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Kurzfassung

Frameworks spielen oft eine zentrale Rolle bei der Entwicklung mobiler Anwendungen und
steigern die Effizienz des Entwicklungsprozesses. Vor allem Cross-Platform Development
Frameworks (CPDFs) haben aufgrund ihrer Fähigkeit die Entwicklung von Anwendun-
gen für verschiedene Plattformen durch Verwendung einer gemeinsamen Codebasis zu
beschleunigen, an Beliebtheit gewonnen. Trotz der weiten Verbreitung dieser Frameworks
gibt es nur wenig Forschung, die sich auf ihre Erkennung in Anwendungen konzentriert,
zudem gibt es keine Vergleiche zwischen den verfügbaren Detektoren. Die vorliegende The-
sis schließt diese Forschungslücke, indem sie eine Liste aktueller Framework-Detektoren
vorstellt, ihre Funktionsmechanismen untersucht und eine Vergleichsanalyse durchführt.
Anhand eines Datensatzes mit 524 Android-Anwendungen, die mit verschiedenen Frame-
works entwickelt wurden, setzen wir verschiedene Obfuscation-Techniken ein, um deren
Auswirkungen auf die Erkennung der verschiedenen Detektoren zu bewerten. Unsere
Untersuchung zeigt, dass konventionelle Detektoren durch einfaches Umbenennen von
Klassen, Dateien, Verzeichnissen und Bibliotheken, mithilfe simpler Bash-Skripten, um-
gangen werden können. Motiviert durch diese Erkenntnisse stellen wir einen neuartigen
Framework-Detektor vor, der mithilfe einer Binary Code Similarity Metrik Funktions-
merkmale vergleicht, welche aus der binären Of Ahead Time (OAT) Repräsentation der
Anwendungen extrahiert wurden. Die Ergebnisse unserer Analyse zeigen das Potenzial
der, aus den binären OAT Repräsentation extrahierten Funktionsmerkmalen, für die
Framework-Erkennung auf und motivieren weitere Forschung in diesem Bereich.
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Abstract

Frameworks play a pivotal role in expediting the development of mobile applications,
enhancing efficiency of the development process. Notably, Cross-Platform Development
Frameworks (CPDFs) have garnered significant attention for their capability to facilitate
the creation of applications across various platforms through a unified codebase. Despite
the widespread adoption of these frameworks, there exists little research focused on
detecting their usage in applications, with no comprehensive comparisons among available
detectors. This thesis addresses this research gap by presenting a list of current framework
detectors, delving into their operational mechanisms, and conducting a comparative
analysis. Leveraging a dataset comprising 524 Android applications developed using
known, diverse frameworks, we employ various obfuscation techniques to assess their
impact on the performance of different detectors. Notably, our investigation reveals
that conventional detectors can be thwarted by simple renaming techniques, such as
class, file, directory, and library renaming, applied using simple bash scripts. Motivated
by these findings, we introduce a novel framework detector that relies on binary code
similarity metrics comparing function features extracted from the applications’ binary Of
Ahead Time (OAT) representation. The results of our analysis underscore the potential
of utilizing function features derived from binary OAT representations for framework
detection, highlighting a promising avenue for further research in this domain.
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CHAPTER 1
Introduction

1.1 Motivation
Developing applications is a time-consuming and costly task, and with users on different
platforms, e.g. Android, iOS, and Windows, that each require additional development
effort, the number of applications utilizing frameworks is rising, with a recent study of
Biørn-Hansen et al. [BHGM+22] finding that 15% of the 661,705 analyzed apps on the
Google Play Store were build using a framework. These so-called Cross-Platform Devel-
opment Frameworks (CPDFs) allow developing applications using pre-made templates,
components and structures, whilst abstracting away from many details allowing to reuse
the same code for different platforms, hence requiring fewer developers with platform
specific knowledge and reducing development time.
Knowing which framework is used in an application is a vital first step in deciding
how to further process and analyze the application, as it has impact on the way the
application’s code is structured and executed, as well as the programming language it is
written in. Especially the latter heavily impacts the decision on which tools and analysis
techniques can and should be used in order to achieve the best possible results. Therefore,
a reliable method of detecting the framework in an Android application given its APK
file is needed. Such a detector is not only useful in the realms of application analysis
e.g. for security research, but can also be used a basis for various other research, where
the information about the frameworks used is of interest, e.g. investigating trends and
patterns in program development.

Although several papers and tools rely on simple string, class name and file presence
checks for detecting the framework used in an Android app, we create a novel technique
utilizing binary code analysis on the application’s Of Ahead Time (OAT) binary rep-
resentation, an approach introduced by Bleier and Lindorfer [BL23]. Section 2.1.3 will
explain the OAT representation in more detail. As we show in chapter 4 approaches used
by the current framework detectors can be easily circumvented, hence, there is a need for
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1. Introduction

an improved and more robust technique for framework detection.
Android applications are often protected using obfuscation, in order to protect their
intellectual property from being stolen, as well as to hinder decompilation and reverse
engineering [WHA+18, DLD+18]. These obfuscations complicate application analysis,
requiring robust analysis tools, in order to remain effective [WWZR18]. Hence, we
examined different current framework detection techniques and evaluated their effective-
ness against obfuscated as well as non-obfuscated Android applications. To the best of
our knowledge there exists no research focusing solely on framework detection. This
is surprising as several papers utilize framework detection for achieving their research
objectives. As a result, there is no research comparing and evaluating existing framework
detection techniques.

1.2 Contributions
Summarised, the main contributions of this thesis are:

• Providing an overview over existing framework detection tools and their functioning.

• Creation of a novel approach for detecting the framework used by an Android
application, based on the application’s OAT representation.

• A comparative study of our framework detection tool and existing tools on a dataset
of 524 applications.

• Comparison of the obfuscation resilience of different tools by applying various types
of obfuscation to the evaluation dataset.

• An analysis and evaluation of the results discussing strengths and weaknesses of
the different techniques and discovering possible future improvements.

1.3 Research Questions
This thesis we will aim to answer the following research questions.

R1 - How do the current framework detection tools perform compared to each other?

R2 - How does obfuscation affect the performance of the different framework detection
tools?

R3 - How does our novel approach perform compared to the tools tested in R1 and R2?

R4 - Is binary code analysis of an Android applications OAT representation a feasible
approach for detecting its used frameworks?

2



1.4. Structure of the Thesis

1.4 Structure of the Thesis
The remainder of the thesis is structured as follows. In chapter 2, we will take a look at
background information needed for understanding this work. This includes information
about the structure of Android Packages (APKs) and Android App Bundles (AABs) files,
as well as the building process for Android applications (Section 2.1). Furthermore, we
explain CPDF (2.2) and common obfuscation techniques used with Android applications
(Section 2.3), as well as binary code similarity and their general functioning (Section 2.4).
In chapter 3, we will take a look at existing framework detection techniques, the way
they work, and their downsides, before discussing the current state of library detection.
Section 3.3 lists some key research results and techniques for binary code similarity.
We show the current framework detection techniques to be susceptible to common
obfuscation techniques in chapter 4, by providing proof of concept scripts and command
against several detectors.
The framework detector we developed as part of this work is introduced and explained in
chapter 5, together with the dataset used for creating and evaluating our detector.
Chapter 6 contains the evaluation of the different detectors and discusses its results.
The thesis concludes with chapter 7 summarising key findings and formulating possible
future work.
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CHAPTER 2
Background

This section covers fundamental information needed for understanding the topic of this
thesis. In section 2.1, we explain the structure of APKs, their function as well as contents
and how they differ from AABs. Furthermore, we will look at the build process of native
Android applications. Section 2.2 will explain frameworks, define different framework
categories and explain their advantages and disadvantages. In addition, we will have a
look at two frameworks to see how they work. In section 2.3, we will look at different
obfuscation techniques. Lastly, section 2.4 introduces fundamental knowledge about
binary code similarity.

2.1 Android Basics
2.1.1 Android Package Structure
An Android Package (APK) is a signed archive file representing the application and can
be installed on the device. It contains the application’s contents required at runtime. We
will list and explain them in the following [Andf, Andd, Andk, Ande, ZBLO21, DLD+18,
LB22].

AndroidManifest.xml is the most important file, as it contains essential information
required for running the application. This includes the application’s name and icon,
the permissions it uses, hardware requirements as well as the minimum Android version
supported. It also declares the app’s components, i.e. activities, services, content
providers and more. In addition, it defines how other applications are allowed to interact
with the application.

META-INF/ is directory containing metadata files like the signatures file, the MANI-
FEST.MF file, which lists all files in the application package, as well as the CERT.SF
file containing cryptographic hashes of the files mentioned in the manifest [Andk]. These
hashes are used to ensure the integrity of the application.

5



2. Background

resources.arsc contains resources that can be compiled together in an XML file, e.g.
strings. Additionally, it contains paths to the content not included in this file, such as
images and layout files.

res/ is the directory containing the resources, that were not compiled into the re-
sources.arsc file, e.g. icons, layout, fonts.

assets/. This directory contains the app’s raw asset files. It is similar to the res/
directory but gives the developer more freedom in how to structure the data located here,
i.e. creating subdirectories and arbitrary file structures are allowed. Files saved in the
assets/ directory are not given a resource ID and, therefore, have to be accessed using
the AssetManager [Ande].

lib/ contains platform dependent compiled code, like native libraries. As each CPU
architecture requires a different version of the native libraries, this directory is split into
subdirectories, e.g. arm64-v8a, x86, x86_64, each containing the libraries compiled for
that particular architecture.

classes.dex contains the compiled classes in Dalvik Executable (DEX) file format. This
is the executable run on the device. As one DEX file can at most reference 65,536
methods, it is possible for multiple DEX files to be present. In that case their naming
follows the scheme of classes1.dex, classes2.dex... [Andc].

2.1.2 Android App Bundle
Since August 2021, publishing Android applications on the Google Play Store, the largest
market for downloading Android apps [Stab], requires the developer to publish their
applications as an Android App Bundle (AAB) [Andb]. An Android App Bundle is an
archive file that, in contrary to APK files, can not directly be installed on a device [Andf].
It contains the contents of an Android app project and additional metadata that can
be used to generate and sign the APK file later. This allows Google Play’s servers to
generate APKs optimized for the particular device requesting to install an application,
by for example removing unneeded code and resources, e.g. x86 native libraries. We
mentioned App Bundles for completeness, but they will not have any further relevance
for this work. It is to be noted though, that a side effect of using AABs is that there can
exist multiple APKs for the same version and code of an application that have different
hash values.

2.1.3 Building Process
Note that if not state otherwise, we refer to the building process of native Android
applications, i.e. applications not built using some framework. The building process
when using frameworks can differ depending on the used framework. We will see some
examples for building applications using frameworks in section 2.2. Earlier, we mentioned
AABs, these are generated differently. However, the APK installed on the user’s device
will be generated the same way as described below using the AAB [Andg].

6



2.1. Android Basics

Figure 2.1: Android Build Procedure

Android applications can be written using Java, Kotlin and C/C++. Both Java and Kotlin
can be used interchangeably for developing the actual main part of the application [Andf].
Whilst C/C++ is used for developing libraries using the Java Native Interface (JNI)
for interacting with the application [Andj]. As we will see in section 2.3 using native
libraries is a possible way of obfuscating an app’s behavior.

Figure 2.1 shows the general compilation procedure of an Android application. Depending
on whether the application is written in Java or Kotlin the source code is compiled to
.class files with the Java or Kotlin compiler [Andh, Now]. From there on, the steps are
the same for both Java and Kotlin applications. The generated .class files can now be
obfuscated using, for example ProGuard or any other obfuscator before being converted
to Dalvik byte code.
Before version 3.4.0 of the Android Gradle plugin released in April of 2019, obfuscation
was done using ProGuard, after which the D8 compiler was used to convert the Java
bytecode to Dalvik bytecode. When using newer versions of the Android Gradle plugin
for building applications, only the R8 compiler is used. This is an optimized version
of the D8 compiler that can also handle obfuscation [Andl, Med, Andi, Lev]. Note
that ProGuard and R8 are part of the official Android Build chain and, therefore, used
by many applications. The obfuscation performed by R8 is optional and disabled by
default. In addition, there exist plenty commercial third-party obfuscation tools, like
DexGuard [Dexa], DashO [Das] and DexProtector [Dexb], that can be used at different
parts of the build procedure.

The resulting .dex files will then be packaged together with the app’s resources, the
manifest file and the used libraries into an APK using theAndroid Asset Packaging Tool
(AAPT2) [Anda]. The generated APK file can then be installed and run on the device.
Android versions prior to 4.4 run applications on the Dalvik Virtual Machine, whilst
newer versions use the Android Runtime (ART) [Med, Lev, LB22]. The Dalvik Virtual
Machine is an adaption of the Java Virtual Machine (JVM) optimized for more restricted
lower power devices. The main difference between the Dalvik VM and the ART is the way
they handle code compilation. Both interpret the Dalvik bytecode given to them, this
however is rather slow. Therefore, they also make use of Just-in-Time (JIT) compilation.

7



2. Background

Figure 2.2: Launching an application using the Android Runtime

Here the systems compiles often and repeatedly used code, so-called hot code, into binary
code. This increases performance as the compiled code is usually faster and better
optimized, furthermore, the system can execute it directly on the CPU without first
having to interpret it.
The ART goes one step further and also makes use of Ahead-of-Time (AOT) compilation.
Here the systems remembers often used code parts across application launches and
compiles these into binary code, storing them as .oat files, which can be loaded from disk
upon program launch. An OAT file is an ELF shared object that contains additional
sections with OAT metadata [lie]. Figure 2.2 shows an overview of the application loading
and executing process for the Android Runtime. Furthermore, it is possible to share
information about which parts of an application are executed most between users. This
can be done via the Play Store, resulting in the system being able to compile parts of
the application upon installation or updating with the effect of having an optimized
application on the first startup already [Lev].
In general, applications built using a framework also have to follow the structure explained
in this section at some point in order to generate an APK or AAB file.

2.2 Frameworks
We will now have a look at frameworks. These are tools that allow developing applications
using common abstractions, such as pre-made templates, components and structures. In
contrast to developing apps natively for the Android system, the use of frameworks often
abstracts away from many details allowing for reusing the same code for different platforms,
e.g. iOS. There are also frameworks used for game development, e.g. Unity [Uni], however,
these are not the main focus of this section, which lies on CPDFs. Hence, if not state
otherwise, when talking about frameworks we refer to CPDFs for the following of this
section. Popular examples are, Flutter [Flu] and React Native [Reab].

8



2.2. Frameworks

We will now look at some of the advantages of frameworks and why they are used by
developers. One of the main reasons for using CPDFs is their ability to create applications
for multiple platforms, with less effort required than to develop a native application for
each platform. This reduces the development cost and effort. Furthermore, it can speed
up the development as well, as only one application has to be developed and maintained.
In addition, the developers only require knowledge about the framework itself and not
specific knowledge about the various platforms the application will eventually run on.
Framework applications are often written in programming languages different from the
ones used for developing native applications. This allows developers new to a platform
to quickly work on projects without having to learn the specifics for that platform first,
especially as many frameworks use Web technologies, like HTML, CSS and JavaScript.

Due to the additional abstraction layers they tend to have worse performance and
higher memory consumption than native applications [MA21]. The application size
especially after installation is larger than these of native Android applications. A Study
by Mahendra et al. showed that depending on the framework used, the application can
be 10 times larger than a native one [MA21].
As CPDFs often wrap calls to the platforms’ native APIs, in order to allow platform
independent usage from within the framework, one can not easily access native APIs that
are not supported by the framework. Some frameworks allow manually adding access to
platform specific features, with the downside of reducing portability of the application in
the process [MDC+21]. In general what is gained by the convenience and development
speed of CPDFs is often paid for in reduced control over the own application and more
limited access to native features.

In the following we will now look at 5 different categories of CPDFs. These categories
were introduced by Xanthopoulos et al. [XX13] and further refined by Biørn-Hansen et
al. [BHGG18].

• Web apps are browser based applications that render a Web page. This means
the actual application part is a website built using Web languages like JavaScript
and HTML, which then is rendered by a browser. The advantages lie in their
platform independence, furthermore they do not require downloading or updating
in the sense a conventional application would. Downsides are slower performance,
requirement for an Internet connection, as well as the limited access to the platform
the application is running on, as it has to rely on the APIs provided by the browser.
Some frameworks for creating Web apps are Angular [Ang] and React.js [Reaa].
These type of frameworks are not important for our work, as we focus on frameworks
producing an APK file.

• Hybrid apps are developed using Web technologies, like Web apps are. However,
they are not run through a browser, but instead run inside a thin container
application. This is a native application containing an element responsible for
rendering the application Web code, which can be either a UIWebView on iOS or a
WebView element on Android. This container can be thought of as an application

9



2. Background

that just renders one particular website. Due to it being a native application it has
access to the APIs of the particular platform it is running on, which allows for a
better and deeper integration into the platform. However, they can not make use
of platform optimized UI elements and have to rely on Web elements, therefore,
sacrificing some performance. Examples for frameworks of this category are Apache
Cordova [Apaa], Capacitor [Cap] and Framework7 [Fra].

• Interpreted apps make use of an interpreter to run framework specific code for
each supported platform. They consist of a native part that is specific for each
platform and the platform independent application part. Due to the interpreter
being native to each platform it has access to its APIs and performance features,
which it wraps in a such way that the application can access it independent of the
actual platform. The developer therefore only has to know the APIs provided by
the framework and does not need to learn the specific APIs of the various target
platforms. The interpreter using platform specific features and elements leads to
a user experience more similar to conventional applications, due to the fact that
native UI elements can be used to display content instead of relying on HTML
elements with CSS styling. Often times the application code itself is still written in
Web Languages similar to the hybrid approach, but instead of being executed in a
WebView they are interpreted by an interpreter like JavaScriptCore or V8. Examples
for frameworks of this category are React Native [Reab], NativeScript [Nat] and
Titanium SKD [Tit].

• Generated apps sometimes also called cross-compiled apps are written for one
platform, and get converted and compiled like a native application for all other
supported platforms. They achieve very good performance as they are basically
native applications. However, the automatically generated code from the conversion
step can be quite complex and hard to debug as the conversion step is non-trivial.
Popular examples are Flutter [Flu], which uses Dart for the application code, and
Xamarin [Xam], which uses C#.

• Model-Driven frameworks use the paradigm of Model-Driven Software Devel-
opment. Here the native application code is generated and derived from domain
specific language that can be learned and used by developers and non-developers
alike. This language is used to describe the application and its behavior. In most
cases this language is specific to the framework used.
MD2 [MD2] is an example for a framework of this type. For practical use cases
model driven frameworks are rather uncommon, they are more prevalent in re-
search [BHGG+19, BHGG18].

In the following we take a look at the functioning of React Native and Apache Cordova,
as these two frameworks are commonly used and influential, with Apache Cordova being
used as the basis for many other frameworks, such as Ionic, Capacitor and Framework7
[BHGG+19, MS21, Ionb, BHGG18].

10



2.2. Frameworks

Figure 2.3: Architecture overview of Apache Cordova

Taken from https://cordova.apache.org/static/img/guide/cordovaapparchitecture.p
ng at 2023-01-27

React Native [Reab] is an interpreted CPDF [Read]. This means that it has a native
component that will interpret and run the framework specific code, which in the case of
React Native is written in JavaScript. The component translating between these two, is
called the React Native bridge. It sits between the application logic written in React
Native specific code and the native part of React Native responsible for rendering the UI
and interacting with the actual platform. Events on the native site will get translated by
the bridge and send to the application logic, where they are handled [Reac, Coo].
With version 0.68 React Native changed its architecture, such that native parts use the
JavaScript Interface (JSI) for communication between the native and the JavaScript code.
This optimizes the communication and thus increases performance [Read, Reae, Pat].
When generating an Android APK using React Native the resulting APK still follows
the structure shown in section 2.1.1. The application code is added as an asset and gets
loaded by the native part for interpretation upon launch.

Apache Cordova [Apaa], formerly named PhoneGap [Phoa, Phoc, Phob] is a cross-
platform development framework using the hybrid approach. It allows developing for
Android, iOS and Electron using standard Web technologies, i.e. HTML, CSS and
JavaScript. Figure 2.3 gives an overview of Apache Cordova’s architecture. The actual
application is executed inside a wrapper, e.g. Android WebView, handling the HTML
rendering and JavaScript execution. This wrapper is run in the native part of the
application that also contains plugins accessing platform specific features, e.g. location
information or the camera. Access to these is provided to the application via the wrapper
component.
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2.3 Obfuscation techniques
There are many different obfuscation techniques applicable to Android applications.
The reasons a developer might want to obfuscate his application’s code can be diverse.
Many Android applications use obfuscation in order to protect its code against theft
of intellectual property or so called repackaging attacks [LBK21, LLB+17, WHA+18,
DLD+18]. In a repackaging attack a malicious actor takes an application and modifies
something before re-releasing it. This can be done in order to spread malware or redirect
advertisement revenue to the attacker [WHA+18, LLB+17, LBK21]. Repackaging attacks
are one of the major concerns mobile developers have when it comes to protecting their
code [LBK21]. But obfuscation can also be used to hide malicious functionality and
thereby, is also often used by malware [DLD+18].

In the following we describe some common obfuscation techniques used with Android
applications [ZFL+20, LLJG15, BBM+18, ZBLO21, DLD+18, MdTGM19]. Many of
them, like dead code removal and identifier renaming, can be enabled in the default
Android build chain [Andl].

1. Package Flattening, here the package hierarchy is changed by moving files to
other directories or removing subdirectories all together. This prevents using the
file hierarchy to derive the application’s structure, i.e. code belonging to the same
library [ZFL+20, LLJG15].

2. Identifier renaming. Identifiers like field, method, and class names carry a lot of
information that may be useful for analysis or reverse engineering. By renaming
these to random strings this information is lost.

3. String Encryption. Here sensitive strings in the code are encrypted such that
they are meaningless and can not easily be extracted. Together with reflection it
can hide, which classes or methods are actually used by a reflection call.

4. Dead Code Removal, is used to remove unnecessary code parts. This can lead
to features extracted from the code to change, whilst its functionality remains
unchanged. It is often used as an optimization in order to reduce an application’s
size.

5. Control Flow Modification, here the control flow is changed without altering
the executed tasks. This can be done in various ways, the results however are
always the same and aim at disrupting tools and techniques using the control flow
for analysis or identification. An example for such a technique, is control flow
flattening [LK09]. Here every jump instruction between two basic blocks is made
via a dispatcher node that jumps to the actual location based on a variable set
at the end of every block. The dispatcher block can be thought of like a switch
statement.
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6. DEX Encryption allows developers to encrypt the whole DEX file. This pre-
vents reverse-engineering tools from directly accessing the functions and compo-
nents [ZFL+20].

7. Junk Code Insertion. Analysis techniques that use features, signatures comprised
of code snippets or statistics of the code can be manipulated by inserting junk code,
which will not be used by the application. Detecting and ignoring such unused
pieces of code is rather easy, and as a result this technique is not as effective as
others [BBM+18, MdTGM19].

8. Native Code. The DEX code of Android applications is usually easier to analyze,
than x86 code for example, as it contains more information [DLD+18, ZBLO21].
Outsourcing code into native libraries can it make harder to analyze them, as these
contain less information and require further analysis tools.

9. Reflection. This is a feature of Java and Kotlin that allows for inspecting, loading
and interacting with classes, files and methods at runtime. It can therefore be
used to alter the programs execution and structure during runtime making static
analysis less concise.

10. Asset/Resource Encryption. Here the assets and resources are encrypted.
Access to them is wrapped with a decryption routine. Often the assets and
resources are also randomly renamed to prevent filenames from disclosing their
content or origin.

11. Library Encryption. The libraries used by an application can tell a lot about
it and the operations it performs, hence library detection has been studied quite
extensively [ZLF+22, ZFL+20, MWGC16, LLJG15, WWZR18, BBD16]. During
library encryption the library files itself can be encrypted, altered and renamed to
prevent identifying them. Similar to the asset and resource encryption calls these
libraries are wrapped with a routine, that decrypts the libraries before loading
them during runtime if needed.

A study by Wermke et al. [WHA+18] found that 25% of the analyzed applications
make use of some form of obfuscation. This number raises to around 50% when only
looking at applications with more than 10 million downloads. This shows that there is a
non-negligible number of Android applications using obfuscation. Analysis tools not able
to handle obfuscated apps are therefore at a clear disadvantage. Furthermore, third-party
libraries are more likely to be obfuscated. As the majority of Android applications use
third-party libraries [LLJG15, Exo, ZLF+22], it is even more necessary for analysis tools
to function with obfuscated code.
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2.4 Binary Code Similarity

The approach of compiling the APK-files into a native binary format allows the usage
of code binary similarity techniques, typically not applicable for Android applications.
Binary code refers to machine code that can directly be run by a CPU and is typically
produced by a compilation process from a higher level programming language. Binary
code similarity techniques are used for comparing compiled programs without the use of
their source code. Comparison can be done at different granularity levels, e.g. instructions,
basic blocks, functions or whole programs.
It is used for many different tasks like bug search, malware clustering, malware detection,
malware lineage, patch generation, patch analysis, porting information across program
versions and software theft protection [HC21, LHZ+18].

To be considered similar two code pieces have to be similar in their syntax, structure
or semantics. Syntax similarity compares the binary code’s syntax, i.e. the concrete
instructions in the code. On the other hand, semantic similarity does not rely on the
syntax representation of code, as it focuses on the meaning and functionality of the code.
Two programs can be syntactically completely different but semantically the same. A
simple example are the statements a++ and a += 1. They both perform the same task
of incrementing the variable a by 1 whilst using a different syntax. Techniques using
structural similarity lay in between these two and work on graph features extracted from
the source code, i.e. Control Flow Graphs (CFGs) and Call Graphs (CGs). These graphs
contain part of the program’s semantics, whilst at the same time being influenced by
its syntax. For example, by inlining a function, the program’s CG changes without the
semantics being changed. Nevertheless, graph based techniques are often used due to
entirely semantic approaches being computationally more expensive.
Relying on syntax similarity is not robust like semantic similarity as the same source
code compiled at different times, with different compiler settings or a different compiler
can lead to different binary code [HC21]. However, as some features and structure
persists, using structural features, allows for matching two code pieces without the need
of complex semantic based approaches or uninterpretable machine learning techniques, as
has been shown by Kim et al. [KKC+23]. The problem with most binary code similarity
techniques using machine learning for identifying and extracting features is the fact that
they are hard to interpret and debug. This is due to the complex and abstract nature of
the features learned by the machine learning models, making it challenging for human
analysts to understand the underlying patterns. This makes improvement and adaption
of the techniques harder.
In general, binary code similarity is performed in four major steps, described by Kim et
al. [KKC+23] as below:

1. Syntactic Analysis. In this first step an intermediate representation like the dis-
assembled machine code or an Abstract Syntax Tree (AST) is created from the
provided binary code. This is the basis all following steps are build upon.
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2. Structural Analysis. During this step control structures, like the CFG and CG are
created from the intermediate representations created in the previous step.

3. Semantic Analysis. In this step additional semantic information is inferred from the
binary code to capture additional program semantics and enhance the structures
and information recovered in the first two steps. This can for example be done
using data flow analysis.

4. Vectorisation and Comparison. In this final step, the information recovered in the
previous three steps is vectorised in order to allow for computing a similarity score.

Depending on the actual technique and features some the first 3 steps can be skipped.
Examples for concrete techniques can be found in section 3.3.
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CHAPTER 3
Related Work

Detection of frameworks on Android has not been in the focus of scientific research. To
the best of our knowledge there are not any publications about framework detection
specifically. However, it has been used as a tool in some studies dealing with CPDFs.
Library detection, on the other hand has already been studied to a great extent. Detecting
and identifying the libraries used in an application faces similar challenges as detecting
the used framework. We will mention previous work on library detection (Section 3.2) as
it can be used to identify the framework used in an app, even though we have not seen
any detectors use libraries apart from their filenames for detection. Lastly section 3.3 will
give an overview about existing research and techniques for determining the similarity of
binary code, as the framework detection technique introduced in section 5.3 of this thesis
builds upon techniques and findings of previous research on binary code similarity.

3.1 Framework Detection

This section will summarize several previous research papers, that made use of framework
detection as part of their work. After that we have a look at tools capable of detecting
the frameworks used in an application. Table 3.1 on the end of this section contains an
overview over the different techniques and the frameworks they detect.

The first large scale analysis detecting frameworks in Android apps was done by Viennot
et al. [VGN14] in 2014 as part of their PlayDrone application for scraping and analysing
apps from the Google Play Store. Their approach works by looking at the directory
hierarchy of the decompiled APKs searching for the fully qualified names of 3 frameworks.
Hence, it is not robust against hierarchy flattening and directory renaming obfuscation as
introduced in section 2.3. It can detect PhoneGap (now called Apache Cordova), Adobe
Air and Titanium.
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Another early work on detecting frameworks in Android apps was done by Malavolta et
al. [MRST15] for investigating the usage of cross-platform apps on the Play Store, i.e.
rating, review count and used libraries. Their technique searches the decoded APK for
specific file names and file extensions, as well as specific strings, in order to determine
the framework used by the app. The tool itself is available on GitHub1, but has not been
updated since 9 years, together with the fact that the majority of frameworks it claims
to detect have been deprecated and are no longer being developed the practical use of
this tool is limited.

Ali and Meshba [AM16] claim to have publicised the first study investigating cross-
platform applications on the Play Store. However, this is not the case as both Malavolta
et al. [MRST15] and Viennot et al. [VGN14] published prior research. For framework
identification their tool extracted the list of class names using android-classyshark2 and
searched the list for the fully qualified class names of three frameworks: PhoneGap/A-
pacheCordova - "org.apache.cordova", Appcelerator titanium - "org.appcelerator.titanium",
Adobe Air - "com.adobe.air". Their claim to identify cross-platform applications with an
100% accuracy has to be questioned as obfuscating the class names would easily prevent
detection as we show in chapter 4.

Mohanty and Sridhar [MS21] extend the approach of Ali and Mesbah [AM16] to detect
more Apache Cordova based frameworks, like Ionic, Monaca, OnsenUI, Phonegap and
Framework7, but also to detect apps using React Native. The main contribution of
their paper is the identification and investigation of security issues in applications using
cross-platform frameworks. Their tool, called HybriDiagnostics, searches the unpacked
APK directory for the filename cordova.js to infer that the app makes use of an Apache
Cordova based framework. In addition, the classes.dex file is disassembled into a human-
readable format using dexdump and searched for <Class-Descriptor> strings in order to
extract the fully-qualified class names of all compiled classes. The list of extracted class
names is then searched for class names associated with the specific frameworks. The
concrete class names searched for, as well as HybriDiagnostics itself, have not been made
public by the authors.

Another approach inspired by Ali and Meshba [AM16] was developed by Biørn-Hansen
et al. [BHGM+22] and used for investigating the usage of different CPDFs on the Google
Play Store over time. Their technique works by searching for certain strings in the
AndroidManifest.xml and by searching for certain files, file extensions and folders in the
/assets/ directory and the APK file. With supporting 13 different up-to-date frameworks
it is the technique capable of detecting the most distinct frameworks we have found.
Their program code as well as the dataset created with it has been published on GitHub3.

The framework detection tools looked at so far have been created as part of other
research. We could not find any commercial tools advertising the capability of detecting

1https://github.com/GabMar/ApkCategoryChecker
2https://github.com/google/android-classyshark
3https://github.com/andreasbhansen/phd-thesis-contributions
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an application’s framework. There are however some publicly available tools claiming to
be capable of detecting the framework used in an Android application. In addition, these
are the most up-to-date techniques and tools available.
One of them is the APK Framework Detector tool [APKa]. It works by unpacking the
APK and looking for known filenames and their locations. It has a static list of known
files for different frameworks, mostly made up of framework specific library files.
Another tool also searching for specific filenames in order to determine the framework
used by an application is Mob Framework Radar [Mob]. Even though these techniques
are simple and fast they are not robust against obfuscation, as simply renaming files
will lead to them failing. Furthermore, one could easily add files with the corresponding
names to trick these tools into detecting a wrong framework.
DroidLysis [Dro] is a tool for pre-analysis of Android apps, however, it has a feature for
detecting third party libraries by searching for certain strings the directory hierarchy. As
a part of this feature it allows detection of some frameworks and can therefore also be
considered to be a framework detection technique.

Two closed source tools for framework detection distributed as Android apps are Power-
APK [Pow] and APK Platform Detector [APKb].
PowerAPK also looks for the file names of used native libraries and other known filenames,
e.g. /assets/www/cordova.js. According to a blog post of the tool’s author [Sis], it also
checks for known substrings in these files. We also confirmed this by reverse engineering
and analysing the APK downloaded from the Google Play Store using jadx4.
APK Platform Detector [APKb] is another tool working similarly. Using jadx to analyze
the tool’s APK we found that it also checks the package names in the application against
a list of known package names used by frameworks.

All the existing tools for framework detection function by similar principles, which are
vulnerable to simple obfuscation as shown in chapter 4. Furthermore, most techniques
are only able to detect a subset of frameworks. To the best of our knowledge there exists
no study comparing different framework detection techniques or investigating the impact
of obfuscation to their effectiveness.

3.2 Library Detection
Library detection is related to framework detection. The first step of most library
detection techniques is to find possible library candidates in the applications’ code before
identifying them. The similarities to framework detection lie in the part of identifying
the code pieces and attributing them to a framework or library.

Zhan et al. [ZLF+22] conducted a literature review on the research of Third-Party Li-
brarys (TPLs) on Android. They proposed a taxonomy for categorizing TPL research on
Android systems by their research objectives, targeted libraries, types of TPLs and types
of program analysis used. For each research objective they gave an overview about the

4https://github.com/skylot/jadx
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Technique Supported Frameworks
Viennot et
al. [VGN14]

• Adobe Air • PhoneGap • Titanium

Malavolta et
al. [MRST15]

• Apache Cordova
• Enyo
• IBM Worklight
• IUI

• Kivy
• mobl
• MoSync
• Next

• QuickConnect
• Rho Mobile
• Sencha
• Titanium

Ali and
Meshba [AM16]

• Adobe Air • PhoneGap • Titanium

Mohanty and
Sridhar [MS21]

• Apache Cordova
• Framework7
• Ionic

• Monaca
• OnsenUI
• Phonegap

• React Native

Biørn-Hansen et
al. [BHGM+22]

• Adobe Air
• Apache Cordova
• Capacitor
• Codename One

• Flutter
• Ionic
• NativeScript
• Qt Mobile

• React Native
• Titanium
• Weex
• Xamarin

APK Framework
Detector [APKa]

• Apache Cordova
• Flutter

• React Native
• Xamarin

Mob Framework
Radar [Mob]

• Apache Cordova
• Capacitor
• Expo

• Flutter
• React Native
• Uno Platform

• Xamarin

APK Platform
Detector [APKb]

• Flutter • React Native • Xamarin

Power APK [Pow] • Apache Cordova
• Godot

• Mono
• React Native

• Unity

DroidLysis [Dro] • Apache Cordova
• Flutter

• React Native
• NativeScript

• Titanium SDK
• Unity

Table 3.1: Framework detection techniques and the frameworks supported by them.
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current state and existing research, as well as identified shortcomings and possible future
research directions.
The research objectives investigated were, TPL detection, security issue analysis, TPL
privilege de-escalation, TPL maintenance and TPL attribute understanding. TPL detec-
tion is the most relevant for our work.
All library detection tools investigated by Zhan et al. [ZLF+22] used static analysis
techniques. Static analysis techniques are easier to scale and get better code cover-
age [CGO15]. Whilst dynamic techniques have the advantage of analysing the code that
is actually being run, which makes them more robust against reflection and dynamic code
loading. However, they are limited to analyzing code executed at runtime and, therefore
do not analyze the complete application. Dynamic techniques are usually more suited
for detecting malicious libraries, as these tend to more often make use of dynamic code
loading and reflection, in order to hide their malicious activities [LLB+17].

In a previous paper Zhan et al. [ZFL+20] compared different library detection techniques
in terms of their practical usage and implementation performance. They also listed the
features and methods used for detecting and identifying possible library candidates.

Techniques mentioned and compared by the previous two papers include LibRadar [MWGC16,
Libb], ORLIS [WWZR18], LibScout [BBD16, Libc] and LibPecker [ZDZ+18, Liba]. In
general library detection is done in four steps [ZLF+22]:

1. Pre-Processing

2. Library Instance Construction

3. Feature Extraction

4. Library Instance Identification

During the pre-processing step the application is disassembled and transformed into
a representation suitable for further analysis. Library instance construction refers to
the identification of possible libraries, this means finding the pieces that make up each
library. During the feature extraction, the features used for identification of the TPLs
are extracted, before they are used in the last step to identify the library instances.

LibRadar [MWGC16] uses the package hierarchy to determine possible libraries, making
it susceptible to obfuscation by package flattening and error-prone due to the fact that
libraries might share the same root packages [ZLF+22]. It uses the frequency of Android
API calls as features to cluster and identify the library candidates, making it more
efficient in terms of computation resources but also more susceptible to obfuscation like
dead code removal.

ORLIS [WWZR18] uses fuzzy method signatures as feature for identifying library
candidates. For coming up with possible library candidates it uses class dependency
relations extracted from the call graph. As these do not rely on the package structure

21



3. Related Work

it is to best of our knowledge the only tool for library detection that is robust against
package flattening. However, the quality of the extracted class dependencies can be
impacted by modification to the control flow.

LibScout [BBM+18] claims to be able to detect specific versions of a library. For
identifying a TPL it uses fuzzy method signatures, like ORLIS. The package hierarchy is
used for constructing library candidates, hence LibScout is not robust against package
flattening.

LibPecker [ZDZ+18] improves on LibScout and ORLIS by using internal class dependen-
cies and method invocation relations. LibPecker was concluded by Zhan et al. [ZFL+20]
to be the most robust against obfuscation. However, due to it using the package structures
for finding possible libraries, it is not robust against dead code removal and package
flattening [ZLF+22].

3.3 Binary Code Similarity
The survey done by Haq and Caballero [HC21] gives an overview about past research on
binary code similarity. It lists practical applications for binary code similarity, as well as
several different techniques and approaches. Furthermore, it shows how binary code simi-
larity evolved from simple byte-level diffing in 1991 proposed by Reichenberger [Rei91]
towards the neural network based approaches of recent years, e.g. αDiff [LHZ+18],
BinDeep [TJM+21] and the work of Yu et al. [YCT+20].
αDiff calculates a feature vector for each function based on their raw bytes, their re-
lationships with other functions and imported functions. A function’s raw bytes are
transformed into an embedding vector by a Convolutional Neural Network (CNN). The
inter function semantics are represented by the in- and out-degree of the function CG.
Due to the fact that an CNN is used for creating the embedding it is not possible to
ascertain the exact features that have been learned [HC21, KKC+23].
Yu et al. [YCT+20] use Natural Language Processing (NLP) models to extract semantics
from the binary code. It treats basic blocks as sentences and the tokens in them as words
in order to apply BERT [DCLT18]. BERT is an influential NLP model structure based
on a transformer architecture. The embeddings learned from BERT are then processed in
a Message Passing Neural Network (MPNN) [GSR+17] to calculate the graph semantic
and structural embedding. These two are combined in a final step with a graph order
embedding created by applying a CNN to the adjacency matrix of the CFG.
Kim et al. [KKC+23] investigated features used by various binary code similarity tech-
niques. Based on their results they implemented a similarity measure using syntactic and
structural features, e.g. number of specific types of instructions or average basic block
size. They use a greedy based selection algorithm for creating an optimal feature set from
their list of possible features. Their main goal with that was to create an interpretable
binary code similarity measure, showing that uninterpretable neural networks and feature
embeddings are not required to get a good performing binary code similarity technique.
Their tool TikNib outperformed other more complex state-of-the-art approaches. For
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evaluation, they created and published their own dataset called BinKit consisting of
243,128 binaries, as thy noticed that the lack of such a dataset made it difficult to
compare various techniques with each other. Using this dataset and their TikNib tool
they investigated the effects of different compilers, compiler options, obfuscation and
other others on the similarity of the produced binaries.
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CHAPTER 4
Breaking Current Framework

Detection Techniques

In this chapter we show that the current approaches listed in section 3.1 are not robust
against simple obfuscation techniques. For this we took a random app for each framework
from our dataset, obfuscated that application and confirmed that the application still
can be installed and run, whilst at the same time not being detected any more by the
framework detectors. In such a case we call a detection technique broken. We only tested
the following framework detection techniques as the other techniques were either closed
source or outdated, such that they could not be run reliably or targeted deprecated
frameworks and framework versions: Mob Framework Radar [Mob], APK Framework
Detector [APKa], Biørn-Hansen et al. [BHGM+22], APK Platform Detector [APKb],
Power APK [Pow] and DroidLysis [Dro].
All current techniques, which are shown in table 3.1 function by similar principles
mentioned in section 3.1, hence, the same obfuscation approach defeating one detector
also defeated others detectors.
The following of this chapter is structured as followed. The sections 4.1-4.4 will each
introduce one obfuscation technique and show a proof of concept script using it. All shown
techniques have been used to defeat one or more of the above listed framework detectors.
Furthermore, in section 4.5 we will summarize our findings and argue what these results
mean to the effectiveness and robustness of the framework detection techniques not
tested.

4.1 Library Renaming
Most of the current framework detection approaches search for the presence of framework
specific libraries in order to detect some of the frameworks. To check the presence
of a library they simply search the APK for a file with the corresponding name, i.e.
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apktool d -f com.zulipmobile_216.apk
cd com.zulipmobile_216

# Rename reference to the libraries
find . -type f -exec sed -i "s/libreactnativejni.so/libobfuscatedjnir.so/g"

{} \;�→

# Modify System.loadLibrary() calls
sed -i 's/reactnativejni/obfuscatedjnir/'

smali/com/facebook/react/bridge/ReactBridge.smali�→

# Rename library files itself
find ./lib -type f -name "libreactnativejni.so" -exec sh -c 'mv "$0"

"$(dirname "$0")/libobfuscatedjnir.so" ' {} \;�→

...

Listing 4.1: Bash script applying Library Renaming to obfuscate a React Native APK

libflutter.so, libreactnativejni.so, etc. Hence, it is straightforward to defeat this technique.
To change the name of the library file three things have to be done. First the library
file itself has to be renamed, then all mentions of this library filename in the app have
to be changed to the new library filename, afterwards the library name given to the
System.loadLibrary() call in the application code has to be changed to the new
name of the library. The name used in the System.loadLibrary() call is slightly dif-
ferent to the actual filename of the library, e.g. a library with filename libflutter.so
will be loaded by calling System.loadLibrary("flutter"), hence, dropping the
prefix lib and the .so file extension.
Listing 4.1 shows an example bash script obfuscating a React Native application. The
script unpacks the APK file using apktool1, before using find2 and sed3 commands to
find mentions of libreactnativejni.so and reacnativejni and replace them with libobfuscat-
edjnir.so and obfuscatedjnir. We omit the commands used for repacking, realigning and
signing of the APK as these are not relevant for obfuscation itself.
The LibEncryption obfuscation of Obufscapk4 should also prevent framework detection

based on the library file names as it encrypts the library files and moves them with a
changed name to the assets/ directory. However, we found it to not be reliable as it only
does this for libraries loaded within static constructors, which is not always the case.

1https://apktool.org/
2https://linux.die.net/man/1/find
3https://linux.die.net/man/1/sed
4https://github.com/ClaudiuGeorgiu/Obfuscapk
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...

# Rename assets/www directory to obfuscate usage of Flutter
mv ./assets/www ./assets/obfuscated
find ./smali -type f -name "*.smali" -exec sed -i 's#www/#obfuscated/#g' {}

\;�→

# Rename cordova.js to obfuscate the usage of Apache Cordova
mv ./assets/public/cordova.js ./assets/public/obfuscated.js
find . -type f -exec sed -i "s#/cordova.js#/obfuscated.js#g" {} \;

# Rename index.android.bundle to obfuscate usage of React Native
mv assets/index.android.bundle assets/index.obfuscated.bdl
sed -i 's/index.android.bundle/index.obfuscated.bdl/'

smali/com/facebook/react/ReactNativeHost.smali�→

...

Listing 4.2: Bash commands applying Asset Renaming obfuscation against a Flutter
application

4.2 Asset Renaming
Another often used detection technique is to look for certain asset files, which can also
easily be obfuscated by just renaming these or the directories containing them. Here we
first rename the framework specific directories or files before changing all mentions of
them in the applications’ code.
Listing 4.2 shows some commands, that were successfully used for obfuscating against the
tested detection techniques. The script again omits the commands used for unpacking
and repacking the APK. Changing asset names is a common technique also implemented
by the AssetEncryption obfuscation of Obfuscapk, however we found this particular
implementation not reliably modifying relevant assets.

4.3 Class Renaming
Class names are commonly used for inferring information about an application, however
removing these prior to releasing an app is easy as the default obfuscator/compiler R8, that
is part of the Android build chain is capable of renaming classes to random strings [Andl].
The investigated framework detection techniques often searched the AndroidManifest.xml
and classes.dex files for mentions of framework specific class names. Renaming classes
in Android also requires moving their corresponding class files, as the fully qualified
class name corresponds to the directory and filename of the class. Some detectors, like
DroidLysis and APK Platform Detector searched the classes and directory hierarchy
for parts of qualified class names, e.g. "com.xamarin" and "com/appcelerator/aps",
obfuscating against such techniques requires moving the entire directory and renaming
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...

# Rename reference to class in smali code
sed -i

's#com/tns/NativeScriptApplication#com/tns/ObfuscatedScriptApplica#g'
./smali/com/tns/NativeScriptApplication.smali

�→
�→

# Rename class file
mv ./smali/com/tns/NativeScriptApplication.smali

./smali/com/tns/ObfuscatedScriptApplica.smali�→

# Rename all references to the class
find . -type f -not -path "./smali" -exec sed -i

's/com.tns.NativeScriptApplication/com.tns.ObfuscatedScriptApplica/g'
{} \;

�→
�→

...

Listing 4.3: Bash commands applying Class Renaming obfuscation against NativeScript
applications

all classes inside of them.
We used Obfuscapk’s ClassRename obfuscator and noticed that the resulting APK crashed
upon start, this is due to Obfuscapk not properly handling usage of the renamed classes
if accessed in framework specific JavaScript code or libraries. Therefore, we implemented
our own proof of concept class renaming scripts. The example found in listing 4.3 handles
this for NativeScript. First all mentions of the class name com.tns.NativeScriptApplication
inside the smali code are renamed, before the files and directories containing the class
are renamed. Lastly all other references to the class are renamed including usages in
./assets/app/vendor.js, which Obfuscapk did not. Even tough a simple fix this shows
that obfuscators need some framework specific tweaks to function properly when applied
to non-native Android applications.

4.4 Resource Renaming

The framework detector of Biørn-Hansen et al. [BHGM+22] searches the AndroidMan-
ifest.xml file for the metadata entry name "qt_libs_resource_id". Simply renaming
the name of the metadata entry in all places circumvents detection. The command
used for this can be found in listing 4.4. We also tested the implementation of the
ResStringEncrpytion obfuscator of the Obfuscapk, but it failed to rename the relevant
resource names.
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# Rename qt_libs_resource_id id
find . -type f -exec sed -i 's/qt_libs_resource_id/obfuscated/g' {} \;

Listing 4.4: Bash command applying resource renaming against Qt Framework applica-
tions

4.5 Summary
To summarize we have defeated all the following framework detectors, representing the
state-of-the-art approaches: Mob Framework Radar [Mob], APK Framework Detec-
tor [APKa], Biørn-Hansen et al. [BHGM+22], APK Platform Detector [APKb] Power
APK [Pow] and DroidLysis [Dro].
The obfuscation we introduced prevented them from detecting the following frameworks:

• Apache Cordova

• Capacitor

• Flutter

• Ionic

• NativeScript†

• Qt Framework

• React Native

• Titanium SDK

• Xamarin∗

We also tried detecting applications using Expo, but no detector found any Expo related
features in the applications. However, as Expo is based on React Native, corresponding
features were found. Applying the same obfuscations as against React Native Applications
was successful in obfuscating the React Native features in the Expo applications.
We could not prevent Power APK from detecting the Xamarin framework as it searched
for fully qualified class names starting with "com.xamarin" and renaming these classes
resulted in the application failing to launch. This is due to a native library, that is part
of the Xamarin framework, accessing Xamarin classes using their fully qualified class
names in a way that can not simply be changed with a string replacement operation
on the native library. Using reverse engineering we also failed to precisely identify how
the calls to these classes are made in the native library. However, we were able to find
relevant code snippets in Xamarin’s source code. Listing 4.5 shows the JNI name of one
of the classes in the com.xamarin class path, which we failed to rename, in a way to
make the app still executable.
In order to detect the NativeScript framework DroidLysis searches the directory hierarchy

for "com/tns". However, moving the entire directory and renaming all the classes within
it correspondingly, results in the app crashing upon start up as now NativeScript specific
JavaScript code cannot find the main application class via the JNI any more.
This again shows that class renaming, even though a simple obfuscation technique can not
always be directly applied when an application is build with a framework. It is therefore
unlikely that class names in applications using Xamarin and NativeScript are obfuscated,

†DroidLysis technique not broken
∗Power APK technique not broken

29



4. Breaking Current Framework Detection Techniques

1 namespace Java.Interop {
2
3 [JniTypeSignature (JniTypeName)]
4 /* static */ sealed class ManagedPeer : JavaObject {
5
6 internal const string JniTypeName =

"com/xamarin/java_interop/ManagedPeer";�→
7
8 static readonly JniPeerMembers _members = new

JniPeerMembers (JniTypeName, typeof (ManagedPeer));�→
9

10 static ManagedPeer ()
11 {
12 ...

Listing 4.5: ManagedPeer class in the Xamarin source code for the native library. Line 6
shows the JNI class name string.

making this a reliable artefact for detecting NativeScript and Xamarin applications. All
other listed frameworks were successfully obfuscated without access to their source code.

The obfuscation techniques applied by us are very basic string manipulation and file
moving, applied to APK files that were unpacked and packed using apktool. Obfuscators
applied at compile time have more options and can perform complex obfuscations in a
more robust manner. Working our approach into a robust production ready obfuscation
tool would require more polishing, nevertheless it shows that it is trivial to circumvent
current framework detection techniques even without deep understanding of application
code using simple string manipulations.
Although we have only tested a subset of the framework detection techniques, the findings
and conclusions of this chapter can be applied to all techniques as they work by similar
principles.

Whilst it is easy to obfuscate the used frameworks, we noticed that existing obfuscators
might fail to produce runnable results, due to them being designed for native Java/Kotlin
applications, therefore, not performing necessary framework specific obfuscation steps,
e.g. Class Renaming not renaming usages inside framework specific JavaScript code as
mentioned in section 4.3. As a result the current framework detection techniques might
still deliver good results as artifacts used for detection are not getting obfuscated due to
lacking support of the obfuscators.
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CHAPTER 5
Framework Detector

This chapter introduces the framework detector developed as part of this thesis and
explains how it functions and which considerations have been made during its development.
The structure of this chapter is as follows: Section 5.1 lists the frameworks supported
by our detector. The next section 5.2 explains how the dataset, used for training and
evaluation, has been build and how many applications for each framework it contains.
The framework detector itself will be explained in section 5.3, we explain the tools it
uses, as well as the modifications we made to them.

5.1 Supported Frameworks
Over the years there have been many different frameworks available for Android. The
rapid development of the mobile market led to many different approaches. Most did not
become popular enough to persist. We decide to include the following 16 frameworks:

• Apache Cordova [Apaa]

• Apache Flex [Apab]

• Capacitor [Cap]

• Expo [Exp]

• Flutter [Flu]

• Framework7 [Fra]

• Ionic [Iona]

• Kivy [Kiv]

• NativeScript [Nat]

• Qt Framework [QtF]

• React Native [Reab]

• Solar2D [Sol]

• Titanium SDK [Tit]

• Unity [Uni]

• Uno Platform [Uno]

• Xamarin [Xam]
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5. Framework Detector

We decided on these frameworks as they are still in active development or have been
relevant in the near past, with many apps still using them. We excluded frameworks for
which we could not find any available apps using them. This affected Meteor [Met] and
Rhodes [Rho]. In addition, we excluded any frameworks used for only building Web apps
as these do not produce an APK, but are run using a browser. Furthermore, we focused
on CPDF frameworks but nevertheless included some popular game engines, like Unity,
as these are specialized frameworks. Based on public surveys [Staa] and frameworks
investigated by other research we conclude that the list of frameworks chosen contains
the currently relevant frameworks [BHGM+22, BHGG+19, AM16].
As many frameworks extend each other one difficulty is to decide when something can be
considered its own framework and when just a version of another. For example Expo is
similar to React Native supporting and relying on many React Native modules. Similar
Apache Cordova is the basis for many other frameworks such as Capacitor, Ionic and
Framework7. With Ionic itself again being based on Capacitor [MS21, Ionb, BHGG18].
This question can never be answered with absolute certainty. The thesis adopts an
approach where a framework is treated separately, even if it extends another. This
separation is based on the extent to which a framework brings significant differences
and improvements compared its parent. Additionally, the development process using
the framework may differ enough to justify this separation. Especially as a framework
matures and gets developed further it differentiates more from the framework it extends.
To avoid confusion when comparing this list with other research it is to be emphasised
that renaming and rebranding of frameworks is rather common. For example Apache
Cordova is developed from an open source fork of Phone Gap, before Phone Gap was
deprecated in favour of the development of Apache Cordova [Phoc, Phoa, Phob].

5.2 Dataset
For the creation of the dataset we used mainly two approaches. Our first approach
was to manually search various frameworks’ websites for a list of sample or showcase
applications´. We scraped the applications’ information both manually and automatically
in order to generate the basis of our dataset. Using this technique we were able to
retrieve 527 possible apps, for 335 of which we were able to retrieve a link to the Play
Store to download the apps from. We were able to download 142 apps directly from the
Play Store. As not all apps could be downloaded directly from there, 127 of these were
downloaded from the Androzoo database [ABKLT16], which also have been downloaded
from the Play Store. Due to constant changes in how apps are distributed via the Play
Store, the way they can be downloaded is not always reliable. The other 66 applications
we were not able to download.
We could not find 192 applications on the Play Store, but were able to obtain their
source code. We had to build them manually, setting up a development environment for
each framework and compiling them. However, we were not able to build most apps and
samples, as only 12 of them could be built. The most common reasons for build failures
were dependencies on old non-existing libraries and modules, hard coded environment
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variables, missing Keystore files required for signing the APKs and missing configuration
files, e.g. for Google services. Some problems could be solved by looking at each app and
sample individually and manually resolving the errors occurring during the build process.
However, we considered this out of scope.

As an alternative approach for finding applications using particular frameworks, we
searched the F-Droid data repository 1. In order to determine the framework, only the
apps’ most recent build metadata is used. For each of the 4,363 apps in the repository
there exists a metadata file containing basic information about the app as well as steps for
building it. These metadata files were parsed and search for string signatures indicating
the framework used by the app. Each string was only searched for in the specific metadata
entry type, i.e. sudo, scanignore, etc. as specified in table 5.1. An overview over the
different entry types of the metadata file can be found in the F-Droid documentation2.
The signatures used can be seen in table 5.1. One matching signature suffices to identify
the framework, except to for Apache Cordova, Capacitor and Ionic, as these extend each
other. If an Ionic signature is found it takes precedence over any Apache Cordova or
Capacitor signature. Similarly, Capacitor signatures overrules Apache Cordova signatures.
This is necessary as apps using the Ionic and Capacitor framework might use the same
modules, parts and commands as the framework they are based on.
Especially frameworks using NPM3 often contained relevant signatures that could be
attributed to a particular framework. A downside of this approach is that many appli-
cations only made use of a gradle build file, hence, their metadata files contained no
relevant information for attributing the framework. As these build files and the source
code of the applications were not parsed, no framework information could be retrieved
for these apps. Future work might want to look at the source code and files relevant
to the build process of each application in order to determine the framework for more
applications. Table 5.2 shows the number of apps from F-Droid, of which we were able
to determine their framework.

An overview over the final dataset can be found in table 5.3, showing the number of apps
we could retrieve an APK file for, as well as the source we got the APK from.
We could not download APKs for all the apps found in the F-Droid data repository as
some apps have been deprecated and taken down with their source code and old build
information still remaining in the repository.

1https://gitlab.com/fdroid/fdroiddata
2https://f-droid.org/docs/Build_Metadata_Reference/
3https://www.npmjs.com/
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5. Framework Detector

Framework Signatures

Apache Cordova

•prebuild entry starting with "cordova platform add android"
•Installation of "cordova" using npm in sudo
•build entry starting with

-"cordova compile android"
-"cordova build android"

Capacitor
•prebuild entry starting with

-"npx cap sync android"
-"npx cap"

Flutter

•build entry starting with
-".flutter/bin/flutter build apk"
-"./flutterw build apk"
-"$$flutter$$/bin/flutter build apk"
-"$$flutter$$/bin/flutter -v build apk"
-"flutter build apk"

•scandelete entry starting with ".flutter"
•scanignore entry starting with ".flutter/bin/cache"
•prebuild entry starting with ".flutter/bin/flutter"
•srclibs entry starting with "flutter@"

Framework7 •Installation of "framework7-cli using npm in sudo

Ionic

•prebuild entry starting with "ionic cap"
•prebuild entry equals "yarn run ionic capacitor sync android"
•Installation of "@ionic/cli" using npm in sudo
•Instalaltion of "ionic" using npm in sudo
•build entry starting with "ionic cordova build"

Kivy

•Installation of "kivy" using pip in prebuild
•build entry containing:

-"buildozer android release"
-"./buildozer.run release

•Installation of "buildozer" using pip in build
Meteor •Installation of "meteor" using npm in sudo

NativeScript
•srclibs entry starting with "NativeScript_"
•Installation of "nativescript" using npm in sudo
•build entry starts with "pushd $$NativeScript_NativeScript$$"
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Framework Signatures

Qt Framework

•build entry starting with
-"export QT_BUILD"
-"export QT_VERSION"
-"$Qt5_android"
-"git clone https://code.qt.io/qt/"
-"$QT5_arm/androiddeployqt"

•build entry containing:
-"QT5_DIR"
-"https://download.qt.io/"

•rm entry equals "qt"

React Native •scanignore entry containing "node_modules/react-native/android"
•Installation of "react-native-cli" using npm in sudo

Titanium SDK •build entry starting with "ti build"

Table 5.1: Signatures used for determining the framework based on the apps’ F-Droid
metadata file. One of the signatures matching suffices to identify a framework.

Framework Total
Apache Cordova 6
Capacitor 4
Flutter 184
Ionic 7
Kivy 7
NativeScript 1
Qt Framework 9
ReactNative 25
Total 243

Table 5.2: Numbers of F-Droid apps with known framework

5.3 Detection

In the following section 5.3.1 we explain the structure of the detector and how it works.
Section 5.3.2 explains the process of finding relevant functions, used for identifying each
framework, before we discuss the limitations of our detector in section 5.3.3.
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Framework Manually
Built

Downloaded
from Play Store

Downloaded
from F-Droid Total

Apache Cordova 0 0 6 6
Apache Flex 0 3 0 3
Capacitor 0 0 4 4
Expo 3 17 0 20
Flutter 0 0 184 184
Framework7 0 75 0 75
Ionic 0 5 7 12
Kivy 0 0 7 7
NativeScript 0 44 1 45
Qt Framework 0 0 9 9
React Native 8 69 25 102
Solar2D 0 34 0 34
Titanium SDK 1 0 0 1
Unity 0 6 0 6
Uno Platform 0 1 0 1
Xamarin 0 15 0 15
Total 12 269 243 524

Table 5.3: Number of APKs grouped by framework and their source

5.3.1 Architecture
Our framework detector detects functions based on features extracted from the binary
OAT representation using the TikNib4 tool developed by Kim et al. [KKC+23]. The
applications’ OAT representation is created using the approach described by Bleier
and Lindorfer [BL23]. We decided to use their approach as it allows generating the
native binary representation for Android applications from their APK file using Androids
dex2oat compiler. The additional compilation step optimizes the code, thus normalizing
it, weakening the effect of some obfuscation techniques. The decision to use TikNib is
based on its good results on binary similarity across different compilers, compiler options
and architectures outperforming recent state-of-the-art techniques, whilst not relying on
in-transparent machine learning approaches.

Figure 5.1 gives an overview how an application is analyzed using our detector. First
dex2oat is used to generate each app’s OAT file from its APK. This step just takes a
few seconds for all apps. After that the OAT file is taken to TikNib, which first runs
IDA Pro5, in order to decompile it and determine the functions, the CG, as well as the
CFG. In the next step we filter out all functions, whose fully qualified name starts with
BakerReadBarrierThunk or androidx:: as we found that these functions did not contribute
to distinguishing different frameworks, as they occurred across most applications. By

4https://github.com/SoftSec-KAIST/tiknib
5https://hex-rays.com/IDA-pro/
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5.3. Detection

Figure 5.1: Overview of the detection workflow

removing them we saved computation resources in all following steps as the number of
functions was reduced. In the last step of TikNib the actual features for each function
were extracted and written to a pickle file.

For detection these pickle files are read in, and all functions are compared to the
frameworks’ reference functions. The framework with the most matching functions will
be selected. How representative functions for each framework are selected is explained in
section 5.3.2 later in this chapter.
We experimented with normalizing the number of found functions over the number of each
framework’s reference functions. However, we found that this decreased the detection
rate slightly whilst almost doubling the number of false positives. Furthermore, we looked
into having special cases for handling related frameworks, such as the ones based on
Apache Cordova. For this, the child framework with the most matching functions would
be selected instead, if the number of matching reference functions was higher than a
percentage of the parents matching reference functions. The idea behind this approach
was that related frameworks will contain functions of the frameworks they are based on,
hence if the number of matching functions in a child framework is sufficiently large it
could indicate that the child framework instead of the parent framework is used. However,
we found this to not have any significant impact, as regardless of the percentage chosen
this mechanism lead to roughly the same amount of correct and incorrect decisions.

Scoring Metric

The metric used to determine the similarity of two functions is the average of the relative
differences between all features of the two functions. This is the same as proposed by
Kim et al. [KKC+23] with the relative difference between a feature f of functions A and
B being calculated as follows:

δ(Af , Bf ) = |Af − Bf |
| max(Af , Bf )| (5.1)
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The similarity between two functions is defined by the average of all relative differences
between the functions’ features as follows.

sim(A, B) = 1 − δ(Af1 , Bf1) + · · · + δ(AfN
, BfN

)
N

(5.2)

The similarity score lies in the range of [0, 1] with 1 corresponding to a complete match
and 0 being the greatest difference. Only features occurring in both functions are used
for calculation of the similarity score, i.e. if a feature is only defined for one of the
two functions it will not be used for calculating the similarity between them. During
detection, we deem two functions matching or similar if their similarity value is greater
than 0.95. This scoring metric was also used in the study by Kim et al. [KKC+23], where
it showed good results.

Features

For detection, three types of features are used: instruction features, CFG features, and
CG features. Examples for instruction features are the total number of arithmetic
instructions per function or the average number of shift instructions per basic block in a
function. CG features for example are the number of callee and callers for a function and
examples for CFG features are the number of loops or the max depth of the CFG.

Modifications to TikNib

We had to make several modifications to TikNib as it was developed for evaluating
binary code similarity across different compilers, compiler options and architectures. For
example, it expected the filenames of the given binaries to contain the used compiler,
compiler options as well as the architecture to automatically output the results for the
original authors’ different research questions. We modified TikNib such that it can be
given any binary file, to create an output .pickle file containing a list with all the found
functions and their features within it. In addition, we removed the original criteria for
filtering out functions as they were not intended for generating features for all functions.
We also disabled the extraction of the data features, as we noticed that these were always
0 when being run on OAT files. As each step in TikNib generated an intermediate pickle
file we removed all unnecessary information in each step in order to keep the size of these
pickles small.
Kim et al. also looked into how type information changes the effectiveness of their binary
code similarity technique. We removed the extraction of these type features as it relied
on debug symbols, which were not available for most functions in the generated OAT
files. Furthermore, their approach still showed good results without type information. As
type information in general is available in the application’s Dalvik code, possible future
work could look into extracting and adding type information the extracted functions.
TikNib also contained a feature selection procedure used for learning and selecting the
most significant features. However, we did not use it for our detector and instead made
use of all features.
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5.3.2 Function Selection
In this section we will explain how the functions representing each framework were
found and selected. We used a semi-automatic approach, where the first step produces
suggestions for relevant functions based on their fully qualified names, which then have
been tweaked and refined in a second manual step.

As the used binary code similarity metric gives us pairwise similarities between two
functions and most applications have more than 15,000 functions, it is unfeasible to
calculate similarity scores for all function pairs, in order to determine similarity clusters
for each framework. Therefore, we had to pre-select relevant functions. For this we
used the fully qualified function names to find functions that occurred in applications
of the same framework, but were not present across frameworks. For this we used all
applications in the dataset for which we could extract features using TikNib. Relying
on the fully qualified names to identify functions is not ideal, because obfuscation of
class and function names will alter these. Therefore, we manually checked and removed
proposed function names that were obfuscated. As we used a number of open source
apps taken from F-Droid, for which the use of obfuscation techniques is rather unlikely
we can safely assume that we are able to gather enough relevant function names without
being hindered by function and class name obfuscation. Furthermore, as seen in chapter
4 it is likely that most class name obfuscators are not applied to framework classes, as
they lack the framework specific handling in order to produce correctly functioning apps.

The selection of relevant function names was done in multiple steps listed in the following.

Step 1: Fetching of the function names for each application.

Step 2: Identification of inter-framework functions. These are common functions that
are present in multiple frameworks. A function is considered common if it occurs in at
least 50% of the applications with the same framework. For each pair of non-related
frameworks we checked if their common functions occurred in the other frameworks
common functions. We required these functions to occur in at least half of the applications
of each framework in order to not identify functions only occurring in a few applications.
The two groups of related frameworks considered by us are Expo and React Native, as
well as Apache Cordova, Ionic, Capacitor and Framework7.

Step 3: Removal of inter-framework functions. The inter-framework functions identi-
fied in the previous step are now removed together with the function names listed on a
manually created black list. This list is based on observations made during development
and testing of the detector. It contains concrete function names as well as regular
expression matching function names that we noticed to have no or a negative impact on
the detection capabilities.

Step 4: Identification of relevant functions. We selected the 20 most common function
names for every framework. Each function can only occur at most once per application.
Following the 20th most frequent function, up to 10 additional functions would be included
if they shared the same occurrence frequency as the 20th function. This introduced
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a degree of randomness in choosing functions with equal frequencies after the 20th
position, necessitating a manual process for selecting desirable functions and eliminating
undesirable ones. The functions manually added, were independently chosen in advance
before selecting the 20 most common functions. We found using more than 20 functions
at this step to increase the time needed for detection without increasing the detection
performance.

Step 5: Feature selection. In this step we chose all the features associated with
the function names deemed relevant. In instances where multiple distinct features
were associated with the same function name, we included all of them. However, such
occurrences were infrequent, suggesting that function names served as an effective tool
for our selection purposes.

Step 6: Removal of similar functions. Using the features from the previous step
we calculate the pairwise similarity between all functions using the score introduced in
section 5.3.1. We excluded functions that exhibited a high degree of similarity to each
other (sim > 0.9). This step aimed to eliminate redundancy among relevant functions
within each framework and to filter out functions with similar features across different
frameworks.

After these steps we have the relevant function features for each framework, which can
be used for detection.

5.3.3 Limitations
One of the biggest drawbacks of our detector in comparison to the other framework
detection approaches is the long runtime. As each application has to be decompiled
using IDA Pro before each function’s features can be extracted. We ran IDA Pro
with a timeout of 45 minutes, which was reached by several applications. For most
applications the decompilation and feature extraction using IDA Pro took around 30
minutes. Furthermore, big applications can not be analyzed using our detector, as we
noticed OAT files bigger than 30MB had a very high chance of running into the timeout,
as a result we did not try to decompile applications with OAT files larger than 100MB.
In the default dataset, 49 apps (9.35%) had OAT files larger than 100MB. This size
constraint limits the applications our detector can be applied to, one possible mitigation
for this could be to skip the decompilation step and instead extract the features for each
function from the oatdump output directly. The oatdump can be generated during the
generation of the OAT files and contains the native binary code side-by-side with the
Dalvik function it was generated from. These generate much faster, however we leave
it to future work to investigate if the necessary features can be extracted from just the
oatdump file directly.
The dex2oat compiler, that is used during the creation of the OAT files, has a –dump-cfg
option. We looked into the created CFGs but found them to not be usable for our
purpose, as they only contain the control flow between the basic blocks of within each
function for different stages of the compilation process.
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CHAPTER 6
Evaluation

In this chapter, we assess the framework detection technique introduced in chapter 5 as
well as the following framework detectors introduced in section 3.1: APK Framework
Detector [APKa], Mob Framework Radar [Mob], DroidLysis [Dro] and the detector by
Biørn-Hansen et al. [BHGM+22]. We decided to use these detectors for the evaluation as
their source code is publicly available, they support recent frameworks and can be run
without outdated distributions and software packages. We evaluate each technique on
our dataset introduced in section 5.2 as well as with two different obfuscation techniques
applied. Namely, the obfuscations developed by us in chapter 4, as well as control flow
obfuscation using Obfuscapk. In addition, we also evaluate the detectors with both
obfuscation approaches applied.
The chapter is structured as follows. First we will explain the methodology of the
evaluation and how the obfuscation was done in section 6.1, before discussing the results
in section 6.2. Threats to the validity will be discussed in section 6.3.

6.1 Methodology
To facilitate the evaluation process, we configured the current framework detection
techniques as Docker images. This enables their seamless and reproducible utilization,
while remaining system-independent. Our detector is not run in a Docker container, and
runs directly on the host system, but it can be dockerized if needed. We decided against
implementing it as a Docker container, as running directly on the host system made the
development of the proof-of-concept easier. The evaluation itself is done using a Python
program that takes each APK file and runs each detector on it. Our detector takes an
APK and creates its OAT binary representation, from which it extracts the features for
each function using TikNib. The function features for each application are stored in
a pickle file for later use. As extracting the features is a time-consuming process and
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only needs to be done once per APK, we have separated the feature extraction from the
evaluation.

We collected the framework identified by each technique in the applications and tallied the
results. Detection of the correct framework is counted as a true-positive, and detection
of the wrong framework as false-positive. Each detector except for the APK Framework
Detector and our detector can return more than one found framework per application.
Hence, if more than one framework was detected by a technique each wrong result
counts as a false-positive, and the correct one as a true-positive. The maximum number
of applications, where multiple frameworks have been detected was 25 with the Mob
Framework Radar on the default dataset. On the obfuscated-framework and obfuscated-
both dataset this occurred only a total of three times. Cases where no framework could
be detected, or the technique failed for some reason, i.e. timeouts or exceptions during
execution, were not counted as a false-positive. However, the number of applications
where no framework was detected or the detector failed are also noted in the results.
We did not count results or failed detection attempts as a false-positive, as no result is
different from returning a wrong result. Only applications using a framework supported
by the used detector, were evaluated, i.e. if a detector does not support detecting
framework A no applications using framework A will be given to the detector.

We evaluate 4 different datasets that are all based on the default dataset introduced in
5.2. How these datasets were created from the default dataset will be explained in the
following.

Obfuscate-Framework Dataset

The obfuscate-framework dataset was created by applying the concrete obfuscation
techniques developed and shown in chapter 4 to the default dataset. This dataset
represents the application of class and function name obfuscation, which is common for
Android applications, as well as the renaming of library and asset files. However, we did
not use an existing obfuscator for this as we noticed in chapter 4 that naively renaming
classes and functions without taking special care for classes used by frameworks will
result in non-functioning apps. We therefore decided to use the obfuscation techniques
and scripts shown previously, as they were engineered to handle framework specifics
whilst renaming classes and functions used by the frameworks.
Of the 524 APKs in the default dataset, 388 obfuscated APKs could be produced using
this approach. Only 10 apps failed to produce an APK file, the other apps were not
obfuscated as they used frameworks (Framework7, Kivy, Solar2D, etc.), for which we
did not have an obfuscation script. It is to be noted that it has not been validated if
the created APKs could still be installed and executed. This was only tested for the
applications used for developing the obfuscation scripts in chapter 4.
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Detector True-Positive False-Positive # apps
(Frameworks)

Our Detector 288 (54.96%) 33 (6.3%) 524 (16)
Our Detector
Apps without features ignored 288 (89.72%) 33 (10.28%) 321 (15)

APK Framework Detector [APKa] 284 (92.51%) 23 (7.49%) 307 (4)
Mob Framework Radar [Mob] 292 (87.95%) 33 (9.94%) 332 (7)
Biørn-Hansen et al. [BHGM+22] 216 (57.14%) 15 (3.97%) 378 (9)
DroidLysis [Dro] 271 (78.78%) 4 (1.16%) 344 (6)

Table 6.1: Number of True-Positives, False-Positives, total apps and number of detectable
frameworks for the different detectors on the default dataset. Apps without features
ran into a timeout or an error during the feature extraction with TikNib. We found
DroidLysis to work unreliable, giving different results for each run.
Green cells indicate the best performance per column.

Obfuscate-CFG Dataset
As our detector relies on features based on the CFG and CG, as well as assembler
instructions within each function we decided for the second dataset obfuscate-cfg to use
Obfuscapk with the following obfuscation options: ArithmeticBranch, CallIndirection,
Reflection, Reorder, Goto and Nop. These are all obfuscation options that change the
CFG and CG of the application and insert additional instructions into the functions,
possibly changing the function features. Therefore, we suspect this dataset to perform
worse on our detector than the default or the obfuscate-framework dataset.
478 APKs could be obfuscated using this approach. 23 Apps of the 46 that failed to
be obfuscated were using React Native. We did choose Obfuscapk as it seems like a
mature obfuscator, that in contrast to other obfuscation tools can directly be applied to
APK files, making it suitable for our use case. However, the Obfuscapk project has been
archived on GitHub on November 15 2023 and as the time of writing it is unclear if a
fork of this project will continue.

Obfuscate-Both Dataset
This dataset combines the obfuscation approaches of both the obfuscate-framework and
obfuscate-cfg dataset and contains 356 APK files. We decided to add this dataset to the
evaluation as it combines techniques that in theory should harm existing approaches as
well as our approach to framework detection.

6.2 Results
The results for the different detectors evaluated on the default dataset can be found
in table 6.1. The different number of total applications for each detector stems from
the fact that they support different frameworks, and applications using frameworks not
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supported by the detectors were ignored.
The APK Framework Detector performs the best with a true-positive percentage of
92.51%, this means it correctly detects the framework for most of the applications.
On the other hand it does only support detecting 4 different frameworks, which is the
least out of all the detectors evaluated. With a true-positive percentage of 54.96%
our detector performed the worst. This is the case due to the fact that the features
of 203 (38.74%) applications could not be extracted within the 45 minute timeout set
by us or ran into an error during the extraction. However, when only looking at the
performance for applications, where features could successfully be extracted, we see that
with a true-positive percentage of 89.72% it performs well. This shows the function
features are suitable for detecting the framework used in an application. However, future
focus should be set on improving the process of extracting these features faster and
more reliable. The false-positive percentage of our detector is not too bad, but with
10.28% still the worst of all the tested detectors. This is to be expected as our detector
does not rely on finding static artifacts, like specific directory, file or class names, but
instead relies on features extracted from the applications’ code. The majority of these
false-positives are due to applications using Ionic and Capacitor being detected as the
related Framework7 and Framework7 applications as Apache Cordova, as well as 4 of the
Xamarin applications being falsely identified as using Flutter. Ionic, Capacitor, Apache
Cordova and Framework7 are related frameworks.
The false-positive percentage of the Mob Framework Radar can be explained by it being
able to return multiple detected frameworks, whilst supporting related frameworks like
React Native and Expo, as well as Apache Cordova and Capacitor. As related frameworks
may contain the same files, this can lead to them both being detected, therefore increasing
the false-positive percentage. The same applies to the detector of Biørn-Hansen et al.
The fact that DroidLysis performs similar to the other detectors surprises, as it was not
purpose build for detecting frameworks and only relies on a single indicator for detecting
each framework. Nevertheless, we found it to work unreliable, giving different results
for each run. This issue arises from the execution of other time-consuming and complex
analyzes, leading to crashes, errors and timeouts. Modification of DroidLysis, removing
these, only keeping the analysis steps used for the detection of frameworks could lead to
a better reliability.

6.2.1 Differences based on Source
Table 6.2 contains the number of true-positives, false-positives, as well as the total
number of applications for each source of apps. The different sources of applications were
discussed in section 5.2. We count apps downloaded from the Androzoo dataset to the
Play Store source. We can see that our detector performed the best on apps taken from
the F-Droid store and worst for apps from the Play Store. This is due to 162 applications
from the Play Store failed to produce any features within the set timeout period. This
hints towards apps on the Play Store being more complex and therefore more resource
intensive to decompile and analyze. Possible obfuscation of the applications from the
Play Store could also play a role as they could make decompilation and analysis harder
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Source True-Positive False-Positive # apps
PlayStore 86 (31.97%) 21 (7.81%) 269
F-Droid 197 (81.07%) 12 (4.94%) 243
Self-Build 5 (41.67%) 0 12

Table 6.2: Number of True-Positives, False-Positives and number of total apps per source
for our detector on the default dataset. The poor performance for apps from the Play
Store is due to 162 apps failed to produce any features within the set timeout period.

Source True-Positive False-Positive # apps
PlayStore 86 (80.37%) 21 (19.63%) 107
F-Droid 197 (94.26%) 12 (5.74%) 209
Self-Build 5 (100.0%) 0 5

Table 6.3: Number of True-Positives, False-Positives and number of total apps per source
for our detector on the default dataset with apps where no features could be extracted
within the set timeout period being ignored.

and more time-consuming.
When ignoring all apps without any features available as shown in table 6.3 we can
still see that the performance of Play Store apps is worse than the apps from the other
two sources, be it to a smaller degree. Except for the detector of Biørn-Hansen et al.
this could also be observed with the other detectors. For the Biørn-Hansen detector
the performance on the apps taken from F-Droid suffers due to the poor detection of
Flutter applications (TP: 25.0%), which make up the majority (75.72%) of applications
in the F-Droid dataset. Nevertheless, with a true-positive percentage of 88.72% and a
false-positive percentage of 3.76%, it performs well on Play Store applications.

6.2.2 Differences Based on Framework
The detection performance of our detector across different frameworks can be found
in table 6.4. The table contains the number of true-positives, false-positives and the
number of total applications of our detector for the default dataset, broken down by the
applications’ frameworks. The percentages for the true-positives are calculated using the
number of true-positives and total applications for each framework. The same applies
to the false-positives, with the result that these percentages will not add up to 100%.
The poor performance for frameworks like Expo, NativeScript, Framework7 and Solar2D
can again be explained by the fact that for many applications the feature extraction
failed due to a timeout during decompilation. Table 6.5 shows the detection rates per
framework when ignoring applications, without features. Here we can see that the
detection performance varies significantly between the different frameworks. We looked
into what apps contributed to the false-positives for each framework and found most of
them to stem from related frameworks. For example, all the 7 Ionic applications were
detected as using Framework7, the 6 false-positives of Apache Cordova were actually
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Framework True-Positive False-Positive # apps
Apache Cordova 3 (50.0%) 6 (100.0%) 6
Apache Flex 1 (33.33%) 2 (66.67%) 3
Capacitor 0 (0%) 0 (0%) 4
Expo 0 (0%) 0 (0%) 20
Flutter 171 (92.93%) 8 (4.35%) 184
Framework7 46 (61.33%) 13 (17.33%) 75
Ionic 0 (0%) 0 (0%) 12
Kivy 7 (100.0%) 0 (0%) 7
NativeScript 8 (17.78%) 1 (2.22%) 45
Qt Framework 8 (88.89%) 0 (0%) 9
ReactNative 24 (23.53%) 1 (0.98%) 102
Solar2D 19 (55.88%) 0 (0%) 34
Titanium SDK 0 (0%) 0 (0%) 1
Unity 1 (16.67%) 2 (33.33%) 6
Uno Platform 0 (0%) 0 (0%) 1
Xamarin 0 (0%) 0 (0%) 15
Total 288 (54.96%) 33 (6.3%) 524

Table 6.4: Number of True-Positives, False-Positives and total number of apps broken
down per framework for our detector on the default dataset.

using Framework7 and Capacitor. All of these frameworks are related. Furthermore,
the application using Expo was detected as using React Native, which is also a related
framework. This hints towards, our selected function features not being perfectly suited
for differentiating between related frameworks as they share to many similar functions.
However, to confirm this more applications for each framework are required, as it may
be possible to find framework exclusive functions with a large enough dataset. Detecting
related frameworks as a framework family without differentiating between them can,
depending on the detector’s use case, be a viable strategy.

6.2.3 Obfuscation Resilience
We will now look at the different detectors’ resilience against obfuscation. Table 6.6 shows
the number of true-positives and false-positives for the different detectors on the different
datasets. In addition, figure 6.1 shows the number of true-positives and maximum number
of detectable apps per framework on the given dataset for the different detectors as a bar
chart. The obfuscations applied to each dataset are listed in section 6.1.
The results for the obfuscated-framework dataset show the effects of the library, asset,
class, and resource renaming obfuscations introduced in chapter 4. We see that they
prevent all detectors except of our detector to detect the framework of most apps. That
these obfuscations have no big impact to our detector was to be expected as they do not
modify the applications’ code with exception to renaming functions and classes. However,
the extent of their effectiveness against the other detectors is surprising, given their basic
nature and possible incomplete implementation, i.e. they do not obfuscate all features
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Framework True-Positive False-Positive # apps
Apache Cordova 3 (75.0%) 6 (150.0%) 4
Apache Flex 1 (100.0%) 2 (200.0%) 1
Capacitor 0 (0%) 0 (0%) 3
Expo 0 (0%) 0 (0%) 1
Flutter 171 (98.84%) 8 (4.62%) 173
Framework7 46 (80.7%) 13 (22.81%) 57
Ionic 0 (0%) 0 (0%) 7
Kivy 7 (100.0%) 0 (0%) 7
NativeScript 8 (100.0%) 1 (12.5%) 8
Qt Framework 8 (100.0%) 0 (0%) 8
ReactNative 24 (92.31%) 1 (3.85%) 26
Solar2D 19 (100.0%) 0 (0%) 19
Titanium SDK - - 0
Unity 1 (100.0%) 2 (200.0%) 1
Uno Platform 0 (0%) 0 (0%) 1
Xamarin 0 (0%) 0 (0%) 5
Total 288 (89.72%) 33 (10.28%) 321

Table 6.5: Number of True-Positives, False-Positives and total number of apps broken
down per framework for our detector on the default dataset with apps where no features
could be extracted within the set timeout period being ignored.

used by the different detectors.
The high number of false-positives of the APK Framework Detector is due to it classifying
all applications it can not identify the framework for as a native Android application. If
the detector were to instead indicate that it is uncertain about the framework used in
the app, the number of false-positives would be 0.

When now looking at the results for the Obfuscated-CFG dataset, we see that the
true-positive percentage of our detector reduces to 30.33%, whilst the percentage of false-
positive increases to 8.79%. The majority of the false-positives stems from incorrectly
assuming an application using React Native, interestingly at the same time no React
Native application could be successfully detected any more. When only looking at
applications with features available, Flutter frameworks can still be detected correctly
97.74% and Solar2D 92.86% of the time, whilst detection of the other frameworks almost
completely fails. The changes to the performance of the other detectors can mostly be
attributed to changes in the number of total apps and apps per frameworks, due to the
obfuscation failing for some applications.

When applying both obfuscations, represented by the obfuscated-both dataset, we can see
their combined effects. In this scenario, our detector stands out as the only one capable
of consistently identifying the framework used in an application a significant number of
times.
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Detector
Dataset Default Obfuscated

Framework
Obfuscated

CFG
Obfuscated

Both
TP FP TP FP TP FP TP FP

Our Detector 54.96% 6.30% 55.67% 6.44% 30.33% 8.79% 37.08% 6.18%
Our Detector
Apps without
features ignored

89.72% 10.28% 89.63% 10.37% 60.92% 17.65% 77.19% 12.87%

APK Framework
Detector

95.51% 7.49% 2.32% 97.68% 95.04% 4.96% 2.15% 96.42%

Mob Framework
Radar

87.95% 9.94% 4.0% 0.92% 90.10% 7.59% 3.69% 0.67%

Biørn-Hansen et al. 57.14% 3.97% 2.17% 0.54% 55.52% 4.07% 1.48% 0.59%
DroidLysis 78.78% 1.16% 11.85% 1.22% 86.58% 0.96% 14.71% 0.65%

Table 6.6: Number of True-Positives and False-Positives for each detector evaluated on
the different datasets. We found DroidLysis to work unreliable, giving different results
for each run.
The best results per column are marked green.

Figure 6.1: Number of applications, where the framework could be correctly identified
grouped by the different detectors. The red bar indicates the maximum number of apps
for which the framework could have been detected by each detector on the given dataset.

6.2.4 Summary of the results
In summary, we can conclude that the function features are suitable for detecting the
framework used in an application, as shown by the results for our detector when ignoring
applications without features. However, the extraction of these function features has
been shown to be unreliable, hindering the performance of our detector. Therefore, it
only makes sense to be applied over existing detectors, such as the APK Framework
Detector or the Mob Framework Radar, if these do not return possible frameworks due
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to an application being obfuscated. This is due to the simplicity of using directory, file
and class names for detection giving solid results whilst being fast and easy to check.
The existing detectors, except for DroidLysis, took less than 5 minutes for the whole
dataset, most of this time stems from overhead of running a Docker container for each
application as well as having the APK files stored on a remote system mounted via sshfs1.
DroidLysis took around 50 minutes to analyze the whole dataset, due to it performing
other more time-consuming analysis at the same time, which were not necessary for the
detection of frameworks, but could not be turned off without modification. However, this
is still faster than the time needed for running our detector, whilst the comparison of the
applications’ functions with the relevant functions for each framework is rather fast and
takes no more than 15 minutes for the whole dataset, the disassembly and extraction of
the functions and their features using TikNib and IDA Pro takes most of the time around
30 minutes per application. Therefore, the bottleneck of our detector both for reliability
and the time needed for analysis, is the decompilation and extraction of the function
features. Future work should therefore focus on improving the extraction of the function
features. Furthermore, we have seen that even simple obfuscations applied just using
bash scripts is enough to significantly reduce the performance of the existing framework
detectors. Using obfuscation techniques that modify the applications’ CFG, CG and
instructions have an impact on the performance of our detector, but it still manages to
produce usable results.

6.3 Threats to Validity
Firstly, certain frameworks, such as Apache Cordova, Apache Flex, Capacitor, Kivy,
Titanium SDK, Unity, etc., were under-represented in our dataset, primarily because
information about the frameworks used by an application is often not publicly available.
For the creation of our dataset we therefore relied on application showcases on the
frameworks’ websites and information in the metadata files for applications from the
F-Droid store. As a result, the evaluation results for under-represented apps might be
unreliable. Further evaluation should therefore try to increase the number of applications
for these frameworks. In addition, the small number of applications hurts the identification
of relevant functions used by our detector. Frameworks with a bigger representation in
our dataset were detected more reliable.
Due to the small number of applications for some frameworks, we did not split our
dataset in a training and evaluation set, as this would have further reduced the number of
applications available for evaluation and training. As a consequence, our detector could
perform different if evaluated on a dataset not used for identifying the relevant functions
used for detection. As we limited the number of relevant functions used for detection per
framework to 30, we argue that such an over fitting to our dataset is unlikely, at least for
frameworks not under-represented.

1https://github.com/libfuse/sshfs
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Our dataset contained a different number of applications for each framework, with
some frameworks, like Flutter, being overrepresented in our dataset. This can base
the evaluation results towards detectors that perform good on these overrepresented
frameworks.
After obfuscating the applications in our dataset we did not check whether they could
still be installed and run. We checked that the obfuscation scripts developed in chapter 4
produced runnable applications when applied to the apps used to developed them, hence
we are confident that this also applies to the majority of the apps in our dataset.
Obfuscapk, used in the creation of the Obfuscate-CFG and Obfuscate-Both datasets, has
been archived on the 15th November 2023, we used it for obfuscation in January 2024,
hence we consider it still useable for obfuscating APK files. In addition, as we have
seen in chapter 4, Obfuscapk may not always apply as much obfuscation as possible or
expected. As a result the apps obfuscated using Obfuscapk might not be comparable to
apps obfuscated using more sophisticated obfuscators. Furthermore, most obfuscators
are part of the build chain and not applied to the APK like Obfuscapk. As these have
access to the source code and are applied during compilation they can perform more
sophisticated and precise obfuscation. It is therefore possible that the detectors evaluated
perform different when run on applications obfuscated during compilation.
We refrained from comparing the run-time of each detector in more detail, as the overhead
caused by the evaluation setup, running them in Docker containers and the file system
holding the APK files introduced to many variables.
During evaluation, we have seen DroidLysis perform differently between runs, due to
it sometimes crashing running into timeouts. This non-deterministic behavior makes
precise comparisons of DroidLysis challenging.
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CHAPTER 7
Conclusion and Future Work

7.1 Summary
In this thesis we looked into the functioning of current framework detection techniques
and showed them in chapter 4 to easily be circumvented by simple file, directory and class
renaming performed using standard command line tools and bash scripts. Motivated by
this we developed a novel approach to framework detection utilizing function features
extracted from the application’s binary OAT representation that are resilient against
this kind of obfuscation. We showed the feasibility of function features for framework
detection, but also discovered their extraction to be unreliable and time-consuming.
We will now review the research questions from section 1.3.

R1 - How do the current framework detection tools perform compared to each other?

We have seen the current framework detectors to perform well on the default dataset, with
the APK Framework Detector having the highest true-positive percentage. Compared
to each other their performance was similar except for the detector by Biørn-Hansen
et al. [BHGM+22], which performed significantly worse. This is rather surprising as it
represents the latest research paper developing a framework detector, whilst at the same
time utilizing the same techniques as the other detectors. Its poor performance can thus
be attributed to the poor selection of the artifacts chosen for identifying the frameworks.
The current detectors however, support detecting only a limited number of frameworks
each, limiting the application.

R2 - How does obfuscation affect the performance of the different framework detection
tools?
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Obfuscation aimed at the applications’ code, changing its functions CG and CFG had no
impact on the performance of the current framework detectors, as these did not rely on
features modified by these obfuscations. However, applying the obfuscations developed
in chapter 4 strongly reduced the performance of the detectors. As we have seen that
these kinds of obfuscations require handling framework specific special cases in order to
produce functioning applications the real world impact of these on framework detection
has to be seen.

R3 - How does our novel approach perform compared to the tools tested in R1 and R2?

Our detector performs worse on the default dataset than the current techniques. This is
in first due to the high rate of applications where no function features could be extracted.
When ignoring apps without function features we can see our detector to have a similar
true-positive percentage as the existing detectors, be it with a slightly higher false-positive
percentage. When taking obfuscation into consideration we can see that obfuscation
aimed against the applications’ code decreases the performance of our detector, whilst
obfuscation of file, directory, class and library names has little to no effect. With the
latter reducing the effectiveness of the current framework detectors heavily, hence we
deem our detector the only one being robust against this kind of obfuscation.

R4 - Is binary code analysis of an Android applications OAT representation a feasible
approach for detecting its used frameworks?

We deem usage of the OAT representation for binary code analysis a feasible approach
for framework detection, due to its comparable results and increased robustness against
obfuscation compared to current framework detectors. However, time and computational
efforts required for the binary code analysis is higher than for the current detectors. As
creation of the OAT files itself can be done in little time, future research should empathize
on decreasing the time needed for extraction of the function features, as well as the
analysis of the OAT files, in order to decrease the time and effort needed for applying
this approach.

7.2 Future Work
We propose the following tasks to follow our research.

• We identified the extraction of the function features as the main obstacle, due
it being time-consuming and not very reliable. Therefore, future research should
look into alternative and faster ways for extracting these from the applications’
OAT representation. One possible option could be to take them from the oatdump
generated by the OAT compiler. The oatdump contains the Dalvik code side by
side with the binary code it is replaced with for each function. Information present
in there could significantly speed up the extraction of the function features.
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• As some frameworks are under-represented in our dataset, increasing the number
of apps for these frameworks can lead to better and more significant evaluation
results. At the same time it can aid the identification of relevant functions for these
frameworks. Future research should therefore try to identify more applications
using these frameworks, further increasing the dataset size.

• The different framework detectors can be applied to applications using unknown or
no frameworks and their results compared. This could be the basis for the creation
of a larger dataset of applications and the frameworks they are using, whilst at the
same time giving an overview about usage of different frameworks the wild.

• The current scoring method used by our detector is simple, future work could look
into more sophisticated ways of scoring the function features. At the same time
the impact of the different kind of function features could be investigated.

• Most obfuscators are part of the application’s build chain and applied during the
compilation. However, the obfuscators used in this thesis were applied after the
compilation on the APK files. Evaluating the different detectors on this kind of
obfuscators can give further insights into the obfuscation resilience of the different
framework detectors. It should also be investigated how they handle framework
specific special cases.

• As many frameworks use their own libraries, identification of these could aid in the
detection of frameworks. None of the current framework detectors use library files
apart from their file names for detection. As seen in chapter 3 library detection is
studied extensively, therefore it should be looked into whether such techniques can
be used for framework detection.
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Acronyms

AAB Android App Bundle. 3, 5, 6, 8

AAPT2 Android Asset Packaging Tool. 7

AOT Ahead-of-Time. 8

APK Android Package. 3, 5–9, 11, 14, 17–19, 25–30, 32, 33, 36, 41–43, 47–51, 53

ART Android Runtime. 7, 8

AST Abstract Syntax Tree. 14

CFG Control Flow Graph. 14, 15, 22, 36, 38, 40, 43, 49, 52

CG Call Graph. 14, 15, 22, 36, 38, 43, 49, 52

CNN Convolutional Neural Network. 22

CPDF Cross-Platform Development Framework. xi, xiii, 1, 3, 8, 9, 11, 17, 18, 32

DEX Dalvik Executable. 6, 13

JIT Just-in-Time. 7

JNI Java Native Interface. 7, 29, 30

JSI JavaScript Interface. 11

JVM Java Virtual Machine. 7

MPNN Message Passing Neural Network. 22

NLP Natural Language Processing. 22

OAT Of Ahead Time. xi, xiii, 1, 2, 8, 36, 38, 40, 41, 51, 52

TPL Third-Party Library. 19, 21, 22
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