and iteratively refines the estimation. The refinement
process involves choosing the template that yields the lower error. The refinement results
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Figure 5.27: The ADI result of heuristic initialization of the pipeline over three different
scenes.

of the pipeline would be compared with:

• Pix2pose refinement 1 over its estimator results 2. In this case, the transparent pose
refinement pipeline would start the refinement from the pose estimation results of
Pix2pose.

• Megapose refinement 3 over its estimator results 4. In this case, the transparent
pose refinement pipeline would start the refinement from the pose estimation results
of Megapose.

For this evaluation, eight scenes from the T-Less dataset are selected, specifically scenes
[1, 2, 3, 7, 9, 10, 11, 12] utilizing the ground truth visible masks. This selection is because
our method cannot handle objects resting on other objects. The signed distance algorithm
prevents physical impossibilities and enforces objects resting on the table. Therefore,
scenes as such are excluded from the comparison. The comparison between this pipeline
and the other methods is presented in Table 5.5.

This pipeline achieves an average recall of 0.17 when applied to Megapose [LMM+22]
coarse pose estimation, while Megapose’s refinement achieved a recall of 0.51. Similarly,

1https://bop.felk.cvut.cz/method_info/50/
2https://bop.felk.cvut.cz/method_info/49/
3rhttps://bop.felk.cvut.cz/method_info/122/
4https://bop.felk.cvut.cz/method_info/115/
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5. Results

MegaPose Estimator Pix2Pose Estimator
LMSD MegaPose LMSD Pix2Pose

Average Recall 0.17 0.52 0.22 0.56

Table 5.5: Comparative Analysis of Average Recall Across eight Scenes from the BOP
Dataset – This table showcases a side-by-side comparison of recall metrics: transparent
pipeline results following initialization with the Megapose pose estimator versus the
Megapose refiner, and transparent pipeline results post initialization with the Pix2pose
pose estimator as opposed to the Pix2pose refiner.

when applied to Pix2pose [PPV19] coarse estimation, this pipeline achieved an average
recall of 0.32, compared to Pix2pose ICP refiner’s recall of 0.58. The results illustrate
that the transparent pose refinement pipeline cannot reach the state-of-the-art level in the
context of opaque objects. However, RGB information is utilized in this pipeline, while the
other two methods employed depth information, significantly assisting in the refinement
process. They also trained a neural network model using natural and synthetic data.
Moreover, Megapose employed two refinement techniques sequentially, both requiring
training, while our approach was considerably less complex. The transparent pose
refinement pipeline is the first to use RGB images to refine transparent objects. No other
method exists for transparency refinement.
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CHAPTER 6
Discussion

This thesis designs a pipeline to refine transparent objects’ poses without relying on
depth images or object categories. This method can operate without the necessity of
large-scale data training and can handle novel objects. An ablation study is conducted
to select the best parameters and setup to determine the optimal configuration of the
method. This pipeline can work on a single image from an unseen new scene, using the
object’s mesh and mask images without prior training.

A series of experiments is conducted on the Tracebot dataset, which includes three
scenes. This dataset is recorded and described in detail in Chapter 4. The results of the
conducted experiments are as follows.

6.1 Mask Loss
Initially, the effects of injecting 45-degree rotation noise to the x-axis and 50mm translation
noise along the z-axis to the ground truth pose while applying each loss calculation is
evaluated. Additionally, two learning rates, 0.015 and 0.02, are chosen for each loss
calculation. The ADI metric is selected for measurement, given the identical canister
knobs. The results illustrate a lower average ADI for the LSDU with learning 0.02. LSDU

calculates the symmetric difference between the estimated and ground truth mask images
over their union. This experiment shows that the average ADI rises with increasing the
objects within the scene as the scene becomes more complex. In addition, this loss proves
inefficient in the third scene, where the objects are in close proximity with two canisters
mounting on top of a drain tray.

Later, an ablation study is conducted to measure the robustness of this loss against noise
along different axes. The approach shows the highest robustness to rotation noise along
axes for scene one. Regarding the ADI error with a 5mm threshold and rotation noise
below 45 degrees, over 98% of all estimates fall below that threshold. However, when
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exposed to a 90-degree rotational noise, the method exhibits non-convergence along the
x-axis, resulting in decreased accuracy along the other axes. The reason is that the
overlap of the estimated and ground truth masks influences the method’s convergence.

Regarding the translation noise in scene one along the x-axis, all estimates fall below
the 5mm ADI error threshold with translation noise below 50mm. Above 50mm, if the
error exceeds the object width and there is no overlap between the ground truth pose
and the initial pose, the method’s accuracy decreases and converges randomly. However,
for the other two axes, the method shows robustness and results in ADI below 5mm for
all estimations since the noise along the y and z axes maintains the overlap between the
ground truth pose and the initial pose.

The second scene is more complex than the first one. As the number of objects per
scene increases, this method’s accuracy is significantly influenced by factors such as the
orientation and position of the objects, along with the initial pose error. With a 5mm
ADI error threshold and rotation noise below 45 degrees, over 90% of estimates are within
the threshold. Upon exposure to a 90-degree rotational noise, similar to scene one, the
method fails to converge along the x-axis, leading to decreased accuracy in the other
axes.

Regarding the translation noise in scene two along the x-axis, above 80% of all estimates
fall below the 5mm ADI error threshold with translation noise below 50mm. Above
50mm, similar to scene 1, if the error exceeds the object width and there is no overlap
between the ground truth pose and the initial pose, the method’s accuracy decreases
and converges randomly. In contrast to the first scene, rotating along the y-axis is more
challenging in this scene because one object’s initial position may overlap with the other’s
mask image, leading to false convergence. The translation noise smaller than 80mm
along the y-axis has ADI below 5mm for at least 80% of all estimations. The method is
most robust along the z-axis for noise smaller than 80mm in scene 2, with over 95% of
instances having an ADI below 5mm.

6.2 Mask Loss combined with Signed-distance
The signed distance loss calculation is introduced to prevent unrealistic object collisions
and ensure a realistic spatial arrangement of object positions. This loss ensures that
objects rest on the plane rather than floating in the air and aims to avoid placing one
object within another. This calculation is added to the LSDU with a balancing factor of
“. Similar to the mask loss, the effects of injecting 45-degree rotation noise to the x-axis
and 50mm translation noise along the z-axis to the ground truth pose are evaluated on
the loss definition while applying the three “ values. The three gamma values chosen
are [1, 0.001, 0.0001]. Two learning rates, 0.015 and 0.02, are chosen for each setting.
The results illustrate a lower average ADI for “ = 0.001 with learning rate of 0.02. The
average ADI for the first two scenes is lower than the LSDU . However, this loss also
proves inefficient for the third scene since the signed distance definition cannot handle
objects mounted on top of each other, not resting on the plane. Regarding the noise
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injection, the loss behaves similarly to the LSDU but shows more robustness for scene
one.

In general, if there is no overlap between the ground truth and the initial estimate, the
method encounters failure because it cannot leverage object-specific features, given that
the initial estimate is utilized to identify the image region.

6.3 Separate Object Optimization
In mask loss and mask loss combined with signed distance experiments, the optimization
process treats the entire scene as a singular entity without accounting for the individual
positions of each object within the mask images. This approach results in the convergence
of one object into the position of others, as demonstrated in Figures 5.7 and 5.11.
Consequently, optimization is conducted separately for each object within the scene
using their respective visible mask images. In this context, visible mask images refer
to the mask image that depicts the parts of an object visible to the camera. If another
object partially obstructs an object, the mask image of the second object will exclude
the covered portion. The same loss calculation, LMSD with gamma = 0.001, has been
used for this experiment.

While this optimization technique effectively addresses the issue of one object converging
to the position of another and, on average, yields results with lower ADI-ADD, it
encounters limitations (Figure 5.26). This is because when one object is covered by
another, it affects its mask image by reducing the number of white pixels since the
covered portion requires fewer pixels. A similar effect occurs in the ground truth visible
mask, resulting in two mask images with minimal white space that the method needs to
align. In such instances, the method struggles to converge to the correct pose due to the
limited information derived from the mask image.

6.4 Heuristic Initialization
This section evaluates the outcomes of the pipeline initiated using a heuristic. The
heuristic relies on the stable poses of objects to initialize their rotation matrices and
employs the objects’ mask images and camera intrinsics for initializing the translation
matrices. The initialization process starts with four distinct stable poses for each object
simultaneously. Utilizing the separate optimization technique, this approach is tested on
three scenes using the best loss calculation identified in the previous section, LMSD with
“ = 0.001. However, it is found to be insufficient for all three scenes.

The heuristic randomly selects a stable pose from all available poses for an object’s
initialization to maintain generality. For instance, a canister lying down on its side is
more stable than standing, and the canister could assume any orientation while lying
down. Therefore, the likelihood of selecting the standing stable pose is lower than lying on
the side. Ablation studies in preceding sections indicate that lying on the side, implying
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a 90-degree rotation from the ground truth pose, results in less mask image overlap
or no mask image overlap, preventing the pipeline from converging. Determining the
appropriate stable pose to initiate the method becomes challenging since the object can
be oriented differently in each scene. The absence of another loss definition to guide
the optimizer toward the optimal solution prevents the method from converging in such
situations. Nevertheless, it is essential to note that this pipeline is designed to refine
results obtained from a pose estimator and does not have the capability to estimate the
precise position of each object within the scene.

6.5 Comparison to State of The Art
In the evaluation of the T-Less dataset, this method achieves an average recall of
0.17 when applied to Megapose [LMM+22] coarse pose estimation, while Megapose’s
refinement achieved a recall of 0.52. Similarly, when applied to Pix2pose [PPV19] coarse
estimation, this method achieves an average recall of 0.22, compared to Pix2pose ICP
refiner’s recall of 0.56. Even though these results are not competitive with current
methods, not leveraging depth is a more complex problem, mainly due to scale and size
invariance. However, this method can potentially close the gap towards RGB-D methods.
Here, the RGB information is utilized, while the other two methods employ depth
information, significantly assisting in the refinement process. Megapose [LMM+22] and
Pix2pose [PPV19] also trained a neural network model using real-world and synthetic data.
Moreover, Megapose employed two refinement techniques sequentially, both requiring
training, while our approach was considerably less complex.

6.6 Limitations
The success of this pipeline depends on the degree of overlap between the estimated and
ground truth masks. In cases where there is no overlap, the method fails to converge.
Consequently, the pipeline’s effectiveness is influenced by the scenes’ arrangement, the
relative distances between objects, and their impact on the mask image. To overcome the
abovementioned limitations, an edge objective is introduced to guide the method towards
the object’s location. Unfortunately, this objective proved unstable and incompatible
with the other two objectives—silhouette and collision—that formed the foundation of
our loss computations.

Furthermore, the ablation studies conducted on scene 3 in preceding sections reveal that
the method struggles when objects are positioned on top of each other rather than on
a table. This limitation arises from the definition of signed distance, which forces each
object to rest on the table, preventing them from floating in the air.

Moreover, the camera view angle can be misleading, resulting in imprecise estimations of
an object’s pose, particularly when the object’s shape varies across different sides. For
example, as depicted in Figure 5.5, the placement of canisters in the estimation mask
is inaccurate due to the camera view angle covering the knobs of the canisters. This
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inconsistency occurred despite the pixel-by-pixel similarity between the estimation and
reference mask images.
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CHAPTER 7
Conclusion and Future Work

The identification and pose estimation of transparent materials create significant chal-
lenges for robots and autonomous systems due to their reflective and refractive properties.
Traditional depth-based methods are insufficient for transparent objects as their depth in-
formation is corrupted by transparency. Similarly, texture-based methods face challenges
due to reflections and the necessity for precise background modelling.

To overcome the challenges posed by transparent objects, this thesis introduces a novel
pipeline that uses differentiable rendering to refine the position and orientation of
transparent objects from RGB images. The pipeline utilizes 3D models and a differentiable
renderer to generate a 3D representation of the scene, optimizing directly within the
image space using the parameters of the 3D scene. By adding physical constraints, the
pipeline guides the estimations towards more realistic spatial arrangements, avoiding
implausible object collisions. An advantage of this approach is its lack of dependency on
large-scale training datasets, making it particularly attractive for robotics applications,
such as scene-understanding tasks for tidying up.

The pipeline is evaluated on the Tracebot dataset, containing three scenes with transparent
canisters, recorded and annotated for this thesis. Results indicate that the method’s
convergence depends on the overlap between estimated and ground truth mask images.
For the first two scenes, with an ADI threshold below 5mm, the pipeline achieves over 95%
estimation convergence above that threshold. When evaluated on selected scenes from the
T-Less dataset, the pipeline achieves an average recall of 0.17 using the pose estimation
results of Megapose [LMM+22] and 0.22 using the pose estimation of Pix2pose [PPV19].

However, the method’s success depends on scene arrangement, object visibility, and
camera perspective. Although it bridges the gap towards RGB-D general refinement
methods, introducing an edge objective-based loss could potentially enhance accuracy to
levels comparable to state-of-the-art methods. Despite some limitations, such as potential
inaccuracies in pose estimation due to occlusions or lack of distinguishable features, the
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pipeline’s flexibility and effectiveness make it a valuable tool in domains where accurate
positioning of transparent objects is essential.

While the current pipeline performs well on more straightforward scenes like the Trace-
bot dataset, future improvements could extend its capability to handle more complex
scenes. The flexibility of the loss definition-based pipeline allows for easy adaptation and
improvement by defining new loss calculations.

One possible direction is exploring other rendering techniques, like detecting interior
edges, as an additional cue to enhance the robustness of pose alignment, particularly in
cases of heavy occlusion. This approach could contribute to more robust pose alignment
in general. Furthermore, the signed distance design approach, which enforces objects
to rest on the table, could be enhanced to handle objects resting on each other or the
table. This improvement could better manage complex scenes, such as scene three from
Tracebot, where two canisters are mounted on a drain tray.

Another avenue for exploration is rendering RGB images in addition to mask images.
This could provide valuable additional information considering the environment’s impact
on object visibility and could be incorporated into the pipeline as a new loss definition.
However, this approach requires object meshes to contain information about object
transparency to render RGB images.

In summary, while the current pipeline shows promise in refining the pose of transparent
objects, these future directions have the potential to enhance its performance and
applicability significantly. Exploring these avenues could bring us closer to solving the
complex problem of transparent object pose estimation in diverse real-world scenarios.
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Glossary

depth image An image containing the distance of each pixel in the observed scene from
the camera view point. 5

manipulation Robotic manipulation refers to the ways robots interact with the objects
around them. 1

mask image A mask image refers to a two dimensional image in black and white,
showing the pixels containing the object of interest in white. 17–19, 22, 23, 26, 37,
39, 44, 50, 51, 61

renderer A renderer in computer graphics refers to a software component or engine
that takes 3D models and scene descriptions as inputs and generates 2D images
from the desired viewpoint. vii, 9, 15, 17, 18, 22

scene 1 First scene within the Tracebot dataset containing only one canister. 17, 18,
27, 31, 34, 35, 37–41, 43, 45–50, 53, 60, 67, 68

scene 2 Second scene within the Tracebot dataset containing two canisters. 27, 31, 34,
35, 37–47, 49, 50, 55, 60, 67, 68

scene 3 Third scene within the Tracebot dataset containing two canisters and a draintray.
31, 35–37, 45, 47, 53, 62, 67, 68
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Acronyms

LMSD Masked Signed Distance Loss. 26, 45–53, 56, 58, 61, 68

LSDU Symmetric Difference over Union. 23, 24, 33, 35–38, 40–45, 47–49, 59–61, 67, 68

LSP SMD Sum of Positive Squared Mask Differences Loss. 23, 33, 35

LSSMD Sum of Squared Mask Difference Loss. 23, 24, 33, 35

2D Two Dimensional. 6, 9, 10, 12–15, 17, 26

3D Three Dimensional. vii, 2, 3, 6, 9, 10, 13–15, 17, 65

6D Six Dimensional. 14

6DoF Six Degrees of Freedom. 3, 10, 13, 14, 17, 23

AAE Augmented Auto Encoder. 14

ADD Average Distance of Distinguishable Model Points. 11, 37–44, 48–55, 61, 67–69

ADI Average Distance of Indistinguishable Model Points. 11, 33–57, 59–61, 65, 67–69

BOP Benchmark for 6D Object Pose Estimation. 9, 10, 13, 33, 56

CNN Convolutional Neural Network. 14

Diff-DOPE Differentiable Deep Object Pose Estimation. 15

GDR-Net Geometry-Guided Direct Regression Network. 13

ICP Iterative Closest Point. 14

ICP Iterative Closest Point. 56, 58, 62

LiDAR Laser imaging, Detection, and Ranging. 2
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MSPD Maximum Symmetry-Aware Projection Distance. 12

MSSD Maximum Symmetry-Aware Surface Distance. 12

NeMO Neural Mesh Models for 3D reasoning.. 15

PnP Perspective-n-Point. 13

PoseCNN Pose estimation using Convolutional Neural Network. 14

RANSAC RANdom SAmple Consensus. 13, 19, 24

RCM Reverse Cuthill-McKee. 19

RGB Red-Green-Blue. vii, 3, 4, 6, 9, 14, 15, 17, 19, 22, 29, 37, 56, 58, 62, 65–67

RGB-D Red-Green-Blue-Depth. 2, 10, 56, 62, 65

SIFT Scale-Invariant Feature Transform). 13

SSD Single Shot multiBox Detector. 14

T-Less Texture-Less objects. 9–11, 56, 62, 65, 67

VSD Visible Surface Discrepancy. 12
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