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Vienna, 23rd January, 2024
Matthias Eder Shashikant Shankar Ilager

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Datengesteuerte Methoden für
Klimawandelmodellierung in der

Hydrologie
Ein Anwendungsfall für Deep Learning in der

Niederschlags-Abfluss Simulation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Matthias Eder, BSc.
Matrikelnummer 01624856

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Shashikant Shankar Ilager, M.Tech. PhD
Mitwirkung: Univ.Prof.in Mag.a rer.soc.oec. Dr.in rer.soc.oec Ivona Brandić
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Kurzfassung

Der Klimawandel hat neue Herausforderungen für die hydrologische Modellierung mit
sich gebracht, da extreme Ereignisse wie Überschwemmungen, Dürren oder Hitzewellen
immer häufiger auftreten. Dadurch wird die Robustheit herkömmlicher, prozessbasier-
ter hydrologischer Modelle in Frage gestellt. Insbesondere die Niederschlags-Abfluss-
Simulation ist ein zentraler Anwendungsfall für Modelle, die das Abflussverhalten bei
Niederschlagsereignissen in einem Wassereinzugsgebiet erklären sollen. Diese Arbeit eva-
luiert und vergleicht die Robustheit und Genauigkeit eines modernen datengesteuerten
Deep Learning (DL)-Ansatzes im Bereich der Large-Sample-Hydrologie (LSH), wo sein
Aufkommen zu einer Neudefinition der Anforderungen geführt hat, und demonstriert
seine Fähigkeit, verborgene Beziehungen in komplexen hydrologischen Prozessen aufzude-
cken. Gängige LSH-Datensätze werden verglichen, der Datensatz LamaH-CE, der 479
Einzugsgebiete in Mitteleuropa abdeckt, wird analysiert, und es werden Schritte zum
Pre-Processing der Daten eingesetzt, um domänenspezifische Probleme zu behandeln,
wie z.B. die Imputation fehlender Stromabflussdaten und die Erfassung von Anomalien.
Eine Trendanalyse zeigt einen allgemeinen Erwärmungstrend von T̄ + 1, 53°C während
des 39-jährigen Untersuchungszeitraums.

In dieser Arbeit werden drei Arten von Modellen verglichen: das konzeptionelle prozess-
gesteuerte Modell HBVEdu, das gradientenbasierte Machine-Learning-Modell XGBoost
und das moderne Deep-Learning-Modell EA-LSTM. Um die Robustheit der Modelle
unter wechselnden Klimabedingungen zu bewerten, wird ein Differential-Split-Sample-
Test-Ansatz angewandt. Dabei werden vier Referenzzeiträume eingesetzt, die extreme
Temperatur- und Niederschlagsschwankungen repräsentieren, sowie ein längerer Bezugs-
zeitraum zum Vergleich mit konventionellen Datensplitting-Verfahren.

Das DL-Modell übertrifft sowohl die prozessgesteuerten als auch die ML-Modelle in allen
klimatischen Referenzperioden und im Bezugszeitraum deutlich. Das EA-LSTM-Modell
zeigt eine kompetitive und robuste Leistung mit einem durchschnittlichen NSE von
0,73486. Im Vergleich dazu übertrifft das XGBoost-Modell das physikalisch basierte
HBVEdu-Modell mit einem mittleren NSE von 0,56306 bzw. 0,48528. Eine Analyse des
ML-Modells zeigt jedoch, dass es empfindlich auf Schwankungen in den Daten reagiert.
Bemerkenswert ist, dass es keinen signifikanten Unterschied in der Modellleistung zwischen
den klimatischen Referenzperioden und der Basisperiode gibt. Dies deutet darauf hin,
dass Modelle, die für kurze Zeiträume mit extremen klimatischen Bedingungen trainiert
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wurden, nicht schlechter abschneiden als solche, die für lange Zeiträume ohne solche
Bedingungen trainiert wurden, in denen die Daten willkürlich aufgeteilt wurden. Darüber
hinaus wurde kein signifikanter Unterschied bei der Imputation von Daten mit Random-
Forest-Regressionsmodellen im Vergleich zur Verwendung des einzugsgebietsspezifischen
Medianwerts festgestellt.



Abstract

Climate change has introduced new challenges to the domain of hydrological modelling
due to the increasing frequency of extreme events, such as floods, droughts or heat
waves. Thus, the robustness of traditional, process-based hydrology models is called into
question. Rainfall-runoff in particular is a key application of hydrological models aiming
to explain the discharge response to precipitation events in a watershed. This thesis
evaluates and compares the robustness and accuracy of a state-of-the-art data-driven
Deep Learning (DL) approach in the field of Large-Sample Hydrology (LSH), where
its emergence has led to a redefinition of requirements, and demonstrates its power to
uncover hidden relationships in complex hydrological processes. Prevalent LSH datasets
are compared, the LamaH dataset covering 479 catchments in Central Europe is analysed
thoroughly, and pre-processing steps are employed to address domain-specific issues, such
as imputation of missing streamflow records and anomaly detection. A trend analysis
highlights an overall warming trend of +1.53°C over the 39-year study period.

Three types of models are compared in this work: the conceptual process-driven model
HBVEdu, the gradient-based Machine Learning model XGBoost, and the state-of-the-art
DL model EA-LSTM. To evaluate the robustness of models under transient climatic
conditions, a differential split-sample testing approach is employed. This involves four
reference periods that represent extreme temperature and precipitation variations, as
well as a longer baseline period for comparison to conventional data splitting methods.

Our experimental study has revealed many key insights and results. The DL model
significantly outperforms both the process-driven and ML models in all climatic reference
periods and the baseline. The EA-LSTM model demonstrates competitive and robust
performance with a mean Nash-Sutcliffe Efficiency (NSE) of 0.73486. In comparison, the
XGBoost model outperforms the physics-driven HBVEdu model with a mean NSE of
0.56306 and 0.48528, respectively. However, an assessment of the ML model reveals that
it is strongly underfitting and sensitive to fluctuations and noise in the data. Notably,
there is no significant difference in model performance between the climatic reference
periods and the baseline period. This suggests that models trained on short periods with
extreme climatic conditions do not perform worse than those trained on long periods
without such conditions, where the data is arbitrarily split. Furthermore, there is no
significant difference observed when imputing data with Random Forest regression models
compared to using the catchment-specific median value.
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CHAPTER 1
Introduction

Hydrological modelling plays a pivotal role in understanding and predicting the highly
complex and non-linear dynamics of water systems. Forecasts are essential for effective
water resource management and environmental planning. Climate change has introduced
new challenges and demands for numerous domains. As a result, it is crucial to evaluate
the robustness and effectiveness of state-of-the-art hydrological models, specifically
focusing on process-driven, data-driven, and hybrid models. While Data Science (DS), in
particular techniques from Machine Learning (ML), has contributed immensely to improve
the accuracy of hydrological models, it is now necessary to assess their performance and
reliability when they are applied to problems under transient conditions. This work
aims to investigate the most prominent difficulties within the field of hydrology that
have gained importance due to shifting climatic conditions. Further, commonly used
large-sample datasets and different types of models based on physical laws, Deep Learning
(DL) as well as hybrid models are compared and assessed in order to address the evolving
requirements posed by climate change on hydrological modelling outside the typical
calibration range [ODO20].
Varying conditions have appeared in climate records only in the recent past, making it
difficult to predict or simulate e.g. extreme events such as flash floods, droughts, heat
waves, or severe storms far into the past or future. Meteorological and geophysical factors
that favour these extremes may not be represented in the period used as training data for
hydrological models, or these factors may be difficult to represent physically [KJK+22].
One of the key tasks in hydrology is rainfall-runoff modelling, and this will be the main
focus of this work. Rainfall-runoff is a broad concept describing the movement of water
within a watershed or basin following precipitation events. Simulations strive to explain
the process by which moisture (rain or snow) falling onto land surface is transformed into
runoff and eventually flows into streams, rivers, or other water bodies. These simulations
are necessary for flood prediction, water resource and quality management and hydro
power plant optimisation [Bev12].
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1. Introduction

While process-driven, physical models have been prevalent in hydrology for the better
part of the last century [Nas57, SB22, LLWB94, BFMC73, HW23] leading to a better
understanding of the complex physical processes involved, data-driven models have
emerged in the recent past consistently outperforming their analytical counterparts
[KYG+21, HKK+21, KKB+18, ZKBFH21]. These models are able to capture important
relationships in highly complex processes. Current research now applies both of these
model types as hybrid models in various forms of coupling to leverage the advantages
and mitigate limitations of either type [LHB+23].

1.1 Problem Statement
Numerous approaches to rainfall-runoff modelling exist, each coupled with advantages
and limitations. In the past, the research community has traditionally relied on numerical,
process-driven models based on physical laws to predict in a simplified representation of
the hydrological cycle. Whilst these models have contributed to the field by providing
accurate predictions for various hydrological applications, they suffer from inherent biases,
are often highly complex, and require significant domain knowledge and understanding
of the study area to produce valuable results [SB22, LLWB94, BFMC73].

Recently, there has been a shift in prevalent hydrological modelling with the emergence
of ML and DL as powerful data-driven alternative model types. Especially Artificial
Neural Network (ANN)-based models have achieved great success due to their ability
to learn complex and potentially hidden relationships in the hydro-meteorological input
variables directly from the data.

Furthermore, the DS pipeline as proposed by Biswas et al. includes various stages and
processes for data acquisition, exploration, analysis, and preparation, for model training
and evaluation, and for interpretation and communication of their results [BWR22].
Adhering to these theory-guided principles has the potential to significantly improve
hydrological modelling, as they underlie the powerful interdisciplinary ML paradigm. Yet,
pre-processing large scale datasets is a resource-intensive and often empirical process that
can possibly introduce bias or uncertainty into the data, rendering predictions inaccurate
or sensitive to extreme events [KKG+22].

However, as the impacts of climate change have intensified around the world in recent
years, it is now necessary to assess the robustness and predictive power of different model
paradigms under transient conditions, which describe the increase of variability over
certain periods of time, typically associated with conditions that deviate significantly
between training and calibration periods [CAP+12]. It is particularly beneficial to
evaluate model performance on data from vulnerable regions where the effect of climate
change is suspected to be strongly present in the data [EEA23]. Several state-of-the-art
datasets and collections exist in the domain of Large-Sample Hydrology (LSH), which
cover different study areas and have varying limitations. It is of interest to evaluate
the requirements of large-sample datasets in the context of climate change modelling in
hydrology.
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1.2. Aim of the Work

1.2 Aim of the Work
Based on the problem statement, this thesis aims to address the following research
questions (RQs):

RQ 1 What are the challenges and opportunities associated with utilising state-of-the-art
hydrological datasets for Machine Learning1-based modelling, particularly in the
context of data engineering and pre-processing?

RQ 1.1 What are the state-of-the-art datasets in the domain and how do they compare?

RQ 1.2 What are the current requirements for large-sample datasets in the domain,
with a focus on the future considerations for models within the Machine
Learning paradigm?

RQ 1.3 What are the necessary pre-processing steps to analyse the quality of hydro-
logical data and to prepare the data for hydrological experiments?

Hydrological datasets, typically encompassing several decades of meteorological
data, have traditionally been used to fulfil the requirements of process-based models
over the years. Nonetheless, utilising these invaluable datasets for modern ML
applications requires extensive data pre-processing to evaluate and improve data
quality, thereby making it suitable for ML-ready formats. This data engineering
process is frequently resource-intensive and incurs substantial costs. Recognising
the potential of cutting-edge hydrological datasets for Machine Learning-based
modelling, research question RQ 1 aims to methodically examine the difficulties
and opportunities associated with the use of such datasets in the context of data
engineering and pre-processing in the domain of hydrology. Specifically, the research
objective is to understand the range of state-of-the-art datasets available, conduct
a comparative analysis, and identify current and future needs for large-sample
datasets in the field. Additionally, we explore the key pre-processing stages required
to guarantee the quality and readiness of hydrological data for machine learning
experiments. The motivation of this research question is driven by the demand of
the research community to enhance the utilisation of current hydrological datasets
with the emergence of highly complex Deep Learning models, assimilating these

1Note that the thesis distinguishes between the terms ML and DL. According to Jakhar and Kaur’s
definitions, ML involves computational methods that enable machines to learn from data without explicit
programming. It entails training with provided data and algorithms, enabling machines to make decisions
based on processed information. ML is dynamic and capable of self-modification when exposed to
additional data. DL is a subset of ML that utilises models which imitate the structure of organic
neural networks in the brain, known as ANN. DL enhances the abilities of conventional ML methods by
incorporating multiple layers in a deep architecture (hence the term “deep” in DL) to extract hidden
patterns and representations from data [JK20]. While both ML and DL encompass distinct algorithms
and models, the two terms are often used synonymously. Since ML is the superset, this term is used for
the definition of the research questions.
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1. Introduction

data sources into robust and effective hydrological models [ADAG+20].

RQ 2 What are the necessary steps to employ Machine Learning and Deep Learning
models for rainfall-runoff modelling in hydrology, and how can their modelling
pipeline be compared to that of traditional models?

RQ 2.1 What state-of-the-art Deep Learning models are suited to model rainfall-runoff
in hydrology, as identified from the current literature?

RQ 2.2 Which methods and metrics are appropriate to evaluate and compare the
performance of these models?

In the field of hydrology, this work conducts a thorough investigation into the use of
Deep Learning models for rainfall-runoff modelling. The main objective of research
question RQ 2 is to outline the required stages of applying DL models for this
task, with a comparison drawn with the modelling pipelines of conventional models.
The current literature will be reviewed and the most appropriate DL architectures
to improve hydrological predictions will be identified. To this end, appropriate
methods and metrics will be selected to thoroughly evaluate and compare the per-
formance of these models. The primary objective is to improve the understanding
of the necessary steps and factors involved in the applications of DL models in
hydrology, with a focus on domain-specific evaluation.

RQ 3 In the domain of hydrology, how do state-of-the-art Machine Learning and Deep
Learning models compare to traditional physics-based models when applied to the
task of rainfall-runoff modelling?

RQ 3.1 Is there a difference in model performance with respect to common evaluation
metrics among the modelling paradigms?

RQ 3.2 What strategies can be employed to design experiments for rainfall-runoff
modelling to observe the impacts of climate change, and how do models trained
using these specific strategies compare with each other?

RQ 3.3 Do variations in model performance arise from employing different data pre-
processing methods?

RQ 3.4 What are the insights and conclusions that can be drawn from the results of
the modelling experiments?

A major goal of this work is to comparatively evaluate the efficacy of modern
models from the domains of ML and DL in contrast to traditional process-based,
physics-informed models for the task of rainfall-runoff modelling in hydrology. RQ 3
addresses the differences in performance between modelling paradigms and evaluates
their complexity in terms of runtimes and parameters. Methodologies for designing
experiments that can measure the effects of climate change on rainfall-runoff
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1.3. Outline

modelling are investigated, and models that were trained using these strategies are
compared. This research question aims to provide useful insights by evaluating the
impact of different techniques for pre-processing data devised in RQ 1.3 on model
performance and determining hydrological or meteorological variables that can
serve as reliable indicators for reference periods associated with climatic conditions.
Ultimately, the research aims to derive significant conclusions from the modelling
experiments, improving the comprehension of the effectiveness of various modelling
techniques in hydrology.

1.3 Outline
The structure of this thesis is as follows: First, Chapter 2 introduces the most important
concepts and processes that are part of the hydrological cycle and provide necessary
domain-specific knowledge. Particularly, the task of rainfall-runoff modelling is described
and a state-of-the-art analysis of hydrological model types is presented. This chapter
further includes an introduction to the requirements and best practise approaches to
hydrological modelling in the era of climate change. Chapter 3 contains an introduction
to the field of LSH as well as literature research and assessment of prevalent datasets
in the domain. Furthermore, the study area and the variables covered by the selected
dataset are described. The chapter concludes by an in-depth exploration and analysis
of the data, including a trend analysis with respect to the impacts of climate change
in Central Europe. Then, Chapter 4 presents the methodological aspects of this work.
First, the applied steps to pre-process the static and dynamic data are stated. The
architectures and implementation details of the three selected candidate models from the
process-based and data-driven modelling approaches are discussed. Evaluation metrics
and guidelines are presented before finally describing the experimental design with regard
to the various input sets resulting from differential split-sample testing to investigate the
robustness of models trained on transient climatic conditions.

The setup and implementation of model training, as well as the specifications of the
computing environment are given in Chapter 5. The centre of this chapter, however, is the
presentation of model results on the test and validation sets, respectively, for each of the
four climatic reference periods as well as the baseline period. The results are visualised
and analysed in detail. A thorough discussion of the implications of the modelling results
and the findings from the literature review and data analysis undertaken as part of this
thesis for the research questions concludes the chapter 5. Lastly, Chapter 6 presents the
answers to the research questions addressed in this thesis. An analysis of the limitations
of the research and experiments, as well as an overview of future work and open questions
in the discussed field conclude this work.

5





CHAPTER 2
Modelling in Hydrology

Hydrological modelling is a key discipline within the field of hydrology. The aim is to
construct and apply mathematical representations that model the behaviour of water
within the Earth’s hydrological cycle. Hydrological processes are highly complex, involve
many physical variables and are characterised by considerable spatial and temporal
variability. Fundamental processes and variables such as precipitation, evapotranspiration,
runoff, and groundwater flow drive the hydrological cycle. Models utilise numerical
representations of these processes to mimic the complex interactions within catchments.
While the behaviour of water is often seen as a simple cycle of precipitation, evaporation,
and condensation, in reality, the underlying processes of the hydrologic cycle are much
more complex and interrelated, requiring sophisticated modelling approaches to achieve an
accurate representation. By assimilating observational data from heterogeneous sources
and meteorological inputs, hydrological models provide important insights into water
quality and availability, the prediction of runoff, floods and droughts, and the impact
of anthropogenic activities on water resources. Hydrological modelling is an important
tool to facilitate decision-making in water management and climate research based on
physical laws, thus promoting a holistic understanding of the water cycle [Nat19].

Extensive research effort has been put into deriving models that represent hydrologic
processes resulting in significantly advanced understanding of the factors that drive the
behaviour of water on Earth. Initial conceptual models largely aimed at simplifying
the representations of hydrologic processes to provide first insights into the very basic
mechanisms of the water cycle such as groundwater storage or streamflow. A major
theory proposed in early research was the unit hydrograph [Doo59]. A hydrograph refers
to the graph showing the discharge (or rate of flow) versus time at a specific point in
a watershed. These graphs typically allow the correlation of precipitation events and
the change in runoff over time. The theory of the unit hydrograph is based on the idea
that the hydrograph resulting from one unit of excess rainfall in a catchment will have
the same shape and only needs to be scaled for different amounts of rainfall. It offers a
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2. Modelling in Hydrology

straightforward method of predicting the runoff response of a watershed to any particular
precipitation event.

With ever increasing computational power and availability of data, the development of
process-based physical and analytical models accelerated. These models became the most
widely used and powerful representations of hydrological processes and are still extensively
employed in research and real-world applications today. At the core of the process-based
models are complex mathematical equations for various hydrological components that
are derived directly from physical laws, establishing a high degree of physical realism for
diverse hydrological and climatic conditions. The components rely on an array of input
parameters explaining characteristics of the specific catchment, topography, vegetation,
soil, precipitation, and other hydro-geological factors. Calibration is required to tune the
parameters and achieve an accurate representation of the system at hand. These models
are easy to interpret, give good results on a coarse scale and are well researched. However,
the high computational cost and systematic bias associated with this type of hydrologic
model led to further development of alternative approaches [GGJP20, GRA+22].

In recent years, hydrologic modelling has undergone a paradigm shift towards data-
driven models based on advances in DL. The ability of ANNs to capture complex hidden
relationships in the data, and the excellent performance of Long Short-Term Memory
(LSTM) models in time series prediction have led to DL becoming the leading approach
for hydrologic modelling. While these models are highly adaptable and computationally
efficient, they are also considered black-box models because they lack explainability
and interpretability and are generally not bound by physical laws. Recently, however,
numerous extensions to well-studied ANN models have been proposed to overcome inherent
problems of DL or hydrological modelling in general [KKH+19, KJK+22, OEAF21].

The National Oceanic and Atmospheric Administration (NOAA) offers a visualisation
of the hydrological cycle, shown in Figure 2.1, which includes all the main variables.
It illustrates the fundamental processes that drive the movement and transformation
of water through various topographies at different phases. Although the water cycle
is a universal process that can be applied to any catchment, the uniqueness of place
described by Beven requires regionalised modelling due to the individual characteristics
at the catchment scale. Different expressions of topography, vegetation, soil, human
modification complicate the extrapolation of knowledge to catchments where no data is
available [Bev00]. This issue is closely related to the problem of Prediction in Ungauged
Basins (PUB), which is considered one of the major challenges in hydrology [HSB+13].

Runoff is measured in only a fraction of catchments worldwide. In stream systems, gauges
must be established to measure water levels and flow, which can be converted into runoff,
which represents the volume of water flowing through a given cross-section per unit of
time. However, as there are very few gauges available in catchments worldwide, there is
generally little information on runoff. This data is urgently needed for managing water
availability and quality, and for forecasting floods and droughts. PUB refers to this
exact problem, that is, the need to simulate runoff in catchments without any means of
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Figure 2.1: Conceptualisation of the water cycle visualising key processes and variables
by the NOAA. Image credit: Dennis Cain/NWS [Nat19].

measurement by using information from gauged catchments or alternative approaches
[BSW+13].

This chapter includes a thorough definition of the variables and processes involved in the
hydrologic cycle. Subsequently, these concepts are placed in the context of the field of
rainfall-runoff modelling, which is the focus of this work. Understanding the interplay of
processes is an integral step before a novel model can be developed to solve the most
common problems in hydrological modelling. An overview of the state of the art of
different physical, data-driven and hybrid model types is given, with a focus on models
based on DL to provide comprehensive information that will be incorporated into the
design of a new model in section 4. This is followed by a thorough description of the
most common datasets and collections in the field. The compilation of models and
datasets in this section also forms the basis for baseline model and data selection for
the experiments in this work. This chapter concludes with an overview of the factors
influencing hydrological modelling due to climate change impacts and a review of the
current state of research in this field.

2.1 Processes and Concepts in the Hydrological Cycle
In the field of hydrological modelling, catchments form the very basis of analysis, as
all hydrological processes are inherently linked to these essential geographical units. In
order to explain the movement, distribution and transformation of water in the Earth’s
hydrological cycle, it is essential to understand the processes in the catchment areas.

A catchment is typically defined as a specific geographic area that is delineated by natural
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boundaries, such as ridges, hills, or mountains. All surface water of a catchment flows and
converges into a common channel, ultimately forming rivers or creeks. A catchment thus
represents a self-contained hydrological unit, where processes such as precipitation, runoff,
and groundwater interplay within a coherent closed system. Catchments exhibit a high
degree of spatial variability and can differ in many characteristics, making them difficult
to classify and compare. In many cases, catchments consist of smaller areas, called
subcatchments, which in turn are themselves separated by ridges or other boundaries. The
term catchment is often used synonymously with the terms (drainage) basin or watershed
[Dep21]. Sivakumar et al. emphasise the need to categorise catchments according to their
variability, complexity and internal interconnections, but there is no unified classification
system in current research [SSBK15]. A hydrologic unit typically refers to a combination
of regionally related catchments. Several catchments drained by a river system and its
tributaries form a single hydro-geologically interconnected unit.

A water year or hydrologic year describes the period of time that covers the natural
course of the hydrologic seasons with a duration of twelve months. The beginning of the
period is usually marked by the season of soil moisture recharge followed by the season
of maximum runoff or groundwater recharge, and ends with the season of maximum
evapotranspiration or soil moisture utilisation. In the Northern Hemisphere, this period
typically occurs between 1 October and 30 September, and in the Southern Hemisphere
from 1 July to 30 June [AMS23]. The reason why this period differs from the calendar
year is that most precipitation usually occurs in autumn and winter. The rainfall at the
end of the calendar year does not affect streamflow until spring. Thus, the water year
usually begins and ends with the wet season. The purpose of a water year is to establish
a consistent and standardised cycle that can be used for comparison in hydrological
modelling, especially in regions with distinct wet and dry seasons.

2.1.1 Precipitation

The hydrologic cycle describes the movement of water around the planet and consists of
various components. Precipitation (usually denoted as P ) is the central process in the
cycle and serves as the primary input of water into the system, driving its distribution
throughout the other processes. Depending on regional atmospheric conditions such as
temperature and air pressure, precipitation can occur in different forms, e.g. as (freezing)
rain, snow, hail, sleet or drizzle. Water vapour in the atmosphere cools and condenses to
form clouds. Once water droplets and ice crystals within the clouds are sufficiently heavy
and condense on nuclei (so called condensation nuclei), such as dust or smoke particles,
they fall to the surface. This occurs only if the velocity of the droplet exceeds the cloud
updraft speed. In summary, three conditions need to be met for precipitation to form:
cooling of the atmosphere, condensation of water droplets onto nuclei, and growth of
the droplets. The amount of precipitation is determined by static and dynamic factors.
Static influences are, for example, topography, altitude, aspect and slope and do not
vary between rainfall events. Dynamic factors are mainly changes in weather conditions.
While static influences usually predominate on a smaller scale, static and dynamic factors
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can interact on a continental scale and strongly affect the distribution of precipitation
[Dav08, USG23].

Although measuring precipitation on a broader scale is relatively easy, it proves difficult to
measure all types of precipitation accurately and they show considerable spatio-temporal
variability within a catchment. Precipitation is quantified as a vertical depth of liquid
water. The amount of precipitation is usually measured in millimetres as a depth rather
than in volume units such as litres or cubic metres. This measure represents the depth of
water that would accumulate at the surface if all the rain remained at its point of impact.
Snow can also be represented as depth, but in hydrological modelling it is usually more
useful to express snow as water depth equivalent, i.e. water depth if the snow melts.
This accounts for the fact that snow occupies about 90% more volume than liquid water.
Snow Water Equivalent (SWE) refers to the corresponding amount of liquid water that
is stored in the snow cover. It represents the water column that would be generated if
the entire snowpack were to melt instantaneously and is defined as the product of the
depth and density of the snowpack. The variable notation for this is SWE. Rainfall
intensity and storm duration are other rainfall measures of interest. It is important to
note that due to the extremely high variability of precipitation at the catchment level,
all measurement methods should rather be considered estimation methods [Dav08].

Once precipitation reaches the surface, it can follow various paths. Water can be captured
by vegetation or other topographical features, triggering processes such as evaporation or
transpiration that return the water into the atmosphere. Some of the water can directly
add to the runoff in the respective catchment area, thus changing and shaping streams
and rivers. Other parts of the precipitation can be converted into soil moisture and
further stored as part of the groundwater by infiltrating into the soil.

2.1.2 Evaporation
The process of evaporation refers to the transformation of liquid water into its gaseous
state and its subsequent diffusion back into the atmosphere. This process takes place when
there is enough energy (i.e. heat) to break the covalent bond within a water molecule
and the atmosphere is sufficiently dry to take up the water vapour. The influence
of evaporation on the hydrologic cycle varies regionally, seasonally and climatically.
The presence of water (or lack thereof) defines distinctions in the evaporation process.
Evaporation over a body of water, e.g. a lake or an ocean, is defined as open water
evaporation (often denoted as Eo) and accounts for the majority of evaporation. Potential
evaporation (PE) refers to the maximum possible evaporation that occurs above the land
surface. The underlying assumption of PE is that the water supply is unrestricted and the
whole surface is completely covered by water. Actual evaporation (Et) defines the actual
evaporation that occurs and is equal to PE for very wet conditions, e.g. directly after a
heavy rain. Et accounts for the limited availability of water at the surface. Evaporation
above land occurs as Et or transpiration from vegetation in the process of photosynthesis
and respiration controlled by the available water in the soil, or a combination of both,
usually referred to as evapotranspiration. Evapotranspiration and actual evaporation
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can be considered equivalent processes for hydrologic modelling and are generally both
denoted by Et [Dav08].

The primary energy source driving evaporation is radiation from the sun. The sum of all
forms of heat fluxes at the surface is described as net radiation (Q∗) and can be described
by the following equation:

Q∗ = QS ± QL ± QG (2.1)

Sensible heat (QS) is energy that can be measured and felt as warmth. Latent heat (QL)
is energy absorbed or released during a phase change of water. This can be a negative
flux when energy is absorbed (i.e. liquid to gas) or positive in the opposite direction (i.e.
gas to liquid). Soil heat flux (QG) is energy released from the soil and can usually be
disregarded. Other energy sources that are important for the evaporation process are
anthropogenic energy (e.g. through heating or industrial efforts) and advective energy,
i.e. energy transported from far away to the surface where evaporation takes place (e.g.
after a cyclone) [Dav08].

Evaporation as a key process in the hydrologic cycle is heavily dependent on the availability
of water. In open water evaporation, the water is taken directly from a lake, river lake,
river, pond or other body of water. While water can evaporate directly near the soil
surface, the process becomes more complex when the water is stored deeper in the soil. A
moisture gradient attracts water from deeper layers, and it must simultaneously overcome
gravity and the forces exerted by soil capillaries. Vegetation can also help water reach
the surface through osmosis in the root systems. For water vapour to diffuse into the
atmosphere, it must not yet be saturated. The amount of water stored in a specific
portion of air depends on temperature and pressure and relative humidity describes the
saturation of the atmosphere with water vapour. Atmospheric mixing expresses the
quality of the diffusion of a parcel of air with the surrounding atmosphere and is indicated
by wind speeds above the evaporation surface [Dav08].

Evaporation and evapotranspiration are very difficult to measure and are therefore often
only estimated or only indicators such as temperature, pressure, soil moisture content,
and wind speed at different altitudes are given. The reverse process of evaporation is
condensation, which describes the transferal of water vapour into liquid water. Saturated
air needs to be cooled down sufficiently for condensation to occur. The processes
sublimation and deposition describe the transition from the solid to the gaseous state of
matter and vice versa without an liquid intermediate stage. In hydrology, sublimation is
considered as the conversion of ice into water vapour; deposition is the opposite process
[Dav08].

2.1.3 Water Storage
The hydrological cycle various stages where water is stored at least temporary, including
soil moisture, groundwater, snow, ice, lakes and reservoirs. The term water storage is an
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essential component in the hydrologic processes and is usually denoted as S. However,
since storage itself is not static but a dynamic movement where inflow and outflow do
not necessarily coincide in a given period of time, it is more appropriate to consider the
change in storage or ∆S. On Earth, water is mainly stored in the form of snow and
ice on the polar ice caps and makes up the majority of fresh water. All water stored
below the surface is considered groundwater. Water above the water table, however, is
considered unsaturated and is usually referred to as soil water. Water below the water
table is saturated and considered groundwater, although the two types continuously mix
vertically and horizontally through infiltration and flow, respectively [Dav08].

Soil is a conglomerate of water, air and solid particles, such as minerals or organic matter.
The rate of infiltration determines the amount of water seeping into the soil over a period
of time and depends on the content of water in the soil (i.e. its saturation) and the
ability of the soil to transmit water. An important property of soil is porosity, which
is the fraction of pore space in the volume of soil. While technically the pores can be
completely filled with water, corresponding to the maximum volumetric water content
(i.e. porosity), in practice the volumetric soil moisture rarely reaches the porosity value.
When it does, gravity causes rapid drainage through the profile, reducing the moisture
content below the porosity value. Field capacity, on the other hand, represents the stable
saturation point after rapid drainage [Dav08].

Water stored in the saturated zone below the water table can only escape through
transpiration, but not evaporation. Groundwater is constantly in motion, be it as part of
large fossil water reserves or underground river systems in limestone. During dry seasons,
groundwater is essential for maintaining streamflows. Similar to most other processes in
hydrology, the storage of water in the soil or ground is difficult to measure, especially at
a significant spatial scale [Dav08].

2.1.4 Runoff and Streamflow
The term runoff broadly describes the movement of water in a channelised stream on or
below the surface at various velocities and is denoted as Q. The water always moves in a
channelled form towards the ocean as soon as it reaches a river, which is then referred
to as streamflow. Streamflow is expressed as discharge, i.e. the volumetric flow rate of
water in a stream over a period of time in m3/s. In rainfall-runoff modelling, streamflow
is frequently also expressed in mm per day and scaled by catchment area to facilitate
comparisons with rainfall data, which is expressed in terms of depth. In this context,
streamflow in mm per day represents the equivalent depth of water that would have to
fall over the catchment to produce the observed flow. Streamflow (or its average) plotted
in a continuous record over time is called a hydrograph. This is a simple but significant
visualisation and source of information for hydrological modelling.

A hydrograph commonly exhibits multiple peaks interspersed with intervals of steady
flow. These peaks are referred to as peakflow or stormflow and occur after substantial
precipitation events. The intervening stable periods of low amid peaks are called baseflow.
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The shape of a hydrograph is determined by catchment characteristics such as size, slope,
shape, vegetation cover and type, antecedent soil moisture and urbanisation, as well
as by the storm, such as intensity and duration of precipitation, and other physical
characteristics. A storm hydrograph consists of a rising limb leading to peakflow, driven
by precipitation falling directly onto the stream, and a recession limb characterised by
a slow decline in discharge until baseflow is restored. Figure 2.2 illustrates a typical
hydrograph as well as a storm hydrograph.

Figure 2.2: Left: A typical hydrograph with flow values in m3/s plotted against time
in days. Peakflow and baseflow are easily distinguishable. Right: A typical storm
hydrograph with a rising limb, peakflow and a recession limb. Taken from [Dav08].

The exact mechanisms of runoff are highly complex and have been subject of the most
substantial research efforts in the field of hydrology since the inception of this science. On
a high level, runoff can be expressed as a combination of three processes at the hillslope
scale: overland flow (Qo), throughflow (Qt) and groundwater flow (QG). Their respective
relative influence on streamflow depends on the characteristics of the catchment at hand
as well as the properties of precipitation during a storm event. It is important to note
that rainfall is the driving factor for any type of runoff [Dav08].

The prevailing mechanisms of Qo vary depending on the climate zone in which the
catchment is located. For humid areas, saturated overland flow is dominant, which
describes the rising of the water table until it reaches the surface due to a combination
of infiltration and throughflow. The resulting overland flow is thus driven by return
flow, meaning water that was already stored in the soil and resurfaces, and by rainfall
striking areas that are already saturated. Naturally, the water table is closest to the
surface and is most likely to rise above it in the most saturated areas, which are near
the banks of a catchment or at the base of a slope. The concept of the variable source
area describes that the saturated partial response area of a catchment that contributes
most significantly to peakflow is dynamic in space and time during any storm event.
This concept is an essential part of explaining stormflow. In semi-arid to arid climates,
however, the predominant mechanism is infiltration excess overland flow, which occurs
whenever the intensity of rain exceeds the infiltration capacity of the soil. This results in
thin layers of water running over the ground and is one of the main causes of flash floods.
This type of overland flow is especially common in agricultural or highly urbanised areas
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where the ground is sealed resulting in hydrophobic soil [Dav08].

Below the surface, water in the soil or in the fully saturated zone that was stored there
prior to storm events also contributes to the storm hydrograph in the form of throughflow
or groundwater flow. Throughflow or Qt refers to the movement of water through the
unsaturated zone either within the soil matrix or along preferential flow paths. Once
the soil is saturated, water movement is not limited to vertical flow, and a declining
water table on a hillside can cause water to flow downslope. However, the velocity of
water moving through a saturated soil matrix is fairly slow. To contribute to storm-
related runoff, throughflow must occur through mechanisms beyond the soil matrix. One
theory to explain the rapid movement of water from the subsurface into the stream is
translational flow, which compares the process to a piston where pressure at the top
of the soil column leads to a release of water at the bottom, creating a pressure wave.
Groundwater also contributes to stormwater runoff by raising the water table in the
immediate vicinity of a stream. A small increase in water can quickly change the soil
moisture from an unsaturated to a saturated state causing a ridge in the groundwater.
This so-called capillary fringe effect begins to take place well before any throughflow
occurs [Dav08].

Groundwater is the predominant source of baseflow, which is created in particular by the
slow infiltration of water from the groundwater into a stream. In fact, streams or lakes
are usually formed in areas where the groundwater table breaks the surface [Dav08].

When the water reaches a stream, it flows through a network of channels leading to
the main river. The amount of water present, the gradient of the channel, and the flow
resistance in the channel bed control the flow rate of the water. Topographical features
such as rocks, sand ridges or vegetation influence the water velocity. Channel networks
exhibit a high degree of spatio-temporal variability[Dav08].

Measuring streamflow is referred to as hydrometry and is performed either instantaneously
or continuously. While models in hydrology can simulate almost all processes in the water
cycle, runoff is usually considered the outcome of most relevance. Runoff and precipitation
are the two key processes in the specific problem of rainfall-runoff simulation. This
research area is the core of this work and is explained in detail in section 2.2.

Floods

A flood is typically associated with the inundation of land adjacent to a river that occurs
due to unusually large runoff or intrusion of seawater. However, flood sources can also
extend to lakes or the ocean, and there is no clear definition of the amount of excess water
required to cause a flood. Floods usually are assessed on the basis of the extent of damage
caused, which leads to an assessment based on cost rather than hydrological criteria. By
far the most important cause of river flooding is abnormal rainfall that exceeds a river’s
capacity and pushes it over its banks. Factors that influence the intensity of floods include
antecedent soil moisture, deforestation, urbanisation, river channel modification, land
drainage and climate change. The increase in heavy precipitation events due to climate
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change leads to an elevated probability of flooding [Dav08]. Blöschl et al. find regional
patterns of increasing and decreasing river flood discharges in Europe over a 50-year
period that are indicative of climate-related changes. These flood trends are roughly
consistent with climate projections for the future, highlighting the need to incorporate
climate change assessments into river flood management [BHV+19].

Streamflow Analysis

The evaluation of continuous runoff records for the analysis of streamflow is an essential
task of hydrology. For instance, separating baseflow from peakflow in a hydrograph is
a supposedly simple, but in reality imprecise and a subjective exercise. To standardise
the analysis, the concept of the unit hydrograph was introduced, which assumes that
the shape of the hydrograph of a storm is determined by the physical properties of the
catchment. These properties are constant over time, so that an averaged hydrograph for
a given storm size is able to predict other storm events. In essence, the idea behind this
concept is that identical rainfall on a catchment with the same antecedent conditions
should yield identical hydrographs. By encompassing temporal variation of discharge,
insights beyond peakflow and baseflow can be gained. The unit hydrograph then allows
to directly derive the amount of hourly runoff per mm of effective rainfall for a storm
event, which is equivalent to overland flow. The process to construct a unit hydrograph
from a storm is complex [Dav08].

Another important tool is the frequency analysis of a specific flow, which is best expressed
in the flow duration curve. This plot shows how often a certain flow is exceeded and
typically uses daily mean flows for longer periods as input data. The flow values are
transformed by the natural logarithm and plotted against the percentage of the cumulative
frequency of a flow. The resulting line in the diagram is indicative of the tendency of
a catchment to experience frequent high or low flows (i.e. its variability) or towards
relative stability [Dav08].

Flood frequency analysis is pivotal technique in hydrology. The analysis primarily focuses
on peakflow and uses annual maxima in streamflow values as input data. As floods often
occur in the wet periods in response to heavy rainfall or in spring/summer in response to
high melt, it is imperative to use the water year as the reference period when acquiring
annual peakflow maximum data. The conventional calendar year would lead to cutoffs
during flood events. The initial step in flood frequency analysis is to create (relative)
frequency histograms and derive probability distributions. Three interrelated terms are
of interest that need to be calculated. The probability of excedence P (X) describes the
likelihood that a flow is greater than or equal to a value X. The relative frequency F (X)
describes the likelihood of a flow to be less than X. The average recurrence interval
T (X) describes the chance of excedence once every T years [Dav08].

Computer models in hydrology are often considered black boxes which try to achieve an
accurate simulation of a relationship in the data by employing numerical methods. A
prototypical process to be modelled is the relationship between annual rainfall and runoff,
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which can be represented as a linear regression line in a simplistic way. The term black
box is used because all variables of the hydrological cycle that are relevant to precipitation
are used as input, however, the resulting model only applies to the chosen time scale or
the climatic and geologic conditions of the used catchment [Dav08]. More sophisticated
models achieve the capability to generalise to other spatio-temporal resolutions and
catchment properties. In section 2.3, historical and state-of-the-art models that use
numerical methods in computer simulations in hydrology are described in detail.

2.1.5 Water Balance
Now that the key processes of precipitation, runoff, evaporation and (change in) storage
that drive the hydrological cycle have been defined, the water balance of a system can be
expressed in an equation. The general water balance equation is as follows:

P ± Q ± Et ± ∆S = 0 (2.2)

The plus-minus sign is appropriate because each term can be considered either a loss or
a gain for the system, depending on the perspective. Precipitation, for example, can be
considered a loss of water from the atmosphere, but also a gain of water at the surface.
Normally, all terms are considered a gain for the surface, so only evaporation is regarded
as a loss. The equation expresses that all inflows and outflows to a water system are
equivalent with the addition of a change of water storage over time accounting for the
principles of continuity regarding mass and energy. Thus, the hydrological cycle can be
considered a closed system where all mass (i.e. water) or energy is preserved. Equation
2.2 represents the fundamental theory of hydrology and is the target of most modelling
in the field [Dav08].

2.1.6 Water Quality
Groundwater often acts as a pressure wave response to recharge with rainwater. The
water entering the stream is not the same water that originally infiltrated and triggered
that reaction. Consequently, the water entering the stream may be several years older
and its quality may not be affected by current changes in land use. As part of a holistic
hydrological analysis, it is imperative to consider not only water availability and water
behaviour, but also water quality. It is evident that the quality of drinking water in a
stream is most strongly influenced by pollution, but the natural occurrence of suspended
matter also plays an a major role. The amount of sediment is determined by the velocity
of the water. The slowing down of the water, e.g. by damming or relocating the stream
bed, directly leads to sediment deposition, which in turn reduces the capacity of the
reservoir downstream of the source of the slowdown [Dav08].

In the case of human-induced sources of water pollution, a distinction can be made
between diffuse sources, i.e. sources distributed over a large area without a precise point
of origin, and point sources, i.e. specific locations that cause damage. Diffuse sources can
be fertilisers or pesticides in excess, point sources can be sewage pipelines. Furthermore,
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three types of pollutants can be identified: toxic compounds, oxygen balance affecting
compounds, and suspended solids. Streams often carry large amounts of human waste.
Through degradation, dilution and dispersion, rivers can mitigate the effect of waste on
water quality. The power of these three processes is determined by the temperature, pH
value, the amount of water in the stream and the mixing potential [Dav08].

There are many physical and chemical parameters that influence the quality of the water
to a greater or lesser extent. These include temperature, dissolved and suspended solids,
electrical conductivity, turbidity (i.e. “cloudiness”), pH, dissolved oxygen, trace organics
and biochemical oxygen demand. Contents of nitrate, phosphate, heavy metals and
chlorine are also of interest [Dav08].

2.2 Rainfall-Runoff Modelling
As presented in the previous section, the hydrological cycle is highly complex and consists
of many interrelated processes. Runoff represents the link between precipitation and
streamflow and constitutes the principal outcome of all modelling approaches in the field
of hydrology. The first attempts to simulate the extent of runoff after rainfall events using
regression techniques date back to 1850 and were presented by Mulvaney [Mul50]. Over
the years, approaches to modelling this relationship have become more sophisticated and
have been constantly refined by gradually integrating physical laws into the mathematical
frameworks. Spatial and temporal variability and physical properties as well as boundary
conditions of catchments were progressively incorporated into the models, leading to
increased accuracy. Advances in computing power and the availability of high-resolution
data have greatly accelerated the development of model accuracy [KKB+18].

Rainfall-runoff modelling is especially concerned with surface runoff, also known as
overland flow (Qo) as described in Section 2.1.4. This occurs when rain fall to the surface
without infiltrating the soil and instead flows over the land surface, ultimately joining
surface waters such as rivers, lakes, or reservoirs. Surface runoff plays a vital role in
maintaining the balance of the hydrological cycle by regulating excess precipitation and
affecting the inflow into stream systems. Simulations of rainfall and runoff are a crucial
tool for monitoring water availability and quality, predicting floods, assessing ecological
relationships, and conducting research in general. Surface runoff is a significant factor
in the dispersion and transport of pollutants and therefore an important instrument for
effective water resource management [SKP+18].

Hydrological process interactions are non-linear and dependent on the current specific
state of the catchment system, which represents the system’s memory. Kratzert et al.
describe a mathematical formulation of the state-space approach. The authors suggest
that the state S of the system at a specific point in time t is dependent on the input It,
the state at the previous time St−1, and a set of additional parameters Θi. Hence, the
new state of the system can therefore be represented as a function of the aforementioned
components:

St = f(It, St−1, Θi) (2.3)
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The discharge at time t is affected by the current system conditions and the meteorological
events that happened in previous time intervals. The output runoff Qt of a rainfall-runoff
model can then be described as:

Qt = g(It, St, Θj) (2.4)

where g(·) is the mapping function connecting system states, inputs and output [KHK+19].

Beven classifies runoff models based on their structure as empirical, conceptual, and
physical models, and by the spatial interpretation of the model’s catchment area as
lumped, semi-distributed, and distributed models [Bev12]. These classifications provide
a basis for the model types presented in section 2.3.

2.3 Hydrological Model Types
Sitterson et al. categorise hydrological models into three types: empirical, conceptual,
and physical. These types increase in complexity and required domain understanding as
listed. Empirical, also referred to as data-driven, models employ non-linear relationships
to inputs and outputs, but do not utilise physics-informed knowledge of the catchments
and typically only allow for a single output variable. Methods from ML and ANNs
belong to the empirical rainfall-runoff model type. Conceptual models rely on simplified
equations of physical hydrological processes, requiring significantly more parameters to
calibrate. These models are simple in structure and their calibration is a straightforward
optimisation process. Physical models directly incorporate laws of physics, such as
conservation of mass and energy, momentum, and kinematics, into the modelling of
hydrological processes. Spatio-temporal variability is explicitly accounted for and model
parameters are directly connected to physical catchments. However, physical models are
highly complex in nature and require large amounts of data to calibrate [SKP+18].

With the emergence of methods from DL, such as ANN architectures, as the leading
concept for interdisciplinary modelling across many domains, the categorisation of
hydrological models requires reconsideration. Mohammadi et al. combine conceptual and
physical model types into a single category: the Process-driven model (PDM). This type
aims to simulate all processes of the hydrological cycle and incorporates a certain amount
of physics-informed knowledge into the simplified architecture of a model. Advantages
and limitations of both physical and conceptual model types apply to PDMs, however,
they are more diverse in structure and cover an array of different popular models. On the
other hand, the authors propose a second model type, the Data-driven model (DDM),
which relates to the empirical model type. Historical time series data is used to predict the
runoff behaviour on unseen data. This type does not require significant understanding of
the domain, physical laws or hydrological processes. Rather, black-box models leveraging
the potential of large amounts of data are applied without the need to express highly
complex hydrological cycle as simplified equations. These models can learn relationships
between hydrological concepts and catchments directly from the data, and are capable
of uncovering hidden relations. DL methods exploit the non-linearity of streamflow as
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they are not restricted to linear modelling [MMCD21, SKP+18, HKK+21]. Kraft et
al. introduce the terminology for a third model type, the Hybrid hydrological model
(H2M), which combines the PDM and DDM in a hybrid approach. The authors motivate
the hybridisation by developing a hydrological modelling architecture “that exploits the
data adaptivity of neural networks for representing uncertain processes within a model
structure based on physical principles (e.g., mass conservation)” [KJK+22].

The naming and classification of hydrological model types varies in the literature, and
there is no standard definition to categorise models, given the increasing importance
of DL models. In order to use consistent terminology, the three model types described
above, namely PDMs, DDMs and H2Ms, are used throughout this work [LLH+18].

An abundance of hydrological models exists for numerous applications and problems.
This section focuses on models specifically designed for rainfall-runoff simulation. In the
following, several state-of-the-art representative model architectures are discussed and
compared for each of the three model types.

2.3.1 Process-Driven Models
PDMs are physical, analytical simulations of rainfall-runoff processes. They typically
suffer from large uncertainties associated with hydrological processes due to their high
degree of complexity and the need for model parameterisation and calibration. The high
computational cost and systematic bias in results are other disadvantages. However,
these models are well researched and calibrated, represent physical processes realistically,
generalise well, are easy to interpret and yield good results on a coarse scale [GGJP20,
GRA+22]. PDMs are classified into (i) lumped models applied to a single region using
spatially averaged characteristics, (ii) semi-distributed models where basins are broken
down into sub-basins and runoff volumes are accumulated downstream to estimate the
output at the outlet, and (iii) fully distributed models representing processes at a high
resolution by utilising grids, sub-basins, flowplanes or triangulated irregular networks
[KYG+21]. Fully distributed models typically provide the most detailed predictions.

The Nash Model, which is also referred to as the “Linear Cascade”, considers a catchment
as a sequence of linear reservoirs. Here, the output from the upstream reservoir is directly
transmitted as the input to the downstream reservoir forming an arrangement in the form
of a cascade. The Nash model has been used as the basis for numerous rainfall-runoff
models and, despite its publication in 1957, still provides an important mathematical
basis for describing surface runoff [Nas57].

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model is a lumped to semi-
distributed conceptual hydrology model developed in the 1970s in Sweden to analyse
snow accumulation and melt, soil moisture, and runoff response and has since gained
large popularity across the world. Its advantages lie in the simplistic representation
of processes, good performance, and prevalence in industry and research, especially in
Scandinavia. The model has been applied in about 100 different countries. The number
of parameters and forcing input requirements (typically T and P ) are relatively low. The
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HBV model can be tested via an easy-to-use software tool called “HBV-light” that is
freely available1. There are numerous extensions and modifications available for this
model [SKP+18, SB22, AH10].

Seibert and Bergström identify three distinguishable physical components in the structure
of the model: snow accumulation and melting, the accounting of soil moisture and the
response to runoff, which contains groundwater dynamics. It consists of four distinct
routines: snow, soil moisture, response and routing. Catchments are divided into
rather large grid cells of typically 1 km2, each treated as a single unit with aggregated
inputs and outputs. The principal use of HBV is in rainfall-runoff modelling, although
research examining the impact of climate change on water resources is increasingly
significant. A critical concern in this context is the transferability of the model results
under climatically transient conditions. Differential split-sample tests have revealed that
transferring calibrated parameters from climatically differing reference to testing periods
can lead to significant uncertainty. Further challenges arise from the potential impacts of
climate change on catchments, which may change the vegetation and soil over time. This
issue calls for modifications to model parameters rather than holding them as constant
factors [SB22].

Continuous Semi-distributed Runoff (COSERO) is a conceptual semi-distributed model
originally developed for runoff forecasting in alpine catchments in Austria and is now an
important cornerstone in hydrological research, applied to different climatic zones and
spatio-temporal resolutions. The model makes use of a vast array of attributes including
soil water storage, snow accumulation/melting, glacier melting, evapotranspiration, etc. It
requires a time series for precipitation, air temperature, and potential evapotranspiration
(PET) as input. It makes use of a vast array of attributes including soil water storage,
snow accumulation/melting, glacier melting, and evapotranspiration. Notably, COSERO
is used by Klingler et al. as the baseline model in the study presenting the LamaH
dataset, which is selected as basis for the rainfall-runoff experiments in the course of
this work. The authors selected this model as baseline because its performance has been
tested in varying climatic conditions and spatio-temporal resolutions [KSH21]. However,
a major disadvantage is the lack of open-source implementations of COSERO.

The Sacramento Soil Moisture Accounting Model (SAC-SMA) model is a lumped, contin-
uous, conceptual soil moisture accounting model from the US and simulates movement
of water through a watershed. It incorporates key processes such as precipitation, snow
accumulation and melt, temperature, and potential evapotranspiration as inputs and
provides soil moisture, evapotranspiration, and runoff as outputs. In the conceptualisa-
tion of the model, basins are divided into lower and upper zones with regard to certain
depths. The distribution of moisture as well as free water components are parameterised
separately for both zones. Furthermore, the model is capable of expressing effects of
frozen ground as part of the rainfall-runoff process, which is a unique aspect. River and
water supply forecasting and estimation of hydrological extremes as well as basin-specific

1Source: https://www.geo.uzh.ch/en/units/h2k/Services/HBV-Model.html
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climate change are key applications of the SAC-SMA model. Several years of data can
be used for model calibration. The model is especially popular in the United States,
where the National Weather Service of the NOAA relies on its predictions. The model
was originally developed by Burnash et al. in 1973 in Fortran and is publicly accessible
[BFMC73]. There are modern implementations of the model, e.g. as R packages 2.

The Soil and Water Assessment Tool (SWAT) is a physically-based, long-term continuous
and semi-distributed model that simulates the hydrological cycle at the watershed scale at
a daily resolution. The model can be considered a hydrological transport model aiming to
describe the movement of sediment, pollutants, and water in general across a network of
basins. It features numerous components to represent weather, land use, soil properties,
vegetation, and climate to simulate processes such as evapotranspiration, infiltration,
runoff, and nutrient transport. The model has been found to be robust, and produces
accurate predictions for water resource management at a global scale [HW23].

Five critical types of input data are necessary to use the model: weather, topography,
soil, land use, and land management. These diverse types of data typically exhibit high
degrees of spatio-temporal variability, and their collection can be a difficult process. Due
to its design for the landscape of the United States, application of the model to other
areas requires resource intensive data pre-processing. For this reason, many countries
have devised custom extensions explicitly tailored to the prevalent conditions. It is mostly
used for water resource and quality management, but can also quantify the impact of land
management on river basins. SWAT is one of the most popular hydrological models and
frequently finds application in the domain of agricultural modelling. It can be tested via
a command-line tool available for Windows and Linux on the official website3 [HW23].

The Variable Infiltration Capacity (VIC) model, a semi-distributed physical hydrological
model operating at the macro-scale, has been developed since the 1990s by Liang et al. at
the University of Washington and has found widespread use in a variety of applications
[LLWB94]. VIC is used for tasks such as hydrological dataset construction, trend analysis,
data assimilation, forecasting, coupled climate modelling and climate change impact
assessment. The model assumes the land surface to be at a large scale with uniform
grid cells exceeding 1 km. Sub-daily meteorological variables P , T , W , wind speed, and
atmospheric as well as vapour pressure are required as input. Notably, water can only
enter the system from the atmosphere and there is no exchange of moisture with the soil.
Furthermore, exchange of water between catchments is also not modelled [SKP+18].

The recently developed VIC-5 represents a significant advancement, with a revised source
code available via a public GitHub repository4. This encourages collaboration and
enhances the model’s versatility for modern hydrological modelling applications. The
code is distributed under the permissive MIT license and is written in C for Linux/Unix
platforms with an experimental Python driver also available. VIC-5 is equipped with a
robust testing infrastructure to ensure reliability and reproducibility [HNB+18].

2Source: https://github.com/tanerumit/sacsmaR
3Source: https://swat.tamu.edu/
4Source: https://github.com/UW-Hydro/VIC/
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2.3.2 Data-Driven Models

DDMs typically encompass models from the domains of Machine Learning, and, more
specifically in recent years, Deep Learning. Notably, these models usually do not
incorporate a foundation on physical laws or aim to represent hydrological processes as
simplified parameterised equations by design. Much rather, DDMs leverage the potential
of the data itself to uncover complex patterns and relationships inherent in hydrological
systems. By harnessing large datasets containing information on hydro-meteorological
variables, these models excel at capturing non-linearities and spatio-temporal relationships.
The strength of DDMs lies in their ability to adapt and learn directly from observational
data, without the need to explicitly formulate physical processes. This adaptability
makes DDMs particularly valuable for hydrological applications in diverse and dynamic
environments, where the underlying processes may be influenced by a multitude of factors.
However, it is important to note that the interpretability of these models can be a
challenge, as the learned relationships do not always agree with established hydrological
theories, and the lack of transparency in the calculated weights and produced outputs can
be a major drawback. Despite this, DDMs represent a promising frontier in hydrological
modelling, offering new insights and predictive capabilities in the face of evolving data
landscapes and changing climate conditions [KKH+19].

Deep Learning (DL) techniques can effectively represent complex physical processes and
discover hidden, long-lasting relationships in the data and output. These models are
highly adaptable, computationally efficient, and can be easily calibrated. The problem of
exploding/vanishing gradients in Recurrent Neural Network (RNN) is usually mitigated
by using LSTM models. DDMs require large amounts of training data, and the training
process is very resource intensive to obtain reliable predictions. Due to the size of these
models, they are considered black-box models. Also, DDMs tend to struggle to generalise
outside their calibration range and their lack of physics-informed components in their
architecture can lead to implausible outputs [KKH+19, LHB+23, KJK+22, OEAF21].

There is a discrepancy in terminology between traditional hydrological modelling and
modern, data-driven approaches. The optimisation of a set of model parameters across a
pre-defined number of iteration steps in order to represent the whole period of data, and
the evaluation of the performance based on objective metrics is referred to as the process
of “calibration” in traditional hydrology. In ML, this process is called “training”. More
specifically, the iterations are referred to as epochs in DL, where model architectures
process data in subsets (i.e. batches). Otherwise the process of finding ideal model
parameters or weights is similar for both approaches [KKB+18].

The problems posed in hydrological modelling are typically complex, non-linear and
data-intensive. These characteristics are inherent to ML methods. Their data-driven,
computationally efficient design allows them to excel at learning patterns directly from
observational data, which leads to increased adaptability, flexibility, and robustness. ML
methods are capable of producing accurate results in time series forecasting. Spatio-
temporal dependencies of input variables can be efficiently processed and represented.
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ML techniques have been applied to various use cases in hydrology in the literature. For
example, El-Haddad et al. employ four different ML methods to delineate flood-prone
zones in Egypt. Among boosted regression tree, multivariate discriminant analysis, a
general linear model, and functional data analysis, the latter method exhibits superior
performance [EHYP+21]. Rahmati et al. compare the three popular ML methods random
forests, support-vector machines, and k-nearest neighbour (kNN) regression to predict
the levels of nitrate in the groundwater, thereby analysing water quality. The authors
find that the kNN and Random Forest (RF) models produce good results with respect to
predictive power and uncertainty [RCF+19]. Furthermore, Kabir et al. present a case
study with an evaluation of three ML-based methods for multi-step ahead streamflow
forecasting at an hourly time scale for several river systems in the United Kingdom.
The results indicate that a support-vector regression model is accurate up to two hours
but experiences a gradual decline in performance beyond that, and that a wavelet-ANN
model is characterised by higher system non-linearity [KPP20].

Furthermore, Zounemat-Kermani et al. provide a comprehensive meta-analysis of the
employment of ensemble learning methods to hydrological problems, such as rainfall-
runoff, flooding, or water quality. The authors find that novel boosting techniques, such
as AdaBoost and XGBoost, have been applied extensively and successfully in recent years
and have shown promising results. Significant improvements of efficiency and accuracy
are reported in studies employing such models. Furthermore, bootstrap and bagging
techniques, such as an RF model, are popular approaches in rainfall-runoff modelling
[ZKBFH21].

Mosaffa et al. cite the high variability in spatial and temporal scales inherent to
hydrological modelling and issues associated with over- and underfitting arising from
the lack of quality and volume of the training data, uncertainty, and missing records as
obstacles in the application of ML methods [MSM+22].

Excursion: Deep Learning for Time Series Analysis

In time series modelling, the input space is augmented by the time dimension. Consequently,
the input sequence x takes the form x = [x1, x2, ..., xT ] for T time steps, with each xt

(1 ≤ t ≤ T ) comprising D input variables following the description of the feature space.
As a result, the training data space (or input space) shall be N × T × D.
One of the primary drawbacks of RNNs is their limited capacity to remember sequences
beyond ten time steps. In hydrological modelling, many processes are subject to major
time lags between causes and results. For instance, accurately representing the relationship
between precipitation, storage processes in groundwater, snow, or glaciers and subsequent
discharge may take months or even years within a catchment’s memory. This issue is
especially relevant to hydrological modelling, since most datasets provide the time series
input at a resolution of the daily average at a minimum. Consequently, an RNN can only
utilise the previous ten days of information to forecast the runoff for the subsequent day,
presenting a significant constraint [BSF94, KKB+18].
The LSTM model is a special type of RNN introduced by Hochreiter and Schmidhuber in
1997 [HS97]. This network incorporates so-called memory cells that are capable of storing
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information over long time intervals. Moreover, LSTMs are not subject to the issue of
vanishing or exploding gradients as compared to other types of RNNs due to their more
complex and carefully designed internal structure. Thus, LSTMs are an appropriate option
for modelling dynamic systems, such as watersheds, due to the similarity of memory cells
to state vectors in conventional dynamic system models.
The forward pass of an input sequence x = [x1, x2, ..., xT ] for T time steps is presented in
Equation 2.5. Each vector xt includes the input features at time t (1 < t < T ), resulting
in a coherent and systematic flow of information.

i[t] = σ (Wix[t] + Uih[t − 1] + bi)
f [t] = σ (Wf x[t] + Uf h[t − 1] + bf )
o[t] = σ (Wox[t] + Uoh[t − 1] + bo)
g[t] = tanh (Wgx[t] + Ugh[t − 1] + bg)
h[t] = o[t] ⊙ tanh c[t]
c[t] = f [t] ⊙ c[t − 1] + i[t] ⊙ g[t]

(2.5)

Here, the parameters W , U , and b are learned for each gate (denoted by the subscript).
Initially, all cell states are set to zero vectors. σ(·) designate the sigmoid function, tanh(·)
the hyperbolic tangent function. In this model, the c[t] cell states represent the over-
arching memory of the architecture. These states can be modified by the respective gates:
f [t] deletes states, i[t] and g[t] update states and introduce new information to the system.
Then, o[t] determines which information stored in the cell states is emitted as output
[KKS+19].

ANN-based architectures have experienced widespread recognition in the field of hydrology
since the 1990s [Dan91]. DL models have been found to be highly accurate for the task
of rainfall-runoff modelling. Previously, the majority of published studies have applied
feed-forward neural network architectures to this task, but in recent years, models with
memory-like components based on RNNs, such as LSTM models, have been able to
perform well in the domain [KHK+19].

Wang et al. used a dilated causal convolutional neural network to predict water levels.
Their results showed the increased performance of the model compared to a multilayer
perceptron and SVM models [WLC+19]. Sun et al. test the performance of graph
neural networks and report that they are robust and computationally efficient. The
performance is at least similar compared to an LSTM baseline model [SJMC21]. Zou
et al. experiment with a combination of auto-regressive RNNs and a novel, enhanced
RNN called ResLSTM alongside other techniques in a multi-step-ahead flood probability
prediction model [ZWLL23].

Kratzert et al. state that the LSTM architecture is especially suitable for this task as the
evolution of states can be modelled explicitly through time and mapped to a given output.
This allows for a direct comparison to the general definition of rainfall-runoff modelling
given in Equations 2.3 and 2.4: the system states defined in the formulations can be
compared to the memory cell states of the LSTM architecture. The parameters can be
translated to the learnable network weights [KHK+19]. Notable examples of DDMs with
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an LSTM-based architecture include an early LSTM model to simulate rainfall-runoff
proposed by Hu et al. in 2018 [HWL+18]. Sahoo et al. use an LSTM for low-flow time
series forecasting; Zhang et al. apply an LSTM as well as an SVR model for reservoir
operation simulation and later show an improve attention-based LSTM for urban flood
forecasting [SJSK19, ZLP+18, ZQM+23]. The latter model features a specific attention
mechanism with double-time sliding windows and a weighted mean square error loss
function to address the issues associated with high temporal variability in urban flood
prediction. The authors apply the model at a very high temporal resolution (at the
minute-scale) and report superior performance underlined by R2 scores exceeding 0.85.
Furthermore, Ouma et al. compare an LSTM with a wavelet-ANN for spatio-temporal
prediction of rainfall-runoff time series in data-scarce basins [OCW22]. Anshuka et al.
propose an LSTM-based model for spatio-temporal hydrological extreme forecasting
[ACB+22]. Kim et al. present a case study comparing two PDMs to two DDMs (an ANN
and a LSTM). They report the competitive performance of the data-driven approaches
and emphasise the high accuracy. However, the authors find that DL models are only
capable of producing accurate results if they are provided with a sufficiently high amount
of data due to the lack of physical water routing information implemented as part of the
models’ architectures [KYG+21].

In the field of rainfall-runoff modelling utilising memory-based neural network models,
Frederik Kratzert, Daniel Klotz, and Grey Nearing are among the leading researchers,
frequently presenting cutting-edge model architectures that extend LSTMs to address
various issues related to this specific modelling task. After the presentation of an initial
LSTM to model rainfall-runoff in 2018, the authors also propose an entity-aware LSTM,
which incorporates static information on catchments into the architecture. Kratzert et
al. further present several case studies in the field of hydrological modelling with DL
[KKB+18, KKHH18, KKH+19, KKS+19].

Furthermore, the authors are involved in the development of a mass-conserving LSTM
architecture by Hoedt et al. in 2019. The model architecture integrates physical
conservation laws, which govern the re-distribution of quantities in a system. The authors
are able to show that their novel model competes with an ensemble of LSTMs and
outperforms several popular PDMs, such as HBV and VIC. Interestingly, the authors
show that the mass-conserving LSTM is capable of learning to track snow in memory
cells without requiring snow data as input for training [HKK+21]. Beyond that, Kratzert
et al. are responsible for the publication and maintenance of the NeuralHydrology
open-source Python package for DL-based hydrological modelling, as well as the state-
of-the-art Caravan large-sample data collection [KHK+19, KGNK22, KNA+23]. These
publications are significant to the development of an inter-disciplinary research effort
that integrates the capabilities of DL into the domain of hydrology.

2.3.3 Hybrid Hydrology Models
Hybrid models combine physical and data-driven models into a single end-to-end simu-
lation pipeline [Raz21]. Due to reduced computational cost, they can be trained more
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efficiently to explore both long and short-term forecasts on localised scales [GRA+22].
By leveraging ML practises and physics-driven processes, the resulting model can reduce
uncertainty and bias while at the same time improving explainability and consistency
[KJK+22]. Lian et al. classify hybrid modelling into (a) surrogate modelling, (b) one-way
coupling, and (c) modular coupling [LHB+23]. Okkan et al. introduce a fourth type, (d)
nested hybridisation [OEAF21].

Noori et al. use a coupled hybrid model using a process-based watershed model and an
ANN for water quality prediction. The resulting model achieves optimised calibration
and validation processes [NKI20]. Lian et al. apply the modular coupling approach in
that they use an RF as a sub-model to represent the evapotranspiration simulation for
streamflow estimation in the PDMs XAJ and SWAT, respectively, and achieve improved
accuracy [LHB+23]. Kraft et al. present a hybrid framework based on a dynamic Neural
Network simulating time-varying coefficients that are fed to a simple hydrograph. The
model is capable of simulating the dynamics of snow, soil moisture, and fluxes and
storage in groundwater [KJK+22]. Mohammadi et al. present an extensive evaluation of
two PDMs and seven H2Ms that are based on Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) and Support Vector Machines (SVM), and conclude that AI-based hybrid models
generally lead to more accurate streamflow estimates [MMCD21].

Ren et al. propose a hybrid model integrating a Bayesian Neural Network and an
SVM with the process-based model HBV to improve streamflow prediction in alpine
regions. In this setup, HBV provides the snow/glacier-melt runoffs as input to the
ML techniques [RYH+18]. Gharbia et al. introduce a hybrid geophysical tool called
GEO-CWB consisting of GIS-based algorithms that parameterise the result of catchment-
dynamic water balance for climate and land-use changes. The underlying models are
based on physics, statistics and Machine Learning and allow for localised point forecasts
in the long and short term [GGJP20]. In 2022, the authors follow up with an array of
proposed surrogate models for their tool to simulate water flow and level simulations.
They experiment with (wavelet)-ANNs and -SVMs and achieve reduced computational
cost [GRA+22].

Dong et al. propose a hybrid framework model where a high-resolution PDM is coupled
with XGBoost and an ANN as well as a calibration-free conceptual scheme for data-
scarce reservoirs. The gradient boosting technique outperforms the ANN, and the
hybrid framework shows improved performance in reconstructing daily streamflow of the
investigated basin [DGC+23].

The nested hybrid modelling approach is introduced by Okkan et al. for rainfall-runoff
simulation. Outputs from conceptual PDMs are directed to ANN and SVMs. The
embedded ML part is inactive until the rainfall-runoff calibration in the conceptual model
is completed. The nested model outperforms standalone models as well as coupled model
variants in mean and high flows [OEAF21].
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2.4 Hydrological Modelling in the Era of Climate Change
In recent years, awareness of non-stationarity in climate and hydrology has continually
increased. The interest of the research community now gradually shifts towards the
assessment of model performance in climatic conditions that extend beyond their training
data and calibration range. The ongoing drastic changes in climate pose a dilemma
for the reliability of land surface models in simulating future climate scenarios, regard-
less of their satisfactory performance under known conditions [ODO20]. Blöschl et al.
emphasise the significance of studying the effects of environmental modifications and
the associated climate change in their compilation of 23 open problems in hydrology
that were identified by the research community in 2018. The importance of evaluating
hydrological models under contrasting conditions compared to their calibration reference
is explicitly mentioned by the authors [BBC+19].

Modelling experiments have now turned their focus on evaluating the ability of models
to extrapolate under non-stationary conditions. The most common method used in
simulations to assess this capacity in models is Differential Split-Sample Testing (DSST).
This method employs a reference period, such as wet and cold seasons, during calibration.
The models are then assessed using a period of different climatic conditions, such as
dry and warm seasons, to evaluate the robustness of their predictions [ODO20]. The
ultimate goal of a model undergoing DSST is to exhibit robust transferability of calibrated
parameters to validation data, whilst displaying minimal sensitivity to environmental
and climatic conditions [NdMSD22].

Previous research has largely neglected the context of changing conditions in the input
data when analysing performance, accuracy, flexibility and robustness of state-of-the-art
models. While complex models may accurately depict hydrological processes, they are
prone to being over-parameterised, despite applying stricter physical limitations and
incorporating considerably more data regarding the system in question when compared
to physically-based conceptual models [Bev89, ODO20]. However, initial studies that
employ DSST have found no significant difference between complex and simple models
with regard to the number of parameters used [CAP+12].

Sungmin O et al. examine how varying hydro-climatic conditions impact model perfor-
mance with consideration of model complexity. The authors compare two PDMs, a highly
complex physically-based model (HTESSEL) that considers land surface and a conceptual
model (SWBM) of medium complexity focused on hydrological processes, respectively,
and a rather simple black-box DDM, in this case an LSTM, which generates a runoff
time series. All models are calibrated using only streamflow data from 161 catchments
in 11 European countries from 1984 to 2007. Catchments are classified into humid,
moderate, and arid hydro-climatic regimes according to their aridity index. According
to the authors, the aridity index, commonly known as the ratio of atmospheric water
supply to its demand, is defined as “ratio between mean net radiation and respective
unit-scaled precipitation during the entire 24 years” [ODO20].

The simulation setup employed in this study starts with a selection of catchments based on
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model suitability and data quality over the entire period. The PDMs are then calibrated
for each catchment individually and the LSTM uses all catchments simultaneously, while
both approaches only use reference periods of the wettest and driest years according
to annual mean precipitation at this stage, respectively. Then, the models are assessed
according to their performance in the remaining 23 years to illustrate the difference under
different climatic conditions. The authors coin the increasingly drier years wet2dry and
the increasingly wetter years dry2wet [ODO20].

Precipitation is used as the driving variable to define the climatic reference periods
as it has been shown to be most influential compared to temperature or potential
evapotranspiration [CAP+12]. The single-year calibration run is repeated iteratively
until the model reaches an equilibrium. The authors highlight that process-based models
derive an advantage from their foundation in the laws of physics to model the various
conditions, whereas data-driven models acquire this knowledge solely from the input data.
However, for the LSTM the differential split-sampling approach needs to be configured in
such a way that more training data is available at the point of calibration to compensate
for the lack of physical knowledge. The authors conduct extra experiments using an
additional LSTM, trained using a randomly selected year as a reference period. This
approach enables a greater diversity of hydro-climatic information to be represented,
allowing the relationships between the hydrological variables to be learned from all
observations [ODO20]. Coron et al. present a 10-year sliding window approach in their
study to examine the effect of contrasting climate conditions on conceptual rainfall-runoff
models. They find that calibration using especially dry or wet period might lead to
overestimation of simulated runoff [CAP+12].

The evaluation is performed in the same way as the calibration, but using the remaining
years as input data. Transient climatic conditions are represented in the evaluation data,
enabling the assessment of robustness under conditions that change progressively. This
setup is a promising basis for further experiments. However, Ji et al. acknowledge that
experiments utilising DSST should include a validation period separate from calibration
and evaluation (known as training and testing, respectively, in the context of DL) to
gain a comprehensive understanding of the model’s performance under diverse climatic
conditions [JML+23].

The authors find that the robustness of model performance in changing conditions
improves gradually as the models incorporate more physical principles as constraints.
The decline in model performance with increasing differences from reference conditions is
attributed to temporal shifts between hydro-climatic patterns that cannot be effectively
characterised by static model parameters. The challenge can be addressed by the
authors through the inclusion of training data from several catchments simultaneously,
which does not require an escalation in training data. It is important to note that
there is a fundamental difference between process-based models and data-driven models.
PDMs are constructed using explicit knowledge about the climatic conditions and
hydrological behaviours, while DDMs are black-box systems by their very nature and
learn all relationships from the input data, potentially lacking vital a-priori information.
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Nonetheless, these issues can be addressed in DL techniques. The challenge can be
conquered by adopting regional, rather than local, calibration (refer to section 4.4.1),
and by including not only strictly constrained reference periods, but also integrating all
relevant conditions into the model [ODO20]. These findings are confirmed by de Moura
et al. in a similar experimental setup [NdMSD22].

O et al. present a vital study focused on the impact of climate change on hydrological
modelling. Hydrological models are crucial for assessing climate impacts on systems, but
they can yield significant predictive errors in the face of changing climates. This issue is
particularly pronounced in regions expected to undergo substantial hydroclimatic changes.
The comparison of PDMs of varying complexity with state-of-the-art approaches from
DL and the use of DSST provides an important overview of the state of research in this
regard. However, the study also leaves room for improvement and further experimentation
to address pivotal issues. For instance, the period of training data stops in 2007 and
thus may not represent the drastic climatic conditions experienced in the recent past.
The calibration period of only a single year should be extended in further experiments.
Furthermore, the catchment and forcing data contains only few variables in comparison
to already discussed state-of-the-art datasets in LSH. The here employed DDM uses a
very simplistic architecture and the quality and the insights gained from the output of
experiments could be much improved by using an augmented LSTM model. For instance,
a physics-informed setup could compensate for the missing knowledge about physical laws
in the experiments by O et al. Additionally, the inclusion of static catchment attributes
can greatly enhance the available information. Sophisticated hyperparameter tuning
approaches could also lead to improved transferability. It is crucial to also observe the
complexity of models in addition to their mere performance [ODO20, NdMSD22].
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CHAPTER 3
Large-Sample Hydrology and Data

Overview

3.1 Large-Sample Hydrology
Hydro-climatic variables such as precipitation, temperature, humidity or wind as well as
geo-ecological properties such as soil, land use and land cover, anthropogenic impacts or
vegetation are the driving factors for hydrological processes such as streamflow generation.
A key issue in hydrology is the collection of information about large amounts of catchments
in variables that are capable of describing the complex and heterogeneous processes
in hydrology and allow for accurate simulations in various spatio-temporal resolutions
and subject to varying climatic conditions. Since data from individual catchments or
river gauges are not able to explain the diversity of general hydrological behaviour, the
available data must be combined to obtain large sample sizes that promote consistency
and generalisability. Large-Sample Hydrology (LSH) is a sub-discipline of comparative
hydrology and aims to address these challenges by establishing large-scale datasets that
follow consistent formats and include a vast amount of samples from a diverse set of
hydrological conditions in order to be able to simulate behaviours for catchments not
included in these sets. Furthermore, modelling strategies are promoted that attain
reliability, robustness, and realism, generalise well and are transposable, and where
parameter estimation from data is facilitated [ADAG+20, GPB+14, KNA+23].

Gupta et al. define the ultimate goal of hydrological sciences “to achieve a degree of
process understanding that enables construction of models that are capable of providing
detailed and physically realistic simulations across a variety of different hydrologic
environments, and at multiple spatial and temporal scales” [GPB+14].

Datasets in hydrology typically consist of time series data in key hydrological variables:
streamflow, precipitation, temperature, potential evapotranspiration, and snow water
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equivalent. Additionally, catchment attributes are given to provide further context of
the covered basins and allow for more in-depth analyses and powerful models. Basic
catchment identifiers such as the name of the gauging station, the coordinates and country,
the catchment area and quality identifiers of gauging stations are also commonly present.
Differences commonly exist among datasets in terms of the spatio-temporal resolution
provided, the extent of catchments covered, the specific attributes of catchments offered,
and the overall availability. Hydrological datasets are primarily distinguished by the
inclusion of specific regions or climate zones. While only a few datasets or collections
strive to offer global coverage, the majority are focused on continental, national, regional,
or local scales, providing descriptive information at those respective climatically or
geographically specific levels.

Addor et al. reviewed the progress of large-sample hydrology in a comprehensive study
in 2019. The authors identified key limitations in the field: (i) the lack of common
standards hindering basin comparability between datasets, (ii) the lack of metadata
and uncertainty estimates impeding the assessment of data reliability, (iii) negligence
in describing the extent of human impacts, (iv) infrequent adherence to the findable,
accessible, interoperable and reusable (FAIR) principle [WDA+16]. Furthermore, the
authors outlined guidelines and requirements for the generation of future LSH datasets: (i)
providing basic data for each basin, (ii) using consistent naming for variables, (iii) relying
on publicly available code for data processing, (iv) publishing uncertainty estimates
for time series and catchment attributes, (v) incorporating anthropogenic descriptors,
and adhering to the FAIR principle. According to this work, the central challenges
going forward are to progressively move datasets to the cloud so that the increasing
computational load can be mitigated and comparability of datasets is promoted. The
authors also emphasise the importance of comprehensively describing anthropogenic
factors to elucidate human impact on water systems [ADAG+20].

A major challenge in LSH is to generate publicly available datasets, since many important
studies in hydrology are based on data that is not open to public inspection. Examples
are the study by Blöschl et al. who investigated the impact of climate change on
floods in European rivers where approximately only one third of the data is publicly
available, and the regionalisation and calibration experiments performed by Beck et al.
[BHV+19, BvDdR+16, BPL+20].

Excursion: Meteorological Forcings and Climate Reanalysis

Besides generating real-time data of the Earth’s climate, it is also vital to produce accurate,
consistent, holistic, long-term records of past climatic conditions. Climate reanalysis refers
to the process of assimilating climate-related information from multiple sources, including
satellite imagery, radar, buoys, historical weather observations, and topographic data into
a comprehensive climate model using the laws of physics. The aim is to reconstruct the
Earth’s past atmospheric and land conditions spanning several decades so that historical
climate conditions can be represented coherently.
Hydrological, ecosystem and land cover/land use models use gridded near-surface me-
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teorological data, commonly referred to as meteorological forcings, as inputs for their
simulations. The data typically contains information on the factors that drive atmospheric,
surface, and water-specific conditions. Meteorological forcings can be considered inputs
to a comprehensive climate reanalysis model and typically represent the time series data
used for hydrological modelling.
In the field of hydrological modelling, several datasets are widely recognised and frequently
used as input to models. Most notably, Global Land Data Assimilation System (GLDAS)
is a major NASA reanalysis project that combines satellite and land-based observations
into a comprehensive record on a global scale. The system incorporates a vast amount of
observation-based data at high resolutions, ranging from 2.5° to 1 km. Furthermore, it is
capable of delivering near-real-time results. The data provided by GLDAS are used for
various current and planned applications for climate and weather forecasting as well as for
the simulation of water resources, quality and cycles. Data on elevation, soil, vegetation,
precipitation and radiation are compiled by high-quality data assimilation systems to
optimally drive the models [RHJ+04].
The 5th Generation of European ReAnalysis (ERA5) is a popular global reanalysis project
providing data from 1940 onward at an hourly temporal resolution and includes uncertainty
estimates as well as daily and monthly aggregates. It is developed by the Copernicus
Climate Change Service (C3S) at the European Centre for Medium-Range Weather
Forecasts (ECMWF). The atmospheric, land, and ocean climate variables provided by
ERA5 encompass the Earth on a 30-kilometre Gaussian grid. 137 levels are employed
to resolve the atmosphere from the surface up to 80 kilometres in altitude. The spatial
resolution for the reanalysis ranges from 0.25° to 0.5° while the uncertainty estimates are
given at reduced spatial and temporal resolutions (0.5° to 1°) [MnSDAP+21].
The NCEP/NCAR reanalysis set is widely used and provides extensive near-surface
meteorological information at a global scale. This dataset is freely available, continuously
updated and developed by the National Centers for Environmental Prediction (NCEP) in
collaboration with the National Center for Atmospheric Research (NCAR). The data is
provided from 1948 onwards in six-hour intervals and consists of atmospheric quantities and
parameters computed by numerical weather prediction. The global grid has a resolution of
2.5° for both latitude and longitude and uses 17 pressure levels for the atmosphere, which
is coarser than e.g. ERA5 and therefore causes difficulties in regions with few observations.
However, the global coverage and extensive historical records make it a valuable resource
[KKK+96].
Based on NCEP/NCAR, Sheffield et al. produced the Princeton Global Forcing (PGF)
dataset from 1948 to the present at 3-hour intervals at a resolution of 1° across the globe.
This dataset is specifically designed for land surface hydrology models and incorporates
several heterogeneous observation-based sets with the NCEP/NCAR reanalysis to refine
the resolution and provide comprehensive information for land surface fluxes and conditions.
Corrective measures are applied to account for biases in the reanalysis precipitation data
using the observation-based data. PGF represents a globally consistent, long-term dataset
of near-surface meteorological variables and is used widely across hydro-ecological models
[SGW06].
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3.1.1 MOPEX

The first LSH dataset resulted from the Model Parameter Estimation Experiment
(MOPEX) and consists of data from 438 catchments in the contiguous United States
[SCD06, KNA+23]. The goal of MOPEX was to develop approaches for the a-priori
estimation of parameters that are applied in land surface parameterisation procedures in
atmospheric and hydrological models. Various hydro-meteorological observations as well
as attributes for catchments that represent varying hydro-climatic conditions are incor-
porated. The data are available at hourly and daily resolution from 1948 to 2003. Time
series attributes encompass precipitation, temperature, runoff, and potential evaporation
(P, T, Q and PE). In addition, the data set includes catchment attributes that describe
the topography, land cover and soil, as well as climate indices. The meteorological data
were derived from more than 16.000 weather stations across the country. The dataset is
available for free from the website of the NOAA1. This dataset is particularly relevant
to the problem of PUB, but has lost some of its relevance as it has not been updated
since 2003. It is still used as an important reference dataset in hydrological modelling
[ADAG+20].

The related dataset Canadian Model Parameter Estimation Experiment (CANOPEX)
features 698 catchments and focuses specifically on Canada. The format of the data
is aligned with the parent project MOPEX, but it does not provide any catchment
attributes. The data is also available for free for non-commercial applications2. MOPEX
and CANOPEX represent two of the most important datasets at the national scale
[ABODB16, ADAG+20].

3.1.2 CAMELS

The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) col-
lection emphasises the need for consistency in data by applying the same preparation
techniques and publishing the data in a consistent format. Several datasets have been
published in this collection for specific countries, using the same data preparation and
formatting techniques. These include data for the contiguous United States, Brazil, Chile,
the United Kingdom, Australia, France, contiguous China and Switzerland, typically
covering a few hundred catchments each. The datasets are usually suffixed with the
country code. These datasets combine hydro-meteorological time series and static catch-
ment attributes aggregated to polygons [ANMC17]. Additional datasets that comply
with or build on the CAMELS standard have been proposed for specific catchment data
relevant for spatially distributed hydrological modelling and information transfer to
data-sparse regions, or containing dedicated atmospheric and stream water chemistry
data [KC22, MFL+21, SPL+22]. According to Addor et al.’s assessment, the datasets
contain information on streamflow, precipitation, temperature, and potential evapotran-
spiration making them one of the most comprehensive collections in LSH [ADAG+20].

1https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/
2http://canopex.etsmtl.net/
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As most other prevalent datasets in hydrology, CAMELS covers the full upstream area
of individual catchments, but does not describe interconnected river networks [KSH21].

The original dataset in this collection covers the contiguous United States in 671 catch-
ments from 1980 to 2014 [NCS+15]. It is publicly available on the Geoscience Data
Exchange platform3. Both time series data and catchment attributes are part of the
collection, providing a comprehensive representation of the hydrological cycle. A major
advantage of CAMELS is that it provides a detailed explanation of the approaches
employed to obtain catchment attributes and a discussion of some of the caveats associ-
ated with the data sources. Furthermore, the code used to generate most attributes of
the CAMELS collection are publicly available as open-source scripts4. This facilitates
the reproducibility and comparability of data sets and improves the transparency of
hydrological experiments.

3.1.3 GRDB and EWA

The Global Runoff Data Base (GRDB) and the European Water Archive (EWA) are both
freely available large-scale data collections from the associated Global Runoff Data Centre
(GRDC). GRDB is arguably the most common dataset used for streamflow research at a
global scale5. The GRDB has been operational since 1988 and comprises information from
more than 100 hydrological and meteorological services worldwide. The streamflow data
can be acquired in daily or monthly aggregates and can be queried by station, country,
time-period, region or sub-region, which refers to a hydrographical region representing all
or parts of a river basin, or land that drains in total via coastal sections between defined
sub-regions. For example, the Danube sub-region contains 186 stations in the respective
area. In total, the collection contains 841 sub-regions and 10.702 stations from 159
countries across the globe. Naturally, some countries and regions are underrepresented in
this collection. The period of available data differs per station, but the earliest data is
from 1931 [ADAG+20].

The EWA can be considered the counterpart to GRDB at a continental scale with 3.700
river gauging stations in 29 countries across Europe. The GRDC now also hosts this
collection, and some national hydrology services have opted to integrate their data from
EWA into GRDB. However, EWA has been discontinued since 2014 and no new data
can be expected to be added to this collection [ADAG+20].

3.1.4 GSIM

Global Streamflow Indices and Metadata Archive (GSIM) is an extension of the GRDB
to accommodate access to rural station data and provides global monthly, seasonal, and
annual streamflow indices for more than 35,000 catchments. The data can be acquired in

3https://gdex.ucar.edu/dataset/camels.html
4https://github.com/naddor/camels
5https://www.bafg.de/GRDC
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daily, monthly, seasonal, and yearly resolution6 [DGLW18]. The collection incorporates
12 streamflow databases (seven national, five international) to compile daily streamflow
time series. GSIM consists of three parts: (i) a catalogue with fundamental metadata
for each time series, (ii) catchment boundaries outlining the area that contributes to
each gauge, and (iii) catchment metadata from the 12 gridded databases. These three
metadata products are highly relevant in LSH and hydrological modelling. The extensive
metadata records, streamflow indices and catchment boundaries are used as input to
other important datasets such as HYSETS [ABM+22].

3.1.5 E-HYPE

European Hydrological Predictions for the Environment (E-HYPE) is based on the
semi-distributed, process-based hydrological model “HYPE” proposed by Lindström et
al. in 2010 and incorporates data from open and freely available sources [LPR+10]. For
instance, EWA has been integrated into E-HYPE. This model is calibrated on European
data; when applied only for Europe it is called E-HYPE. Version 2.1 of this dataset
includes information on more than 35.000 sub-basins across Europe with a median size
of 214 km2. The dataset includes 18 variables concerning meteorological, snow, soil,
hydrological and nutrient concentration data. At the moment, the daily historical data
from 1989 to the present day can be acquired for 4.000€ from the Swedish Meteorological
and Hydrological Institute7 [DAA16, KAHW17]. This is a rare example of an LSH
dataset where the acquisition or usage of the data is associated with cost.

3.1.6 HYSETS

The collection Hydrometeorological Sandbox - École de technologie supérieure (HYSETS)
covers 14.425 watersheds in North America (Canada, Mexico, contiguous United States) in
the period from 1950 to 2018. This dataset is one of the most comprehensive collections
of hydrologically and meteorologically important data on a continental scale. Daily
precipitation aggregates are compiled from seven data sources, discharge time series from
one source per country, snow water equivalent is taken from ERA5 and SNODAS, and
catchment characteristics are provided from an additional source with information on
watershed area, elevation slope, land use, soil properties. The authors plan to update the
database with the emergence of new datasets. The code to generate attributes is available
upon request to the authors. A major advantage of this collection is the incorporation of
a large set of catchment attributes. HYSETS is provided by the Open Science Framework
repository8 [ABM+22].

6https://doi.pangaea.de/10.1594/PANGAEA.887477
7https://hypeweb.smhi.se/water-services/data-delivery-services/

standard-historical-e-hype/
8https://osf.io/rpc3w/
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3.1.7 LamaH
Large-Sample Data for Hydrology and Environmental Sciences for Central Europe
(LamaH)9 consists of 859 gauged catchments in an area of 170.000 km2 in nine countries
in Central Europe. It applies a very similar structure to the data compared to the
CAMELS collection. More than 60 attributes were compiled in this dataset that describe
catchments in detail with information on (river) topography, climate indices, land cover.
LamaH is one of the first datasets specifically designed for the purpose of LSH. The data
is available from 1981 to 2017 and the time series data is forced using the ERA5-Land
forcings. The authors explicitly refer to the suggestions brought up by Addor in their
landmark LSH meta-analysis paper from 2019 [ADAG+20, KSH21]. LamaH is freely
available in a versioned state with a permissive license10.

A novelty of the LamaH dataset is the inclusion of basin delineations describing inter-
catchment areas of neighbouring gauging stations. This additional topographic classifica-
tion allows for the simulation of local runoff generation in a river network. Furthermore,
the temporal resolution of daily and hourly hydrometeorological time series data is a
distinctive feature of LamaH. Few other datasets provide data at hourly resolution,
although data of this granularity is critical to the reliability of results from simulations
of processes that involve changing patterns over the course of a day [KSH21].

LamaH was incorporated into the Caravan collection to meet the standards of LSH in
that the data should be consistent with and its continental, region-specific data should
augment other state-of-the-art datasets. Central Europe is a climatically volatile region
where the effects of climate change are clearly perceptible. For this reason as well as
the good coverage of high-quality gauges, the highly granular temporal resolution, the
high amount of catchment characteristics and the novel basin delineation make LamaH
a fitting candidate for rainfall-runoff experiments in this work. Chapter 3 includes a
thorough description of the study area, the variables at hand and the further course of
data handling.

3.1.8 Caravan
Caravan is the first major global data collection specifically developed for LSH and was
introduced by Kratzert et al. in 2023. It is a collection of consistent, region-specific
datasets that conform to a standardised format, are publicly available in a versioned
state11 with a permissive licence, and can be accessed and extended by the community.
Caravan currently combines HYSETS, CAMELS, and LamaH and contains observations
from 6830 basins in 14 countries on four continents. The described catchments cover
almost all of the 18 climate zones represented in Global Environmental Stratification
(GEnS) (arctic, extremely cold and arid regions are not yet available at the time of this
work) [MBJ+13]. The collection provides daily data spanning four decades from 1981 to

9Please note that the additional suffix “CE” for “Central Europe” is omitted in this work.
10https://zenodo.org/record/5153305
11https://zenodo.org/record/7944025
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2020. Basins between 93 and 2000 km2 were selected. Meteorological forcing data was
applied from ERA5-Land [MnSDAP+21]. The authors accompany the data collection
with an extensive open-source code repository that facilitates the addition of further
LSH datasets, contains the scripts used to derive all the current data and serves as a
community hub for issues, extensions and contributions12.

Seven region-specific datasets are combined in Caravan and provided as separate but
combinable sets in the following distribution of basins:

• 4621 basins from HYSETS

• 482 basins from CAMELS-US

• 479 basins from LamaH-CE

• 408 basins from CAMELS-GB

• 376 basins from CAMELS-BR

• 314 basins from CAMELS-CL

• 150 basins from CAMELS-AUS

Figure 3.1 shows the distribution of catchments provided in Caravan across the globe as
well as their distribution over the GEnS climate zones. It is obvious that the majority
of catchments are taken from the HYSETS dataset which covers North America. Most
catchments lie in cold and mesic, cool and moist, warm and mesic, cold and dry, and hot
and dry areas.

Requirements for dataset selection were (i) the inclusion of catchment boundaries for each
streamflow gauge, and (ii) a permissive license to allow redistribution. In Section 3.2, the
study area and the variables of LamaH as the candidate LSH dataset for experiments
in this work is described. Here, the version included in Caravan will be used to comply
with the aim for consistency across hydrological experiments.

The authors account for the vision for LSH proposed by Addor et al. in 2019 by providing
data that is standardised at the global scale, publicly available with an open license and
extensible by open-source software as well as ready for the cloud [ADAG+20, KNA+23].

3.1.9 FutureStreams
FutureStreams is a representative of a different approach to datasets in LSH. The authors
present a projection of future streamflow and water temperature estimates for varying
climatic conditions up to the year 2099 including past data going back to 1976. Four
different greenhouse gas emission scenarios are included for climate comparison. The

12https://github.com/kratzert/Caravan/
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Figure 3.1: Top: Global distribution of catchments included in Caravan. Bottom:
Distribution of catchments among the GEnS climate zones (the bottom part shows the
fraction of a particular climate zone on the total land mass) [KNA+23].

streamflow and water temperature data is provided in a weekly aggregation. The authors
use a spatial resolution of 5 arc minutes to generate data on a global scale. Additionally,
ecologically and bioclimatically relevant indicators are given that are derived from
streamflow and water temperature records. This dataset was developed specifically as
a tool to simulate threats to freshwater systems arising from climate change, focusing
on water temperature and biodiversity at a larger scale. The hydrological model PCR-
GLOBWB coupled to the dynamical water temperature model DynWat were used
to generate the future projections in this dataset. The authors provide a repository
containing the code to generate all derived variables, and the dataset is freely retrievable
from Utrecht University13 [BWB+22].

3.1.10 Other Notable Datasets

FLUXNET2015 is a dataset at the ecosystem level specifically concerned with the
exchange of CO2, water and energy between the biosphere and the atmosphere. The
data is provided for 212 individually operated site across the globe and processed in a

13https://public.yoda.uu.nl/geo/UU01/T7TVTQ.html

39



3. Large-Sample Hydrology and Data Overview

standardised way. The period of offered data varies per site with most sites available for
more than 20 years up to 2014. FLUXNET2015 introduces supplementary data products,
including gap-filled time series, estimations of ecosystem respiration and photosynthetic
uptake, uncertainty assessments, and measurement metadata. This dataset has already
been used for various applications such as ecophysiology and remote sensing studies as
well as for the development of ecosystem and Earth system models. The data as well as
the standardised pre-processing pipeline can be retrieved under the Creative Commons
license14 [PTC+20].

3.1.11 Summary

Table 3.1 summarises the characteristics of the most common state-of-the-art datasets
and data collections in LSH. The majority of these datasets is specifically concerned
with streamflow records emphasising the importance of this information in hydrological
modelling. The variability in the temporal and spatial resolution, the national, continental
or global scale, the number of catchments covered, the variables provided and the
attributes used to describe the catchments is high across all investigated datasets and
collections. In summary, the key suggestions proposed by Addor et al. for Large-Sample
Hydrology (LSH) have yet to be implemented at a large scale. The gradual integration
of these proposals into existing, ubiquitously used, state-of-the-art LSH datasets is
particularly important as a supplement to the development of new datasets such as
Caravan, which already adhere to these standards. This should allow existing large-scale
applications that depend on known data sets to seamlessly integrate the latest data
standards and adopt requirements for availability, transparency, reproducibility and
generalisability. Caravan currently represents the most recent and comprehensive data
collection in the field. The large number of globally consistent catchment attributes, the
standardised format of hydrometeorological time series with a highly granular temporal
resolution provided by high quality monitoring stations in climatically volatile regions,
and the approach of providing data in an extensible, available and open source manner
makes it a cornerstone of LSH on which future datasets should be built.

The comprehensive state-of-the-art research on LSH in Section 3.1, and the general quality
of datasets specifically developed and used for hydrological modelling with physically
based models and DL leads to important conclusions concerning the appropriate dataset
to use in the modelling experiments conducted in this work.

The dataset of choice is LamaH by Klingler et al. in the version contained in the
Caravan collection [KSH21, KNA+23]. Caravan is used in version 1.2 released on 17
May 2023. The dataset is accessible on Zenodo in a citable form that is frequently
updated and versioned15. Major advantages of the Caravan collection are that it is
open-source, consistent and extensible by design. As a data engineer working with large-
sample datasets in the domain of hydrology, these characteristics are crucial to create

14https://fluxnet.org/data/fluxnet2015-dataset/
15Source: https://zenodo.org/records/7944025
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Dataset Catchments Location Hydrological
variables

Catchment at-
tributes

MOPEX 438 United
States

P, T, PE, Q Topography, land
cover, soil, climatic
indices

CANOPEX 698 Canada P, T, PE, Q /
CAMELS few hundred each US, BRA,

CHN, CHL,
GBR, AUS,
FRA, SUI

P, T, PE, Q Topography, climatic
indices, hydrological
signatures, land cover,
soil, geology, water use

GRDB 10.702 Global Q /
EWA 3.731 Europe Q /
GSIM 35.002 Global Q Topography, land

cover, geology, ir-
rigation, human
population, soil

E-HYPE 35.447 Europe P, T, Q, SWE Topography, hydrolog-
ical signatures, land
cover, geology, soil, cli-
matic indices

HYSETS 14.425 North
America

P, T, Q, SWE Topography, land use,
soil

LamaH 859 Central Eu-
rope

P, T, PE, Q Topography, climatic
indices, land cover,
vegetation, soil, geol-
ogy, anthropogenic im-
pact

Caravan 3.830 Global P, T, PE, Q Topography, climatic
indices, land cover,
vegetation, soil, geol-
ogy, anthropogenic im-
pact

FutureStreams 5’ global grid Global (fu-
ture projec-
tions)

T (Water), Q /

Table 3.1: Summary of the predominant datasets in Large-Sample Hydrology (LSH)
[ADAG+20].
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interpretable, reproducible, and transferable model experiments and results. Caravan is a
landmark data collection that accounts for these requirements and provides high-quality,
state-of-the-art datasets in a consistent format, covering very diverse areas across the
world over reasonably long periods of time. This allows for comprehensive and informative
experiments, including climate change research in the field of hydrology.

The choice of LamaH is motivated by the fact that the effects of climate change are
drastically evident in this region. According to the European Environment Agency,
there is a stark increase in extreme weather events in Europe due to human-induced
climate change. A decrease in summer rainfall and severe weather events, such as heavy
precipitation, river floods, droughts and fire, are to be expected for Central Europe.
At the same time, a reduction in snowfall is predicted. This makes Central Europe a
very interesting area to study. The organisation further states that the availability of
high-quality data is essential in the assessment of how climate change will affect Europe,
conforming to the requirements of LSH [EEA23].

It should be noted that there are differences between the originally published LamaH
dataset and the version used in Caravan. These differences are due to the constraints
imposed by the Caravan collection on all its datasets to ensure consistency.

3.2 Description of the Study Area
LamaH features a total area of approximately 170,000 km2 across nine countries in Central
Europe: Austria, Germany, Czech Republic, Switzerland, Slovakia, Italy, Liechtenstein,
Slovenia and Hungary. The main focus of the domain of coverage lies on the upper
Danube area close to the Austrian-Slovakian border, its tributaries and various other
catchment areas and adjacent upstream areas in Austria and its bordering countries.
The Danube is the most prominent river and the catchments of its major tributaries
divide the study area into 18 distinct river regions. These regions are depicted Figure 3.2,
which also shows the runoff gauges along with their elevations. All of these catchment
areas except for numbers 1 and 11 belong to the greater Danube catchment area. The
water labelled as “Danube B” originates from regions outside the project area in Hungary
or Croatia. The first river region includes the upper catchments of the Rhine up to
Lake Constance. The eleventh region covers the Austrian catchment area of the Vltava
(Moldau), which is the largest tributary of the Elbe [KSH21].

The largest river regions represented in LamaH are the Danube, Inn, Morava, Drava,
Mur, Rhine, Salzach and Enns.

At present, the time period provided in the LamaH edition of Caravan spans from 2
January 1981 to 31 December 2020. The dataset offers information collected from 479
gauging stations from five countries: 307 from Austria, 120 from Germany, 35 from
the Czech Republic, 16 from Switzerland and 1 from Liechtenstein. The difference to
the 882 gauges in the originally published version of LamaH (refer to [KSH21]) is due
to the limitation of Caravan to only include catchments between 100 and 2,000 km2
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Figure 3.2: Overview of the domain of coverage of LamaH (in the original version). The
discharge gauges are represented on the map as circles, with the size indicating the size
of the catchment area and the colour indicating the elevation of the station. Numbers
denote the 18 distinct river regions. Taken from [KSH21].

[KNA+23]. The mean catchment area is 452 km2. Figure 3.3 illustrates the distribution
of catchment areas by country, with the exception of Liechtenstein due to its sample size
of one. Austrian catchments tend to be smaller in size and exhibit many outliers while
those in the Czech Republic are larger and have a wide range of variability.

The average elevation is 975 metres above sea-level. The highest measuring point, situated
at 2,605 metres, is the Ötztaler Ache, a tributary of the Inn in Tyrol, and the lowest,
at 190 metres, is Rußbach in Lower Austria. This results in a maximum difference in
altitude of 2,415 metres. The mean precipitation per day is around 3.4 mm. The highest
recorded rainfall amount in a single day is 132.64 mm, which occurred in August of 2002
at the river Krems, a tributary of the Traun in Upper Austria, during a major flooding
event that only occurs once every 50 to 100 years and affected considerable areas of
Austria [FMoAM23]. The maximum amount of streamflow recorded was 112.1 mm at
the stream Ostrach, a tributary of the Danube, in Baden-Württemberg, Germany, in
May of 1999. This record also coincided with a major flooding event. On average, the
gauging stations measure 1.78 mm of streamflow per day. The highest snow depth water
equivalent (SWE) recorded was 2,62 metres also at Ötztaler Ache. The highest mean
wind speeds recorded on a daily basis at a height of 10 meters are 8.92 m/s in an easterly
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Figure 3.3: Distribution of catchment areas by country (excluding Liechtenstein).

direction, 6.48 m/s in a westerly direction, 7.76 m/s in a northerly direction, and 8.29
m/s in a southerly direction. The mean wind velocity, however, is negligibly low. The
average temperature throughout the entire study region is 6.11 °C, ranging from -30.51
°C to +30.83 °C. The temperature variation of more than 60 °C indicates the extremely
diverse climatic conditions prevailing in the study area.

3.3 Data Description

The open-source state-of-the-art LSH dataset Caravan includes both meteorological and
hydrological time series attributes as well as a large number of static catchment attributes
that allow for a holistic representation of the heterogeneous processes in hydrology
[KNA+23]. Because of the diverse set of standardised variables for different climates
available in this collection, it was chosen to conduct experiments in this work in the
hope of providing initial results on which future research can be based. Caravan offers
14 distinct time series attributes, 56 distinct catchment attributes, and ten (also static)
climate indices. The total number of aggregated static features is 206.

3.3.1 Time Series Attributes

Meteorological forcing data for the time series attributes are derived from the ERA5-Land
reanalysis dataset [MnSDAP+21]. The authors of Caravan name global coverage, spatial
consistency, sub-daily resolution, availability in the cloud, and the permissive license
as reasons why this dataset was chosen. In addition to the meteorological forcing data,
attributes for soil moisture and snow states are also taken from ERA5-Land. These
hydrological reference model states are in themselves already modelled as they are
originally taken from different reanalyses [MnSDAP+21, KNA+23]. It is important to
note that streamflow data is given in mm per day and normalised by catchment area.
In total, Caravan presents 14 distinct time series attributes (nine from meteorological
forcings, five from model states). As all variables except precipitation and potential
evaporation are offered aggregated by daily minimum, maximum, and mean, the total
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Attribute Description Daily agg. Unit

M

total_precipitation Precipitation sum mm/day
potential_evaporation Potential evaporation sum mm/day
temperature_2m Air temperature min/max/mean °C
streamflow Observed streamflow min/max/mean mm/day
surface_net_solar_radiation Shortwave radiation min/max/mean Wm−2

surface_net_thermal_radiation Surface net thermal radiation min/max/mean Wm−2

surface_pressure Surface pressure min/max/mean kPa
u_component_of_wind_10m Eastward wind component min/max/mean m/s
v_component_of_wind_10m Northward wind component min/max/mean m/s

H

snow_depth_water_equivalent Snow water equivalent min/max/mean mm
volumetric_soil_water_layer_1 Soil water volume 0-7 cm min/max/mean m3/m3

volumetric_soil_water_layer_2 Soil water volume 7-28 cm min/max/mean m3/m3

volumetric_soil_water_layer_3 Soil water volume 28-100 cm min/max/mean m3/m3

volumetric_soil_water_layer_4 Soil water volume 100-289 cm min/max/mean m3/m3

Table 3.2: Description of the time series attributes derived from ERA5-Land that are
included in the Caravan dataset; largely taken from [KNA+23].

number of time series features is 39. Combining all 479 catchments for the available time
period from 1981 to 2020 results in a total of 6,997,711 samples.

Table 3.2 shows the two groups of time series attributes included in the Caravan collection:
meteorological forcings and hydrological model states. The groups are denoted as M for
the meteorological forcings attributes and H for the hydrological reference model states.
Each observation of the time series is given in the local time of the respective basin. The
variables are computed as the area-weighted spatial average with a spatial resolution of
around 9 km.

3.3.2 Static Catchments Attributes

The static, catchment-specific variables are primarily derived from HydroATLAS, a
standardised database that contains descriptive hydro-ecological attributes for catchments
around the world at high spatial resolution utilising polygons of sub-basins and river
reach lines. The authors chose HydroATLAS due to its coverage of globally distributed
catchments and permissive license. The variables are divided into six groups making up
a total of 56 distinct attributes: hydrology (10), physiography (3), climate (9), land cover
(16), soils and geology (8), and anthropogenic (8). Some of the attributes are given in
several aggregations such as the monthly or annual mean to provide more information.
The sharpest spatial resolution is used for the derived HydroATLAS attributes in Caravan
(level 12 polygons). The combination of attributes and aggregation types results in a
total of 196 variables [LLOD+19, KNA+23].

Additionally, the authors of Caravan provide further climate indices that were derived
from the ERA5-Land time series data. These additional 10 distinct attributes contain
information on precipitation including trends of high/low precipitation days, poten-
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tial evaporation, aridity, moisture, and a seasonality index expressing changes in the
water/energy budget [MnSDAP+21, KNA+23].

In combination, these 212 static attributes (including descriptive information and meta-
data) are ideally suited to be fed into a Deep Learning model as additional static input,
as Kratzert et al. suggest [KKS+19]. Appendix A includes detailed information on
the static catchment attributes from Caravan alongside their variable names, types of
aggregation and units. Table A.2 summarises the 56 distinct static catchment attributes
from HydroATLAS alongside the types of aggregation and unit. The six groups are
denoted as H for hydrology, P for physiography, LC for land cover, S&G for soils and
geology, and A for anthropogenic. Table A.1 shows the ten climate indices that are
derived from the ERA5-Land time series.

3.3.3 Metadata
The metadata of the covered catchments include the latitude and longitude coordinates
of the gauge as well as its name and the country. In addition, the catchment area is
stated in km2. Each basin is described by a unique identifier gauge_id, which is present
for both the static and time series attributes to allow for consistent linking to the basin.

3.4 Data Analysis
The study area presented in the Caravan version of LamaH covers six of the 18 GEnS
climate zones. Overall, the prevailing climate in the examined area of Central Europe is
cold to varying degrees and varies between mesic, wet, moist and dry. Figure 3.4 shows
the distribution of the GEnS zones as well as their area among the catchments in the
domain. The vast majority of the area is made up by the cold and mesic zone with
59.6%. The second most common climate zone is cool temperate and dry, which spans
large parts of the northern, north-eastern and eastern parts of the study area and covers
21.3%. The extremely cold and wet zone only applies to a single high-altitude catchment
in Tyrol, Austria. Only two distinct terrestrial biomes are present in the examined area.
The northern part of the area belongs to temperate broadleaf and mixed forests and the
southern part to temperate conifer forests; both biomes account for about 50% each
[DOJ+17].

The Budyko curve depicted in Figure 3.5 provides important insights into the climatic
budget of a catchment [Bud74]. The scatter plot displays the aridity index, which is
the potential evapotranspiration (PE) divided by precipitation (P ), on the x-axis and
the evaporative index, i.e. the ratio of actual evapotranspiration (Et) to precipitation
(P ), on the y-axis. Furthermore, the catchments are categorised according to the mean
elevation above sea level; colour provides an indication of this. In addition, the size
of the catchment is displayed proportionally in km2. These two indices have a clear
polynomial correlation. There is also a distinct separation between high and low altitude
catchments. All the catchment areas at higher altitudes (above 1000m above sea level)
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Figure 3.4: (a) Distribution of the catchment areas across the GEnS climate zones includ-
ing the percentage of the overall catchment area covered in LamaH. (b) Geographical
distribution of the GEnS climate zones across the study area.

have a low index of aridity as well as a low index of evaporation. This analysis suggests
that catchments located at higher elevations generally have a greater water supply than
that lost through evapotranspiration due to their location in wetter climates. In contrast,
catchments at lower elevations are drier and limited by water availability. No correlation
between size and elevation of the catchments can be found.

The actual Budyko curve is derived from the formula stated in equation 3.1.

Budyko =
�

ΦP tanh
� 1

ΦP

�
(1 − exp(−ΦP ))

with Aridity index ΦP = PE

P

(3.1)
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All of the available catchments lie above the Budyko curve indicating that the water
systems of the study area tend to experience higher Et relative to precipitation and
PE. In other words, the catchments are effectively utilising a significant amount of the
available moisture in the system for evapotranspiration. At the same time, almost all
catchments have an aridity index smaller than 1.0, which indicates that the systems
receive more precipitation relative to their PE. Therefore, the catchments are located
in regions where more moisture is present than is lost through evapotranspiration, even
though they consume a significant amount of available water. This suggests a humid
to sub-humid climate, which aligns with the predominantly mesic to wet GEnS climate
zones represented in the study area. There is notable variability in the local climate that
may support the hydrological conditions within the region covered by LamaH.

Figure 3.5: The Budyko curve is displayed for all 479 catchments in this study. It plots the
aridity index (PE/P ) against the evaporative index (Et/P ), with point size proportional
to the catchment area, and point colour indicating the mean average elevation of the
catchments. The Budyko curve is represented by the dashed line [Bud74].

The observation that most catchments have an aridity index below 1.0, but are consis-
tently plotted above the Budyko curve, suggests an interesting hydrological pattern. The
catchments appear to use water efficiently, meeting both evaporation and transpiration
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Figure 3.6: Geographical distribution of key hydrological measures, including precipitation
(P ), potential evaporation (PE), air temperature (T ) and streamflow (Q), across the
study area. The base layer of the map reflects the topography of the domain. The
colour of the points represents the intensity of the respective measure, while their size
corresponds to the catchment elevation. Four metrics are presented: (a) average daily
precipitation (mm/day), (b) average daily potential evaporation (mm/day), (c) average
daily air temperature calculated at 2 meters (°C), and (d) average daily streamflow
(mm/day) normalised with respect to the catchment area.

needs adequately. This hydrological efficiency may be due to vegetation, soil characteris-
tics, or topography in the study area that promotes water retention and utilisation. Water
management in the area appears to be relatively sustainable. Another conclusion that can
be drawn from the diagram is that the runoff is rather low because most of the moisture
is absorbed by the soil, used up by the vegetation or lost through evapotranspiration.
This interpretation is to be confirmed by the experiment in this study. Furthermore,
most of the catchments are plotted to the left of the energy-water boundary (shown as
the dashed black vertical line in Figure 3.5). This indicates that most of the catchments
are limited by energy rather than water, further supporting the interpretation of efficient
water use in the system.

Figure 3.6 displays the geographical distribution of the key hydrological metrics P , PE,
T and Q across the LamaH study area. The size of the points corresponds to the elevation
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of the respective catchment, while their colour indicates the intensity of the respective
measure. The numbers are compiled as daily averages over the whole study period. In
general, the observations line up with the geography and topography of the domain of
coverage. The predominant physical feature of the area comprises the Alps, specifically
the Eastern, Central, and Limestone Alps located in Austria. These are accompanied
by the foothills of the Alps. The considerable differences in altitude and temperature
in the study area are mainly due to these characteristics. Other significant geographic
and topographic features of the study region include the Danube and Rhine rivers, the
Vienna Basin and the Pannonian Lowlands, the Schwarzwald in southern Germany, the
Czech Highlands and Bohemian Massif, along with the Moravian Karst, Lake Constance,
Swiss Plateaus, and the foothills of the Jura Mountains.
There are clear trends in the investigated metrics. As demonstrated in Figure 3.6a,
catchments situated at higher altitudes receive considerably more rainfall than those in
low-lying areas. The mean air temperature naturally aligns with the topography and
elevation, with higher temperatures at lower altitudes and much lower temperatures at
higher altitudes in the Alps, as shown in Figure 3.6c. As anticipated, there exist positive
and negative linear relationships between both precipitation as well as temperature and
elevation, respectively.
Figure 3.6b reveals a more varied pattern for streamflow than for the other metrics.
PE is generally low for regions at high altitude as well as the lowlands and higher
for mid-elevation catchments. The areas experiencing the highest amounts of PE
(PE > 7mm/day, i.e. the 90% quantile) are situated in the Central Eastern Alps
(specifically the Lavanttal Alps in Carinthia), the North Tyrol Limestone Alps and the
Bayerischer Wald; they are located at moderate altitudes with a mean elevation of 1,148
metres. The geographical distribution of streamflow values is heterogeneous across the
domain.
A key finding from Figure 3.6 is that many regions located at high altitudes with high
precipitation values at the same time experience low evaporation. This is in agreement
with the observation that water seems to be used efficiently in most systems of the study
area and catchments are limited by energy. Figure 3.7a provides more insight into this
matter by visualising the difference between P and PE. Catchments in the Schwarzwald,
the Western Rhaetian Alps in Italy and Switzerland, Vorarlberg, Kaunertal, Ötztaler
Alps through Osttirol and Gailtaler Alps in Carinthia, along with a few catchments in the
Salzkammergut in Salzburg and Upper Austria, show water surplus whereby the system
retains more moisture than lost through evaporation. These catchments are typically at
higher altitudes, of smaller size and experience far less energy from radiation compared
to precipitation through rain or snow. They are thus limited by energy to a high degree.
The majority of catchments in the remaining study area show small negative values,
signifying insignificant water limitations.
However, significant differences exist between these regions and catchments in Central
Austria, the Northern Limestone Alps, the Vienna Basin, and certain basins in the
Schwarzwald and Bayerischer Wald in Southern Germany. These areas exhibit signs
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Figure 3.7: (a) Difference in mean daily precipitation and potential evaporation in
mm/day. (b) Difference in mean daily precipitation and streamflow in mm/day.

of water scarcity. The mountain ranges Niedere Tauern as well as the Lavanttaler and
Gurktaler Alps in Austria experience especially drastic differences in precipitation and
potential evaporation, which is confirmed by the high aridity index in these regions.

Figure 3.7b displays the difference in P and Q. The dominant pattern is that more
precipitation is measured than runoff. This is to be expected due to the principles
of the hydrological cycle as water is typically subject to losses through processes like
evaporation, transpiration, infiltration into the soil, percolation into groundwater, which
contribute to baseflow. Water storage mechanisms further influence the timing of runoff.
Streamflow typically operates with reduced water quantities due to losses and a delayed
timing. Two anomalies experiencing greater streamflow than precipitation are situated in
the Rhine Valley in eastern Switzerland and the Hohe Tauern in Salzburg and Osttirol.
Notably, these anomalies are encompassed by watersheds with greater Q than P .

Throughout the study region, the average disparities in rainfall (P ) and potential
evapotranspiration (PE) as well as rainfall (P ) and streamflow (Q) are moderately
small, with values of -1.34 mm/day and 1.67 mm/day, respectively. Although varying
topography results in noticeable regional and local differences in these relationships, these
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findings confirm the generally efficient use of water in the system as a whole.

Caravan provides a seasonality attribute that shows the extent to which a catchment
experiences variations in its water-energy-budget over the course of a year. The feature is
represented by an index range of 0 to 2. The region generally undergoes a mild transition
from drier to wetter seasons, with an average index of 1.13. The catchments located in the
northernmost part of Germany (Bayerischer Wald) and the Czech Republic experience
the most marked changes from arid to wet. The water and energy budget see the fewest
changes in the Vienna Basin, as well as the Gurktaler and Lavanttaler Alps located in
southern Austria.

Between 1993 and 2009, the human footprint index increased by 3.37%, signifying the
progress of anthropogenic impact on the study region. The greatest increase took place
in the southern and south-western parts of the domain, with southern Tyrol and eastern
Switzerland experiencing the most significant gains.

Analysis of Exemplary Catchments

Time series data is the core of the provided information in the Caravan collection. The
hydrological data spans 39 years at daily temporal resolution in 14 attributes. The
time series data, alongside the catchments’ static attributes, are the main input to the
hydrological models used in the experiments to predict the relationship between rainfall
and runoff in further stages of this thesis. To examine and visualise these important data
as part of a comprehensive data analysis process, it is useful to first select exemplary
catchments that are capable of providing information that can be generalised to the
entire study region.

To this end, the z-score
�
z = X−µ

σ

�
is calculated for each variable of the static catchment

attributes (see Section 3.3.2). The mean absolute z-score is then calculated for each
catchment to indicate the tendency to deviate from the standard behaviour of the study
area. The calculations exclude 23 columns that contain only zero values, which relate to
variables concerning land cover, natural vegetation, and wetland extents. The catchments
with the highest and lowest mean absolute z-scores are chosen as candidate catchments
for subsequent analysis. A higher score suggests that the catchment records notably
large or small values, resulting in the most deviance from the other examined regions.
Conversely, a lower score indicates that the catchment is a representative candidate of
the entire study area, with attributes closest to the overall mean values.

The catchment area with the greatest mean absolute z-score is located in Pontresina,
specifically in the Berninabach region, covering an area of 106.8 km2, with an elevation of
2,575 metres above sea-level in the Rhaetian Alps of eastern Switzerland. This catchment
has the highest negative deviation in the variables describing Et, with the month of May
typically experiencing the most drastic deficit in actual evapotranspiration. On the other
hand, the most significant positive deviation is observed in the attributes related to snow
cover extent during the months of July and August (variables explaining spatial means
of land cover and potential natural vegetation for specific classes are excluded). This
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result is in accordance with the notably high-altitude position of the catchment, which is
located just 30 metres below the point of maximum elevation in the research area. In
most catchments there is no snow cover during the summer months. However, in this
high altitude catchment in the Swiss Alps, where the average air temperature is below
freezing (-2.76 °C), there is a considerable amount of snowfall and the snow cover is
maintained throughout the summer.

Although the catchment area with the lowest mean absolute z-score is the Schwarza at
Loipersbach in the Lower Austrian Prealps, it cannot serve as a candidate catchment due
to missing streamflow records between 1991 and 1993. Therefore, the catchment with the
second lowest score is chosen, which is the Schwarza at Gloggnitz, which is only 14.5 km
from Loipersbach. The basin covers an area of 469.5 km2 and is located at an elevation
of 954 metres. This catchment area aligns most closely with the average of those studied
in the area.

Figure 3.8 displays the rainfall and streamflow records as monthly averages for the
whole 39-year period in the data for both exemplary catchments. The high-deviation
catchment Berninabach at Pontresina experiences far more precipitation and streamflow
than the low-deviation catchment Schwarza at Gloggnitz. Although both catchments
receive similar amounts of precipitation, with a consistent pattern of minima and maxima
throughout the year, there is a noticeable anomaly in the highly deviating catchment,
which has a much higher frequency of extreme peaks, exceeding 10 mm/day on several
occasions. In terms of both amplitude and frequency, the peaks tend to be more constant
for the low deviation catchment. The difference in magnitude for both catchments is
especially drastic for the streamflow records. On average, the Berninabach experiences
more than twice the flow of the Schwarza. Peakflow is significantly more pronounced,
and the curve’s shape is relatively homogeneous for the high-deviation catchment. The
periods of baseflow are also clearly distinguishable. It is evident that there is a consistent
hydrological pattern in each year for the Berninabach. When comparing the peaks of
precipitation with those in the streamflow records, a clear time delay can be observed
between intense rainfall events and the peakflow. Shape and intensity of streamflow for
the Schwarza are heterogeneous and do not reveal any clear patterns. The high-deviation
catchment experiences comparable levels of rainfall and streamflow, whereas the low-
deviation catchment receives over twice the amount of precipitation in comparison to
streamflow.

The hydrographs of both catchments, shown in Figure 3.9, reveals the drastic difference
in streamflow records for both exemplary catchments. The hydrographs are obtained
by calculating the mean streamflow for each day of the calendar year with reference
to all 39 years of data (the hydrological year is not used here as it is easier to visually
discern the usual pattern of the hydrograph throughout the normal calendar year). The
Berninabach shows a typical hydrograph pattern. An initial period of baseflow during
the winter, when most precipitation falls down as snow and ice and the temperature is
constantly below freezing, is succeeded by gradually increasing streamflow with rising
temperature and the onset of the springtime period of snowmelt. Between June and
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Figure 3.8: Rainfall and streamflow records over the whole period covered in Caravan for
the two selected exemplary catchments. Daily records from each month were averaged
and are displayed as a blue line for precipitation on the left y-axis and as a green inverted
line for streamflow on the right y-axis. (a) The measurements for the high-deviation
catchment Berninabach at Pontresina, Switzerland. (b) The measurements for the
low-deviation catchment Schwarza at Gloggnitz, Austria.
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Figure 3.9: The hydrographs showing the mean daily streamflow records averaged over
the entire 39-year period covered in Caravan for the two selected exemplary catchments.
The 7-day rolling average of streamflow records is depicted by the red line. (a) The
hydrograph for the high-deviation catchment Berninabach at Pontresina, Switzerland.
(b) The hydrograph for the low-deviation catchment Schwarza at Gloggnitz.

July, peakflow is reached and afterwards the measurements continue to decrease with
declining temperature in autumn. The characteristic pattern of the hydrograph as shown
in Figure 2.2 becomes even clearer when the 7-day rolling average (shown as the red line)
is considered. It is easy to distinguish between peak flow and base flow.

The hydrograph for the Schwarza catchment, however, differs significantly. Besides the
overall lower streamflow magnitude, no distinct seasonal variations can be observed and
there is only a slight increase in the spring compared to the rest of the year. Distinguishing
baseflow from peakflow is not possible. It is rare for there to be negligible variation in
streamflow volume throughout a year.

The substantial differences in rainfall and streamflow between the two analysed exemplary
catchments are likely due to their greatly contrasting topographical features. The presence
of large volumes of snow during winter (but also throughout the year) in the significantly
higher elevated Rhaetian Alps leads to a pronounced snowmelt effect during spring,
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which is not present for the Schwarza in the Lower Austrian Prealps. Glacial meltwater
can significantly influence streamflow patterns in alpine catchments. Additionally, the
consistently colder temperatures in the Rhaetian Alps likely contribute to the prolonged
winter baseflow and gradual snowmelt. While precipitation records are similar for both
catchments, distribution, magnitude, form and timing vary, which can impact streamflow
patterns. Moreover, the different geological composition of the area the catchments are
located in may affect the storage and release of water to a significant degree.

Trend Analysis

To investigate changes in the main hydrological variables and draw conclusions about
the presence and impact of climate change on the study area, the time series data can
be subject to trend analysis. Figure 3.10 shows the de-seasonalised trend in the average
yearly temperature for all 479 catchments across the whole study period. The observation
of trends in highly seasonal time series data is facilitated by the use of de-seasonalised
data, which contributes to the objectivity of the analysis. This is achieved by subtracting
the average value of the respective month from each observation. Equation 3.2 shows the
calculation of the de-seasonalised time series dt by subtracting the average temperature
T̄ in a specific period from the original time series yt. The periodicity function m(T, d)
takes an integer time index T and a periodicity d and calculates a filtered version of yt.
Only those observations that are the same month as input T are included determined by
the modulus of T and the index t.

dt = yt − T̄ [m(t, 12)]
where m(T, d) = yt {mod(T, d) == mod(t, d)} (3.2)

The trend of the de-seasonalised temperature data is clearly increasing. This is confirmed
by analysing the seasonal data in the bottom four sub-plots of Figure 3.10. While the
temperature in winter does not increase significantly and rather shows non-periodic
maxima and minima, the other three seasons experience a clear trend of warming over
the years. The observed increase is especially drastic in spring and summer. Therefore,
the observations of warming are in accordance with the de-seasonalised data.

Table 3.3 displays differences in key statistical metrics for hydrological variables, which
include temperature (T ), streamflow (Q), precipitation (P ), snow water equivalent
(SWE) and potential evaporation (PE), between the first five-year period (1981-1986)
and the last five-year period (2013-2018) for 479 catchments in the study area. The
reference date was 1st January. Despite the data covering three more years, streamflow
records are only available up to 2018. This analysis reveals noteworthy trends. The
mean temperature in the region increased significantly by 1.53°C, demonstrating a clear
trend of warming. Over time, there was an average decrease of -0.213 mm in streamflow
which suggests a decline in water flow. On average, precipitation increased slightly by
0.124 mm, potentially indicating a minor rise in rainfall, while the snowpack displayed
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Figure 3.10: Top: De-seasonalised mean yearly air temperature for all catchments.
Bottom: Seasonal mean yearly air temperature trends. Trends are indicated by red
dashed linear regression lines.

a significant decrease of -33.943 mm, indicating a decrease in snow accumulation. PE
increased by 0.423 mm, potentially linked to the rise in temperature.

Other trends were evident in the median values. The median temperature rose by
0.942°C, further suggesting a warming trend in the region. There was a decrease in
median streamflow by -0.224 mm, while median precipitation increased by 0.049 mm,
suggesting a possible rise in median rainfall and a simultaneous decrease in streamflow.
The median value of SWE showed a significant decline of -15.841 mm, also indicating
a reduction in snowpack. Meanwhile, the median value of potential evaporation also
increased.

While the standard deviation of temperature and streamflow decreased, indicating less
variability in these variables, an exception is precipitation, where the standard deviation
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Metric T (°C) Q (mm) P (mm) SWE (mm) PE (mm)
Mean 1.530 -0.213 0.124 -33.943 0.423
Median 0.942 -0.224 0.049 -15.841 0.279
Standard Deviation -0.443 -0.163 0.066 -34.946 0.377
Minimum 1.600 0.006 0.000 0.000 0.032
Maximum -0.313 -3.642 -14.364 -107.222 1.578
25th Percentile 1.916 -0.075 0.014 -0.979 0.021
75th Percentile 0.748 -0.400 0.159 -80.759 0.421

Table 3.3: Difference in key statistical metrics for hydrological variables (T , Q, P , SWE,
PE) between the first five years (1981-1986) and the last five years (2013 - 2018) with
complete records for 479 catchments in the study area.

increased, indicating more variability in rainfall patterns. SWE showed a significant
decrease in standard deviation, suggesting less variability in snow cover, likely influenced
by decreasing snow depth. Furthermore, the standard deviation of PE increased, reflecting
increased variability in evaporation that may be associated with changing temperature
patterns. Collectively, these trends highlight changes in the variability of key hydrological
parameters in Central Europe over the period analysed. This analysis provides valuable
insights into the changing hydrological conditions in Central Europe, with implications
for water resource management, flood prediction, and climate monitoring.

In order to statistically confirm the observed trends, an unmodified Mann-Kendall test
is performed for the variables P , Q, and T [Man45, HM19]. Figure 3.11 displays the
number of catchments with statistically significant (α = 0.05) trends based on monthly
averaged data. In summary, the majority of catchments show no trends in these variables.
Confirming the results of the exploratory trend analysis, precipitation and temperature
show a slightly increasing trend, with the latter variable showing a stronger tendency.
The trend analysis for streamflow is much more mixed, with 91 catchments showing a
decreasing trend and 58 showing an increasing trend. Interestingly, the 65 catchments
exhibiting an increasing trend in temperature are all located in the Austrian Alps. They
are scattered across Carinthia, Salzburg and (East) Tyrol.

A major conclusion from this trend analysis is that, as a data engineer, it would be
beneficial to have access to longer periods of complete data. Although the dataset at
hand is a pioneering example in LSH and provides high-quality data spanning 39 years,
naturally, it is important to note that climate trends take time to develop and may not
yet be discernible in the data. It is desirable to have access to high spatio-temporal
resolution data going back to the 19th century to study the impact of the industrial
revolution and the large subsequent increase in greenhouse gas emissions on the climate.
However, this can only be achieved as part of a major research effort, with particular
emphasis on the development of high-quality climate reanalysis techniques and databases.
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Figure 3.11: Number of statistically significant (α = 0.05) trends in mean air temperature,
precipitation, and streamflow for the 479 catchments in the study area over a 39-year
period. The data was averaged on a monthly basis and analysed using an unmodified
Mann-Kendall test.

Summary

The large number of available variables presents significant potential for conducting
further analyses into other aspects of the data. For instance, an investigation into the
implications of the geological composition of the study area on hydrological metrics or
exploring the effects of different types of vegetation on water use could be explored.

The study area in the Caravan version of LamaH is located in Central Europe, with a
focus on the greater Danube region as well as the Eastern Alps of Austria, Switzerland,
Germany and Italy. This region is characterised by a remarkable climatic diversity,
encompassing six GEnS climate zones ranging from cold to mesic, humid, wet and dry
conditions. In particular, the cold and mesic zone dominates, covering 59.6% of the
area. Within this diverse landscape, two primary terrestrial biomes emerge: temperate
broadleaf and mixed forests in the northern region, and temperate coniferous forests in
the southern part. These unique climatic and ecological characteristics make this area
an ideal candidate for hydrological experiments, particularly for assessing the potential
impacts of climate change on the relationship between rainfall and runoff.

The considerable hydrological efficiency of all the catchments in the study area is one
of the key findings of the analysis. Actual evapotranspiration (Et) consistently exceeds
precipitation (P ), indicating that the catchments are efficient users of available water.
Furthermore, most catchments have an aridity index below 1.0, indicating a humid to
sub-humid climate. This observation suggests that catchments in the region are generally
limited by energy rather than water availability, underlining the influence of topography
and climate on hydrological processes.

Exemplary catchments were selected on the basis of their deviations from the mean
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absolute z-scores in order to examine the hydrological patterns within this region more
closely. The hydrographs of these selected catchments, the Berninabach near Pontresina
and the Schwarza near Gloggnitz, show striking differences. The Berninabach shows
distinct seasonal variations in discharge, characterised by baseflow in winter and a
pronounced snowmelt effect in spring. In contrast, the Schwarza has a much lower
flow with no discernible seasonal pattern. These significant differences in precipitation
and streamflow can be attributed to distinct topographical features, including elevation,
snowfall patterns and geological composition. This stark contrast between the sample
catchments highlights the key role of topography in shaping hydrological patterns within
this diverse study area.

The trend analysis showed interesting patterns. The analysis of de-seasonalised annual
temperature data shows a clear warming trend across all catchments, particularly in spring
and summer. Similarly, important statistical metrics for hydrological variables, including
temperature, streamflow, precipitation, snow cover and potential evaporation, indicate
significant changes. Temperature has increased considerably, while streamflow and snow
cover have decreased. The variability in temperature and streamflow has decreased
over time, whereas precipitation variability has increased. The analysis underlines the
importance of longer data records to capture climate trends, and emphasises the need for
extensive spatio-temporal datasets to fully investigate the impacts of climate change.
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CHAPTER 4
Methodology

4.1 Data Preparation
Further investigation of the available data is required before it can serve as input to
any hydrological model. Data preparation is a crucial preliminary step in hydrological
modelling, regardless of the modelling approach employed. The presence of missing data,
outliers, and inconsistencies may produce a noticeable effect on the performance of the
model and the precision of its predictions. Its main purpose is to guarantee the reliability
and precision of the model’s results. By analysing the patterns of missing values and
subsequently handling them accordingly, the model possesses complete information to
operate with, which thereby reduces potential biases. Identifying and addressing outliers
is crucial in preventing these extreme values from disproportionately influencing model
results and promoting interpretability. Moreover, it is essential to encode and scale data
to harmonise variables with different units and scales, facilitating fair comparisons and
effective parameter estimation. Furthermore, DL models commonly require input data to
be of a specific format with correct scaling applied. Meticulous data preparation is essential
for improving the quality and robustness of hydrological models, regardless of whether
they are conceptual, physical, or utilising advanced DL techniques [ZGSG18, LR02].

4.1.1 Initial Analysis and Processing Steps
An initial analysis reveals that the static catchment attributes from HydroATLAS and
ERA5 as well as the descriptive information and metadata are complete and do not
contain any missing values in the 212 available variables. Since these values are taken
from well-maintained re-analysis sources, they can be considered to be reliable and do
not require outlier detection.

The time series data contain missing values only for the variable describing streamflow; all
other attributes are complete for all catchments throughout the period under consideration.
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The authors of Caravan recognise the potential occurrence of missing data in streamflow
records, and attribute this to the fact that the availability of data depends on the
local, regional or national organisations that collect the data from the respective gauges
[KNA+23]. 18.71% of the streamflow records are missing, equivalent to 0.46% of the
entire time series data.

Missing streamflow affects all 479 catchments. The missing records are typically dis-
tributed in sequences of varying length with an average duration of 29 days. Conversely,
the average length of sequences with successive streamflow values is only 27 days.

No streamflow data is available for the last three years of the study period (2 January
2018 to 31 December 2020) in any of the catchments. Therefore, it is impossible to
perform data imputation for this period. As a result, the time series data has to be
truncated from 2 January 2018, with the last three years being excluded. This step
reduces the data by 7.5%. The reason of missingness for this pattern is Missing Not At
Random (MNAR) as the missing records depend on the date of the observation [LR02].

Remarkably, although the catchments in the Czech Republic represent only 10.2% of the
area covered by the data, their missing streamflow records account for 39.8% of all missing
values. In addition, streamflow data for the Czech Republic are only available from 2004
onwards. Several catchments are missing data for later years as well. As a result, Czech
records are considered unreliable and cannot be imputed. The reconstruction of the
data would be too complex and beyond the scope of this work. The only viable option
is to exclude the 35 catchments from the Czech Republic due to the severely limited
streamflow records. This step further reduces the data by 7.3%. The records before 2004
are MNAR. The reason for the remaining missing records cannot be attributed to any
systematic relationship, and hence, it is assumed to be Missing Completely At Random
(MCAR) [LR02].

After implementing the data truncation and catchment exclusion steps for the observed
patterns, there is still a significant proportion of missing values in the remaining streamflow
data. The assumption that the missing data is MCAR is supported by Little’s MCAR
Test [Lit88]. Simply removing rows with missing values is not possible as it is necessary
to preserve continuous sequences of time series data. Therefore, Multiple Imputation
(MI) is employed in Section 4.1.3.

Various catchments still have excessive amounts of missing streamflow, which introduces
significant bias into the data when imputation is used. While Madley-Dowd et al. found
that it is possible to produce unbiased model results through imputation with data
containing proportions of missing values as high as 90%, it is still advisable to define a
reasonable cut-off [MDHTH19]. Thus, 12 catchments exceeding 75% of MCAR streamflow
data are excluded, reducing the data by a further 2.7%. These three steps preserve
83.43% of the original data in 432 of the 479 catchments and leave the rest for MI.

This analysis results in three initial steps to prune the data and account for missing
values in the streamflow variable before imputation:

62



4.1. Data Preparation

1. Truncate
The time series is truncated from 2 January 2018, thus shortening it by three years.

2. Exclude
All 35 catchments from the Czech Republic are excluded from the time series data
and the static attributes.

3. Cut-off
12 catchments exceeding 75% missing values are cut from the time series data and
the static attributes.

4.1.2 Data Splitting
With the data now in a pruned, but yet unmodified state, the data can now be split to
prepare for DSST. Sungmin O et al. defined climatically motivated reference periods
for model training to assess the robustness of rainfall-runoff models under changing
conditions in their landmark study from 2020. They chose the driest and wettest year
on average of the study period for calibration and used the remaining 24 years of data
as the evaluation period. The authors recognised that these very short training periods
should be extended in further research. Additionally, a wider range of climatic conditions
could be utilised as reference periods [ODO20].

Building on the first-order results of O et al., their approach is adopted and extended
in this work. The choice of reference periods is modified to include longer periods with
more diverse conditions. The aim is to adapt the reference periods by extending the
duration and incorporating precipitation as a climatic condition. Therefore, four climatic
reference periods are to be chosen: hot2cold and cold2hot for temperature, wet2dry and
dry2wet for precipitation. The naming aligns with the initial proposal of Sungmin O et
al. [ODO20].

The approach to find these periods is as follows: First, the time series data is searched for
consecutive periods of high or low average values for either temperature or precipitation.
High periods are determined by days exceeding the 66th percentile of the respective
variable and low periods are defined by days that fall below the 33rd percentile. To
increase the length of these periods, there may be periods of up to five days that do
not meet the percentile threshold requirement. These periods are then aggregated by a
sliding window of four years to find clusters of periods within the sliding window. The
resulting aggregations are then analysed by the mean of the temperature or precipitation,
respectively, as well as the percentage of days that meet the percentile threshold criteria
within the total duration of the period, and also the deviation from the overall mean of
the variable of interest. Then, the most fitting period (reasonable length, high deviation,
high percentage of threshold days) is chosen for each of the four reference periods.

A detailed description of the algorithms to find and aggregate consecutive high or low
periods are given as pseudo code in Algorithm C.1 and C.2. Table 4.1 displays the
characteristics of the four reference periods.
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Temperature Precipitation
X̄ = 5.87 °C X̄ = 3.48 mm

hot2cold cold2hot wet2dry dry2wet
Start Date 2013-04-25 1984-11-14 1997-05-20 1989-08-04
End Date 2016-10-07 1988-04-07 2001-04-27 1993-01-26
Threshold 10.33 °C 1.54 °C 3.65 mm 0.69 mm
% of Threshold Days 39.89 % 46.21 % 45.76 % 41.31 %
No. of Days (Train) 1,261 1,240 1,438 1,271
No. of Days (Test) 11,886 11,907 11,709 11,876
Mean 7.84 °C 4.18 °C 3.75 mm 3.18 mm
∆ from X̄ +1.97 °C -1.69 °C +0.27 mm -0.30 mm

Table 4.1: Definition of the climatic periods for Differential Split-Sample Testing.

Start Date 1982-01-01
End Date 2000-01-01
No. of Days (Train) 6,575
No. of Days (Test) 6,573
T̄ 5.54 °C
∆ from T̄ -0.33 °C
P̄ 3.43 mm
∆ from P̄ -0.05 mm

Table 4.2: Definition of the baseline reference period.

Additionally, a baseline reference period is defined to evaluate the differences in model
performance for the experiments with climatic reference periods. The reference period
encompasses 50% of the available study period (18 years) starting from one year after
the beginning of the records in the time series. The remaining years are used as an
evaluation period similar to the experiments based on DSST. The offset of one year is
chosen due to a warm start period appended to the chosen DL models prior to the actual
start date. The baseline period characteristics are defined in Table 4.2. The length of
the baseline period’s training set has been deliberately chosen to be considerably longer
than the duration of the climatic reference periods. The rationale behind this approach
is to emulate state-of-the-art experiments that typically use training periods of similar
length [KKS+19, KKG+22]. While it is likely that extreme periods of temperature or
precipitation will become longer as a result of climate change, these durations will always
be shorter than an unaffected baseline period that is not subject to any constraints.
Therefore, it is of interest to compare the performance of the reference periods with a
model that has been trained on a much longer period of data.

This approach results in five reference periods for model calibration/training with the
respectively remaining periods of the data used as the evaluation period. The last year
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of the data (1st January 2017 to 1st January 2018) is used as the validation period for
all reference periods. Therefore, ten subsets are left for further processing. It is vital
to perform the subsequent data processing steps separately on each of these subsets
to avoid data leaking from the training to test sets. This prevents the introduction of
information about the data distribution and thus potentially significant bias into the
models [PVG+23].

4.1.3 Missing Data
MI aims to “fill in missing values by generating plausible numbers derived from distri-
butions of and relationships among observed variables in the data set” [LSA15]. This
approach creates multiple datasets by using different estimators or random states, thus
making it possible to analyse how the subsequent modelling results vary due to the
inherent uncertainty caused by the missing values.

Two imputation techniques are applied in this work. Univariate imputation is implemented
by using the per-catchment median. Multivariate imputation is implemented by using RF
regression. The Python ML package scikit-learn is utilised to implement imputation
[PVG+11]. The RF estimator was tuned based on empirical experiments and the resulting
hyperparameter settings are given in Section B.1. Both strategies are explained in more
detail below:

1. Per-Catchment Median
Univariate imputation using the Per-Catchment Median (PCM) is a naive but robust
strategy. This approach takes advantage of the historical pattern of the catchment
and provides a reasonable approximation of the missing data. Utilising the median
values specific to each catchment is a first step in increasing the specificity and
precision of the imputed value, and could be improved in further research by using
the grouped seasonal median per catchment or other time-dependent constraints.
Since the distribution of streamflow records is skewed, the median is a better
estimator compared to the mean [HHR+20, HHRS21].

2. Random Forest Regression
The meta estimator ensemble.RandomForestRegressor1 fits a number of
regression decision trees on bootstrapped sub-samples of the data and uses the
average of the tree predictions as the imputed value. The advantages of this non-
parametric estimator are its usage of the ensemble technique and robustness to
outliers. However, it is computationally intensive and prone to overfitting. This
approach provides numerous parameters that can be tuned.

There is a special case for the imputation using the catchment-specific median. Due to
the specific data splits it may occur that a column contains only missing value, thus

1Source: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
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leading to the grouped median for the respective catchment also being NaN. This is
accounted for by imputing the overall column-specific median instead.

The two different imputation strategies are employed to handle the remaining missing
values and allow for uncertainty estimation as part of the model evaluation. Combining
the variations from splitting the data into baseline and climatic reference periods, a total
of ten unique train/test subsets emerge as input to models.

Within the field of geospatial science, there exist state-of-the-art alternative techniques
for data imputation, such as Arithmetic Averaging Nearer Stations Based On Conditions
(AVwC), Normal Ratio Method With Respect To Distance (NRMD) or Inverse Distance
Weighting (IDW) [CPN16]. Extensive research has been done to analyse flow imputation
in hydrological data. PDMs such as the SWAT can be used to substitute values, as well as
advanced methods from DL like ANNs or Self-Organising Maps, as shown by [KBL+15].
Further frequently applied methods in the domain include Principal Component Analysis
and Two-Directional Exponential Smoothing [HHR+20]. However, the selected strategies
are chosen due to their ease of implementation in fulfilling the scope of the thesis,
providing an overview of available approaches, and accounting for uncertainty due to
missing values and their imputation. This selection was made considering the complexity
of advanced methods.

4.1.4 Outliers
The detection and handling of anomalies in a dataset is a crucial task in data engineering.
Especially domains where the data originates from sensors, gauging stations or human
input, such as geospatial sciences, are strongly affected by the presence of outliers.
Possible causes of these errors may include faulty sensors, human error, or errors in
data engineering, such as inaccurate climate reanalysis. Similar to the management of
missing data, the detection of outliers has been the focus of extensive research efforts and
various domain-specific state-of-the-art techniques have been proposed. Besides simpler
statistical methods, such as the z-score or the exponentially weighted moving average,
and models from ML and DL, such as Support-Vector Machines or Isolation Forests,
also ANN-based DL approaches have been applied extensively. The latter methods have
largely been used to seamlessly detect and impute anomalous values, for instance, using a
bi-directional RNN to capture temporal information. Notably, sliding window algorithms
have been used in combination with ML-based data imputation for identifying outliers in
hydrological time series data [KCM+21].

In this work, Isolation Forests are used to detect outliers in time series data after missing
values. This ensemble technique uses a group of Decision Trees to efficiently isolate
observations by arbitrarily selecting a splitting value within the range of the minimum
and maximum values of the selected variable. The algorithm then averages the path
lengths from the root to the terminal node for each tree, which corresponds to the number
of necessary splittings to isolate the observation. The inverse is used as a measure of
anomaly for a given observation. Thus, samples with shorter average path lengths are
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considered easier to isolate and more likely to be outliers [LTZ12, PVG+11]. The chosen
implementation of the algorithm is ensemble.IsolationForest2. A separate model
is fitted for each catchment and attribute to detect outliers, which are then flagged for
later imputation. The model’s hyperparameters were tuned empirically and the settings
are listed in Table B.2.

The selected substitution technique for detected outliers is imputation by the PCM
(see strategy 1 of missing value imputation). To avoid potential data leaking from the
missing data imputation performed prior to the outlier imputation, the median values
per catchment used here are sampled from the original data (after step 3) per subset
split. While all methods discussed for dealing with missing values could be applied for
outlier imputation, this would result in too many input datasets for experiments and
subsequent uncertainty analysis also considering train/test splits, which is well beyond
the scope of this work. Therefore, the simple strategy to impute the catchment-specific
median suffices here, which is also proven to be a robust measure [KCM+21].

Of the 39 meteorological variables in the time series data, the only one with no detected
outliers is the attribute describing the minimum net solar radiation at the surface, because
it is always zero by nature. The contamination parameter of the Isolation Forest model
used is set to a very low value of 0.004 to preserve natural anomalies and reduce noise
at the same time. The mean proportion of outliers over all columns and strategies is
approximately 0.25% and the mean anomaly score is 0.273. After outlier imputation, the
standard deviation is changed by an average of -1.08%. There are no rows containing
only outliers.

4.1.5 Feature Selection
Due to the large number of static attributes available (212) resulting from aggregations,
it is recommended to decrease feature dimension prior to providing them as additional
inputs for experiments. Monthly aggregate variables are unlikely to be relevant in
explaining the feature space and may even be redundant. Furthermore, a high number of
similar features can contribute to overfitting. Therefore, feature selection is performed
to find a more compact representation of the available information. Since the static
attributes are based on the catchments without a direct link to the time series data and
the target variable of observed streamflow, an unsupervised algorithm needs to be chosen
[Has23]. Only numerical attributes with a non-zero standard deviation are subject to
feature selection since normalisation would fail otherwise. This leaves 186 attributes for
selection.

To this end, the widely used and efficient Regularised Self-Representation (RSR)-based
unsupervised feature selection algorithm proposed by Zhu et al. is applied to the static
catchment attributes (the metadata such as gauge name, country, etc. are omitted from
the feature selection and later appended to the resulting feature set). This method

2Source: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html#sklearn.ensemble.IsolationForest
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leverages the self-representation property of high-dimensional data in that a feature
can be expressed effectively by a linear combination of its so-called relevant features.
Furthermore, L2,1 norm-group sparsity regularisation is employed on the feature weights
matrix W to increase robustness [ZZZ+15]. Equation 4.1 shows the minimisation problem
of the feature weights matrix:

Ŵ = arg min
W

∥X − XW ∥2,1 + λ ∥W∥2,1

where ∥·∥2,1 denotes L2,1 norm-group sparsity regularisation
and λ is a positive constant

(4.1)

The chosen implementation of this model is FRUFS3, which utilises supervised algorithms
such as XGBoost to calculate feature importance [Has23]. The highest-ranking 30% of
the static catchment attributes are chosen to serve as additional input. This results in a
total of 59 features (including the three numerical metadata attributes).

For the time series data, only the variable surface_net_solar_radiation_min is
removed since it is always zero.

4.1.6 Scaling
Scaling data is a crucial pre-processing step, particularly for ML and DL models. This step
is necessary to achieve a well-balanced initialisation of the weights and to avoid vanish-
ing/exploding gradients, thus increasing convergence speed and promoting generalisation
and interpretability. Various scaling methods are available, including standardisation,
robust scaling, and min-max-scaling [LBOM12].

The NeuralHydrology Python library, which is used for the DL experiments in this
thesis, standardises the input data by default before feeding it to the model. Equation
4.2 calculates the z-score separately for each feature to achieve a mean of zero and a
standard deviation of one. To benefit from this standard behaviour of the library, the
data for all models is standardised.

z = X − µ

σ
(4.2)

Naturally, to prevent data leakage from the distributions of the respective subsets, the
scaling is applied individually to all subsets. The static catchment attributes are also
standardised.

4.1.7 State of the Data after Preparation
After applying the described pre-processing steps to split the data into training/test/validation
sets according to four DSST periods and an additional reference period, remove missing

3Source: https://github.com/atif-hassan/FRUFS
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values and handle them using two different approaches, to detect and impute outliers for
each of the strategies, to standardise the data, and to select the most important features,
the data is in a very different state compared to its raw form.

In total, 47 catchments were completely removed from both the time series and the static
catchment data due them containing too large proportions of missing values. The time
series data was also shortened because the most recent three years are missing streamflow
records. These steps reduced the time series data by 16.5%. It now contains 5,838,048
observations across 36 years for 432 catchments that have their respective gauging stations
located in four different countries (Austria, Germany, Switzerland, Liechtenstein).

Two approaches were used to address missing values: imputing them with the catchment-
specific median and using the ensemble ML regression algorithm RF for imputation.
However, each of these techniques introduces some level of uncertainty to the data, which
requires further analysis. These two techniques were applied to each data split which
yields a total of ten sets as input to modelling experiments and further analyses.

Outlier detection was performed using the ML algorithm Isolation Forest and then
imputed using the catchment-specific median. Finally, the data was scaled by applying
the z-score. The results of feature selection lead to discarding 62 static attributes due to
them having a standard deviation of zero. In the end, 59 attributes were chosen to serve
as additional input to the models where applicable. A single feature from the time series
data was also dropped.

Figure 4.1 shows a visualisation of the complete data processing pipeline. Reproducibility
is guaranteed by using fixed random seeds for each step of the pipeline (see Appendix B).

4.2 Model Architectures and Implementation
While the input data of all three model types was subject to the same pre-processing
steps as described in Section 4.1, the models have different requirements with regard to
input features and formats. Therefore, the exact input data differs for all three model
types.

4.2.1 Process-based Model: HBVEdu
The widely applied conceptual model HBV is used in an educational version called
HBVEdu proposed by Aghakouchak and Emad in 2010 [AH10]. This PDM operates on a
per-catchment basis. Therefore, all catchments are subject to calibration separately and
local models are built in contrast to the regional ML and DL models (see Section 4.4.1).

HBVEdu is a simplified, spatially-lumped model that treats a catchment as a single unit
and disregards spatial variations. The four modules snowmelt and snow accumulation, soil
moisture and precipitation, evapotranspiration, and the runoff response are represented
in the educational version and can be seen in Figure 4.2. Precipitation is considered to be
either rain or snowfall depending on the temperature of the respective day, which serves
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Figure 4.1: The data preparation pipeline for the raw LamaH time series and static
attribute data.
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Figure 4.2: The components and processes of HBVEdu [AH10].

as a threshold. The resulting precipitation is then evaluated in the soil moisture module,
where the effective input of water contributing to surface runoff is calculated. The
remaining rainfall is considered to contribute to soil moisture storage, which evaporates
as long as there is sufficient water content in the subsurface. The output is the discharge
runoff at the watershed outlet, consisting of surface runoff, interflow, and baseflow.
The model parameters (such as the threshold temperature, etc.) are adjusted during
calibration (i.e. model training). The inputs to the HBVEdu model and their origins
from the pre-processed data are stated in Table 4.3.

HBVEdu does not support static catchment attributes as additional input. The remaining
time series features are discarded.

The model is implemented utilising the Python library RRMPG in version 0.0.1, which
provides an out-of-the-box implementation of HBVEdu4. Internally, the rainfall-runoff
model is treated as a multivariate function and the differential evolution method is used
to find the global optimum of this problem [SP97]. The optimisation criterion is set to
the Root Mean Squared Error (RMSE). To ensure reproducibility, the random seed is set
to 2,609. The maximum number of allowed iterations during optimisation is increased
from 1,000 to 3,000 to account for convergence issues.

It should be noted that the decision for PDM selection was made between HBVEdu
and VIC-5. While the available implementation of VIC is much more advanced and

4Source: https://github.com/kratzert/RRMPG
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Name Input Engineered feature
qobs Target variable streamflow Variable streamflow
temp Mean temperature Variable temperature_2m_mean
prec Summed precipitation Variable total_precipitation_sum
month Month of each time step Engineered from the time step date
PE_m Long-term mean monthly PE Re-sampled var. potential_evaporation
T_m Long-term mean monthly T Re-sampled var. temperature_2m_mean

Table 4.3: Description of how the inputs for the PDM HBVEdu are engineered.

comprehensive, its design primarily for macro-scale modeling and development in C were
influential factors in favor of selecting HBVEdu. The study area in LamaH primarily
encompasses small catchments, making the gridded approach with large cells in VIC less
suitable for the specific characteristics of the area.

4.2.2 Machine Learning Model: XGBoost
XGBoost (eXtreme Gradient Boosting) is a state-of-the-art open-source ML framework
in the field of ensemble learning. Built as an extension of the gradient tree boosting
algorithm, it sequentially constructs decision trees with each tree improving the errors of its
predecessors. The method was specifically designed to be used on large, complex data sets
and achieves a significantly lower runtime than other popular ML techniques. XGBoost
is scalable, computationally efficient, flexible, and supports distributed computing. The
framework has received significant recognition for its success in Data Science and Machine
Learning contests on Kaggle and has now become an essential component of research
in various domains. Since XGBoost utilises L1− and L2−regularisation, the chance of
overfitting is reduced drastically [CG16].

XGBoost’s capability to learn complex relationships within vast and diverse data through
ensemble techniques positions it as an ideal solution for rainfall-runoff modelling. The
incorporation of regularisation is a key characteristic that is expected to result in effective
generalisation across the set of heterogeneous catchments in the diverse study area at
hand. The scalability of the algorithm as well as its ability to be parallelised should allow
for a low runtime even with a large amount of input data. As such, this work employs
XGBoost as the representative ML model in the experiments.

Since XGBoost only accepts numerical input variables, the timestamp of a sample has to
be broken down into five numerical components: day of the week/month/year, number
of the month, and the year. The remaining time series variables are used as-is with the
exception of the catchment ID. As with the process-based model, it is not possible to use
the static attributes as input in this case either.

XGBoost is implemented using its Python library in version 2.0.25. A regional model us-
5Source: https://github.com/dmlc/xgboost
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ing all catchments at once is built, thus interpreting the data as a multivariate regression
problem with the target variable being streamflow. To find the best model settings, a grid
search using 3-fold cross-validation is performed. The parameter ranges as well as the
optimal settings are stated in Table B.3. The fixed parameters are: tree_method set to
hist (uses a faster histogram optimised approximate greedy algorithm for tree construc-
tion), booster set to gbtree (uses gradient-based tree boosting), random_state set
to 2,609 (ensures reproducibility). In total, 11,664 candidate parameter combinations
are applied in the grid search resulting in 34,992 fits with cross-validation. The split
parameter combinations are scored based on a custom implementation of the NSE. The
hyperparameter search took approximately 18.7 hours and was carried out once before
model training. The optimal parameter set was then utilised throughout all DSST
periods.

4.2.3 Deep Learning Model: EA-LSTM
Kratzert et al. introduced an adaptation to a classic LSTM neural network called Entity
Aware - LSTM (EA-LSTM) that incorporates a set of static attributes to facilitate the
learning of similarities between catchments. The authors showed in their initial study
that this approach can outperform locally and regionally calibrated process-based models
and contributes to model interpretability with regard to the way catchment-specific
behaviours and inter-catchment relationships are learnt. The EA-LSTM is capable to
efficiently model both temporal and spatial relationships in a single framework [KKS+19].

An additional attention layer aims to leverage the potential of the large volume of static
attributes that introduces valuable information about each catchment. The underlying
concept of the model architecture is that dynamic time series inputs should be processed
conditionally based on the static attributes of the respective catchment. The authors
propose an adaptation to the standard LSTM architecture given in Equation 2.5. Above
all, the input gate i[t] does not depend on the time step anymore and can thus be denoted
simply as i, which incorporates the static inputs xs. The dynamic time series attributes
are denoted as xd[t] at time step t. Thus, the adapted notation of the LSTM gates are
presented in Equation 4.3.

i = σ (Wixs + bi)
f [t] = σ (Wf xd[t] + Uf h[t − 1] + bf )
o[t] = σ (Woxd[t] + Uoh[t − 1] + bo)
g[t] = tanh (Wgxd[t] + Ugh[t − 1] + bg)
h[t] = o[t] ⊙ tanh c[t]
c[t] = f [t] ⊙ c[t − 1] + i ⊙ g[t]

(4.3)

In this architecture, both inputs are processed separately with different responsibilities.
xs controls which parts of the network should be activated for a specific catchment via the
modified input gate i. The information is managed in the memory through the recurrent
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Figure 4.3: Differences between the architectures of the classic LSTM and the EA-LSTM
model of Kratzert et al. [KKS+19].

inputs and xd (g[t] is responsible for writing, f [t] for deleting, and o[t] for output at time
step t). The dynamic and static inputs are both used in an unchanged state after the
data preparation steps. The EA-LSTM architecture, shown in Figure 4.3 with reference
to the conventional LSTM design, is therefore able to distinguish between similar types
of rainfall-runoff behaviours that differ between catchments. The static input gate i
can determine which components of the network should be activated for a particular
catchment through an embedding layer of real values that is available after training.
The authors declare that this embedding layer enables the model to share information
between catchments based on similarities that are based on, for instance, geological or
anthropological attributes while other parts of the network are disabled due to differences
in other characteristics [KKS+19].

The authors of the EA-LSTM are part of the AI for Earth Science group at the Institute
for Machine Learning, Johannes Kepler University in Linz, who develop a popular open-
source Python library called NeuralHydrology6, which is specifically designed for
Deep Learning in hydrology. The library is used in this work to implement the EA-LSTM
model out-of-the-box in version 1.9.0.

DL models from NeuralHydrology can be configured via a YAML file with an array of
arguments. The applied values for the EA-LSTM model configuration mostly conform to
those presented in the initial paper by Kratzert et al. [KKS+19] with a few adaptations
following a high-degree, empirical hyperparameter tuning phase. Finding ideal parameters
for neural network models is a complex and computationally costly process especially for
large volumes of data and thus considered out-of-scope for this work. The relevant model
settings, shown in Table B.4, are the same for all input sets (except for data-specific
paths).

Following the initial experiment results from Kratzert et al., Gaussian noise N (0, σ) is
added to the data during training. This noise affects the already standardised data so
that σ is not influenced by the relative magnitude of the variable. The authors found

6https://github.com/neuralhydrology/neuralhydrology
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that adding noise can contribute to increasing the robustness of a model [KKS+19]. In
the experiment setup of this work, the standard deviation is set to 0.005.

4.3 Model Evaluation

4.3.1 Evaluation Metrics

In order to evaluate the performance of the various models on the data, six different
metrics will be applied: Mean Absolute Error (MAE), RMSE, Coefficient of Determination
(R2),NSE, Kling-Gupta Efficiency (KGE), and Percent Bias (PBIAS). The model results
are analysed and compared using these metrics in detail in Section 5. Table 4.4 provides
an overview of the formulae for the various metrics, their value ranges, optimal value, and
the respective references. Additionally, reported runtimes for model training, evaluation,
and validation offer insight into model complexity.

Metric definition Value range Optimum Reference

MAE= 1
n


n
t |ŷt − yt| [0, ∞) 0 [WM05]

RMSE=
�

1
n


n
t (ŷt − yt)2 [0, ∞) 0 [WM05]

R2=
� 
n

t
(yt−µy)(ŷt−µŷ)�
n

t
(yt−µy)2


n

t
(ŷt−µŷ)2

�2
[0, 1] 1 [MGPD15]

NSE= 1 −

n

t
(ŷt−yt)2
n

t
(yt−µy)2 (−∞, 1] 1 [NS70]

KGE= 1 − �
(r − 1)2 + (α − 1)2 + (β − 1)2

with α = variability ratio = σŷ

σy
,

β = bias ratio = µŷ

µy
,

r = correlation coefficient.

(−∞, 1] 1 [GKYM09]

PBIAS= 100

n

t
ŷt−yt
n

t
yt

(−∞, ∞) 0 [GSY99]

Table 4.4: Overview of the evaluation metrics used to analyse and compare model
performance.

The observed target values are denoted by y, the simulated values obtained from a model
by ŷ. The term n refers to the forecast horizon (total number of fitted points or time
steps in the time series); µ and σ are the mean and standard deviation of a sample.
Pearson’s linear correlation coefficient between observed and simulated values is denoted
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by the term r and defined as

r =

n

t (yt − µy)(ŷt − µŷ)�
n
t (yt − µy)2 
n

t (ŷt − µŷ)2
(4.4)

with values ranging from −1 to 1. A value of exactly 1 implies that a linear relationship
between y and ŷ describes the relationship perfectly. A value of 0 indicates no linear
relationship.

Mean Absolute Error

The MAE is a commonly used forecasting error measure in time series analysis. It
describes the average absolute difference between simulated and observed values and is
defined by the following equation:

MAE(y, ŷ) = 1
n

n�
t

|ŷt − yt| (4.5)

Values range from 0 to infinity with the ideal value being 0. Here, each error contributes
to the metric in proportion to the absolute error and does not overvalue or undervalue
larger or smaller errors. This metric is scale-dependent and has the same unit as the
underlying data. It is relatively robust against outliers as well as easy to explain and
interpret [HK06].

Root Mean Squared Error

The RMSE has been used extensively in statistical modelling and is defined as

RMSE(y, ŷ) =

	

� 1
n

n�
t

(ŷt − yt)2 (4.6)

where the range of values and the ideal value correspond to the MAE. Another common
characteristic is that the output unit of both metrics is the same as the unit of the reported
values (m3/s in case of streamflow or rainfall-runoff simulation) further contributing to
the interpretability of these measures. Each error contributes to the score in proportion
to its square, thus causing the metric to exaggerate the influence of large errors which
is an advantageous characteristic for model performance comparison. A consequence is
that the RMSE is more sensitive to outliers compared to the MAE [HK06].

Coefficient of Determination

The metric R2 is simply Pearson’s correlation coefficient, which is presented in equation
4.4, squared and thus scaled to the interval from 0 to 1. It is commonly utilised in
hydrological modelling studies as standard metrics for evaluating model performance and
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is widely recognised as a benchmark. The R2 assesses the combined dispersion of the
observed and predicted series in comparison to the dispersion of each series individually.
It can be interpreted as the proportion of the observed dispersion that is accounted for
by the prediction. The score can be overly influenced by extreme values, as highlighted
by Krause et al. [KBB05].

Nash-Sutcliffe Efficiency

Nash and Sutcliffe proposed the NSE in 1970 [NS70]. This metric is most prominently
applied in hydrology for model calibration and evaluation and can be understood as a
normalised variant of the Mean Squared Error (MSE). The NSE is dimensionless and
scaled onto the interval of (−∞, 1] with a value close to 1 considered ideal. This metric
can be interpreted as a skill score implicitly comparing the prediction of a model to the
mean of the observations with regard to the sum of squared errors. A value of 0 indicates
that the model’s predictive power is equivalent to the mean and a negative value implies
that the mean is a better predictor than the model.

NSE(y, ŷ) = 1 −

n

t (ŷt − yt)2
n
t (yt − µy)2 (4.7)

The NSE has been extensively used to report results in hydrologic modelling and is most
prevalent in literature alongside KGE. It is suitable for a wide range of target variables
including streamflow and non-linear transformations as well as hydrological signatures
such as flood or drought distribution. Interpretability, simplicity, the implicit comparison
to a baseline, and the emphasis on errors are advantageous characteristics of this metric
[MMA+23].
The mean of observations as the baseline model of the NSE is often criticised as being too
naïve as it leads to an overestimation of the predictive power of the model, especially for
strongly seasonal variables that are common in hydrology [MMA+23]. Kling and Gupta
identify three components by decomposing the NSE: the linear correlation coefficient r,
the normalised bias by the standard deviation of observed values βn, and a measure of
relative variability in the simulated and observed values α [GKYM09].

NSE(y, ŷ) = 2αr − α2 − β2
n

with α = σŷ

σy
and βn = µŷ − µy

σy

(4.8)

This decomposition turns the criterion into a multi-objective optimisation problem to
find a balance between ideal values for the three components (r = 1, α = 1, βn = 0).
However, due to α appearing twice in the decomposition and the bias being scaled by σy,
the trade-off becomes unpredictable and models tend to be selected where bias might
be underrepresented and variability underestimated [GKYM09]. Therefore, the NSE
must always be used together with other metrics and put into context when used as
benchmarking metrics [CVL+21].
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Kling-Gupta Efficiency

The KGE is also commonly used in hydrological modelling and is motivated by the
decomposition presented in equation 4.8. It aims to overcome the mentioned shortcomings
by separating the three components variability ratio, bias, and correlation. Consequently,
the multi-objective optimisation becomes more balanced, reducing the severity of the
tendency to underestimate flow variability [GKYM09, Liu20].

KGE(y, ŷ) = 1 −
�

(r − 1)2 + (α − 1)2 + (β − 1)2

with β = µŷ

µy

(4.9)

A notable difference to the decomposition of the NSE is that the bias term β is not
normalised by the variability of the observed values but rather the ratio of both means.
This improves the hydrologic interpretability and the ideal values for r, α and β all lie at
0. However, Knoben et al. demonstrate that values below 0 do not necessarily suggest
poorer performance compared to the mean of the observations. As a result, the KGE
cannot be directly compared to the NSE even though both metrics are frequently reported
together in literature [KFW19]. Liu argues that the KGE still poses the problem of
underestimation of peak flow or overestimation of low flow [Liu20, CVL+21].

PBIAS

Another commonly utilised metric is the percentage long-term bias PBIAS, indicating
if the predicted data is likely to be larger or smaller than the observed data. Positive
values express an underestimation bias, negative values overestimation bias, and the ideal
value is 0 [GSY99].

PBIAS(y, ŷ) = 100

n

t ŷt − yt
n
t yt

(4.10)

It serves several purposes: (1) assessing the model’s ability to replicate average magnitudes
in the desired output response, (2) facilitating continuous long-term simulations, (3)
broad acceptance and robustness, as reflected in extensive reported values, (4) assisting
in identifying average biases in model simulations (over- or underprediction), and (5)
accommodating measurement uncertainties. Nonetheless, it is also recommended to
consistently report PBIAS alongside other evaluation criteria since the resulting values
alone might be misleading if the model exhibits both overestimation and underestimation
tendencies [MGPD15].

4.3.2 Evaluation Guideline
Moriasi et al. recommend to report NSE, PBIAS, RMSE, and R2 (in combination with
the slope and gradient of the regression line) among others to get a holistic picture of

78



4.4. Experiment Design

model performance. To provide additional information and to account for potential
shortcomings of these criteria, KGE and MAE will also be used for evaluation. The MAE
serves as an additional measure to the RMSE that is similarly easy to interpret and not
restricted to hydrological modelling [MGPD15].

While it is common practice to define the threshold of 0 for model performance for
NSE and KGE and to interpret values above 0 to indicate improvements upon the
observed mean flow, Knoben et al. point out that this threshold is actually incorrect
for the KGE, as it does not possess an inherent mathematical benchmark [KFW19].
Clark et al. comment on the state of the usage of performance metrics in hydrologic
modelling and emphasise that it constrained by sampling uncertainty which should be
quantified in reports. Furthermore, they point out that statistical estimates should be
improved by (1) calculating metrics separately per reference period, (2) always putting
performance criteria into context and using strict, purpose-specific benchmarks, (3)
considering limitations of performance metrics and critically analysing a model according
to these shortcomings, and (4) using additional metrics to just NSE and KGE [CVL+21].
This thesis aims to take these recommendations into account when the model evaluation
results are reported, analysed and discussed in chapters 5 and ??.

Performance Evaluation Criteria
Metric Very Good Good Satisfactory Unsatisfactory

MAE MAE < 0.1σy 0.1σy ≤ MAE < 0.2σy 0.2σy ≤ MAE < 0.5σy MAE ≥ 0.5σy

RMSE RMSE < 0.1σ2
y 0.1σ2

y ≤ RMSE < 0.2σ2
y 0.2σ2

y ≤ RMSE < 0.5σ2
y MAE ≥ 0.5σ2

y

R2 R2 > 0.85 0.75 < R2 ≤ 0.85 0.60 < R2 ≤ 0.75 R2 ≤ 0.60
NSE NSE > 0.80 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 NSE ≤ 0.50
KGE KGE > 0.80 0.60 < KGE ≤ 0.80 0.40 < KGE ≤ 0.60 KGE ≤ 0.40
PBIAS PBIAS < ±5 ±5 ≤ PBIAS < ±10 ±10 ≤ PBIAS < ±15 PBIAS ≥ ±15

Table 4.5: Guideline for the evaluation of hydrological models with the six performance
criteria, partly inspired by [MGPD15].

In order to keep in line with the literature, model performance will be classified in a
four-step ordinal scale according to Moriasi et al. [MGPD15]. Table 4.5 shows the
classification of values for the performance metrics into this scale. Since this thesis uses
an array of state-of-the-art metrics from literature, the value ranges are compiled from
various sources. It is important to note that there is no inherent or commonly agreed on
benchmark or classification for the KGE. Frequently, the threshold of 0 is used for both
NSE and KGE to mark desirable model performance, however, these two metrics should
not be directly compared as stated above. MAE and RMSE make use of fractions of the
standard deviation of the observed values for the classification into the scale.

4.4 Experiment Design
A cornerstone of the here presented DSST experiment design is that the setup of train and
test sets for each of the five presented input sets differ intentionally. This is to simulate
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a real-world setting of climate research in hydrology, where traditional experiments are
mostly carried out on a single input set. Typically, data splits are chosen at random or
at empirical percentage values with respect to the amount of data samples available. For
the domain of climate research, this design may limit the meaningfulness and robustness
of model results since potentially predominant climatic conditions in the train/test sets
are unclear and a result of the possibly random data split.

With these limitations in mind, the approach of Differential Split-Sample Testing was
chosen to emphasise climatic conditions and resulting differences in model performance.
A further opportunity was explored by leveraging non-continuity between train and test
splits, meaning that either the train or test set may be interrupted depending on the
relevant climatic condition of the set. Additionally, in ML-based time series experiments
it is common practice to use earlier periods as train sets and later periods as test sets. In
this work, all test sets apart from the reference set are non-continuous, and often times
use later periods as train sets, thereby breaking with experimental convention in order to
align with the paradigm of DSST.

A drastic difference in the input set is the far larger number of input samples in the
baseline reference set compared to the four DSST sets. However, this deliberate variation
is adopted in order to contribute to one of the central research objective of this thesis
(see RQ 3.2), that is, to find out whether models trained on data demonstrating a
climatically intense period with respect to a meteorological variable can be compared
with traditional modelling setups. Inter-model comparability is achieved by reporting
and analysing performance on a validation set that is the same for all splits.

One representative model is chosen from each of the three modelling paradigms that are
examined in this work: HBVEdu as a PDM, XGBoost as a more traditional ML model,
and EA-LSTM as a DL model. The models are evaluated based on the metrics presented
in Section 4.3 with respect to the DSST periods as well as the different methods used for
the imputation of missing values during data pre-processing in Section 4.1.

4.4.1 Regionalisation

A major open research question in hydrology is the so-called “regional modelling problem”,
which explores the methodology of utilising a model or a set of models to generate
hydrological simulations that maintain spatial continuity over extensive geographic areas,
encompassing regions ranging from regional to continental or even global scales and
to extrapolate hydrologic information between spaces and scales. Most state-of-the-
art hydrology models primarily employ strategies that calibrate on individual basins.
However, incorporating the diverse characteristics of different catchments, including
ecological, geological, and topographical factors, into a model capable of generalising
well to local, regional, and global models remains an important task. It is essential to
learn and encode these characteristics in order to capture the heterogeneous hydrological
behaviours across catchments [KKS+19].
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Razavi and Coulibaly identify model-dependent and model-independent approaches for
regional modelling [RC13]. The difference here is that the first approach relies on a pre-
defined (usually process-based) hydrological model to derive parameters for simulations
from the given data, thus aiming to simulate the complex behaviours in hydrological
processes merely on observable catchment characteristics. Model-independent regionali-
sation, however, aims to extract information directly from the available data removing
the necessity to gain prior knowledge of the hydrological processes. In model-dependent
regionalisation, the challenge of equifinality arises from the complex probability distribu-
tion of model parameters, which is influenced by the interdependencies between these
parameters [KKS+19].

Model-dependent regionalisation has gained significant interest within the hydrological
community, resulting in a wide range of approaches that are currently available. Successful
strategies include the use of a conceptual model calibrated for more than 1700 catchments
globally as a reference library to identify similar catchments in a parameterised simulation
ensemble for new catchments [BvDdR+16]. Another notable example is the study
presented by Prieto et al., where hydrological signatures are regionalised by a RF
regression model and then used to calibrate a rainfall-runoff model [PLVK+19].

Model-independent regionalisation make use of ancillary data and meteorological inputs to
directly learn the mapping to streamflow or other flux types. The influence of catchment
characteristics and other additional data should then allow to distinguish different
catchment response modes. Although hydrological modelling commonly achieves higher
accuracy by calibrating a model on a single catchment, data-driven approaches have
demonstrated the advantages of utilising diverse training data from multiple heterogeneous
sites. These approaches leverage the ability to transfer knowledge across basins, leading
to improved results in hydrological modelling [KKS+19]. Kratzert et al. show that their
regional catchment-agnostic LSTM model is capable of outperforming the SAC-SMA,
which was calibrated on a single catchment [KKB+18, KKHH18].

In this work, regionalisation is achieved based on the model type in question. While
the PDM HBVEdu is calibrated separately for each catchment, thereby producing one
optimised model per catchment, the ML and DL models are trained utilising a model-
independent approach. Both build a single model for all catchments at once. Thus,
regionalisation happens purely by utilising the available data, which helps to reveal the
complex interactions between catchment attributes. This strategy is initially proposed
by Kratzert et al. for the EA-LSTM model. The authors demonstrate the increased
performance of this approach in comparison to locally and regionally calibrated benchmark
models using model-dependent strategies [KKS+19].
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CHAPTER 5
Results and Discussion

In order to provide the basis for answering the main objective of this study, that is RQ 3
and the comparative analysis of model performance, a series of rainfall-runoff modelling
experiments are conducted. This chapter describes the design of the experiments and the
training configurations of the models before presenting the evaluation results. In Section
5.1, the computational infrastructure and findings during model training are described.
Section 5.2 presents the evaluation results of modelling experiments on the respective
test sets. Finally, Section 5.3 contains the results of the models on the validation set as
well as visualisations and a comparative analysis of these results.

5.1 Experimental Setup
The experiments are performed on the GPU server of the High Performance Computing
(HPC) Research Group of the Institute of Information Systems Engineering at Vienna
University of Technology. The system specifications are stated in Table 5.1.

5.1.1 HBVEdu
Training (calibration) and evaluation of the PDM runs are performed on the CPU as
the utilised library (RRMPG) does not support GPU computing and the effort to add this
to the implementation would have been significant. On average, the calibration took
973.45 seconds in 35.9 iterations and the mean RMSE was 1.0888. For calibration, each
local model per catchment is initialised with a random set of parameters, which are
then optimised until the optimisation criterion of the differential evolution algorithm is
met. Few catchments were not calibrated successfully (3 (0.7%) on average: reference:
6, hot2cold: 3, cold2hot: 1, wet2dry: 5, dry2wet: 0). These catchments failed to
converge and exceeded the maximum number of allowed iterations, which had already
been increased to 3,000 from an original 1,000. There appears to be a correlation between
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Specification Details
Server Name hpcgpu1
Manufacturer HPC Research Group
CPUs AMD EPYC 7452 32-Core (x2)
Number of CPU Cores 32 (x2)
Base Clock 2.35 GHz (x2)
GPU NVIDIA Quadro RTX 8000
CUDA Cores 4,608
Tensor Cores 576
VRAM 48 GB GDDR6
Operating System Ubuntu 20.04.6

Table 5.1: Specification of the hpcgpu1 server of the HPC Research Group at Vienna
University of Technology.

the length of the training period and the number of catchments that fail to converge. As
the number of catchments failing calibration is so negligible over all five periods, they
are simply discarded and no strategy is put in place to facilitate convergence.

5.1.2 XGBoost

The experiments for the ML model are performed on the GPU in a parallelised way. For
model training, only the runtime for training the single model with the best parameter set
according to the hyperparameter tuning is reported since the grid search was performed
only a single time for all input sets.

5.1.3 EA-LSTM

The neural networks are implemented using the NeuralHydrology Python library
and they are trained for 30 epochs each. One third of all catchments (144 out of 432)
are randomly selected for validation at every five epochs during the training run. The
NSE is used as the loss metric. The average loss at every epoch is shown in Figure 5.1.
While there is some initial variation between the imputation methods, by epoch three
at the latest, this is balanced out. The points at which the learning rate is set can be
clearly identified from the plot by the jumps in the loss values (at epochs 10 and 20).
After epoch 20, the loss seems to converge for all five reference period models, indicating
that shorter training runs may result in similar performance. The wet2dry and cold2hot
models exhibit the lowest losses, whilst those from the dry2wet period show the highest
losses. To ensure reproducibility, the training random seed is set to 2,609.
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Figure 5.1: Average loss in NSE for the EA-LSTM training runs per reference period.

5.2 Test Results

5.2.1 reference

The reference period serves as a baseline data split and encompasses the earlier half
of the data as the training and the later half as the test set. It uses by far the most
samples during training, which suggests that this may lead to more accurate but also
more overfitting results of the streamflow predictions. Furthermore, as models for this
period are trained on data further in the past, where the effects of climate change on the
study area may not have been as apparent as in more recent data, less robust performance
on data covering climatically diverse conditions is to be expected. Evaluation results for
all model combinations of this period are shown in Table 5.2.

HBV XGBoost EA-LSTM
PCM RF PCM RF PCM RF

MAE 0.7068 0.6986 0.7982 0.7397 0.5009 0.4778
RMSE 1.4149 1.3952 1.3647 1.3203 1.0752 1.0148
R2 0.7574 0.7641 0.7674 0.7962 0.8664 0.8818
NSE 0.5556 0.5690 0.5763 0.6264 0.7491 0.7767
KGE 0.6191 0.6368 0.6921 0.7410 0.8109 0.8300
PBIAS 16.3244 14.7541 -11.1658 -7.3564 4.7039 3.7570
Runtime (Train) 2,277.15 s 2193.26 s 168.44 s 159.14 s 70,476.34 s 69,190.06 s
Runtime (Test) 1.41 s 1.15 s 12.06 s 11.83 s 2,029.40 s 2,051.99 s

Table 5.2: Experiment results for the reference period on the respective test set.

With respect to the six evaluation metrics, the DL model EA-LSTM trained on the
RF-imputed data achieves the best performance. The PBIAS indicates a minor tendency
to underestimate streamflow for EA-LSTM. HBVEdu shows a more pronounced proneness
of underestimation. However, the XGBoost models clearly exhibit overestimation bias
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with negative PBIAS values. Overall, the EA-LSTM outperforms the other two models in
all metrics, while XGBoost surpasses HBVEdu. This cautiously confirms the previous
assumptions of the model results. Furthermore, the results of models trained on RF-
imputed data are superior to models trained on PCM-imputed data across all model
types and metrics. Regarding complexity (runtime), there is a clear difference between
the model types. The ANN-based EA-LSTM is by far the most complex approach with
training times of approximately 19.5 hours. In contrast, the HBVEdu models require
approximately 37 minutes for training, whereas the XGBoost models can be fully trained
in just 2.7 minutes.

5.2.2 hot2cold
The hot2cold set refers to the DSST period, for which the hydrological models are trained
using data from a period that was 1.97 °C warmer than the average (1,261 days). The
used samples are taken from the years 2013 to 2016 for all catchments, which is in
accordance to the assumption that the effects of climate change and the trend of warming
examined in Section 3.4 are more pronounced in the more recent past. The training period
is far shorter than that of the reference period. To the best of the author’s knowledge,
the temperature has rarely been used as the driving reference variable in hydrological
DSST experiments. Therefore, it is highly interesting to see how models trained on this
input set and its counterpart cold2hot perform in contrast to the other DSST periods,
which are driven by precipitation rather than temperature. The evaluation results are
given in Table 5.3.

HBV XGBoost EA-LSTM
PCM RF PCM RF PCM RF

MAE 0.7336 0.7364 0.8957 0.8642 0.5205 0.5256
RMSE 1.4268 1.4185 1.4263 1.3934 1.0824 1.0604
R2 0.7526 0.7599 0.7544 0.7663 0.8574 0.8656
NSE 0.5423 0.5529 0.5410 0.5673 0.7342 0.7479
KGE 0.6862 0.6839 0.6365 0.6552 0.8012 0.8130
PBIAS 13.4619 14.8356 -19.2067 -16.3363 3.6598 4.1344
Runtime (Train) 655.55 s 650.74 s 44.28 s 46.54 s 12,988.04 s 13,217.60 s
Runtime (Test) 1.24 s 1.18 s 12.57 s 12.12 s 1,644.65 s 1,646.70 s

Table 5.3: Experiment results for the DSST period hot2cold on the respective test set.

In the context of the hot2cold (DSST) period, the EA-LSTM trained on PCM-imputed
data again stands out as the top performer across the evaluation metrics. Notably,
EA-LSTM achieves the best values for MAE, RMSE, and KGE, indicating superior
accuracy and goodness of fit. Additionally, the model exhibits a modest positive PBIAS,
suggesting a slight tendency to overestimate streamflow. While the PBIAS values for the
HBVEdu models are similar in quality to those obtained from the reference period again
exhibiting a slightly stronger tendency of underestimation than the EA-LSTMs, the
XGBoost models are now far more prone to include overestimation bias in their runoff
predicitons (PBIAS decreasing from -11 to -19 and -7 to -16, respectively). Interestingly,
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the EA-LSTM model trained on PCM-imputed data performs marginally better in terms
of MAE and PBIAS for this input set. A notable difference here is that HBVEdu actually
outperforms XGBoost in terms of the KGE. This could be attributed to the fact that
the KGE tends to underestimate peak flow to a lesser extent than the NSE. Since the
XGBoost models, particularly those trained on the hot2cold set, are prone to overestimate
flow, it is likely that the KGE is lower in this case.

In contrast, the XGBoost model trained on PCM-imputed data demonstrates the fastest
training runtime, completing in just 44.28 seconds. The HBV models, although showing
competitive performance, have longer training times, with EA-LSTM having the longest
runtime, exceeding 3.5 hours. This underscores the trade-off between model complexity,
training time, and predictive accuracy. The significantly shorter training times compared
to the reference set are a consequence of the much smaller training sets. The results
from the hot2cold period align with the overall trends observed in the reference period,
reaffirming the effectiveness of EA-LSTM and the influence of imputation methods on
model performance.

5.2.3 cold2hot

The cold2hot dataset acts as the counterpart to the hot2cold set and covers a period that
was 1.69 °C colder than the average temperature of the study period under consideration.
The training set covers a duration of 1,240 days in the years of 1984 to 1988. In contrast
to the warmer reference period in the hot2cold set, the colder training period here is
closer to the beginning of the study period, which again agrees with the general trend of
warming. The evaluation results of the models for the cold2hot input set are stated in
Table 5.4.

HBV XGBoost EA-LSTM
PCM RF PCM RF PCM RF

MAE 0.7519 0.7225 0.8647 0.8435 0.5765 0.5425
RMSE 1.4788 1.4346 1.4643 1.4303 1.1919 1.1141
R2 0.7378 0.7558 0.7354 0.7580 0.8334 0.8569
NSE 0.5228 0.5557 0.5342 0.5603 0.6893 0.7312
KGE 0.6019 0.6320 0.6385 0.6791 0.7892 0.8312
PBIAS 17.8697 15.1313 -8.9549 -11.9461 6.0481 1.3295
Runtime (Train) 624.42 s 596.68 s 46.46 s 44.45 s 12,878.03 s 12,887.18 s
Runtime (Test) 1.48 s 1.56 s 13.17 s 12.26 s 1,652.86 s 1,601.92 s

Table 5.4: Experiment results for the DSST period cold2hot on the respective test set.

The performance of models built on the cold2hot input set conforms to the already
observed trend and order of the above reported DSST periods. The EA-LSTM trained on
PCM-imputed data consistently outperforms the other models. These results consolidate
the assumption of general model robustness of the ANN model EA-LSTM across various
climatic conditions. It is particularly worth emphasising that the EA-LSTM models
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exhibit PBIAS values that are very close to zero (≈ 1.33 for RF), indicating near-optimal
prediction of runoff.

The XGBoost models demonstrate competitive results, but they again show clear overes-
timation bias. On the other hand, the cold-to-hot transition poses challenges for HBV
models, particularly when trained on PCM-imputed data, resulting in increased values of
MAE, RMSE, and PBIAS. The analysis of runtime indicates that XGBoost maintains the
shortest training time, demonstrating its effectiveness while still performing reasonably
well. The trends recognised in the period when temperatures transitioned from cold to
hot correspond with those in the reference and hot2cold periods.

5.2.4 wet2dry
The wet2dry input set consists of training data collected over a 1,438-day period between
1997 and 2001 that experienced 0.27 mm more precipitation per day than the average
daily P . In contrast to the hot2cold and cold2hot sets, both wet2dry and its counterpart
dry2wet are driven by P instead of T . They correspond to the previous experiments with
DSST setups to examine the robustness of models among varying climatic conditions by
O et al. and Coron et al. [ODO20, CAP+12]. Since Coron et al. observed a tendency to
overestimate runoff for calibration periods with higher precipitation levels, it is of interest
to see whether their results can be reproduced in the experiments. The performance
metrics of this DSST period are given in Table 5.5.

HBV XGBoost EA-LSTM
PCM RF PCM RF PCM RF

MAE 0.7035 0.6929 0.7982 0.7878 0.5098 0.4903
RMSE 1.3768 1.3614 1.3647 1.3422 1.0542 1.0219
R2 0.7548 0.7662 0.7674 0.7795 0.8655 0.8760
NSE 0.5526 0.5687 0.5763 0.5955 0.7457 0.7640
KGE 0.6487 0.6531 0.6921 0.7034 0.8424 0.8549
PBIAS 15.0231 15.8401 -11.1658 -11.3313 2.1391 2.8575
Runtime (Train) 881.19 s 889.30 s 52.11 s 48.21 s 15,283.87 s 15,604.86 s
Runtime (Test) 1.29 s 1.42 s 13.68 s 13.11 s 1,634.21 1,619.43 s

Table 5.5: Experiment results for the DSST period wet2dry on the respective test set.

Aligning with previously observed performance metrics, the EA-LSTM trained on PCM-
imputed data maintains its superior adaptability, achieving optimal results on all key
metrics. In accordance with the other reported results, the PBIAS values imply a probable
underestimation of runoff for the physics-based HBVEdu models. In contrast, XGBoost
models exhibit a tendency to overestimate, which is in line with the results reported by
Coron et al., whereas EA-LSTM maintains a well-balanced prediction [CAP+12]. Again,
the HBV models, especially when trained on PCM-imputed data, show difficulties in
adapting to the wet-to-dry transition. The performance of XGBoost models is slightly
improved compared to previous results (e.g. NSE increased from 0.560 to 0.596 compared
to cold2hot).
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Interestingly, the training runtimes of the HBVEdu models exhibits an increase of about
84% compared to those of the dry2wet period, although the training period for wet2dry
is only 167 days (13% increase) longer. The EA-LSTM models also show an increase in
runtime, but to an extent (14%) that suggests a linear relationship with the increase in
days of the training set. No increase of runtime can be observed for the XGBoost models.
The consistency of wet2dry results with previously observed trends adds confidence to
the robustness of the models in capturing complex hydrological dynamics.

5.2.5 dry2wet
In contrast to the wet2dry set, the 1,271-day dry2wet DSST period from 1989 to 1993
includes training data from a period when daily precipitation was 0.30 mm below average.
Coron et al. found that drier calibration periods lead to underestimation bias in runoff
prediction [CAP+12]. The results of the dry2wet training and evaluation are stated in
Table 5.6.

HBV XGBoost EA-LSTM
PCM RF PCM RF PCM RF

MAE 0.7549 0.7372 0.7738 0.7578 0.5549 0.5202
RMSE 1.4328 1.4140 1.3811 1.3560 1.1168 1.0645
R2 0.7526 0.7629 0.7637 0.7762 0.8540 0.8692
NSE 0.5512 0.5676 0.5830 0.6023 0.7260 0.7536
KGE 0.6663 0.6813 0.6548 0.6833 0.8137 0.8258
PBIAS 12.8554 12.3571 -0.1697 -1.6656 4.8194 4.5077
Runtime (Train) 491.09 s 472.37 s 49.19 s 43.50 s 13,178.41 s 13,303.06 s
Runtime (Test) 1.20 s 1.60 s 13.96 s 12.20 s 1,925.73 s 1,669.94 s

Table 5.6: Experiment results for the DSST period dry2wet on the respective test set.

The order of model performance for the dry2wet input set is again unchanged to the
previously observed results: EA-LSTM clearly outperforms XGBoost and HBVEdu (NSE
of 0.75 compared to 0.60 and 0.56, respectively). XGBoost again exhibits the shortest
training runtimes. Notably, both XGBoost models achieve PBIAS values very close to
zero, even outperforming the values reported for EA-LSTM for cold2hot. Generally,
these values suggest that the model can perfectly estimate (peak) flow. However, paired
with the low KGE values, these results contradict those observed for hot2cold, where
HBVEdu also matched the performance of XGBoost. It is interesting that similarly to the
metrics reported for hot2cold, HBVEdu performs equally well (KGE) if not slightly better
(MAE) compared to XGBoost. The results underscore the robustness and versatility of
EA-LSTM across different hydrological periods, supporting its potential as a reliable
model for capturing complex hydrological dynamics.

5.2.6 Summary of the Test Results
Although the test results for the baseline reference period showed the best performance,
the difference in key metrics to the four DSST periods is not as significant as previously
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assumed. The variations are apparent in Figure 5.2, which shows a box-plot of the NSE
values for each period across all models. The reference period (Median NSE ≈ 0.62)
clearly outperforms the others with the two pairs driven by meteorological variables -
hot2cold and cold2hot (Median NSE ≈ 0.56), as well as wet2dry and dry2wet (Median
NSE ≈ 0.59) - each performing similarly among each other. Another difference in
performance can be taken from the plot: models built on both DSST sets driven by
P (wet2dry and dry2wet) seem to outperform those driven by T . This hypothesis is
examined in Section 5.4.3.

HBVEdu XGBoost EA-LSTM
MAE 0.7238 0.8073 0.5219
RMSE 1.4154 1.3811 1.0796
R2 0.7564 0.7687 0.8626
NSE 0.5538 0.5805 0.7418
KGE 0.6509 0.6812 0.8212
PBIAS 14.8453 -9.5122 3.7957
Runtime (Train) 973.17 s 70.23 s 24,900.74 s
Runtime (Test) 1.35 s 12.69 s 1,747.68 s

Table 5.7: Mean performance metrics for each
model (trained on RF-imputed data) across all
reference periods on the respective test sets.

Figure 5.2: Boxplot of the distribu-
tion of NSE values for the DSST
periods on the test sets.

Table 5.7 shows the mean metric results per hydrological model type. As observed for
all examined train/test sets, the DL model EA-LSTM achieves superior performance
compared to the PDM and the ML model measured across all six evaluation metrics.
Particularly the values for the domain-specific metrics NSE and KGE can be considered
“Good” and “Very Good”, respectively, with respect to the evaluation guideline proposed in
Section 4.3.2. In terms of accuracy metrics, XGBoost consistently outperforms HBVEdu.
Specifically, XGBoost demonstrates lower MAE and RMSE values, indicating superior
precision in predicting streamflow. However, when it comes to metrics assessing goodness
of fit, such as NSE) and KGE, HBVEdu tends to perform competitively with or even
surpass XGBoost. This suggests that while XGBoost excels in precision, HBVEdu may
exhibit comparable or better overall performance in capturing the variability of observed
data. It is noteworthy that EA-LSTM seems to handle over- and underestimation bias well
with values in the positive range close to zero, whereas HBVEdu clearly underestimates
runoff with consistent values around 15. XGBoost has a unique pattern in PBIAS that
fluctuates in the negative range, indicating issues with the representation of overestimation
and underestimation. It is to be examined how well the models actually generalise.

There is a clear difference in runtime between the three model types. The DL model
is the most computationally expensive with an average training time of approximately
6.9 hours. XGBoost consistently achieves the shortest training times of only around 70
seconds, which is 355 times shorter than the mean training times of EA-LSTM. However,
an intra-model comparison of runtimes does not reveal major differences among the
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various input sets. The most striking outlier is the reference set described in Table 5.2
with a training time exceeding that of the models trained on DSST periods by several
magnitudes for each model type. However, this can be attributed to the training set of
the reference period consisting of more than five times as many samples compared to the
other periods. Furthermore, the test set of the reference period contains only about half
as many samples as the other test sets, explaining the much smaller difference in test
runtimes among the reference period and the DSST sets.

Figure 5.3: Correlation heat-maps depicting the relationships among key performance
metrics for the test set results among the three hydrological models (HBVEdu, XGBoost,
EA-LSTM).

Figure 5.3 shows the correlation matrices for HBVEdu, XGBoost, and EA-LSTM. The
patterns in the relationships between performance metrics reveal unique characteristics
of each model. Naturally, there are strong positive correlations between MAE and RMSE
for all models. Additionally, lower absolute errors are typically associated with higher
coefficients of determination, NSE, and a balanced representation of overestimation
and underestimation. Similarly, in the case of XGBoost, higher goodness-of-fit metrics
and efficiency measures are associated with lower absolute errors. The strong negative
correlations between PBIAS and NSE as well as KGE highlight the interplay between
balanced error representation and efficiency. It is important to note that the correlation
between PBIAS and MAE can be positive, even when models have higher absolute errors.

5.3 Validation Results
Since the test period differs for each of the DSST sets, it is of interest to report and
analyse the performance metrics for validation period, which is the same for all models.
The validation period consists of 366 days from 1st January 2017 until 1st January
2018. Therefore, the models are validated on the most recent year of data, where the
hydrological and meteorological variability is expected to be at its highest across the
study period due to the increasingly prevalent impacts of climate change [EEA23]. These
results are thereby comparable not only across models, but also across all five climatic
periods. As demonstrated empirically in Section 5.2, using RF regression for missing
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data imputation leads to better performance across all metrics. Therefore, model results
are reported for these input sets for all five periods. The performance metrics are shown
in Table 5.8.

Period Model MAE RMSE R2 NSE KGE PBIAS Runtime

Ref
HBVEdu 0.7622 1.4121 0.7657 0.4779 0.4319 34.9765 0.97 s
XGBoost 0.7169 1.2553 0.7803 0.6021 0.7276 -5.4138 5.41 s
EA-LSTM 0.4741 0.9695 0.8754 0.7627 0.8082 7.1817 95.96 s

h2c
HBVEdu 0.7435 1.3943 0.7760 0.5116 0.4736 32.9673 0.98 s
XGBoost 0.7389 1.2761 0.7677 0.5888 0.6727 -2.7179 3.98 s
EA-LSTM 0.4758 0.9976 0.8698 0.7487 0.7777 10.3123 97.64 s

c2h
HBVEdu 0.7859 1.4502 0.7521 0.4667 0.4308 33.7535 1.29 s
XGBoost 0.8978 1.4339 0.7055 0.4808 0.6147 -12.3145 4.03 s
EA-LSTM 0.5619 1.0969 0.8369 0.6962 0.8026 3.5861 98.59 s

w2d
HBVEdu 0.7559 1.4089 0.7672 0.4813 0.4372 35.4326 1.32 s
XGBoost 0.7809 1.3011 0.7641 0.5726 0.6767 -11.3840 4.16 s
EA-LSTM 0.4817 1.0171 0.8635 0.7388 0.7836 9.8048 98.64 s

d2w
HBVEdu 0.7694 1.4227 0.7567 0.4889 0.4643 31.7442 1.29 s
XGBoost 0.7433 1.3035 0.7558 0.5710 0.6646 -0.5933 3.98 s
EA-LSTM 0.5053 1.0381 0.8550 0.7279 0.8064 5.5842 97.54 s

Table 5.8: Validation results for all DSST periods reported for the best performing models
for each period.

The DL model EA-LSTM trained on the baseline reference period reaches the best results
for all metrics except PBIAS and the runtime. The errors are consistently lower compared
to the other models and climatic periods. Figure 5.4 shows bar plots for key metrics
RMSE, NSE, and PBIAS across all periods for each model type. The visualised results
emphasise the superiority of the EA-LSTM across all experiments. A notable variation
in results is that the EA-LSTM reports marginally worse results in metrics RMSE and
NSE for the cold2hot period in comparison to the other periods. EA-LSTMs trained on
the DSST periods show competitive performance compared to the baseline. Overall, the
DL model trained on the hot2cold most closely matches the performance of the baseline.

The superiority in performance of the DL model is clearly apparent across all metrics,
except for the PBIAS values. Here, the ML model XGBoost achieves the best value for
the dry2wet set (-0.59), which indicates almost optimal estimation of flow. Generally,
the overall order of performance observed for the test results extends to the validation.
A noteworthy observation is that the PBIAS validation values of the HBVEdu models
are significantly higher compared to the test results (15 to 33), which points to a drastic
underestimation of flow. This further indicates that the locally calibrated PDMs overfit
to the training data and struggle to generalise well to new data. Model robustness is
adversely affected.

The Cumulative Distribution Function (CDF) plot for NSE and RMSE for the three
model types in Figure 5.5 sheds light on the distribution of these key metrics across all
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Figure 5.4: Key evaluation metrics from the validation results of the models for all
reference periods.

individual catchments. XGBoost and EA-LSTM models trained on the cold2hot show
consistently better distributions for both metrics. For NSE values, there is significant
variability in value distribution in the lower percentile of the value range, except for
HBVEdu. The PDM shows very similar metric distribution across the whole value ranges,
especially for the RMSE. The only difference here is that the hot2cold HBVEdu models
appear to have lower NSE values.

The relative change in metrics between validation and test results, stated in Table 5.9,
underscores the decrease in performance of the PDM while both XGBoost and EA-LSTM
achieve similar results with marginal deviations. Notably, the issue of underestimation of
flow exhibited by EA-LSTM worsens for EA-LSTM with an increase of the PBIAS value
by ≈ 120%, which is at similar scale to the increase reported for the HBVEdu model.
The ML and DL models exhibit comparable improvements in terms of accuracy metrics,
but at the same time deterioration in terms of measures describing the goodness of the
model fit. Regarding the relative change in performance for the reference periods, there
is a noticeable improvement for models trained on the hot2cold input set. In contrast,
the cold2hot models show deteriorated performance, aligning with previously observed
results. The most drastic deviation is the increase in PBIAS of 1,440 %. The KGE values
decreased for all five sets.

As expected, the PDM has the shortest runtime for the validation runs with an average
of 1.17 seconds, which is 3.7 times faster than XGBoost (4.32 s) and 83.5 times faster
than EA-LSTM (97.66 s).

In summary, model robustness of the DL model EA-LSTM seems not to be significantly
affected by shorter training periods driven by a high degree of climatic variability. The
hydrological key metric NSE decreases by only 2.63% compared to the test results,
indicating that the model is able to generalise well to data with very different conditions
compared to the training period. XGBoost also performs reasonably well on the validation
set and achieves competitive results. However, the physics-based model HBVEdu has
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MAE RMSE R2 NSE KGE PBIAS

HBVEdu +6.39 % +0.92 % +0.23 % -13.77 % -31.92 % +131.59 %
XGBoost -2.88 % -3.98 % -2.65 % -4.63 % -3.06 % -33.33 %
EA-LSTM -2.25 % -2.97 % -1.13 % -2.63 % -4.24 % +119.88 %
reference +1.93 % -2.50 % -0.85 % -6.56 % -10.87 % +229.41 %
cold2hot +6.50 % +0.05 % -3.22 % -11.02 % -13.73 % +454.30 %
hot2cold -7.90 % -5.27 % +0.90 % -1.02 % -10.60 % +1,440.15 %
wet2dry +2.41 % +0.04 % -1.11 % -7.03 % -14.19 % +359.57 %
dry2wet +0.14 % -1.83 % -1.70 % -7.05 % -11.65 % +141.69 %

Table 5.9: Percentage change in mean performance metrics between validation and test
results. Upper section: model types. Lower section: DSST periods.

significant issues to generalise to unseen data, adversely affecting its robustness with
respect to climatic variability in the time series data.

Figure 5.5: Cumulative distribution function of the NSE (top) and RMSE (bottom)
values of HBVEdu, XGBoost, and EA-LSTM.
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Figure 5.6 shows the observed and simulated streamflow results for the validation period.
The streamflow during the year 2017 is depicted for the high-deviation catchment at
Berninabach at Pontresina, already examined in detail as part of the analysis of exemplary
catchments in Section 3.4. The hydrographs are plotted for each of the five climatic
reference periods. The analysis of this plot reveals the ability of the EA-LSTM models
to fit closely to the curve, which is subject to strong temporal deviations. The models
are generally capable of accurately representing peakflow and adhering to periods of
extended baseflow, which is prevalent at the beginning and at the end of the validation
period. Judging from the plot, the EA-LSTMs appear to prematurely detect local
maxima. Furthermore, the reported tendency of underestimation is confirmed by the
consistently lower amplitude of predicted peakflow. The only striking difference between
reference periods is that the model trained on the cold2hot dataset seems to suffer from
underestimation bias to the least degree and most accurately matches maxima, as well
as minima. The DL approach suggests a high degree of robustness to climatic variability
and a sufficient ability to generalise across all periods.

The picture is different for the ML model and the PDM. HBVEdu significantly underes-
timates flow and fails to capture important peaks. Notably, baseflow is underestimated
and set to zero for the first 100 days with no variance at all. Flow variations during the
summer months are not well fitted, with only the first peak at the beginning of June,
and that too early by at least one week.

On the other hand, the XGBoost models appear to be drastically underfitting and suggest
high variance. The predictions seem to be highly sensitive to fluctuations and are noisy
throughout the validation period. Peakflow is not detected. Interestingly, given the PBIAS
values indicating a general overestimation bias in all experiments, the model actually
underestimates periods of peakflow and overestimates only baseflow.

5.4 Discussion
Based on the literature review on hydrological modelling, the domain-specific datasets,
the required steps in data analysis and pre-processing, the experimental design and the
results of the rainfall-runoff modelling, the research objectives of this thesis can now be
addressed and put into context.

5.4.1 Large-Sample Hydrology and Data Engineering
To address RQ 1, the current state-of-the-art in the field of LSH is examined. The
progress of complex interdisciplinary modelling in hydrology, often rooted in differ-
ent paradigms, such as Machine Learning, entails the provision of high-quality data
collections that adhere to modern standards and meet new, previously overlooked re-
quirements. Traditional hydrological datasets are often proprietary in nature, collected
for a specific application or research without the use of consistent data formats, often
in violation of the FAIR principle, and sometimes not publicly accessible either due
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Figure 5.6: Observed and simulated streamflow results for the validation period of the high-
deviation catchment located at Berninabach at Pontresina, Switzerland (lamah_2262).
Values are plotted for each DSST period and each model.

to regulatory concerns or negligence. Furthermore, the available datasets differ signifi-
cantly in their coverage, resolution and several key characteristics, such as the applied
catchment delineation strategies and catchment differentiation approach, location and
local/regional/national/continental/global scale, hydro-meteorological variables provided,
meteorological forcings used, temporal-spatial resolution and catchment attributes avail-
able. Therefore, presented research results are often difficult to reproduce and compare,
especially among different catchments. Blöschl et al. and Beck et al. conducted important
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5.4. Discussion

studies in hydrological modelling. However, the data is only partly available to the public,
which means that the modelling results cannot be fully reproduced. This illustrates the
issue of reproducibility in hydrological modelling [BHV+19, BPL+20].

The above-mentioned differences and the requirements of modern hydrological modelling
lead to the need to establish consistent, comparable, extensible, and available open source
data collections in the field of LSH, following the FAIR principle. A 2019 landmark
study by Addor et al. presents an assessment of the state-of-the-art in LSH as well as
key limitations, requirements, and opportunities in the domain. The authors notably
mention the lack of common standards and metadata to facilitate comparability, missing
estimates of anthropogenic impacts and violations of the FAIR principle as prevalent
limitations. According to the authors, the most vital requirements for new datasets are
the use of consistent data formats, providing data publicly available, open-source ways,
reporting uncertainty estimates, and presenting human impact factors [ADAG+20].

With the limitations and suggestions presented by Addor et al. in mind, this work
analyses and compares the most prevalent datasets used in both research and applications
in the domain of LSH. There have been attempts towards establishing comparable,
large-scale national data collections as early as 2006 with the development of MOPEX.
This dataset already covered key requirements of LSH as it is publicly available and
incorporates the most important hydro-meteorological variables at a high spatio-temporal
resolution across 55 years. Further cornerstone data collections within the domain include
CAMELS, EWA, GRDB, and GSIM [SCD06, NCS+15, DGLW18, ADAG+20].

The Caravan collection is the most recent addition to the domain of LSH and can
be considered the most comprehensive and up-to-date collection of hydrological data
yet. Kratzert et al. introduced this global data collection in 2023 specifically with the
suggestions of Addor et al. in mind and took into account the emergence of DDMs
in hydrological modelling based on their own experience with the use of ANNs in the
domain [KNA+23, KKS+19]. The collection currently comprises the state-of-the-art
hydrological datasets HYSETS, CAMELS (five subsets to date), and LamaH. Data is
available as versioned packages from Zenodo, GitHub or the cloud platform Google
Earth Engine with a permissive license, and covers several thousand highly diverse
catchments across the world. The period covered by the time series is the same for
each subset and currently covers 39 years from 1980. A major benefit of Caravan is its
design as an open-source software, providing well-documented code to extend the data,
generate catchment attributes, and reproduce experiments performed on the data. By
including an extensive set of more than 200 static attributes for each catchment including
anthropogenic influences on the basin and its surrounding area, the authors fulfil the
requirement to report on human influence on catchments raised by Addor et al. for
the first time [ADAG+20]. The original datasets from various sources are subject to
standardised data processing and formatting procedures, with the scripts to perform these
steps available as part of the code repository. This allows for consistent and comparable
use of data no matter their origin across a highly heterogeneous set of catchments. By
providing open-source interfaces and tutorials to extend the collection in a standardised
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way not only from members of the research community and official hydrological services,
but from any individual who has access to high-quality data, the authors account for
the needs of large-scale data collections and potentially facilitate a faster growth of
hydro-meteorlogical datasets in previously underrepresented areas, following the FAIR
principle. The collection does not provide estimates of uncertainty related to the data. In
summary, Caravan can be considered a milestone in LSH, representing an open platform
for the hydrology community. The issue of reproducibility in hydrological modelling
is addressed by providing the data collection as open source by design, in a versioned,
extensible and frequently updated publicly accessible manner. Therefore, Caravan serves
as a good candidate data collection in the domain of LSH.

The application of data-driven models in rainfall-runoff modelling has changed the
requirements for DS methodologies in hydrology. Key findings from experiments with
different modelling paradigms highlight the importance of having data in a consistent,
non-proprietary and model-agnostic format. This minimises the need for time-consuming
data wrangling prior to processing or modelling. Specific needs of DS researchers require
simple interfaces such as Caravan that provide high quality, standardised data collections.

Access to public, freely available data platforms and open-source modelling software, such
as the Python package NeuralHydrology, is crucial for successful DDM experiments
in LSH. NeuralHydrology streamlines the data engineering process, supports different
DDM architectures, and allows customisation through a comprehensive configuration
file. However, there is a need to improve and consolidate existing open-source software
solutions for PDM experiments. The current state of PDM software is characterised
by inconsistency and incompatibility, making inter- and intra-model comparability a
challenge. Despite the issues, the Python package RRMPG was chosen for its relatively
well-designed API and ease of use, although it has limitations such as lack of support
for popular model architectures and GPU computation. Future steps could include
integrating successful models into comprehensive platforms such as NeuralHydrology
for efficient hydrological modelling across different paradigms.

Data exploration and pre-processing are exceptionally resource-intensive and complex
tasks in hydrological modelling. The steps undertaken to prepare the data for modelling
experiments in this work include initial explorative analysis and cleaning, splitting into
training/test/validation sets with respect to baseline and climatic reference periods to
allow for Differential Split-Sample Testing (DSST) later on, missing data imputation,
outlier detection and imputation, feature selection, and data standardisation. Each of
these steps requires comprehensive analysis and research to find suitable strategies and
methods that can be applied to the data and study area at hand. Particularly in the
field of hydrology, it is necessary to incorporate domain-specific knowledge into these
decisions. Sharma et al. confirm that, generally, “the relative effects of preprocessing and
postprocessing depend strongly on the forecasting system (e.g., forcing, hydrological model,
statistical processing technique), and conditions (e.g., lead time, study area, season),
underscoring the research need to rigorously verify and benchmark new forecasting
systems that incorporate statistical processing” [SSR+18].
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Domain-specific issues, such as missing streamflow data in large-scale collections, are
a major challenge for researchers. Tencaliec et al. state that technical or maintenance
issues, damaged gauging stations, e.g. during flood events, and the complex tasks of long
hydro-metric data production and management can lead to intervals of missing data in
streamflow records. The authors conclude that this entails information loss and incorrect
interpretation of the data or unreliable analysis and research communication [TFPM15].
Few of the state-of-the-art, yet highly sophisticated methods are easily accessible to the
modelling community as they are typically not implemented as (open-source) software.
Custom implementation of such techniques can significantly increase the workload of
pre-processing the data. Therefore, it is easier to resort to well-known non-proprietary
imputation methods from data-driven domains. However, it would be highly beneficial
to leverage the potential of the domain-informed methods introduced in the literature.
The same issue applies to the detection and management of outliers. This preparation
step includes the additional requirement of safely discarding anomalies while at the same
time keeping naturally occurring phenomena in the data.

Performing Multiple Imputation (MI) can be computationally expensive, and does not
scale well with increasing number of samples and employed estimators. In the presented
work, imputation was necessary for the extrapolation of more than 700,000 samples with
missing streamflow records, as well as for several ten-thousand samples marked as outliers.
This lead to high computational load and thus long runtimes for pre-processing, which was
aggravated due to the five separate input sets each having to undergo data preparation
separately to avoid data leakage. Furthermore, since MI produces distinct datasets for
each imputation strategy or random seed, each resulting set must undergo subsequent
pre-processing steps separately as well, further increasing the workload. Naturally, all
resulting sets must then be input to the hydrological models, which can be infeasible due
to the computational cost of some models (e.g. ANNs). Adhering to these principles
of data-driven modelling guarantees scientific soundness of the reported results, but
also leads to exploding computational load, vast numbers of hydrological models to
evaluate and compare, and to imprecise analyses and conclusions. Uncertainty estimates
are necessary and part of good scientific practise, but they are costly and resource-
intensive. An important step in consolidating the pre- and post-processing strategies in
hydrological modelling is to facilitate the implementation of imputation and subsequent
uncertainty analysis to get a reproducible, comparable understanding of the robustness
of models. However, uncertainty has to be accounted for at a large scale in rainfall-runoff
modelling as a model is only a simplified representation of physical hydrological processes,
and uncertainty is inherent to the target variable streamflow due to its instability and
proneness to fluctuations. Every model is therefore uncertain to some extent and every
step of the modelling process can introduce more imbalance. Modelling in this domain
must acknowledge the significant issue of uncertainty [SKP+18, MMCD21].

Furthermore, the strategies employed to split the data in the context of Differential
Split-Sample Testing (DSST) for climate change modelling are not yet represented
comprehensively in literature and appear to be an open issue in current research. For this
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work, custom algorithms (see Algorithms C.1 and C.2) are devised to find and aggregate
consecutive periods of significant deviations in key hydrological variables (P and T ). It
would be useful to rely on a scientifically agreed upon framework for DSST in hydrology
and design reference periods accordingly [CAP+12].

5.4.2 Hydrological Modelling
As shown in Chapter 5, the EA-LSTM by Kratzert et al. performs well for modelling
the runoff of the LamaH study area in Central Europe. The model design incorporates
catchment-specific information into the architecture. Time series data is processed
conditionally based on the catchment it belongs to and can thus tailor the predictions to
produce a single universal forecasting system for all basins in the study area. The model
is capable of activating parts of its network based on the processed catchment as shown
in Figure 4.3, which contributes to the high degree of flexibility and accuracy.

In general, the set up, configuration, implementation, and evaluation of the EA-LSTM
model using the NeuralHydrology package by Kratzert et al. is a straightforward
process [KGNK22]. There are only few model-specific pre-processing steps required to
prepare the data. One proprietary step is to remove features with a standard deviation
of zero. However, this step is beneficial for all types of models since such features would
be redundant as input. A further necessary step is to create and fill the configuration file,
which at times requires data in very specific formats. For instance, basin identification
numbers and start and end dates of non-continuous training, test, and validation periods
must be in separate files of pre-defined formats. Furthermore, the configuration of the
LSTM architecture, such as the number of neurons per fully-connected layer, learning
rates at specific epochs, the activation function of the embedded network, or the applied
dropout require significant effort to be fine-tuned to the available data. However, default
architectures can already result in good performance. For the experiments in this work,
the parameters were tuned to the values presented in the original publication of the
EA-LSTM with only little adaptation. This architecture leads to well-fitting predictions,
which are reasonably sensitive to peakflow, robust to transient climatic conditions, and
superior to a PDM and a traditional ML model (see Section 5.4.3).

The process to set up the DL model used in this work does not significantly differ from
the configuration of a hyperparameter-rich ML model, such as XGBoost. Tuning the
parameters of such models is a highly complex process, typically performed in a grid or
random search with pre-defined value ranges. The computational cost associated with a
hyperparameter search can be a major limiting factor in achieving accurate model results.
For example, the assessment of 11,664 parameter combinations in a cross-validated grid
search resulted in a runtime of almost 19 hours for a single training set. Performing this
search for all sets separately and for more diverse value ranges would have been infeasible
for this work.

The flexibility, versatility, and robustness of LSTM models marks them as suitable
architectures for countless inter-disciplinary tasks, one of them being rainfall-runoff
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modelling. The possible volume and dimension of the input data and the relationships
represented by these models, as well as their ability to use internal memory structures
and conditional processing of information, qualify them for extensive use in such tasks.
The accessibility of LSTM models is improved in comparison to PDMs as they do not
require domain knowledge and rather consider highly complex problems from the Earth
Sciences as multi-variate classification or regression tasks.

In the case of rainfall-runoff modelling, the most important step to apply the EA-LSTM
is the thorough pre-processing of data, which, however, applies to all modelling tasks just
the same. The model-specific configuration and set up of the programming environment
negligible steps in comparison to the data preparation, which is partly due to the well-
documented source code of the used library NeuralHydrology. However, while the
use of this library significantly reduced the workload of the ANN-based experiments in
this work, designing a similar neural network architecture using state-of-the-art software
packages such as TensorFlow or PyTorch would have been relatively straightforward.
Nevertheless, it is essential to have access to a modern GPU at the workstation level
in order to leverage their computational power for numerical calculations. Relying on
a CPU without using GPU acceleration for neural network modelling is not feasible
for large-scale input datasets, which are prevalent in most geo-science domains, such as
hydrology. The experiments performed in this work would not have been possible without
access to the GPU server of the High Performance Computing Lab at Vienna University
of Technology. The runtimes reported for EA-LSTM training and evaluation exceed
those of the PDM and the ML models by several magnitudes. Yet, the improvement in
accuracy seems to be worth the computational cost.

In summary, the EA-LSTM model can be considered a state-of-the-art approach to hy-
drological modelling, achieving great predictive power and featuring simple configuration
as well as high degrees of flexibility and versatility. While PDMs have been prevalent
in the past, the success of DDMs have now made them the state-of-the-art approach to
modelling in the domain. In future research, the performance and robustness of hybrid
model that combine process- as well as data-driven architectures should be tested and
analysed. Models such as the mass-conserving LSTM have already uncovered notable
hidden relationships in input data, which would not have been discovered without the
incorporation of physical laws into the model architecture [HKK+21]. The potential of
such models could further contribute to leveraging the power of large amounts of data and
producing accurate results in rainfall-runoff modelling, further increasing the importance
and reliability of forecasts for other applications such as flood predictions. Additionally,
the robustness of LSTM-based models to varying climatic conditions is evaluated in this
work and is found to be significant. However, more research into DSST experiments with
different types of models is needed to better understand potential shifts in predictive
power and accuracy as the impacts of climate change increase in vulnerable regions.

While the architectures, configurations, training and calibration procedures, and com-
putational characteristics of process-driven and data-driven rainfall-runoff models differ
significantly between model types, overall they are very similar in what they attempt
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to represent. An array of samples in various hydro-meteorological input variables with
a focus on precipitation is processed to explain the single outcome variable of runoff,
also referred to as streamflow, over time. Therefore, the evaluation of such models does
not necessarily differ depending on the model type or paradigm. In general, the error
between observed and predicted values needs to be calculated to assess the accuracy of
the model.

A first step in the comprehensive evaluation of the models in light of the effects of climate
change was the decision to use a Differential Split-Sample Testing (DSST) approach. This
test setup allows to evaluate a model’s capability to extrapolate under non-stationary
conditions, such as transient climatic conditions. Robustness is a key characteristic of
models subject to high degrees of variability in the input data. In the compilation of
open problems in the domain of hydrology, Blöschl et al. name the assessment of model
robustness under contrasting climatic conditions as one the key issues [BBC+19]. The
experiments and their evaluation are therefore designed to make a step in the direction
of comprehensive, climate-resilient, modelling. O et al. and de Moura et al. highlight
the importance of further analyses in the field of DSST-based modelling utilising LSTMs
[ODO20, NdMSD22].

Furthermore, six different metrics have been applied to evaluate the performance of the
three hydrological model types employed in the experiments presented in this work. This
accounts for the suggestion to incorporate various metrics in model evaluation rather than
relying on the domain-specific (e.g. the NSE) to gain a comprehensive understanding of
the advantages and limitations of a model [MGPD15, CVL+21].

The application of the ordinal evaluation guideline presented in Table 4.5 allows for a
holistic categorisation of model performance in the domain of rainfall-runoff modelling.
In contrast to limiting the evaluation to a narrow comparison of predictions achieved in
this study alone, domain-wide standards are consulted to gain insight into the overall
competitiveness of the model results. Opening up the scope of evaluation is an important
step in recognising the effective robustness of models and in removing experimentation
biases. Table 5.10 presents the classification of model results on the validation set into
the proposed evaluation guideline. Overall, the EA-LSTM reports the best score with an
average of 2.2 in the four-point scale and is the only model to achieve the grade Good
with respect to domain-wide model results. In contrast, the PDM and the ML-based
DDM perform worse, both being graded as Satisfactory. However, there is a difference
in average scores with XGBoost achieving slightly better results (2.6 compared to 3.2).
These results are in line with the state-of-the-art research, which revealed the generally
superior performance of DL models in the domain (see Section 2.3).

5.4.3 Model Comparison
Building on the experiment results presented in this chapter, this section presents an
analysis of hypotheses that are formulated based on the research questions addressing
differences in model performances (RQ 3). The evaluation metrics and guidelines
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HBVEdu XGBoost EA-LSTM
MAE Satisfactory (3.0) Satisfactory (3.0) Satisfactory (3.0)
RMSE Satisfactory (3.0) Satisfactory (3.0) Satisfactory (3.0)
R2 Good (2.2) Good (2.3) Very Good (1.3)
NSE Unsatisfactory (3.8) Satisfactory (3.2) Good (2.3)
KGE Satisfactory (3.1) Good (2.1) Good (1.6)
PBIAS Unsatisfactory (4.0) Good (1.8) Good (2.1)
Average Satisfactory (3.2) Satisfactory (2.6) Good (2.2)

Table 5.10: Validation performance evaluation of all model types according to the criteria
presented in Table 4.5.

presented in Chapter 4 are applied and assessed in statistical significance tests in order to
investigate systemic variations in performance based on certain experiment characteristics,
such as DSST reference periods, imputation methods or model types. Therefore, this
section is a direct application of the outcome of RQ 3.1 discussed in the previous section.

Figure 5.7 provides a motivation for further spatial analyses of model results. The RMSE
values of modelling results from the EA-LSTM trained on the hot2cold split are visualised
across the study area. The size of the points is equivalent to the relative catchment
elevation. It is apparent that catchments in non-alpine, lowland areas achieve lower
errors. Basins at high elevations experience higher errors. This figure showcases the
potential of in-depth evaluations and hypotheses tests of the model results. However, the
assessment of the results is limited to the questions raised in RQ 3 and its sub-questions
to fulfil the scope of this work.

Figure 5.7: The catchment-specific RMSE values of the EA-LSTM model trained on the
hot2cold period across the study area of LamaH.
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Difference in Model Performance

The results indicate that there are clear differences in model performance with respect to
the recorded metrics among the three model types HBVEdu, XGBoost, and EA-LSTM.
The distribution of key performance metrics among groups and reference periods, depicted
in Figure 5.4, suggests that the EA-LSTM significantly outperforms the other two models.
Furthermore, the graph indicates that the ML model XGBoost also achieves better results
than the PDM HBVEdu throughout the experiments, although to a lesser extent.

The Hypotheses 5.1 are therefore formulated to answer research question RQ 3.1.

H0 : A process-based model (HBVEdu), a Machine Learning model
(XGBoost), and a Deep Learning model (EA-LSTM) perform equally
well.

H1 : There exists a statistically significant difference in model performance
among the three model types.

(5.1)

Examining these hypotheses contributes to the main objective of this thesis, covered
by RQ 3. To address this research question, the three model types are subject to
the non-parametric Wilcoxon signed-rank tests in order to investigate the difference in
locations of two related populations using paired samples for each evaluation metric, i.e.
differences in performance [Wil92]. The test results are stated in Table D.1.

In summary, it is statistically sound to reject the H0 and accept the H1. The only
insignificant differences in model performance are between XGBoost and HBVEdu for
metrics MAE and R2 with adjusted p-values of 0.9 and 0.735, respectively. All other
model-metric combinations prove the assumptions that there are statistically significant
differences in model performance among the three model types. Therefore, the answer to
RQ 3.1 is that the selected DL model outperforms the other models, and the ML model
also shows better performance in comparison to the traditional physics-based model.

Difference in DSST Periods

In their 2012 study analysing the ability of hydrological models to extrapolate under
different climatic conditions, Coron et al. found estimation biases in models trained on
periods where significant parameter transfer occurs. In fact, the researchers observed a
tendency to overestimate runoff for calibration periods similar to the wet2dry periods
presented here, and a tendency to underestimate runoff for a dry2wet calibration period
[CAP+12].

The results reported for the calibration and validation periods in Sections 5.2 and 5.3
largely suggest comparative model performance across all five periods and three model
types. While Table 5.9 points to an overall decrease in performance, there are no striking
differences for a specific model type or period that would indicate significant deterioration.
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In fact, Figure 5.5 and suggest that, at times, periods cold2hot and hot2cold even show
marginal improvements for the EA-LSTM models. Table 5.11 illustrates the relative
changes of the four climatically-driven DSST periods in comparison to the baseline
reference period. Means are shown for all models with relative changes in brackets, except
for the reference period where the standard deviation is shown next to the mean. This
table illustrates that there are no drastic differences in performances for models trained
on varying climatic conditions. The DSST periods suggest competitive performance and
robustness for all model types.

Period RMSE NSE KGE PBias
reference 1.2123 (± 0.18) 0.6142 (± 0.12) 0.6559 (± 0.16) 12.2481 (± 16.87)
cold2hot 1.3270 (+9.46 %) 0.5479 (-10.79 %) 0.6160 (-6.08 %) 8.3417 (-31.89 %)
hot2cold 1.2227 (+0.86 %) 0.6164 (+0.35 %) 0.6413 (-2.22 %) 13.5206 (+10.39 %)
wet2dry 1.2424 (+2.48 %) 0.5975 (-2.71 %) 0.6325 (-3.57 %) 11.2844 (-7.87 %)
dry2wet 1.2548 (+3.50 %) 0.5959 (-2.98 %) 0.6451 (-1.65 %) 12.245 (-0.03 %)

Table 5.11: Mean performance metrics and relative changes compared to the reference
period for all four DSST periods. For the reference period, the standard deviation is
shown in brackets next to the mean value.

Based on these assumptions, Hypotheses 5.2 are formulated in order to answer RQ 3.2.

H0 : There is no significant difference in the performance of models trained
on periods characterised by extreme climatic conditions compared to
models trained on a traditional baseline period.

H1 : Models trained on climatically-drive periods of data differ significantly in
performance compared to those trained on a baseline period.

(5.2)

To address these hypotheses, non-parametric Kruskal-Wallis tests are performed to
determine whether there are statistically significant differences between the medians of
the groups [KW52]. The validation results are grouped by training periods and then
carried out for each model and metric. Since the training periods differ for each of
the DSST periods, each group can be considered independent. Therefore, five groups
(reference, cold2hot, hot2cold, wet2dry, dry2wet) are input to each Kruskal-Wallis test
per model and metric, resulting in 18 tests. The results are shown in Table D.2.

The test results confirm that there is no statistical difference in model performance among
the split-sample periods. Thus, H0 can be accepted for all model types and metrics.
This is a key result of this study as it indicates that any model trained on a traditional
train/test-split period with no regard of climatic trends and much larger amounts of
training samples does not outperform models trained on short periods exhibiting strong
climatic conditions for a specific variable. A further finding is that models are generally
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robust to transient climatic conditions. However, the experiment results presented for
the test and validation sets suggest a higher degree of robustness for the EA-LSTM.

Difference in Pre-processing Methods

Judging from the performance criteria reported for all model combinations of both the
test and validation periods, it seems as that the models built on data with missing values
imputed by a Random Forest show consistently better performance compared to using
the catchment-specific median. Since the three different modelling approaches represent
distinct approaches, the effect of pre-processing must be considered and compared among
the model types separately.

Therefore, the intuition is that there is a statistical difference in performance for PDM
and models from ML as well as DL that were built on data with missing values imputed
using either Random Forests or the catchment-specific median. This is reflected in the
Hypotheses 5.3 where based on the aforementioned intuition, H0 should be rejected and
H1 accepted.

H0 : Models based on different imputation methods of missing values
perform equally well with respect to the six evaluation metrics.

H1 : There exists a statistically significant difference in performance
between models based on different imputation methods.

(5.3)

Based on the distribution of metric differences for the distinct groups of models and
imputation methods, either an independent Student’s t-test or a Mann-Whitney U-test
is performed to find out whether there is a difference in performance. The test results
are shown in Table D.3.

For a large part of the results, the H0 cannot be rejected. This indicates that there is no
significant difference in performance between the two imputation methods. This is largely
in line with the reported results: While the performance of the models trained on the
RF-imputed sets is slightly superior to the PCM in most cases, this is not always the case
and the predominant pattern is that both methods result in very similar, only marginally
different performance. Most notably, the PBIAS value closest to the optimum (-0.1697) is
achieved with the PCM method. This finding indicates that a robust catchment-specific
imputation value is as good a measure as a complex ensemble regression technique. The
mean p-value is 0.39. The only statistical differences in performance can be detected for
the EA-LSTM in metric KGE (p = 0.045) for the validation results. This may be due to
the proneness of underestimating peakflow inherent to this metric.
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CHAPTER 6
Conclusion

The extensive literature review in the field of hydrological modelling and the comprehen-
sive experiments, evaluations, and analyses of how ML and, more importantly, DL models
can be applied to the task of rainfall-runoff modelling in the context of increasing climatic
variability to provide crucial insights into model performance, the impact of transient
climatic conditions, and the process of data engineering in the domain. This concluding
chapter now summarises and emphasises the outcomes of the presented research and
experiments. Finally, limitations of this work and recommendations for future research
are stated.

6.1 Research Results
The state-of-the-art review reveals that datasets in the domain of LSH have significant
shortcomings, including proprietary nature, inconsistent formats, low quality or unreliabil-
ity in the data, and limited accessibility, thus hindering reproducibility of research results.
The extensive research highlights the need for consistency and extensibility of data
collections, and design as open-source software as the key requirements for large-sample
datasets. Caravan, which includes long-term time series and catchment attributes for
several popular datasets in a consistent format, is identified as the most comprehensive
data collection. Its design as open-source software positions Caravan as a milestone in
LSH. It addresses the recommendations of Addor et al.’s landmark study on the state
of the field [ADAG+20]. To facilitate the application of DL models for domain-specific
applications such as rainfall-runoff modelling, the use of open-source software, such
as NeuralHydrology, is encouraged. Furthermore, it is necessary to improve and
consolidate existing libraries for PDMs in order to promote a comprehensive software
ecosystem in LSH that can be adapted to various modelling paradigms. Addressing
domain- or model-specific challenges as part of the DS pipeline can be resource-intensive
and infeasible for data engineers and modellers. Moreover, the modelling of climate
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change is highly sensitive to data perturbations caused by transient climatic conditions.
However, the steps involved are complex and require a thorough understanding of the
data and domain. Undertaken measures to modify the data need to be guided by theory.

Hydrological modelling has traditionally relied on Process-driven model (PDM) ap-
proaches based on physical laws. However, alternative approaches have emerged as
suitable candidates due to the limitations of these methods. DDM architectures, such
as DL models, are now considered powerful tools and their effectiveness, exemplified
by the EA-LSTM architecture in this work, highlights their ability to capture com-
plex spatio-temporal patterns in hydrological processes. The flexibility and increasing
accessibility of DL models contribute to their widespread acclaim. H2M approaches
represent a new modelling paradigm that combines the strengths of both process- and
data-driven models. The exploration of such models, e.g. the mass-conserving LSTM
constitutes a move towards integrating physical laws with data-driven approaches for
improved accuracy in hydrological forecasts [KKS+19, HKK+21]. The EA-LSTM model
is identified as a suitable and effective architecture due to the inherent memory structure
and the conditional processing of time series data based on catchment-specific data,
which contributes to its robustness. However, key issues in the application of this model
are its computational requirements, particularly the reliance on GPU acceleration, which
raise practical concerns. The evaluation framework presented in this work, including
theory-guided pre-processing, a DSST-based experimental setup, and a set of domain-
specific and general error metrics, provides a step towards analysing the robustness of
hydrological models in the face of changing climatic conditions.

Three models are employed to investigate the performance of different model paradigms
in rainfall-runoff modelling: the PDM HBVEdu and two DDMs, the traditional ML
model XGBoost and the DL model EA-LSTM. The EA-LSTM is statistically superior
(Mean NSE = 0.73486) to the other models, while XGBoost (Mean NSE = 0.56306)
outperforms the conventional physics-based model HBVEdu (Mean NSE = 0.48528).
While the XGBoost model appears to produce satisfactory runoff predictions, it in fact
suffers from a high sensitivity to fluctuations and is strongly underfitting. The evaluation
of the models across climatic reference periods in the DSST setting suggests that there is
no significant difference in the performance of models trained on shorter, more specific
periods with transient climatic conditions compared to traditional baseline reference
periods where data are arbitrarily split without regard to climatic variation. The EA-
LSTM shows a high degree of robustness to extreme conditions, which indicates that the
DL model excels in adapting to and capturing the complex relationships in hydrological
processes. Although models constructed using data with missing values imputed by RF
regression generally demonstrate better performance compared to the catchment-specific
median, statistical tests do not reveal significant differences between the imputation
methods. In conclusion, this work offers valuable insights into hydrological modelling. It
demonstrates the superiority of the EA-LSTM model and thus the DL paradigm, the
robustness under varying climatic conditions, and the reliability of different pre-processing
methods as well as the possible uncertainty introduced by them.
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6.2 Limitations and Future Work
It is important to note that static catchment attributes, which constitute a cornerstone
of the success reported for DL models in this work, are not, in fact, static at all; they are
much rather a long-term approximation to describe a system that is very much dynamic in
nature. For instance, greater temporal granularity of catchment attributes can be reflected
in dynamic embedding layers, adjusted at various stages of the time series modelling in
the LSTM architecture. Furthermore, the DSST approach has limitations that can be
overcome by exploring alternative hydro-meteorological driver variables beyond P and T ,
or by combining multiple attributes. Additionally, there is significant potential to enhance
the chosen pre-processing strategies at every stage of the DS pipeline. Domain-specific
methods should be integrated into the detection and imputation of outliers, for instance.
As previously mentioned, imputation inevitably introduces some level of uncertainty
into the data and therefore also the predictions. The lack of analysis of the resulting
uncertainty is a major limitation of this work. Experimenting with different architectures
for all discussed paradigms is highly beneficial to acquire a thorough understanding of
the advantages and limitations of the model types.

A major development in weather forecasting was the publication of FourCastNet (Fourier
Forecasting Neural Network) by Pathak et al. in 2022. The authors propose a highly
efficient and inexpensive, purely data-driven ensemble forecasting system operating at
the global scale. This system outperforms state-of-the-art numerical weather prediction
models, but with drastically reduced power consumption by a factor of 12,000 and, most
importantly, a 45,000-fold reduction in runtime [PSH+22]. The application of this system
to the task of rainfall-runoff bears the potential of uncovering and predicting the effects of
climate change at an unprecedented level. Combining such large-scale ensemble systems
with state-of-the-art DL model architectures could provide a promising approach to
further increase efficiency and effectiveness of hydro-meteorological predictions.

Future work in the domain should address the issues of uncertainty and complexity. Pa-
rameter uncertainty and model complexity as well as the analysis of system and cell states
of neural networks carry the potential of providing valuable insights into the applicability,
effectiveness, and robustness of models. The available mixture density networks provided
as part of the NeuralHydrology library can be leveraged to account for the suggestion
by Addor et al. to report uncertainty alongside model results [ADAG+20]. Although DL
models have contributed immensely to the domain of LSH and have set new standards for
rainfall-runoff model accuracy, the paradigm of hybrid hydrology models is quickly emerg-
ing as a promising approach. Combining the strengths of physical process-based models,
which are capable of accurately representing natural processes such as the hydrological
cycle, and data-driven approaches, which can leverage the potential of large-sample and
high-dimensional datasets to reveal hidden relationships in hydro-meteorological variables,
is a promising pathway for future modelling experiments. Finally, more effort should
be put into the development of open-source software for hydrological modelling. The
current state of PDM availability must be enhanced in the future to provide modellers
with the means of convenient out-of-the-box model comparison across paradigms.
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APPENDIX A
Static Catchment Attributes

Attribute Description Unit

p_mean Mean daily precipitation (P ) mm/day
pet_mean Mean daily potential evaporation (P E) mm/day
aridity Aridity index, ratio P Emean/Pmean /
frac_snow Fraction of precipitation falling as snow /
moisture_index Mean annual moisture index in range

[−1, 1], where -1 indicates water-limited
conditions and 1 energy-limited conditions

/

seasonality Moisture index in range [0, 2], where 0 indi-
cates no changes in the water/energy bud-
get during the year, 2 indicates a change
from arid to humid

/

high_prec_freq Frequency of high precipitation days, i.e.
days where P ≥ 5 ∗ Pmean

/

high_prec_dur Average duration of high precipitation
events, i.e. number of consecutive days
where P ≥ 5 ∗ Pmean

days

low_prec_freq Frequency of low precipitation days, i.e.
days where P <1 mm/day

/

low_prec_dur Average duration of low precipitation
events, i.e. number of consecutive days
where P <1 mm/day

days

Table A.1: Description of the climate indices derived from ERA5-Land time series that
are included in the Caravan dataset; largely taken from [KNA+23].

Note that the land cover extent attribute glc_pc_sse from group LC in table A.2
is incorrectly called gla_pc_sse in Caravan. This bug is corrected by renaming the
attribute during data preparation.
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A. Static Catchment Attributes

Group Attribute Description Aggregation Unit

H

dis_m3_p Natural discharge annual min/max/mean m3 s−1

run_mm_syr Land surface runoff spatial mean of sub-basin runoff mm
inu_pc_s Inundation extent annual min/mean, long-term max %
lka_pc_sse Limnicity - percent lake area spatial extent %
lkv_mc_usu Lake volume at reach pour point 106 m3

rev_mc_usu Reservoir volume at reach pour point 106 m3

dor_pc_pva Degree of regulation index at reach pour point /
ria_ha_usu River area at reach pour point ha
ria_ha_usu River volume at reach pour point 103 m3

gwt_cm_sav Groundwater table depth spatial mean cm

P
ele_mt_s Elevation above sea level spatial min/max/mean m
slp_dg_sav Terrain slope spatial mean °(x10)
sgr_dk_sav Stream gradient mean of reach segments dm/km

C

clz_cl_smj Climate zones spatial majority n = 18
cls_cl_smj Climate strata spatial majority n = 125
tmp_dc_s Air temperature monthly mean, annual min/max/mean °C(x10)
pre_mm_s Precipitation monthly and annual mean mm
pet_mm_s Potential evapotranspiration monthly and annual mean mm
aet_mm_s Actual evapotranspiration monthly and annual mean mm
ari_ix_sav Global aridity spatial mean index (x10)
cmi_ix_s Climate moisture index monthly and annual mean index (x10)
snw_pc_s Snow cover extent monthly mean, annual max/mean % cover

LC

glc_cl_smj Land cover classes spatial majority n = 22
glc_pc_s Land cover extent spatial mean %
pnv_cl_smj Pot. natural vegetation classes spatial majority n = 15
pnv_pc_s Pot. natural vegetation extent spatial mean %
wet_cl_smjs Wetland classes spatial mean n = 12
wet_pc_s Wetland extent spatial mean % & group
for_pc_sse Forest cover extent spatial mean %
crp_pc_sse Cropland extent spatial mean %
pst_pc_sse Pasture extent spatial mean %
ire_pc_sse Irrigated area extent (equipped) spatial mean %
prm_pc_sse Permafrost extent spatial mean %
pac_pc_sse Protected area extent spatial mean %
tbi_cl_smj Terrestrial biomes spatial majority n = 14
tec_cl_smj Terrestrial ecoregions spatial majority n = 846
fmh_cl_smj Freshwater major habitat types spatial majority n = 13
fec_cl_smj Freshwater ecoregions spatial majority n = 426

S&G

cly_pc_sav Clay fraction in soil spatial mean %
slt_pc_sav Silt fraction in soil spatial mean %
snd_pc_sav Sand fraction in soil spatial mean %
soc_th_sav Organic carbon content in soil spatial mean t/ha
swc_pc_s Soil water content monthly mean, annual mean %
lit_cl_smj Lithological classes spatial mean n = 16
kar_pc_sse Karst area extent spatial mean %
ero_kh_sav Soil erosion spatial mean kg/ha/yr

A

pop_ct_usu Population count at reach pour point x1000
ppd_pk_sav Population density spatial mean people/km2

urb_pc_sse Urban extent spatial mean %
nli_ix_sav Nighttime lights spatial mean index (x100)
rdd_mk_sav Road density monthly mean, annual mean m/km2

hft_ix_s Human footprint spatial mean for 1993 & 2009 index (x100)
gdp_ud_sav Gross domestic product spatial mean USD
hdi_ix_sav Human development index spatial mean index (x1000)

Table A.2: Description of the static catchment attributes derived from HydroATLAS
that are included in the Caravan dataset; largely taken from [KNA+23].
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APPENDIX B
Hyperparameter Settings

B.1 Estimators for Handling Missing Data and Outliers

Parameter Description Value
random_state Random seed 1,996
n_estimators Number of estimators to create 7
max_depth Maximum depth of the tree 10
bootstrap Fit trees on random subsets with replacement True
max_samples Number of samples to draw during bootstrapping 0.5
n_jobs Number of processors to use (-1 = all) -1

Table B.1: Settings for the Random Forest estimator used to impute missing streamflow
values during data preparation.

Parameter Description Value
random_state Random seed 2,609
n_estimators Number of estimators to create 7
contamination Proportion of outliers in the data set 0.004
max_features Proportion of features to draw from the data set 0.5
bootstrap Fit trees on random subsets with replacement True
n_jobs Number of processors to use (-1 = all) -1

Table B.2: Settings for the Isolation Forest model used to detect outliers during data
preparation.
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B. Hyperparameter Settings

B.2 Settings and Configurations for Models

Parameter Value range Optimal setting
max_depth 8, 9, 10 10
n_estimators 1,000, 1,500, 2,000 2000
learning_rate 0.01, 0.05, 0.1 0.05
colsample_bytree 0.8, 0.9, 1.0 0.9
subsample 0.8, 0.9, 1.0 0.8
alpha 0, 0.5, 1, 2 2
lambda 0, 0.1, 0.5, 1 0.5
gamma 0.1, 0.2, 0.5 0.1

Table B.3: Parameter value ranges for the XGBoost model and optimal settings.
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B.2. Settings and Configurations for Models

Parameter Description Value
seed Random seed 2,609
validate_every Validation frequency in epochs 5
validate_n_random_basins No. of random basins for validation 2

metrics Metrics to calculate during validation
NSE,
KGE,
RMSE

model Model type ea-lstm
head Prediction head regression
output_activation Activation of regression output linear
statics_embedding:type Emb. net. type for static inputs fc
statics_embedding:hiddens Number of neurons per FC layer 30, 20, 64
statics_embedding:activation Activation function of emb. net. tanh
statics_embedding:dropout Dropout applied to emb. net. 0.0
dynamics_embedding:type Emb. net. type for dynamic inputs fc
dynamics_embedding:hiddens Number of neurons per FC layer 30, 20, 64
dynamics_embedding:activation Activation function of emb. net. tanh
dynamics_embedding:dropout Dropout applied to emb. net. 0.0
hidden_size No. of cell states of the LSTM 256
initial_forget_bias Init. forget gate bias 3
output_dropout Drouput applied to LSTM output 0.4
optimizer Optimisation algorithm Adam
loss Loss function NSE
batch_size Mini-batch size for training 256
epochs Number of training epochs 30
target_noise_std Added σ of gaussian noise to labels 0.005
clip_gradient_norm Clipped norm of gradients during training 1
predict_last_n Which time step to predict loss for 1
seq_length Length of the input sequence 365
use_basin_id_encoding Use basin ID as a static input True

learning_rate Learning rates at epochs
0: 0.001,
10: 0.0005,
20: 0.0001

Table B.4: General configuration of the EA-LSTM DL model.
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APPENDIX C
Algorithms

117



C. Algorithms

Algorithm C.1: Find Consecutive High/Low Periods
Input:
data: Time series data with daily mean values
column: Name of the column to analyze
percentile: Percentile threshold (66 for high periods, 33 for low periods)
is_high: True for high periods, False for low periods
min_period_length: Minimum length of consecutive periods
days_without_threshold: Days allowed without meeting the threshold
Output:
sorted_periods: DataFrame with sorted consecutive periods

1 periods, current_period ←− ∅
2 days_below_threshold ←− 0
3 for each row in data do
4 if (is_high and data[column] ≥ percentile) or (¬is_high and

data[column] ≤ percentile) then
5 if ∄ current_period then
6 Start a new current_period
7 else
8 Extend the current_period
9 days_below_threshold ←− 0

10 end
11 else
12 if ∃ current_period then
13 if days_below_threshold ≤ days_without_threshold then
14 Extend the current_period
15 days_below_threshold += 1
16 else
17 if length(current_period) ≥ min_period_length then
18 Close the current_period
19 periods ←− periods + current_period

20 end
21 current_period ←− ∅
22 end
23 end
24 end
25 end
26 sorted_periods ←− sort(periods)
27 return sorted_periods
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Algorithm C.2: Aggregate Consecutive High/Low Periods
Input:
data: Time series data with daily mean values
periods: Result from Algorithm C.1
column: Name of the column to analyse
is_high: True for high periods, False for low periods
num_years: Number of years for sliding window
Output:
sorted_periods: Sorted DataFrame with aggregated periods

1 aggregated_periods, current_start_date, current_end_date ←− ∅
2 total_num_days ←− 0
3 mean_for_column ←− mean(data[column])
4 Sort periods by ’start_date’
5 for each row in periods do
6 start_date ←− row[′start_date′]
7 end_date ←− row[′end_date′]
8 num_days ←− row[′num_days′]
9 if current_start_date is ∅ then

10 current_start_date ←− start_date
11 current_end_date ←− end_date
12 total_num_days ←− total_num_days + num_days

13 end
14 else
15 time_span_years ←− days(end_date − current_start_date)/365
16 if time_span_years ≤ num_years then
17 current_end_date ←− end_date
18 total_num_days ←− total_num_days + num_days

19 end
20 else
21 new_aggregation ←− new aggregation from the current values
22 aggregated_periods ←− aggregated_periods + new_aggregation
23 current_start_date ←− start_date
24 current_end_date ←− end_date
25 total_num_days ←− num_days

26 end
27 end
28 end
29 if current_start_date is not ∅ then
30 new_aggregation ←− new aggregation from the current values
31 aggregated_periods ←− aggregated_periods + new_aggregation

32 end
33 Sort sorted_periods_df by ’mean’ in descending order if is_high is True
34 return sorted_periods_df
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APPENDIX D
Test Statistics

D.1 Model Performance

Metric Model Comparison W-statistic p-value H0

MAE
HBVEdu vs XGBoost 26.0 0.921875 Accept
HBVEdu vs EA-LSTM 0.0 0.001953 Reject
XGBoost vs EA-LSTM 0.0 0.001953 Reject

RMSE
HBVEdu vs XGBoost 0.0 0.001953 Reject
HBVEdu vs EA-LSTM 0.0 0.001953 Reject
XGBoost vs EA-LSTM 0.0 0.001953 Reject

R2
HBVEdu vs XGBoost 20.0 0.492188 Accept
HBVEdu vs EA-LSTM 0.0 0.001953 Reject
XGBoost vs EA-LSTM 0.0 0.001953 Reject

NSE
HBVEdu vs XGBoost 0.0 0.001953 Reject
HBVEdu vs EA-LSTM 0.0 0.001953 Reject
XGBoost vs EA-LSTM 0.0 0.001953 Reject

KGE
HBVEdu vs XGBoost 0.0 0.001953 Reject
HBVEdu vs EA-LSTM 0.0 0.001953 Reject
XGBoost vs EA-LSTM 0.0 0.001953 Reject

PBIAS

HBVEdu vs XGBoost 0.0 0.001953 Reject
HBVEdu vs EA-LSTM 0.0 0.001953 Reject
XGBoost vs EA-LSTM 0.0 0.001953 Reject

Table D.1: Wilcoxon signed-rank test results (α = 0.05) for model comparisons on
evaluation metrics for Hypothesis 5.1.
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D. Test Statistics

D.2 DSST Periods

Model Metric H-statistic p-value H0

HBVEdu

MAE 7.527273 0.110513 Accept
RMSE 6.872727 0.142769 Accept
R2 7.963636 0.092919 Accept
NSE 5.345455 0.253652 Accept
KGE 7.418182 0.115372 Accept
PBIAS 5.563636 0.234192 Accept

XGBoost

MAE 8.727273 0.068290 Accept
RMSE 8.400000 0.077977 Accept
R2 8.727273 0.068290 Accept
NSE 8.400000 0.077977 Accept
KGE 8.727273 0.068290 Accept
PBIAS 8.290909 0.081485 Accept

EA-LSTM

MAE 7.309091 0.120428 Accept
RMSE 6.872727 0.142769 Accept
R2 6.872727 0.142769 Accept
NSE 6.872727 0.142769 Accept
KGE 4.145455 0.386678 Accept
PBIAS 6.218182 0.183436 Accept

Table D.2: Kruskal-Wallis test results (α = 0.05) for DSST period comparisons on
evaluation metrics for Hypothesis 5.2.
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D.3. Imputation Methods

D.3 Imputation Methods

Model Metric Test Test Statistic p-value H0

HBVEdu

MAE Independent t-test -1.202546 0.263534 Accept
RMSE Independent t-test -1.427566 0.191264 Accept
R2 Independent t-test 1.223412 0.255984 Accept
NSE Independent t-test 1.403142 0.198175 Accept
KGE Independent t-test 1.220500 0.257027 Accept
PBIAS Independent t-test -1.559898 0.157404 Accept

XGBoost

MAE Independent t-test -0.166832 0.871642 Accept
RMSE Independent t-test -0.340564 0.742203 Accept
R2 Mann-Whitney U test 15.000000 0.676103 Accept
NSE Independent t-test 0.342733 0.740630 Accept
KGE Independent t-test 0.650784 0.533428 Accept
PBIAS Independent t-test -0.547746 0.598812 Accept

EA-LSTM

MAE Independent t-test -0.911325 0.388759 Accept
RMSE Independent t-test -1.317229 0.224237 Accept
R2 Independent t-test 1.256947 0.244228 Accept
NSE Independent t-test 1.305485 0.228019 Accept
KGE Independent t-test 2.377000 0.044755 Reject
PBIAS Independent t-test -0.981665 0.355017 Accept

Table D.3: Independent t-test and Mann-Whitney U-test results (α = 0.05) for Hypothesis
5.3.
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ML Machine Learning. 1–4, 19, 23, 24, 27, 65, 66, 68, 69, 72, 80, 81, 84, 90, 92, 93, 95,
100–102, 104, 106–108

MNAR Missing Not At Random. 62

MOPEX Model Parameter Estimation Experiment. 34, 41, 97

MSE Mean Squared Error. 77

NCAR National Center for Atmospheric Research. 33

NCEP National Centers for Environmental Prediction. 33

NOAA National Oceanic and Atmospheric Administration. 8, 9, 22, 34, 125

NSE Nash-Sutcliffe Efficiency. xi, 73, 75, 77–79, 84–94, 102, 103, 108, 121–123, 126

PBIAS Percent Bias. 75, 78, 79, 85–95, 103, 106, 121–123

PCM Per-Catchment Median. 65, 67, 85–89, 106
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PDM Process-driven model. 19, 20, 26–30, 66, 69, 71, 72, 80, 81, 83, 90, 92, 93, 95, 98,
100–102, 104, 106–109, 129

PGF Princeton Global Forcing. 33

PUB Prediction in Ungauged Basins. 8, 34

R2 Coefficient of Determination. 75–79, 85–90, 92, 94, 103, 104, 121–123

RF Random Forest. 24, 27, 65, 69, 81, 85–91, 106, 108, 129

RMSE Root Mean Squared Error. 71, 75, 76, 78, 79, 83, 85–94, 103, 121–123, 126, 127

RNN Recurrent Neural Network. 23–25, 66

RSR Regularised Self-Representation. 67

SAC-SMA Sacramento Soil Moisture Accounting Model. 21, 22, 81

SWAT Soil and Water Assessment Tool. 22, 27, 66

SWE Snow Water Equivalent. 11

VIC Variable Infiltration Capacity. 22, 26, 71, 72
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