
Towards Parallel Algorithms for
Abstract Dialectical Frameworks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Mathias Hofer, BSc
Matrikelnummer 01226806

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Mitwirkung: Ass.Prof. Dipl.-Ing. Dr.techn. Johannes Wallner

Senior Lecturer Dipl.-Ing. Dipl.-Ing. Dr.techn. Wolfgang Dvořák

Wien, 30. Jänner 2022
Mathias Hofer Stefan Woltran

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Mathias Hofer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. Jänner 2022
Mathias Hofer

iii

Danksagung

Ich möchte mich ganz besonders bei meinen Betreuern Stefan Woltran, Johannes Wallner
und Wolfgang Dvořák bedanken. Diese sind mir während der Entwicklung des Systems
und dem Schreiben der Arbeit mit Feedback und Ideen zur Seite gestanden.

Außerdem möchte ich mich bei meinen Eltern Lucia und Gerhard Hofer, die mir das
Studium ermöglichten und mich stets unterstützten, bedanken. Sie behielten auch trotz
des etwas in die Länge gezogenen Masterstudiums ihre Geduld.

Ebenfalls möchte ich meiner Schwester Helene Hofer fürs Korrekturlesen danken.

Weiters möchte ich meinen Freunden ganz herzlich dafür danken Geduld und Verständnis
für das ein oder andere aufgrund der Masterarbeit abgesagte Treffen bewiesen zu haben.

Abschließend möchte ich mich bei allen bedanken, die auf irgendeine Weise zum Gelingen
meiner Masterarbeit beigetragen haben.

v

Kurzfassung

Abstract Dialectical Frameworks (ADFs) sind eine natürliche Verallgemeinerung von
Dung-style Argumentationsframeworks. Sie beschränken sich nicht auf eine Angriffsbezie-
hung zwischen Argumenten, sondern erlauben unter anderem auch die Definition von
unterstützenden Beziehungen zwischen Argumenten. Diese Generalisierung hilft zwar in
Hinblick auf die Ausdrucksstärke des Formalismus, hat jedoch negative Auswirkungen
auf die Komplexität der Berechnung. Es gibt diverse Arbeiten um diese erhöhte Komple-
xität algorithmisch zu bändigen, bis dato jedoch kaum Parallelisierungsansätze. Das Ziel
dieser Arbeit ist es diese Lücke zu schließen und zu zeigen, dass Parallelisierung einen
praktikablen Weg für die Modernisierung von ADF Systemen darstellt. In Hinblick auf
aktuelle und künftige Entwicklungen im Bereich der Hardware, erachten wir diesen Weg
nicht nur als praktikabel, sondern auch als notwendig.

Erkenntnisse dieser Arbeit sind nicht nur theoretischer Natur, sondern resultieren in
einem konkreten ADF System. Dieses System ermöglicht gängige Berechnungen diverse
ADF Semantiken wahlweise in klassischer sequentieller oder aber in paralleller Manier.
Das System baut auf einem algorithmischen Modell auf welches auf der Identifikation
geteilter komputationaler Bausteine der verschiedenen Semantiken beruht. Diese Bausteine
müssen nur einmalig implementiert werden, können dann aber von mehreren Semantiken
gleichermaßen genutzt werden. Viele dieser Bausteine können außerdem mit nur wenigen
Änderungen für die parallele Ausführung genutzt werden.

Um den Vorteil der Parallelisierung zu veranschaulichen werden Resultate aus Experi-
menten vorgestellt und diskutiert. Diese Diskussion bezieht sich auf technische Probleme
und potentielle Lösungen ebendieser. Abgeschlossen wird die Arbeit mit einem Über-
blick über mögliche künftige Optimierungsmöglichkeiten des neuen Systems. Die bei
der Implementierung gesammelte Erfahrung erlaubt außerdem noch Vorschläge für die
Verbesserung von ADF Systemen im Allgemeinen.

vii

Abstract

Abstract Dialectical Frameworks (ADFs) are a natural generalization of Dung-style
argumentation frameworks. They are not restricted to the notion of attack, but also
deal with supporting, dependent and redundant relations between arguments. This
generalization makes ADFs more expressive at the cost of increased computational
complexity. There are some algorithmic advances to tackle this increased complexity,
but only little work on parallel algorithms. The goal of this thesis is to illustrate that
parallelization is a viable approach to further improve ADF systems. By looking at
modern multi-core CPUs, we deem parallel algorithms as necessary to fully utilize current
and future hardware developments and thus making ADF systems future-proof.

The advances towards parallel algorithms result in a concrete implementation of an ADF
system. This system is capable of computing common reasoning tasks for many semantics
by choice either sequentially or in parallel. To keep the implementation overhead low and
the system extensible for further semantics, a new algorithmic model is introduced. This
model is based on shared conceptual building blocks between semantics. These building
blocks only have to be implemented once and can then be used by each semantics. It
was also designed with concurrent execution in mind, since many building blocks can be
used by both execution models with only little changes.

The thesis also provides some experiments to illustrate the benefits of parallel execution.
It also provides technical discussions and insights on problems that may occur when
running things in parallel. This then concludes with an overview of possible future
developments of this system to overcome these problems, but also suggestions on how
ADF systems may be improved in general.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Preliminaries 3
2.1 Propositional Logic . 3
2.2 Abstract Dialectical Framework . 5

3 Algorithmic Model 11
3.1 Basic Building Blocks . 12
3.2 Candidate Generator . 14
3.3 State Processor . 18
3.4 Verifier . 19
3.5 Interpretation Processor . 21
3.6 Putting Things Together . 22

4 Parallelization 29
4.1 Framework . 31
4.2 Decomposer . 32
4.3 Candidate Generator . 33
4.4 Verifier . 38
4.5 Interpretation Processor . 40
4.6 Putting Things Together . 42
4.7 Reasoning Tasks . 52

5 Experiments 57
5.1 Java Microbenchmark Harness (JMH) 57
5.2 Setup . 58
5.3 Results . 59
5.4 Follow-Up . 62

xi

6 Related Work 63

7 Outlook and Conclusion 65

List of Figures 67

List of Tables 69

List of Algorithms 73

Bibliography 75

CHAPTER 1
Introduction

Formal argumentation is an important research area in artificial intelligence, with dedi-
cated conferences, e.g. COMMA, and specialized journals, e.g. Argument and Computa-
tion. It deals with the formalization of arguments, the relation between arguments and
the resolution of conflicts between arguments. It has roots in philosophy and is related
to nonmonotonic logic. Dung’s 1995 landmark paper [Dun95] formalized argumentation
frameworks (AFs) with just the two primitive notions of argument and attack. Dung’s
work made argumentation respectible in mainstream AI and influenced it in a way such
that it became de facto standard nowadays [Pra18, BCD07].

Abstract Dialectical Frameworks (ADFs) are a natural generalization of Dung’s work.
They are not restricted to the notion of attack, but also deal with supporting, dependent
and redundant relations between arguments. With ADFs we gain expressiveness at the
cost of increased computational complexity [DD17]. There are investigations on more
tractable subclasses of ADFs [DZLW20] and algorithmic approaches based on results from
such complexity analysis [LMN+18]. There is however little work on parallel algorithms
for ADFs, although surveys suggest parallelization as a considerable way to improve
current ADF systems [CDG+15]. There is also little work on engineering problems of
ADF systems. We fill these gaps by proposing a novel parallelization framework, which
we implement within a concrete ADF system as a part of TweetyProject [Thi14]. This
implementation not only provides first-hand insights into engineering problems and how
to tackle them, but also technical discussions on an algorithmic architecture for ADF
systems.

Given some ADF D and semantics σ, our proposed system tries to find some, preferably
easier to compute, partitions σ1, . . . , σn s.t. σ(D) = n

i=1 σi(D) and σi(D) ∩ σj(D) = ∅
for all 1 ≤ i < j ≤ n. Intuitively, if we manage to decompose the search space of some
ADF while maintaining its semantics, we are able to compute many decision problems in
parallel. There is a rich family of argumentation semantics [BCG11] from which many

1

1. Introduction

concepts were adopted to ADFs [BDW11, PWW13]. Since we do not have a one-size-
fits-all solution to the decomposition problem that will work on arbitrary semantics out
of the box, we first introduce an algorithmic model which is expressive enough for all
the usual semantics, namely conflict-free, naive, admissible, preferred, complete, ground,
two-valued model and stable. The idea is to represent each semantics as a pipeline of its
basic building blocks, e.g. preferred semantics can be represented as the computation of
a conflict-free candidate, admissibility verification and maximization. We then use this
algorithmic model to first define a sequential computation framework and then discuss
necessary changes in order to transform it into a parallel computation framework.

We use a reduction based approach for our system. There currently exist a handful of
ADF systems, with k++adf [LMN+18], which uses reductions to SAT, being the most
promising one. The additional expressiveness of Answer Set Programming (ASP) [EIK09]
or Quantified Boolean Formulas (QBFs) [SBPS19] may be tempting at first, but is not
exactly what we need for parallelization. If we keep the complexity of each building block
within NP, and thus reducible to SAT, we gain the possibility to solve each building
block in a separate thread. Hence, this rules out approaches with just a single ASP or
QBF encoding.

The thesis continues with the Preliminaries chapter, which provides the reader with all
necessary definitions for the upcoming chapters. The Algorithmic Model chapter then
builds the foundation of the system. It uses state of the art ideas and encodings spiced
up with some new algorithmic approaches. The resulting system is able to compute most
of the current semantics in a traditional sequential manner. The following Parallelization
chapter then builds upon this system and discusses necessary introductions, changes and
also problems when dealing with parallelization. This is followed up by the Experiments
chapter, which shows some interesting findings and also some technical discussions on
these. There are some other existing ADF systems with different approaches, we use
chapter Related Work mostly as an overview, since there is currently little related work on
parallelization approaches. The thesis is then concluded with the Outlook and Conclusion
chapter, which recalls some of the problems and findings but also discusses some possible
paths for future improvements.

2

CHAPTER 2
Preliminaries

In this chapter we build a foundation for the rest of the thesis. This is done by providing
basic concepts and definitions. The system we are proposing works with propositional
SAT solving, hence we start with the introduction of propositional logic before introducing
Abstract Dialectical Frameworks. The introduction to propositional logic is also used to
clarify the notation which we use throughout the thesis.

2.1 Propositional Logic

Definition 1 Let PV be a set of propositional variables, we then inductively define
propositional formulas as follows:

• Every p ∈ PV is a formula.

• The truth constants and ⊥ are formulas.

• Let φ denote a formula, then ¬φ is also a formula.

• Let φ and ψ denote formulas, then φ ◦ ψ with ◦ ∈ {∧, ∨, →, ↔, ⊕} is also a formula.

Usually propositional variables are also denoted as atoms, we switch between the naming
interchangeably as we see fit.

Definition 2 An interpretation is a function I : PV → {t, f} mapping propositional
variables to either true or false.

3

2. Preliminaries

Although interpretation is defined as a function, it is often more convenient to write it
as a set. Let a, b, c ∈ PV be propositional variables and I an interpretation, instead of
writing I(a) = t, I(b) = f and I(c) = f it is more concise to write I = {t(a), f(b), f(c)}.
Having I written in a set notation also comes in handy when reasoning over multiple
variables like {t(a), f (b)} ⊆ I or when dealing with partial interpretations. Therefore, we
interchangeably switch between the function and the set notation, allowing us to write
I(a) = t or t(a) ∈ I depending on the context. The notations I|at or I[a → t] replace the
truth assignment of a in I with t, for instance I = {f (a), f (b)} becomes I|at = {t(a), f (b)}.

Definition 3 Let I denote an interpretation, we extend its definition to arbitrary for-
mulas as follows.

• I() = t and I(⊥) = f

• I(¬φ) = t iff I(φ) = f

• I(φ ∧ ψ) = t iff I(φ) = I(ψ) = t

• I(φ ∨ ψ) = t iff I(φ) = t or I(ψ) = t

• I(φ → ψ) = t iff I(φ) = f or I(ψ) = t

• I(φ ↔ ψ) = t iff I(φ) = I(ψ)

• I(φ ⊕ ψ) = t iff I(φ) = I(ψ)

Let φ be a propositional formula, then we write φ[p → ψ] or φ[p/ψ] to denote the formula
resulting from the replacement of all occurrences of atom p in φ with ψ. Usually this
is helpful when rewriting a formula based on a partial interpretation. Let φ = a ∧ b
for instance, then φ[a/⊥] = ⊥ ∧ b which is logically equivalent to ⊥. This notation
can be extended to interpretations like φ[I] = φ[a/⊥ | f(a) ∈ I][a/ | t(a) ∈ I].
Reconsidering the previous example with φ = a ∧ b and interpretation I = {f(a), t(b)} it
holds φ[I] = ⊥ ∧ .

Let I be an interpretation and φ be some formula, it holds I |= φ iff I satisfies φ iff
I(φ) = t iff φ is true under I. Analogously, I |= φ iff I does not satisfy φ iff I(φ) = f iff
φ is false under I. Again, we use the most convenient notation based on the context.

Definition 4 Let ϕ be a propositional formula and A a (partial) interpretation called
assumption. Then we define a function SAT as

• SAT (ϕ, A) → (I, true) if ∃I : I |= ϕ[A]
(∅, false) otherwise

• SAT (ϕ) → SAT (ϕ, ∅)

4

2.2. Abstract Dialectical Framework

Furthermore, let ρ denote a set of propositional formulas, then we define SAT as

• SAT (ρ, A) → SAT (φ∈ρ φ, A)

• SAT (ρ) → SAT (ρ, ∅)

For readability we sometimes write ¬SAT (ρ) as an abbreviation for SAT (ρ) = (I, false)
if we are not interested in the witness I. Note that it is not sufficient to just return an
interpretation and omit the second value of the pair. Consider SAT () = (∅, true), the
constant is by definition true under every interpretation I and thus also under ∅. To
overcome this subtlety, the SAT function returns a pair.

The role of assumption A can be explained by the monotonicity of incremental SAT
solving. Let ρ represent the SAT solver state, then it is only possible to add formulas to
ρ but never remove any. An assumption only applies for one specific SAT call, but does
not effect ρ for all subsequent SAT calls. This is useful, since encoding A directly into ρ
would interfere with all future SAT calls on ρ.

2.2 Abstract Dialectical Framework
The definition of ADF is based on [BW10].

Definition 5 An ADF D = (A, L, C) is a tuple where

• A is a set of arguments

• L ⊆ A × A is a set of links

• C = {ϕa}a∈A is a set of propositional formulas over the parents of each argument
a. ϕa is called acceptance condition of a.

The set par(a) = {b ∈ A | (b, a) ∈ L} denotes the parents of argument a. Note that
sometimes the link relation L is omitted from the definition, since the acceptance condition
ϕa induces the set par(a). The set L can then implicitly be defined by A and C as
L = {(b, a) | a ∈ A, b ∈ par(a)}.

Definition 6 An interpretation is a function I mapping arguments to one of the three
truth values I : A → {t, f , u}. An interpretation I is two-valued if I(a) ∈ {t, f} for all
a ∈ A. An interpretation I is trivial, denoted by Iu, if I(a) = u for all a ∈ A.

Note that although we usually deal with three-valued interpretations when working
with ADFs, we can reuse most of the notation from the propositional logic section. Let

5

2. Preliminaries

a b c

t t f
a b c

t t t
a b c

t f f
a b c

t f t

a b c

t t u
a b c

t u t
a b c

t u f
a b c

t f u

a b c

t u u

Figure 2.1: An illustration of the information ordering for three-valued interpretations.

ϕ = a ∧ b denote some acceptance condition and I = {f(a), u(b)} some three-valued
interpretation, then ϕ[I] = ⊥ ∧ b.

Interpretation I is equally or more informative than J , denoted by J ≤i I, if J(a) ∈ {t, f}
implies J(a) = I(a) for all a ∈ A. We denote by <i the strict version of ≤i, i.e. J <i I if
J ≤i I and ∃a ∈ A s.t. J(a) = u and I(a) ∈ {t, f}.

The blocks in Figure 2.1 represent interpretations and the lines between these blocks
show comparability regarding ≤i. The level of the block shows informativeness. The in-
terpretation I1 = {t(a), t(b), f(c)} is strictly more informative than I2 = {t(a), t(b), u(c)}
since I2(c) = u but I1(c) = f , hence we write I2 <i I1. Interpretation I2 is strictly more
informative than I3 = {t(a), u(b), u(c)}, hence we write I3 <i I2. Since <i is transitive
we also have I3 <i I1. This information ordering is especially useful if we are looking for
maximal interpretations. Take another interpretation I4 = {t(a), t(b), t(c)}, then it holds
I1 ≤i I4 and I4 ≤i I1 which implies that in general we can have more than one maximal
interpretation.

Definition 7 A semantics σ relative to ADF D, denoted as σ(D), is a selection of
interpretations of D, i.e. σ(D) ⊆ {t, f , u}A.

A semantics selects the interpretations of some ADF based on some common properties.
Consider a maximality property regarding the information ordering <i for instance.
Recall Figure 2.1, a semantics defined by this single maximality property would only
contain interpretations of the top level and thus only two-valued interpretations. Later
we provide definitions for the most common semantics. There are various definitions
for some of them throughout the literature, some of them are equivalent but some are
conflicting. The following definitions are the ones used and implemented by the proposed
system.

Definition 8 Let D = (A, L, C) be an ADF and σ some semantics, we define the
following reasoning tasks

6

2.2. Abstract Dialectical Framework

• Credσ: Given a ∈ A, is there an I ∈ σ(D) s.t. I(a) = t?

• Skeptσ: Given a ∈ A, is I(a) = t for all I ∈ σ(D)?

• Existsσ: Is there an I ∈ σ(D) with I = Iu?

• Verσ: Given an interpretation I, is I ∈ σ(D)?

There are further reasoning tasks, besides the computation of all interpretations relative
to some semantics σ. The proposed system is capable of computing many of them in
parallel, as we will see in a later chapter.

Definition 9 Let D = (A, L, C) be an ADF and I a three valued interpretation. Inter-
pretation I is confict-free in D iff for all a ∈ A,

• I(a) = t implies ϕa[I] is satisfiable, and

• I(a) = f implies that ϕa[I] is refutable.

An interpretation I is naive in D iff I is ≤i-maximal conflict-free in D.

The conflict-free semantics is probably the most important one, since it also defines basic
properties for many other semantics. This becomes obvious for the naive semantics by
looking at its definition, but also the admissible and therefore the preferred and complete
semantics are a subset of the conflict-free semantics. Intuitively, an interpretation I is
conflict free if the truth value of an argument under I is consistent with the satisfiability
respectively refutability of its acceptance condition under I.

Definition 10 Let D = (A, L, C) be an ADF and I a two-valued interpretation. Inter-
pretation I is a model in D iff for all a ∈ A it holds I(a) = t iff ϕa[I] is satisfiable.

The two-valued model semantics can be seen as a two-valued version of the conflict-free
semantics. It also links the truth value of an argument under an interpretation I with
the satisfiability of its acceptance condition under I.

Definition 11 Let D = (A, L, C) be an ADF and I a three-valued interpretation over
D. Define the characteristic operator ΓD(I) = J as

J(a) =

t if ϕa[I] is a tautology
f if ϕa[I] is unsatisfiable
u otherwise

7

2. Preliminaries

The characteristic operator determines the truth assignment of some argument a based
on all possible two-valued evaluations of ϕa[I]. This implicitly happens by checking for
tautology respectively unsatisfiability. For a more detailed discussion we refer to the
Approximation Fixpoint Theory section in [BES+17].

Definition 12 Let D = (A, L, C) be an ADF and I a three-valued interpretation.

• I is complete in D iff I = ΓD(I).

• I is admissible in D iff I ≤i ΓD(I).

• I is preferred in D iff I is ≤i-maximal admissible in D.

• I is grounded in D iff I is the ≤i-least fixpoint of ΓD.

Note that based on these definitions one can observe subset relations. Clearly, the
preferred semantics is a subset of the admissible semantics. It also holds I = ΓD(I)
implies I ≤i ΓD(I), hence the complete semantics is a subset of the admissible semantics.
Furthermore, since the grounded interpretation is the ≤i-least fixpoint, it clearly is within
the set defined by I = ΓD(I), hence is also complete.

Definition 13 Let D = (A, L, C) be an ADF and I be a two-valued model of D. Define
the reduced ADF DI with DI = (AI , LI , CI), where

• AI = {a ∈ A | I(a) = t}
• LI = L ∩ AI × AI

• CI = {ϕI
a}a∈AI where for each a ∈ AI , we set ϕI

a = ϕa[b/⊥ : I(b) = f].

Denote by J the unique grounded interpretation of DI . Now the two-valued model I of D
is a stable model of D iff for all a ∈ A, we find that I(a) = t implies J(a) = t.

This characterisation of stable models is quite convenient when building algorithms. It is
straight forward to compute if one already has algorithms for the two-valued model and
the grounded semantics. All that remains to implement is the syntactical rewriting.

Definition 14 Let D = (A, L, C) be an ADF, then some link (b, a) ∈ L is

• supporting iff for every two-valued interpretation I: I(ϕa) = t implies I|bt(ϕa) = t.

• attacking iff for every two-valued interpretation I: I(ϕa) = f implies I|bt(ϕa) = f .

• dependent iff it is neither supporting nor attacking.

8

2.2. Abstract Dialectical Framework

• redundant iff it is supporting and attacking.

A link not only defines which arguments are related, but also how they are related. In
Dung’s argumentation framework arguments are only related via attack, in ADFs we
can additionally define the notion of support. From the definitions of supporting and
attacking, the existence of links that are neither or both follows. Hence, we get two
additional types, namely dependent and redundant. The supported links are denoted
as L+ ⊆ L, the attacking links as L− ⊆ L and the dependent links as LD ⊆ L. Since
L+ and L− also contain the redundant links, we additionally define L⊕ = L+ \ L− and
L = L− \ L+.

Example 1 A more detailed version of this example can be found in [BES+17].

b

a ∧ (c ∨ ¬c)

c

a ↔ b

a

b → c

L+ L−

(a, b) (b, a)
(c, b) (c, b)
(c, a)

The table next to the ADF lists its attacking and supporting links. The link (c, b) is
redundant, since it is both attacking and supporting. The links (b, c) and (a, c) are both
dependent, since they are neither attacking nor supporting.

Proposition 1 Let ϕa denote some acceptance condition and (b, a) ∈ L be some redun-
dant link, it then holds ϕa ≡ ϕa[b →].

Proof. Assume I |= ϕa, then from (b, a) being supporting it follows I|bt |= ϕa and further
I |= ϕa[b →]. Assume I |= ϕa, then from (b, a) being attacking it follows I|bt |= ϕa and
further I |= ϕa[b →]. Hence, ϕa ≡ ϕa[b →].

The takeaway from Proposition 1 is that we can syntactically rewrite some ADF with
redundant links into a semantically equivalent one without redundant links. Hence, the
more interesting link types are attacking, supporting and dependent.

A link is called bipolar if it is either attacking or supporting. An ADF is called bipolar if
all of its links are bipolar. The existence of dependent links has a significant effect on
the complexity of the most common reasoning tasks on ADFs. On the other hand, if an
ADF is bipolar or nearly bipolar, then there is a drop in complexity as Table 2.1 shows.
An ADF is called k-bipolar if it contains exactly k non-bipolar links.

9

2. Preliminaries

in general bipolar / k-bipolar
σ Credσ Skeptσ Existsσ V erσ Credσ Skeptσ Existsσ V erσ

cf NP-c trivial NP-c NP-c in P trivial in P in P
mod NP-c coNP-c NP-c in P NP-c coNP-c NP-c in P
stb ΣP

2 -c ΠP
2 -c ΣP

2 -c coNP-c NP-c coNP-c NP-c in P
nai NP-c ΠP

2 -c NP-c DP-c in P coNP-c in P in P
adm ΣP

2 -c trivial ΣP
2 -c coNP-c NP-c trivial NP-c in P

grd coNP-c coNP-c coNP-c DP-c in P in P in P in P
com ΣP

2 -c coNP-c ΣP
2 -c DP-c NP-c in P NP-c in P

prf ΣP
2 -c ΠP

3 -c ΣP
2 -c ΠP

2 -c NP-c ΠP
2 -c NP-c coNP-c

Table 2.1: Complexity results from [DD17].

The interesting part is that bipolar and k-bipolar ADFs coincide in complexity. This
results in algorithms as in [LMN+18], on which the presented system is also based.
The proposed encodings are however exponential in constant k, hence the number of
non-bipolar links is crucial in practice.

10

CHAPTER 3
Algorithmic Model

In this chapter we build a sequential system that later functions as a foundation for the
parallelization approaches. This system relies on some state-of-the-art SAT encodings,
some new algorithms and an algorithmic model which should help to keep the implemen-
tation effort low. The basic idea of the algorithmic model is the identification of atomic
computational building blocks for each semantics. This helps to identify shared concepts
between semantics. It further allows to build an algorithmic framework which is not
only capable of computing the state-of-the-art semantics, but also extensible enough to
capture future developments with minimal implementation overhead. Figure 3.1 shows a
simplistic view of the identified building blocks and how they interact together in the
computation pipeline.

The algorithm is based on incremental SAT solving, hence the pipeline starts with the
creation of a solver state. This solver state represents the search space and is modified
by adding clauses during the computation of interpretations. These clauses usually cut
parts of the search space, for example to prevent the same interpretation from being
computed again. After creation, the solver state is handed to the second block of the
pipeline, namely the state processor. The state processor can be used for initializations
on the state and is the right building block for optimizations. It is then handed to
the candidate generator, which is from now on responsible for the maintenance of the
search space and the supply of interpretations for the rest of the framework. The other
building blocks have no direct access to it. This is an implementation detail and is
not mirrored in Algorithm 3.9, since it is not important if all the blocks are executed
sequentially. If we want to compute things in parallel, it is however crucial to not expose
the search space to all the building blocks, since this enables concurrent modifications,
which is error prone and may result in inconsistencies. The candidate generator is
also responsible for the encoding of semantic specific properties like conflict-freeness.
A generated interpretation is then handed to an interpretation processor, which may
modify the current candidate. This allows for additional computations before we hand

11

3. Algorithmic Model

SAT Solver

State Processor

Candidate Generator

Interpretation Processor

Verifier

Interpretation Processor

Consumer

Solver State

Solver State

Interpretation

Interpretation

Interpretation

Interpretation

Figure 3.1: The sequential computation pipeline.

the resulting interpretation to the verifier, an example of such additional computation is
maximization. In the naive semantics, such a processor takes a conflict-free interpretation
and returns a maximal, i.e. naive, one. After the optional processing, the candidate is
given to a verifier, which acts as a filter and dismisses all interpretations that do not
pass the verification. All interpretations that pass the verification step are then handed
to another optional interpretation processor. There is no conceptual difference between
the first and the second interpretation processor, the mere difference is the stage at the
computation pipeline.

3.1 Basic Building Blocks

Most of the ADF semantics are based on three-valued interpretations, since we base our
system on SAT solving, which is two-valued, we need an extra propositional variable
to represent the truth assignment of each argument. Hence, for each argument s we
use the propositional variables st and sf . Moreover, for each r ∈ par(s) we introduce

12

3.1. Basic Building Blocks

propositional variables pr
s to replace each occurrence of r in acceptance condition ϕs.

These extra variables for each link are necessary to allow different assignments in different
acceptance conditions if r is undecided. Consider I(r) = u with children r ∈ par(s1)
and r ∈ par(s2), then the variables pr

s1 and pr
s2 can take different truth values. We write

ϕ↓
s = ϕs[r → pr

s | (r, s) ∈ L].

Given some ADF D = (A, L, C), its propositional universe is defined as UD = {st, sf |
s ∈ A} ∪ {pr

s | (r, s) ∈ L}. Let v be a SAT witness of some formula over universe UD, we
can define a function mapping v to a three-valued interpretation of D:

Extract(v) ={u(s) | v(st) = f and v(sf) = f}
∪ {t(s) | v(st) = t}
∪ {f(s) | v(sf) = t}

Note that with two propositional variables we are able to define four truth values. Hence,
it is necessary to prevent st and sf from being true at the same time. This can be
achieved by just adding s∈A(¬st ∨ ¬sf) to the search space. In the following we always
assume that this is the case.

There are a few encodings which are used by many building blocks and should therefore
be discussed first. We omit correctness proofs here, since they were already introduced
in [LMN+18].

φI
= =

I(s)=t
¬st ∨

I(s)=f
¬sf ∨

I(s)=u
(st ∨ sf)

In order to prevent the same interpretation from being computed again, many candidate
generators make use of formula φI

=. Observe that φI
= is rendered false exactly by the

propositional representation of interpretation I. Hence, only interpretations unequal to I
satisfy the search space.

φI
> =

I(s)=t
st ∧

I(s)=f
sf ∧

I(s)=u
(st ∨ sf)

Important for the maximizers, and also some verifiers, is the formula φI
>. It is only

satisfied by strictly more informative interpretations than I, which also coincide in the
decided parts. Hence, the search space is restricted to interpretations J with I <i J .

φI
< =

I(s)=t
sf ∨

I(s)=f
st ∨

I(s)=u
(st ∨ sf)

The difference between φI
> and φI

< may look subtle at first. The formula φI
< rules out

all interpretations which are less informative than I. It however still allows equally
informative but incomparable interpretations J , hence J ≤i I and I ≤i J . While φI

> is
usually used to maximize some interpretation I, the formula φI

< is then used to rule out
all smaller interpretations once a maximum was found.

13

3. Algorithmic Model

The search space ρ is the last building block to discuss. In our implementation it is
a set of clauses managed by some SAT solver. However, we do not want to deal with
clause transformations here, therefore we define ρ as a set of arbitrary propositional
formulas. By working with a set instead of one big formula, reasoning on ρ is more
comfortable, since we can use set notation. Note that we can only add formulas to ρ,
but never remove any formulas directly. Hence, this is also the reason why we employ
some assumption based techniques later on, to make the search space appear as if some
formula was removed.

3.2 Candidate Generator
The first building block to discuss is also the most important one, since it is the only
mandatory building block in the computation framework, all others may be omitted. It
not only provides the other building blocks with a flow of candidates to process and
verify, but it also encodes basic semantics specific properties into the search space.

3.2.1 Conflict-Free
The conflict-free generator can be described with just a few steps. First make a SAT
call, if the search space is satisfiable extract an interpretation from the witness, then
prevent the same witness from being computed again and return the interpretation. The
most important part of Algorithm 3.1 are not these recurring steps, but the encoding of
the conflict-free property into the search space ρ. This has to be done only once during
initialization and ensures that the resulting candidates are conflict-free.

φΓ
s = (st → ϕ↓

s) ∧ (sf → ¬ϕ↓
s)

The formula φΓ
s ensures that the truth value of an argument corresponds with its

acceptance condition, hence if an argument is rendered true, then its acceptance condition
has to be satisfied and if an argument is rendered false, its acceptance condition must
not be satisfied.

φpr
s = (st →

(s,r)∈L

ps
r) ∧ (sf →

(s,r)∈L

¬ps
r)

The formula φpr
s propagates the truth value of some argument to its children via the

corresponding ps
r variables used in their acceptance conditions.

Proposition 2 Let D = (A, L, C) be some ADF and ρ ⊇ s∈A{φΓ
s , φpr

s } be some non-
exhausted search space, i.e. there exists some I = generatecf (ρ) with I = ∅, then I is
conflict-free in D.

Proof. Follows from the correctness of φΓ
s and φpr

s .

14

3.2. Candidate Generator

Algorithm 3.1: generatecf (ρ)
1 (τ, sat) ← SAT (ρ)
2 if sat then
3 I ← Extract(τ)
4 ρ ← ρ ∧ φI

=
5 return I

6 end
7 return ∅

Proposition 3 Let D be some ADF and I some conflict-free interpretation of D, then
I = generatecf (ρ) for some ρ.

Proof. Completeness follows from the correctness of φI
=. Assume that there is some

conflict-free interpretation I which is not returned by the algorithm. Then φI
= /∈ ρ must

hold, which only happens if I was computed at some point. This is clearly a contradiction,
hence I was returned for some ρ.

3.2.2 Grounded
The grounded generator is a direct implementation of the ΓD operator. Algorithm 3.2
starts with Iu and applies ΓD until it computes a fixpoint. Once an argument is decided,
it is fixed and not considered again in subsequent iterations. The search space ρ has to
be initialized with the formulas φΓ

s and φpr
s , analogous to the conflict-free generator.

There is an important observation to make on the usage of the grounded generator in the
presented enumeration framework. The generate function is called in a while loop until
the search space is exhausted. Most other generators implicitly exhaust the search space
by excluding recently computed candidates, but not the grounded generator. Algorithm
3.2 works differently, therefore it is necessary to make ρ unsat after the first call to ensure
termination. This is done by adding ⊥ to the search space before the return statement.

Example 2 Consider the following ADF with arguments {a, b, c} and acceptance condi-
tions ϕa = ⊥, ϕb = a ∧ (c ∨ ¬c) and ϕc = a ↔ b.

b

a ∧ (c ∨ ¬c)

c

a ↔ b

a

⊥

15

3. Algorithmic Model

Algorithm 3.2: generategrd(ρ)
1 Inew ← Iu

2 Iold ← Iu

3 repeat
4 Iold ← Inew

5 ρ ← ρ ∪ {st | Iold(s) = t} ∪ {sf | Iold(s) = f}
6 for s ∈ A with Iold(s) = u do
7 if ¬SAT (ρ ∪ {¬ϕ↓

s}) then
8 Inew(s) → t
9 else if ¬SAT (ρ ∪ {ϕ↓

s}) then
10 Inew(s) → f
11 else
12 Inew(s) → u
13 end
14 end
15 until Inew = Iold

16 ρ ← ρ ∪ {⊥}
17 return Inew

Further assume ρ = {φΓ
a , φpr

a , φΓ
b , φpr

b , φΓ
c , φpr

c } holds. Algorithm 3.2 begins with Inew =
Iold = Iu, therefore no decided arguments can be fixed in ρ.

The inner for-loop begins the iteration with argument a for which the first tautology
check fails, i.e. ¬SAT (ρ ∪ { }) does not hold, since ρ is initially clearly sat which
does not change by adding . The algorithm continues with the successful unsat check
¬SAT (ρ ∪ {⊥}), fixing Inew(a) = f . The next arguments to consider are b and c, the
acceptance conditions of both are currently clearly satisfiable and refutable, therefore
the checks fail and they remain undecided. At the end of the for-loop it now holds
Inew = {f(a), u(b), u(c)}.

Since Inew = Iold holds, the algorithm continues by setting Iold = Inew and adding af

to ρ. Hence, by fixing I(a) = t the remaining acceptance conditions logically render to
ϕb = ⊥ and ϕc = . Since a is decided, the for-loop now only iterates over b and c.
Starting with argument b, the first check ¬SAT (ρ ∪ { }) fails again, the second check
¬SAT (ρ ∪ {⊥}) however holds, deciding I(b) = f . The loop continues with argument
c for which the first check ¬SAT (ρ ∪ {⊥}) succeeds, deciding I(c) = t. The for-loop
finished with Inew = {f(a), f(b), t(c)}.

Since Inew = Iold holds, the algorithm continues by setting Iold = Inew and adding bf and
ct to ρ. There are no remaining undecided arguments, the inner for-loop is therefore
skipped leaving Inew untouched. Now Iold = Inew holds, which terminates the outer loop.

The algorithm now renders ρ unsat by adding ⊥, this indicates the framework that the
search space is exhausted. Then the found grounded interpretation {f(a), f(b), t(c)} is

16

3.2. Candidate Generator

returned.

Proposition 4 Algorithm 3.2 always terminates.

Proof. Observe that the inner for-loop only iterates over undecided arguments, furthermore
all the decided arguments are fixed and never considered again. Therefore, either the
inner-for loop decides another argument or Inew = Iold and the algorithm terminates.
Since the number of undecided arguments is finite and monotonically decreasing, at
one point it is not possible to decide another argument, which again results in the case
Inew = Iold. Hence, the algorithm always terminates.

Proposition 5 Let D = (A, L, C) be some ADF and ρ = s∈A{φΓ
s , φpr

s }, then I =
generategrd(ρ) is the grounded interpretation of D.

Proof. Observe that the inner for-loop computes one application of the ΓD operator, while
the outer while-loop applies ΓD until a fixpoint is reached. Hence, by construction the
algorithm computes ΓD(. . . ΓD(Iu)), which is the ≤i-least fixpoint of ΓD and therefore
the grounded interpretation of D.

3.2.3 Two-Valued Model
The Algorithm 3.3 for two-valued models coincides with the conflict-free generator. The
key difference is the semantical encoding.

φmod
s = (st ↔ ϕs) ∧ (¬st → sf)

In principle this encoding is similar to the conflict-free encoding, but it is possible to
take shortcuts, since only two-valued interpretations have to be computed. Hence, the
undecided case can be skipped entirely and therefore the extra link variables, which
allows the usage of ϕs directly. There is also no need for the formula φpr

s . It remains
an encoding which renders st to true if the acceptance condition is satisfied, otherwise
sf is set to true. Note that this encoding still uses two propositional variables for each
argument to make use of the Extract function.

Proposition 6 Let D = (A, L, C) be some ADF and ρ ⊇ s∈A{φmod
s } be some non-

exhausted search space, i.e. there exists some I = generatemod(ρ) with I = ∅, then I is a
two-valued model in D.

Proof. We show that φmod
s is correct, from which the proposition then follows. Observe

that st ↔ ϕs ensures I(s) = t iff ϕs[I] is satisfiable. If st is not rendered true then
¬st → sf forces sf to be true. Hence, exactly one of st and sf is true, which ensures that
interpretations are two-valued. Therefore, φmod

s encodes the properties of two-valued
models.

17

3. Algorithmic Model

Algorithm 3.3: generatemod(ρ)
1 (τ, sat) ← SAT (ρ)
2 if sat then
3 I ← Extract(τ)
4 ρ ← ρ ∧ φI

=
5 return I

6 end
7 return ∅

Proposition 7 Let D be some ADF and I some two-valued model of D, then I =
generatemod(ρ) for some ρ.

Proof. The argumentation is analogous to the conflict-free algorithm.

3.3 State Processor
The state processor is the place to put semantics independent encodings. These are
added to the search space before it is handed to the candidate generator. This makes
mostly sense for optimizations.

3.3.1 K-Bipolar Optimization

The k-bipolar encodings are a main result of [LMN+18] and an important optimization
that is used by our system.

φbip
r =

rt →

(s,r)∈LD

(¬sf → ps
r) ∧

(s,r)∈L⊕
D

(¬st → ¬ps
r)

 ∧

rf →

(s,r)∈LD

(¬st → ¬ps
r) ∧

(s,r)∈L⊕
D

(¬sf → ps
r)

Consider some interpretation I with I(s) = u, the implication ¬sf → ps
r then forces ps

r

to be true for all (s, r) ∈ L . This renders the acceptance conditions of arguments r false
by definition of attacking. If we had I(r) = t for some child r, then clearly I ≤i ΓD(I)
does not hold. Hence, φbip

r acts as an admissibility check by setting the link variables ps
r

for undecided parents according to the polarity of the link.

18

3.4. Verifier

φΓ?
s =

st →

IX∈V(Xs)

ϕ↓,IX
s ∨

IX(r)=t
rf ∨

IX(r)=f
rt

 ∧
sf →

IX∈V(Xs)

¬ϕ↓,IX
s ∨

IX(r)=t
rf ∨

IX(r)=f
rt

The set Xs = {r | ∃(r, s) ∈ L?

D} contains the parents on which s depends, furthermore
V(Xs) denotes the set of two-valued interpretations over Xs. Assume rt to be true, then
the right side of the implication must be satisfied. First observe that the check on the
right side is active for all comparable completions J ≤i IX . It then basically checks
if there is one completion under which ϕ↓,IX

s does not hold anymore, in which case st

cannot be fixed to true. Note that this is again in line with the concept of admissibility,
once an argument is decided it is not switched by fixing some undecided argument.

Hence, by adding φbip
r and φΓ?

s to the search space, we can omit an extra admissibility
check.

Algorithm 3.4: processkbip(ρ)
1 for s ∈ A do
2 ρ ← ρ ∪ {φbip

s , φΓ?
s }

3 end
4 return ρ

Let D = (A, L, C) be an ADF, Algorithm 3.4 then processes the search space ρ by adding
the just discussed bipolarity optimizations to it. Note that it is not necessary to check if
D has dependent links in order to add φΓ?

s , if D is bipolar the set Xs is empty and the
encoding therefore by definition omitted.

3.4 Verifier
The main task of a verifier is to ensure certain properties and to act as a filter if those
are not met. A verifier is needed if a property cannot be directly encoded into the search
space, at least not under complexity considerations. In such cases extra checks can be
performed via a verifier. If a verifier returns false for an interpretation, this interpretation
is then discarded from the pipeline.

3.4.1 Complete
An interpretation is considered complete if it is not possible to decide any further
undecided arguments. On the other hand, if it is possible to decide another argument,
then the interpretation was not complete. This describes how the complete verifier works,

19

3. Algorithmic Model

if it is possible to decide another argument, it returns false. If none of the currently
undecided arguments can be decided, then it returns true.

Algorithm 3.5: verifycom(I)
1 ϕ ← s∈A(φΓ

s ∧ φpr
s)

2 ρ ← ρ ∧
I(s)=t

st ∧
I(s)=f

sf

3 for s ∈ A with Iold(s) = u do
4 if ¬SAT (ρ ∧ ¬ϕ↓

s) then
5 return false
6 else if ¬SAT (ρ ∧ ϕ↓

s) then
7 return false
8 end
9 return true

It is important to note that Algorithm 3.5 requires the given interpretation to be
admissible. This makes it possible to fix the already decided arguments and only check
the undecided ones.

Proposition 8 Let D be some ADF and I be some admissible interpretation, then
verifycom(I) = true iff I is complete in D.

Proof. Assume verifycom(I) = true holds. Observe that the for-loop implements the
partial application of the characteristic operator ΓD on I. Since I is admissible, it is
sufficient to only consider the undecided arguments in the for-loop. By assumption,
neither the tautology nor the unsatisfiability checks hold for any argument. Hence, it
holds I = ΓD(I) and therefore I is complete.

Assume I is complete in D. Hence, I = ΓD(I) holds, which means that the tautology
and unsatisfiability checks for the undecided arguments fail. Therefore, the for-loop is
not exited by returning false, from which verifycom(I) = true follows.

3.4.2 Stable
The stable verifier is a direct implementation of Definition 13. Algorithm 3.6 computes
the reduct of ADF D = (A, L, C) and two-valued interpretation I, denoted as DI . It
then computes the grounded interpretation grd(DI) and checks if it is equal to I, in
which case true is returned.

Algorithm 3.6: verifystb(I)
1 Igrd ← generategrd(DI)
2 return Igrd = I

20

3.5. Interpretation Processor

Proposition 9 Let D be some ADF and I be some two-valued interpretation, then
verifystb(I) = true iff I is stable in D.

Proof. Observe that the algorithm is a direct implementation of the definition.

3.5 Interpretation Processor
An interpretation processor is the place to further modify a candidate. This can be done
at two stages of the pipeline, depending on which is more convenient. An interpretation
processor also has the possibility to return clauses which are then added to the search
space. The pipeline does not enforce any restrictions on the interpretation processors,
hence they do not have to modify any interpretations or return any clauses.

3.5.1 Conflict-Free Maximizer
In order to compute naive interpretations, the conflict-free maximizer is needed. Algorithm
3.7 expects a conflict-free interpretation and looks for more informative interpretations
according to <i by adding φI

> to the maximization state until it becomes unsat. The
unsat state then signals that there is no larger conflict-free interpretation, hence the last
one found is maximal and can be returned.
A fresh solver state is used for each call instead of an assumption based technique because
of two reasons. First, since usually more than one φI

> formula is added to the state for
each call, the state becomes polluted faster in comparison to the verifiers defined in the
next chapter. Second, since the processors do not have global state, it is easier to scale for
the parallel framework. There is no need for some external synchronization mechanism
and a new processing task can be spawned for each new candidate. This is especially
important since an interpretation processor communicates updates back to the search
space. Ideally, less redundant interpretations are computed.

Algorithm 3.7: maximizecf (I)
1 ϕ ← φI

> ∧ s∈A(φΓ
s ∧ φpr

s)
2 Imax ← I
3 (w, sat) ← SAT (ϕ)
4 while sat do
5 Imax ← Extract(w)
6 ϕ ← ϕ ∧ φI

>

7 (w, sat) ← SAT (ϕ)
8 end
9 return (Imax, φImax

<)

Proposition 10 Let D be some ADF and I be some conflict-free interpretation, then
interpretation J with maximizecf (I) = (J, φJ

<) is maximally conflict-free in D.

21

3. Algorithmic Model

Proof. The interpretation J is conflict-free because of the formulas φΓ
s and φpr

s , or by
assumption if I is already maximal, since then I = J . Assume that J is not maximal,
then ϕ is satisfiable since there is some interpretation J >i J . It then follows that some
interpretation J ≥i J is returned, which clearly contradicts maximizecf (I) = (J, φJ

<).
Hence, if J is returned it has to be maximal.

3.5.2 Admissible Maximizer
Although Algorithm 3.8 is similar to the conflict-free maximizer, only admissible inter-
pretations must be considered as more informative according to <i. Hence, again the
formulas φbip

s and φΓ?
s are used to ensure the computation of admissible interpretations.

Algorithm 3.8: maximizeadm(I)
1 ϕ ← φI

> ∧ s∈A(φΓ
s ∧ φpr

s ∧ φΓ?
s ∧ φbip

s)
2 Imax ← I
3 (w, sat) ← SAT (ϕ)
4 while sat do
5 Imax ← Extract(w)
6 ϕ ← ϕ ∧ φI

>

7 (w, sat) ← SAT (ϕ)
8 end
9 return (Imax, φImax

<)

Proposition 11 Let D be some ADF and I be some admissible interpretation, then
interpretation J with maximizeadm(I) = (J, φJ

<) is maximally admissible in D.

Proof. Analogous to the conflict-free maximizer.

3.6 Putting Things Together
An algorithmic view of the computation pipeline is given by Algorithm 3.9. It illustrates
the control and data-flow between the building blocks. The algorithm enumerates all
interpretations of a given ADF D. The computation starts by preparing the search
space ρ, which is done by the state processor and then implicitly by the candidate
generator, represented by processState and generate. Then it exhaustively computes
candidates, processes, verifies and returns them. The interpretation processors at the
two different stages are denoted by processUnverified and processVerified. They return
a tuple consisting of the processed candidate I and a propositional formula which is
added to ρ. This formula is usually used to cut off parts of the search space after the
interpretation processing is done.

22

3.6. Putting Things Together

Algorithm 3.9: enumerate(D)
1 I ← ∅
2 ρ ← ∅
3 ρ ← processState(ρ)
4 I ← generate(ρ)
5 while I = ∅ do
6 (I, ψ) ← processUnverified(I)
7 ρ ← ρ ∪ {ψ}
8 if verify(I) then
9 (I, ψ) ← processVerified(I)

10 ρ ← ρ ∪ {ψ}
11 I ← I ∪ {I}
12 end
13 I ← generate(ρ)
14 end
15 return I

Not all semantics need every building block, the algorithm can therefore be seen as a
schema that can be instantiated with only the necessary building blocks. If a building
block is not used, the following defaults are assumed.

• processState(σ) → σ

• processUnverified(I) → I

• verify(I) → true

• processUnverified(I) → I

Most of the defaults are just the identity function, except for the verifier. If there is
no need for verification, then by returning always true the framework does not filter
any candidates. Since none of these defaults interfere with the results of the following
algorithms, the unused building blocks are omitted completely for readability. However,
there only exists the implementation of Algorithm 3.9, all of the following algorithms can
be seen as configurations of Algorithm 3.9, simplified for readability.

3.6.1 Conflict-Free
It is possible to compute conflict-free interpretations directly with just a generator,
hence there is no need for further building blocks. Only the exhaustive computation
of interpretations in a loop remains from the framework. Since there usually is a vast
number of conflict-free interpretations for an ADF, it rarely is a good idea to exhaustively
enumerate them all. However, Algorithm 3.10 is a byproduct of more advanced semantics,
since a conflict-free generator is the foundation for many of them.

23

3. Algorithmic Model

Algorithm 3.10: enumeratecf (D)
1 I ← ∅
2 ρ ← s∈A{φΓ

s , φpr
s }

3 I ← generatecf (ρ)
4 while I = ∅ do
5 I ← I ∪ {I}
6 I ← generatecf (ρ)
7 end
8 return I

3.6.2 Naive

To compute naive interpretations it is necessary to initialize the framework with a second
building block, namely the conflict-free maximizer. Since there is no verifier involved, it
is not relevant on which stage of the pipeline the maximization is performed. Algorithm
3.11 again exhaustively computes conflict-free interpretations I in a while loop, but
additionally calls maximizecf (I). Recall that it is not necessary to compute non-maximal
interpretations I ≤i Inai in subsequent loop iterations, hence these interpretations are
cut off from the search space via the formula φInai

< .

Algorithm 3.11: enumeratenai(D)
1 I ← ∅
2 ρ ← s∈A{φΓ

s , φpr
s }

3 I ← generatecf (ρ)
4 while I = ∅ do
5 (Inai, φInai

<) ← maximizecf (I)
6 ρ ← ρ ∧ φInai

<

7 I ← I ∪ {Inai}
8 I ← generatecf (ρ)
9 end

10 return I

3.6.3 Two-Valued Model

It is again possible to compute two-valued models by just using a generator, as illustrated
by Algorithm 3.12. As a rule of thumb, one can look at the complexity of a certain
semantics to determine the number of building blocks needed for its computation. Since
the two-valued model semantics is comparably tame, as is the conflict-free semantics,
there is no need for further building blocks.

24

3.6. Putting Things Together

Algorithm 3.12: enumeratemod(D)
1 I ← ∅
2 ρ ← s∈A{φmod

s }
3 I ← generatemod(ρ)
4 while I = ∅ do
5 I ← I ∪ {I}
6 I ← generatemod(ρ)
7 end
8 return I

3.6.4 Admissible

A second building block is needed for the computation of admissible interpretations.
Conceptually one would assume a verifier, but since Algorithm 3.13 makes use of the
k-bipolar encodings, the verifier can be omitted. Hence, a state processor is used to
encode admissibility checks directly into the search space.

Algorithm 3.13: enumerateadm(D)
1 I ← ∅
2 ρ ← s∈A{φΓ

s , φpr
s }

3 ρ ← processStatekbip(ρ)
4 I ← generatecf (ρ)
5 while I = ∅ do
6 I ← I ∪ {I}
7 I ← generatecf (ρ)
8 end
9 return I

The current approach outperforms alternatives in the bipolar case or in the k-bipolar
case if k is sufficiently small. There are however problems if k becomes too big, especially
for reasoning tasks other than exhaustive enumeration. The problem here is that a large
amount of time is then spent to compute the encodings, since they are exponential in k.
This may amortize itself if all interpretations are enumerated, for many reasoning tasks
this is however not necessary. There are different possible ways to tackle this problem.
One could try to generate k-bipolar clauses on-the-fly guided by the enumeration process.
This approach is not obvious, which makes further research necessary. In the case of
success it could however eliminate the start-up time spent for the expensive encodings,
with currently not foreseeable impact on the enumeration performance. A simpler
solution could be ADF and reasoning-task specific heuristics to determine if the k-bipolar
encodings are omitted completely, which then makes it obligatory to use an admissible
verifier. In order to find good heuristics, systematic experiments become necessary. We

25

3. Algorithmic Model

have not investigated any of these two approaches, since the primary focus of this thesis
is parallelization. It is however a possible path for future improvements of ADF systems
and worthwhile to mention.

3.6.5 Preferred
Conceptually, the preferred algorithm is to the admissible algorithm what the naive
algorithm is to the conflict-free algorithm. Algorithm 3.14 takes the admissible algorithm
as a foundation and enriches it with a maximization step. The right building block
for this task was already defined, namely the admissible maximizer. The algorithm
then follows the same principle as the algorithm for the naive semantics. The formula
φ

Iprf

< returned by the maximization step restricts the search space s.t. no interpretations
I ≤i Iprf are computed in subsequent loop iterations.

Algorithm 3.14: enumerateprf (D)
1 I ← ∅
2 ρ ← s∈A{φΓ

s , φpr
s }

3 ρ ← processStatekbip(ρ)
4 I ← generatecf (ρ)
5 while I = ∅ do
6 (Iprf , φ

Iprf

<) ← maximizeadm(I)
7 ρ ← ρ ∪ {φ

Iprf

< }
8 I ← I ∪ {Iprf }
9 I ← generatecf (ρ)

10 end
11 return I

Example 3 Recall the ADF from Example 1, with arguments {a, b, c} and acceptance
conditions ϕa = b → c, ϕb = a ∧ (c ∨ ¬c) and ϕc = a ↔ b.

Algorithm 3.14 starts with the initialization of the seach space ρ with the conflict-free
encodings, resulting in ρ = ρcf with ρcf = {φΓ

a , φpr
a , φΓ

b , φpr
b , φΓ

c , φpr
c }. Then the state

processor applies the k-bipolar optimizations to ρ, which also ensures that ρ only returns
admissible interpretations. The search space then becomes ρ = ρcf ∪ ρkbip with ρkbip =
{φbip

a , φΓ?
a , φbip

b , φΓ?
b , φbip

c , φΓ?
c }.

The candidate generator then begins to exhaustively compute interpretations. Assume that
the first interpretation it returns is I = {u(a), u(b), u(c)}, which is trivially admissible.
After the addition of φI

= to ρ by the generator, this interpretation is then handed to the
admissible maximizer. The maximizer creates a new SAT solver state that represents
the search space used to find larger, w.r.t. the information ordering <i, interpretations.
The formula φI

> enforces at least one argument to be decided. Assume I(c) = t, by

26

3.6. Putting Things Together

examination of the acceptance conditions one realizes that this renders ϕa true, and by
the acceptance condition ϕc it follows I(b) = t. In fact, I = {t(a), t(b), t(c)} is not only
the preferred interpretation, it also is the only other admissible interpretation besides I.
Hence, the maximizer finds and returns the clearly maximal interpretation I and thus
the tuple (I , φI

<). Then ρ and I are both updated s.t. φI
< ∈ ρ and I = {I } holds. Since

{φI
=, φI

<} ⊆ ρ, all the admissible interpretations are ruled out, hence generatecf (ρ) = ∅
leads to the termination of the loop and the return of I.

3.6.6 Stable

Algorithm 3.15 consists of two building blocks, each establishing one property of stable
interpretations. Since each stable interpretation is a two-valued model, a two-valued
model generator is used to compute candidates. A verifier then checks if a two-valued
model is stable.

Algorithm 3.15: enumeratestb(D)
1 I ← ∅
2 ρ ← s∈A{φmod

s }
3 I ← generatemod(ρ)
4 while I = ∅ do
5 if verifystb(I) then
6 I ← I ∪ {I}
7 end
8 I ← generatemod(ρ)
9 end

10 return I

3.6.7 Grounded

Since there is only one grounded interpretation, Algorithm 3.16 skips the while loop for
readability. Then only the grounded generator remains in the computation pipeline. This
is again in line with the rule-of-thumb of one building block per level on the polynomial
hierarchy.

Algorithm 3.16: enumerategrd(D)
1 ρ ← s∈A{φΓ

s , φpr
s }

2 I ← generategrd(ρ)
3 return {I}

27

3. Algorithmic Model

3.6.8 Complete
First observe, by a look at the definitions, that each complete interpretation is admissible.
Algorithm 3.17 therefore only computes admissible candidates. This is again achieved by
the addition of the k-bipolar encodings to the search space via the corresponding state
processor. In combination with a conflict-free generator only admissible interpretations
are computed. It then remains to filter all non-complete admissible interpretations, this
is done with the complete verifier.

Algorithm 3.17: enumeratecom(D)
1 I ← ∅
2 ρ ← s∈A{φΓ

s , φpr
s }

3 ρ ← processStatekbip(ρ)
4 I ← generatecf (ρ)
5 while I = ∅ do
6 if verifycom(I) then
7 I ← I ∪ {I}
8 end
9 I ← generatecf (ρ)

10 end
11 return I

28

CHAPTER 4
Parallelization

In this section we build upon the previously defined building blocks to design a system
that can run various reasoning tasks in parallel. It is important to observe that there is
a difference between concurrency and parallelization. In principle, concurrency describes
a structural property of a problem, in our case the semantics were decomposed into
concurrent building blocks. These concurrent building blocks may be executed in parallel,
but not necessarily. Parallelization therefore describes a runtime behaviour, which
depends on configuration of the system and the actual hardware. Further note that also
multi-threading does not equal parallel execution, since even on a single-core system one
can have multiple threads managed by the operating system. This can still be beneficial,
just consider a case where a thread waits for some expensive IO operation, the operating
system can in the meantime schedule a different thread for execution. The takeaway
here is that in reality we design a concurrent system, which may run in parallel. For our
system it is not transparent when or even if certain building blocks run in parallel, but it
is necessary to make sure that in either case the system works [PGB+05].

In the following, if something is executed concurrently, neither the time nor the order
of execution is known. Take the stable semantics for instance, the algorithmic model
consists of a candidate generator and a verifier. In a sequential environment an execution
sequence can look like generate1, verify1, generate2, verify2, where building blocks with
the same index together represent one full computation cycle. It is not necessary to await
the verification result of the last candidate, one can already compute the next candidate.
In a concurrent environment the order of execution can for example change to generate1,
generate2, verify2, verify1. There are some dependencies within each computation cycle
one has to satisfy, i.e. generate1 has to be executed before verify1. As long as such
dependencies are satisfied, building blocks can be interleaved arbitrarily. In the following a
set notation is used to indicate that all building blocks within a set are executed in parallel.
In a parallel environment an execution sequence can therefore look like {generate1},
{generate2, verify1}, {verify2} or {generate1}, {generate2}, {verify1, verify2}.

29

4. Parallelization

Many semantics can be executed in parallel for free, if there are no dependencies
between the building blocks. Now consider the preferred semantics, which has an
interpretation processor as building block, namely the maximizer. Once a maximal
interpretation was computed, all smaller interpretations can be excluded from the search
space, since they are clearly not maximal. Hence, there is a feedback loop from a
later stage of the pipeline to the candidate generator, or in other words a dependency
between two building blocks. Have a look at the two execution sequences generate1,
maximize1, generate2, maximize2 and generate1, generate2, maximize1, maximize2, are
they equivalent? Assume the two interpretations I1 and I2 associated to the corresponding
generate call by their indices and further assume I2 <i maximize1(I1). Not only was a
candidate generated which could have been excluded from the search space in the first
sequence, but potentially a redundant interpretation is computed if maximize1(I1) =
maximize2(I2). Assume that a strict dependency between these building blocks is
enforced, ruling out the second proposed execution sequence. Then the potential for
a parallel execution for the preferred semantics was lost. Assume a weak dependency,
allowing redundant interpretations from being computed, then parallelization becomes
possible again, like {generate1}, {generate2, maximize1}, {maximize2} or {generate1},
{generate2}, {maximize1, maximize2}. We have decided in favor of the second approach,
since this does not interfere with the correctness of most reasoning tasks and if redundancy
becomes a problem, then it is not hard to filter redundant interpretations.

Now consider the conflict-free semantics, which only consists of a generator. Further
consider the execution sequence generate1, generate2, generate3 and so on. Clearly there
is a dependency between the generator to itself, since it manages the search space and
excludes recently computed candidates from being generated again. Hence, for now the
system is forced with the sequence {generate1}, {generate2}, {generate3} since everything
else would lead to a concurrent modification of the search space, which must never happen
to ensure correctness. One could now argue for a more fine-grained synchronized access
to the search space, such that only one generate call at a time can modify it. In the big
picture, this however results in sequential execution again. It is therefore necessary to
find further ways of decomposition. Instead of having one generator that works with
the whole search space, what if the search space is divided, allowing for the usage of
multiple candidate generators, each only dealing with a restricted partition of the search
space. Assume a sequence generatet(a)

1 , generatef(a)
2 , generateu(a)

3 for which each generate
call deals with only a part of the search space, indicated by the superscript. Hence,
generatet(a)

1 computes only interpretations I s.t. I(a) = t, generatef(a)
1 computes only

interpretations I s.t. I(a) = f and so on. Then the system can deal with an execution
sequence like {generatet(a)

1 , generatef(a)
1 , generateu(a)

1 }. If a different SAT solver state for
each partition is used, then the concurrent modification problem is solved. Note that
an execution sequence like {generatet(a)

1 , generatet(a)
2 } would still be a problem. In the

following we will discuss this approach in more detail and show that it can be generalized
to allow the decomposition of the search space into arbitrarily many partitions.

30

4.1. Framework

Decomposer

SAT Solver SAT Solver

State Processor

Candidate Generator

Interpretation Processor

Verifier

Interpretation Processor

State Processor

Candidate Generator

Interpretation Processor

Verifier

Interpretation Processor

Consumer

· · ·

Partial Interpretation R1

Solver State

Solver State

Interpretation

Interpretation

Interpretation

Interpretation I ⊇ R1

Partial Interpretation Rn

Solver State

Solver State

Interpretation

Interpretation

Interpretation

Interpretation I ⊇ Rn

Figure 4.1: The parallel execution framework.

4.1 Framework
In principle the semantics do not change in a parallel execution environment, hence
the building blocks overall stay the same. The challenge is to make sure that they can
be executed concurrently with only little synchronization overhead. In addition, one
further building block is introduced, namely the decomposer, which is responsible for the
decomposition of the search space.

Figure 4.1 illustrates the decomposition approach. The decomposer uses some heuristics
to compute a set of partial interpretations {R1, . . . , Rn}, these interpretations are then
used to divide the search space into n parts. Each part is backed by a separate SAT
solver state and restricted to only compute interpretations I ⊇ Ri. If the whole search
space is covered by the restrictions R1, . . . , Rn then completeness is trivial. The difficult

31

4. Parallelization

part is to make sure that only the restricted interpretations are computed. Since there is
no general solution to this problem, it is solved on a per semantics level. The drawback
of this approach is that it does not work for new semantics out of the box. Another
drawback is the amount of implementation work. However, the algorithmic model of the
system comes in handy again, since many building blocks are shared between semantics
and thus reduce the implementation work. Also not everything has to be written from
scratch, since there are synergies between the different execution models. An advantage
of the per semantics level approach is the opportunity for semantics specific optimized
decompositions.

4.2 Decomposer
The decomposer controls in which and in how many parts the search space is decomposed.
It does so by returning a number of partial interpretations R = {R1, . . . , Rn}, each
representing a restricted part of the search space. Each restriction in R creates its own
computation branch, which only returns interpretations I s.t. Ri ⊆ I holds. Each branch
has its own instance of the computation pipeline, with special restricted building blocks.
The job of these building blocks is to ensure that only interpretations within the restricted
search space are computed.

Definition 15 Let D = (A, L, C) be some ADF, E ⊂ A an exclusion set and S ⊆ A
an argument selection, then a decomposer is a function decompose3 : D × E → 3S\E

mapping ADF D to a set of partial three-valued interpretations. We further denote as
decompose2 : D×E → 2S\E a decomposer which returns partial two-valued interpretations.

If a decomposer returns all partial interpretations of some selection S, hence such that it
amounts 3|S| distinct restrictions, respectively 2|S|, completeness is trivial. The current
system always computes all possible partial interpretations to ensure completeness, hence
the interesting part is therefore how the set S is selected. The algorithmic framework
allows for different decomposers for different semantics, hence it is possible to abuse
some semantics specific information and thus skip parts of the search space entirely. The
pipelines of the two-valued model and stable semantics use a two-valued decomposer for
instance.

Note that often there is no need to exclude arguments from the decomposition, hence
E = ∅. We then write decompose3(D) as an abbreviation for decompose3(D, ∅). Similar
holds for decompose2(D).

Example 4 Let D = ({a, b, c}, L, C) be some ADF and assume that the decomposition
heuristics selects S = {a}, then decompose3(D) = {{t(a)}, {f(a)}, {u(a)}} respectively
decompose2(D) = {{t(a)}, {f(a)}}.

32

4.3. Candidate Generator

4.2.1 Random

An easy to implement, but still useful, decomposer is the random decomposer. It randomly
selects S ⊆ A and thus is used to create random partitions of the search space. If an
instance is run enough times using a random decomposer and by keeping track of the
benchmark results, one may get some insights regarding the effect of the search space
decomposition for this particular instance.

4.2.2 Most Complex Acceptance Condition

A deterministic heuristics which chooses the arguments with the most complex acceptance
condition. Complex is defined with the logical complexity function lc on a purely
syntactical level.

Definition 16 Let φ be a propositional formula, we define the logical complexity function
as follows:

lc(φ) =

1 if φ is an atom
1 + lc(ψ) if φ = ¬ψ

1 + lc(ψ1) + lc(ψ2) if φ = ψ1 ◦ ψ2 with ◦ ∈ {∧, ∨, →, ↔, ⊕}

Let D = (A, L, C) be an ADF, the set S of selected arguments can then be characterised
by ∀s ∈ S ∀a ∈ A \ S : lc(ϕa) ≤ lc(ϕs).

4.2.3 Least Complex Acceptance Condition

This heuristics is the inverse of the Most Complex Acceptance Condition heuristics. Let
D = (A, L, C) be an ADF, the set S of selected arguments can then be characterised by
∀s ∈ S ∀a ∈ A \ S : lc(ϕa) ≥ lc(ϕs).

Although it does not look useful at first, since it often tends to select arguments with a
trivial acceptance condition, like ⊥ or , it is later used in the experiment chapter to
illustrate the impact of the decomposition heuristics.

4.3 Candidate Generator
The principle of the candidate generator stays the same, the difference is that the generate
function is restricted to only compute interpretations from a restriction of the search
space. We write generateR

σ for the restricted version of generateσ, where R denotes a
partial interpretation. The property R ⊆ generateR

σ (ρ) is required to hold for arbitrary ρ
until the search space is exhausted, hence until ∅ is returned.

33

4. Parallelization

4.3.1 Conflict-Free
The overall algorithm stays the same, what changes are the encodings added to ρ. The
motivation of the modified encodings is twofold. Most important, only a part of the
search space has to be computed, which makes modifications of the original encodings
necessary. As a side effect, one can get rid of many unnecessary clauses. It is important
to note that it is not correct to just fix the variables st and sf . Consider some argument
s with ϕs = ⊥, by just fixing st for the I(s) = t case one would get incorrect results.
Hence, it is crucial to keep the acceptance condition as well.

φΓ
I,s =

st ∧ ϕ↓
s if t(s) ∈ I

sf ∧ ¬ϕ↓
s if f(s) ∈ I

¬st ∧ ¬sf if u(s) ∈ I

(st → ϕ↓
s) ∧ (sf → ¬ϕ↓

s) otherwise

In principle the formula φΓ
I,s follows the same idea as the unrestricted version φΓ

s . It
links the propositional variables representing the truth assignment of each argument to
the corresponding acceptance condition. However, since a certain set of interpretations
must be excluded from the computation, one can take shortcuts. Assume I(s) = t for
instance, then it is not necessary to link sf to ¬ϕ↓

s, since interpretations where I(s) = f
holds are not considered anyway. In practice, this also means that if I(s) = t or I(s) = f
is fixed, the optimized version of the Tseitin transformation can be used for ϕ↓

s, since
the acceptance condition then only appears in either positive or negative polarity in φΓ

I,s.
Hence, we can skip additional clauses, besides the apparent ones.

φpr
I,s =

(s,r)∈L
ps

r if t(s) ∈ I

(s,r)∈L
¬ps

r if f(s) ∈ I

if u(s) ∈ I

(st →
(s,r)∈L

ps
r) ∧ (sf →

(s,r)∈L
¬ps

r) otherwise

Again, the formula φpr
I,s follows the same idea as its unrestricted version φpr

s . For each
argument s the formula φpr

s forces the truth assignments of the link variables, used in
the acceptance conditions of the children of s, to match the truth assignment of s. Since
this is only relevant if s is not undecided, it immediately follows that one can get rid
of this encoding if I(s) = u holds. For the decided cases the link variables can be fixed
directly, according to the truth value of s in I.

Proposition 12 Let D = (A, L, C) be some ADF, R some partial interpretation over D
and further let φΓ

R,s ∈ ρ and φpr
R,s ∈ ρ hold for each s ∈ A. Then generateR

cf (ρ) = I = ∅
implies R ⊆ I and I being conflict-free.

Proof. Assume R ⊆ I, i.e. one of the following cases holds:

34

4.3. Candidate Generator

Algorithm 4.1: generateR
cf (ρ)

1 (τ, sat) ← SAT (ρ)
2 if sat then
3 I ← Extract(τ)
4 ρ ← ρ ∧ φI

=
5 return I

6 end
7 return ∅

• u(s) ∈ R but u(s) ∈ I: Observe ¬st ∧ ¬sf in ρ, which is only satisfied if u(s) ∈ I.

• t(s) ∈ R but t(s) ∈ I: Observe st ∧ ϕ↓
s in ρ, which is only satisfied if t(s) ∈ I.

• f(s) ∈ R but t(s) ∈ I: Observe sf ∧ ¬ϕ↓
s in ρ, which is only satisfied if f(s) ∈ I.

Hence, since all cases are contradicting it follows R ⊆ I.

It remains to show that I is conflict-free. By looking at the definition of conflict-free
there are two cases to consider:

• t(s) ∈ I: If t(s) ∈ R holds then from st ∧ ϕ↓
s it follows that ϕ↓

s is satisfiable. Since
there is the formula φpr

I,s, which assigns the link variables according to I, it follows
that ϕ↓

s[I] is also satisfiable.

• f(s) ∈ I: If f (s) ∈ R holds then from sf ∧ ¬ϕ↓
s it follows that ϕ↓

s is refutable. Since
there is the formula φpr

I,s, which assigns the link variables according to I, it follows
that ϕ↓

s[I] is also refutable.

It is sufficient to only consider the cases where I(s) = R(s), since for all other cases
the encodings are equal to its unrestricted versions. Hence, since both cases hold I is
conflict-free.

4.3.2 Two-Valued Model
The overall algorithm stays the same, what changes are the encodings added to ρ.
Since only two-valued interpretations are computed, it does not make sense to consider
three-valued partitions of the search space. Hence, the restrictions are expected to be
two-valued.

φmod
I,s =

st ∧ ϕs if t(s) ∈ I

sf ∧ ¬ϕs if f(s) ∈ I

(st ↔ ϕs) ∧ (¬st → sf) otherwise

35

4. Parallelization

The formula φmod
I,s has similarities with φΓ

I,s, the main difference is that the undecided
case can be skipped. In order to restrict the search space, it is not sufficient to only fix st

or sf , it is necessary to also keep the acceptance conditions. Otherwise cases like I(s) = t
with ϕ↓

s = ⊥ would return interpretations, although in such a case no interpretation must
be returned at all.

Algorithm 4.2: generateR
mod(ρ)

1 (τ, sat) ← SAT (ρ)
2 if sat then
3 I ← Extract(τ)
4 ρ ← ρ ∧ φI

=
5 return I

6 end
7 return ∅

Proposition 13 Let D = (A, L, C) be some ADF, R some two-valued partial interpreta-
tion over D and further let φmod

R,s ∈ ρ hold for each s ∈ A. Then generateR
mod(ρ) = I = ∅

implies R ⊆ I and I being a two-valued model.

Proof. Assume R ⊆ I, i.e. one of the following cases holds:

• t(s) ∈ R but t(s) ∈ I: Observe st ∧ ϕ↓
s in ρ, which is only satisfied if t(s) ∈ I.

• f(s) ∈ R but t(s) ∈ I: Observe sf ∧ ¬ϕ↓
s in ρ, which is only satisfied if f(s) ∈ I.

Hence, since all cases are contradicting it follows R ⊆ I.

It remains to show that I is a two-valued model. We show I(a) = t iff ϕs[I] is satisfiable
as I(a) = t implies ϕs[I] is satisfiable and I(a) = f implies ϕs[I] is not satisfiable.

• t(s) ∈ I: If t(s) ∈ R holds then from st ∧ ϕs it follows that ϕs is satisfiable. Since
we only deal with two-valued models and therefore with ϕs directly without link
variables, it follows that ϕs[I] is satisfiable.

• f(s) ∈ I: If f(s) ∈ R holds then from sf ∧ ¬ϕs it follows that ¬ϕs is satisfiable.
Since we only deal with two-valued models and therefore with ϕs directly without
link variables, it follows that ¬ϕs[I] is satisfiable, hence ϕs[I] is not satisfiable.

It is sufficient to only consider the cases where I(s) = R(s), since for all other cases the
encodings are equal to its unrestricted versions. Hence, I is a two-valued model.

36

4.3. Candidate Generator

4.3.3 Grounded

The grounded generator works differently than the other generators. It is a direct
implementation of the fixpoint operator and thus has its semantical properties not
encoded in the search space ρ. The main problem for parallelization is that there is only
one unique grounded interpretation. So, if the search space is decomposed into n distinct
partitions, then n − 1 of them do not return an interpretation. Although the grounded
semantics takes no advantage from the parallelization framework, the notion of restricted
semantics still has its application for many reasoning tasks, as we will show later. Hence,
in order to restrict the grounded generator, shortcuts are introduced by checking the
recent assignments. Assume that I(s) = t is assigned, then if neither f(s) ∈ R nor
u(s) ∈ R holds continue, otherwise stop and return ∅.

Algorithm 4.3: generateR
grd(ρ)

1 Inew ← Iu

2 Iold ← Iu

3 repeat
4 Iold ← Inew

5 ρ ← ρ ∪ {st | Iold(s) = t} ∪ {sf | Iold(s) = f}
6 for s ∈ A with Iold(s) = u do
7 if ¬SAT (ρ ∪ {¬ϕ↓

s}) then
8 if f(s) ∈ R or u(s) ∈ R then
9 ρ ← ρ ∪ {⊥}

10 return ∅
11 end
12 Inew(s) → t
13 else if ¬SAT (ρ ∪ {ϕ↓

s}) then
14 if t(s) ∈ R or u(s) ∈ R then
15 ρ ← ρ ∪ {⊥}
16 return ∅
17 end
18 Inew(s) → f
19 else
20 Inew(s) → u
21 end
22 end
23 until Inew = Iold

24 ρ ← ρ ∪ {⊥}
25 if ∃v(s) ∈ R : v(s) /∈ Inew with v ∈ {t, f , u} then
26 return ∅
27 end
28 return Inew

37

4. Parallelization

Note that shortcuts are only introduced for the decided cases, since these assignments
are fixed and cannot change in the following iterations. It is also necessary to check if
the computed interpretation is consistent with the restriction R before it is returned.
This rules out cases where some argument is decided in the restriction R but undecided
in Inew.

Proposition 14 Let D = (A, L, C) be some ADF, R some partial interpretation over
D and ρ = s∈A(φΓ

s ∧ φpr
s). Then generateR

grd(ρ) = I = ∅ implies R ⊆ I and I being
grounded.

Proof. Assume R ⊆ I, then at some point ∅ is returned because of the introduced
shortcuts. This is however a contradiction to I = ∅, hence R ⊆ I holds. Since the rest of
the algorithm is equal to the unrestricted version, I is grounded.

4.4 Verifier
A verifier does not compute any interpretation, it just checks some property and acts as
a filter. Thus, there is no need for any special handling for the restricted case, since the
verification process remains the same. However, two additional verifiers are needed for
the concurrent framework. Assume some maximizer that only computes interpretations
under some restriction R, hence each maximal interpretation I has to satisfy R ⊆ I.
Now assume some ADF D = ({a}, ∅, {ϕa = }) and restriction R = {u(a)}, then some
maximizer restricted to R can only return the interpretation I = {u(a)}. It is not hard
to see that I is however not maximal in D, since clearly argument a can be decided.
Hence, in order to rule out interpretations which are only maximal in the restricted case,
but not in the unrestricted, additional verifiers are needed for the naive and preferred
semantics.

4.4.1 Naive

Naive interpretations are maximally conflict-free. The following algorithm assumes that
the interpretations to verify are already conflict-free, so it remains to check if they are
maximal. This can be done by trying to decide one further undecided argument. If it is
possible to do so, the interpretation was clearly not maximal and therefore not naive.

Algorithm 4.4: verifynai(I)
1 A ← {st | I(s) = t} ∪ {sf | I(s) = f}
2 φ> ← toggle ∨ I(s)=u st ∨ sf

3 ν ← ν ∪ {φ>}
4 return ¬SAT (ν, A ∪ {¬toggle})

38

4.4. Verifier

Algorithm 4.4 employs the techniques of assumption based SAT calls and interpretation
independent encodings. The idea is to reduce the overhead of each verify(I) call by reusing
the same SAT solver state. This is especially useful since the formulas φΓ

s and φpr
s must

be added to the verification state ν. So by reusing the solver state, these encodings have
to only be computed once. The problematic part is the search for a larger interpretation,
since this is inherently interpretation specific. Since an interpretation specific encoding
makes the solver state not reusable, we use the idea of a fresh propositional variable that
acts as a toggle. Let formula φ> be defined in a way such that it is always satisfiable
via the toggle variable. It is then possible to add clauses to the verification state which
are only activated once, by explicitly assuming the toggle variable as false. Hence, these
clauses do not interfere with subsequent verify(I) calls.

Proposition 15 Let D = (A, L, C) be some ADF, ν ⊇ s∈A{φΓ
s , φpr

s } the verification
state and I be some conflict-free interpretation, then verifynai(I) = true iff I is naive in
D.

Proof. Assume verifycf (I) = true holds. Then SAT (ν, A ∪ {¬toggle}) must be false.
Since toggle was assumed to be false, the clause φ> could not be satisfied by deciding
another argument. Hence, since no further arguments could be decided, the interpretation
was maximal and by assumption conflict-free, therefore naive.

Assume I is naive in D. The toggle variable again is assumed to be false, hence φ> is only
satisfiable if another argument can be decided. This would contradict the assumption
that I is naive, hence SAT (ν, A ∪ {¬toggle}) returns false from which verifycf (I) = true
follows.

4.4.2 Preferred

An interpretation is preferred if it is maximally admissible. The algorithm expects that
the given interpretation is already admissible, so it suffices to check if it is maximal. The
same techniques are used for the preferred verifier as we did for the naive verifier. The
main difference is to make sure that only admissible interpretations are considered as
larger in respect to the information ordering <i. This can be done by also adding the
formulas φbip

s and φΓ?
s to the verification state, besides φΓ

s and φpr
s .

Algorithm 4.5: verifyprf (I)
1 A ← {st | I(s) = t} ∪ {sf | I(s) = f}
2 φ> ← toggle ∨ I(s)=u st ∨ sf

3 ν ← ν ∧ φ>

4 return ¬SAT (ν, A ∪ {¬toggle})

39

4. Parallelization

Proposition 16 Let D = (A, L, C) be some ADF, ν ⊇ s∈A{φΓ
s , φpr

s , φbip
s , φΓ?

s } the
verification state and I be some admissible interpretation, then verifyprf (I) = true iff I
is preferred in D.

Proof. Analogous to the naive verifier.

4.4.3 Stable
One application of the restricted grounded generator is the stable verifier. It is possible
to take advantage of the shortcuts introduced in Algorithm 4.3 by slightly modifying the
stable verifier. The overall algorithm is basically the same as the one introduced in the
previous chapter. Now the check if Igrd of DI is I is computed indirectly. If I is not
stable, then the shortcuts make sure that the grounded interpretation restricted to I is ∅,
since it has to differ by definition.

Algorithm 4.6: verifystb(I)
1 Igrd ← generateI

grd(DI)
2 return Igrd = ∅

Proposition 17 Let D be some ADF and I be some two-valued interpretation, then
verifystb(I) = true iff I is stable in D.

Proof. Assume that I is stable, then by definition the grounded interpretation of ID is I,
thus Igrd = I and clearly Igrd = ∅.

Assume that I is not stable, then by definition the grounded interpretation of ID is not
I, thus generateI

grd(DI) = ∅ and clearly Igrd = ∅.

4.5 Interpretation Processor
Although not generating interpretations, since an interpretation processor takes, modifies
and returns interpretations, it is necessary to ensure that each returned interpretation is
satisfying the restriction R. It is already known from the candidate generation how to
restrict the search space to only compute interpretations I with R ⊆ I. Hence, the same
techniques are used as for the candidate generator. Note that it was already discussed
in the verifier section that this only returns maximal interpretations relative to some
restriction R.

4.5.1 Conflict-Free Maximizer
By comparing Algorithm 4.7 with Algorithm 3.7, one can observe that indeed the only
difference is the initialization of ϕ. This is not surprising, since conceptually there is no

40

4.5. Interpretation Processor

real difference between the algorithms. The only additional thing to consider is to make
sure that each returned interpretation I satisfies R ⊆ I. In order to do so, only ϕ has to
be modified.

Algorithm 4.7: maximizeR
cf (I)

1 ϕ ← φI
> ∧ s∈A(φΓ

R,s ∧ φpr
R,s)

2 Imax ← I
3 (w, sat) ← SAT (ϕ)
4 while sat do
5 Imax ← Extract(w)
6 ϕ ← ϕ ∧ φI

>

7 (w, sat) ← SAT (ϕ)
8 end
9 return (Imax, φImax

<)

Proposition 18 Let D be some ADF and I be some conflict-free interpretation, then
interpretation J with maximizecf (I) = (J, φJ

<) is maximally conflict-free in D relative to
R and R ⊆ J .

Proof. Observe that R ⊆ Imax holds for each Imax by the definition of ϕ. Hence, R ⊆ J
must hold. Further observe that, again by the definition of ϕ, each Imax is conflict-
free, hence J must be conflict-free. Since the maximization process works analogous to
Algorithm 3.7 the interpretation J must be maximal relative to R.

4.5.2 Admissible Maximizer
Again, compare Algorithm 4.8 with Algorithm 3.8 and observe that just the definition of
ϕ has to change in order to only compute interpretations I with the restriction R ⊆ I.

Algorithm 4.8: maximizeR
adm(I)

1 ϕ ← φI
> ∧ s∈A(φΓ

R,s ∧ φpr
R,s ∧ φΓ?

s ∧ φbip
s)

2 Imax ← I
3 (w, sat) ← SAT (ϕ)
4 while sat do
5 Imax ← Extract(w)
6 ϕ ← ϕ ∧ φI

>

7 (w, sat) ← SAT (ϕ)
8 end
9 return (Imax, φImax

<)

41

4. Parallelization

Proposition 19 Let D be some ADF and I be some admissible interpretation, then
interpretation J with maximizecf (I) = (J, φJ

<) is maximal admissible in D relative to R
and R ⊆ J .

Proof. Analogous to the conflict-free maximizer.

4.6 Putting Things Together
In this section the previously defined building blocks are wired together in a way that
allows concurrent execution.

Definition 17 Let T = {T1, . . . , Tn} denote a thread-pool of size n and Q denote a task
queue. Assume the existence of some mechanism removing a thread T ∈ T , some task
f ∈ Q and then executes f on T . On completion of f on T , T is added back to T . If
either T = ∅ or Q = ∅ the mechanism waits. We define some statement ’run f ’ which
takes some task f and adds it to Q.

Definition 17 models the concurrent execution behaviour and introduces the run statement.
The only thing this statement does is adding the task on its right-hand side to the execution
queue. It is then up to some background mechanism to determine when and how this
task is executed. The important takeaway is that run terminates immediately, hence
it does not wait until the task on the right-hand side is completed. The workings of
the execution mechanism are intentionally kept vague. There are various scheduling
and queueing strategies one can use, we handle them as an implementation detail and
therefore use the run statement as an abstraction.

In contrast to the sequential framework, the various execution stages are now put into
separate algorithms. This is important since we use them as targets for the run statement.
Note that the superscript of each step indicates a hardcoded reference to some structure.
Take the set I for instance, which is referenced by the last step of the pipeline to have
some consumer for the computed interpretations. Note that while the set I is global, the
set U of update formulas is only shared by building blocks within the same restricted
branch.

Algorithm 4.9: enumerateσ(D)
1 I ← ∅
2 R ← decompose3(D)
3 foreach restriction R ∈ R do
4 run initializationStepR

σ (D)
5 end
6 return I

42

4.6. Putting Things Together

Algorithm 4.9 is the entry point of the concurrent execution. As a first step, the
decomposer is applied to the given ADF D, which results in a set of partial interpretations
R. Then each R ∈ R is used to spawn its own restricted computation branch and thus
to enumerate each restricted search space concurrently.

Algorithm 4.10: initializationStepR
σ (D)

1 ρ ← processState(∅)
2 U ← ∅
3 run generationStepR,U

σ (ρ)

Since each restricted search space has its own SAT solver state, the state processor has
to be called for each of them. However, since Algorithm 4.10 is called via run, multiple
states can be processed in parallel. The candidate computation can begin once the initial
state processing is done. The run statement is used to execute the next stage of the
pipeline, this way the current thread is returned to the thread pool and the scheduling
mechanism can decide which task to handle next.

Algorithm 4.11: generationStepR,U
σ (ρ)

1 ρ ← ρ ∪ U
2 U ← ∅
3 I ← generateR(ρ)
4 if I = ∅ then
5 run unverifiedProcessingStepR,U

σ (I)
6 run generationStepR,U

σ (ρ)
7 end

Algorithm 4.11 has access to the shared data structure U . This structure is also referenced
by interpretation processors and is used to communicate search space updates to the
candidate generator. Since multiple interpretation processors may add propositional
formulas to U in parallel, the structure U is assumed to be synchronized. A synchronized
data structure ensures a consistent behaviour within a multi-threaded environment, this
is usually achieved via locks. Observe that there is only one instance of Algorithm 4.11
running at the same time, because at this stage of the pipeline it is never executed
by any other algorithm besides itself. Hence, it is safe to add the formulas in U to ρ
at the beginning of the algorithm, without corrupting the search space by concurrent
modifications.

This algorithm is also the reason redundant interpretations may be computed. Algorithm
4.11 does not wait until some interpretation processor at a later stage completes, it just
runs unverifiedProcessingStep with the computed candidate and then itself again. If
generationStep is then executed again, it just adds whatever is in U to the search space.
It does not matter if the interpretation processor is already done or not. Note that this

43

4. Parallelization

may also happen in a single-threaded environment, since run gives no guarantees when a
task is executed, it is perfectly fine for tasks to be executed in an order that does not
match the order of run statements.

More formally, a candidate generator can compute a sequence of interpretations I1, I2,
. . . , Ik before the effects of I1 to the search space are propagated back via U . This can
then lead to the computation of redundant interpretations if the process function is not
one-to-one, i.e. ∃I, J with I = J such that process(I) = process(J). In order to solve this
problem it would require to wait for updates of the search space before the computation
of the next candidate begins. This would have a negative impact on the throughput of
the pipeline. More importantly, redundancy does not interfere with the reasoning tasks
we are interested in. Hence, we have decided to give up uniqueness for the sake of a
higher throughput.

Algorithm 4.12: unverifiedProcessingStepR,U
σ (I)

1 (J, ψ) ← processUnverified(I)
2 U ← U ∪ {ψ}
3 run verificationStepR

σ (J)

The first of the two interpretation processors is run before the verifier and is therefore
denoted as unverifiedProcessingStep, since it deals with unverified candidates. It has
access to the already mentioned shared data structure U , which it uses to communicate
search space updates back to the previous stage.

Algorithm 4.13: verificationStepR
σ (I)

1 if verify(I) then
2 run verifiedProcessingStepR,U ,I

σ (I)
3 end

Algorithm 4.13 acts as a filter, the next stage of the pipeline is only executed if the
verification is successful.

Algorithm 4.14: verifiedProcessingStepR,U ,I
σ (I)

1 (J, ψ) ← processVerified(I)
2 U ← U ∪ {ψ}
3 I ← I ∪ {J}

The processing of verified interpretations is the last step of the pipeline. Algorithm 4.14
has a reference to the global set of computed interpretations I. The framework does
not synchronize the access to I, hence thread-safety is established by the structure I
itself. At this stage of the pipeline, J represents an interpretation of semantics σ, the
computation is therefore completed once J is added to I.

44

4.6. Putting Things Together

In the following, it is illustrated how the building blocks interact together for each
semantics. Again, the following sections do not show distinct algorithms, but rather
how the previously defined framework is configured for each semantics. In contrast to
Algorithm 3.9, the parallel framework does not work with defaults for missing building
blocks, but skips them entirely. Hence, the wiring of the steps may differ, depending on
which steps are necessary.

4.6.1 Conflict-Free

Although it may look different because of the different execution model, from a conceptual
standpoint the conflict-free algorithm is the same as in the previous chapter. There is no
need to change any building blocks.

Algorithm 4.15: initializationStepR
cf (D)

1 ρ ← s∈A{φΓ
R,s, φpr

R,s}
2 run generationStepR,I

cf (ρ)

Algorithm 4.15 represents the initialization step. No state processor is used, it therefore
only encodes the basic properties of conflict-free interpretations.

Algorithm 4.16: generationStepR,I
cf (ρ)

1 I ← generateR
cf (ρ)

2 if I = ∅ then
3 I ← I ∪ {I}
4 run generationStepR,I

cf (ρ)
5 end

Algorithm 4.16 then exhaustively computes conflict-free interpretations until the search
space is exhausted. Since there is no further step for the conflict-free semantics, the
computed interpretations are directly added to the shared set of interpretations I. Notice
an important subtlety here. In practice the shared set I is usually bounded, to prevent
the computation of all interpretations if no one is consuming them. Hence, at one point
I is full and every attempt to add another interpretation blocks the current thread until
some consumer starts draining I. Now imagine what would happen if the run statement
is used at line I ← I ∪ {I}. Then the addition of I to I would be delayed until the
scheduling mechanism decides to run it. In some worst case scenario this could lead to
the pollution of the task queue, or unnecessarily delays computed interpretations for the
consumer. Therefore, interpretations are always added to I in the same thread as the
last step of the computation pipeline.

45

4. Parallelization

4.6.2 Naive
The concurrent execution differs from the sequential one because of the additional
verification step.

Algorithm 4.17: initializationStepR
nai(D)

1 ρ ← s∈A{φΓ
R,s, φpr

R,s}
2 run generationStepR,U

nai (ρ)

The first step of the computation is the same as for the conflict-free semantics, as
Algorithm 4.17 shows.

Algorithm 4.18: generationStepR,U
nai (ρ)

1 U ← U
2 ρ ← ρ ∪ U
3 U ← U \ U
4 I ← generateR

cf (ρ)
5 if I = ∅ then
6 run unverifiedProcessingStepR,U

nai (I)
7 run generationStepR,U

nai (ρ)
8 end

Algorithm 4.18 already differs from the conflict-free case. Since there is an interpretation
processor for the maximization of conflict-free interpretations, the update formulas U
must be handled. An intermediate set U is necessary to neither lose any updates nor add
them twice. If the algorithm would add U directly to ρ and then set it to ∅ afterwards, all
updates which were added between those two instructions are lost. If it works like above,
but still adds U directly to ρ, then the updates which are added after the initialization
of U are added twice. The wiring also differs, since there is a follow-up step after the
candidate generation. The generated interpretations are not immediately returned, but
are handed to the next computation step.

Algorithm 4.19: unverifiedProcessingStepR,U
nai (I)

1 (J, ψ) ← maximizeR
cf (I)

2 U ← U ∪ {ψ}
3 run verificationStepR,I

nai (J)

Algorithm 4.19 takes a conflict-free interpretation I and calls the restricted conflict-free
maximizer on it. The resulting update formula is then communicated back to the previous
step via the shared data structure U . Note that the interpretation J is only maximal
relative to restriction R. Hence, it remains to verify if it is also maximal in ADF D.

46

4.6. Putting Things Together

Algorithm 4.20: verificationStepR,I
nai (I)

1 if verifynai(I) then
2 I ← I ∪ {I}
3 end

Algorithm 4.20 is the first step that differs from the sequential algorithm for naive
interpretations. If not dealing with restricted search spaces, there is no need for an extra
verification step, since the maximizer computes naive interpretations directly. In the
restricted case we however have to filter non-maximal results first.

Example 5 Consider the ADF D = ({a}, L, {ϕa = }). Let T = {T1, T2} denote the
thread pool and Q the task queue, further assume a mechanism which executes tasks in
a first-in-first-out manner. In the following table for each timestamp at least one task
finishes. We further abbreviate the names of the algorithms to cope with the limited space.

Time T1 T2 Q
1 initializationStept initializationStepf {initializationStepu}
2 initializationStepu initializationStepf {generationStept}
3 initializationStepu generationStept {generationStepf }
4 generationStepf generationStept {generationStepu}
5 generationStepu generationStept ∅
6 unverifiedProcessingStepu generationStept {generationStepu}
7 generationStepu generationStept {verificationStepu}
8 verificationStepu generationStept ∅
9 verificationStepu unverifiedProcessingStept {generationStept}
10 generationStept unverifiedProcessingStept ∅
11 - verificationStept ∅

An almost trivial example was chosen to illustrate the parallel execution of the naive
semantics. This has several reasons, one of them is space, since the runtime profile
explodes even for the smallest ADFs. However, it also illustrates that it is hard to
reason about the runtime behaviour of parallel algorithms. Above table is just one possible
execution order, hand-crafted to fit on the page, but there are many more even for such
a simple example. Hence, reasoning about properties like termination or correctness
becomes way harder compared to the sequential execution model.

Since the scheduling mechanism is deterministic, it is easier to follow the steps of table
above. The execution begins with the decomposition, since there is only one argument
it holds R = {t(a), f(a), u(a)}. Then the initialization steps are executed, since there
are three of them, but just two threads, one is delayed and put into the task queue Q.
Thread T1 is the first to finish, immediately assigning it to the other initialization task.
At timestamp 4 thread T1 finishes the partition f(a), since there is no such candidate,

47

4. Parallelization

hence no new tasks are scheduled for execution. At timestamp 5 thread T1 generates the
candidate I = u(a) and schedules the maximization task, which is executed immediately.
The maximizer returns I again, which is maximal relative to the restriction {u(a)}. There
are no further candidates within the partition u(a), hence the generation task on thread T1
terminates without spawning new tasks. The candidate generation on thread T2 returns
I = {t(a)} at timestamp 9 and immediately executes the maximization thread, since
there are no prior tasks in Q. The verification step on thread T1 discards interpretation
I, since it is clearly not maximal. The upcoming generation thread then also terminates
since the search space is exhausted. On thread T2 the interpretation I was handed to the
verification step. Since I is naive, and therefore not discarded, it is added to the set I.

4.6.3 Two-Valued Model
The algorithmic model for the two-valued semantics is similar to the conflict-free semantics.
This is not surprising and also analogous to the sequential algorithmic model.

Algorithm 4.21: initializationStepR
mod(D)

1 ρ ← s∈A{φmod
R,s }

2 run generationStepR,I
mod(ρ)

Algorithm 4.21 is the starting point of the computation. There currently is no need for a
state processor, so only the semantics specific properties are encoded into search space ρ.

Algorithm 4.22: generationStepR,I
mod(ρ)

1 I ← generateR
mod(ρ)

2 if I = ∅ then
3 I ← I ∪ {I}
4 run generationStepR,I

mod(ρ)
5 end

Once the search space is initialized, the computation of two-valued models is straight
forward, as there is no need for further building blocks, illustrated by Algorithm 4.22.
Again, notice that since there are no further steps involved in the computation, the
two-valued models I are added to I in the same thread as they were generated. This
prevents some undesired side-effects, as discussed in more detail in the conflict-free
section.

4.6.4 Admissible
The following algorithm makes use of the k-bipolar state processor, the admissibility
property is therefore directly encoded into ρ. Hence, there is no need for an additional
admissibility verification step, leaving us with only two steps in the computation pipeline.

48

4.6. Putting Things Together

Algorithm 4.23: initializationStepR
adm(D)

1 ρ ← s∈A{φΓ
R,s, φpr

R,s}
2 ρ ← processkbip(ρ)
3 run generationStepR,I

adm(ρ)

Algorithm 4.23 initializes the search space with the conflict-free encodings. Then the
k-bipolar optimization is encoded into ρ by the respective state processor. This results
in a search space that only returns admissible interpretations.

Algorithm 4.24: generationStepR,I
adm(ρ)

1 I ← generateR
cf (ρ)

2 if I = ∅ then
3 I ← I ∪ {I}
4 run generationStepR,I

adm(ρ)
5 end

Algorithm 4.24 performs the exhaustive generation of admissible interpretations, analogous
to the conflict-free or two-valued model semantics. As always, since there are no further
steps in the pipeline, the interpretations are added to I in the current thread.

4.6.5 Preferred
Conceptually the preferred semantics is similar to the naive semantics, hence similar
problems occur. In contrast to the sequential algorithm, there is now need for a verification
step. The problem is that the maximization step only returns interpretations which are
maximal relative to some restriction R. Hence, some additional filtering is necessary,
which is done with the help of a verifier.

Algorithm 4.25: initializationStepR
prf (D)

1 ρ ← s∈A{φΓ
R,s, φpr

R,s}
2 ρ ← processkbip(ρ)
3 run generationStepR,U

prf (ρ)

Algorithm 4.25 is identical to Algorithm 4.23, which is not surprising since the admissible
and the preferred semantics share the same first steps. The algorithm initializes ρ with
the conflict-free encodings and then applies the k-bipolar state processor to ensure the
computation of only admissible interpretations.

This step now differs from the admissible pipeline. Algorithm 4.26 has a next step, thus
a unverifiedProcessingStepR,U

prf (I) call is wired into the algorithm. It also has to deal with

49

4. Parallelization

Algorithm 4.26: generationStepR,U
prf (ρ)

1 U ← U
2 ρ ← ρ ∪ U
3 U ← U \ U
4 I ← generateR

cf (ρ)
5 if I = ∅ then
6 run unverifiedProcessingStepR,U

prf (I)
7 run generationStepR,U

prf (ρ)
8 end

the update formulas in U , which are communicated back by the maximizers. Besides
that, it exhaustively computes admissible interpretations I until I = ∅ holds.

Algorithm 4.27: unverifiedProcessingStepR,U
prf (I)

1 (J, ψ) ← maximizeR
adm(I)

2 U ← U ∪ {ψ}
3 run verificationStepR,I

prf (J)

Algorithm 4.27 takes an admissible interpretation I and calls the restricted admissible
maximizer on it. The resulting update formula is then communicated back to the previous
step via the shared data structure U . Note that the interpretation J is only maximal
relative to restriction R. Hence, it remains to verify if it is also maximal in ADF D.

Algorithm 4.28: verificationStepR,I
prf (I)

1 if verifyprf (I) then
2 I ← I ∪ {I}
3 end

Algorithm 4.28 is the first step that differs from the sequential algorithm for preferred
interpretations. If not dealing with restricted search spaces, there is no need for an extra
verification step, since the maximizer computes preferred interpretations directly. In the
restricted case it becomes necessary to filter non-maximal results.

4.6.6 Stable

The stable algorithm is again in line with its sequential counterpart. There is no
conceptual difference, also no need for further building blocks.

50

4.6. Putting Things Together

Algorithm 4.29: initializationStepR
stb(D)

1 ρ ← s∈A{φmod
R,s }

2 run generationStepR
stb(ρ)

The first step of the pipeline is the initialization step, represented by Algorithm 4.29.
Since stable models are a subset of two-valued models, two-valued models are generated
as candidates. This is achieved by encoding the two-valued model property to ρ.

Algorithm 4.30: generationStepR
stb(ρ)

1 I ← generateR
mod(ρ)

2 if I = ∅ then
3 run verificationStepR,I

stb (J)
4 run generationStepR

stb(ρ)
5 end

Algorithm 4.30 exhaustively generates two-valued models. These interpretations are then
handed to the verification step.

Algorithm 4.31: verificationStepR,I
stb (I)

1 if verifystb(I) then
2 I ← I ∪ {I}
3 end

Algorithm 4.31 performs the stable model verification and discards all non-stable I. It is
the last step of the stable model computation, therefore all remaining I are added to I.

4.6.7 Complete
The parallel algorithm for the complete semantics is in line with its sequential counterpart.

Algorithm 4.32: initializationStepR
com(D)

1 ρ ← s∈A{φΓ
R,s, φpr

R,s}
2 ρ ← processkbip(ρ)
3 run generationStepR

com(ρ)

Since complete interpretations are a subset of admissible interpretations, Algorithm 4.32
applies the k-bipolar state processor to ρ. In combination with the conflict-free encodings,
only admissible interpretations then satisfy ρ.

51

4. Parallelization

Algorithm 4.33: generationStepR
com(ρ)

1 I ← generateR
cf (ρ)

2 if I = ∅ then
3 run verificationStepR,I

com(J)
4 run generationStepR

com(ρ)
5 end

Algorithm 4.33 exhaustively computes admissible interpretations and hands them to the
verification step.

Algorithm 4.34: verificationStepR,I
com(I)

1 if verifycom(I) then
2 I ← I ∪ {I}
3 end

Algorithm 4.34 now discards all those interpretations that do not pass the complete
verification. This is the last step of the parallel algorithm for the complete semantics, it
therefore returns all remaining interpretations I to I.

4.7 Reasoning Tasks
One interesting side effect of the restricted semantics is its usage in various reasoning
tasks. Until now, we have mostly discussed the enumeration of the interpretations of
some ADF D and some semantics σ. However, there are further interesting reasoning
tasks to consider. In this section, we show how we can use all the discussed concepts to
assemble algorithms for these reasoning tasks without much further work.

4.7.1 Credulous Reasoning
The first reasoning task to consider is credulous reasoning, it asks if some argument
is true in at least one interpretation of some ADF D. Algorithm 4.35 makes only use
of previously defined algorithms by reformulating this question. It asks only for those
interpretations I of ADF D in which argument a is true by using the restriction {t(a)}.
If I is not empty, then there obviously exists some interpretation in which argument a is
true. Note that it is not necessary to compute the whole set I, one can stop after the
first result. However, for illustration purposes we have reused the enumerateσ algorithm
here.

Proposition 20 Let D = (A, L, C) be some ADF and a ∈ A some argument, then
∃I ∈ σ(D) : I(a) = t iff credσ(D, a) = true.

52

4.7. Reasoning Tasks

Algorithm 4.35: credσ(D, a)
1 I ← enumerate{t(a)}

σ (D)
2 return I = ∅

Proof. Assume ∃I ∈ σ(D) : I(a) = t, then enumerate{t(a)}
σ (D) computes I at one point.

Hence, it holds I ∈ I and further I = ∅ from which credσ(D, a) = true follows.

Assume credσ(D, a) = true, then I = ∅. Since enumerate{t(a)}
σ (D) only computes

interpretations I satisfying the restriction {t(a)} ⊆ I it holds ∃I ∈ σ(D) : I(a) = t.

4.7.2 Skeptical Reasoning
Another important reasoning task is skeptical reasoning, it asks if some argument is true
for all interpretations of some ADF D. Although the question is quite similar to credulous
reasoning, the algorithm is a bit trickier. Algorithm 4.36 splits this question into two
sub-questions, first it asks if there exists some interpretation I with I(a) = f then it
asks if there exists some interpretation I with I(a) = u. If one of these sub-questions is
answered positively, we know that I(a) = t cannot hold for all interpretations, hence the
algorithm returns false. If none of these sub-questions can be answered positively, then
we have found no counterexample to I(a) = t, hence it must hold for all interpretations of
D. Note again that we use enumerateσ mainly for simplicity, we do not have to compute
the whole set I to answer if I = ∅ respectively I = ∅ holds.

Algorithm 4.36: skeptσ(D, a)
1 I ← enumerate{f(a)}

σ (D)
2 if I = ∅ then
3 return false
4 end
5 I ← enumerate{u(a)}

σ (D)
6 return I = ∅

Proposition 21 Let D = (A, L, C) be some ADF and a ∈ A some argument, then
∀I ∈ σ(D) : I(a) = t iff skeptσ(D, a) = true.

Proof. Assume ∀I ∈ σ(D) : I(a) = t, then enumerate{f(a)}
σ (D) = ∅ thus we continue with

the second sub-question. It further holds enumerate{u(a)}
σ (D) = ∅ and therefore I = ∅,

which results in skeptσ(D, a) = true.

Assume skeptσ(D, a) = true, then enumerate{f(a)}
σ (D) = ∅ follows, since otherwise we

would enter the if-statement which would result in a contradiction. It further holds

53

4. Parallelization

enumerate{u(a)}
σ (D) = ∅ since I = ∅ must hold in order to return true. Hence, since both

sub-questions are not able to provide a counterexample, ∀I ∈ σ(D) : I(a) = t holds.

4.7.3 Verification
The verification reasoning task must not be confused with the verifier building block.
Although, at first glance it seems similar, the reasoning task is more comprehensive. It
asks whether I is some interpretation of ADF D under semantics σ, i.e. I ∈ σ(D). While
the verifier building block just verifies a single property of an interpretation. Take the
preferred verifier for instance, which expects a given interpretation to be admissible, but
does not check it by itself. Assume some non-admissible interpretation I, in order to
check I ∈ prf (D) we cannot just use the preferred verifier, because it only checks for
some interpretation J s.t. I <i J . If it does not find such a J , then we would assume
that I ∈ prf (D) holds, although I is not even admissible.

However, we already have everything we need to solve this reasoning task. We again make
use of the existing enumerateσ algorithm under some restriction. If the computation is
restricted to I, then only I itself can satisfy the restriction I ⊆ I. Hence, it then either
holds I = {I} or I = ∅ and the reasoning task is reduced to a single I = ∅ check.

Algorithm 4.37: verσ(D, I)
1 I ← enumerateI

σ(D)
2 return I = ∅

Proposition 22 Let D = (A, L, C) be some ADF and I some interpretation of D, then
I ∈ σ(D) iff verσ(D, I) = true.

Proof. Assume I ∈ σ(D), then enumerateI
σ(D) = {I} and therefore I = ∅, hence

verσ(D, I) = true.

Assume verσ(D, I) = true, then I = ∅ and therefore I ∈ I, hence I ∈ σ(D).

4.7.4 Parallelization
It is possible to decide the skeptical and the credulous reasoning problems in parallel.
This is illustrated for the credulous reasoning problem, but it works for the skeptical
reasoning problem analogously.

First observe Algorithm 4.38, which makes use of the already known restriction mechanism.
It behaves exactly the same as Algorithm 4.35 but tries to answer a slightly modified
question, namely whether ∃I ∈ σ(D) : R ⊆ I ∧ I(a) = t holds. Note that in order to
avoid an inconsistent R it is required that R ∩ {f(a), u(a)} = ∅ holds.

54

4.7. Reasoning Tasks

Algorithm 4.38: credR
σ (D, a)

1 R ← R ∪ {t(a)}
2 I ← enumerateR

σ (D)
3 return I = ∅

Proposition 23 Let R = {R1, . . . , Rn} be a set of restrictions covering the whole search
space and let Ri ∩{f (a), u(a)} = ∅ hold for all Ri ∈ R. Then it holds credσ(D, a) = false
if credRi

σ (D, a) = false for all Ri ∈ R and credσ(D, a) = true if credRi
σ (D, a) = true for

some Ri ∈ R.

Proof. Assume credRi
σ (D, a) = false for all Ri ∈ R, then enumerateRi∪{t(a)}

σ (D) =
∅ for all Ri ∈ R. Observe that since R covers the whole search space it holds

Ri∈R enumerateRi∪{t(a)}
σ (D) = enumerate{t(a)}

σ (D) = ∅ and therefore credσ(D, a) =
false.

Assume credRi
σ (D, a) = true for some Ri ∈ R, then there exists some interpretation I ∈

σ(D) with I(a) = t. It further holds I ∈ enumerate{t(a)}
σ (D) and therefore credσ(D, a) =

true.

Algorithm 4.39: credσ(D, a)
1 res ← false
2 R ← decompose3(D, {a})
3 foreach restriction R ∈ R do
4 run res ← res ∨ credR

σ (D, a)
5 end
6 return res

Algorithm 4.39 is the result of the combination of Proposition 23 with Algorithm 4.38.
The idea is to decompose the search space and then decide the credulous reasoning
problem for distinct parts of the search space in parallel. Some shared and synchronized
res variable is used, which is rendered true if at least one part of the search space contains
an interpretation I with I(a) = t. The algorithm can stop immediately as soon as res
becomes true. Note that Algorithm 4.39 is kept simple to illustrate the overall scheme, it
is in no sense an optimized version. In practice there is some bookkeeping necessary to
determine if all tasks are done or to cancel running tasks if one of them already returned
true.

55

CHAPTER 5
Experiments

The proposed algorithms were implemented as a part of the TweetyProject, which is a
comprehensive collection of Java libraries for logical aspects of artificial intelligence [Thi14].
Hence, our system was written in Java, which has advantages and disadvantages. The
system was designed as a library and Java is still one of the most dominant programming
languages, there is therefore a huge potential audience. The further improvement and
maintenance of the system is an important and necessary step from academia towards the
industry. However, one of the drawbacks of the Java implementation is the higher level of
abstraction, compared to C/C++ implementations. Although it interacts with native SAT
solvers via the Java Native Interface (JNI) [Lia99] there is some non-negligible overhead
imposed by JNI itself and some mapping layer between the SAT solver binding and the
ADF reasoner. It is possible to get rid of this mapping layer by a tighter SAT solver
integration, there are however some engineering problems to solve first. Hence, future
improvements of the system are trying to minimize the gap to native implementations.

The goal of this chapter is to provide some proof-of-concept for the parallelization
approach. Hence, since the implemented system is capable of performing all reasoning
tasks in sequential and in parallel, the experiments focus on the difference of these
execution models. This way we do not measure technological differences, since both
models have the same foundation, but the pure impact of parallelization on the runtime.

5.1 Java Microbenchmark Harness (JMH)
Many optimizations are not performed by the Java compiler, but during runtime by
the Java Virtual Machine (JVM). Hence, benchmark results may differ, depending on
how the JVM executes some code passages. Execution varies from interpretation to
just-in-time compiled highly optimized code incorporating collected runtime data. To
give the JVM a chance to collect runtime data and perform optimizations based on them,
some warmup iterations are necessary before collecting benchmark results. However,

57

5. Experiments

warmup may not be sufficient, the JVM is a highly complex piece of software and there
is a lot one can do wrong. Fortunately, there is something called Java Microbenchmark
Harness (https://github.com/openjdk/jmh) which deals with all the JVM magic
and makes it easier to write correct microbenchmarks. JMH is the defacto standard
when dealing with microbenchmarks on the JVM and is therefore used by the following
experiments.

As a configuration the number of forks is set to 3, the number of warmup iterations set
to 5 and the number of measured iterations is also set to 5. Each fork starts a new Java
process, which then runs the benchmarks. It is useful to neglect run-to-run variance. As
a side-effect the collected runtime profiles are lost between each fork. Hence, in total
we run each iteration 30 times, 10 times for each fork, but only 5 of them are measured.
Each iteration takes at least 10 seconds and runs the benchmark at least once. If a
benchmark runs multiple times within these 10 seconds, then the average time is taken.
This ensures more stable results, since environmental influences have more impact on
benchmarks with only short running times.

5.2 Setup
It is not expected that parallelization is useful for each instance or semantics. This is
best illustrated by the grounded semantics. If just a few interpretations are generated
per instance while the semantics has no building blocks besides the generator, then
the parallelization overhead may be counterproductive. Therefore the experiment first
focuses on a few selected instances purely chosen by their number of interpretations. A
high number of interpretations may also indicate that more parts of the search space are
relevant, which is beneficial for the decomposition. As a follow-up we perform further
experiments to see if the findings are generalizable or the selected instances are outliers.

The following instances can be found at https://www.dbai.tuwien.ac.at/proj/
adf/yadf/:

1. adfgen_nacyc_se05_a_02_s_02_b_02_t_02_x_02_c_sXOR_Traffic_benton-or-
us.gml.80_25_56.apx.adf

2. adfgen_nacyc_se05_a_02_s_02_b_02_t_02_x_02_c_sXOR_ABA2AF_afinput
_exp_acyclic_depvary_step5_batch_yyy06_29_57.apx.adf

3. adfgen_nacyc_se05_a_02_s_02_b_02_t_02_x_02_c_sXOR_ABA2AF_afinput
_exp_acyclic_indvary1_step6_batch_yyy08_35_52.apx.adf

Table 5.1 shows the number of interpretations per instance and semantics. The semantics
naive, admissible and complete were chosen. Although the complete semantics does
not have many interpretations, it still generates the admissible interpretations and
additionally applies a verification step.

58

https://github.com/openjdk/jmh
https://www.dbai.tuwien.ac.at/proj/adf/yadf/
https://www.dbai.tuwien.ac.at/proj/adf/yadf/

5.3. Results

naive admissible complete
Instance 1 104085 39059 372
Instance 2 72765 86272 8
Instance 3 16404 131072 1

Table 5.1: Number of interpretations per instance and semantics.

The experiments run on an AMD Ryzen 7 3700X 8-Core processor with 16 logical cores.
We run it in three different modes, as a baseline the interpretations are sequentially
computed then we perform two parallel runs. The first run uses the Most Complex
Acceptance Condition (MCA) decomposition heuristics. The second run uses the Least
Complex Acceptance Condition (LCA) decomposition heuristics. Both heuristics select 3
arguments, which results in 27 search space decompositions. The number of arguments
is determined by the 16 logical cores, since 2 arguments with 9 decompositions would
underutilize the processor. Although the system has also bindings for Lingeling [Bie17]
and Picosat [Bie08], MiniSat [ES04] was chosen as an underlying SAT solver.

5.3 Results
Table 5.2 shows the average run time and standard error of each experiment. Although
the concurrent execution model is less deterministic than its sequential counterpart, the
results are quite stable with just a few outliers like the Naive LCA run.

In the following we illustrate the parallel results relative to the sequential results, which
functions as a baseline. This makes it easy to determine the speedup factor in comparison
to the traditional sequential execution.

Figure 5.1 shows the relative results for the admissible semantics run. One can already
see, especially by looking at Instance 3, the importance of the search space decomposition
for the parallel execution. While for Instance 1 the MCA heuristics outperforms the
LCA heuristics, for Instance 2 and Instance 3 the opposite is the case. The sequential

Instance 1 Instance 2 Instance 3

Admissible
Seq. 1,491 ± 0,033 6,021 ± 0,344 12,344 ± 0,461
LCA 0,294 ± 0,030 0,699 ± 0,074 1,048 ± 0,064
MCA 0,170 ± 0,008 2,572 ± 0,072 11,833 ± 0,853

Complete
Seq. 6,972 ± 0,155 31,729 ± 0,683 48,567 ± 1,383
LCA 1,091 ± 0,036 3,985 ± 0,151 5,639 ± 0,070
MCA 1,109 ± 0,026 5,725 ± 0,702 17,163 ± 0,991

Naive
Seq. 30,123 ± 0,316 37,482 ± 0,626 8,604 ± 0,224
LCA 26,846 ± 7,771 256,015 ± 35,065 26,726 ± 0,592
MCA 9,405 ± 0,193 11,840 ± 0,550 6,278 ± 0,176

Table 5.2: Raw benchmark data in seconds.

59

5. Experiments

Instance 1 Instance 2 Instance 3
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
ru

n
tim

e

Sequential
Parallel MCA
Parallel LCA

Figure 5.1: Relative run time of the admissible semantics.

execution is almost on par with the parallel MCA execution for Instance 3. This can
happen since the interpretations are usually not uniformly distributed over all search
space partitions, resulting in many exhausted partitions at an early computation stage.
The remaining partitions then underutilize the processor.

Figure 5.2 shows the relative results for the complete semantics. The complete verifier is
stateless, allowing for a good hardware utilization even if the decomposition of the search
space is not ideal. This also explains the better result of the MCA heuristics on Instance
3 compared to the admissible semantics. The results also indicate that the verification is
the bottleneck of the computation, otherwise the bar charts would resemble the ones of
the admissible semantics. This conclusion can also be drawn from the raw benchmark
data, since the complete semantics takes way longer to compute although it only differs
in the additional verification step from the admissible semantics.

Instance 1 Instance 2 Instance 3
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
ru

n
tim

e

Sequential
Parallel MCA
Parallel LCA

Figure 5.2: Relative run time of the complete semantics.

60

5.3. Results

Instance 1 Instance 2 Instance 3
0

2

4

6
R

el
at

iv
e

ru
n

tim
e

Sequential
Parallel MCA
Parallel LCA

Figure 5.3: Relative run time of the naive semantics.

Figure 5.3 shows the relative results for the naive semantics. There is something
unexpected but interesting happening for Instance 2 and Instance 3. Sometimes it
has to be expected that the additional parallelization overhead leads to worse results
compared to the sequential execution. This is however not the case here, since the
additional overhead usually becomes insignificant if an instance takes long enough to
compute.

Recall the role of the interpretation processor for the naive semantics, which takes
an interpretation and maximizes it according to the information ordering <i. The
maximization process is not one-to-one, hence there are two different interpretations I1
and I2 with maximize(I1) = maximize(I2). If the computation happens sequentially and
I1 is computed first, then the computation of I2 is ruled out by the maximizer. If the
computation however happens not sequentially and I1 and I2 lie in different partitions
of the search space, then both are computed. Interpretations can only be ruled out by
other interpretations within the same partition, since the current execution model does
not share any information between different partitions. Therefore, for semantics with an
interpretation processor, redundant computation can happen.

Another effect also takes place, the implementation of the interpretation processor is
stateless, the naive verifier is stateful. This allows the execution framework to spawn and
execute arbitrarily many maximization tasks per partition, but the execution of only one
verification per partition at a time. This combination relies too much on the scheduling
mechanism and explains the high standard error of the runtime for these two instances.
If the scheduler does not balance the maximization tasks and the verification tasks, then
the system has to deal with back pressure, which results in less throughput. One simple
solution is the use of a stateless verifier, which removes the restriction of one verification
at a time and branch. However, sometimes it is beneficial to rely on statefulness, the naive
verifier saves some encoding time for instance. A more advanced and probably better
solution is a scheduling mechanism which takes runtime characteristics into account to

61

5. Experiments

Sequential Parallel LCA Parallel MCA
Admissible 224,274 ± 14,846 20,367 ± 5,276 105,712 ± 25,342
Complete 770,388 ± 54,758 81,825 ± 19,514 139,856 ± 40,132

Table 5.3: Accumulated results of the follow-up runs.

avoid back pressure because of potential bottlenecks.

5.4 Follow-Up
A subset of another 30 instances was picked from the YADF page and benchmarked
with the admissible and the complete semantics. All of these instances were solvable
within 10 seconds by one of the parallel runs. The admissible semantics was chosen
to further illustrate the importance of the right search space decomposition heuristics.
The complete semantics was chosen to show that a bad search space decomposition can
be mitigated by the semantics decomposition. Further experiments with the preferred
semantics are postponed to a later date, since we already gathered enough insight for
necessary future improvements before follow-up experiments are useful.

This time each experiment was only run three times, Table 5.3 shows the average runtime
and the error. Figure 5.4 shows the relative speedup in comparison to the sequential run.

What can be concluded from these results is that the LCA heuristics performs much
better for the admissible and complete semantics. It also shows the importance of both
decomposition approaches and that the previous results were not just outliers, but that
parallelization often leads to performance improvements. More extensive experiments
are performed in the future, once the current problems are solved and the system is in a
more mature state.

Admissible Complete
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
ru

n
tim

e

Sequential
Parallel MCA
Parallel LCA

Figure 5.4: Relative accumulated run time of the follow-up runs.

62

CHAPTER 6
Related Work

One of the starting points of this thesis was the paper [LMN+18]. It provides a basic
framework for SAT based ADF systems and also advanced encodings on which our system
heavily relies on like the k-bipolar optimizations. It also resulted in the k++adf system,
which functions as a main motivation for the parallelization approach. An ongoing goal
is to outperform k++adf for most instances, which is hard to achieve with classical
approaches because of technical constraints imposed by Java. Therefore we started
investigating and implementing parallelization approaches.

A different approach to our SAT based system is illustrated by the systems YADF
[BDH+20] and DIAMOND [ES14] which both rely on Answer Set Programming (ASP)
[EIK09] as their target formalism. A system which relies on Quantified Boolean Formulas
(QBFs) [SBPS19] as its target formalism was introduced in [DWW15]. The additional
expressiveness of ASP or QBFs may be tempting at first, but is not necessary for
parallelization. It is undesirable for the complexity of the building blocks to exceed the
borders of NP. In fact it is desirable to have many easy to compute building blocks, since
these are the atomic objects which we can run in parallel. Hence, approaches with just a
single ASP or QBF encoding would prevent the current parallelization framework to run
things in parallel.

None of these systems currently make use of some form of parallelization. There is some
work on parallel algorithms for other argumentation formalisms [CTV+15], but it often
only involves a certain semantics and is further not directly applicable to ADFs.

63

CHAPTER 7
Outlook and Conclusion

It was shown that parallelization of ADF algorithms is a viable approach that opens a
new path for further research. The experiments have indicated that the key to beneficial
parallelization is the search space decomposition. Therefore, further work has to be
spent on better decomposition heuristics. However, even the best heuristics can not
determine how the interpretations are distributed over the search space. Therefore, a
plausible approach to investigate is the dynamic decomposition during runtime. If one
partition of the search space is exhausted, it could be viable to further decompose a
not yet exhausted partition. This would make the choice of the right decomposition
heuristics less crucial. It would also lead to a less volatile hardware utilization. Although
the problem is easily formulated, this is some hard engineering problem and requires a
carefully designed system.
Another encountered problem deals with the main result of [LMN+18]. The proposed
k-bipolar optimizations are too beneficial to skip them entirely. However, if the number of
dependent links becomes too high, most of the reasoning time is spent on the computation
of the clauses and the interaction with the underlying SAT solver. It is planned to improve
our system further, by reducing the current interaction overhead with the SAT solver.
There are instances which are computable by k++adf but not by our system, at least not
in reasonable time. Work in this direction should further close the gap between these two
systems. However, at one point it becomes unfeasible to compute the k-bipolar encodings
a priori. Hence, some investigation on dynamically computed encodings based on the
runtime profile may be tempting, in order to solve instances which are currently too hard
for either system.
The implemented library currently supports 8 different semantics, namely conflict-free,
naive, admissible, preferred, complete, two-valued, stable and grounded. For each of
these semantics it is possible to spend a significant amount of time in search for improved
algorithms. Hence, it is expected that future improvement not only happens by finding
more efficient execution models, but by improved sequential algorithms.

65

7. Outlook and Conclusion

From an engineering standpoint there is still potential for future developments. One can
investigate different queueing and scheduling mechanisms for the concurrent execution of
the building blocks. The current implementation has one global queue and one thread pool.
It is a possibility to have multiple queues and thread pools. For instance, each partition
of the search space can have its own queue and thread pool. Future experiments can
also deal with advanced scheduling mechanisms based on priorities or collected runtime
data. It is currently not known if a system could benefit from research in this area.
There are also interesting developments happening in the Java world, like Project Loom
(https://openjdk.java.net/projects/loom/) or Project Panama (https://
openjdk.java.net/projects/panama/). The former may help with parallelization
and the latter with a better SAT solver integration.

It is also important to underline the library aspect of the proposed system. Abstract
Dialectical Frameworks function as a target formalism for other research, it is therefore
from importance to have a library in a widespread language like Java. There is also work
on the application of ADFs in the industry, especially in law, as [AAABC16] shows. A
well-designed library can be a helpful step in this direction. However, there is still a lot
to work on, like documentations, user guides, easy-to-use APIs, tests, extensibility and
maybe frontends as an abstraction over complicated details.

66

https://openjdk.java.net/projects/loom/
https://openjdk.java.net/projects/panama/
https://openjdk.java.net/projects/panama/

List of Figures

2.1 An illustration of the information ordering for three-valued interpretations. 6

3.1 The sequential computation pipeline. 12

4.1 The parallel execution framework. 31

5.1 Relative run time of the admissible semantics. 60
5.2 Relative run time of the complete semantics. 60
5.3 Relative run time of the naive semantics. 61
5.4 Relative accumulated run time of the follow-up runs. 62

67

List of Tables

2.1 Complexity results from [DD17]. 10

5.1 Number of interpretations per instance and semantics. 59
5.2 Raw benchmark data in seconds. 59
5.3 Accumulated results of the follow-up runs. 62

69

List of Algorithms

3.1 generatecf (ρ) . 15

3.2 generategrd(ρ) . 16

3.3 generatemod(ρ) . 18

3.4 processkbip(ρ) . 19

3.5 verifycom(I) . 20

3.6 verifystb(I) . 20

3.7 maximizecf (I) . 21

3.8 maximizeadm(I) . 22

3.9 enumerate(D) . 23

3.10 enumeratecf (D) . 24

3.11 enumeratenai(D) . 24

3.12 enumeratemod(D) . 25

3.13 enumerateadm(D) . 25

3.14 enumerateprf (D) . 26

3.15 enumeratestb(D) . 27

3.16 enumerategrd(D) . 27

3.17 enumeratecom(D) . 28

4.1 generateR
cf (ρ) . 35

4.2 generateR
mod(ρ) . 36

4.3 generateR
grd(ρ) . 37

4.4 verifynai(I) . 38

4.5 verifyprf (I) . 39

71

4.6 verifystb(I) . 40

4.7 maximizeR
cf (I) . 41

4.8 maximizeR
adm(I) . 41

4.9 enumerateσ(D) . 42

4.10 initializationStepR
σ (D) . 43

4.11 generationStepR,U
σ (ρ) . 43

4.12 unverifiedProcessingStepR,U
σ (I) . 44

4.13 verificationStepR
σ (I) . 44

4.14 verifiedProcessingStepR,U ,I
σ (I) . 44

4.15 initializationStepR
cf (D) . 45

4.16 generationStepR,I
cf (ρ) . 45

4.17 initializationStepR
nai(D) . 46

4.18 generationStepR,U
nai (ρ) . 46

4.19 unverifiedProcessingStepR,U
nai (I) . 46

4.20 verificationStepR,I
nai (I) . 47

4.21 initializationStepR
mod(D) . 48

4.22 generationStepR,I
mod(ρ) . 48

4.23 initializationStepR
adm(D) . 49

4.24 generationStepR,I
adm(ρ) . 49

4.25 initializationStepR
prf (D) . 49

4.26 generationStepR,U
prf (ρ) . 50

4.27 unverifiedProcessingStepR,U
prf (I) . 50

4.28 verificationStepR,I
prf (I) . 50

4.29 initializationStepR
stb(D) . 51

4.30 generationStepR
stb(ρ) . 51

4.31 verificationStepR,I
stb (I) . 51

4.32 initializationStepR
com(D) . 51

4.33 generationStepR
com(ρ) . 52

72

4.34 verificationStepR,I
com(I) . 52

4.35 credσ(D, a) . 53

4.36 skeptσ(D, a) . 53

4.37 verσ(D, I) . 54

4.38 credR
σ (D, a) . 55

4.39 credσ(D, a) . 55

73

Bibliography

[AAABC16] Latifa Al-Abdulkarim, Katie Atkinson, and Trevor Bench-Capon. A method-
ology for designing systems to reason with legal cases using abstract dialec-
tical frameworks. Artificial Intelligence and Law, 24:1–49, 03 2016.

[BCD07] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial
intelligence. Artificial Intelligence, 171(10):619–641, 2007.

[BCG11] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An in-
troduction to argumentation semantics. Knowledge Engineering Review,
26:365–410, 12 2011.

[BDH+20] Gerhard Brewka, Martin Diller, Georg Heissenberger, Thomas Linsbichler,
and Stefan Woltran. Solving advanced argumentation problems with answer
set programming. Theory and Practice of Logic Programming, 20(3):391–431,
Jan 2020.

[BDW11] Gerd Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics
of abstract dialectical frameworks and standard AFs. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence -
Volume Volume Two, IJCAI’11, page 780–785. AAAI Press, 2011.

[BES+17] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter
Wallner, and Stefan Woltran. Abstract dialectical frameworks. an overview.
IfCoLog Journal of Logics and their Applications, 4(8):2263–2317, October
2017.

[Bie08] Armin Biere. Picosat essentials. JSAT, 4:75–97, 05 2008.

[Bie17] Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering
the sat competition 2018. Proceedings of SAT Competition, pages 14–15,
2017.

[BW10] Gerhard Brewka and Stefan Woltran. Abstract Dialectical Frameworks. In
Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, Proceed-
ings of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning, KR 2010, pages 102–111, Toronto, Ontario,
Canada, May 2010. AAAI Press.

75

[CDG+15] Günther Charwat, Wolfgang Dvořák, Sarah A. Gaggl, Johannes P. Wallner,
and Stefan Woltran. Methods for solving reasoning problems in abstract
argumentation – a survey. Artificial Intelligence, 220:28–63, 2015.

[CTV+15] Federico Cerutti, Ilias Tachmazidis, Mauro Vallati, Sotirios Batsakis, Mas-
similiano Giacomin, and Grigoris Antoniou. Exploiting parallelism for
hard problems in abstract argumentation. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, AAAI’15, page 1475–1481.
AAAI Press, 2015.

[DD17] Wolfgang Dvorák and E. Paul Dunne. Computational problems in formal
argumentation and their complexity. IfCoLog Journal of Logics and their
Applications, 4, 2017.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–357, September 1995.

[DWW15] Martin Diller, Johannes Peter Wallner, and Stefan Woltran. Reasoning in
abstract dialectical frameworks using quantified boolean formulas. Argument
& Computation, 6(2):149–177, 2015.

[DZLW20] Martin Diller, Atefeh Zafarghandi, Thomas Linsbichler, and Stefan Woltran.
Investigating subclasses of abstract dialectical frameworks. Argument &
Computation, 11:1–29, 01 2020.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
set programming: A primer. In Reasoning Web. Semantic Technologies
for Information Systems: 5th International Summer School 2009, Brixen-
Bressanone, Italy, August 30 - September 4, 2009, Tutorial Lectures, page
40–110. Springer-Verlag, Berlin, Heidelberg, 2009.

[ES04] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of
Satisfiability Testing, pages 502–518, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[ES14] Stefan Ellmauthaler and Hannes Strass. The diamond system for com-
puting with abstract dialectical frameworks. Computational Models of
Argument-Proceedings of COMMA 2014. Frontiers in Artificial Intelligence
and Applications, 266:233–240, 01 2014.

[Lia99] Sheng Liang. Java native interface: Programmer’s guide and specification.
1999.

76

[LMN+18] Thomas Linsbichler, Marco Maratea, Andreas Niskanen, Johannes P. Wall-
ner, and Stefan Woltran. Novel algorithms for abstract dialectical frame-
works based on complexity analysis of subclasses and sat solving. In Pro-
ceedings of the 27th International Joint Conference on Artificial Intelligence,
IJCAI’18, page 1905–1911. AAAI Press, 2018.

[PGB+05] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and
David Holmes. Java Concurrency in Practice. Addison-Wesley Professional,
2005.

[Pra18] Henry Prakken. Historical overview of formal argumentation. In Pietro
Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der Torre,
editors, Handbook of Formal Argumentation, volume 1, pages 73–141. College
Publications, 2018.

[PWW13] Sylwia Polberg, Johannes Peter Wallner, and Stefan Woltran. Admissibility
in the abstract dialectical framework. In Proceedings of the 14th International
Workshop on Computational Logic in Multi-Agent Systems - Volume 8143,
CLIMA XIV, page 102–118, Berlin, Heidelberg, 2013. Springer-Verlag.

[SBPS19] Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on
applications of quantified boolean formulas. In 31st IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR,
USA, November 4-6, 2019, pages 78–84. IEEE, 2019.

[Thi14] Matthias Thimm. Tweety: A comprehensive collection of java libraries
for logical aspects of artificial intelligence and knowledge representation.
In Proceedings of the Fourteenth International Conference on Principles
of Knowledge Representation and Reasoning, KR’14, page 528–537. AAAI
Press, 2014.

77

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	Propositional Logic
	Abstract Dialectical Framework

	Algorithmic Model
	Basic Building Blocks
	Candidate Generator
	State Processor
	Verifier
	Interpretation Processor
	Putting Things Together

	Parallelization
	Framework
	Decomposer
	Candidate Generator
	Verifier
	Interpretation Processor
	Putting Things Together
	Reasoning Tasks

	Experiments
	Java Microbenchmark Harness (JMH)
	Setup
	Results
	Follow-Up

	Related Work
	Outlook and Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

